
MP16: Capacity Planning and Tuning for IBM MQ for z/OS

March 2015

IBM MQ Performance

IBM UK Laboratories

Hursley Park

Winchester

Hampshire

SO21 2JN

Take Note!

Before using this report, please be sure to read the paragraphs on �disclaimers�, �warranty and
liability exclusion�, �errors and omissions� and other general information paragraphs in the �Notices�
section below.

Third edition, March 2015. This edition applies to IBM MQ for z/OS version 8.0.0 (and to all
subsequent releases and modi�cations until otherwise indicated in new editions).

© Copyright International Business Machines Corporation 2015.
All rights reserved.

Note to U.S. Government Users Documentation related to restricted rights. Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

Notices

DISCLAIMERS The performance data contained in this report were measured in a controlled
environment. Results obtained in other environments may vary signi�cantly.

You should not assume that the information contained in this report has been submitted to any
formal testing by IBM.

Any use of this information and implementation of any of the techniques are the responsibility of the
licensed user. Much depends on the ability of the licensed user to evaluate the data and to project
the results into their own operational environment.

WARRANTY AND LIABILITY EXCLUSION

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION
�AS IS� WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

In Germany and Austria, notwithstanding the above exclusions, IBM's warranty and liability are
governed only by the respective terms applicable for Germany and Austria in the corresponding
IBM program license agreement(s).

ERRORS AND OMISSIONS

The information set forth in this report could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; any such change will be incorporated in
new editions of the information. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this information at any time and without notice.

INTENDED AUDIENCE

This report is intended for Architects, Systems Programmers, Analysts and Programmers wanting to
understand the performance characteristics of IBM MQ for z/OS V8.0.0 and earlier releases.
The information is not intended as the speci�cation of any programming interfaces that are provided
by WebSphere MQ. Full descriptions of the WebSphere MQ facilities are available in the product
publications. It is assumed that the reader is familiar with the concepts and operation of IBM MQ.

Prior to IBM MQ for z/OS V8.0.0, the product was known as WebSphere MQ and
there are instances where these names may be interchanged.

LOCAL AVAILABILITY

References in this report to IBM products or programs do not imply that IBM intends to make
these available in all countries in which IBM operates. Consult your local IBM representative for
information on the products and services currently available in your area.

ALTERNATIVE PRODUCTS AND SERVICES

Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However,
it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program,
or service.

USE OF INFORMATION PROVIDED BY YOU

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you.

TRADEMARKS and SERVICE MARKS

The following terms, used in this publication, are trademarks or registered trademarks of the IBM
Corporation in the United States or other countries or both:

� IBM®

� z/OS®

� zSeries®

� zEnterprise®

� MQSeries®

� CICS®

� DB2 for z/OS®

� IMS�

� MVS�

� z9®

� z10�

� z196�

� zEC12�

� FICON®

� WebSphere®

� IBM MQ®

Other company, product and service names may be trademarks or service marks of others.

EXPORT REGULATIONS

You agree to comply with all applicable export and import laws and regulations.

Summary of Amendments

Date Changes

2012

Version 2.0 is a restructuring of the MP16 SupportPac.

Apart from the re-structure, it also includes
� changes for WebSphere MQ for z/OS version 7.1.0
� performance changes on z196
� disk performance changes using DS8800

A signi�cant amount of costs have been removed from MP16 and can be found
in the release speci�c performance e.g.SupportPac MP1H

This document aims to provide guidance on best con�guration of the MQ
subsystem and how the hardware and software that is used with MQ can
a�ect the performance.

It also aims to highlight where limitations may be seen.

2013-April

Version 2.1 includes updates for:
� WebSphere MQ for z/OS v7.1 support for SSL SHA-2 ciphers.

2015-March

Version 2.2 include updates for:
� IBM MQ version 8.0 for z/OS
� zEnterprise EC12 exploitation
� Persistent message rates
� 2 versus 3-tier performance

Table of contents

1 Queue Manager 1
Queue manager attributes . 1
Log data set de�nition . 1

Should your archive logs reside on tape or DASD? 2
How to minimize recovery time . 2
Should your installation use single or dual logging? 2
How large can your active logs be? . 3
Striped logs . 4
Striped archive logs . 5
8-byte log RBA . 5
How much log space does my message use? . 6
What is my logging rate? . 8
How much log space do I need when backing up a CF structure? 9
How can we estimate the required log data rate for a system? 9

Page sets . 11
Page set usage . 11
Size of page sets for a given number of messages . 11
Number of page sets . 12
Recovering page sets . 13
How often should a page set be backed up? . 13
Why WebSphere MQ for z/OS changed how it manages small messages in V7.0.1 . . 15

Bu�er pools . 19
Bu�er pool default sizes . 19
Bu�er pool usage . 19
Using bu�ers allocated in 64-bit storage . 21
Page �xed bu�ers . 21
Why not page �x by default? . 21
The e�ect of bu�er pool size on restart time . 21
Deferred Write Process . 21

What changed in version 8.0? . 22
How many DWP tasks are there? . 22
How much data could DWP write at checkpoint? 22
What impact is there when DWP writes large amounts of data? 23

Recovery . 24
Restart . 25

How long will my system take to restart after a failure? 25
What happens during a checkpoint . 27
What happens during the recovery phase of restart 28
How long will each phase of the recovery take? . 30
What happens during the recovery phase of restart when in a QSG 38
Log load - e�ect of LOGLOAD on restart time . 39

6

Increase in startup time after abnormal shutdown . 39
Tuning . 41

Performance implications of very large messages . 41
Use of MQ Utilities . 41

IBM MQ Utilities: CSQUTIL . 43
Queue Manager Trace . 45

Accounting Trace Costs . 45
Storage Usage . 46
Who pays for data collection? . 46
Who pays for writing to SMF? . 46
How much data is written? . 46

Statistics Trace Costs . 48
Global Trace Costs . 49

Performance / Scalability . 51
Maximum throughput using persistent messages . 51
What factors a�ect persistent message throughput ? 51
Application syncpoint speci�cs . 51
Message size and number of messages per commit . 52

Indexed Queues . 52
Indexed queue considerations . 52
Private indexed queue rebuild at restart . 53

Queue manager initiated expiry processing . 53
Queue manager security . 55

How much storage is used? . 55
The environment being measured . 55
The data . 57
What can we gather from the chart? . 57

Virtual storage usage . 58
Object sizes . 59

Page set 0 usage . 59
Virtual storage usage by object type . 60

Initial CSA (and ECSA) usage . 61
CSA usage per connection . 61
Bu�er Pool Usage . 61
Storage for security information . 61
Impact of number of objects de�ned . 62
Use of indexed queues . 62
Object handles . 62
Number of pages in use for internal locks . 62
Shared queue . 63
Using BACKUP CFSTRUCT command . 63
Clustering . 63

2 Coupling Facility 64
CF link type and shared queue performance . 64
How many CF structures should be de�ned? . 65
What size CF structures should be de�ned? . 65

CSQ_ADMIN . 66
How large does my admin structure need to be? . 67
Application structures . 68
How many messages �t in a particular CF application structure size? 69
CF at CFCC levels 14 and later . 69
Sizing structures at CFLEVEL(5) . 70

Increasing the maximum number of messages within a structure 72

Use of system initiated alter processing . 73
User initiated alter processing . 73

How often should CF structures be backed up? . 73
Administration only queue manager . 75
When should CF list structure duplexing be used? . 76

How does use of duplexed CF structures a�ect performance of MQ? 77
CPU costs . 77
Throughput . 77
CF Utilization (CF CPU) . 78
Environment used for comparing Simplex versus Duplex CF structures 78
Duplexing the CSQ_ADMIN structure . 78
Duplexing an application structure . 79

Non persistent shared queue message availability . 79
Coupling Facility . 80

What is the impact of having insu�cient CPU in the Coupling Facility? 80
When do I need to add more engines to my Coupling Facility? 80
What type of engine should be used in my Coupling Facility? 80
CF Level 19 - Thin Interrupts . 80
Why do I see many re-drives in the statistics report? 81

What is a re-drive? . 81
Why do I see many re-drives in the statistics report? 81
E�ect of re-drives on performance . 82
Batch delete of messages with small structures - CFLEVEL(4) and lower . . 83

Shared Message Data Sets - CFLEVEL(5) . 83
DB2 . 83

Is DB2 tuning important? . 84
Why does IBM MQ produce more DB2 rollbacks than I expect? 84

Shared queue messages > 63KB . 84
Shared queue persistent message throughput after 63KB transition 87

Shared queue persistent message request/reply CPU costs 90
Shared queue persistent message request/reply CF costs 90

Storage Class Memory (SCM) . 92
Using SCM with IBM MQ . 92
Impact of SCM on Coupling Facility capacity . 92

How much SCM is available? . 94
How do I know I am using SCM and how much? 94
ALLOWAUTOALT(YES) usage with SCM 94
Useful guidelines: . 94

Impact of CF Flash on Application performance . 95
Non-Sequential gets from deep shared queue . 96
RMF data . 96
Example use cases for IBM MQ with SCM . 97

Capacity � CFLEVEL(4 and less) � no o�oad available - �Improved Perfor-
mance� . 98

Capacity � CFLEVEL(5) O�oad - �Emergency Storage� 98
Capacity � CFLEVEL(5) � no o�oad - �Improved Performance� 98

Performance / Scalability . 99
Does the CF Structure attribute �CFLEVEL� a�ect performance? 99
The impact on MQ requests of the CURDEPTH 0 to 1 transition 99
When would I need to use more than one structure? 100
When do I need to add more Queue Managers to my QSG? 100
What is the impact of having Queue Managers active in a QSG but doing no work? 100
What is a good con�guration for my shared queues? 101
Shared queue persistent messages . 101

Shared queue performance a�ecting factors 101

3 Channel Initiator 103
What is the capacity of my channel initiator task? . 103
Channel initiator task storage usage . 104
What limits the maximum number of channels? . 104
How many channels can a channel initiator support? . 104
How many SVRCONN channels can a channel initiator support? 105
Does SSL make a di�erence to the number of channels I can run? 106
Channel initiator bu�er pools . 107

What happens when the channel initiator runs out of storage? 108
Channel Initiator Scavenger Task . 108

De�ning channel initiator - CHINIT parameters . 109
CHIADAPS . 109
CHIDISPS and MAXCHL . 110
Checking the OMVS Environment . 111
E�ect of Changing CHIDISPS . 112

Tuning Channels . 113
Channel option BATCHHB . 113
Channel option BATCHINT . 113
Channel option BATCHLIM . 113
Channel option BATCHSZ . 113
Channel option COMPHDR . 114
Channel option COMPMSG . 114
Channel option DISCINT . 114
Channel option HBINT . 114
Channel option KAINT . 115
Channel option MONCHL . 115
Channel option NPMSPEED . 115
SVRCONN channel option SHARECNV . 115

Tuning channels - BATCHSZ, BATCHINT, and NPMSPEED 116
How batching is implemented . 116
Setting NPMSPEED . 117
Determine achieved batch size using MONCHL attribute 117
Setting BATCHSZ and BATCHINT . 119

Channel Initiator Trace . 121
Why would I use channels with shared conversations? . 122
Performance / Scalability . 123

Channel start/stop rates and costs . 123
SSL channel start costs . 123
Factors a�ecting channel throughput and cost . 124

SSL and TLS . 125
When do you pay for encryption? . 125
How can I reduce the cost? . 125
Will using cryptographic co-processors reduce cost? 126
Is the secret key re-negotiation a �xed cost? . 126
SHA-2 Algorithm Support for SSL Channels . 126
SSL and TLS Costs . 127

2KB messages using encrypted channels . 128
16KB messages using encrypted channels . 129
64KB messages using encrypted channels . 130
1MB messages using encrypted channels . 131
SSL costs � conclusions . 132

SSLTASKS . 132

How many do I need? . 132
Why not have too many? . 133
Why not have too few? . 133
SSLTASK statistics . 133

SSL channel footprint . 133
SSL over cluster channels? . 133
SSL over shared channels? . 134

Using AT-TLS to encrypt data �owing over IBM MQ channels 135
Who pays for AT-TLS . 135
Limitations . 135
Performance comparison . 135

Costs of Moving Messages To and From MVS Images . 139
Non-persistent messages . 141
Persistent messages . 142

4 System 144
Hardware . 144

DASD . 144
Maximum request/reply throughput (DS8870) . 144

Upper bound on persistent message capacity - DASD log data rate 145
What is the e�ect of dual versus single logging on throughput? 145
Will striped logs improve performance? . 146
Will striped logs a�ect the time taken to restart after a failure? 146
Bene�ts of using zHPF with IBM MQ . 146

When can it help with IBM MQ work? . 147
Network . 148

IBM MQ and zEnterprise Data Compression (zEDC) with SMF 149

5 How It Works 150
Tuning bu�er pools . 150

Introduction to the bu�er manager and data manager 150
The e�ect of message lifespan . 151

Understanding bu�er pool statistics . 152
De�nition of bu�er pool statistics . 154
Interpretation of MQ statistics . 155

Observations on the problem interval . 156
What was happening . 157
Actions taken to �x the problem . 157

Log manager . 158
Description of log manager concepts and terms . 158
Illustration of logging . 159
When does a write to the log data set occur? . 159
How data is written to the active log data sets . 159
Single logging . 159
Dual logging . 160
Interpretation of key log manager statistics . 160
Detailed example of when data is written to log data sets 160

MQPUT example . 162
MQGET example . 164

Interpretation of total time for requests . 164
What is the maximum message rate for 100 000-byte messages? 164

6 Advice 166
Use of LLA to minimize program load caused throughput e�ects 166

Frequent use of MQCONN/MQDISC - for example WLM Stored Procedures 166
Frequent loading of message conversion tables . 167
Frequent loading of exits - for example, channel start or restart after failure 167

System resources which can signi�cantly a�ect IBM MQ performance 167
Large Units of Work . 168
Application level performance considerations . 169

7 Queue Information 170
Tuning queues . 170

Queue option ACCTQ . 170
Queue option DEFPRESP . 170
Queue option DEFREADA . 170
Queue option MONQ . 171
Queue option PROPCTL . 171

Maximum throughput using non-persistent messages . 171
What factors a�ect non persistent throughput . 171
Private queue . 172

What is the maximum message rate through a single private queue ? 172
Throughput for request/reply pairs of private queues 173

Shared queue . 175
Maximum persistent message throughput - private queue examples 176

Strict ordering - single reply application . 176
Increasing number of reply applications . 177

Maximum persistent message throughput - shared queue examples 178
Shared queue persistent message - CPU costs . 179
Shared queue persistent message - CF usage . 180

Message ordering - logical groups . 182
Does size of group matter? . 182
Large groups of small messages OR small groups of large messages? 182

Application tuning . 185
How much extra does each waiting MQGET cost? 185
How much extra does code page conversion cost on an MQGET? 185
Event messages . 185
Triggering . 185
What is the cost of creating a trigger or event message? 185

8 Two / Three Tier con�gurations 186
Why choose one con�guration over the other? . 187

Cost on the z/OS platform . 187
Achievable Rate . 188
Number of connecting tasks . 189
Measurements . 189

9 IMS Bridge: Achieving best throughput 192
Initial con�guration . 193
How does the IMS bridge work? . 193

Putting messages from IBM MQ into IMS . 193
IMS putting reply messages to IBM MQ . 194

Tuning the IMS subsystem . 194
Use of commit mode . 196

Commit Mode 0 (Commit-Then-Send) . 196
Commit Mode 1 (Send-Then-Commit) . 196

Understanding limitations of the IMS bridge . 198
When do I need more message processing regions? 200

Understanding the trace reports - run pro�le 201
Understanding the trace reports � call summary 202
Understanding the trace reports � region summary report 203
IMS Control Region issuing checkpoints whilst monitoring running 204
Understanding the Trace reports � Region IWAIT Report 205
Understanding the trace reports � Program Summary Report 206
Understanding the trace reports � Program I/O Report 207

When do I need more TPIPEs? . 210
IMS Bridge Throughput � Local Queues . 214

Non-Persistent Message Throughput � Local queues 215
Persistent Message Throughput � Local Queues . 215

IMS Bridge Throughput � Shared Queue � Single Queue Manager 216
Non-Persistent Message Throughput � Shared Queue 217
Persistent Message Throughput � Shared Queue . 217

IMS Bridge Throughput using Remote Queue Managers 218
Shared Queue � Non-Persistent Messages . 219
IMS Bridge Non-Persistent Message Throughput � Remote Queue Manager 221
Shared Queue � Persistent Messages . 222
IMS Bridge Persistent Message Throughput � Remote Queue Manager 224

10 Hardware Considerations 225
Example: LSPR compared to actual results . 226

Overview of Environment: Workload . 226
Batch Applications . 227
Hardware . 227
LSPR tables . 227

Non-Persistent Out-Of-Syncpoint Messages . 228
Non-persistent in-syncpoint messages . 230

Chapter 1

Queue Manager

When installing IBM MQ for z/OS, it is important to consider the following con�guration options
and decide on the most appropriate de�nitions for your particular queue manager environment. You
should consider these options before customizing the queue manager because it might be di�cult to
change them once the queue manager has been de�ned.

The following con�guration options should be considered:

� Using appropriate queue manager attributes

� Log data set de�nitions

� Page set de�nitions

� Bu�er pool de�nitions

� If you are using shared queues

◦ Coupling Facility (CF) structure de�nitions

◦ DB2 table de�nitions and associated bu�er pool and group bu�er pool de�nitions.

◦ Shared message data size and usage.

This chapter describes the factors that should be taken into account when designing your queue
manager environment.

Queue manager attributes

In a production environment for best performance, it is advisable that both global trace �TRACE(G)�
and channel initiator �TRACE(CHINIT)� are disabled unless requested by level 3 Service. For further
details of the impact on running with the queue managers global trace enabled, see �Trace Costs�.

Log data set de�nition

Before setting up the log data sets, review the following section in order to decide on the most
appropriate con�guration for your system.

1

Should your archive logs reside on tape or DASD?

When deciding whether to use tape or DASD for your archive logs, there are a number of factors
that you should consider:

� Review your operating procedures before making decisions about tape or disk. For example,
if you choose to archive to tape, operators must be available to mount the appropriate tapes
when they are required.

� During recovery, archive logs on tape are available as soon as the tape is mounted. If DASD
archives have been used, and the data sets migrated to tape using hierarchical storage manager
(HSM), there will be a delay while HSM recalls each data set to disk. You can recall the data
sets before the archive log is used. However, it is not always possible to predict the order in
which they will be required.

� When using archive logs on DASD, if many logs are required (which might be the case when
recovering a page set after restoring from a backup) you might require a signi�cant quantity
of DASD in order to hold all the archive logs.

� In a low usage system or test system, it might be more convenient to have archive logs on
DASD in order to eliminate the need for tape mounts.

How to minimize recovery time

To minimize recovery time and avoid operational complexity it may be best to

� Keep as much recovery log as possible in the active logs on DASD, preferably at least enough
for one day.

� Archive straight to tape.

� Page set image copy frequency should typically be at least daily.

Log shunting, introduced by WebSphere MQ version 6.0.0 (see WebSphere MQ for z/OS Concepts
and Planning Guide GC34-6582), makes it unlikely that archive logs will be required after a queue
manager failure as shunted log records contain su�cient information for transactional recovery.

However, media recovery from a page set or CF application structure failure still requires the queue
manager to read all log records since the date and time of the last image copy of that pageset or CF
structure backup.

There is some small CPU saving when reading from active versus archive log on disk, but the major
objective is to take maximum advantage of available disk space.

The tuning variables are image copy frequency, dualling all image copies to avoid fallback to previous
image copy and how much disk space can be made available for the active logs.

Should your installation use single or dual logging?

There is little performance di�erence between single and dual logging to write-cached DASD unless
the total I/O load on your DASD subsystem becomes excessive.

If your DASD type is a physical 3390 or similar, you are advised to use dual logging in order to
ensure that you have an alternative backup source in the event of losing a data set, including loss
by operator error. You should also use dual BSDSs and dual archiving to ensure adequate provision
for data recovery.

2

If you use devices with in-built data redundancy (for example, Redundant Array of Independent
Disks (RAID) devices) you might consider using single active logging. If you use persistent messages,
single logging can increase maximum capacity by 6 - 10% and can also improve response times.

If you use dual archive logs on tape, it is typical for one copy to be held locally, and the other copy
to be held o�-site for use in disaster recovery.

Other reasons for dual logging:

� Software duplexing gives separate names to datasets, which reduces the risk of manual error
destroying data, e.g. deleting.

� Di�erent names may map to di�erent storage / management classes so one copy may be local
and the other remote.

How many active log data sets do you need?

You should have su�cient active logs to ensure that your system is not impacted in the event of an
archive being delayed.

In practice, you should have at least four active log data sets but many customers have enough
active logs to be able to keep an entire day's worth of log data in active logs. For example, if the
time taken to �ll a log is likely to approach the time taken to archive a log during peak load, you
should de�ne more logs. You are also recommended to de�ne more logs to o�set possible delays in
log archiving. If you use archive logs on tape, allow for the time required to mount the tape.

How large can your active logs be?

Prior to MQ version 8.0, when archiving to DASD, the largest single archive dataset supported was
65,535 tracks as IBM MQ does not support splitting an active log to multiple archive datasets on
DASD and this is the size limit for data sets accessed with BDAM. This means that the maximum
size of an active log is 65,535 tracks, approximately 3.5GB. This limit exists because the size of the
log is restricted to the size of the largest archive log that IBM MQ for z/OS is able to access.

From version 8.0, BDAM is no longer used for archive access, so both active and archive logs on
DASD may be up to 4GB in size.

If archiving to tape then the largest active log remains at 4GB regardless of MQ release.

Note: When the archive logs are written to DASD and have a primary allocation exceeding 65,535
tracks, (available from version 8.0.0) it may be necessary to ensure the archive data sets are allocated
by a DFSMS data class that has a data set name type of LARGE or EXT. LARGE indicates that
data sets in the data class are to be allocated in large physical sequential format. EXT indicates
that data sets are to be allocated in extended physical sequential format. A setting of EXT is
recommended, and is required for striping of data sets. If you specify EXT, also set the IFEXT (if
extended) parameter to R (required) rather than P (preferred).

Note: We found that using archive logs of larger than 65,535 tracks resulted in additional CPU cost
within the queue manager address space. It is suggested that archive logs larger than 65,535 tracks
are only used when the queue manager is likely to be short of active logs. In the event of using these
larger archive logs, some additional bene�t may be gained by striping across multiple volumes.

How large should the active logs be?

Your logs should be large enough so that it takes at least 30 minutes to �ll a single log during the
expected peak persistent message load. If you are archiving to tape, you are advised to make the

3

logs large enough to �ll one tape cartridge, or a number of tape cartridges. (For example, a log size
of 3GB cylinders on 3390 DASD will �t onto a 3592 tape with space to spare.) When archiving to
tape, a copy of the BSDS is also written to the tape. When archiving to DASD, a separate data set
is created for the BSDS copy. Do not use hardware compression on the tape drive as this can cause
a signi�cant impact when reading the tape backwards during recovery.

If the logs are small (for example, 10 cylinders) it is likely that they will �ll up frequently, which
could result in performance degradation. In addition, you might �nd that the large number of
archive logs required is di�cult to manage.

If the logs are very large, and you are archiving to DASD, you will need a corresponding amount of
spare space reserved on DASD for SMS retrieval of migrated archive logs, which might cause space
management problems. In addition, the time taken to restart might increase because one or more
of the logs has to be read sequentially at start time.

Active log placement

High persistent message throughput typically requires that the active logs are placed on fast DASD
with minimum contention from other data set usage. This used to mean there should be no other
data set with signi�cant use on the same pack as an active log. With modern RAID DASD the 3390
pack is logical with the physical data spread across multiple disk devices. However, the z/OS UCB
(unit control block) for the logical pack may still be a bottleneck. UCB aliasing is available with
the z/OS parallel access volumes (PAV) support enabled. You can then have several busy data sets
on such a logical pack with good performance for each. This can be exploited to ease any active
log placement problems. For instance, you could have the current active log on the same logical
pack as the preceding active log. This used to be inappropriate as the preceding log would be read
for archive o�oad purposes while the current active log is being �lled. This would have caused
contention on a single UCB even to a logical pack.

Where UCB aliases are not available, then ideally, each of the active logs should be allocated on
separate, otherwise low-usage DASD volumes. As a minimum, no two adjacent logs should be on
the same volume.

When an active log �lls, the next log in the ring is used and the previous log data set is copied to
the archive data set. If these two active data sets are on the same volume, contention will result,
because one data set is read while the other is written. For example, if you have three active logs
and use dual logging, you will need six DASD volumes because each log is adjacent to both of the
two other logs. Alternatively, if you have four active logs and you want to minimize DASD volume
usage, by allocating logs 1 and 3 on one volume and logs 2 and 4 on another, you will require four
DASD volumes only.

In addition, you should ensure that primary and secondary logs are on separate physical units. If
you use 3390 DASD, be aware that each head disk assembly contains two or more logical volumes.
The physical layout of other DASD subsystems should also be taken into account. You should also
ensure that no single failure will make both primary and secondary logs inaccessible.

Striped logs

The active logs can be striped using DFSMS. Striping is a technique to improve the performance of
data sets that are processed sequentially. Striping is achieved by splitting the data set into segments
or stripes and spreading those stripes across multiple volumes. This allows multiple UCBs and this
in conjunction with HyperPAV can improve the logging rate achieved with messages larger than
4KB. Messages smaller than 4KB will only write a single 4KB page and will not exploit striping.

4

Striped archive logs

Prior to IBM MQ version 8.0.0, archive logs used BDAM and as a result could not be striped.

From IBM MQ version 8.0.0, archive logs stored on DASD may be striped. Striping the archive logs
may result in an improvement in o�oad time.

Note: Remember than when moving from non-striped to striped archive logs, it is advisable to divide
the PRIQTY and SECQTY values in the CSQ6ARVP macro by the number of stripes otherwise
each stripe will be allocated with the speci�ed size e.g.

CSQ6ARVP
parameter

No stripes 4 stripes

UNIT 3390 3390

ALCUNIT CYL CYL

PRIQTY 5600 1400

SECQTY 100 25

Log data set pre-format

Whenever a new log data set is created it must be formatted to ensure integrity of recovery. This
is done automatically by the queue manager, which uses formatting writes on �rst use of a log data
set. This takes signi�cantly longer than the usual writes. To avoid any consequent performance loss
during �rst queue manager use of a log data set, use the log data set formatting utility to pre-format
all logs. See the supplied sample job SCSQPROC(CSQ4LFMT).

Up to 50% of maximum data rate is lost on �rst use of a log data set not pre-formatted on our
DASD subsystem. An increase in response time of about 33% with loss of about 25% in throughput
through a single threaded application was also observed.

New logs are often used when a system is moved on to the production system or on to a system
where performance testing is to be done. Clearly, it is desirable that best log data set performance
is available from the start.

Log data set - RAID5 or RAID10

When running tests designed to put persistent messages to the log datasets we have found no
discernible di�erence in performance when using DASD con�gured as RAID5 over similar tests
using DASD con�gured as RAID10.

8-byte log RBA

From version 8.0, IBM MQ for z/OS improves the availability of the queue manager by increasing
the period of time before the log needs to be reset by expanding the size of the log RBA (Relative
Byte Address) from 6 to 8 bytes. This increase is such that over 64,000 times as much data can now
be written before the log RBA needs to be reset.

In order to support the increased log RBA, additional data is logged. For example a typical request-
reply workload using a 1KB request message and a 4KB reply message would need an additional
7% log space over a queue manager using a 6-byte RBA. Were the reply message to be 64KB, the
addition space would be 2% compared to a queue manager using a 6-byte log RBA.

5

How much log space does my message use?

The following tables are provided to give guidance as to the size of logged data for a range of
persistent messages. The logged data sizes are an average calculation based on using the process
described below. Some additional logging may be seen to due internal queue manager tasks.

These measurements were taken when they were the only workload running against the queue
manager. The logcopy dataset was large enough to contain all of the measurements performed.
Some additional log writes may be performed when the logcopy �le becomes full and the next
logcopy dataset is used.

All messages used were persistent and the application speci�ed whether the messages were put or
gotten in or out of syncpoint.

How the data was gathered:

� Queue Manager is started.

� DISPLAY LOG issued, note the RBA.

� Perform known workload, e.g. put 10,000 messages to queue.

� DISPLAY LOG issued, again note the RBA.

� Determine how much log data written by change in RBAs.

� Determine logging size per transaction by dividing the delta of the RBA by the known number
of transactions performed between DISPLAY LOG commands.

The measurements were run against local and shared queues, for a range of message sizes.

We measured putting and getting from the queues using 3 scenarios:

� 1 message is put or gotten out-of-syncpoint.

� 1 message is put or gotten followed by a MQCMIT.

� 10 messages are put or gotten in-syncpoint following by a MQCMIT. Note, the data in the
charts below show the measurements per message put or gotten, so using the data from the
Local Queue � Put table, the total size of logged data for the �Put*10, Commit� measurement
for a 1 byte message was 751 bytes * 10, i.e. 7510 bytes.

Local Queues

Message Size
(bytes)

Log Size in bytes
Per message PUT

Put out of Syncpoint Put then Commit Put*10, Commit

0 1057 1057 751

1 1060 1060 751

1024 2088 2088 1789

4096 5331 5331 5052

Message Size
(bytes)

Log Size in bytes
Per Message GOT

6

Get out of Syncpoint Get then Commit Get*10, Commit

0 481 481 186

1 481 481 186

1024 492 492 178

4096 527 527 192

Shared Queues

Message Size
(bytes)

Log Size in bytes
Per Message PUT

Put out of Syncpoint Put then Commit Put*10, Commit

0 683 1230 768

1 683 1230 768

1024 1687 2276 1802

4096 4780 5357 4884

Message Size
(bytes)

Log Size in bytes
Per Message GOT

Get out of Syncpoint Get then Commit Get*10, Commit

0 62 662 188

1 62 662 188

1024 69 650 177

4096 76 630 185

7

What is my logging rate?

Consider a requirement where a request/reply application needs to process 1000 transactions per
second and the request message is 1KB and the response message is 5KB. The workload is run using
local queues.

We can use the above charts to answer a question in the form of bytes per second, i.e.

Application Action Size (bytes)

Requester Put 1KB message out-of-syncpoint 1024 (message) + 1064

Server Get and commit 1KB 492

Server Put and commit 5KB 5120 (message) + 1300

Requester Get 5KB message out-of-syncpoint 550

Total data logged during transaction 9550

In order to sustain 1000 transactions per seconds, the system needs to log at 1000 * 9550 bytes per
second, 9.11MB/second.

8

How much log space do I need when backing up a CF structure?

When backing up a CF structure, the messages on the queues (in the structure) and in the DB2
BLOB tables a�ect how much is logged. The DISPLAY LOG command can be used to determine
how much log space was used as described previously, however the CSQE121I message that is logged
following successful completion of structure backup also provides the same information, converted
into MB, e.g.:

CSQE121I @QMGR CSQELBK1 Backup of structure APPL1 completed at RBA=00004BFFFB8C,

size 24 MB

The following table gives guidance as to how much log data is written when the BACKUP CFSTRUCT

command is used for a queue of �xed depth but di�erent size messages.

Message
size (bytes) Queue depth

Backup size as
reported by

CSQE121I (MB)

Size of backup per
message (bytes)

Overhead per
message (bytes)

0 50,000 24 505 505

1 50,000 24 506 505

1024 50,000 73 1538 514

4096 50,000 219 4642 546

Using the above data as a guide we can predict that 200,000 messages of 4KB in the structure being
backup up would use approximately 200,000 * 4642 bytes, i.e. 855 MB.

How can we estimate the required log data rate for a system?

The approximate amount of data written to a IBM MQ log for a persistent message that is MQPUT
and committed then MQGET and committed is approximately:

Message
size (bytes)

MQPUT +
MQGET local

or client
channel

MQPUT + send on message
channel

with achieved batchsize

Receive on message channel +
MQGET

with achieved batchsize

=1 =50 =1 =50

500 1,700 4,300 1,950 2,750 1,450

1,000 2,300 4,850 2,450 3,300 2,000

5,000 6,550 9,150 6,750 7,600 6,250

10,000 11,750 14,300 11,900 12,800 11,500

30,000 32,800 35,400 33,000 33,900 32,550

100,000 105,800 108,400 106,000 106,900 105555

Log data rate formulae If required a more detailed estimate may be derived from the following:

User message length + length(all headers) + 1000 bytes

Thus, for a 1000 byte persistent message put to and got from a local queue approximately 2300 bytes
of data will be written to the IBM MQ log. Using the maximum sustainable DASD data rates given
in the section �Upper bound on persistent messages capacity � DASD log data rate� , for 1000 byte

9

messages we estimate that up to 32.1 MB / 2,300 bytes = 14,634 persistent messages/second can
be processed on our DS8800 RAID-5 DASD subsystem; we have achieved this throughput in one
measurement scenario with enough concurrent processes, though there was an increased response
time. On other DASD subsystems you may get a di�erent maximum.

For long messages the log data requirement is further increased by about 150 bytes per page occupied
by the message and all its headers.

For example a 10,000 byte user message requires three 4KB pages.
10,000 + header length + 1000 + (3*150) = 11,750 bytes of data (approximately) will be
required on the IBM MQ log for such a message on a local queue.

There is also the following log data requirement for each batch of messages sent or received on a
channel (except for batches consisting entirely of non persistent messages on an NPMSPEED(FAST)
channel):

� Messages in batch=1

◦ Log requires 2.5KB per batch for the sender

◦ Log requires 1.3KB per batch for the receiver

� Messages in batch=50

◦ Log requires 3.7KB per batch for the sender

◦ Log requires 1.3KB per batch for the receiver

If most of your MQPUTs are done at a completely di�erent time to most of your MQGETs then you
should be aware that most of the log data is associated with the MQPUT rather than the MQGET.
As an example, you may receive messages over channels (MQPUTs) all day and only process those
messages (MQGETs) in an overnight batch job.

For throughput estimating purposes assume:

1. For MQGET the log data requirement is about 500 bytes for messages up to a user length of
10 KB. This increases linearly to about 1 300 bytes for messages of user length 100 KB.

2. For MQPUT the actual message, including header data, is placed on the log. To estimate
MQPUT requirement calculate
Total log requirement (as above) - MQGET log requirement

NOTE: The above calculations only give throughput estimates. Log activity from other IBM MQ
processes can a�ect actual throughput.

10

Page sets

When deciding on the most appropriate settings for page set de�nitions, there are a number of
factors that should be considered. These are discussed in the following sections.

Page set usage

In the case of short-lived messages, few pages are normally used on the page set and there is little
or no I/O to the data sets except at start time, during a checkpoint, or at shutdown.

In the case of long-lived messages, those bu�er pool pages containing messages are normally written
out to disk. This is performed by the queue manager in order to reduce restart time.

You should separate short-lived messages from long-lived messages by placing them on di�erent page
sets and in di�erent bu�er pools.

Size of page sets for a given number of messages

The maximum size of a pageset is:

� 64GB for V6.0.0 and subsequent releases
V6.0 performance for messages on such page sets is the same as that for existing 4GB page
sets. Utility performance is also unchanged per GB processed.

� 4GB for prior releases

The number of messages �tting into a page set is approximately as shown in the following charts
when using a version 6.0 or version 7.0.1 and subsequent release queue managers, assuming all
messages are the same size.

11

Pages per
message

Message size
(user data plus all headers except MQMD)

Approx msgs
per 4GB page-
set

Approx msgs
per 64GB
pageset

V6
V7.0.1 onwards
as shipped

V7.0.1 onwards
maxshortmsgs

0

8 27992 - 32040 27924 - 31971 27924 - 31971 125K 2M

7 23942 - 27991 23876 - 27923 23876 - 27923 142K 2285K

6 19894 - 23941 19828 - 23875 19828 - 23875 166K 2666K

5 15845 - 19893 15780 - 19827 15780 - 19827 200K 3200K

4 11796 - 15844 11732 - 15779 11732 - 15779 250K 4M

3 7747 - 11795 7684 - 11731 7684 - 11731 333K 5333K

2 3698 - 7746 3636 - 7683 3636 - 7683 500K 8M

Messages
per page

1 1656 - 3697 0 - 3635 1568 - 3635 1M 16M

2 981 - 1655 N/A 892 - 1567 2M 32M

3 643 - 980 N/A 554 - 891 3M 48M

4 440 - 642 N/A 351 - 553 4M 64M

5 305 - 439 N/A 216 - 350 5M 80M

6 208 - 304 N/A 119 - 215 6M 96M

7 136 - 207 N/A 47 - 118 7M 112M

8 79 - 135 N/A 0 - 46 8M 128M

9 34 - 78 N/A N/A 9M 144M

10 0 - 33 N/A N/A 10M 160M

Version 7.0.1 changed the manner in which short messages are stored. Refer to �Why WebSphere
MQ for z/OS changed the way it stored small messages in V7.0.1.� for the reasons for this change.
Performance report MP1G discusses the �MAXSHORTMSGS� tuning option which allows the user
to revert to version 7.0.0 and earlier behaviour.

You should allow enough space in your page sets for the expected peak message capacity. You should
also specify a secondary extent to allow for any unexpected peak capacity, such as when a build up
of messages develops because a queue server program is not running.

NOTE: Prior to V6.0.0 the application that causes page set expansion will have to wait until the
expansion has completed. This can be many seconds depending on the secondary extent size.

With V6.0.0 a page set that is allowed to expand will begin expansion when the 90% full threshold
is passed. While expansion is in progress each MQPUT to it will be delayed by a few milliseconds.
This means that is it less likely that an application needing to exploit a large page set will receive
a 2192 (media full) return code.

Where DASD space allows, initial allocation of the largest possible page set remains the best option
to minimize the possibility of an application stopping for media full reasons.

Number of page sets

Using several large page sets can make the role of the IBM MQ administrator easier because it

12

http://www-01.ibm.com/support/docview.wss?uid=swg24024589

means that you need fewer page sets, making the mapping of queues to page sets simpler.

Using multiple, smaller page sets has a number of advantages. For example, they take less time to
back up and I/O can be carried out in parallel during backup and restart. However, consider that
this adds a signi�cant overhead to the role of the IBM MQ administrator, who will be required to
map each queue to one of a much greater number of page sets.

The time to recover a page set depends on:

� The size of the page set because a large page set takes longer to restore.

� The time the queue manager takes to process the log records written since the backup was
taken; this is determined by the backup frequency and the amount of persistent log data (to
all queues on all page sets) required to be read and processed.

Recovering page sets

A key factor in recovery strategy concerns the period of time for which you can tolerate a queue
manager outage. The total outage time might include the time taken to recover a page set from a
backup, or to restart the queue manager after an abnormal termination. Factors a�ecting restart
time include how frequently you back up your page sets, and how much data is written to the log
between checkpoints.

In order to minimize the restart time after an abnormal termination, keep units of work short so
that, at most, two active logs are used when the system restarts. For example, if you are designing
an IBM MQ application, avoid placing an MQGET call that has a long wait interval between the
�rst in-syncpoint MQI call and the commit point because this might result in a unit of work that
has a long duration. Another common causes of long units of work is batch intervals of more than
5 minutes for the mover.

You can use the DISPLAY CONN command to display the RBA of units of work and to help resolve the
old ones. For information about the DISPLAY CONN command, see the IBM MQ Script Command
(MQSC) Reference manual.

How often should a page set be backed up?

Frequent page set backup is essential if a reasonably short recovery time is required. This applies
even when a page set is very small or there is a small amount of activity on queues in that page set.

If you use persistent messages in a page set, the backup frequency should be in the order of hours
rather than days. This is also the case for page set zero.

In order to calculate an approximate backup frequency, start by determining the target total recovery
time. This will consist of:

� The time taken to react to the problem.

� The time taken to restore the page set backup copy. For example, we can restore approximately
6200 cylinders of 3390 data per minute from and to DS8800 DASD using DFDSS. Using
REPRO, the rate was 3700 cylinders per minute.

� The time the queue manager requires to restart, including the additional time needed to recover
the page set.

This depends most signi�cantly on the amount of log data that must be read from active and
archive logs since that page set was last backed up. All such log data must be read, in addition
to that directly associated with the damaged page set. When using fuzzy backup, it might be

13

necessary to read up to three additional checkpoints, and this might result in the need to read
one or more additional logs.

When deciding on how long to allow for the recovery of the page set, the factors you need to consider
are:

� The rate at which data is written to the active logs during normal processing:

◦ The amount of data required on the log for a persistent message is approximately 1.3 KB
more than the user message length.

◦ Approximately 2.5 KB of data is required on the log for each batch of non fast messages
sent on a channel.

◦ Approximately 1.4 KB of data is required on the log for each batch of non fast messages
received on a channel.

◦ Non-persistent messages require no log data. NPMSPEED(FAST) channels require no
log data for batches consisting entirely of non-persistent messages.

The rate at which data is written to the log depends on how messages arrive in your
system, in addition to the message rate. Non-fast messages received or sent over a channel
result in more data logging than messages generated and retrieved locally.

� The rate at which data can be read from the archive and active logs.

◦ When reading the logs, the achievable data rate depends on the devices used and the
overall load on your particular DASD subsystem. For example, data rates of over 100
MB per second have been observed using active and archive logs on DS8800 DASD.

◦ With most tape units, it is possible to achieve higher data rates for archived logs with a
large block size.

NOTE: The rates achieved with the DS8800 DASD were on a system with su�cient CPU and
capacity to the disks. When the job running the back-up of the page sets had insu�cient CPU, the
rate that the IDCAMS REPRO job was able to back up dropped from 43MB per second to 8.5MB
per second.

14

Why WebSphere MQ for z/OS changed how it manages small messages in
V7.0.1

In version 7.0.1 of WebSphere MQ for z/OS, a change to the way that MQ handles small messages
was implemented.

Version 6.0.0 would attempt to �t as many messages as possible into each 4KB page, which gave an
increased capacity - for example it was possible to �t 10 messages of 32 bytes onto a single page,
which coupled with a 64GB page set limit, meant that a single page set could hold 160 million
messages.

There was a downside to this - because more than 1 message could be stored on a single page, it
was di�cult to know exactly when all of the messages on any particular page had been retrieved
and the page became available for new messages. To resolve this problem, a scavenger task would
be initiated every 5 seconds to scan all of the pages to identify which pages could be re-used.

As clock speeds have increased, the achievable transaction rate has also increased and allowing a 5
second period between scavenger tasks meant more pages become empty but not marked as available.
It also means that the scavenger task has to do more work scanning the chains to determine if a
page can be marked as reusable.

From version 7.0.1, small messages are stored one per page. This mean that a 64GB pageset can
never contain more than 16 million messages (i.e. 1/10th of the capacity for 32 byte messages).

The bene�t of this approach is that once the message has been gotten, the data page can be
deallocated immediately - there is no need to wait up to 5 seconds for the scavenger task.

In a high throughput environment, this means that there is less build up of unscavenged messages -
so messages are more likely to be found in bu�ers rather than being in the pageset.

As an example of the bene�t of the new approach, this is the output from a �DISPLAY USAGE�
command against a V6.0.0 queue manager that has been running a non-persistent workload with
2KB messages where there is never more than 1 message on the queue. In this instance the test has
been running for 17 seconds:

Page Buffer Total Unused Persistent Nonpersistent Expansion

set pool pages pages data pages data pages count

_ 0 0 20157 19837 320 0 USER 0

_ 1 1 268542 102704 29 165809 USER 0

_ 2 2 214725 214725 0 0 USER 0

From this message, it can be seen that there are 165,809 pages that are marked as used - this is
despite there being only 1 message on the queue at any time.

To further highlight the bene�ts, 2 charts are included. These show the results of a simple re-
quest/reply workload run using 2KB non-persistent private queue messages that are put and gotten
in-syncpoint. The measurements start with 1 requester and 1 server performing a request/reply
workload with a pair of queues de�ned on page set 1. As time goes on, more requesters and servers
are added - using queues on separate page sets - so there is never more than 1 message on any
particular page set.

These tests are run on a single z/OS 1.12 LPAR of a zEnterprise 196 (2817) with 16 dedicated
processors.

15

The comparison of non-persistent out-of-syncpoint workloads is even more marked but this is also
assisted in the V7.0.1 measurement by the put-to-waiting getter being more likely to be successful.
The following 2 charts have been included to compare the results of a simple request/reply workload
run using 2KB non-persistent private queue messages that are put and gotten out-of-syncpoint.

The measurements start with 1 requester and 1 server performing a request/reply workload with a
pair of queues de�ned on page set 1. As time goes on, more requesters and servers are added - using
queues on separate page sets - so there is never more than 1 message on any particular page set.

These tests are run on a single z/OS 1.12 LPAR of a zEnterprise 196 (2817) with 16 dedicated
processors.

16

NOTE: The y-axis scale is signi�cantly di�erent between the version 6.0.0 and version 7.0.1 charts.

The v6.0.0 measurement peaks at 37,500 transactions per second with a transaction cost between
50 and 80 microseconds. Despite 70% of the messages being put to waiting getter, the 15 pagesets
all expanded multiple times - showing that the scavenger was unable to keep up.

The v7.0.1 measurement peaks at 300,000 transactions per second with a transaction cost between
25 and 40 microseconds. There were no pageset expansions nor were there any messages suggesting
that the bu�er pools were too small.

As the queue manager is not expanding the pagesets to store the unscavenged messages the maximum
round-trip for these non-persistent out-of-syncpoint messages drops from 65 milliseconds to 1.1
milliseconds.

Summary

If capacity is the key requirement, then the v7.0.1 small message change may not be the most
appropriate as the capacity for small messages can be as little as a tenth of the v6.0.0 capacity.

17

IBM MQ works more e�ciently when queue depths are lower - messages in bu�ers cost less to get
than messages in pagesets, getting messages from deep queues costs more than getting messages
from shallow queues - and this small message change continues this theme with signi�cant bene�t
to throughput.

18

Bu�er pools

A bu�er pool is an area of virtual storage in the private region of the queue manager address space.
A BUFFPOOL de�nition gives the size in 4KB pages. Bu�er pools are used to minimize I/O to
and from page sets on disk. Thus both bu�er pool sizes and actual usage can signi�cantly a�ect the
performance of queue manager operation, recovery, and restart. Each message queue is de�ned to a
particular storage class (STGCLASS). Each STGCLASS is assigned to a page set (PSID). Each of
the 100 page sets (0 to 99) is assigned to a particular bu�er pool (BUFFPOOL). Thus any particular
queue uses only one bu�erpool and is ultimately stored in only one page set.

An outline of how bu�er pools are managed is given in �Introduction to the bu�er manager and
data manager�.

Bu�er pool default sizes

The following table shows suggested values for bu�er pool de�nitions. Two sets of values are given;
one set is suitable for a test system, the other for a production system or a system that will become
a production system eventually.

Table: Suggested test and production de�nitions for bu�er pool settings

De�nition setting Test system Production system

BUFFPOOL 0

1050 bu�ers
(These were the supplied sample
values until release V5.2. They

are usually too small for
production)

50 000 bu�ers
These are the supplied sample

values from release V5.2

BUFFPOOL 1 1050 bu�ers 20 000 bu�ers

BUFFPOOL 2 1050 bu�ers 50 000 bu�ers

BUFFPOOL 3 1050 bu�ers 20 000 bu�ers

Bu�er pool usage

From V8.0.0 up to 100 bu�er pools (0-99) may be de�ned, up from the previous limit of 16 bu�er
pools. This allows a 1:1 mapping of bu�er pool to page set so that the bu�er pools can be more
�nely tuned to their usage.

We recommend you use only 4 bu�er pool de�nitions unless you:

1. Have class of service provision reasons for separating one set of queues from another

2. Have known queues which have di�erent behaviour at di�erent times or would otherwise be
better isolated in their own individual bu�er pools. This might be for their own performance
bene�t or to protect the performance of the other queues.

Prior to version 8.0.0, the storage for bu�er pools was limited to the amount of space available within
the overall queue manager address space virtual storage limit. From version 8.0.0, the bu�er pools
may be allocated using above the bar storage which provides multiple bene�ts including:

� Larger bu�er pools can be allocated which reduce the need for writing to page set and being
impacted by the increased I/O time to read/write from page set.

� Makes more space available in the queue manager's 31-bit storage for other things that haven't
been moved above the bar e.g. more handles.

19

NOTE: The optimum value for these parameters is dependent on the characteristics of the individual
system. The values given are only intended as a guideline and might not be appropriate for your
system. To make good use of the size recommendations you should consider separating bu�er pool
usage as follows:

1. A bu�er pool for page set zero and the page set(s) containing system related
messages.
Page set zero contains IBM MQ objects some of which must be frequently updated. For
example, queue objects have to maintain a CURDEPTH value. Ideally, keep page set zero
for these system-de�ned objects only. A crude estimate for the number of bu�er pool pages
required for the system objects in page set zero is half the number of objects.
The page set containing just system related messages, for example page set one, should also map
to this bu�er pool. System related messages are typically those in the SYSTEM.CLUSTER.*
and SYSTEM.CHANNEL.SYNCQ queues

It may be bene�cial to put the SYSTEM.CLUSTER.* queues in their own bu�er pool.

Queues that can grow large unexpectedly (for example, the dead-letter queue) are particularly
inappropriate for this bu�er pool. We suggest you put such queues in the `everything else'
bu�er pool.
This bu�er pool should be large enough never to cross the less than 15% free threshold.
This will avoid unnecessary reads from the page set which will e�ect overall IBM MQ system
performance if they are for system objects. A good starting point for the size of this bu�er
pool might be 50,000 pages.
Alter model queue de�nitions to point to a storage class other than SYSTEM so that they will
not map to bu�er pool zero.

2. A bu�er pool for queues for your important long-lived messages.
When using bu�ers from 31-bit storage (below the 2GB bar), a good starting point for the
size of this bu�er pool might be 20,000 pages.
Long-lived messages are those that remain in the system for longer than two checkpoints, at
which time they are written out to the page set.
While it is desirable within limits to de�ne such a bu�er pool so that it is su�ciently large
to hold all of these messages, it is not advised to exceed 50,000 pages prior to version 8,
otherwise there may be a concentration of the necessary page set I/O at checkpoints which
might adversely a�ect response times throughout the system.
Version 8.0 is capable of running with larger bu�er pools but be aware of the impact at
checkpoint by reviewing the �Deferred Write Processor� section.

3. A bu�er pool for queues for your performance critical short lived messages.
A good starting point for the size of this bu�er pool might be 50,000 pages.
This means that you have to have only short lived messages in queues on page sets that you
de�ne to this bu�er pool. Normally, the number of pages in use will be quite small, however,
this bu�er pool should be made large to allow for any unexpected build up of messages, such
as when a channel or server application stops running.
In all cases, this bu�er pool should be large enough never to cross the less than 15% free
threshold.

4. A bu�er pool for everything else.
You might not be able to avoid this bu�er pool crossing the less than 15% free threshold.
This is the bu�er pool that you can limit the size of if required to enable the other three to
be large enough. Queues such as the dead-letter queue, SYSTEM.COMMAND.* queues and
SYSTEM.ADMIN.* queues should be placed here. A good starting point for the size of this
bu�er pool might be 20,000 pages.

See �De�nition of Bu�er Pool Statistics� for information about statistics to help monitor bu�er pool
usage. In particular, ensure that the lowest % free space (QPSTCBSL divided by QPSTNBUF)

20

is never less than 15% for as many of the bu�er pool usage types shown above as possible. Also
ensure where possible that the bu�er pools are large enough so that QPSTSOS, QPSTSTLA and
QPSTDMC remain at zero.

NOTE: It is good practise to monitor bu�er pool usage over a period of time to determine whether
particular bu�er pools of the appropriate size. If a monitored bu�er pool never exceeds 50% used,
it may be bene�cial to reduce the size which would allow the administrator to allocate this storage
to a bu�er pool that is too small.

Using bu�ers allocated in 64-bit storage

Bu�er pools can be de�ned with the attribute LOCATION(ABOVE) so that the bu�ers are allocated
in 64 bit storage. This means that these bu�er pools can be made much larger so that all message
access is from storage, which can enhance application performance by reducing disk I/O to and from
page set.

Page �xed bu�ers

Even with large bu�er pools, for some kinds of processing where queue depths build up where it
may not be possible to keep all of the data in the bu�er pool. In these cases data is written to the
page set during MQPUT and read from page set during MQGET processing. Where the highest
levels of performance are required for this type of high I/O intensity workload, the bu�er pool can
be de�ned with PAGECLAS(FIXED4KB) which ensures that the bu�ers are permanently �xed in
real storage so the overhead of the page-�x before the I/O and the un�x after I/O is removed.

Why not page �x by default?

If PAGECLAS(FIXED4KB) is speci�ed and there is insu�cient real memory available in the LPAR,
the queue manager may fail to start or may impact other address spaces.

The e�ect of bu�er pool size on restart time

Restart time is not normally dependent on bu�er pool size. However, if there are persistent messages
on the log that were not written to a page set before a queue manager failure, these messages are
restored from the log during restart and are written to the page set at the checkpoint that occurs
following restart completion. This should have no greater impact than any other checkpoint, and
might complete before much application activity resumes.

If you reduce the bu�er pool size signi�cantly before restarting a system after an abnormal termi-
nation, this can lead to a one-time increase in restart time. This happens if the bu�er pool is not
large enough to accommodate the messages on the log thus requiring additional page set I/O during
restart.

For further information on bu�er pools, statistics and data manager, see section �Tuning bu�er
pools�.

Deferred Write Process

The deferred write process, also known as DWP or DWT, is a set of queue manager tasks that causes
data held in bu�er pools to be written to page set independently of the putting application(s).

21

Typically when a bu�er pool reaches 85% full, DWP will start to write the oldest data from the
bu�er pool into the associated page set, making more bu�er pool pages available to applications.
This will continue until the bu�er pool usage drops below 75% full.

Should the rate of data being put onto the bu�er pool exceed the rate that DWP can write to page
set and the bu�er pool usage reaches or exceeds 95% full, then synchronous writes to page set occur,
which can increase the elapsed time that an application takes to put a message.

What changed in IBM MQ version 8.0.0?

There were 2 changes in version 8.0 that a�ected the performance of the DWP.

� Increase in number of bu�er pools from 16 to 100.

� Moving bu�er pools from 31-bit storage to 64-bit storage. By moving the bu�er pools above
the 2GB �bar�, the total amount of storage allocated to bu�er pools can be much larger than
1GB.

Prior to version 8.0, DWP would write up to 4 pages of data in a single I/O request. With the
potential increase in the number of bu�er pool pages that may need to be written, this version of
DWP could take a substantial time to write the data to page set, and this increased the likelihood
that applications putting messages would be a�ected by synchronous I/Os.

From version 8.0, DWP attempts to write 16 pages of data per I/O request and may have up to 64
parallel I/Os in-�ight. This means that DWP can process up to 1024 pages (4MB) of data at a single
time per bu�er pool. With a maximum of 64 parallel I/Os per bu�er pool, the use of HyperPAVs is
recommended to exploit these parallel I/Os.

How many DWP tasks are there?

There is a deferred write process for each bu�er pool. With version 8.0's change to support 100
bu�er pools, this can have an e�ect on the number of tasks running within the queue manager.

The DWP is also used during checkpoint processing to process data that has been held in the bu�er
pool through 2 checkpoints. Once data in bu�er pools has been through 2 checkpoints, the DWP
task will write the messages to the page set.

How much data could DWP write at checkpoint?

Prior to version 8.0, the total amount of space used by bu�er pools was likely to be less than 1GB
of the queue managers 31-bit storage.

Since DWP will run when the bu�er pool usage reaches 85%, the maximum amount of data that
could be written at checkpoint was approximately 85% of 1GB, or around 220,000 pages.

In version 8.0, bu�er pools may be much larger although there is no practical bene�t in exceeding
the size of the page set, which are limited to 64GB. In version 8.0 the maximum amount of data
that can be written at checkpoint is actually limited by the log size, which has a maximum size of
4GB.

Note: Determining how much data is written by DWP at checkpoint is not as simple as the size
of the log. As discussed in �How much log space does my message use?�, a 0-byte message put to
a local queue will log 1057 bytes. However this is not necessarily the same as the amount of data
that DWP will write to the page set. DWP will write full 4KB pages - regardless of the data size.

This means that a persistent message of up to 3635 bytes on the bu�er pool will result in a 4KB
write I/O to the page set.

22

For a 0 byte message, which caused 1057 bytes to be logged, there could be 3 messages logged per
4KB page, so a 4GB log could contain 12GB of bu�er pool data that is eligible to be written by
DWP at the second checkpoint.

Where there are multiple messages per commit, the amount of data logged is reduced. For example
we have seen 10 messages of 0 bytes in a unit of work caused 751 bytes per message to be logged. In
this instance, the log could write 5 messages per 4KB of log space. This has the potential to result
in up to 20GB of bu�er pool data that is eligible to be written by DWP at the second checkpoint.

What impact is there when DWP writes large amounts of data?

On our systems using DS8870 DASD, the DWP task was able to write data bu�er pool to page set
at a rate of between 300-600 MB/sec. When there is 4GB of data to be written to a single page set,
this can mean that DWP is driving I/O for between 7 to 13 seconds. This increased load on the I/O
subsystem can result in an impact on application workload until the DWP workload is complete.

In a system with less responsive DASD, the impact may be greater. For example if DWP is only
able to write the 4GB of data at 100MB per second, there could be 41 seconds where an application
workload using persistent messages is a�ected by the moving of data from bu�er pool to page set.

The use of higher performance FICON (zHPF) can reduce the impact on active workload when the
queue manager DWP is initiated to write large amounts of data from bu�er pool to page set.

DWP is also used at queue manager shutdown to write any persistent messages from bu�er pool to
page set but as there is less likely be MQ workload running on the queue manager, it is unlikely to
be impacted.

23

Recovery

Achieving speci�c recovery targets

If you have speci�c recovery targets to achieve, for example, completion of the queue manager
recovery and restart processing in addition to the normal startup time within xx seconds, you can
use the following calculation to estimate your backup frequency (in hours):

Formula (A)

Backup frequency = (Required restart time * System recovery log read rate)

(hours) (in secs) (in MB/sec)

Application log write rate (in MB/hour)

For example, consider a system in which IBM MQ clients generate an overall load of 100 persistent
messages per second. In this case, all messages are generated locally. If each message is of user
length 1 KB, the amount of data logged per hour is of the order:

100 * (1 + 1.3 KB) * 3600 seconds = approximately 800 MB
where

100 = message rate per second

(1 + 1.3 KB) = amount of data logged for each 1KB persistent message.

Consider an overall target recovery time of 75 minutes. If you have allowed 15 minutes to react
to the problem and restore the page set backup copy, queue manager recovery and restart must then
complete within 60 minutes applying formula (A). This necessitates a page set backup frequency of
at least every:

3600 seconds * 36 MB per second / 800 MB per hour = 162 hours

This backup time means that there would be 126GB of data to restore � but it would be better to
recover the data from the active logs.

For example if the active logs are 2GB each and there are 10 logs, there are only 20GB of data
available on the active logs. Based on this the backup would need to occur every 25 hours

20 GB / 800MB per hour = 25.6 hours

This assumes that all required log data is on DS8000 DASD. (If you can only read from the log at
0.5MB per seconds the calculation would be every:

3600 seconds * 0.5 MB per second / 800 MB per hour = 2.25 hours

If your IBM MQ application day lasts approximately 12 hours, one backup every 2 days is appro-
priate. However, if the application day lasts 24 hours, one backup every day is more appropriate.

Another example might be a production system in which all the messages are for request-reply
applications (that is, a persistent message is received on a receiver channel and a persistent reply
message is generated and sent down a sender channel).

In this example, the achieved batch size is one, and so there is one batch for every message. If there
are 50 request replies per second, the overall load is 100 persistent messages per second. If each
message is 1 KB in length, the amount of data logged per hour is of the order:

50((2 * (1+1.3 KB)) + 1.4 KB + 2.5 KB) * 3600 = approximately 1500 MB

24

where:

50 = message pair rate per second

(2 * (1 + 1.3 KB)) = amount of data logged for each message pair

1.4 KB = overhead for each batch of messages received by each channel

2.5 KB = overhead for each batch of messages sent by each channel

In order to achieve the queue manager recovery and restart within 30 minutes (1800 seconds) requires
that page set backup is carried out at least every:

1800 seconds * 2.7 MB per second / 1500 MB per hour = 3.24 hours
This assumes that all required log data is on similar DASD.

Periodic review of backup frequency

You are recommended to monitor your IBM MQ log usage in terms of MB per hour (log size in MB
over hours to �ll that log).

You should perform this check periodically and amend your page set backup frequency if necessary.

Restart

How long will my system take to restart after a failure?

This section describes the factors relating to recovery that a�ect the restart time of a queue manager:

� What happens when a transaction processes an IBM MQ request. This describes the stages
that a transaction goes through.

� What happens during the recovery phase of restart.

� How long each recovery phase of restart takes.

� An example of a calculation of time required for the recovery phase of restart.

The length of time that a queue manager takes to restart depends on the amount of recovery
that it has to do. This covers recovery of applications that were processing persistent messages
(transactional recovery), and media recovery which involves both recovery of a page set after a
failure and recovery of persistent messages in a bu�er pool that had not been written to a page set.

There are four stages to the recovery phase of restart

1. Preparing for recovery.

2. Determining the status of IBM MQ and connected tasks at the point of failure. This includes
identifying the lowest page set recovery RBA.

3. Bringing the system up to date: this might involve media recovery and forward transaction
recovery of in-doubt and in-commit transactions.

4. Backing out changes for those tasks that were in-�ight and in-backout at the time the queue
manager stopped.

25

To understand what happens in these stages you need to understand what happens to a transaction
as it updates recoverable resources (such as persistent messages) and commits them. You also need
to understand what happens at when a checkpoint occurs. The next section gives a simpli�ed
description of these things.

What happens as a transaction processes its work Consider a CICS transaction that gets
two persistent IBM MQ messages, updates a DB2 table, and commits the work by issuing the EXEC
CICS SYNCPOINT command. This will use two-phase commit because resources in both IBM MQ
and DB2 are updated.

Transaction activity What happens within the queue manager

Transaction starts. Internal IM MQ state: Initial state

MQGET request issued.

The message is locked.
Because a unit of recovery did not exist for this transaction:
� A unit of recovery is created.
� The state is changed to "in �ight".
� A "Start unit of recovery" (Start UR) is moved to the log
bu�ers.

� The LOG RBA of this record is saved as STARTRBA in the
unit of recovery record.

The "message deleted" �ag is set in the message, and this change
is moved to the log bu�ers.
The current queue depth is decremented and this change is also
moved to the log bu�ers.
Final internal IBM MQ state: In �ight.

MQGET the second mes-
sage.

The message is locked.
The "message deleted" �ag is set in the message, and this change
is moved to the log bu�ers. The current queue depth is decre-
mented and this change is also moved to the log bu�ers.
Final internal IBM MQ state: In �ight.

DB2 table update made

EXEC CICS SYNC-
POINT issued.

CICS issues the �rst part
of the two phase commit
(the prepare request) to
IBM MQ.

A "Begin Commit phase 1" is moved to the log bu�ers.
The state is changed to "In commit 1".
Resource managers prepare for the commit.
The state is changed to "In doubt".

An "End commit phase 1" record is moved to the log bu�ers and
the RBA of this record is saved in the ENDRBA �eld of the unit
of recovery record
The log bu�ers up to and including this record are forced to disk.
Returns "OK" to CICS.
Final internal IBM MQ state: In doubt.

26

CICS issues the prepare to
DB2.

See Note.

Providing both IBM MQ
and DB2 replied OK,
CICS issues the second
part of the two phase
commit (the commit) to
MQSeries.

A "Phase 1 commit to Phase 2 commit" record is moved to the
log bu�ers.
The state is changed to "In commit 2", the transaction is now in
"Must complete" state.
The log bu�ers up to and including this record are forced to disk.
The state is set to "End phase 2 commit".
An "End phase 2 Commit" record is moved to the log bu�ers.
Any locked resources are unlocked.
The unit of recovery is deleted.
The state is set to "Initial state". Returns to CICS.
Final internal MQSeries state: Initial state

Providing both MQSeries
and DB2 replied OK,
CICS issues the second
part of the two phase com-
mit (the commit) to DB2.

NOTE: The calls to DB2 describe what logically happens. In
practice, CICS optimizes the call to the last resource manager by
passing the prepare and commit request together. In this example,
DB2 was the last resource manager, in other cases IBM MQ might
be the last resource manager, and so the prepare and commit
requests would be treated as one request.

Note: If any resource manager is unable to commit, the requests are backed out

What happens during a checkpoint

During a checkpoint, information about the following items is moved to the log bu�ers and the
bu�ers are forced to DASD.

� Incomplete units of recovery.

� Recovery RBAs of all page sets.

� Unit of work descriptors for peer recovery.

� IMS bridge checkpoint and all Set and Test Sequence Number (STSN) information.

When a checkpoint occurs it starts a process for writing old changed bu�er pool pages to disk. These
disk writes are not part of the checkpoint itself.

27

What happens during the recovery phase of restart

The following �gure shows an example of the messages produced during the recovery phase of restart:
The messages are described in the following text.

Figure: Example queue manager job log showing recovery messages

CSQJ099I @12A LOG RECORDING TO COMMENCE WITH

STARTRBA=0211B7845000

CSQR001I @12A RESTART INITIATED

CSQR003I @12A RESTART...PRIOR CHECKPOINT RBA=0211B7842C44

CSQR004I @12A RESTART...UR STATUS COUNTS

IN COMMIT=1, INDOUBT=0, INFLIGHT=1, IN BACKOUT=0

CSQR007I @12A STATUS TABLE

T CON-ID THREAD-XREF S URID DAY TIME

- -------- ------------------------ - ------------ --- --------

S IYCPVC01 1119E2ACC3D7F1F50000032C C 0211B7843536 138 16:59:32

S IYCPVC01 1119E2ACC3D7F1F50000036C F 0211B7F88502 138 17:05:51

CSQR005I @12A RESTART...COUNTS AFTER FORWARD RECOVERY IN COMMIT=0,

INDOUBT=0

CSQR006I @12A RESTART...COUNTS AFTER BACKWARD RECOVERY INFLIGHT=0, IN

BACKOUT=0

CSQR002I @12A RESTART COMPLETED

Phase 1, restart begins

The queue manager displays message CSQR001I to indicate that restart has started.

CSQR001I @12A RESTART INITIATED

The CSQJ099I message preceding the CSQR001I message contains the approximate RBA at the
point of failure.

CSQJ099I @12A LOG RECORDING TO COMMENCE WITH STARTRBA=0211B791A000

Phase 2, determine the state of the system at point of failure

1. The last checkpoint record is located from the BSDS.
CSQR003I @12A RESTART...PRIOR CHECKPOINT RBA=0211B7842C44

2. The recovery RBAs of each page set are read from the checkpoint records.

3. Page 0 of every page set is read to obtain the last logged RBA for the page set. The lowest
RBA of all the page sets is used to determine where the log should be read from for media
recovery.

4. An in-memory table is built from information in the checkpoint records of the tasks that were
active at the checkpoint.

5. The log is read in a forward direction from the checkpoint to the point of failure. The in-
memory table is updated as tasks complete or new tasks start.

6. Message CSQR004I displays how many tasks were in each state at the point of failure.

CSQR004I @12A RESTART...UR STATUS COUNTS IN COMMIT=1, INDOUBT=0,

INFLIGHT=1, IN BACKOUT=0

Phase 3, forward recovery

1. A list of all of the log ranges required for forward recovery is built from the list of tasks that
are in doubt and in commit. Note: Because the log ranges between the STARTRBAs and

28

ENDRBAs are known from the units of recovery, only the logs that contain these ranges are
used. This means that some archives might not be used.

2. The range of log records for the page sets is from the earliest RBA in the page sets up to the
point of failure. In normal operation the earliest RBA is within three checkpoints before the
point of failure. If it has been necessary to use a backup version of a page set, the earliest
RBA might be considerably earlier.

3. These ranges are combined, and a list is built of the required log ranges and the corresponding
active or archive logs. The logs are read from the lowest RBA to the highest.
Note: The logs are searched sequentially from the beginning of the data set until the start of
the required log RBA is found, and then read to the end RBA.

4. For each task that is in commit, log records between the start of the unit of recovery and the
ENDRBA are processed, and the changes reapplied.

5. For each task that is in doubt, log records between the start of the unit of recovery and
the ENDRBA are processed, and the changes reapplied. Locks are obtained on resources as
required in the same way that they are obtained during normal operation.

6. The log is read from the lowest RBA for all of the page sets and the data is replayed to rebuild
the bu�er pools (and the page sets if you are recovering from a backup version) as they were
at the point of failure. All log records from the earliest required RBA are read, even if they
do not apply to the particular page set.

7. These forward recovery steps are combined in one forward scan of the log.

8. Once this forward recovery has completed, transactions in "must-commit" state are completed.
All in-doubt units of recovery stay in doubt (with any resources still locked) until they are
resolved, (for example when the CICS region reconnects).

9. Message CSQR005I displays how many tasks are in commit or in doubt after forward recovery.

CSQR005I @12A RESTART...COUNTS AFTER FORWARD RECOVERY IN COMMIT=0,

INDOUBT=0

Phase 4, backward recovery.

1. The log records for in-�ight or in-backout transactions are processed and any changes made
by these transactions are undone.

2. Every log record is processed from the last written record, back to the earliest RBA of any
transaction that was in �ight or in backout. You can determine this RBA from the URID
speci�ed in message CSQR007I for records with a status of F or A.

CSQR007I @12A STATUS TABLE

T CON-ID THREAD-XREF S URID DAY TIME

- -------- ------------------------ - ------------ --- --------

S IYCPVC01 1119E2ACC3D7F1F50000032C C 0211B7843536 138 16:59:32

S IYCPVC01 1119E2ACC3D7F1F50000036C F 0211B7F88502 138 17:05:51

3. Message CSQR002I is issued at completion.

CSQR006I @12A RESTART...COUNTS AFTER BACKWARD RECOVERY INFLIGHT=0, IN

BACKOUT=0

CSQR002I @12A RESTART COMPLETED

29

How long will each phase of the recovery take?

Most of the time taken to recover is spent processing the active or archive logs. This has two
components:

1. Making the data sets available to the queue manager (for example mounting a tape or recalling
a data set from HSM for archive logs).
This time depends on your operational environment and can vary signi�cantly from customer
to customer.

2. Reading the active and archive logs.
This depends on the hardware used, for example DASD or tape, and the speed at which data
can be transferred to the processor. (On DS8800 DASD we achieved between 56 MB per
second reading the logs backwards and 105 MB per second reading the logs forwards.

The �gures below estimate the time needed to read the logs for each stage of recovery. You should
include your estimate of how long it will take to make the media available.

Phase 1, restart begins The recovery environment is established, so this is very short.

Phase 2, determine the state of the system at the point of failure The active log that
was being used at the point of failure is read from the start to locate the last checkpoint (this might
be at the start of the log). The log is then read from this checkpoint up to the point of failure.

The point of failure could be just before another checkpoint was about to be taken, in the worst
case, the point of failure might be at the end of a log, You can estimate how much data is written
between checkpoints by calculating the size of a log divided by the number of checkpoints in the
time it takes to �ll this log. (In our tests, with a log of 1000 cylinders of 3390 it took approximately
5 minutes to read to the end of this log.)

Phase 3, forward recovery This covers three activities:

� Recovering in-commit and in-doubt tasks.

� Applying changes to a page set if a backup copy has been used.

� Rebuilding the bu�er pools to the point of failure.

Phase 3, Recovering in-commit and in-doubt tasks Most time is spent reading the logs
between the STARTRBA and ENDRBA for in-doubt and in-commit tasks. The log is read in a
forward direction until the start RBA is located, and then the records are read and processed from
that point. If a unit of recovery spans more than one tape, the whole of the �rst tape has to be
read. For in-doubt tasks, any locks are re-obtained.

Phase 3, Applying changes to a page set if a backup copy has been used If a backup
copy of a page set is used, the log needs to be read from the point when the backup was taken,
and all records read forward from that point. If you did not record the log RBA when the backup
was taken, you can use the date and time when the backup was taken and look in a printout of the
BSDS to �nd the archive logs that will be needed.

To calculate the time needed to read the logs:

1. Calculate the di�erence between the log RBA at the start of backup and the RBA at the point
of failure (the STARTRBA value in message CSQJ099I).
If the backup was taken when the queue manager was active (a fuzzy backup), the RBA in the

30

page set might be up to three checkpoints before the RBA when the backup was taken. This
might be up to three additional archive logs.

2. Divide the RBA range (in MB) by the data rate your DASD or TAPE can sustain to calculate
the time required to process this amount of data.

The worst case is when there is a damaged page set that was not backed up and has to be rede�ned.
This sets the page set RBA to 0, and so all logs from the very �rst are required for recovery. In the
example above, the previous checkpoint is 0211B7842C44. This is about 2 300 GB of data. If this
can be read at 56 MB per second, this will take almost 12 hours.

If the page set had been backed up when the queue manager was down at the RBA of 021000000000,
the required range of RBAs is 0211B7842C44 - 021000000000 (about 7000 MB of data). If this can
be read at 56 MB per second, this is about 2 minutes plus the time to read from the checkpoint to
the point of failure. You also need to add the time taken to make any archive log available, and
include the time to restore the page set from a backup copy.

It is signi�cantly faster to use DFDSS dump and restore than to use IDCAMS REPRO. For example,
for a dataset of 1600 cylinders DFDSS dump took 15 seconds, and IDCAMS REPRO took 26 seconds.
In both cases the backup dataset was the same size as the original dataset.

Rebuilding the bu�er pools to the point of failure To recover a bu�er pool, up to three
checkpoints worth of data has to be read from log. This is typically two checkpoints worth, but if the
system failed when processing a checkpoint, three checkpoints worth of data needs to be processed.
By having at least three active log data sets, you will ensure that these records are read from the
active logs, and not archive logs.

If no page sets have been restored, rebuilding the bu�er pool is usually the most signi�cant part of
forward recovery.

Phase 4, undo any changes for tasks that were in �ight or in backout (backward re-
covery) The log has to be read in a backward direction from the point of failure to the earliest
URID for those tasks that were in �ight or in backout (a status of F or A). Reading backwards is
considerably slower than reading forwards, (by a factor of 5 on some tapes, and on our DS8800 was
half the rate of reading forwards), and is even slower if data compaction is used. In the example
above, if the system failed when the RBA was 211F0000000, there is about 900 MB of data to be
read. If the rate of reading backwards is 56 MB per second this will take about 16 seconds.

31

Example of calculation of restart time This section gives a worked example for the time taken
to restart a queue manager that had tasks in di�erent states when it stopped.

The calculations are to give an indication of the time taken to recover, for example, will a queue
manager take 10 minutes or 10 hours to restart, rather than an accurate value.

Con�guration

Dual logging was used, with 3 active logs in a ring. Each log was 100 cylinders of 3390 (about 74
MB each). Small logs were used for illustration purposes.

When archiving to tape, a Virtual Tape System (3494-VTS B16) was used. This looks like a 3490E
to z/OS. Physically, the data is written to DASD before being ultimately staged to a 3590 tape.

Request/reply CICS transactions were used. The transaction put a 1000-byte persistent message to
a server queue, and a batch server retrieved the message and put the reply back to the originator.

The in-doubt, in-�ight, and in-commit transactions were achieved as follows:

� CEDF was used to suspend the in-�ight transaction after the transaction had written a message
and before the commit. Many transactions were run.

� The in-doubt transaction was created by suspending the application before the "Phase 1 com-
mit to Phase 2 commit" was moved to the log bu�ers. Many transactions were run.

� The in-commit transaction was suspended the same way as the in-�ight transaction. Many
transactions were then run and the in-commit transaction was allowed to commit. The queue
manager was then cancelled. Because the "End phase 2 commit" had not been written to the
log data set, the transaction becomes in commit at system restart. If any other transaction
had run that caused the log bu�ers to be forced to disk, the in-commit transaction would
have had its "End phase 2 commit" written to the log data set, and would be seen as having
completed at system restart.

The following table shows the tapes that were used, and their RBA ranges:

Number STARTRBA ENDRBA

1 0 000000009FFF

2 00000000A000 000004659FFF

3 00000465A000 000008CA9FFF

4 000008CAA000 00000D2F9FFF

5 00000D2FA000 000011949FFF

6 00001194A000 000015F99FFF

7 000015F9A000 00001A5E9FFF

8 00001A5EA000 00001EC39FFF

9 00001EC3A000 000023289FFF

10 00002328A000 0000278D9FFF

The log data on tapes 9 and 10 is still available on the oldest two of the ring of active logs. Active
logs are always used in preference to archive logs where possible.

Output from when the queue manager was restarted after it was cancelled Phases 1
and 2, - estimate of the time needed

The following �gure shows an example of output from a queue manager at restart:

32

08.36.13 CSQJ099I @V21A LOG RECORDING TO COMMENCE WITH

STARTRBA=0000296A8000

08.36.13 CSQR001I @V21A RESTART INITIATED

CSQR003I @V21A RESTART...PRIOR CHECKPOINT RBA=0000278DF333

08.36.27 CSQR004I @V21A RESTART...UR STATUS COUNTS

IN COMMIT=1, INDOUBT=1, INFLIGHT=1, IN BACKOUT=0

CSQR007I @V21A STATUS TABLE

T CON-ID THREAD-XREF S URID TIME

- -------- ------------------------ ------------- -----------

S IYCPVC02 1869E2ACC3D7F2F50000046C F0000000A1F55 .. 08:14:35

S IYCPVC02 1869EE04C9D5C3D40016274C D0000046280C4 .. 08:18:56

S IYCPVC02 1869F206C3D7F2F50034023C C000008E340A0 .. 08:24:11

This shows that the time between issuing message CSQR001I and message CSQR004I (phase 1) is
14 seconds.

� The RBA in the CSQJ099I message (0000296A8000) is just after the point of failure.

� The last checkpoint is at 0000278DF333.

� The number of bytes between these two values is approximately 31 MB.

� If the log can be read at 2.7 MB per second, this will take about 12 seconds.

Phase 3, forward recovery - estimate of the time needed

� Tape 2 was read forwards and took 21 seconds. This is for the in-doubt transaction.

� Tapes 4 through 8 were read forwards; each tape took about 25 seconds to read. Tapes 9
and 10 were not needed because the data was still in active logs. This is for the in-commit
transaction.

08.47.05 CSQR005I @V21A RESTART...COUNTS AFTER FORWARD RECOVERY

IN COMMIT=0, INDOUBT=1

CSQR007I @V21A STATUS TABLE

T CON-ID THREAD-XREF S URID TIME

- -------- ------------------------ ------------- -----------

S IYCPVC02 1869EE04C9D5C3D40016274C D0000046280C4 .. 08:18:56

The time taken between issuing message CSQR005I and message CSQR004I was 10 minutes 38
seconds, of which 6 minutes 30 seconds was spent mounting the tapes. The tapes were being read
for just over 4 minutes. There is one task in commit and one in doubt.

The in-commit and in-doubt tasks are processed during forward recovery and the in-�ight task is
processed during backward recovery. There is no way of knowing when the last RBA was written
for the in-doubt or in-commit units of recovery. For normal, well-behaved, transactions the time
between the start of the unit of recovery and the commit request is short, but it might take a long
time for the in-doubt unit of recovery to be resolved.

Processing the in-doubt transaction The in-doubt transaction was created by suspending the
application before the "Phase 1 commit to phase 2 commit" was written to the logs. This was the
only transaction running at the time so the RBA range between the STARTRBA and the point
where the transaction was suspended was small.

The log has to be read from the "Start UR" to the "End commit phase 1". The STARTRBA is on
tape 2 and the log has to be read sequentially to locate the STARTRBA. Then the log is read and
processed up to the ENDRBA.

33

The START UR of the in-doubt transaction is 0000046280C4 and the STARTRBA of tape 2 is
00000000A000. The number of bytes to be read to locate the STARTRBA is:

0000046280C4 - 00000000A000 = 74MB

The test system can achieve a rate of 2.7 MB per second which means that it takes 27 seconds to
read 74MB. The time taken to read the records for the unit of recovery up to the ENDRBA is small
in this example. (In the example above, Tape 2 was read for 27 seconds.)

Processing the in-commit transaction The in-commit transaction put a message and was
suspended the same way as the in-�ight transaction. Many other transactions then ran. This
suspended transaction was then allowed to commit, in the sense that the "end phase 2 commit" was
moved to the log bu�ers. Before the bu�ers were written to the log data set the queue manager was
cancelled. Because the "End phase 2 commit" has not been moved to the log data set, it becomes
in commit at system restart.

� The STARTRBA of the transaction is on tape 4, and the whole of the tape has to be read, from
RBA 000008CAA000 forward. It is read from the start of the tape up to the STARTRBA,
and then from the STARTRBA up to the commit records.

� You might know how your applications behave, and know if they have long units of recovery.
In this example the ENDRBA is at the point of failure (0000296A8000).

� The amount of data to be read is 0000296A8000 - 000008CAA000. This is about 547 MB. On
the test system, this could be read in 202seconds (at a rate of 2.7MB per second).In the above
example, this was read in about 240 seconds.

Recovery of the bu�er pools The RBA from the page sets is within three checkpoints of the
point of failure. The checkpoints were occurring when the log switched, so up to three active logs
have to be read. Each log is 74MB, and at 2.7 MB per second will take about 27 seconds per log.
For three checkpoints this will be 82 seconds. This activity occurs in parallel to the recovery of the
in-commit and in-doubt tasks.

Total time for this forward recovery The time taken for forward recovery is the greater of:

� 27 seconds for the in-doubt unit of recovery plus 202 seconds for the in-commit unit of recovery

� 82 seconds for the recovery of the bu�er pools which is approaching 4 minutes, and close to
the actual elapsed time.

Phase 4, backward recovery - estimate of time needed The active logs were read backwards,
so the archive logs on tape 10 and 9 were not needed.

08.47.05 CSQR007I @V21A STATUS TABLE

T CON-ID THREAD-XREF S URID TIME

- -------- ------------------------ ------------- ------------

S IYCPVC02 1869EE04C9D5C3D40016274C D0000046280C4 .. 08:18:56

08.47.54 IKJ56221I DATA SET MQMDATA.TAPE.V21A1.A0000008 NOT ALLOCATED...

This shows that it took 54 - 05 = 49 seconds to process the log records already in memory and to
read the active logs backwards.

� Tapes 2 through 8 were read backwards taking between 85 and 140 seconds per tape, for a
total of 12 minutes 31 seconds.

34

09.04.50 CSQR006I @V21A RESTART...COUNTS AFTER BACKWARD

RECOVERY

INFLIGHT=0, IN BACKOUT=0

CSQR002I @V21A RESTART COMPLETED

The time taken between issuing message CSQR006I and message CSQR005I is 17 minutes 45 seconds,
of which 4 minutes was spent mounting the tapes and 12-13 minutes reading the tapes.

There is one task in �ight with an RBA of 0000000A1F55. The log has to be read backwards from
the point of failure to this RBA.

The point of failure is at 0000296A8000, so the amount of data to be read is 0000296A8000 -
0000000A1F55. which is nearly 700 MB. If the rate for reading data backwards is about 0.5 MB per
second this will take about 1400 seconds (nearly 24 minutes). 1

Total restart time The time for recovery is the total of the time in the three phases, that is
11 seconds + 202 seconds + 24 minutes (nearly half an hour) plus the time to mount tapes (for
example, 13 tapes at 1 minute each) giving a total time of nearly 45 minutes.

NOTE: These numbers are on older hardware and the logs are deliberately small to highlight the
recovery process and time.

1

Using the Virtual Tape System, where the data had not been destaged to 3590 tapes, the data could be read
at about 2.6 MB per second. When the data had been moved to tape, the average rate was about 0.6 MB per
second, this includes the time to locate and mount the tape as well as reading it.

35

Messages which show the page set status at startup

A message CSQI049I is produced to show the RBA needed by each page set during forward recovery.
If the two RBA values are di�erent this is due to a page set backup being used.

09.37.29 CSQI049I @# Page set 0 has media recovery

RBA=0000479AF9FA, checkpoint RBA=0000479AF9FA

09.37.29 CSQI049I @# Page set 1 has media recovery

RBA=0000479AF9FA, checkpoint RBA=0000479AF9FA

09.37.29 CSQI049I @# Page set 2 has media recovery

RBA=0000479AF9FA, checkpoint RBA=0000479AF9FA

09.37.29 CSQI049I @# Page set 3 has media recovery

RBA=0000479AF9FA, checkpoint RBA=0000479AF9FA

Messages to show progress during forward and backward recovery There are 4 messages:

CSQR030I

This shows the maximum log range required for forward recovery.

Note: Not every log in this range might be needed.

CSQR031I

This message is produced approximately every 2 minutes, and shows the current log RBA being
processed during forward recovery. From two of these messages, and the RBA range in message
CSQR030I, you should be able to calculate the maximum time the forward recovery phase will take.
You will also need to include the time taken to make the archive logs available. Active and archive
logs might be on di�erent media and thus be processed at di�erent rates.

CSQR032I

This shows the maximum log range required for backward recovery. Every log in this range will be
needed.

CSQR033I

This message is produced approximately every 2 minutes, and shows the current log RBA being
processed during backward recovery. From two of these messages, and the RBA range in message
CSQR032I, you should be able to calculate the maximum time the forward recovery phase will take.
You also need to include the time taken to make the archive logs available.

09.37.30 CSQR030I @# Forward recovery log range

from RBA=0000479AF9FA to RBA=0000479B33A0

09.37.30 CSQR005I @# RESTART...COUNTS AFTER FORWARD RECOVERY

IN COMMIT=0, INDOUBT=0

09.37.30 CSQR032I @# Backward recovery log range

from RBA=0000479B33A0 to RBA=000008561B58

09.38.43 CSQR033I @# Reading log backwards, RBA=00003E022000

09.40.43 CSQR033I @# Reading log backwards, RBA=00002E39A11D

09.42.43 CSQR033I @# Reading log backwards, RBA=00001E686466

09.44.43 CSQR033I @# Reading log backwards, RBA=00000EAB6000

09.45.31 CSQR006I @# RESTART...COUNTS AFTER BACKWARD RECOVERY

INFLIGHT=0, IN BACKOUT=0

09.45.31 CSQR002I @# RESTART COMPLETED

36

Messages about page set recovery RBA produced at checkpoints Message CSQP021I is
produced during a checkpoint. It identi�es the RBA stored in page 0 of the page set, and the lowest
RBA of any page in the bu�er pool for that page set. These values are usually the same.

09.45.31 CSQP018I @# CSQPBCKW CHECKPOINT STARTED FOR ALL BUFFER POOLS

09.45.31 CSQP021I @# Page set 0 new media recovery

RBA=0000479B4000, checkpoint RBA=0000479B4000

09.45.31 CSQP019I @# CSQP1DWP CHECKPOINT COMPLETED FOR BUFFER

POOL 3, 2 PAGES WRITTEN

09.45.31 CSQP021I @# Page set 1 new media recovery

RBA=0000479B4000, checkpoint RBA=0000479B4000

09.45.31 CSQP021I @# Page set 2 new media recovery

RBA=0000479B4850, checkpoint RBA=0000479B4850

09.45.31 CSQP021I @# Page set 3 new media recovery

RBA=0000479B50A0, checkpoint RBA=0000479B50A0

09.45.31 CSQP019I @# CSQP1DWP CHECKPOINT COMPLETED FOR BUFFER

POOL 2, 19 PAGES WRITTEN

09.45.32 CSQP019I @# CSQP1DWP CHECKPOINT COMPLETED FOR BUFFER

POOL 1, 21 PAGES WRITTEN

09.45.32 CSQP019I @# CSQP1DWP CHECKPOINT COMPLETED FOR BUFFER

POOL 0, 87 PAGES WRITTEN

09.45.32 CSQY022I @# QUEUE MANAGER INITIALIZATION COMPLETE

09.45.32 CSQ9022I @# CSQYASCP 'START QMGR' NORMAL COMPLETION

37

What happens during the recovery phase of restart when in a QSG

The following �gures show examples of the additional messages produced during recovery phase of
restart when the queue manager is in a queue sharing group.

Reconnecting to the structures in the coupling facility

12.14.45 CSQE140I @VTS1 CSQEENFR Started listening for ENF 35

events for structure CSQ_ADMIN

12.14.45 IXL014I IXLCONN REQUEST FOR STRUCTURE PRF5CSQ_ADMIN

WAS SUCCESSFUL. JOBNAME: VTS1MSTR ASID: 0C91

CONNECTOR NAME: CSQEPRF5VTS101 CFNAME: AACF01

ADDITIONAL STATUS INFORMATION:

CONNECTION HAS BEEN REESTABLISHED

12.14.45 CSQE141I @VTS1 CSQEENFR Stopped listening for ENF 35

events for structure CSQ_ADMIN

12.14.45 CSQE005I @VTS1 CSQECONN Structure CSQ_ADMIN connected

as CSQEPRF5VTS101, version=CA5DC40EEF336E88 0001043C

12.14.45 CSQE021I @VTS1 CSQECONN Structure CSQ_ADMIN

connection as CSQEPRF5VTS101 warning, RC=00000004 reason=02010407

codes=00000000 00000000 00000000

The queue manager attempts to reconnect to the named structure when it is noti�ed that the
coupling facility is available. The queue manager then connects to the named structure but issues
warning with reason 02010407 (IXLRSNCODESPECIALCONN). These messages may be repeated
for the application structures too.

CFLEVEL(5)

12.14.45 CSQE252I @VTS1 CSQEDSS4 SMDS(VTS1)

CFSTRUCT(APPLICATION1) data set MQMDATA.VTS1.SMDS.APPL1 space map

will be rebuilt by scanning the structure

12.14.45 CSQE255I @VTS1 CSQEDSS4 SMDS(VTS1)

CFSTRUCT(APPLICATION1) data set MQMDATA.VTS1.SMDS.APPL1 space map has

been rebuilt, message count 10240

The queue manager initiates the rebuilding of the shared message data set space map by scanning
the coupling facility structure. Upon completion the CSQE255I message is logged showing that
there are 10240 messages held on the structure.

Peer level recovery

12.14.45 CSQE011I @VTS1 CSQESTE Recovery phase 1 started for structure

CSQSYSAPPL connection name CSQEPRF5VTS101

12.14.45 CSQE013I @VTS1 CSQERWI1 Recovery phase 1 completed for structure

CSQSYSAPPL connection name CSQEPRF5VTS101

12.14.45 CSQE012I @VTS1 CSQERWI2 Recovery phase 2 started for structure

CSQSYSAPPL connection name CSQEPRF5VTS101

12.14.45 CSQE014I @VTS1 CSQERWI2 Recovery phase 2 completed for structure

CSQSYSAPPL connection name CSQEPRF5VTS101

12.14.45 CSQE006I @VTS1 CSQECLOS Structure CSQSYSAPPL connection name

CSQEPRF5VTS101 disconnected

38

Phase 1 of the peer level recovery process involves recovering units of work that were in progress at
time of failure.

Phase 2 involves recovering failed queue managers the in-�ight messages for that queue manager.

Log load - e�ect of LOGLOAD on restart time

The time taken to start a queue manager can be divided into four parts:

1. The time taken to load the MQ modules and for each component to initialize. Message
CSQR001I is issued when this phase is complete.

2. The time taken to process the logs and recover any in-�ight work; after a normal shutdown
this work is very small. Message CSQR002I is issued when this phase is complete.

3. The time taken to read every object de�nition from page set 0 and to perform a consistency
check on it. Message CSQY022I is issued when this phase is complete.

4. The time taken to process the statements in CSQINP2. Message CSQ9022I is issued when
this phase is complete.

Increase in startup time after abnormal shutdown

After an abnormal shutdown, extra time is needed to recover the system from the log data sets, to
rebuild the system to the point of failure, and then to commit or roll back the work.

In the measurements below, CICS applications put messages to a queue and a batch server program
processes the message and puts a reply on the speci�ed reply-to queue. The CICS application then
gets the reply and terminates.

A certain number of CICS transactions were run and then the queue manager was cancelled and
restarted.

During restart the duration between the start of the queue manager and key restart messages being
produced were recorded.

Number of CICS
transactions

Time between
startup and
CSQR001I

Time between
CSQR001I and

CSQR002I

Time between
CSQR002I and

CSQY022I

0 7 seconds 1 second 0.2 seconds

10000 7 seconds 59 seconds 0.2 seconds

There is a linear relationship between the time between messages CSQR001I and CSQR002I and
the number of CICS transactions that have run between the last checkpoint and the system being
cancelled.

If there are ongoing units of work that existed before the latest checkpoint when the system ended,
MQ will have to go back further in the log to the start of the units of work, and read the log from
that point. This will extend the restart time. This could happen with channels that have a very
long BATCHINT time speci�ed, or on which the remote end of a channel has failed and messages
are in doubt.

A checkpoint is taken at the following times:

� When an active log �lls and switches to the next active log.

39

� When the number of writes to log bu�ers (Write Wait + Write Nowait + Write Force in the log
manager statistics) exceeds the number speci�ed for the LOGLOAD parameter of CSQ6SYSP.
The number of writes to log bu�ers is reset to zero after a checkpoint.

� When an ARCHIVE LOG command is issued, because this forces a log switch.

� At shutdown.

1000 transactions were run, and the log statistics show that the number of "writes to log bu�ers"
was about 31 000, or 31 "write to log bu�ers" per transaction. This means that, with a LOGLOAD
value of 450 000, we could run 450 000/31 (=14 516) transactions before a checkpoint occurs. If the
system fails just before a checkpoint, the time between restart messages CSQR001I and CSQR002I
would be about 85 seconds. (10000 transactions take 59 seconds, so 14516 would take 85 seconds.)
This gives a total restart time of about 7 + 85 + 0.2 = 92 seconds.

Note: Di�erent message sizes might have di�erent numbers of "write to log bu�ers" per transaction.

E�ect of the number of objects de�ned on start up time

Restart time is a�ected by the number of objects that are de�ned because these are read in and
validated during startup.

Number of objects
de�ned

Time between
startup and
CSQR001I

Time between
CSQR001I and

CSQR002I

Time between
CSQR002I and

CSQY022I

140 7 1 0.2

4140 7 3.6 0.2

14484 7 7.6 0.2

With 14 484 objects de�ned, the default allocation of 1050 bu�ers for bu�er pool 0 is too small.
After the size of the bu�er pool had been increased, the bu�er pool statistics showed that 1230
bu�ers had been used.

40

Tuning

Performance implications of very large messages

The use of very large messages is likely to impact performance in the following ways:

� Page set I/O is more likely with very large messages than with the same amount of data in
smaller messages. Bu�er pools are much more likely to be so full that synchronous output to
page sets is required. This signi�cantly slows all applications using an a�ected bu�er pool.

� For persistent messages the log I/O load will be great and other smaller messages are likely to
be signi�cantly slowed waiting for log I/O or even just space in log bu�ers. Ensure that log
parameter OUTBUFF is set at its maximum (4000).

� Increased virtual storage usage in applications and in the IBM MQ channel initiator.

◦ This is likely to cause increased real storage usage in applications and IBM MQ bu�er
pools.

◦ The maximum number of channels all transmitting 100-MB messages is unlikely to exceed
15 because of virtual storage limitations. The use of BATCHSZ(1) is recommended for
any channel transmitting very large messages

These considerations could cause an increase in elapsed time and CPU cost for every message in
your queue manager compared to using the same amount of data in several smaller messages.

Use of MQ Utilities

If possible avoid setting MAXUMSGS high. The number of MQ operations within the scope
of a single MQCMIT should usually be limited to a reasonably small number. For example, you
should not normally exceed 100 MQPUTs within a single MQCMIT. As the number of operations
within the scope of one MQCMIT increases the cost of the commit increases non-linearly because of
the increasing costs involved in managing very large numbers of storage blocks required to enable a
possible backout. So for queues with many tens of thousands of messages it could be very expensive
to set MAXUMSGS greater than the number of messages and use CSQUTIL utility functions like
COPY or EMPTY.

The V8.0 Administration reference states, in the context of CSQUTIL utilities,

Syncpoints:

The queue management functions used when the queue manager is running operate within a syncpoint
so that, if a function fails, its e�ects can be backed out. The queue manager attribute, MAXUMSGS,
speci�es the maximum number of messages that a task can get or put within a single unit of recovery.

MAXUMSGS should normally be set to a low value, both to protect against looping applications, and
because there might be a very large processor cost in committing many messages.

The utility forcibly takes sync points as required and issues the warning message CSQU087I. If the
function later fails, the changes already committed are not backed out. Do not just rerun the job to
correct the problem or you might get duplicate messages on your queues. Instead, use the current
depth of the queue to work out, from the utility output, which messages have not been backed out.
Then determine the most appropriate course of action. For example, if the function is LOAD, you
can empty the queue and start again, or you can choose to accept duplicate messages on the queues.

To avoid such di�culties if the function fails, but at the risk of incurring a large processor cost, set
MAXUMSGS to be greater than:

� The number of messages in the queue, if you are working with a single queue.

41

� The number of messages in the longest queue in the page set, if you are working with an entire
page set.

The following should be added:

The number of MQ operations within the scope of a single MQCMIT should usually be limited to a
reasonably small value. For instance you should not normally exceed 100 MQPUTs within a single
MQCMIT. As the number of operations within the scope of one MQCMIT increases the cost of the
commit increases non-linearly. If the CPU cost of using the CSQUTIL utilities with a very high
MAXUMSGS becomes a concern and you really need to have the e�ect of a single commit then you
should consider using an intermediate temporary queue and your own simple program with commits
every say 50 messages.

For example, consider the requirement to read a sequential dataset of 100,000 records and add each
record as a message to an existing non-empty queue. This requires the e�ect of a single commit as
the application cannot be just re-run in the event of failure. In this case it might be better to have
simple applications which:

� LOAD the records as messages to a temporary queue with a low MAXUMSGS. The temporary
queue can be deleted in the event of failure and the job rerun.

� Copy this temporary queue to the target non-empty queue with 50 MQGETs plus 50 MQPUTs
per MQCMIT. This job can be rerun in the event of failure. The temporary queue is deleted
on successful completion.

� Alternatively the command MOVE QL(tempq) TOQLOCAL(targetq) TYPE(ADD) may be
used.

42

IBM MQ Utilities: CSQUTIL

The CSQUTIL utility program is provided with IBM MQ to help perform backup, restoration and
reorganization tasks and to issue MQ commands.

These tasks include page set management functions including formatting and increasing the size of
the page sets.

In order to increase the size of the page set, it is necessary to create the new page set and format it
using the FORMAT function and then copy the contents of the existing page set into the new page
set, using the COPYPAGE function.

The FORMAT and COPYPAGE functions may be performed within the same CSQUTIL job step
or in separate steps.

FORMAT

The FORMAT function is used to format page sets, initializing them such that they can be used by
the queue manager. On our system, each gigabyte of data took approximately:

� 0.725 CPU seconds

� 45 seconds elapsed

This means that to format a 4GB page set, it took 2.9 CPU seconds (on a 3-processor 2097-EC64)
and 3 minutes elapsed for the job to complete.

The queue manager does have the capability to expand and format a page set whilst it is active,
in the situation when it does not have su�cient capacity. In order to perform this expansion, the
queue manager will slow any MQPUTs to queues on the page set whilst the expand and format
takes place.

COPYPAGE

The COPYPAGE function is used only for expanding page sets to copy one or more page sets to a
larger page set. The entire source page set is copied to the target page set, regardless of how many
messages there are on the page set.

On our system, copying each gigabyte of page set took approximately:

� 2.53 CPU seconds

� 30 seconds elapsed

This means that to format a 4GB page set, it took 10.12 CPU seconds (on a 3-processor 2097-EC64)
and 2 minutes elapsed for the job to complete.

RESETPAGE [FORCE]

The RESETPAGE function is like the COPYPAGE function except that it also resets the log
information in the new page sets.

The �RESETPAGE� function:

� Does a copy and reset, using a source page set and a target page set.

� The target page set should have been opened previously, preferably using the FORMAT com-
mand, otherwise the step may fail with a "CSQU156E GET failed for CSQTxxxx data set.
VSAM return code=00000008 reason code=00000074" message.

43

� The target page set size should be equal to or greater than the current size of the source page
set including any expansions. The RESETPAGE function does not have the ability to expand
the target page set and instead will fail before attempting the copy.

On our lightly loaded system (3-processor on zEnterprise 196), each gigabyte of page set took
approximately:

� 2.13 CPU seconds

� 35 seconds elapsed

This means that to RESETPAGE a 4GB pageset it took 8.5 CPU seconds and 2 minutes 20 seconds
for the job to complete.

The �RESETPAGE FORCE� function:

� Does a reset in place, using only the source page set.

� This means that the page set will be of the appropriate size.

� As the same page set is being accessed for read and write operations, the rate of reset is
signi�cantly lower than the "RESETPAGE" option.

On our lightly loaded system (3-processor on zEnterprise 196), each gigabyte of page set took
approximately:

� 4.31 CPU seconds

� 123 seconds elapsed

This means that to RESETPAGE a 4GB pageset it took 17.2 CPU seconds and 8 minutes 15 seconds
for the job to complete.

Conclusions for RESETPAGE

� In order to ensure that queue manager down-time is minimised, it is advisable to use "RESET-
PAGE" rather than "RESETPAGE FORCE", unless there is insu�cient storage for a second
set of page sets for the queue manager.

� If multiple page sets are to be reset, they should be processed as separate jobs run in parallel.

� For cost purposes, the "RESETPAGE" function uses approximately 50% of the CPU that the
"RESETPAGE FORCE" function.

� Given that these jobs can be long running, it is advisable to check the service class is appro-
priate and the priority is not degraded over time.

44

Queue Manager Trace

For guidance on trace options for the channel initiator i.e. trace(chinit), accounting class 4 and
statistics class 4, refer to section �Channel Initiator - trace costs�.

To help understand the data generated by accounting and statistics trace, see SupportPac MP1B
"WebSphere MQ - Interpreting accounting and statistics data, and other utilities" which is available
at http://www.ibm.com/software/integration/support/supportpacs/

Accounting Trace Costs

Accounting trace classes 1 and 3 write an SMF 116 record for each transaction.

Additional �continuation� records may be written when class 3 accounting is enabled depending
on the number of queues accessed by the transaction. Typically the primary SMF 116 record can
support up to 8 queues and each continuation record can support a further 9 queues. For example,
an application that accesses 20 queues would see 3 SMF 116 records, one primary and 2 continuation
records, the �rst of which has data for 9 queues and the second has data for the �nal 3 queues.

The amount of data written to SMF can impact the CPU costs when enabling accounting trace,
particularly in an environment with a high transaction rate, as can where the SMF data is stored,
for example we have observed that writing high volumes of data to logstreams2 is lower cost than
writing to SMF MAN datasets.

In a CICS environment with a high transaction rate, the logging of records to SMF MAN datasets
may result in the queue manager reporting CSQW133E �TRACE DATA LOST� messages as SMF may
not be able to write the data to its datasets su�ciently quickly. In this case it is advisable either to
use logstreams rather than SMF MAN datasets or to use TRACE(A) CLASS(3) for short periods of
time (60 seconds).

Consider a CICS transaction that performs a single MQPUT1 followed by an EXEC CICS SYNCPOINT

and EXEC CICS RETURN when the connected queue manager has accounting trace enabled:

2SMF write rates are discussed in section �IBM MQ and zEnterprise Data Compression (zEDC)�

45

http://www.ibm.com/software/integration/support/supportpacs/

The diagram attempts to show when the queue manager will gather accounting data.

� Accounting data will be stored for the MQPUT1 for either class 1 or 3.

� When trace class 3 is enabled:

◦ EXEC CICS SYNCPOINT will result in the queue manager storing �commit� data.

◦ EXEC CICS RETURN will result in the queue manager storing �backout� and �other� data
relating to the end of task processing. Note: The action performed under the IBM
MQ accounting data type �backout� is not actually backing out, rather a resetting of the
transaction state within the queue manager.

� At transaction end, the queue manager calls SMF to request the data be written to the SMF
data repository (MAN datasets or logstreams).

Storage Usage

Prior to MQ version 8, MQ would initialise certain accounting data areas regardless of the class 3
accounting trace status. Enabling class 3 accounting would cause further data areas to be allocated
as well as driving the writing of the data to SMF.

FromMQ version 8 onwards, the storage used for accounting is only allocated when class 3 accounting
is enabled.

The total storage used per connection for accounting trace class 3 is usually between 4KB and 8KB
but can be higher when a connection accesses many queues.

Who pays for data collection?

Typically there is an increase in the costs attributed to the application address space.

Class 3 accounting may also see an increase in the costs attributed to the queue manager address
space.

Who pays for writing to SMF?

There is typically an increase in CPU usage in the SMF address space, which is dependent on the
amount of data written in each SMF 116 record.

Class 3 accounting may also see an increase in the queue manager address space for the aggregation
of task related data.

How much data is written?

Accounting trace class 1 typically writes 436 bytes per transaction, regardless of the number of
queues accessed by the transaction.

Accounting trace class 3 data will depend on the number of queues used but as a guide, a transaction
accessing 2 queues typically writes 8324 bytes.

A class 3 SMF 116 record with 8 queues would typically write 25076 bytes.

This means that for storing data for 1,000,000 transactions the following storage would be required:

� class 1: 415MB

� class 3 with 2 queues: 7938MB

46

� class 3 with 8 queues: 23914MB

Trace(A) CLASS(1) costs: TRACE(A) CLASS(1) can be estimated as:

� Data gathering:

◦ 2 microseconds per API (MQPUT, MQPUT1, MQGET only)

� Writing to SMF:

◦ plus 1-5 microseconds. The record is �xed length and is relatively small keeping costs
down.

Trace(A) CLASS(3) costs: The costs for TRACE(A) CLASS(3) can be estimated as3:

� Data gathering:

◦ 1-3 microseconds per API (including commit, backout and other)

� Writing to SMF:

◦ plus 6-50 microseconds for the primary SMF record (depending on size), lower costs were
observed when fewer queues were accessed)

◦ plus up to 60% of the cost of writing the primary SMF record for each continuation
record, again depending on how many queues the continuation record contains.

3Based on measurements on zEC12.

47

Comparing costs � a working example: Consider a CICS transaction that costs 1 millisecond
(1000 microseconds) and performs the following interactions with an MQ queue manager:

MQPUT1
COMMIT as a result of EXEC CICS SYNCPOINT
BACKOUT as a result of EXEC CICS RETURN
OTHER as a result of EXEC CICS RETURN

Enabling class 1 accounting trace would be expected to add the following cost to the transaction:
MQPUT1 +2 microseconds.
Writing to SMF +3 microseconds.
Total 1005 microseconds (+0.5%)

Enabling class 3 accounting trace would be expected to add the following cost to the transaction:

MQPUT1 +2 microseconds.
COMMIT +2 microseconds.
BACKOUT +2 microseconds.
OTHER +2 microseconds.
Writing to SMF +25 microseconds

Total 1033 microseconds (+3.3%)

Accounting trace considerations

� The impact of accounting trace will depend on what proportion of the transaction is weighted
towards MQ � for example if a transaction spends 50% of its lifetime in MQ, the impact of
trace may be much higher than those in the preceding examples.

� By contrast a transaction that performs DB2 SQL, reading and writing of �les and complicated
calculations may see a small impact from accounting trace.

� The size and persistence of the message being put or gotten does not impact the cost of
accounting trace.

� Class 3 accounting in a high transaction environment can generate vast amounts of data. It
can be useful to enable this trace periodically to monitor your systems.

Statistics Trace Costs

TRACE(S) costs are not signi�cant as they are not dependent on transaction rate nor transaction
volumes.

48

Global Trace Costs

NOTE: From a performance perspective, disabling TRACE(G) is advised as the global trace costs
vary signi�cantly depending on the MQ workload being processed.

WebSphere MQ for z/OS version 7.1.0 changed how the queue manager global trace is gathered. In
previous releases, the global trace data was stored in a single storage area which on a busy system
with multiple processors could result in a high degree of contention when writing the trace data.
Version 7.1.0 exploits 64-bit storage to allocate an area of storage for each thread, which reduces
the contention issues seen previously.

The destination of the trace can have a signi�cant a�ect on the performance achieved when running
with trace enabled.

The following 2 charts show the impact of running with TRACE(G) enabled in an LPAR with
high workload, low resource contention from an MQ perspective, i.e. workload is spread out over
multiple queues that are hosted on multiple pagesets with multiple bu�er pools, only a single pair
of requester/server applications accessing each pair of queues.

The �rst chart compares the cost per transaction when attempting to process messages in a re-
quest/reply type scenario where the server messages are processed inside of syncpoint, i.e. the
server gets and puts its messages in-syncpoint.

NOTE: This transaction cost is the cost incurred by the requester application, the server application
and the queue manager address space. The applications used are performing very little non-IBM
MQ related workload.

� When TRACE(G) is o�, the transaction cost is relatively �at at approximately 100 microsec-
onds.

� When TRACE(G) with DEST(RES) enabled, the e�ect of global trace doubles the transaction
cost.

� With TRACE(G) DEST(GTF) the transaction cost increases signi�cantly to more than 8
times the cost of running with global trace disabled.

The subsequent chart shows how the achieved transaction rate is a�ected by global trace.

49

The above chart shows how the achieved transaction rate are constrained much sooner when TRACE(G)
is enabled, especially with destination GTF selected. A signi�cant proportion of the time is spent
waiting for serialization to process the trace records.

50

Performance / Scalability

Maximum throughput using persistent messages

You should consider whether you really need persistent messages. Many applications do not re-
quire the advantages of persistent messages, and can make use of the cheaper, faster non-persistent
messages instead. Some users do not use persistent messages at all!

If you use persistent messages then allocate your log data sets on your best DASD.

What factors a�ect persistent message throughput ?

The extra factor a�ecting throughput of persistent rather than non-persistent messages is the per-
formance of the IBM MQ log, which depends on the following:

� Type and overall usage of the DASD subsystem used for the MQ log data sets.

� The data rate that the DASD subsystem can sustain for the IBM MQ log data sets. This sets
the upper limit for the IBM MQ system.

� The DASD subsystem and control unit type, the amount of DASD cache, and the number of
channel paths to the DASD. All will have an e�ect on throughput.

� Total I/O contention within the system.

� IBM MQ log data set placement. Having logs on heavily used DASD volumes can reduce
throughput.

� The average time to complete an I/O to the DASD volume, which depends on the amount of
data to be logged as well as the DASD subsystem characteristics and IBM MQ log data set
placement. Using zHPF may provide some relief in this instance � see �Bene�ts of using zHPF
with IBM MQ�

See �Maximum persistent message throughput � private queue� for an example of the rates achieved.

Application syncpoint speci�cs

� The rate of commits or out of syncpoint requests. This is application speci�c. Each commit
or out of syncpoint request involving a persistent message requires the application to wait for
completion of an MQ log I/O (a log force). A two-phase commit requires the application to
wait for the completion of two separate MQ log I/Os (2 log forces).

� The worst case is 2 MQ log forces for each MQPUT and each MQGET. For instance.

◦ Consider a CICS application might update a recoverable VSAM �le and MQPUT a
message in one unit of work. This requires a 2-phase commit and therefore 2 MQ log
forces.

◦ That message is then processed (MQGET) by a DB2 stored procedure which updates a
database and commits the unit of work. This requires a 2-phase commit coordinated via
RRS and therefore 2 MQ log forces.

� Another case is 1 log force for each MQPUT and each MQGET. For instance consider

◦ A channel receiving messages at an achieved batchsize of 1, MQPUTs each message and
commits the batch (this is typical for a channel unless deliberate batching of messages or
a very high message rate occurs). This requires a 1-phase commit.

51

◦ A CICS program MQGETs this message, updates a DB2 database, MQPUTs a reply
message then commits. This requires a 2-phase commit.

◦ A channel MQGETs and sends the reply message back to the originator at an achieved
batchsize of 1. This requires a 1-phase commit.

◦ Thus there are 4 MQ log forces for the 2 messages processed, which is an average of 1 log
force per MQPUT and MQGET.

� Because each application using persistent messages is likely to be I/O-bound on the log you
will probably need many application instances to achieve best throughput.

� However, some applications require strict message ordering. This means only a single applica-
tion instance is allowable.

Message size and number of messages per commit

Message size and number per commit a�ect the amount of data which must be written to the log
for each log force.

Similar amounts of data per commit will usually give similar throughput. For example, 5 persistent
messages of size 1KB require about 11.5KB of data to the log when fully processed by MQPUT
and MQGET. 1 persistent message of size 10KB requires a similar amount of log data. Similarly 50
persistent messages of size 1KB which are MQPUT in one unit of work and MQGET in one unit of
work will have similar IBM MQ log performance as one persistent message of 100KB.

Indexed Queues

Indexed queue considerations

If a non-indexed queue contains more than a few messages and an MQGET with a speci�c MSGID
or CORRELID is used then costs can be very high as the queue will have to be searched sequentially
for the matching message. Clearly any queue used by an application that requires speci�c MQGETs
should be speci�ed with the appropriate INDXTYPE.

Prior to version 7.0.1, queue indexes were maintained in 31-bit queue manager storage. This meant
that there was an implementation limit as to how many messages could be stored on an indexed
queue and on our systems this was around 7.2 million messages. From version 7.0.1 of WebSphere
MQ for z/OS onwards, indexed queue data is maintained in 64-bit storage and the queue manager
is able to store in excess of 100 million messages on indexed queues.

The amount of storage used for each message on an indexed queue is 272 bytes of above bar storage.

These indexes must be recreated during queue manager initialization for all persistent messages in
each indexed private queue. This requires that the �rst page of all the messages for each indexed
queue be read from the pagesets. This is done sequentially queue by queue. For private indexed
queues this will increase initialization elapsed time by the order of a few milliseconds per page read.
For instance, a private indexed queue consisting of 8 million persistent messages of increases elapsed
time of initialization by about 280 seconds using DS8000 DASD.

Further details about 64-bit indexes can be found in Performance report MP1G.

QSGDISP(SHARED) indexed queues have indexes implemented within the CF list structure and so
do not require recreation at queue manager initialization. The maximum number of messages in a

52

http://www-01.ibm.com/support/docview.wss?uid=swg24024589

QSGDISP(SHARED) indexed queue is limited only by the maximum number of messages possible
in a CF list structure.

Private indexed queue rebuild at restart

Private indexed queues have virtual storage indexes which must be rebuilt when a queue man-
ager restarts. IBM MQ allows these indexes to be rebuilt in parallel and o�er the �QINDXBLD
(WAIT/NOWAIT)� CSQ6SYSP parameter. The WAIT option gives previous release behaviour and
is the default whereas, NOWAIT allows initialization to complete before the index rebuilds complete.

Thus NOWAIT allows all applications to start earlier. If an application attempts to use an indexed
queue before that queue's index is rebuilt then it will have to wait for the rebuild to complete. If
the rebuild has not yet started then the application will cause the rebuild to start immediately, in
parallel with any other rebuild, and will incur the CPU cost of that rebuild.

Each index rebuild still requires that the �rst page of all the messages for that indexed queue be read
from the page set. The elapsed time to do this is of the order of a few milliseconds per page read.
Bu�er pool page usage is not signi�cantly a�ected by the index rebuild. Thus other applications
will not be impacted by bu�er pool contention with index rebuilds.

Up to ten separate index rebuilds can be processed in parallel plus any rebuilds initiated by appli-
cations.

Queue manager initiated expiry processing

If the queue manager attribute EXPRYINT is non-zero then at startup and subsequent EXPRYINT
second intervals any messages whose expiry time has been passed will be deleted by a system process.
EXPRYINT can be changed, including to or from zero using an ALTER QMGR command. The
default for EXPRYINT is zero, which gives the previous release behaviour of no queue manager
initiated expiry processing. Minimum non-zero EXPRYINT is 5 seconds.

The �REFRESH QMGR TYPE(EXPIRY) NAME(......)� command requests that the queue manager
performs an expired message scan for every queue that matches the selection criteria speci�ed by
the NAME parameter. (The scan is performed regardless of the setting of the EXPRYINT queue
manager attribute.)

For private local queues this system process uses signi�cantly less CPU time than employing your
own application to browse complete queues. This is partly because the system knows when there
is no possibility of there being any expired messages on a private local queue and because if it
is necessary to browse a queue, the system process avoids the overheads involved in repeated calls
across the application/system boundary. For the case where the system knows there are no messages
to expire on any private queue the CPU cost at each scan is not signi�cant.

For shared local queues each de�ned queue must be processed. A single queue manager, of those
with non-zero EXPRYINT in the queue sharing group, will take responsibility for this processing.
If that queue manager fails or is stopped or has its EXPRYINT set to zero then another queue
manager with non-zero EXPRYINT will takeover. The CPU cost at each EXPRYINT interval will
depend on a number of factors:

� Number of messages on queue (all messages including those with expiry not set will be scanned)
as the message may be put by a di�erent queue manager in the QSG).

� Size of message on queue

53

� Where the message is stored

For example, for 1KB messages on a shared queue, the cost is of the order 9-12 CPU microseconds
(2817-703) per each message. This cost increases to 10-20 CPU microseconds (2817-703) when the
system actually browses and deletes the expired messages.

If the message has been o�oaded to DB2 or shared message data sets, the cost may be higher.
For example, when 1KB messages are o�oaded to shared message data sets, the cost to determine
whether the message can be expired is double that of a message stored solely in the coupling facility.

The time to browse a queue and delete any expired messages will be signi�cantly less than using your
own equivalent application because this system process avoids the overheads involved in repeated
calls across the application / system boundary.

54

Queue manager security

How much storage is used?

When a IBM MQ queue manager on z/OS is started and the security switch pro�les have been
de�ned such that user-ids need to be authenticated, there is a cost to the queue manager to use this
authentication information.

WebSphere MQ for z/OS version 7.0.1 introduced the use of 64-bit storage for holding security
information relating to IBM MQ. All storage used by the security manager is now held in 64-bit
storage, which means that the ECSA usage does not increase as more user IDs or IBM MQ resources
are used. As a result, the number of user IDs that can access IBM MQ resources is limited by the
amount of auxiliary storage.

The environment being measured

The measurements were run on a system con�gured as shown below:

� A 2097 with 8 CPUs available running z/OS 1.11

� A version 7.0.1 WebSphere MQ queue manager with security enabled.

� A CICS region running CTS 3.2

� A number of transactions have been created e.g.

◦ A transaction ran an application to put a 1K non-persistent message to a named queue
and then get the message from the same queue.

� WebSphere Studio Workload Simulator for z/OS (formerly known as �TPNS�) was used to
drive a workload through the CICS environment.

◦ TPNS scripts were created to log onto CICS using security and then run a number of
transactions using between 1 and 50 MQ queues. This process was repeated for a range
of user-ids.

Issuing a �DISPLAY SECURITY� command against the queue manager shows:

CSQH015I MQPZ Security timeout = 54 minutes

CSQH016I MQPZ Security interval = 12 minutes

CSQH030I MQPZ Security switches ...

CSQH034I MQPZ SUBSYSTEM: ON, 'MQPZ.NO.SUBSYS.SECURITY' not found

CSQH034I MQPZ CONNECTION: ON, 'MQPZ.NO.CONNECT.CHECKS' not found

CSQH034I MQPZ COMMAND: ON, 'MQPZ.NO.CMD.CHECKS' not found

CSQH034I MQPZ CONTEXT: ON, 'MQPZ.NO.CONTEXT.CHECKS' not found

CSQH034I MQPZ ALTERNATE USER: ON, 'MQPZ.NO.ALTERNATE.USER.CHECKS' not found

CSQH034I MQPZ PROCESS: ON, 'MQPZ.NO.PROCESS.CHECKS' not found

CSQH034I MQPZ NAMELIST: ON, 'MQPZ.NO.NLIST.CHECKS' not found

CSQH034I MQPZ QUEUE: ON, 'MQPZ.NO.QUEUE.CHECKS' not found

CSQH034I MQPZ COMMAND RESOURCES: ON, 'MQPZ.NO.CMD.RESC.CHECKS' not found

CSQ9022I MQPZ CSQHPDTC ' DIS SEC' NORMAL COMPLETION

The �security timeout� refers to the number of minutes from last use that the information about a
user ID is retained by IBM MQ.

55

The �security interval� is the time that passes between an MQ process checking the last use time
of all authenticated user IDs to determine whether the security timeout period has passed. If the
timeout period for a user is exceeded, the information is discarded by the queue manager.

The following time-line attempts to indicate when security-related timer processing will be invoked.

The chart shows that when the security interval is 12 minutes, there is a timer running every 12
minutes to determine whether there are any unused user IDs that are eligible for discarding.

It is not until 54 minutes after the user has signed on and completed their last IBM MQ transaction
that they are eligible for discarding.

Since the interval runs every 12 minutes, there is a period (in this example) of 6 minutes where the
user id is eligible for discarding but is not discarded.

At 60 minutes after completing their MQ transaction, the users' information is discarded from MQ.

From version 7.0.1 of Websphere MQ for z/OS, the Security Manager uses a pooling principle so that
when the users' information is discarded, the storage is returned to a pool for subsequent re-use.

56

The data

The following chart shows the amount of additional virtual storage required when security has been
enabled on the queue manager.

Notes on chart:

1. The line titled �1 Queue� is where the TPNS script will run

� CICS Sign-on followed by 1 transaction putting and getting a non-persistent message for
each user id (up to 50,000 unique user ids).

2. The line titled �10 Queues� is where the TPNS script runs:

� CICS Sign-on followed by 10 serialised transactions putting and getting non-persistent
messages from separate queues for each user id (from 1 to 50,000 unique user ids).

3. The line titled �50 Queues� is where the TPNS script runs:

� CICS Sign-on followed by 50 serialised transactions putting and getting non-persistent
messages from separate queues for each user id (from 1 to 50,000 unique user ids).

What can we gather from the chart?

When the user is just issuing a sign-on to CICS followed by a single transaction involving MQ, there
is an associated cost of approximately 8.8KB per user of auxiliary storage which includes storage
for 1 queue. This is approximate since the 64-bit storage is allocated 1MB blocks.

When the user performs other MQ transactions that a�ect further queues, additional security in-
formation is cached so the storage usage increases. For example when the users workload a�ects 50
MQ queues, there is a cost of 28.2KB per user of auxiliary storage; an increase of 19.4KB per user.

This means that there is a base cost per user of 8.80KB (which includes accessing 1 queue) when
running with security enabled as per the display security command shown previously. Additionally
there is a 405 byte cost for each subsequent queue that the user hits as part of their work.

57

Virtual storage usage

When migrating IBM MQ on z/OS from version 7.x to version 8.0.0 the private storage usage is
similar. This section shows the usage and gives some actions that can be taken to reduce storage
usage.

From version 8.0.0, the following enhancements relate to storage:

� 64-bit storage used for:

◦ Bu�er pools (optionally)

From version 7.1.0, the following enhancements relate to storage:

� 64-bit storage used for:

◦ Topic Manager

◦ Security Manager

◦ Indexed Queues

◦ Intra-Group Queuing Bu�er

◦ CFLEVEL(5) shared message data set (SMDS) o�oad capability

◦ CHLAUTH cache

58

Object sizes

When de�ning objects the queue manager may store information about that object in pageset 0 and
may also require storage taken from the queue manager's extended private storage allocation.

The data shown in the following 2 charts only includes the storage used when de�ning the objects.

Page set 0 usage

59

Virtual storage usage by object type

NOTE: CHLAUTH objects are cached in 64-bit storage.

60

Initial CSA (and ECSA) usage

CSA usage is similar between V7.0.1, V7.1.0 and V8.0.0 when similarly con�gured queue managers
are started.

CSA usage per connection

In WebSphere MQ for z/OS versions 7.0.1 and 7.1.0 and IBM MQ version 8.0, the CSA usage has
increased slightly:

� For local connections, MCA channels and SVRCONN channels with SHARECNV(0), CSA
usage is 2.43KB per connection.

� For SVRCONN channels with SHARECNV(1), CSA usage is approximately 4.9KB per con-
nection.

� For SVRCONN channels with SHARECNV(10), CSA usage is approximately 2.7KB per con-
nection (based on 10 clients sharing a channel instance).

Bu�er Pool Usage

Typically the bu�er pools have used the most virtual storage in the queue manager. Version 8.0.0
allows the bu�er pools to be de�ned using 64-bit storage. This means that there is more space
available in the queue manager's 31-bit storage for other things that haven't been moved above the
bar, e.g. more handles.

Version 8.0.0 also allows more bu�er pools such that a 1:1 mapping with the page sets is possible,
allowing a more granular level of control of the sizing of bu�er pools according to the usage.

Provided su�cient 64-bit storage is available, you may be able to de�ne the bu�er pools as large as
the associated pageset.

If storage is limited, you should have a large bu�er pool for the short-lived messages, where short-
lived is typically a few minutes duration, and a small bu�er pool for long-lived messages.

You may be able to reduce the size of bu�er pools and maintain good performance, but your
performance may degrade if you have an unexpected spike in message throughput which causes your
bu�er pool to �ll up and have less than 15% free bu�ers. You can monitor the QPSTCBSL �elds in
the QPST statistics for this.

Storage for security information

From version 7.0.1 Security Manager was changed to use 64-bit storage to hold the security infor-
mation. Additionally, the storage obtained is not released until queue manager termination, rather
the storage used following a user ID being discarded is returned to a storage pool for subsequent
re-use. When queue level security is enabled:

� Each user-id which accesses the queue manager requires about 8.8KB of auxiliary storage.
Typically 4.66KB of the 8.8KB are �backed� in real storage.

� For each permanent queue that a user uses, then on average it uses 405 bytes per queue.

As all security storage is held in 64-bit storage, the queue manager should not be constrained for
storage due to the number of user IDs held.

It is still advisable to set the Queue Manager Security keywords Interval and Time-out to limit the
duration that user ID information is cached in the queue manager. The Time-out value speci�es

61

how long an un-used user ID can remain in the queue manager. The default time is 54 minutes.
Reducing this time will cause unused information to be discarded, returning the storage to the pool.
The interval is the duration between checking to see if the time out value has expired.

Impact of number of objects de�ned

At startup all of the object information is loaded into bu�er pool zero. If this bu�er pool is large
enough to contain all of the objects, then the control blocks for the object stay resident. If bu�er
pool zero is too small then unused objects will be removed from the bu�er pool (but will still be
present on disk, and will be read into the bu�er pool if the object is used).

The average storage used for local queues is about 3380 bytes per object. This was determined from
the storage increase when 10,000 local queues were de�ned, divided by 10,000. This �gures included
wasted space in a 4K page when the objects do not �t perfectly.

If you are constrained for storage you can decrease the size of bu�er pool to have enough space for
the active objects + 20%. Once the system has started and warmed up, then there should be few
pages read from the page set.

Use of indexed queues

When a queue is de�ned as being indexed then additional control blocks are created to de�ne the
index. For each queue with indxtype speci�ed, 47KB of memory are required.

From WebSphere MQ version 7.0.1, the index data for an indexed queue is stored above the 2GB
bar. This removes the constraint within the queue manager relating to the depth of an indexed
queue over a non-indexed queue.

Object handles

When an application has a queue open, then a handle control block is allocated within the queue
manager. This uses about 4K of memory per handle. If there are many concurrent applications, or
applications have a large number of open queues then this can lead to a large number of handles.

For example if you have 10,000 client applications, and each client application gets from a queue and
puts to a reply queue, then there will be 20,000 handles using 80MB of virtual storage. An MCA
channel can have up to 30 queues open at a time, for example when messages from a remote queue
manager are being sent to di�erent queues. With 1000 channels, this could be up to 30,000 handles
or 120MB, though typically a channel only puts to a few queues.

Number of pages in use for internal locks

Locks are taken by the queue manager to serialize usage of the data and resources. Large messages
or large number of messages in a unit of work can lead to a large number of locks being used.

You can reduce the storage required by ensuring that the applications are well behaved:

� Do not process large number of messages in a unit of work. You can use the queue manager
attribute MAXUMSGS to limit the number of messages processed in a unit of work.

� Process small numbers of large messages in a unit of work. When moving messages over
channels, you might consider using channel attribute BATCHLIM to restrict the size of the
unit of work for large messages without impacting the batch size when messages are smaller..

62

Fast (non-persistent) messages are processed out of syncpoint, so the locks are released when
the put has completed.

Shared queue

There is increased memory use when a queue manager is used in a QSG. When a queue manager
is con�gured to be part of a Queue Sharing Group, it uses an additional 27MB of storage in the
private region.

For each application structure that is used, the queue manager uses 800KB of virtual storage in the
private region, 2KB of ESQA and 4KB of ECSA.

Using BACKUP CFSTRUCT command

The BACKUP CFSTRUCT command allocates 65MB. This remains allocated until the system
detects that the queue manager is short of virtual storage, and releases any unused storage.

Clustering

If you are using clustering then information about the status of clustering is held both in the channel
initiator and the queue manager. The queue manager has two views of the cluster cache, one in key
7, for the queue manager, and one in key 8 for the cluster workload manager applications.

The minimum cache size is 2MB (or 4MB for both copies). The cache size will be calculated
dynamically from the con�guration, rounded up to the nearest MB and have 1MB extra added.
If your con�guration changes signi�cantly then this cache can �ll up. If using a static cache, the
queue manager must be restarted to extend the cache size. If using dynamic cache, the cache will
be extended automatically and dynamically (no queue manager restart is required).

63

Chapter 2

Coupling Facility

CF link type and shared queue performance

Shared queue performance is signi�cantly in�uenced by the speed of Coupling Facility (CF) links
employed. There are several di�erent types of CF links. These include (see the result of a `D CF'
operator command).

Link
Type

Maximum Operating
Rate

Distance

CFP

Coupling Facility Peer
Or
InterSystem Channel-3
(ISC-3)

2 Gigabits per second.
Up to 20KM unrepeated.
Maximum 100KM.

CBP Integrated Cluster Bus 2 Gigabytes per second.

Up to 10 metres although
3 metres of this is used for
internal routing and cable
strain relief.

PSIFB
Parallel Sysplex coupling
over In�niBand

6 Gigabytes per second be-
tween z10 ECs.
Otherwise
3 Gigabytes per second.

Up to 150 metres.

ICP
Internal Coupling Facility
Peer

Fastest connectivity using
memory to memory data
transfers.

Same box.

NOTE: Further information on coupling links can be found in section �Coupling Facility Links� in
document �Basic Sysplex vs a Parallel Sysplex�

All link types can be present. The operating system generally selects the fastest currently available.

Some uses of the CF are normally synchronous in that they involve what is e�ectively a very long
instruction on the operating system image while a function request and its associated data are passed
over the link, processed in the CF, and a response returned. CPU time for synchronous CF calls is
thus to some extent dependent on the speed of the CF link. The slower the link the higher the CPU
cost. The faster the CPU the higher the equivalent instruction cost.

System z has heuristics which allow it to change potentially synchronous CF calls to asynchronous.
This limits potentially rising CPU costs but can a�ect throughput as more CF calls become asyn-
chronous.

64

http://www-03.ibm.com/systems/z/advantages/pso/bsvsps.html

CF processor time is also dependent on the speed of the CF link, but much less so than the operating
system.

All these factors can make prediction of shared queue performance on other systems based on results
in this document less accurate than for private queue.

Faster links will generally improve CPU cost and throughput.

How many CF structures should be de�ned?

A minimum of two CF structures are required. One is the CSQ_ADMIN structure used by IBM
MQ. All other structures are application structures used for storing shared queue messages.

Up to 512 shared queues can be de�ned in each application structure. We have seen no signi�cant
performance e�ect when using a large number of queues in a single application structure.

We also have seen no signi�cant performance e�ect when using multiple structures rather than fewer
larger structures.

If few large application structures are used, the queues would be able to be deeper, meaning there
is less likelihood of receiving an MQRC 2192 �storage medium full� message.

If using many smaller application structures, fewer queues and potentially less applications will be
a�ected should one of the queues gets to such a high depth that an MQRC 2192 is reported.

Typically we recommend using as few CF application structures as possible, but there may be
situations where it is advisable to put queues that may be deep into separate structures where an
MQRC 2192 will not a�ect mission-critical queues.

If all the MQGETS and MQPUTS in an application are out of syncpoint, the cost of using one or
more application structures remains the same.

If any MQPUTS and MQGETS are within syncpoint, a single CF application structure is recom-
mended. For the locally driven request/reply workload using a single queue manager but with the
server input queue in a di�erent application structure to the common reply queue the unit CPU cost
per request/reply increased by 6% for non-persistent messages and 12% for persistent messages. This
also resulted in a decrease in throughput of 5% for non-persistent messages and 2% for persistent
messages.

What size CF structures should be de�ned?

What values for MINSIZE, INITSIZE, and SIZE (maximum size) should be used and should AL-
LOWAUTOALT(YES) be speci�ed in the CFRM (Coupling Facility Resource Manager) policy def-
inition for IBM MQ CF structures?

� Consider making SIZE double INITSIZE.

� Consider making MINSIZE equal to INITSIZE, particularly if ALLOWAUTOALT(YES) is
speci�ed.

� It is recommended to de�ne SIZE to be not more than double INITSIZE. The value of SIZE
is used by the system to pre-allocate certain control storage in case that size is ever attained.
A high SIZE to INITSIZE ratio could e�ectively waste a signi�cant amount of CF storage.

If the entire CF reaches an installation-de�ned or defaulted-to percent full threshold as determined
by structure full monitoring, the system will consider reducing the size of any structures with unused
space that have been de�ned with ALLOWAUTOALT(YES).

65

For this reason we advise consideration of making MINSIZE equal to INITSIZE so that IBM MQ
structures will not be made too small. This is particularly important for the CSQ_ADMIN structure
which could cause failure of shared queue operations if it becomes too small (queue manager failure
prior to V6).

CSQ_ADMIN

This CF structure does not contain messages and is not sensitive to the number or size of messages
but it is sensitive to the number of queue managers in the QSG.

Version 7.1 updated the supplied sample member SCSQPROC(CSQ4CFRM) to use a value of
20000KB for the example CSQ_ADMIN structure. This should be su�ciently large to allow 10
queue managers to connect to the QSG up to CFCC levels 19.

The IBM MQ command �DIS CFSTATUS(CSQ_ADMIN)� shows the maximum number of entries
in this structure, for instance ENTSMAX(5189) on a CF at CFCC level 14. This command also
shows the current number of entries used, for instance ENTSUSED(4). A queue manager in a queue
sharing group is only allowed to start if there are at least 1000 entries available per started queue
manager. So our example is adequate for 5 queue managers in a QSG using a CF at CFCC level 14.
Each successive CF level tends to need slightly more control storage for the CF's own purposes, so
ENTSMAX is likely to decrease each time your CF level is upgraded. CFCC levels before level 12
give much larger values, for example ENTSMAX(9362) on CFCC level 10.

CSQ_ADMIN usage is a�ected by the number of messages in each unit of work, but only for the
duration of the commit for each UOW. This only need be a concern for extremely large UOWs as
the minimum size structure is enough for a UOW of about 40,000 messages. This is larger than the
default maximum size UOW of 10,000, de�ned by MAXUMSGS.

The use of UOWs with very large numbers of messages is NOT recommended. Where large units
of work are being used in conjunction with shared queues, the CSQE038E �Admin structure is full�
message may be logged when there is insu�cient space in the structure for the unit of work. This
may be followed by the queue manager terminating with a 5C6-00C53002 abend.

66

How large does my admin structure need to be?

The size of the admin structure depends on the number of queue managers in your queue sharing
group. The following chart shows the required size of the admin structure by number of queue
managers in the QSG.

NOTE: Using a CF with CFCC level 15 uses approximately 5MB more storage than a CF with
CFCC level 14.

67

Application structures

IBM MQ messages in shared queues occupy storage in one or more pre-de�ned CF list structures.
We refer to these as application structures to distinguish them from the CSQ_ADMIN structure.
To estimate an application structure size:

Use the IBM CFsizer available at http://www.ibm.com/servers/eserver/zseries/cfsizer/ or
the following algorithm may be used:

� Estimate typical message sizes (including all headers except the MQMD)

� For each typical message size

� If <= 63KB (64512 bytes) then:

◦ Add the 372 bytes for implementation headers (including MQMD v1 header).

◦ If using message grouping add an additional 72 bytes for the MQMDE.

◦ Round up to 256 byte boundary (subject to a minimum of 1536 bytes).

◦ Add 256 bytes for the CF Structure ENTRY (1 for each message)

◦ Multiply by maximum number of messages.

◦ Normally messages will reside in a IBM MQ application structure only long enough for
the exploiting application to retrieve them. However if the exploiting application su�ers
an outage that prevents it from retrieving messages from the structure, the structure
must be large enough to retain any messages that might be written to it, for the duration
of the outage. You must therefore consider:

1. The number of queues that map to the structure,

2. The average put rate for each queue (i.e. the rate at which messages are written to
the structure),

3. The maximum outage duration to be tolerated.

◦ Add to total for all typical message sizes

◦ Add 32%1 for CFCC level 12 and above (for other implementation considerations, this
percentage can be much greater for application structures smaller than 16MB). Previous
CFCC levels required the addition of 25%.

� If typical message size > 63KB (64512 bytes) then

◦ For CF application structures with ALLOWAUTOALT(NO) allow about 2KB of CF
storage per message larger than 63KB.

◦ CF application structures with ALLOWAUTOALT(YES) will eventually have an ENTRY
to ELEMENT ratio re�ecting the average for all messages. This is di�cult to estimate
but it is usually sensible to also use this 2KB per message estimate.
However, consider the special case of all messages being larger than 63KB. The CF stor-
age usage for shared queue messages larger than 63KB is 1 ENTRY and 2 ELEMENTS
per message. This means that the actual requirement is about 1KB per message. AL-
LOWAUTOALT(YES) structures will eventually adjust themselves such that 1 million
such messages (all larger than 63KB) would require about 1GB of CF storage.

Use this result for INITSIZE in the operating system CFRM policy de�nition. Consider using a
larger value for SIZE in the CFRM policy de�nition to allow for future expansion. See �Increasing
the maximum number of messages within a structure�.

1Some of this 32% is to maintain the 1:6 entry to element ratio and some is CF overhead.

68

http://www.ibm.com/servers/eserver/zseries/cfsizer/

The following CFRM policy de�nition of an approximately 0.5GB CF list structure is typical of
those used for our measurements.

STRUCTURE NAME(PRF2APPLICATION1) /* PRF2 is the QSG name */

SIZE(1000000)

INITSIZE(500000)

PREFLIST(S0CF01)

See the IBM MQ Planning guide for details of MQ de�nitions.

How many messages �t in a particular CF application structure size?

To get some idea of how many messages you can get for a particular CF application structure size
consult the following chart where `message size' includes the user data and all the headers except
the MQMD.

NOTE: The chart uses log scales. For instance the tick marks between 1000 and 10000 on the x
axis are the 2000, 3000, 4000 and so on up to 9000 messages. The tick marks between 1 and 10 on
the y axis are 2, 3 and so on up to 9 MB of required structure size.

For example, you can get about:

� 600 messages of 64512 bytes (63KB) in a 64MB structure,

� Or nearly 50000 16KB messages in a 1GB structure.

A CF at levels prior to CFCC level 12 will accommodate a few percent more messages than this
chart, but only up to a 4GB limit.

A CF at level CFCC 15 requires the structure to be approximately 5MB larger to store an equivalent
number of messages to a CF at level CFCC 14.

CF at CFCC levels 14 and later

The following table gives approximate message capacity of a IBM MQ CF application structure sized

69

at 0.5GB, assuming it is de�ned in the CFRM policy as ALLOWAUTOALT(NO).

No signi�cant di�erences were seen in the number of messages that could �t into a 0.5GB structure
when moving to CF level 15 � once the 5MB overhead mentioned previously is taken into account.

Later CFCC release use more storage, reducing capacity somewhat e.g.:

Approximate messages in 0.5GB Structure

Message size (excluding
only MQMD)

CF at CFCC level 14 and
15

CF at CFCC level 17-19

All message sizes <= 1164 241,000 230,000

2,048 144,800 138,000

4,096 85,000 76,700

8,192 42,500 40,600

16,384 22,000 20,900

32,768 11,100 10,600

64,512 5,700 5,500

Sizing structures at CFLEVEL(5)

CFLEVEL(5) provides the ability to increase the capacity of the CF by implementing a 3-tiered
o�oad procedure.

70

Implementing tiered thresholds allows higher capacity whilst not penalising performance until the
CF resource becomes constrained.

By default, the CFLEVEL(5) structure will o�oad messages greater than 63KB to the shared
message data set.

In addition, there are 3 default thresholds:

1. O�oad all messages larger than 32KB (including headers) when the structure is 70% full.

2. O�oad all messages larger than 4KB (including headers) when the structure is 80% full

3. O�oad all messages when the structure is 90% full.

Example: Consider a scenario where only 16KB messages are used with a 0.5GB structure.

CFLEVEL(4)

A 16KB message would require 1 entry and 66 elements.

A 0.5GB structure would support approximately 24,000 messages, with ALLOWAUTOALT=YES.

CFLEVEL(5)

16KB messages stored in the CF would still require 1 entry and 66 elements, whereas all o�oaded
messages use 1 entry and 2 elements.

For example, 16KB messages would not be o�oaded until the structure reaches 80% full. This means
that 17,101 messages are stored in their entirety in the CF. Upon reaching the 80% threshold,
remaining messages are o�oaded to the SMDS datasets. Provided the SMDS datasets are large
enough, the CF would then be able to store a total of 158,166 messages.

71

Increasing the maximum number of messages within a structure

The maximum number of messages can be increased dynamically either by:

1. Increasing the size of a structure within the currently de�ned CFRM policy limits. This can be
done by operator command or by the system for structures de�ned ALLOWAUTOALT(YES).

2. Using CFLEVEL(5) structures which implement tiered thresholds.

3. Changing the ENTRY to ELEMENT ratio, which can be done only by the system and only
to a structure which is de�ned in the CFRM policy with ALLOWAUTOALT(YES)

The ELEMENT to ENTRY ratio is initially �xed by IBM MQ at 6 to 1. The system then pre-
allocates ELEMENTS and ENTRIES in that ratio to �ll the INITSIZE of that structure (having
reserved space for its own control information including being able to cope with this structure at its
maximum possible size (SIZE)).

NOTE: A structure is full if either all ENTRYs or all ELEMENTs are in use.

Every message requires an ENTRY and enough ELEMENTs to contain all message data and headers.
Each ELEMENT is of size 256 bytes. Now consider the ELEMENT and ENTRY requirement for
various message sizes, remembering to add the 372 bytes, that covers the implementation headers
(including the MQMD v1 header), to each message.

For example,

� 5000 byte message requires 21 ELEMENTS and 1 ENTRY

� 300 byte messages require 3 ELEMENTS and 1 ENTRY

� 10 byte messages require 2 ELEMENTS and 1 ENTRY

Taking the above sizing and applying them to a simple scenario can show how we achieve the 6 to
1 ratio.

No. of
Messages

Size (bytes) ELEMENTS ENTRY
Maintaining 6:1 ratio
means:

1 5000 21 1 Unused 3 ENTRIES

1 300 3 1 Unused 3 ELEMENTS

3 10 6 3 Unused 12 ELEMENTS

Total (5) 30 5
Unused:
15 ELEMENTS
3 ENTRIES

So for the above example, we have achieved the 6 to 1 ratio, although we have lost 15 ELEMENTS
and 3 ENTRIES.

If we continue to add only 5000 byte messages, we will run out of ELEMENTS long before the
ENTRIES are used.

Alternatively, if we add only 10 or 300 byte messages, we will run out of ENTRIES long before we
run out of ELEMENTS.

System initiated alter processing is the only way to adjust ENTRY to ELEMENT ratio for IBM
MQ CF structures. It can also change the size of a CF list structure up to the maximum (SIZE) or
down to the minimum de�ned (MINSIZE) as de�ned for that structure.

To see ENTRY and ELEMENT information use z/OS command �D XCF�, for example:

D XCF,STR,STRNAME=PRF2APPLICATION1.

72

Use of system initiated alter processing

This facility allows the system to alter the size of a structure (both up and down) and to change
the ENTRY to ELEMENT ratio.

The following CF list structure de�nition is possible for application CFSTRUCT named APPLICA-
TION1 in queue sharing group PRF2:

STRUCTURE NAME(PRF2APPLICATION1)

SIZE(1000000) /* size can be increased by z/OS */

INITSIZE(500000) /* from 500000K to 1000000K by */

MINSIZE(500000) /* or decreased to 500000K by */

ALLOWAUTOALT(YES) /* system initiated ALTER processing */

FULLTHRESHOLD(80)

PREFLIST(S0CF01)

When the FULLTHRESHOLD is crossed the operating system will take steps to make adjustments
to the list structure ENTRY to ELEMENT ratio to allow more messages to be held within the
current size, if possible. It will also, if necessary, increase the size towards the maximum (the value
of SIZE). This process is not disruptive to ongoing work provided there are su�cient processors
available in the Coupling Facility. However, it can take up to several minutes after the threshold is
crossed before any action is taken. This means that a structure full condition, IBM MQ return code
2192, could easily occur before any such action is taken.

For structures containing predominantly message sizes less than 908 bytes (5 * 256 - implementation
headers (372)) and greater than 63KB (64512 bytes) then it is likely that considerably more messages
can be accommodated in the same size structure after any such adjustment.

To reiterate, if the entire CF reaches an installation-de�ned or defaulted-to percent full threshold as
determined by structure full monitoring, the system will consider reducing the size of any structures
with unused space that have been de�ned with ALLOWAUTOALT(YES).

For this reason we advise consideration of making MINSIZE equal to INITSIZE so that IBM MQ
structures will not be made too small. This is particularly important for the CSQ_ADMIN structure
which could cause failure of shared queue operations if it becomes too small (queue manager failure
prior to V6).

User initiated alter processing

The following system command is an example of how to increase the size of a structure:

SETXCF START,ALTER,STRNAME=PRF2APPLICATION1,SIZE=750000

This command increases the size of the structure but does not change the ENTRY to ELEMENT
ratio within the structure. Increasing CF structure size is not noticeably disruptive to performance
in our experience.

Decreasing CF structure size is not advised with CFCC levels prior to level 12 as there are circum-
stances where it is very disruptive to performance for a considerable time.

How often should CF structures be backed up?

Highly available parallel sysplex systems often have stringent recovery time requirements. If you use
persistent messages in any particular application structure it will need to be backed up.

73

If backup is infrequent then recovery time could be very long and involve reading many active and
archive logs back to the time of last backup. Alternatively an application structure can be recovered
to empty with a �RECOVER CFSTRUCT(..) TYPE(PURGE)� command, but this does mean that
any messages on the queues de�ned to the structure being purged will be lost.

The time to achieve a recovery is highly dependent on workload characteristics and the DASD
performance for the log data sets of individual systems. However, you can probably aim to do
backups at intervals greater than or equal to the desired recovery time.

CF application structure fuzzy backups are written to the log of the queue manager on which the
BACKUP command is issued. The overhead to do a backup is often not signi�cant as the number
of messages in an application structure is often not large. The overhead to do a backup of 200,000
1KB persistent messages is less than 1 CPU second on a 2817-703 system.

The recovery processing time is made up of the time to:

� Restore the fuzzy backup of the CF structure, which is typically seconds rather than minutes.

� Re-apply the net CF structure changes by replaying all log data, including non-shared queue
work, written since the last fuzzy backup.

The logs of each of the queue managers in the queue-sharing group are read backwards in parallel.
Thus the reading of the log containing the most data since fuzzy backup will normally determine
the replay time.

The data rate when reading the log backwards is typically less than the maximum write log data
rate. However, it is not usual to write to any log at the maximum rate it can sustain. It will
usually be possible and desirable to spread the persistent message activity and hence the log write
load reasonably evenly across the queue managers in a queue sharing group. If the actual log write
data rate to the busiest queue manager does not exceed the maximum data rate for reading the log
backwards then the backup interval required is greater than or equal to the desired recovery time.

Backup frequency example calculation

Consider a requirement to achieve a recovery processing time of say 30 minutes, excluding any
reaction to problem time. As an example, using DS8800 DASD with the queue manager doing backup
and restore on a 2817-703 system running z/OS V1R13, we can restore 200,000 1KB persistent
messages from a fuzzy backup on an active log in 10 seconds. To meet the recovery processing target
time of 30 minutes, we have more than 29 minutes to replay the log with the most data written
since the last fuzzy backup. The maximum rate at which we can read a log data set backwards is
about 56MB/sec on this system, so we can read about 95GB of the longest log in 29 minutes.

The following table shows the estimated backup interval required on this example system for a range
of message rates:

74

1KB persistent
msgs/sec to longest
log

1KB persistent
msgs/sec to 3
evenly loaded logs

MB/sec to longest
log

Backup inter-
val in minutes
(based on reading
logs backwards at
56MB/Sec))

1000 3000 2.27 715

2000 6000 4.61 352

14600 43800 33.22 48

(14,600 is the maximum for this DASD with 1KB messages)

A crude estimate for the amount of log data per message processed (put and then got) by queue
managers in a QSG is message length plus 1.33KB.

Administration only queue manager

If there ever might be a lot of persistent messages or a lot of persistent message data to be backed up
then the normal persistent message workload could be impacted while the log of the queue manager
doing the backup is extra busy.

If this is a serious potential concern then consider de�ning an extra queue manager in the QSG and
use it only for administration purposes such as BACKUP CFSTRUCT(..).

75

When should CF list structure duplexing be used?

CF list structure duplexing gives increased availability at a performance cost.

Any version of MQ that supports shared queues can be used with duplexed CF structures without
change to either the code or the MQ de�nitions.

Availability within a given QSG may be summarised as follows:

SIMPLEX CF Structure de�ni-
tion

Action on single failure

CSQ_ADMIN
V6 (or later) queue managers

Queue managers stay up and rebuild this structure
from their logs.
Only serialised applications need to wait for rebuild
completion.
Rebuild only completes when every queue manager
de�ned in the QSG has done its work. This means that
if a queue manager was down at the time of failure it
must be restarted before any new serialised applications
can start unless the queue managers are V7.0.1 or later.
Note: Shared channels are serialised applications.

V7.0.1 saw the introduction of peer admin rebuild.

CSQ_ADMIN
V5 queue managers

Entire QSG fails.
The structure is rebuilt from logs at restart. All queue
managers in the QSG need to restart to complete the
rebuild.
Only serialised applications need to wait for rebuild
completion.

Application structure
CFLEVEL(1)

ALL currently connected queue managers fail.
On restart the structure is reallocated, all messages are
lost

Application structure
CFLEVEL(3 or higher)

No queue manager fails.
Applications using queues in that structure fail.
On restart persistent messages can be recovered by any
queue manager in the QSG provided that any queue
manager in the QSG has done a backup and all subse-
quent logs are available.
Alternatively the structure can be `recovered' to empty.

76

DUPLEX CF Structure de�ni-
tion

Action on single failure

CSQ_ADMIN Entire QSG remains available, z/OS recovers to duplex.

Application structure
CFLEVEL(1)

ALL currently connected queue managers remain avail-
able, z/OS recovers to duplex.

Application structure
CFLEVEL(3 or higher)

ALL currently connected queue managers remain avail-
able, z/OS recovers to duplex.

How does use of duplexed CF structures a�ect performance of MQ?

MQ operations on CF structures are typically nearly all update operations. Duplexed CF structure
updates incur signi�cant extra CF CPU and link usage. The following guidelines assume that there
will be adequate total resources available. An overloaded CF is likely to cause signi�cant performance
problems for the entire sysplex.

Estimating performance for duplexed versus simplexed CF structures is complex and even more than
usually workload and system con�guration dependent for the following reasons.

CPU costs

The CPU cost impact of duplexed CF structure compared to simplex CF structure usage depends
on the link types used both between the z/OS image and the two CF's being used as well as the link
between the two CF's that are being used for duplexing.

Note that one of these two CF's might have changed after a structure failure and recovery back to
duplex and thus performance characteristics might also change after recovery.

Operations that update the contents of a CF structure have more impact on extra CPU cost than
those that do not. MQPUTs and destructive MQGET's clearly have to update the CF structure
containing the message and MQCMITs have to update the CSQ_ADMIN structure. An MQGET
for browse causes no updates.

Throughput

Throughput for shared queue non-persistent messages, even when kept on duplexed CF structures,
is always going to be much better than for any sort of persistent message because of the elapsed
time required for DASD logging I/O necessary to provide media recovery for persistent messages.

Throughput for messages on a duplexed CF structure compared to a simplex CF structure is im-
pacted by the type of links used between the z/OS image and the two CF's and by the type of links
between the two CF's.

Any throughput impacts of duplexing CF structures are because:

� Update operations are asynchronous for duplexed CF's. They may be synchronous or asyn-
chronous between z/OS and the CF for simplex CF structures, depending on operating system
heuristic decisions.

� The operation can only complete at the speed of the slowest link.

� The second CF may be physically much more distant (possibly many kilometres and even light
takes time to travel). 10KM distance will add something of the order of 200 - 250 microseconds
to the service time for each request.

77

CF Utilization (CF CPU)

The CF utilization cost will increase signi�cantly for MQ update operations when using duplex
rather than simplex CF list structures.

� Each of the duplexed CF's must process the operation

� Plus there is synchronization between the CF's.

The CF utilization for MQ update operations on the CF of the primary copy structure will approx-
imately double. The secondary copy CF utilization will be nearly as much as the primary.

Environment used for comparing Simplex versus Duplex CF structures

1 LPAR on a 2084 with 3 dedicated processors, rated as a 2084-303, with ICP and CFP links to
local coupling facility. ICP link (fastest) will be used when available.

Coupling facility has 3 engines available.

Physically the duplexed structures are located locally but only CFP (ISC-3) links between the 2
coupling facilities.

Multiple Queue Sharing Groups de�ned:

� One with duplexed CSQ_ADMIN structure and 3 application structures of which one is du-
plexed.

� All other QSGs have simplexed CSQ_ADMIN structure and 3 application structures of which
one is duplexed.

Locally driven request / reply workload with multiple requester applications putting to a common
input queue and getting a reply message by CORRELID from a separate common indexed queue.
Multiple server applications getting from the common input queue and putting to the reply-to queue.

Duplexing the CSQ_ADMIN structure

From observations on our system when running our locally driven request / reply workload we have
derived the following general guidance.

Note: The test system has a multiple links from the LPAR to the primary CF, including a fast
ICP link which will be used when available, and a slow link from the primary CF to the secondary
(duplexed) CF.

� CPU cost between 0% and 30% greater.

� For non-persistent messages processed in-syncpoint, throughput decreases by 30% for 1KB and
20% for 32KB messages.

� For persistent messages processed in-syncpoint, throughput decreases by 25% for 1KB and
12% for 32KB messages.

� The contribution of CSQ_ADMIN structure usage to CF utilization is usually much less than
that for the application structures. Duplexing the CSQ_ADMIN structure might typically
increase the MQ caused load by 10% for 63KB non-persistent messages to 33% for 1KB non-
persistent messages.

� The use of messages contained in more than one application structure within a unit of work
increases the activity to the CSQ_ADMIN structure and so would further increase CPU and
CF utilization and decrease throughput.

78

Using a slower CFP link from the LPAR to the primary CF and another CFP link from the primary
CF to the duplexed CF:

� CPU cost between 3 and 8% greater

� For non-persistent messages processed in-syncpoint, throughput decreases by 18% for messages
between 1 and 63KB.

When using the faster ICP link between the LPAR and the primary CF with a slower CFP link
from the primary CF to the secondary CF, the additional cost of duplexing the admin structure is
signi�cantly more than when running with a CFP link from the LPAR to the CF. Despite this, the
faster ICP link does allow up to 40% more throughput for 1 to 63KB non-persistent messages that
are processed in-syncpoint.

Duplexing an application structure

It really only makes sense to duplex an application structure if the CSQ_ADMIN structure is also
duplexed. From our observations on our system with our locally driven request /reply workload we
have derived the following general guidance for duplexing of both CSQ_ADMIN and the application
structure.

NOTE: The test system has a multiple links from the LPAR to the primary CF, including a fast
ICP link which will be used when available, and a slow link from the primary CF to the secondary
(duplexed) CF.

� CPU cost about 15% greater for 1KB persistent messages and 30% greater for 1KB non-
persistent messages.

� CPU cost about 12% greater for 32KB persistent messages and 25% greater for 32KB non-
persistent messages.

� Throughput decrease by 40% for 1KB non-persistent messages and 50% for 10KB non-persistent
messages. For persistent messages throughput decrease is negligible for 1KB messages and rises
to less than 10% for 32KB messages. The use of messages contained in more than one applica-
tion structure within a unit of work increases the activity to the CSQ_ADMIN structure and
so would further decrease throughput.

� The contribution of MQ CF structure usage to CF utilization will double for the primary
structures. The secondary structures will use almost as much as the primary.

Non persistent shared queue message availability

Non-persistent messages are not logged whether in private or shared queues. Therefore they can-
not be recovered if lost. Nevertheless, shared queue non-persistent messages have much greater
availability than private queue non-persistent messages.

Private queue non-persistent messages are lost when the queue manager fails or shuts down normally.
Even with simplex CF structure usage shared queue non-persistent messages are not easily lost. They
are only lost if the CF application structure containing them fails or is deleted by the operator. In
particular, they are NOT lost when any or even all queue managers in a queue sharing group fail or
shut down normally (except failure caused by loss of that application structure).

Users may consider using non persistent shared queue messages, with all the advantages of pull
workload balancing which come with use of shared queue, where they might previously have required
persistent messages in a non-shared queue environment. In this case there is generally a CPU cost
saving and potentially a signi�cant increase in throughput compared to use of non-shared queue
persistent messages.

79

Existing users of private queue persistent messages moving to shared queue non-persistent messages
on CF structures may see a CPU cost saving and potentially a signi�cant increase in throughput
even when using duplexed CF structures.

Coupling Facility

What is the impact of having insu�cient CPU in the Coupling Facility?

As the coupling facility becomes more utilized, the system will convert synchronous requests to
asynchronous requests. The system has heuristic algorithms which decide that the system will be
more e�cient if it issues an asynchronous request with the cost of a re-dispatch, rather than have the
processor wait for a synchronous request to complete. With the asynchronous request, the processor
can process other work.

With a highly utilized coupling facility, a small increase in utilization can result in signi�cant in-
crease in coupling facility response time when the CF requests are changed from synchronous to
asynchronous.

By example:

� When the CF was 20% utilized, the majority of the CF requests were synchronous taking 4.4
microseconds.

� When the CF was 70% utilized, the majority of the CF requests were synchronous taking ap-
proximately 9.9 microseconds, but those asynchronous requests were taking 600 microseconds.

When do I need to add more engines to my Coupling Facility?

On a coupling facility with 1 engine, it is advised that when the %busy value exceeds 30% for any
period of time, an additional engine should be added. On a coupling facility with multiple engines,
it is advised that when the %busy value (as can be seen from an RMF III �CF Activity� report)
exceeds 60%, an additional engine should be added.

What type of engine should be used in my Coupling Facility?

The CF can use general CP's that can also be used by the operating system LPAR or an ICF, which
can only run CFCC. For performance reasons, the ICF engines do not share L3 and L4 caches with
z/OS processors.

IBM recommends that dedicated engines should always be used for a CF whose response times are
critical.

If dedicated processors are not available, review �Use of Shared Engines for Coupling Facilities
� Implementation and Impact� for information on the use of the dynamic dispatch �DYNDISP�
con�guration option.

CF Level 19 - Thin Interrupts

With the introduction of CFCC level 19, the options for sharing CF processors increased such that
the Dynamic CF dispatching (DYNDISP) option now supports ON, OFF and THIN.

The performance of THIN interrupts is discussed in detail in the white paper �Coupling Thin Inter-
rupts and CF Performance in Shared Processor Environments�.

80

http://www.redbooks.ibm.com/abstracts/TIPS0237.html
http://www.redbooks.ibm.com/abstracts/TIPS0237.html
https://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102400
https://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102400

Why do I see many re-drives in the statistics report?

What is a re-drive?

The Coupling Facility manager data records (QEST) hold data about re-drives in 2 �elds.

1. QESTRSEC - number of IXLLSTE redrives

2. QESTRMEC - number of IXLLSTM redrives

When IBM MQ attempts to get data from the coupling facility but has not speci�ed a large enough
bu�er for the requested data, XCF returns theIXLRSNCODEBADBUFSIZE return code. As a result,
IBM MQ redrives the request to get the data using a larger bu�er.

Why do I see many re-drives in the statistics report?

For performance reasons, it is better to use a bu�er that is close to the size of the data (including
headers) to be gotten - as a result, the initial bu�er size used by MQ is 4KB and this will be increased
or decreased as necessary.

IBM MQ uses a range of bu�er sizes i.e. 256 bytes, 512 bytes, 1024 bytes, 2048 bytes and then the
size of the bu�ers increase in 4KB blocks up to 63KB.

IBM MQ stores the size of the last message and uses this size for the bu�er on the next get, as
typically it is expected that all the messages on the queue are the same size. If the message size
increases above the size of the current bu�er, a redrive will occur. For example, consider a shared
queue has 5 messages of varying size (including MQ headers).

Message Size of Message (KB)

1 5 Redrive occurs

2 6

3 8

4 10 Redrive occurs

5 1

In this example, you would see 2 re-drives � associated with message 1 (as it is larger than the initial
4KB bu�er size) and message 4 (as it is larger than the next boundary (8KB)).

In version 6.0.0, MQ may resize the bu�er immediately if the bu�er is deemed too large, so consider
the following example:

Message Size of Message (KB)

1 1

2 0.5

3 1 Redrive occurs

4 4 Redrive occurs

NOTE:

� Message 1 does not require a re-drive but the 4KB initial bu�er was ine�cient, so the bu�er
is resized to 1KB for subsequent attempts.

� Message 2 can be gotten into a 1KB bu�er, so is also successful without a re-drive, but the
bu�er is ine�cient, so the bu�er is resized to 512 bytes for subsequent attempts.

81

� Message 3 does not �t into a 512 byte bu�er, so we get a re-drive and the bu�er is set to 1KB
for subsequent attempts.

� Message 4 does not �t into the 1KB bu�er, so again there is a re-drive and the bu�er is set to
4KB.

WebSphere MQ version 7.0 changed the behaviour of the sizing down process � it only sizes the
bu�er down if the bu�er was too large for 10 consecutive messages. In the previous example, there
would have been no redrives.

E�ect of re-drives on performance

If there are a high number of re-drives, it would indicate that the messages being retrieved by
MQGET are of varying size � it may be that the messages are not varying in size by much but they
are near to one of the boundaries � e.g. some messages are 4080 bytes and some are 4100 bytes.

When there are a large number of re-drives, the cost per transaction may be higher and the trans-
action rate lower than when the messages do not cause re-drives.

To show how the cost of re-drives can a�ect the cost and rate of transactions, the following scenario
was run:

� A version 6.0 queue manager in a queue sharing group is started

� 5 requester tasks each put non-persistent messages to a single shared queue and then wait for
a reply message on a shared reply-to queue that is indexed by MSGID. Each requester will
then repeat until told to stop.

� 4 server tasks that get messages from the shared input queue and MQPUT a reply message to
the shared reply-to queue

� Measurements were run on a single LPAR using z/OS 1.9 with 3 dedicated processors on a
z10 EC64.

� Message sizes speci�ed exclude headers

There are 3 test cases measured:

1. All messages are 2KB

2. All messages are 4KB

3. 3 in 5 messages are 2KB, 2 in 5 messages are 4KB

Message Size
Transaction Rate /

Second
Cost / Transaction
(microseconds)

Single Retries on
Application Structure

2KB 9758 291 0

4KB 9405 302 1

Mixed 9117 313 457,825

As can be clearly seen from the above measurements, using mixed size messages that cross re-drive
boundaries on the queue results in a high re-drive count.

It also shows that the transaction rate and cost per transaction is worse than when using larger �xed
sizes messages.

It should be noted that if these measurements were repeated using WebSphere MQ v7.0 or later, it
is likely there would be minimal re-drives.

82

Batch delete of messages with small structures - CFLEVEL(4) and lower

When shared queue messages are gotten destructively, the queue manager saves the pointer (PLEID)
to the storage used to hold the message in the coupling facility in a batch delete table. When this
table is full, MQ initiates an SRB to request that the data pointed to in the coupling facility is
deleted.

There is a batch delete table held in each queue manager for each structure that the queue manager
is attached to. Each table can store 341 entries before the batch delete process will be initiated.

This means that when putting and getting messages to an application structure, there may be up
to 340 messages in the structure per queue manager in the QSG that are waiting to be deleted.

If the messages are 63KB, this means that there could be 340 messages � or 21.25MB of messages
waiting to be deleted � per queue manager.

This means that if there were 30 queue managers in a QSG and messages of 63KB were being used,
there could potentially be (30 x 21.25MB) 637.5MB of messages waiting to be deleted.

If the application structure is not large enough to hold these �dead� messages as well as any �live�
messages, an application putting to a queue on the structure may get an MQRC 2192 �Storage
Medium Full�.

Constraint relief may be gained by:

� Enabling ALLOWAUTOALT(YES) � This may change the ratio of elements to entries which
may give an increased capacity.

� Increasing the size of the structure

� Using CFSTRUCT's at CFLEVEL(5)

Shared Message Data Sets - CFLEVEL(5)

WebSphere MQ for z/OS version 7.1.0 introduced CFLEVEL(5) to store large messages in shared
message data sets (SMDS), instead of DB2 for messages larger than 63KB.

This can o�er a reduction in management costs for storing large shared queue messages as well as
improving the throughput rates achievable.

In addition, a 3-tiered message size o�oad threshold is introduced to increase the capacity of the
CF.

For detailed performance guidance on the use of CFLEVEL(5), please refer to �MP1H: WebSphere
MQ for z/OS V7.1.0 Performance Report�.

DB2

IBM MQ uses DB2 with shared queues for a number of reasons, including storing information
about queue managers con�guration, group objects, channel status and large (greater than 63KB)
messages.

The DB2 LOB tablespace supplied de�nitions specify 32KB bu�er pool usage. The DB2 table space
requirement is therefore of order:

1. Number of 32KB's required for typical message (including all headers) * maximum number of
messages

83

http://www-01.ibm.com/support/docview.wss?uid=swg24031663
http://www-01.ibm.com/support/docview.wss?uid=swg24031663

2. For example, ten thousand shared queue messages of size typically 100KB would require 4 such
32KB's per message and therefore of order 1280MB LOB table space.

There is no queue manager requirement for a particular LOB table space bu�er pool size. Other
sizes may be used although no performance advantage has been observed using di�erent sizes.

The DB2 supplied de�nitions specify NUMPARTS 4 to improve maximum throughput. This num-
ber can be changed to suit particular workload requirements. We did not �nd signi�cant bene�t
from using a greater number of partitions. Each message is stored within a single partition. The
partitioning is pseudo-random based on the time the message is MQPUT.

If the partition to which a message is to be MQPUT is full then a 2192 (media full) reason code will
be returned even if there is still space in other partitions. Thus it is sensible to add another 10% to
LOB tablespace requirements to allow for any uneven usage of partitions. For example, the above
calculation of 1280MB split across 4 partitions could sensibly be spread across four partitions each
of (1280/4 + 10%) 352MB.

Is DB2 tuning important?

Yes, because DB2 is used as a shared repository for both de�nitional data and shared channel status
information. In particular BUFFERPOOL and GROUPBUFFERPOOL sizes need to be su�ciently
large to avoid unnecessary I/O to DB2 data and indexes at such times as queue open and close and
channel start and stop.

The DB2 RUNSTATS utility should be run after signi�cant QSGDISP(SHARED) or QSGDISP(GROUP)
de�nitional activity, for instance, when �rst moving into production. The plans should then be re-
bound using SCSQPROC(CSQ45BPL). This will enable DB2 to optimize the SQL calls made on it
by the queue manager.

1. For shared queue messages > 63KB

2. Isolate the IBM MQ used DB2 LOB table space into a 32K bu�er pool of its own.

3. A group bu�er pool de�nition corresponding to the chosen bu�er pool will need to be de�ned.
We used a group bu�er pool CF structure de�nition with POLICY SIZE: 10240 K.

Why does IBM MQ produce more DB2 rollbacks than I expect?

When running a DB2 log print you may see an unexpectedly high number of rollbacks for the IBM
MQ plans that are pre�xed CSQ5. The reason for these unexpected rollbacks is that the occurrence
of any non-zero return code (including +100 � �not found�) at the end of the DB2 activity will result
in a rollback being issued. In particular there may be a high number of CSQ5L pre�xed plans that
have rollbacks associated with them. The CSQ5L pre�xed plan is used when IBM MQ periodically
checks for new objects being created.

Shared queue messages > 63KB

Throughput and response time for shared queue messages <=63KB has been and remains most
dependent on:

� For persistent messages, I/O rate and total data rate achievable by individual IBM MQ logs in
the queue sharing group for all persistent messages processed by individual queue managers.

� For all messages, CF link type and CF power

84

Throughput and response time for all shared queue messages > 63KB is additionally dependent on:

� I/O rate and total data rate achievable by DB2 LOB table DASD.

� I/O rate and total data rate achievable by individual DB2 logs across the data sharing group.

� The percentage of cross DB2 data sharing, which also impacts CPU costs.

� Persistent messages are logged to the IBM MQ log. DB2 LOB table control information is
logged to the DB2 log for persistent and non persistent messages. LOB data (the message) is
not logged by DB2.

� The queue manager issues all DB2 calls on behalf of any application using >63KB shared
queue messages. For virtual storage reasons the messages are segmented, if necessary, into
multiple 512KB LOB table entries containing 511KB of message data. This has the following
e�ects

◦ CPU costs for shared queue messages > 63KB are mostly incurred by the queue manager
and DB2 address spaces rather than the application.

◦ Maximum throughput and response time can be impacted across 511KB boundaries

◦ CPU costs are increased across 511KB boundaries

100% data sharing is most expensive, that is, where the putter and getter are always in di�erent
z/OS's. An example of 100% data sharing is where a shared queue has replaced a channel between
queue managers.

Where there is e�ectively a set of cloned systems in a sysplex then data sharing is reduced. For
example, consider a set of IBM MQ applications which do all the puts and gets to a set of shared
queues. If this set of applications runs on each of 2 queue managers that are connected to separate
DB2's in a data-sharing group then there is theoretically 50% data sharing. That is there is a 50%
chance that the getter of any particular message will be using a di�erent DB2 to the putter. (66.6%
for 3 clones)

85

There is also the case where no actual data sharing occurs. This could be because the shared queues
requiring messages > 63KB are used only by queue manager(s) each connected to the same DB2.
This is most likely to occur in test system setups. DB2 only starts using data sharing locks and
group bu�ers on �rst LOB table usage by a second DB2.

Finally, out-of-syncpoint non-persistent messages can be MQPUT directly to a waiting out-of-
syncpoint MQGETter for shared queues where the waiting getter is connected to the same queue
manager as the putter. When this happens there is no interaction with the CF application structure
or DB2. Thus the response time and CPU cost is very much reduced when this happens.

NPMSPEED(FAST) receiving channels use out-of-syncpoint MQPUTs for non persistent messages.
Thus applications using out-of-syncpoint MQGET on shared queues fed by such channels can bene�t.
NPMSPEED(FAST) sending channels use MQGET with sync-if-persistent. Thus such channels fed
by applications using out-of-syncpoint MQPUTs of non-persistent messages can bene�t.

86

Shared queue persistent message throughput after 63KB transition

The following chart shows the signi�cant discontinuity in throughput at the 63KB transition point.
In particular shared queue persistent message throughput drops from 1970 messages/second to 672
messages/second as message size passes 64512 bytes (63KB).

This shared queue scenario is an example of 50% data sharing. There are 2 DB2's with a cloned set
of applications using each DB2.

The queue manager issues all DB2 calls on behalf of any application using >63KB shared queue
messages. For virtual storage reasons the messages are segmented, if necessary, into multiple 512KB
LOB table entries containing 511KB of message data. This has the following e�ects:

� CPU costs for shared queue messages > 63KB are mostly incurred by the queue manager and
DB2 address spaces rather than the application.

� CPU costs are increased across 511KB boundaries � as can be seen in tables following.

� As message size doubles, the transaction rate typically halves.

87

For comparison purposes, the preceding measurements have been repeated using CFLEVEL(5) using
shared message data sets to store the message payload with the default tiering options used. This
means that in a coupling facility structure that is not running close to capacity, messages of 63KB
or less are stored in the coupling facility.

88

The following chart shows how using CFLEVEL(5) in conjunction with o�oading to shared message
data sets with the default o�oad tiers, the transition from storing the message in the CF to storing
the message in the SMDS is signi�cantly smoother than storing the message payload in DB2.

NOTE: As the messages get larger, the bene�ts of o�oading persistent shared queue messages are
not obvious from the transaction rate, as the primary factor restricting transaction rate is the queue
managers log rate.

89

Shared queue persistent message request/reply CPU costs

The preceding throughput measurements show the following CPU cost per message (put and gotten)
for estimating purposes.

2817-7A1 (partitioned as two 3-way LPARs) CPUmillisecs/msg

Message size (Bytes)
CPUmillisecs/msg using
CFLEVEL(4)

CPU milliseconds / message
using CFLEVEL(5) o�oad
to SMDS

2048 0.12 0.12

8192 0.13 0.13

32768 0.19 0.19

64512 0.28 0.27

65536 1.45 0.26

102400 1.47 0.32

523264 3.24 1.16

524000 5.55 1.16

1048576 10.6 2.49

Shared queue persistent message request/reply CF costs

The following table shows the CF CPU cost per message as obtained in the persistent messages in a
shared queue environment measurements described previously. The costs are provided for estimating
purposes.

2817-779 (partitioned as 3-way internal CF) CFmillisecs/msg

Message size
CF CPUmilliseconds / mes-
sage using CFLEVEL(4)

CPU milliseconds / message
using CFLEVEL(5) o�oad
to SMDS

2048 0.36 0.36

8192 0.41 0.41

32768 0.53 0.53

64512 0.76 0.73

65536 1.54 0.21

102400 1.64 0.43

523264 2.58 0.3

524000 5.85 0.3

1048576 14.23 0.6

90

The following chart shows the breakdown of cost by component for a variety of shared message sizes.

NOTE: Messages of size less than 63KB see costs incurred by the primarily by the Admin structure
and also the application structure. As the message size exceeds 63KB, the messages are stored on
DB2 tables � resulting in the DB2 lock structures being used more as well as the IXCDEF coupling
facility structure that is used to ensure the separate MVS' are synchronized. As the messages reach
the size of a DB2 BLOB, the usage of the DB2 bu�er pool created speci�cally for MQ messages
increases too.

For comparison purposes, the following chart shows the breakdown of the cost by component for a
variety of shared message sizes when o�oading messages larger than 63KB to shared message data
sets.

NOTE: Using shared message data sets to store messages larger than 63KB is signi�cantly less
expensive in CF costs than using DB2 as there is less requirement on the DB2 structures including
locking.

91

Storage Class Memory (SCM)

Storage Class Memory (SCM), also known as CF Flash, is a new feature added on the zEC12 and
zBC12 machines, which can be used to provide a high total storage capacity for a CF structure
without needing to de�ne excessively large amount of real memory.

Example uses of SCM on z/OS:

� Improved paging performance

� Improved dump capture times

� Pageable 1MB memory objects

� Coupling facility (CF) list structures used by MQ shared queues.

Using SCM with IBM MQ

The use of MQ with SCM is discussed in detail in redbook �IBM MQ V8 Features and En-
hancements� available �http://www.redbooks.ibm.com/abstracts/sg248218.html�, which also
suggests possible use cases.

It is suggested that the CF Sizing tool available at �www.ibm.com/systems/z/ cfsizer � is used to
determine the sizing and impact of SCM on new or existing structures.

Impact of SCM on Coupling Facility capacity

Con�guring a structure to be able to use SCM does have an impact on the capacity of the Coupling
Facility and existing structure.

� Structure control storage. When a structure is con�gured to use SCM, the amount of control
storage used by that structure increases. This means that a list structure con�gured with SCM
will be able to contain fewer entries and elements than a structure of the same size without
SCM con�gured.

� Augmented storage.

◦ Fixed. This storage is allocated when a structure is con�gured with SCM. This is a small
amount and will be allocated even if the structure never uses any SCM.

◦ Dynamic. As data from the structure is stored in SCM, augmented space will be allocated
from the free real storage in the CF.

92

http://www.redbooks.ibm.com/abstracts/sg248218.html
http://www.ibm.com/systems/z/cfsizer
http://www.ibm.com/systems/z/cfsizer

Consider the following diagram of a Coupling Facility that has been con�gured for use by IBM MQ:

In the example, there are 3 application structures de�ned.

Notes:

� APPL1 and APPL3 have SCM available for additional capacity, and this additional structure
control space is denoted by �SCM related�.

� APPL1 and APPL2 have been de�ned so that they have the same number of entries and
elements. This has been achieved by making APPL1 larger to contain the addition SCM
related storage.

� APPL2 and APPL3 are the same size but APPL3 has less entries and elements due to SCM
related allocations, therefore less capacity in real storage.

� As the SCM storage is used, additional augmented space will be allocated from the CF free
space.

93

How much SCM is available?

The amount of SCM available is ultimately limited by:

� The capacity of CF Flash.

� How much SCM is allocated to the CF.

� How much is actually being used by other structures in the CF.

� How much free space there is in your coupling facility as some may be used for dynamic
augmented space. A lack of free space in the CF can limit the amount of space used in SCM.

How do I know I am using SCM and how much?

Using the D XCF,STR,STRNAME=<..> command, which will give output like:

..

SCMMAXSIZE : 1048576 M

..

STORAGE CONFIGURATION ALLOCATED MAXIMUM %

ACTUAL SIZE: 4114 M 4114 M 100

AUGMENTED SPACE: 3 M 77455 M 0

This shows that the structure can use up to 1TB of storage and with no data having been written
to SCM, there was 3MB of augmented space used from the CF's available free space.

It has been calculated that to use the entire 1TB of available SCM space, 77,455MB of augmented
space would be required � therefore the CF needs to have su�cient capacity available.

ALLOWAUTOALT(YES) usage with SCM

When ALLOWAUTOALT(YES) is de�ned, the threshold for altering the ratios of entries to elements
is speci�ed using the FULLTHRESHOLD keyword and is typically reached (80% full as con�gured
by the FULLTHRESHOLD keyword) before the SCM pre-staging algorithm is invoked (90% full).

The altering of the entry to element ratio by the ALLOWAUTOALT process can take time and
if the structure usage continues to increase whilst the process is continuing, the SCM pre-staging
algorithm may start.

Once the SCM pre-staging algorithm starts, the ALLOWAUTOALT entry to element ratio is frozen
until the structure no longer has data residing in SCM. If the auto-altering has not completed or
even started, the entry to element ratio used by SCM might be ine�cient.

Useful guidelines:

� Never over-commit SCM. If you do, then the applications that are relying on it will not get
the behaviour that they expect. For example, MQ applications using shared queues might get
unexpected MQRC_STORAGE_MEDIUM_FULL reason codes.

� Be aware of the augmented space usage as this can a�ect the CF usage. If your CF is con-
strained for space, you may run out of free space before either the structure or SCM is con-
strained. This will still result in MQRC_STORAGE_MEDIUM_FULL reason codes.

94

Impact of CF Flash on Application performance

The following chart shows the maximum rate in MB per second that we were able to write to SCM
and read from SCM for a range of message sizes.

These measurements involved accessing messages in priority order using separate putting and getting
applications.

Message Size Write to SCM Read from SCM

2KB 190 MB/sec 137 MB/sec

8KB 400 MB/sec 266 MB/sec

16KB 480 MB/sec 414 MB/sec

62KB
490 MB/sec

(seeing 39% of requests delayed)
450 MB/sec

When the workload was contained in CF real storage, the MQPUT and MQGET rates were up
to 10% higher on a 4-way CF with su�cient paths available between the MVS and CF LPARs, as
access to CF real storage is faster.

When the MQPUT and MQGET rate is below the peak rates shown in the table, pre-staging and
pre-fetching is typically asynchronous and as a result, no signi�cant di�erence in performance was
observed whether messages were stored in CF only or CF and SCM.

95

Non-Sequential gets from deep shared queue

SCM uses the KEYPRIORITY1 algorithm with MQ shared queues to determine the order that
messages are written to SCM (pre-staging) and the order messages are migrated back into the CF
(pre-fetching).

Both the pre-staging and pre-fetching are typically performed asynchronously to reduce the chance
of the the application being blocked whilst synchronous I/O to/from SCM occurs.

Pre-fetching using the KEYPRIORITY1 algorithm works on the assumption that messages will be
gotten in MQ message priority order. Multiple messages are pre-fetched, the number dependent
upon the message size.

When processing messages out of priority order, the pre-staging and pre-fetching function controlled
by the KEYPRIORITY1 algorithm is unable to accurately predict which messages can be pre-staged
and which messages need to be pre-fetched next. This can result in signi�cantly more expensive
MQPUTs and MQGETs.

Consider the following scenarios:

� There are a number of 2KB messages on a shared queue such that all of the messages remain
in CF real storage. These messages are randomly got and put by a single application

� There are a number of 2KB messages on a shared queue that has been con�gured with SCM
such that the majority of messages are stored on SCM. These messages are randomly got and
put by a single application.

MQPUT MQGET

Elapsed
(microseconds)

CPU
(microseconds)

Elapsed
(microseconds)

CPU
(microseconds)

All messages in CF
real

8 8 19 19

Most messages in CF
Flash (SCM)

1700 25 3600 80

In the scenario where messages are randomly got and put primarily from SCM, the di�erence between
the elapsed and CPU time is due to additional time spent processing the migration of the messages
to and from SCM. In these measurements, the CF cost per message is approximately the di�erence
between the elapsed time minus the CPU time.

This means that this type of workload would result in a signi�cantly lower throughput rate as well
as an increase in cost to both the MVS and CF LPARs.

RMF data

The z/OS RMF Coupling Facility report, requested by �SYSRPTS(CF)� has been updated in z/OS
v2r1 to include an �SCM Structure Summary� report. An example of this is shown below:

96

This example shows:

� List structure PRF1APPLICATION1 is de�ned with up to 1TB of SCM storage using algo-
rithm KEYPRIORITY1. This algorithm determines which messages are least likely to be got
next based initially on the MQ message priority and pre-stages those �rst to SCM.

� The maximum amount of augmented storage (estimated) required should all of the SCM
storage be used is 77,455MB. This means that if the Coupling Facility does not have this
much free space, it will be possible to run out of space in the CF before the SCM storage is
exhausted. Currently only 0.6% of the maximum augmented space is being used.

� It is estimated that the SCM can support 613,417K entries and 3,681M of elements (a ratio
of 1:6) at capacity. Currently there are 4,034K of entries and 40,343K of elements (a ratio
of 1:10), which means that SCM (and the CF) will run out of elements before entries if the
current message size is continued.

� In this interval there were 32,339 SCM read operations initialised transferring 33,910MB from
storage class memory to CF and each read operation takes 1583 microseconds.

� In this interval there were 32,336 SCM write operations initialised transferring 33,907MB from
CF to storage class memory and each took 1396 microseconds.

◦ We might assume that the total amount of data is relatively �at over the interval as the
amount of data read and written is similar, and indeed this is as expected as the data is
taken from an interval from the �non-sequential gets from deep shared queue� section.

� The delayed faults count is the number of list item references that were delayed due to a fault
condition resulting in required access to storage class memory. In this example the value is
particularly high as the KeyPriority1 algorithm was unable to predict which messages would
be needed. As a result there are multiple faults per request, as indicated by the %ALL value
being greater than 100.

◦ If the messages are being put or gotten in priority order and the number of delayed faults
is high then KeyPriority1 algorithm's performance may be impacting your application(s)
however there is no system tuning available to improve the performance.

Example use cases for IBM MQ with SCM

The section in redbook �IBM MQ V8 Features and Enhancements� discusses 2 use cases for MQ
with SCM:

� Improved performance. This uses SCM to increase the number of messages that can be stored
on a shared queue without incurring the performance cost of using SMDS.

97

� Emergency storage. This uses SMDS with message o�oading, in conjunction with SCM to
reduce the likelihood of an MQRC_STORAGE_MEDIUM_FULL reason code being returned
to an MQ application during an extended outage.

Capacity � CFLEVEL(4 and less) � no o�oad available - �Improved Performance�

Using SCM in conjunction with a structure de�ned at less than CFLEVEL(5) will ensure that when
the structure reaches 90% full, messages will be pre-staged to SCM. Provided there is su�cient free
space in the Coupling Facility, it will be possible to continue to put messages until either the SCM
entry or element values reach 100%.

This means that for a 1TB SCM structure with su�cient CF storage for augmented space and the
optimal entry to element ratio, it would be possible to store 16.7 million messages of 62KB in the
CF Flash storage.

Capacity � CFLEVEL(5) O�oad - �Emergency Storage�

When an MQ structure is de�ned at CFLEVEL(5) and the o�oad threshold for a particular message
size has been exceeded, MQ will store 1 entry and 2 elements in the CF, which is the MQ imple-
mentation header plus approximately 130 bytes of message data, as well as writing the remaining
message data to the o�oad media e.g. SMDS.

Given the maximum capacity of a Shared Message Data Set associated to a queue manager is 16TB
and up to 31 queue managers may be connected to the structure, the combined SMDS for a single
structure may hold 496TB of messages.

This means that for a 1TB SCM structure with su�cient CF storage for augmented space where all
messages are o�oaded to SMDS and the optimal entry to element ratio (1:2), it would be possible
to store 14,310 million messages of 62KB in a combination of CF, SCM and SMDS storage.

Please refer to the �MP1H: WebSphere MQ for z/OS V7.1.0 Performance Report� for a comparison
of throughput rates for CF and SMDS.

Capacity � CFLEVEL(5) � no o�oad - �Improved Performance�

In order to con�gure the structure for improved performance when using CFLEVEL(5), it is necessary
to set the OFFLDnSZ attributes to 64K e.g.:

OFFLD3SZ(64K) OFFLD3TH(90)

This disables o�oad threshold 3, so would never o�oad messages less than 4KB to SMDS. This
means that using the default rules only messages of 4KB or larger will be o�oaded to SMDS. due
to the �rst 2 o�oad rules. Messages smaller than 4KB will be written in their entirety to CF (for
pre-staging to SCM).

98

http://www-01.ibm.com/support/docview.wss?uid=swg24031663

Performance / Scalability

Does the CF Structure attribute �CFLEVEL� a�ect performance?

From version 7.1.0, IBM MQ supports 5 values for CFLEVEL for an application structure.

1. CFLEVEL(1) � Non-Persistent messages less than 63KB.

2. CFLEVEL(2) � Non-Persistent messages less than 63KB.

3. CFLEVEL(3) � Persistent and non-persistent messages less than 63KB.

4. CFLEVEL(4) � Persistent and non-persistent messages up to 100MB.

5. CFLEVEL(5) � As CFLEVEL(4) but allows tiered o�oading when coupling facility �lls and
o�oad choice of DB2 or SMDS.

Persistent messages can only be used with shared queues when the CFLEVEL attribute is set to 3
or higher and in conjunction with the RECOVER(YES) attribute.

Using CFLEVEL 3 or higher and RECOVER(YES) means that in the event of the Coupling Facility
failing, the CF structures can be recovered from the last backup point to just prior to the point of
failure.

Using CFLEVEL 3 or higher with RECOVER(NO) means that in the event of the Coupling Facility
failing, the messages will be lost. Since these can only be non-persistent messages, and recovery of
these messages is not paramount, it is not an unacceptable occurrence.

Measurements using non-persistent messages both in and out-of-syncpoint have shown no signi�cant
degradation on throughput nor increase on cost per transaction when using higher CFLEVEL values
over a structure that has been de�ned with CFLEVEL(2).

Using CFLEVEL(5) o�ers multiple bene�ts including increased capacity in the CF for messages less
than 63KB and signi�cantly improved performance for messages greater than 63KB than the DB2
alternative.

The impact on MQ requests of the CURDEPTH 0 to 1 transition

The 0 to 1 transition in the current depth of a shared queue can a�ect the cost and throughput of
MQ messages.

When an application opens a shared queue for input, the queue manager registers an interest in the
queue. This tells XCF to notify the queue manager when certain events occur with this queue. One
of these events is when the depth of the queue goes from zero to one � i.e. a message is available on a
previously empty queue. When this happens, XCF signals each queue manager that has previously
expressed an interest in the queue that there is now a message available. When the signal occurs an
SRB task is run within the queue manager that checks to see if additional work needs to be done.
By contrast, when the depth of the queue goes from one to two (or more), XCF does not signal all
interested queue managers.

Consider the case of a server application processing messages � when there is a low throughput,
there are insu�cient messages to keep the server application busy. This means that the queue's
depth may frequently change from zero to non-zero. This will result in additional CPU being used
when XCF signals the zero to one transition.

For example, if there are 10 requester applications connected to 10 queue managers that put messages
and get reply messages from a common reply-to queue, when the server application puts a reply
message and the queue depth changes from zero, then each of the 10 queue managers will be signalled.
One will process the message and the other nine will be signalled, check the request and do nothing

99

further. If the message rate is high enough to ensure this zero to one transition does not occur, XCF
does not signal all queue managers that have registered an interest.

When would I need to use more than one structure?

There is no signi�cant performance bene�t to using more than one structure within one CF.

There is an impact if you use structures in multiple CFs when processing messages within syncpoint.

You might want to use di�erent structures for administration and transaction isolation. For example:

� If you need to have more than 512 queues de�ned, you will need multiple structures

� If you have unrelated applications, you may want them to use di�erent structures in case one
application has problems and the structure �lls up. If the applications are using the same
structure then all the applications using the structure will be impacted. If the applications
use di�erent structures, a problem with one structure will not impact applications using other
structures.

� Your structures may have di�erent requirements, such as duplexing or recovery.

� You may want to limit the space used in the CF by di�erent applications. You could restrict
the number of messages on a queue by using queue maxdepth.

� You may want to have your business critical applications using structures on the fastest Cou-
pling Facility, and non-business critical applications using another Coupling Facility

When do I need to add more Queue Managers to my QSG?

There are several reasons that you may need to add extra queue managers to your QSG:

1. Logging - you are being constrained by the rate at which the logs can be written to disk.

2. Channels - you are unable to start any further channels to support workload.

What is the impact of having Queue Managers active in a QSG but doing
no work?

There is no signi�cant impact of running with multiple queue managers in a QSG when only a
subset of those are actually doing any work compared to running only the queue managers that are
processing any work.

As an example, we compared running workload on 2 queue managers in a QSG when:

� These were the only 2 queue managers active

� When there were 12 queue managers in the QSG, and 10 were �idle�.

The CPU cost per transaction were the same in each case and the throughput dropped by less
than 1% when there were 12 queue managers available (the throughput dropped from 1536 to 1526
transactions per second when using 1KB non-persistent messages).

Note: If shared queues have been de�ned to the IMS Bridge storage class, the �idle� queue managers
will process IMS Bridge messages. For further details, see the section titled �Putting messages from
MQ into IMS�.

100

What is a good con�guration for my shared queues?

In this section, many shared queue considerations have been discussed. For the simplest case, we
would advise that there are a minimum of 2 application structures:

� One application structure can be used for non-persistent messages and can be con�gured with
CFLEVEL(3)2 or the highest supported CFLEVEL as this structure does not need to be
backed up. This will reduce recovery times.

◦ Since these are non-persistent messages (i.e. not critical to the business) is there really
any need to duplex this structure? Duplexing a structure will reduce the through-put
and increase the cost of the transaction.

◦ Using CFLEVEL(3) or higher with RECOVER(NO) means that only non-persistent mes-
sages up to 63KB can be put to queues de�ned in this structure.

◦ If large (i.e. greater than 63KB) non-persistent messages need to be stored in shared
queues, the structure will need to be de�ned with CFLEVEL(4). Again by setting the
RECOVER(NO) attribute, only non-persistent messages can be put to queues de�ned on
this application structure.

◦ If there is a requirement for a large capacity, use CFLEVEL(5) with o�oad to SMDS as
this will allow the system to o�oad messages to the shared message data sets when the
CF usage reaches the tiered o�oad thresholds.

◦ If large messages are being used, CFLEVEL(5) o�ers a signi�cantly less expensive o�oad
option than DB2.

� The other application structure can be used for persistent messages and set to a higher
CFLEVEL (or RECOVER(YES) if already using CF level 3 or higher) such that it may be
backed up in the event of a failure. If desired it may be duplexed, either to a local secondary
CF or to a physically remote coupling facility.

� Do you really need to cross application structures when running in-syncpoint? Bear in mind
that there is an associated cost when crossing structures.

� If more than 2 application structures are required, consider the use of them � do they need to
be duplexed? Do they need to be backed up in case of a failure of the CF?

� If running with a duplexed application structure it is advisable to have the CSQ_ADMIN
structure duplexed too.

Shared queue persistent messages

Throughput for persistent messages in shared queues is ultimately dependent on the MQ log band-
width of each queue manager in the queue sharing group. Additionally it depends on general shared
queue considerations as follows

Shared queue performance a�ecting factors

� For messages up to 63KB (64512 bytes)

◦ z/OS heuristics which can change CF calls from synchronous to asynchronous

◦ The type of link(s) between individual z/OS's and the CF(s).

� This a�ects the elapsed time to complete CF calls and so in�uences the heuristics.

2 CF level 3 onwards is speci�ed as in the event of a coupling facility failure, the queue manager will remain
available.

101

◦ The CF machine type and CF CPU %BUSY

� For messages larger than 63KB

◦ As above for up to 63KB messages plus the throughput performance of the DB2 data
sharing group tablespace used to store these messages.

The performance a�ect of these factors can vary signi�cantly from one machine range to another.

102

Chapter 3

Channel Initiator

What is the capacity of my channel initiator task?

The channel initiator address space is limited to 2GB of storage and this storage is used for tasks
and memory usage. The diagram below shows how the storage within the address space can be used:

Channel initiator storage usage

Notes:

� This above diagram is not an address space map. The coloured blocks indicate approximate
relative sizes only. In addition the �z/OS overhead� includes �xed ECSA allocation.

� Task storage consists of adapters, dispatchers, SSL tasks, DNS task and pub/sub tasks.

� The cluster cache stores data about cluster subscriptions. If the queue manager does not have
any cluster channels de�ned, this storage will not be allocated. The storage usage may vary
� if the CLCACHE is set to STATIC, 2MB will be used but if CLCACHE is DYNAMIC, the
storage usage is 2MB but may grow.

103

� The bu�er pool usage is explained in the following section but does not relate to the queue
manager bu�er pool usage and the size may change depending on a number of factors including
message sizes.

� Storage usage can be tracked by the CSQX004I message that appears in the channel initiator
on an hourly basis unless the storage is used more rapidly.

Version 8.0 introduced channel accounting and statistics, which uses storage from above the 2GB
bar, so does not impact the number of channels that the channel initiator is able to support.

Channel initiator task storage usage

In version 8.0, the storage used by each task type can be estimated as:

� Adapter 223KB

� Dispatcher 248KB

� SSL Task 1.3MB

What limits the maximum number of channels?

The maximum number of channels is limited by:

� Channel initiator virtual storage in the extended private region (EPVT) which applies to all
channel types including CHLTYPE(SVRCONN) channels (thin clients)

� Possibly, by achievable channel start (or restart after failure) and stop rates and costs. These
increase with the number of channels represented in the SYSTEM.CHANNEL.SYNCQ.

In WebSphere MQ for z/OS version 6.0.0 and earlier, every non-SSL channel uses about 140 KB
and every SSL channel about 170KB of extended private region in the channel initiator (CHINIT)
address space. Storage is increased if messages larger than 32 KB are being transmitted. This
increased storage is freed when either a sending or thin client channel requires less than half the
current bu�er size for 10 consecutive sends or a heartbeat is sent or received.

WebSphere MQ for z/OS version 7.0.0 introduced the concept of channel initiator bu�er pools
where a pool of storage is maintained per dispatcher task. The size of the message being processed
by the channel initiator directly a�ects the size of the memory footprint. When the channel initiator
determines that there is a shortage of storage available, the channel initiator will attempt to release
some of the allocated storage pools.

The upper limit is likely to be around 9000 non-SSL or 9000 SSL channels on many systems as
EPVT size is unlikely to exceed 1.6GB.

How many channels can a channel initiator support?

This depends on the size of the messages �owing through the channel.

A channel will hold onto a certain amount of storage for its lifetime. This footprint depends on the
size of the messages.

104

Message Size 1KB 32KB 64KB 1MB

Footprint per Channel 107 115 123 1138

Overhead of Message
Size increase on 1KB

messages
+8K +16K +1031K

If the message size over a channel varies signi�cantly, the e�ect of channel initiator bu�er pools can
play a more signi�cant e�ect.

For example, running 1000 channels with 1KB messages and 50 channels with 64KB messages would
use:

� 107KB * 1000

� 123KB * 50

� Which gives a total of 113,150KB, out of the �free storage�

How many SVRCONN channels can a channel initiator sup-
port?

The following table shows the footprint of a SVRCONN channel being run. This is shown in KB
per channel.

SHARECNV 1KB Messages 32KB Messages 64KB Messages

0 92 168 197

1 177 288 351

10
where each channel

instance has 10 shared
conversations

257 695 1036

NOTE: With 1KB messages, a SVRCONN channel de�ned with SHARECNV 10 (or greater) will
use approximately 25.7KB per shared conversation (CURSHCNV). This means that if a SVRCONN
channel is de�ned with SHARECNV(1000) but has only 10 shared conversations (as reported by DIS
CHS(*) CURSHRCNV), the footprint would be 257KB for the channel (or 25.7KB per conversation).

On a system that has an EPVT size of 1.6GB, this means that running server-connection type
channels with SHARECNV(0) with 1KB messages, the maximum number of clients that can be
connected should be able to reach the IBM MQ de�ned limit for MAXCHL of 9,999.

For a server-connection channel with a SHARECNV value of 1, it would require 1728MB of storage
to start 9,999 channels, so the maximum number of channels would be 9,470.

However, if shared conversations are being used on a server-connection channel with SHARECNV
value of 10, it is possible to have 6,520 channels running � with 65,200 conversations.

If the greater memory usage of using a non-zero SHARECNV channel outweighs the bene�ts such
as client heartbeating, read ahead (as allowed using the queue attribute �DEFREADA�) and client
asynchronous consume, it is advised to alter the default SVRCONN channel de�nition to specify
SHARECNV(0).

For multi-threaded clients running at version 7.0 or later, e.g. Java applications, de�ne an additional
SVRCONN channel with SHARECNV(10) and ensure that these multi-threaded clients use the new
channel.

105

Does SSL make a di�erence to the number of channels I can
run?

Yes. Typically SSL uses an additional 30KB for each channel but for messages larger than 32KB
can be higher.

106

Channel initiator bu�er pools

In WebSphere MQ version 7, the concept of channel initiator bu�er pools were introduced. These
are typically used when the size of the messages �owing across the channels varies signi�cantly.

Each dispatcher has a pool of storage bu�ers available to handle requests.

In addition, there is a global pool for large storage requests which are shared across all dispatchers.

The dispatcher bu�er pools handle requests up to 36KB which allows a full 32KB bu�er to be held
(which is a common size at the dispatcher level). The dispatcher bu�ers work with a range of sizes:

� 4KB

� 8KB

� 16KB

� 32KB

� 36KB

The size selected is based upon the required size and the channel initiator searches the available
bu�ers. If no bu�er is available of the appropriate size, the next size up is checked. If no bu�ers are
available, a new bu�er will be allocated.

The global pool has a set of bu�er pools with sizes:

� 64KB

� 128KB

� 256KB

� 512KB

� 1MB

� Larger than 1MB

Each bu�er pool, whether a dispatcher or global bu�er pool, except the �larger than 1MB� bu�er
may have up to 50 free bu�ers in addition to in-use bu�ers and the usage will depend on how many
bu�ers are actually busy. The �larger than 1MB� bu�er pool may only have up to 5 free bu�ers, so
the �larger than 1MB� free bu�er pool may vary in size up to 500MB1, but the �in-use� pool may
be as large as the channel initiator can support.

Q+A: What uses a bu�er pool bu�er?

Typically a SVRCONN channel may have 3 bu�ers and an MCA channel may have 2 bu�ers � one
for getting / putting the message and a second bu�er for sending/receiving the message from the
communications protocol.

As previously mentioned a started channel will hold onto storage for its life-time so unless the
message sizes signi�cantly change, the bu�er pool usage will not vary greatly.

Q+A: What happens when my channel stops?

When a channel stops, the associated bu�ers are released back to the bu�er pools. This can make
the storage footprint appear higher than expected as the storage is not released until the channel
initiator determines that it has reached 75% utilised and drives its scavenger task. For example, if a
channel is started to send 100MB messages, upon ending, the storage will be returned to the global
bu�er pool and will not be freed immediately. This will mean that the CSQX004I message will still

1Based on a maximum message size of 100MB

107

include the 100MB bu�ers in its calculation even though the 100MB bu�ers may not be in use at
the time.

What happens when the channel initiator runs out of storage?

The messages logged by the channel initiator reporting storage usage should mean that storage
becoming constrained is not a surprise.

Given the nature of the bu�er pools, some variation in storage usage should be expected if a widely
varying message size is seen through-out a period of time. It may be that typical day-time workload
involves smaller messages and over night, there is a time where a set of large messages are �owed.
In this case, it may be observed that the scavenger task is started to release storage that is allocated
but not in use.

If a dispatcher attempts to process a message requiring a large bu�er and there is insu�cient space
available and the scavenger hasn't been given time to run, the dispatcher task will fail, resulting
in the CSQX112E message being logged, e.g. �CSQX112E @VTS1 CSQXDISP Dispatcher process
error, TCB=xxxxxxxx reason=0C4000-00000004�. Manually restarting the channel should resolve
this problem provided su�cient storage is available.

If the scavenger message (CSQX068I) is appearing occasionally, this suggests that the channel initia-
tor is running with its optimum working set of bu�er pool sizes which changes when larger messages
are �owed.

If the scavenger message is occurring frequently, this suggests that the channel initiator address space
does not have su�cient capacity for the workload being run and an additional channel initiator (and
associated queue manager) may be required.

Channel Initiator Scavenger Task

As previously mentioned, the channel initiator reports the memory usage on an hourly basis and
more often when the storage usage increases signi�cantly.

As part of this storage monitoring, the channel initiator will start a scavenger process if the total
memory usage reaches or exceeds 75% of the available storage to release the free bu�ers from the
channel initiator bu�er pools.

If the channel initiator only uses long-running channels, the scavenger task may not be started for
up to 1 hour after detecting the storage change.

NOTE: The X004I message is logged on an hourly interval or when the storage usage changes by
more than 2%. The scavenger task is initiated following the storage usage exceeding 75% and the
subsequent logging of the X004I message. If the bu�ers are still in use when the scavenger tasks is
started, it will be unable to free any storage and so will only be able free those bu�ers when the
workload is complete. Typically this is driven by a message on the SYSTEM.CHANNEL.INITQ (e.g.
start channel) or a subsequent change in storage usage. If no channel state changes occur, it may
be an hour before the channel initiator attempts to free available bu�ers. This can be circumvented
by stopping and restarting a channel.

The scavenger task will release all bu�er pool storage marked as free except for 1 bu�er of 4KB and
1 bu�er of 36KB per dispatcher.

108

De�ning channel initiator - CHINIT parameters

The ALTER QMGR parameters CHIADAPS and CHIDISPS de�ne the number of TCBS used by the
channel initiator. CHIADAPS (adapter) TCBs are used to make MQI calls to the queue manager.
CHIDISPS (dispatcher) TCBs are used to make calls to the communications network. The ALTER
QMGR parameter MAXCHL can in�uence the distribution of channels over the dispatcher TCBs.

CHIADAPS

Each MQI call to the queue manager is independent of any other and can be made on any adapter
TCB. Calls using persistent messages can take much longer than those for non-persistent because
of log I/O. Thus a channel initiator processing a large number of persistent messages across many
channels may need more than the default 8 adapter TCBs for optimum performance. This is partic-
ularly so where achieved batchsize is small, because end of batch processing also requires log I/O,
and where thin client channels are used.

For heavy persistent workloads we recommend CHIADAPS(30) for systems with up to 4 proces-
sors and then increase CHIADAPS by 8 for each additional processor up to a maximum of CHI-
ADAPS(120). We have seen no signi�cant disadvantage in having CHIADAPS(120) where this is
more adapter TCBs than necessary.

IBM MQ version 8 introduced channel statistics via the use of TRACE(S) CLASS(4). These can be
used to determine whether there are su�cient adapter tasks de�ned to a channel initiator.

The channel initiator uses a pool of adapter tasks and when a request is made, the next available
adapter task is used. This results in adapter 0 typically being the most used adapter.

For example the following chart is generated from the adapter reports resulting from workloads using
2KB messages in a request/reply model with 10 outbound and 10 inbound sender-receiver channel
pairs where the message persistence is varied.

The preceding chart shows how busy each adapter task is over a 60 second interval.

The non-persistent workload shows that only 8 adapters (0-7) are used and only adapter 0 is more
than 50% utilised. For non-persistent messages, the tasks are primarily using CPU.

109

The persistent workload shows adapters 0 through 9 are greater than 50% busy with the usage
tailing o� until adapter 18 is less than 5% busy. In this case, the adapter tasks are primarily waiting
for log I/O to complete and whilst this occurs, the tasks are blocked.

A client task that selects messages using message properties can also result in CPU intensive work
on an adapter task and there may be bene�t in additional adapter tasks in that environment.

Generally, if all the adapter tasks are being used, there may be requests queued waiting for an
adapter, so more adapters may o�er some bene�t to throughput.

CHIDISPS and MAXCHL

Each channel is associated with a particular dispatcher TCB at channel start and remains associated
with that TCB until the channel stops. Many channels can share each TCB. MAXCHL is used to
spread channels across the available dispatcher TCBs.

The �rst(MIN((MAXCHL / CHIDISPS) , 10) channels to start are associated with the �rst
dispatcher TCB and so on until all dispatcher TCBs are in use. The e�ect of this for small numbers
of channels and a large MAXCHL is that channels are NOT evenly distributed across dispatchers.

We suggest setting MAXCHL to the number of channels actually to be used where this is a small
�xed number.

IBM MQ version 8 introduced channel statistics via the use of TRACE(S) CLASS(4). These can be
used to determine whether there are su�cient dispatcher tasks de�ned to a channel initiator.

Performance report �MP1B� provides an application, MQSMF, that generates a dispatcher report
which can show the usage of each dispatcher. If the report shows dispatchers that have little or no
usage co-existing with dispatchers that are showing high usage, the MAXCHL to CHIDISPS ratio
may be too high.

For best performance from dispatchers, the system should use as few dispatcher tasks as possible
provided they are not being used at capacity. Where larger numbers of channels are being used,
we suggest reviewing the dispatcher report but where this is not available, setting CHIDISP(20)
where there are more than 1000 channels in use. We have seen no signi�cant disadvantage in having
CHIDISPS(20) where this is more dispatcher TCBs than necessary.

The load on each dispatcher can make a di�erence to the total throughput of the channel initiator.
For example the following chart shows the achieved transaction rate with a request/reply workload
using 2KB messages as more channels are used. In both cases, there were 3 dispatcher tasks de�ned.

In these tests, MAXCHL(150) and CHIDISPS(3) were de�ned.

110

http://www-01.ibm.com/support/docview.wss?uid=swg24005907

This means that if all 150 channels were started, there would be 50 channels per dispatcher.

In this test there were 100 channels started but only a subset of channels were actively sending
messages as indicated by the x-axis on the chart.

When the busy channels were all on the same dispatcher, the throughput peaked at 40,000 transac-
tions per second even though the dispatcher was 58% busy at its peak.

When the busy channels were shared across all 3 dispatchers, the peak throughput was 50% higher
and two of the three dispatchers achieved a higher percent busy than the single dispatcher in the
original measurement.

The use of channel compression can a�ect how many dispatcher tasks are required.

For example the following table shows the report cost of processing a 32KB message that is approx-
imately 40% compressible in the dispatcher task report:

Compression type
CPU microseconds per dispatcher

request

None 6

ZLIBFAST (hardware compression2) 13

ZLIBHIGH (software compression) 219

Checking the OMVS Environment

Each channel initiator task uses a number of OMVS threads. Within the channel initiator address
space there will be 33 plus �CHIDISPS� plus �SSL Tasks� OMVS threads.

Use command �D OMVS,LIMITS� and review the value of MAXPROCSYS. If the act of adding a
new channel initiator or amending an existing one causes the number of MAXPROCSYS to be close
to the maximum value, then MAXPROCSYS should be increased.

2IBM MQ version 8.0 added support for zEDC hardware compression for the ZLIBFAST channel compression
option. This is detailed further in performance report �MP1J�.

3 This is based on an OMVS thread for CSQXJST, and 2 for CSQXRCTL � one of which is a listener thread for
incoming requests directed at the queue manager.

111

http://www-01.ibm.com/support/docview.wss?uid=swg24038347

The SETOMVS command can be used to dynamically change the value, or the value can be updated
in the BPXPRMxx parameter values.

E�ect of Changing CHIDISPS

By increasing the CHIDISPS attribute, the number of dispatcher processes is increased. This can
be seen in SDSF© using the �PS� option.

If the change is signi�cant or a�ects a large number of queue managers, these additional processes
may cause the system-wide limits set for MAXPROCSYS and MAXPROCUSER to be exceeded. This
can be seen when the following messages are logged:

BPXI039I SYSTEM LIMIT MAXPROCSYS HAS REACHED 100% OF ITS CURRENT CAPACITY

BPXI040I PROCESS LIMIT MAXPROCUSER HAS REACHED 100% OF ITS CURRENT CAPACITY

Both MAXPROCSYS and MAXPROCUSER are controlled by the BPXPRMxx parameter.

MAXPROCSYS speci�es the maximum number of processes that can be active at the same time.

MAXPROCUSER speci�es the maximum number of OMVS threads that a single user (i.e. the same
UID) can have concurrently active. The channel initiators threads count towards this value, i.e. if
there are 10 channel initiators with the same started task userid, and each one has 10 dispatchers,
there will be 130 threads for the userid.

When increasing the CHIDISPS value, we recommend amending both the MAXPROCSYS and
MAXPROCUSER values by:

MAXPROCxxx = MAXPROCxxx + (Increase in CHIDISPS x Queue managers being amended)

Where xxx is SYS and USER

112

Tuning Channels

There are a number of options that can be applied to channels that can reduce cost or help identify
problems in the appropriate environment.

Channel option BATCHHB

This attribute speci�es whether batch heartbeats are to be used. These allow the sending channel
to verify that the receiving channel is still active just before committing a batch of messages. If
the receiving channel is not active the batch can be backed out rather than becoming in-doubt. By
backing out the batch, the message remain available for processing so they could, for example, be
redirected to another channel.

Channel option BATCHINT

The minimum time in milliseconds that a channel keeps a batch open. The batch is terminated
when one of the following conditions is met:

� BATCHSZ messages are sent

� BATCHLIM kilobytes are sent

� The transmission queue is empty and BATCHINT is exceeded.

Channel option BATCHLIM

The limit in kilobytes of the amount of data that can be sent through a channel before taking a sync
point. A sync point is taken after the messages that caused the limit to be reached �ows across the
channel.

The default is 5000KB, so if large messages are �owing across the channels, a sync point make be
taken after only a small number of messages � possibly after every message.

Channel option BATCHSZ

This attribute is the maximum number of messages that can be sent through a channel before taking
a sync point.

The maximum batch size used is the lowest of the following values:

� The BATCHSZ of the sending channel.

� The BATCHSZ of the receiving channel.

� On z/OS, three less than the maximum number of uncommitted messages allowed at the
sending queue manager (or one if this value is zero or less). On platforms other than z/OS, the
maximum number of uncommitted messages allowed at the sending queue manager, or one if
this value is zero or less.

� On z/OS, three less than the maximum number of uncommitted messages allowed at the
receiving queue manager (or one if this value is zero or less). On platforms other than z/OS,
the maximum number of uncommitted messages allowed at the receiving queue manager, or
one if this value is zero or less.

113

Channel option COMPHDR

The header data sent over a channel can be compressed using this value.

The most noticeable e�ect of compressing the header will be observed with small messages, for
example:

� sending a 4MB message and only compressing the header, will reduce the total data sent by
approximately 300 bytes.

� Sending a message of 100 bytes with a 480 byte header and compressing the header will result
in reducing the data sent by approximately 300 bytes � down by 50%.

Channel option COMPMSG

This is the list of message data compression techniques supported by the channel.

Typically channel compression is used on high-latency networks or low-bandwidth networks as there
is a cost associated with compressing and decompressing the message being sent.

As the compression is performed by a channel dispatcher task, this can add extra workload on the
dispatcher task and it would be advisable to re-evaluate the optimal setting of channels to dispatchers
ratio.

The zEC12 and zBC12 classes of System z hardware introduced hardware compression using zEn-
terprise Data Compression (zEDC).

IBM MQ version 8.0 added support for hardware compression via the channel compression option
�ZLIBFAST�. Compressing messages using zEDC hardware compression can reduce the message
costs by 80% compared to compression performed in software.

For further information on version 8.0 channel compression enhancements both from using software
compression, when zEDC is not available, and hardware compression refer to performance report
�MP1J�. In particular review the information in:

� Appendix A Regression � Moving messages across Channels

� Channel Compression using zEDC.

Channel option DISCINT

The minimum time in seconds the channel waits for a message to arrive on the transmission queue.
The waiting period starts after a batch ends. After the end of the waiting period, if there are no
more messages, the channel is ended.

A value of 0 causes the message channel agent to wait inde�nitely. See the section on channel
start/stop rates and costs to see the e�ect of channels changing state.

Channel option HBINT

This speci�es the approximate time between heartbeat �ows sent by a message channel agent (MCA).
These �ows are sent when there are no messages on the transmission queue with the purpose of
unblocking the receiving MCA, which is waiting for messages to arrive or for the disconnect interval
to expire. When the receiving MCA is unblocked, it can disconnect the channel without waiting for
the disconnect interval to expire. Heartbeat �ows also free any storage blocks that are allocated for
large messages and close any queues that are left open at the receiving end of the channel. To be
most useful, the value needs to be less than the DISCINT value.

114

http://www-01.ibm.com/support/docview.wss?uid=swg24038347

Channel option KAINT

The value passed to the communications stack for keepalive timing for this channel.

Channel option MONCHL

This attribute controls the collection of online monitoring data for channels. Changes to this pa-
rameter take e�ect only on channels started after the change occurs.

Channel option NPMSPEED

This attribute speci�es the speed at which non-persistent messages are to be sent.

� FAST means than non-persistent messages are not transferred within transactions. Messages
might be lost if there is a transmission failure or the channel stops whilst the messages are in
transit.

� NORMAL means normal delivery for non-persistent messages.

If the value of NPMSPEED di�ers between the sender and receiver or either one does not support
it, NORMAL is used.

SVRCONN channel option SHARECNV

Speci�es the maximum number of conversations that can be sharing each TCP/IP channel instance.
High SHARECNV limits have the advantage of reducing queue manager thread usage. If many
conversations sharing a socket are all busy, there is a possibility of delays. The conversations
contend with one another to use the receiving thread. In this situation, a lower SHARECNV value
is better.

115

Tuning channels - BATCHSZ, BATCHINT, and NPMSPEED

To get the best from your system you need to understand the channel attributes BATCHSZ,
BATCHINT and NPMSPEED, and the di�erence between the batch size speci�ed in the BATCHSZ
attribute, and the achieved batch size. The following settings give good defaults for several scenarios:

1. For a synchronous request/reply model with a low message rate per channel (tens of messages
per second or less), where there might be persistent messages, and a fast response is needed
specify BATCHSZ(1) BATCHINT(0) NPMSPEED(FAST).

2. For a synchronous request/reply model with a low message rate per channel (tens of mes-
sages per second or less), where there are only non-persistent messages, specify BATCHSZ(50)
BATCHINT(10000) NPMSPEED(FAST).

3. For a synchronous request/reply model with a low message rate per channel (tens of messages
per second or less), where there might be persistent messages and a short delay of up to 100
milliseconds can be tolerated specify BATCHSZ(50) BATCHINT(100) NPMSPEED(FAST).

4. For bulk transfer of a pre-loaded queue specify BATCHSZ(50) BATCHINT(0) NPMSPEED(FAST).

5. If you have trickle transfer for deferred processing, (the messages are typically persistent)
specify BATCHSZ(50) BATCHINT(5000) NPMSPEED(FAST).

6. If you are using large messages, over 100000 bytes you should use a smaller batch size such as
10, and if you are processing very large messages such as 1 MB, you should use a BATCHSZ(1).

7. For messages under 5000 bytes, if you can achieve a batch size of 4 messages per batch then
the throughput can be twice, and the cost per message half that of a batch size of 1.

How batching is implemented

The text below describes the processing to send one batch of messages:

DO until BATCHSZ messages sent OR (xmitq empty AND BATCHINT expired)

OR BATCHLIM kilobytes sent

� Local channel gets a message from the transmission queue

◦ If message is non-persistent and channel is NPMSPEED(FAST):

� Outside of syncpoint

◦ Otherwise:

� Within syncpoint

◦ Adds a header to the message and sends using TCP/IP, APPC, etc.

� Remote channel receives each message and puts it

◦ If message is non-persistent and channel is NPMSPEED(FAST):

� Outside of syncpoint

◦ Otherwise:

� Within syncpoint

END

COMPLETE channel synchronisation logic.

116

Thus,

� A batch will contain at most BATCHSZ messages.

� If the transmission queue is emptied before BATCHSZ is reached and the BATCHINT(milliseconds)
time has expired since the batch was �rst started, the batch will be terminated.

� The achieved batch size is the number of messages actually transmitted per batch. Typically
for a single channel the achieved batch size will be small, often with just a single message
in a batch, unless BATCHINT is used. If the channel is busy or the transmission queue is
pre-loaded with messages, then a higher achieved batch size might be achieved.

� Each non-persistent message on an NPMSPEED(FAST) channel is available immediately it is
put to a queue at the receiver, it does not have to wait until end-of-batch. Such messages are
known as 'fast messages'.

� All other messages only become available at the end-of-batch syncpoint.

NOTES:

� Fast messages can be lost in certain error situations, but never duplicated.

� All other message delivery remains assured once and once only.

� If batch is reaches BATCHSZ then an end-of-batch indicator �ows with last message.

� If the batch is terminated because the transmission queue is empty, or the BATCHINT interval
expires, then a separate end-of-batch �ow is generated.

� Channel synchronisation logic is expensive. It includes log forces where there are persistent
messages or NPMSPEED(NORMAL) channels and an end-of-batch acknowledgement �ow
from the receiver back to the sender. A low achieved batch size results in much higher CPU
cost and lower throughput than a high achieved batch size, as these overheads are spread over
fewer messages.

Setting NPMSPEED

For non-persistent messages choosing NPMSPEED(FAST) gains e�ciency, throughput and response
time but messages can be lost (but never duplicated) in certain error situations. Of course non-
persistent messages are always lost in any case if a queue manager is normally stopped (or fails) and
then restarted. Thus any business process using non-persistent messages must be able to cope with
the possibility of lost messages. For persistent messages NPMSPEED has no e�ect.

If you have applications with both persistent and non-persistent messages which rely on message
arrival sequence then you must use NPMSPEED(NORMAL). Otherwise a non-persistent message
will become available out of sequence.

NPMSPEED(FAST) is the default and is usually the appropriate choice, but do not forget that the
other end of the channel must also support and choose NPMSPEED(FAST) for this choice to be
e�ective.

Determine achieved batch size using MONCHL attribute

The channel attribute �MONCHL� controls the collection of online monitoring data for channels.

By default, a channel is de�ned with MONCHL(QMGR). This means that monitoring data is col-
lected for a channel based on the setting of the queue managers MONCHL attribute.

117

Changes to the value of the channel attribute MONCHL only take e�ect on channels started after
the change is applied.

By altering the queue managers MONCHL attribute to one of the following values LOW, MEDIUM
or HIGH, the �DISPLAY CHSTATUS(channel) XBATCHSZ� command can be used to display the
size of batches achieved over the running channel.

NOTE: Do not use DISPLAY CHSTATUS (*) when you have many channels unless necessary, as
this is an expensive command. It might require many hundreds, or thousands, of pages in bu�er
pool 0. Bu�er pool 0 is used extensively by the queue manager itself and thus overall performance
can be impacted if pages have to be written to and read from the page data sets as a result of a
shortage of free bu�ers.

118

Setting BATCHSZ and BATCHINT

Consider the following 3 types of application scenario when choosing BATCHSZ and BATCHINT.

1. Synchronous Request/Reply, where a request comes from a remote queue manager, the
message is processed by a server application, and a reply sent back to the end user.

� This usually implies a short response time requirement.

� Response time requirements often preclude use of a non-zero BATCHINT for channels
moving persistent messages.

� Volumes on each channel might be so small that end-of-batch will occur after nearly every
message even at peak loads.

� For persistent messages, absolute best e�ciency might then be achieved with BATCHSZ
of 1 as there is then no separate end-of-batch �ow from sender to receiver. Savings of up
to 20% of the CPU cost of receiving a message and sending a reply message are typical
for small messages.

� If your volumes and response time requirements permit then set BATCHSZ to x and
BATCHINT to y where you typically expect x or more messages in y milliseconds and
you can a�ord the up to y milliseconds delay in response time on that channel.

� Conclusion, for channels moving any persistent messages is:- Use the defaults unless you
really know better!

� Non-persistent messages on an NPMSPEED(FAST) channel are available immediately
they are received regardless of BATCHINT or BATCHSZ. So a non-zero BATCHINT
is appropriate for any NPMSPEED(FAST) channel carrying ONLY non-persistent mes-
sages.

◦ For example, if you expect 30 non-persistent messages per second, set BATCHINT
to 2000 (2 seconds) then you will almost always achieve a batch size of 50 (assuming
BATCHSZ of 50).

◦ The CPU cost saving per message moved is likely to be of order 50% versus that for
achieved batch size of 1 compared to achieved batch size of 50.

2. Bulk transfer of a pre-loaded transmission queue.

� Usually implies high volumes, a high throughput requirement but a relaxed response time
requirement (e.g. many minutes is acceptable). Thus a large BATCHSZ is desirable.

� The default BATCHSZ of 50 will give relatively high throughput.

� Higher BATCHSZs can improve throughput, particularly for persistent messages (and
non-persistent messages on NPMSPEED(NORMAL) channels). But might be inappro-
priate for very large messages sizes, where a failure in mid batch could cause signi�cant
reprocessing time.

� Do not use BATCHSZ > 100 even for messages up to 5KB.

� Do use BATCHSZ = 1 for 1MB or larger messages as anything larger tends to increase
the CPU costs, and can have an impact on other applications.

� BATCHINT should be left to the default of 0.

3. Trickle transfer for deferred processing

119

� You want to transfer the messages as they are generated as cheaply and e�ciently as
possible. These messages are then either stored for processing in a batch window or are
processed as they arrive but it is acceptable that several seconds or minutes elapse from
the time the messages were �rst generated.

� If possible wait until a batch size of 50 is completed. This would require that you set
BATCHINT to xxxx milliseconds, where more than 50 messages are generated within
xxxx milliseconds (assuming BATCHSZ greater than or equal to 50).

◦ If you left BATCHINT at 0 then you would probably achieve an average batch size
of less than 2 whatever the setting for BATCHSZ. In fact, it is typical that nearly all
the batches would consist of just 1 message.

◦ This would cost signi�cantly more CPU and logging and some more network tra�c
than 1 batch of 50 messages.

� Or, consider the case where you expect an average of 20 or more messages per minute
and you can accept up to 1 minute delay before these messages are processed. Then:

◦ If you set BATCHINT to 60000 (i.e. 1 minute) then you will achieve a batch size of
20 (on average, provided BATCHSZ greater or equal to 20)

◦ If you left BATCHINT at 0 then you would probably get 20 batches of 1 message
each whatever the setting for BATCHSZ.

◦ 20 batches of 1 message would cost signi�cantly more CPU and logging and some
more network tra�c than 1 batch of 20 messages.

� However, a very long BATCHINT is probably not appropriate as this could mean a very
long unit-of-work and consequent elongated recovery time in the event of a failure. You
should usually use a BATCHINT value of less than 300000 (5 minutes)

120

Channel Initiator Trace

TRACE(C) costs can be signi�cant when running a high workload.

Comparing high workload over a single pair of Sender-Receiver channels, we saw between a 25% and
55% increase in the cost of the transaction.

On an idle queue manager/channel initiator, we found that TRACE(CHINIT) added 3% to the cost
of running the channel initiator.

IBM MQ version 8.0 for z/OS introduced channel initiator accounting and statistics data. Enabling
both of the class(4) trace options typically increases channel initiator CPU costs by 1 to 2%.

121

Why would I use channels with shared conversations?

When it comes to the V7 clients connecting, using a SVRCONN channel with a SHARECNV of
greater than 0 allows the channel to run in V7 mode - which gives several bene�ts:

� Read-ahead - this allows the queue manager to e�ectively push messages out to the client when
they are available - and the MQ client code maintains its own bu�er to hold these messages
until the client application is ready for them. This can reduce the line turn-around time giving
better performance.

� Client Asynchronous Consume - allows the client to register an interest in multiple queues and
receive a message when it arrives on any of those queues.

� Heart-beating over a SVRCONN channel - which allows the queue manager to detect when
the client has gone away

� By sharing conversations from a multi-threaded client application, it is possible to decrease
the footprint on the channel initiator, allowing more clients to connect.

� In V6, a single SVRCONN channel used around 140KB.

� In V7, a SVRCONN channel with SHARECNV(10) uses around 514K � which equates to each
conversation using only 51KB - which allows for signi�cantly more client conversations to be
running on a single channel initiator.

There are instances where the customer may choose to run a SVRCONN channel with a SHARECNV
value less than 10 for example:

� If the clients are performing persistent workload (or a mixture), they may want to run with a
lower SHARECNV setting as the single channel instance will use a single adapter task. This
adapter task will be blocked whilst any logging of the persistent message occurs, which can
then have a direct impact on the other (non-persistent) conversations in this shared channel.

� If the clients are doing a high-volume of workload - A single channel can only �ow a certain
amount of data over it and this is similar to the total amount of data that can be �owed
over a channel with multiple shared conversation. So if the customer was driving 50MB
/ second through a SVRCONN and moved to a SHARECNV(10) channel, they would not
get 500MB/second through that shared channel. As a result they may want to lower the
SHARECNV attribute.

122

Performance / Scalability

Channel start/stop rates and costs

The rate and CPU cost at which channels can be started and stopped varies with the number of
channels represented in SYSTEM.CHANNEL.SYNCQ.

A channel is represented in SYSTEM.CHANNEL.SYNCQ if it has ever been started. It will remain
represented until its de�nition is deleted. For this reason we recommend that redundant channel
de�nitions be deleted.

While many users do not start and stop channels with any great frequency, there may still be
signi�cant sender channel restart activity after a channel initiator failure.

The following table demonstrates the e�ect of the number of channels represented in SYSTEM.CHANNEL.SYNCQ
on a WebSphere MQ V7.1.0 Queue Manager.

Channel pairs
in .SYNCQ

Sender Channel START Sender Channel STOP

Channels per
second

2817-705 CPU
millisecs per
START

Channels per
second

2817-705 CPU
millisecs per

STOP

1,000 268 1.3 502 1.3

2,000 228 1.65 288 1.68

4,000 176 2.14 285 2.29

NOTE: A channel pair is one CHLTYPE(SDR) and one CHLTYPE(RCVR).

SSL channel start costs

Whenever an SSL-enabled channel pair is started a cryptographic handshake is performed which
establishes the authenticity of the channel partners and dynamically generates a secret cryptographic
encryption key. This cryptographic handshake increases both the CPU consumption and the elapsed
time for the channel start.

On our 2817-705 system we have found the additional SSL costs to be largely independent of the SSL
cipherspec used. With 1000 channel pairs in SYSTEM.CHANNEL.SYNCQ, the CPU consumption
was measured to be 5.6 CPU milliseconds per sender channel start. The channel start rate was 89
channels per second.

The use of the optional Crypto Express3 Coprocessor reduces the CPU costs to approximately 2.4
CPU milliseconds per sender channel start, but has no e�ect on the channel start rate. The average
execution time on the Crypto Express3 Coprocessor for channel start was 0.96 milliseconds.

123

Factors a�ecting channel throughput and cost

� Message persistence, especially for NPMSPEED(FAST) channels

� Message size

� Achieved batch size is very signi�cant for both throughput and cost

◦ And is often much smaller than the de�ned BATCHSZ channel parameter

◦ You need to understand what batch size your con�guration will typically achieve before
using the following charts to estimate possible throughput and CPU cost.

◦ See �Determine Achieved Batch Size using MONCHL attribute� which discusses how the
MONCHL attribute can be used in conjunction with �DISPLAY CHSTATUS(channelName)

XBATCHSZ� to determine the size of the batches achieved over the running channel.

� With a pre-loaded transmission queue you can probably achieve a batch size equal to the
BATCHSZ parameter setting.

� Otherwise you can probably only achieve an average batch size < 2 with most batches consisting
of just 1 message, unless you can take advantage of the BATCHINT parameter.

� Message throughput is highly dependent on the con�guration used:

◦ Speed and utilisation of the network

◦ Response time of the IBM MQ log devices

◦ CPU speeds, at both ends

◦ Whether messages on the transmission queue have to be retrieved from page set

� For heavy persistent workloads we recommend CHIADAPS(30) for systems with up to 4 pro-
cessors and then increase CHIADAPS by 8 for each additional processor up to a maximum of
CHIADAPS(120). We have seen no signi�cant disadvantage in having CHIADAPS(120) where
this is more adapter TCBs than necessary.

124

SSL and TLS

The use of SSL and TLS encryption increases the CPU cost of transmitting messages at both the
sender and receiving end of the the channel. The increased cost varies depending upon a number of
factors and these costs are discussed in the following section.

When do you pay for encryption?

SSL encryption costs are incurred in the channel initiator address space at several points:

� Channel Start

� Re-negotiate secret key

� Data encryption

The cost of SSL and TLS encryption can be reduced by varying the frequency of the channel start
and amount of data that �ows between secret key negotiations and to a certain extent by the level
of data encryption but these costs should be considered against the importance of the integrity of
the data �owing over the channels.

How can I reduce the cost?

� Change re-negotiation frequency.
By increasing the re-negotiation frequency, the keys will be changed less often, however this
means that more data will �ow using the same key which in turn can give potentially more
opportunity to crack the secret key.

� Encryption level via CipherSpec
Not all cipher speci�cations cost the same! Is it really necessary to use a high level of encryption
with low-value data? If not, then a lower level of encryption may be appropriate.

� Channel start/stop versus long running channels
At channel start, the channels have to perform a handshake which includes a negotiation of
secret key. If the channel is short lived and only sends a small amount of data before stopping,
the secret key negotiation may be more frequent than desired.

� Cost versus data security
It should be determined by the company or companies using the channels whether data security
is more important than the cost of encrypting the data.

� O�oading work onto Crypto Express cards

◦ The use of System SSL by IBM MQ for z/OS means that only secret key negotiations
can be o�oaded onto cryptographic coprocessor or accelerators.

◦ The data encryption and hashing is not eligible for o�oading. Where possible4, this
is performed by CPACF's (Central Processor Assist Cryptographic Function), which on
zEnterprise EC12 there is 1 for each core and earlier hardware such as zEnterprise 196
shared 1 CPACF between 2 cores. Data encryption and hashing will see additional CPU
usage in the channel initiator address space.

◦ A Crypto Express-3 coprocessor can support from 1800 to 3200 operations per second
depending on the functions being executed.5

4Some cipher specs are not supported by the CPACF. See
http://pic.dhe.ibm.com/infocenter/zos/v2r1/topic/com.ibm.zos.v2r1.gska100/
gsk2aa00_Overview_of_hardware_cryptographic_features_and_System_SSL.htm

5http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100810

125

Will using cryptographic co-processors reduce cost?

The cryptographic co-processors are available for o�oading the SSL and TLS key renegotiation
which occurs at channel start or when the amount of data �owed over the channel reaches the
SSLRKEYC setting.

In our measurements using the cryptographic co-processors with an SSLRKEYC value of 1MB, it
was possible to decrease each secret key renegotiation by up to 22 CPU milliseconds depending on
message size and cipher speci�cation.

Is the secret key re-negotiation a �xed cost?

In our measurements, the cost of renegotiating the secret key was relatively static over a range of
message sizes from 2KB to 1MB.

Note: The cost in the software for negotiating the secret key is signi�cantly higher for the elliptical-
type (ECDHE pre�xed) cipher speci�cations but these are more secure.

Whilst some cipher speci�cations can perform their negotiation in software only, using the crypto-
graphic o�oad does signi�cantly reduce the cost of the negotiation. For example using TRIPLE_DES_SHA_US
costs are typically 2-3 milliseconds per negotiation but if ICSF is unavailable the cost increases to
21 milliseconds.

SHA-2 Algorithm Support for SSL Channels

APAR PM77341 applied to WebSphere MQ for z/OS version 7.1 supports the following new ci-
pherspecs, some of which require speci�c types of certi�cates and the enablement of Integrated
Cryptographic Service Facility (ICSF):

TLS_RSA_WITH_NULL_SHA256

TLS_RSA_WITH_AES_128_CBC_SHA256

TLS_RSA_WITH_AES_256_CBC_SHA256

ECDHE_ECDSA_AES_128_CBC_SHA256

126

http://www-01.ibm.com/support/docview.wss?uid=swg1PM77341

ECDHE_ECDSA_AES_256_CBC_SHA384

ECDHE_RSA_AES_128_CBC_SHA256

ECDHE_RSA_AES_256_CBC_SHA384

SSL and TLS Costs

In the previous section, the cost of secret key negotiation was discussed. In order to highlight the
costs of data encryption and hashing which is not eligible for o�oad to the cryptographic coprocessor,
the measurements in this section have been run with the SSLRKEYC queue manager attribute set
to 0, so that secret key negotiations are not included in the cost.

The data shown in the following charts is from a series of tests run as described:

� 2 LPARs running z/OS v1r13 on zEnterprise 196, each con�gured as 2817-705.

� Each LPAR has 1 queue manager running WebSphere MQ for z/OS version 7.1.0 with PTFs
as of 1st February 2013

� The following service applied:

◦ HCR77A0 � Cryptographic support for z/OS v1r12-v1r13

◦ OA39422 � (System SSL) TLS V1.2 Support

◦ PM77341 � (MQ) SHA-2 Algorithm support for SSL Channels

� Each queue manager has 5 in-bound and 5 out-bound sender-receiver channels and the SSL-
CIPH attribute is varied between tests for the appropriate cipherspec.

� All channels are started before the measurement runs and remain connected for the lifetime of
the test.

� SSLRKEYC is set to 0.

� SSLTASKS is set to 50.

� Messages are non-persistent, to remove logging constraints

� Messages are put in-syncpoint so that variability from �put to waiting getter� is not a factor.

� Channels are de�ned with DISCINT(0), BATCHSZ(50), NPMSPEED(FAST) and BATCHINT(1000).

� On LPAR1, a number of requester tasks will put a message to a remote queue and wait for a
response on a corresponding reply-to queue. The get will be by CORRELID. These requesters
will repeat this process until told to stop.

� On LPAR2, a number of server tasks will be in a get-with-wait on the request queue, and will
put a reply onto the reply-to-queue. The servers will continue until told to stop.

� The test initially uses 10 requesters, 4 servers per channel pair starting from 1 channel pair up
to 5 channel pairs. At this point we are seeing network limits reached.

� Costs shown are the total CPU cost for both LPARs including queue manager, channel initia-
tor, TCPIP and application costs.

127

2KB messages using encrypted channels

In these measurements, the cost is typically 10% higher on the requester side LPAR. This means
that the transaction cost shown for 1 channel with TRIPLE_DES_SHA_US is 442 microseconds,
of which 230 microseconds was on the requester and 212 was on the server.

128

16KB messages using encrypted channels

129

64KB messages using encrypted channels

130

1MB messages using encrypted channels

131

SSL costs � conclusions

The cost per transaction does vary signi�cantly depending on both the cipher speci�cation used and
the size of the message.

The previous set of charts show the achieved transactions rates and costs as the number of channels
in use increases.

As the costs for data encryption are attributed to the channel initiator, the following table shows the
average percent increase in channel initiator cost per transaction compared to a non-SSL
channel for a range of message sizes.

CipherSpec 2KB 16KB 64KB 1MB

TRIPLE_DES_SHA_US +57% +209% +252% +347%

TLS_RSA_WITH_AES_256_SHA_CBC +48% +157% +181% +242%

ECDHE_RSA_AES_256_CBC_SHA384 +45% +147% +161% +222%

According to the table, when using a channel with SSLCIPH �TLS_RSA_WITH_AES_256_SHA_CBC�,
a 16KB message transported will cost 157% more in the channel initiator address space than the
same message transported over a non-SSL channel.

In our measurements, the total cost of sending a message and receiving a 16KB message over the
channels was:

Address space
Sender side only

Non-SSL
cost in cpu
microseconds

SSL using
TLS_RSA_WITH_
AES_256_SHA_CBC
(cpu microseconds)

% Change

Queue manager 15 15 0

Channel initiator 121 311 +157%

TCPIP 16 18 +12.5%

Application 75 70 -6.6%

TOTAL 228 414 +81%

The above example shows that whilst the cost of transporting the message over the channel initiator
has increased by 157% in the channel initiator address space, the total cost has increased by 81%.
In this example, the application is performing a messaging workload and contains no business logic,
so if the application costs were 375 microseconds instead of 75, the total increase would have been
from 528 to 714, an increase of only 35%.

SSLTASKS

The number of SSLTASKS required depends primarily on the number of channel initiator dispatchers
in use. Typically once an SSL server task processes work for a particular dispatcher and all of its
channels, there will remain an a�nity until restart.

There is also some bene�t in ensuring that the number of SSLTASKS is greater than the number of
processors in the system.

How many do I need?

This will depend on the number of dispatcher tasks speci�ed in the channel initiator address space,
but typically best performance can be achieved with CHIDISPS + 1

132

Why not have too many?

When a channel starts that requires SSL, the channel initiator will choose the �rst available SSL
task for the initial handshake. For the lifetime of the channel, this same SSL task will be used.

This means that if the channels start at periods when there is no SSL work occurring, it is possible
that all of the channels will be using the same small set of SSL tasks. As a result there may be idle
SSL tasks in the channel initiator address space.

Each SSL server task uses 1.3MB of storage from the channel initiators available storage, which can
impact the number of channels able to be started.

Why not have too few?

If too few SSL server tasks are available, then channel throughput can be constrained as the channels
wait for an SSL task to become available.

SSLTASK statistics

With the introduction of Channel Initiator Accounting and Statistics in IBM MQ version 8.0.0, the
usage of the SSLTASKS can be reported. This can be used as a guide to whether there are su�cient
SSL tasks de�ned in the channel initiator.

Currently there is no simple mechanism to determine which channel is using a particular SSL task,
however the report from program MQSMF 6 as shown below, does indicate how busy the available
SSL tasks are.

If a channel using SSL encryption appears to be performing worse than previously and the SSLTASK
report indicates that the SSLTASKS in use are busier than 90%, restarting the channel may move
which dispatcher and SSLTASK is used by that channel and result in less waiting for the SSLTASK.

MVAA,VTS1,2014/12/20,05:40:27,VRM:900,

From 2014/12/20,05:39:26.341866 to 2014/12/20,05:40:27.159296 duration 60.817430

Task,Type,Requests,Busy %, CPU used, CPU %, avg CPU , avg ET

, , , , Seconds, , uSeconds, uSeconds

0,SSL , 78284, 26.4, 3.943509, 6.6, 50, 202

1,SSL , 37, 0.0, 0.000213, 0.0, 6, 6

2,...

8,SSL , 37, 0.0, 0.000210, 0.0, 6, 5

9,SSL , 367304, 27.0, 4.429724, 7.4, 12, 44

Note: In the example MQSMF report, there are 10 SSLTASKS available, of which task 0 and 9 are
in use and both of these tasks have capacity to support more channels.

SSL channel footprint

Typically SSL uses an additional 30KB for each channel but for messages larger than 32KB can be
higher.

SSL over cluster channels?

Using SSL over cluster channels should be no more expensive than SSL over non-cluster channels.

6Program MQSMF is available as part of supportPac MP1B

133

http://www-01.ibm.com/support/docview.wss?uid=swg24005907

Note: Repository information being shared will �ow over channels and will contribute to the amount
of data �owing over a channel and may cause the secret key renegotiation to occur earlier than
expected.

Similarly this repository information will be encrypted across the network and will be subject to
additional encryption and decryption costs.

SSL over shared channels?

Shared channels will update a DB2 table when their state changes. This can result in shared channels
taking longer to start than non-shared channels. No SSL-state information like SSLRKEYS is held
in DB2 so using SSL over shared channels will not a�ect the performance of the channels once the
channel is started.

Note: When using shared channels, the channel initiator will check for a certi�cate named
ibmWebSphereMQ<QSG> and then ibmWebSphereMQ<QueueManager>. This allows the user
to use a single certi�cate for their entire queue sharing group. IBM MQ version 8.0 allows these
certi�cates to be overridden by the certi�cate named in the CERTLABL channel parameter.

134

Using AT-TLS to encrypt data �owing over IBM MQ channels

Application Transparent Transport Layer Security (AT-TLS) is based on z/OS System SSL, and
transparently implements the TLS protocol (de�ned in RFC 2246) in the TCP layer of the stack.

When running channels between queue managers hosted on z/OS, AT-TLS can be used to encrypt
messages transported over MQ channels rather than relying on IBM MQ channels performing the
encryption function. The use of AT-TLS can result in reduced costs within MQ.

Who pays for AT-TLS

MQ channels with SSLCIPH con�gured will see the encryption/decryption cost associated with the
channel initiator address space.

When transporting messages using channels encrypted using AT-TLS, the cost of encryption is
charged to the callers unit of work (i.e. the channel initiator) and decryption is incurred by the
TCPIP address space as the decryption is performed by an SRB running in the TCPIP address
space.

Limitations

IBM MQ allows the user to specify di�erent SSL cipher speci�cations for each channel.

To run with di�erent cipher speci�cations using AT-TLS can involve de�ning additional rules plus
either specifying the LOCLADDR attribute on the channel to restrict the port being used or by
running with multiple listeners de�ned on the channel initiator.

IBM MQ allows the secret key negotiation to be performed when the number of bytes sent and
received within an SSL conversation exceeds the SSLRKEYC value, whereas AT-TLS allows the
renegotiation to take place after a period of time has been exceeded.

When the AT-TLS encryption is performed, the TCP socket is blocked � this can have a noticeable
e�ect on throughput rate with large messages unless dynamic right sizing is enabled on the TCPIP
stack.

Channels protected with CHLAUTH rules may not be allowed to start if the rule contains a value
for SSLPEER.

Performance comparison

The following measurements were run using a 10Gb network between 2 z/OS v1r13 LPARs each
with 5 dedicated processors on a 2817-779.

A request/reply workload between 2 queue managers was run over a pair of sender-receiver channels
using non-persistent messages.

In the measurements using channels with SSLCIPH cipher speci�cations, the SSL key negotiation
has been disabled (by setting to '0') in order to provide a direct comparison. Similarly the AT-TLS
negotiation period has been disabled.

The costs shown in the following charts are for the queue manager, channel initiator and TCPIP
address spaces only and are based on the cost observed in both LPARs.

135

Notes on preceding chart:

� The queue manager cost is not a�ected by the level of encryption nor by who performs the
encryption.

� The total cost of transporting the message is 15% less when using AT-TLS

� The channel initiator costs are 24% lower when using AT-TLS

� TCPIP costs double when using AT-TLS.

Notes on preceding chart:

� The total cost of transporting the message is 30% less when using AT-TLS

� The channel initiator costs are 45% lower when using AT-TLS

136

� TCPIP costs are double using NULL_SHA and approximately 2.5 times using
TLS_RSA_WITH_AES_256_CBC_SHA.

Notes on preceding chart:

� The total cost of transporting the message is 24% less when using AT-TLS

� The channel initiator costs are 45% lower when using AT-TLS

� TCPIP costs are double using NULL_SHA and approximately 2.5 times using
TLS_RSA_WITH_AES_256_CBC_SHA.

Notes on preceding chart:

� The total cost of transporting the message is 24% less when using AT-TLS

137

� The channel initiator costs are 50% lower when using AT-TLS

� TCPIP costs are double using NULL_SHA and approximately 2.5 times using
TLS_RSA_WITH_AES_256_CBC_SHA.

138

Costs of Moving Messages To and From MVS Images

This section considers the total CPU costs of moving messages between queue managers in separate
MVS images. A driver application attached to a queue manager in System A puts a message to a
remote queue which is de�ned on a queue manager running in System B. A server application in
System B retrieves any messages which arrive on the local queue.

No code page conversion costs are included in any �MVS to MVS� measurements. See �How much
extra does code page conversion cost on an MQGET?� for an estimate of typical MQFMT_STRING
code page conversion costs.

Notes on diagram:

� Each MVS image was a 3-CPU logical partition (LPAR) of a zEnterprise 196.

� The MVS systems were connected via a 1Gb Ethernet network.

� The driver application continually loops, putting messages to the remote queue.

� The server application continually loops, using get-with-wait to retrieve the messages.

� Neither application involves any business logic.

� The server application runs non-swappable.

� The queue is not indexed.

� All non-persistent messages were put out of syncpoint by the sender application. and got out
of syncpoint by the server application.

Measurements were made with two di�erent channel settings:

� BATCHSZ(1) with BATCHINT(0) and NPMSPEED(FAST)

� BATCHSZ(50) with BATCHINT(1000) and NPMSPEED(FAST)

The chart below show the CPU costs in both systems for non-persistent messages with a variety of
message sizes for the queue manager and channel initiator address spaces.

NOTE: In the following 2 charts, there is only 1 requester and 1 server application, but by setting
the BATCHINT to 1000 to keep the batch open for longer, the cost is signi�cantly reduced.

139

Contrast the previous chart with the following that shows using a channel with NPMSPEED(NORMAL).
With NPMSPEED(NORMAL) the e�ects of holding the batch open with BATCHINT and the cost
of channel syncpoints becomes clear.

NOTE:With NPMSPEED(NORMAL), the achieved batch size was 1, but varying the BATCHINT
to 0 made a signi�cant di�erence to the transaction rate. For example:

� With 1 requester and a BATCHINT(1000), only 1 message per second is �owing over the
sender channel.

� With NPMSPEED(NORMAL) and BATCHINT(0), the rate increased to 800 messages per
second.

140

Non-persistent messages

For BATCHSZ(1) the CPU usage is approximately:

The total (sender and receiver queue manager and channel initiator) cost:

(187 + 4.4S) CPU microseconds per message,
where S is the size of the message expressed in 1000's of bytes.

The costs are shared evenly between the sender and receiver end.
E.g. for a 10,000 byte message this is:

(187 + 4.4*10) = 231 CPU microseconds - approximately 115 at the sender end and at the
receiver end.

For BATCHSZ(50) the CPU usage is approximately:

The total (sender and receiver queue manager and channel initiator) cost:

(105 + 3.7S) CPU microseconds per message
where S is the size of the message expressed in 1000's of bytes

E.g. for a 10,000 byte message this is:

(105+3.7*10) = 138 CPU microseconds - approximately 69 CPU microseconds at the sender and
also at the receiver end.

These algorithms produce �gures which are within 10% of the measured �gure for the range shown
in the charts.

141

Persistent messages

All persistent messages were put within syncpoint by the sender application and got within syncpoint
by the server application. Measurements were made with three di�erent con�gurations all using
NPMSPEED(NORMAL):

� BATCHSZ(1)

� BATCHSZ(50) with achieved batch size of 1 to 2.

� BATCHSZ(50) with achieved batch size of 16.

The chart below show the total CPU usage in both systems for persistent messages with a variety
of message sizes.

A reduction in the CPU usage at both ends of the transaction when conditions allow a batch size
greater than 1 can be achieved. A slow rate of MQPUT with BATCHSZ(50) will see the achieved
batch rate drop to 1 and the associated cost per transaction increase to parity with BATCHSZ(1).
Reducing the number of batches results in a reduction in the number of channel synchronisations
and TCPIP transactions per message.

Note: That this reduction in CPU is dependent upon messages being put at a suitable rate. In
a more realistic situation where the achieved batch size is close to 1, the CPU usage increases, as
shown by the top line in the chart.

The lowest CPU costs are achieved when the application unit of work exactly matches the channel
BATCHSZ parameter.

For capacity planning purposes it is safest to assume BATCHSZ(1) will be used. If it is known that
a higher batch size can consistently be achieved, a higher �gure may be used.

An approximate straight line algorithm is presented here for the CPU usage with BATCHSZ(1):

142

The total (sender and receiver queue manager and channel initiator) cost:

(870 + 14S) CPU microseconds per message
where S is the size of the message expressed in 1000's of bytes

e.g. for a 10,000 byte message this is:

(870 + 14*10) = 1010 CPU microseconds � with approximately 500 at the sender end and 500 at
the receiver end.

This represents the `best choice scenario' for persistent messages where the achieved
batch size is undetermined.

This algorithm produces �gures which are within 10% of the measured �gure for the range shown
in the charts.

143

Chapter 4

System

Hardware

DASD

There are limits to persistent message rates achievable

� Because of upper bounds to the overall data rate to a IBM MQ log, see �Upper bound on
persistent message capacity - DASD log data rate�to overcome any such limit then either faster
DASD or more queue managers will be required.

� Because of upper bounds to the log I/O rate achievable by a single application instance, which
may be required where messages must be processed in strict order.

� There is a limit to the maximum number of messages through one queue, see Maximum
throughput using non-persistent messages.

Maximum request/reply throughput (DS8870)

The following chart shows the maximum throughput we could achieve with many request and reply
applications for a range of message sizes. Su�cient processors were available so they were not a
limiting factor in the throughput capacity.

Performance data from DS8000 and F20 (RAID5 con�gured) DASD is included for comparison
purposes, however the measurements are not directly comparable as they span di�erent levels of
IBM MQ and System Z hardware.

As can be seen in the following chart, the underlying disk technology can make a signi�cant di�erence
in the rate that MQ is able to log messages.

144

Upper bound on persistent message capacity - DASD log data rate

The maximum total IBM MQ system capacity for persistent messages is bounded by the maximum
data rate sustainable to the DASD subsystem where the IBM MQ logs reside. For IBM MQ with
dual logging, the maximum sustainable data rate for messages put at one message per commit
and got at one message per commit is about:

Log data set DASD type 1KB messages 5KB messages 1 MB messages

RVA-T82 2.3 MB/sec 2.8MB/sec

ESS E20 with ESCON 5.3 MB/sec 7.1 MB/sec

ESS F20 with ESCON 7.1 MB/sec 10.2 MB/sec 11.3 MB/sec

ESS F20 with FICON 7.4 MB/sec 13.0 MB/sec 15.6 MB/sec

ESS 800 10.0 MB/sec 16.5 MB/sec 24 MB/sec

DS8000 (RAID 5) 14.9 MB/sec 36.0 MB/sec 68.1 MB/sec

DS8000 (RAID 10) 15.6 MB/sec 36.1 MB/sec 68.6 MB/sec

DS8800 (RAID5) 32.1 MB/sec 62.4 MB/sec 128.7MB/sec

DS8870 (RAID 5) with 4-stripes 47.8 MB/sec 98.5 MB/sec 215 MB/sec

DS8870 (RAID 5) with 4 stripes
plus zHPF enabled

64.7 MB/sec 136.4 MB/sec 337.5 MB/sec

These are the peak rates on our system con�guration. It is usually prudent to plan not to exceed
50% of the rates attainable on the target system particularly where message response time and not
just overall message throughput is important.

What is the e�ect of dual versus single logging on throughput?

On our system use of single logging rather than dual logging increased throughput by about 5%. On
a system with signi�cant DASD constraint use of single logging might enable a much more signi�cant
throughput increase. Use of single logging would mean there is a single point of failure possibility
in your system.

145

Will striped logs improve performance?

Switching to active logs which use VSAM striping can lead to improved throughput in situations
where performance is being constrained by the log data rate. The bene�t obtained from using VSAM
striping varies according to the amount of data being written to the log on each write. For example,
if the log dataset has been set up with 4 stripes, a log write carrying a small amount of data such
that only one stripe is accessed will gain no bene�t at all, while a log write carrying su�cient data
to access all 4 stripes will gain the maximum bene�t.

The increased logging rate achieved by using striped active logs will result in the log �lling more
quickly. Prior to IBMMQ version 8.0.0 however, the time taken to archive a log dataset is unchanged.
This is because archive log datasets must not be striped as the BDAM backwards reads required
during recovery are not supported on striped datasets. Thus the possibility of needing to reuse a
log dataset before its previous archive has completed is increased. It may therefore be necessary
to increase the number or size of active log datasets when striping is used. If you attempt to
sustain these maximum rates to striped logs for long enough then eventually you will
�ll all your active logs with consequent unacceptable performance.

Version 8.0.0 saw the changing of archive datasets from BDAM to QSAM, which allows the allocation
to exceed 65,535 tracks and the striping of the archive logs. Striping of the archive logs may result
in an improved rate of o�oad. We did see an increase in cost in the queue manager address space
when using archive datasets larger than 65,535 tracks when the dataset is using extended format.

In summary, striped logs are most likely to be of use where there is a reasonably predictable amount
of large messages in a particular time period such that the total amount of data to be logged does
not cause the active logs to be �lled.

Will striped logs a�ect the time taken to restart after a failure?

The recovery process will need to read active logs and this is signi�cantly quicker with striped
datasets, particularly for the backward recovery phase. It may also involve reading archived log
datasets that cannot be striped. Thus any use of archive log datasets during recovery will not
be quicker. It is possible to minimise or even eliminate the possibility of an archive log being
required during recovery. This requires pageset and if using shared queue, CF structure backup, at
appropriate intervals and appropriate reaction to any CSQJ160I messages concerning long running
units of recovery with a STARTRBA no longer in active logs. With version 6, implementation of
log shunting, archive log datasets will not be used for recovery unless pageset or CF structure media
recovery is required.

Bene�ts of using zHPF with IBM MQ

What is zHPF?

High Performance FICON for System z (zHPF) is a data transfer protocol that is optionally employed
for accessing data from IBMDS8000 storage and other subsystems and was made available for System
z in October 2008.

zHPF may help reduce the infrastructure costs for System z I/O by e�ciently utilizing I/O resources
so that fewer CHPIDs, �bers, switch ports and control units are required.

The following link gives a more detailed overview of what is zHPF and how it can bene�t a z10 (and
subsequent System Z hardware) user:

� http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102468

146

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102468

When can it help with IBM MQ work?

zHPF is concerned with I/O to DASD, so queue managers that are used for non-persistent workload
may see little bene�t.

Similarly, where the LPAR is running with low volume I/O, it is unlikely that using zHPF will give
much bene�t.

Where multiple queue managers exist on the same LPAR and are processing high volume persistent
workload, whether local or shared queue, zHPF may be able to provide an increase in the throughput
rate.

� Where throughput was restricted by the number of I/O channels available and then zHPF was
enabled, we saw a doubling of throughput.

� Where throughput was restricted by the DASD logging rate, enabling zHPF saw a 17% increase
in transaction rate.

� With larger messages (1MB and larger) using zHPF and striped logs, throughput was increased
by 55%.

For a more detailed summary of the investigation into the bene�ts of zHPF with regards to IBM
MQ, please refer to:

� http://www-01.ibm.com/support/docview.wss?uid=swg27015698

147

http://www-01.ibm.com/support/docview.wss?uid=swg27015698

Network

The measurements run in this document have been typically run on our dedicated performance
network which is rated at 1Gb.

When we moved onto a dedicated 10Gb performance network, we saw a number of changes:

� Measurements were more consistent.

� Response times for measurements with low numbers of channels were slightly faster than when
run on the slower network.

� CPU became the constraint point rather than network.

� Dedicated CHPIDs on LPARs that perform high volume network tra�c gave signi�cantly
better performance than shared CHPIDs � even when RMF shows CHPID is not at capacity.

By moving onto a more modern network with greater capacity we haven't greatly improved a single
channels peak transmission rate, but we have been able to increase the number of channels driving
data to exploit the additional band-width.

Our network is high-bandwidth low-latency which means we can expect good response times for
request/reply type workloads.

It is important to consider what sort of network you have and tune your channels accordingly.

For example, a high-bandwidth high-latency network would not be ideal for a request-reply type
workload. It would be more suited to sending large batches of data before waiting for acknowl-
edgment, perhaps looking at batch size and batch intervals to keep the batch open for longer. In
addition, if work can be spread across multiple channels to exploit the high-bandwidth this may
help.

On a low-bandwidth high-latency network, it might be appropriate to consider message compression,
but there will be a trade-o� with increased CPU costs which vary with compression algorithm. The
usage of zEDC with channel compression type ZLIBFAST may reduce the compression costs.

148

IBMMQ and zEnterprise Data Compression (zEDC) with SMF

IBM MQ allows customers to enable accounting data to be captured and written to the MVS System
Management Facility (SMF).

We have found that with short-lived transactions, such as CICS transactions, that the transaction
rate can exceed the rate at which IBM MQ can write data to SMF. As a result, some accounting
data can be lost � and this loss is reported via the MQ queue manager job log.

In z/OS v1.9, SMF allowed data to be written to log streams rather than data sets and this gave an
immediate improvement to the rate at which IBM MQ can write accounting data to SMF.

Note: When the transaction rate exceeds the rate at which IBM MQ can write to logstreams,
warning messages are only written to the system log.

Using z/OS 2.1 and the zEDC feature, log streams can be compressed using hardware compression
which can signi�cantly increase the rate at which MQ can sustain accounting data being written to
SMF.

The diagram above shows that moving from SMF data sets to log streams resulted in a doubling of
the transaction rate without loss of accounting data.

Using hardware compression on SMF log streams in conjunction with IBM MQ's accounting trace
allowed a further 3.8 times higher throughput through a single queue manager to be recorded for
accounting purposes.

149

Chapter 5

How It Works

Tuning bu�er pools

This chapter gives an outline of how bu�er pools are used and what the statistics mean.

Introduction to the bu�er manager and data manager

This describes how bu�er pools are used. It will help you determine how to tune your bu�er pools.

The data manager is responsible for the layout of messages within one or more 4KB pages, and for
managing which pages are used on a page set. A message always starts on a new page and a long
message can span many pages. A page can contain persistent messages or non-persistent messages,
but not both.

The bu�er manager is responsible for reading and writing these pages to the page sets, and for
managing copies of these pages in memory. The bu�er manager makes no distinction between
persistent and non-persistent messages, so both persistent and non persistent messages can be written
to the page set.

A bu�er pool page is written to a page set at the following times:

� At checkpoint, if it contains any change since it was last written and this is the second check-
point to have occurred since the �rst such change.

� Whenever the threshold of less than 15% free bu�er pool pages is reached. Pages are then
written asynchronously by an internal task. This is referred to as the "15% free threshold".

� When an application has �nished with a page and there are less than 5% free pages in the
bu�er pool.

� At shutdown, if it contains any change since it was last written.

� From V5.3 bu�er pool pages which contain non-persistent messages are usually not written to
a page set at checkpoint or shutdown.

A page is changed both when a message is put and when it is retrieved, because the MQGET
logically deletes the message unless it is a browse.

Pages are usually written by the Deferred Write Process (DWP, although it is sometimes called
DWT) asynchronously from user application activity. The DWP writes pages from the bu�er pool
in least recently used order (that is, from the oldest changed page).

150

A page is read from a page set data set into the bu�er pool at the following times:

� When a message that is not already in the bu�er pool is required.

� During read ahead, which is when an internal task reads a few messages into the bu�er pool
before an application needs them. This happens if the current MQGET does I/O to read a
page and was not using MSGID or CORRELID.

Read ahead is most e�ective when you have a few applications getting short persistent messages
with only a few messages per unit of work, because the read ahead is more likely to complete while
the application waits for log I/O.

There is no direct user control on read ahead. However, you might be able to improve throughput
and response time by using multiple queues on separate page set data sets spread across multiple
volumes to reduce I/O contention.

Di�erences in performance due to the size of a bu�er pool depend on the amount of I/O activity
between a bu�er pool and the associated page set data sets. (Real storage usage, and hence paging,
might also be a factor but this is too dependent on individual system size and usage to be usefully
discussed here.) The unit of I/O is a page rather than a message.

The e�ect of message lifespan

This section discusses some message usage scenarios.

� For messages that are used soon after they are created (that is, typically within a minute, but
possibly up to 2 checkpoint intervals) and a bu�er pool that is large enough to contain the
high water mark number of messages, plus 15% free space:

◦ Bu�er pool pages containing such messages are likely to be re-used many times, meaning
that relatively few pages need to be written at checkpoint and almost no pages need to
be read.

◦ Both CPU cost and elapsed time are minimized.

� For messages that are stored for later batch processing:

◦ All pages containing such messages are likely to be written to the page set data set
because they become more than 2 checkpoints old, regardless of bu�er pool size. All
these pages need to be written again after the messages are used by an MQGET call,
for example at the second checkpoint after the MQGET call (because the pages on the
page set still contain the messages and must eventually re�ect the fact that the messages
are now �agged as deleted). However, if pages are reused for new messages before being
written to the page set, one write operation will cover the MQGET of the old messages
and the MQPUT of the new.

◦ MQGET operations can still be satis�ed directly from the bu�er pool, provided that the
pool has not reached the 15% free threshold since the required message was MQPUT.

� In either case, if the 15% free threshold is crossed, the DWP is started. This uses the least
recently used algorithm for bu�er pool pages to write the oldest changed bu�er pool pages to
the page set and make the bu�er pool pages available for other messages. This means that
any messages written to a page set will have to be read back from the page set if the bu�er
pool page is reused.

◦ This is the least e�cient bu�er pool usage state. Elapsed time and CPU cost will be
increased.
In many cases (for example, a single queue that is much larger than the bu�er pool and is

151

accessed in �rst in �rst out sequence) most messages will have to be read from the page
set.

◦ A busy bu�er pool, once in this state, is likely to remain so.
Non-persistent message processing does not require IBM MQ log I/O and thus page set
read I/Os might have greater impact on elapsed time.

A bu�er pool that is large enough to keep 15% free bu�ers will avoid any reads from the page set
(except after a queue manager restart).

Understanding bu�er pool statistics

A page in a bu�er pool is in one of �ve states

Unused

This is the initial state of all pages within the bu�er pool.

Changed and in use

The content of the page in the bu�er pool is di�erent from the matching page on the page set.
Eventually the queue manager will write the pages back to the page set. The page is currently in
use by an application, for example a message is being placed within it. When a large message is
being put, many pages might be updated, but usually only one page will be in use at a time.

Changed and not in use

The page is the same as "Changed and in use" except that the page is not in use by an application.

Unchanged and in use

The content of the page in the bu�er pool is the same as the matching page on the page set. The
page is in use, for example, an application is browsing a message on the page.

Unchanged and not in use

The content of the page in the bu�er pool is the same as the matching page on the page set, and
the page is not in use by an application. If a bu�er for a di�erent page is required, the bu�er page
can be reassigned without its contents being written to disk.

� The term stealable bu�ers refers to those bu�ers that are unused or unchanged and not in use.
The number of stealable bu�ers available as a percentage of the total number of bu�ers a�ects
the behavior of the bu�er pool.

� A page can only be written to disk if it is 'changed` and not 'in use`. In some circumstances,
pages that are 'changed` and 'in use` are written to disk synchronously after the application
has �nished with the page - which results in the page becoming 'changed` and not 'in use` only
when the I/O completes.

� When a changed page is written to disk (so the version on disk is the same as that in the bu�er
pool) the page becomes unchanged and not in use.

The data manager issues requests for pages to the bu�er manager. If the contents of a page are
required, a request to get a page is issued:

� The bu�er manager checks to see if the page is already in the bu�erpool; if it is, the page
status is set to in use and the address of the page is returned.

� If the page is not in the bu�er pool, a stealable bu�er is located, the page status is set to in
use, the page is read in from the page set, and the address of the page is returned.

152

� If an update is going to be made to the page, the data manager calls the bu�er manager with
a SET WRITE request. The page is then �agged as changed and in use.

� When an application has �nished with the page it releases it and, if no other application is
using the page, the status is changed to not in use.

If the contents of the page are not required (for example, the page is about to be overwritten with
a new message) a request to get a new page is issued. The processing is the same as above except,
if the requested page is not in the bu�er pool, a stealable bu�er is located but the page is not read
in from the page set.

153

De�nition of bu�er pool statistics

This section describes the bu�er pool statistics. The names given are as described in the assembler
macro thlqual.SCSQMACS(CSQDQPST) and is discussed in more detail in the InfoCenter section
'Bu�er manager data records`. The names shown in brackets are those used by the program MQ1150
which can print out SMF statistics. (MQ1150 is available as part of performance report �MP1B�).

QPSTNBUF(#bu�)
The number of pages allocated to the bu�er pool in the CSQINP1 data
set at MQSeries startup.

QPSTCBSL(#low) The lowest number of stealable bu�ers during the SMF interval.

QPSTCBS(#now) The number of stealable bu�ers at the time the SMF record was created.

QPSTGETP(getp) The number of requests to get a page that were issued.

QPSTGETN(getn) The number of requests to get a new page that were issued.

QPSTSTW(STW) The number of SET WRITE requests that were issued.

QPSTRIO(RIO) The number of pages that were read from the page set.

If the percentage of stealable bu�ers falls below 15% or the percentage of changed bu�ers is greater
than 85%,the DWP is started. This task takes changed pages and writes them to the page sets, thus
making the pages stealable. The task stops when there are at least 25% stealable pages available in
the bu�er pool.

When the status of a changed page goes from in use to not in use, and the percentage of stealable
pages falls below 5% or changed pages is greater than 95%, the page is written to the page set
synchronously. It becomes unchanged and not in use, and so the number of stealable bu�ers is
increased.

When a checkpoint occurs, all pages that were �rst changed at least two checkpoints ago are written
to disk, and then �agged as stealable. These pages are written to reduce restart time in the event
of the queue manager terminating unexpectedly.

If a changed page was in use during checkpoint processing or when the DWT ran, but should have
been written out, the page is written out to disk synchronously when the page changes from in use
to not in use.

QPSTDWT(DWT) The number of times the DWP was started.

QPSTTPW(TPW) The total number of pages written to page sets.

QPSTWIO(WIO) The number of write request.

QPSTIMW(IMW)
The number of synchronous write requests. (There is some internal
processing that periodically causes a few pages to be written out syn-
chronously.)

QPSTDMC(DMC)
The number of times pages were written synchronously to disk because
the percentage of stealable bu�ers was less than 5% or changed pages
was greater than 95%.

When the data manager requests a page that is not in the bu�er pool, a stealable page has to be
used.

QPSTSTL(STL)
The number of times a page was not found in the bu�er pool and a
stealable page was used.

QPSTSOS(SOS)
The number of times that a stealable page was needed and there were
no stealable pages available (a short on storage condition).

QPSTSTLA(STLA) The number of times there was contention when getting a stealable page.

154

http://www-01.ibm.com/support/docview.wss?uid=swg24005907

Interpretation of MQ statistics

1. If QPSTSOS, QPSTSTLA, or QPSTDMC are greater than zero you should increase the size
of the bu�er pool or reallocate the page sets to di�erent bu�er pools.

2. For bu�er pool 0 and bu�er pools that contain short lived messages:

� QPSTDWT should be zero and so the percentage QPSTCBSL/QPSTNBUF should be
greater than 15%.

� QPSTTPW might be greater than 0 due to checkpointing activity.

� QPSTRIO should be 0, unless messages are being read from a page set after the queue
manager is restarted.

� A value of QPSTSTL greater than 0 indicates that pages are being used that haven't
been used before. This could be caused by an increased message rate, messages not being
processed as fast as they were (so there is a build up of messages), or larger messages
being used.

� You should plan to have enough bu�ers to handle your peak message rate.

3. For bu�er pools with long lived messages, where there are more messages than will �t into the
bu�er pool:

� (QPSTRIO+QPSTWIO) Statistics interval is the I/O rate to page sets. If this value is
high, you should consider using multiple page sets on di�erent volumes to allow I/O to
be done in parallel.

� Over the period of time that the messages are processed (for example, if messages are
written to a queue during the day and processed overnight) the number of read I/Os
(QPSTRIO) should be approximately the total number of pages written (QPSTTPW).
This shows that there is one disk read for every page written.
If the QPSTRIO is much larger than QPSTTPW, this shows that pages are being read
in multiple times. This could be caused by application using MQGET by MSGID or
CORRELID, or browsing messages on the queue using get next. The following actions
might relieve this problem

◦ Increase the size of the bu�er pool so that there are enough pages to hold the queue,
in addition to any changed pages.

◦ Move page sets to a di�erent bu�er pool to reduce contention between messages from
di�erent applications.

◦ Use the INDXTYPE queue attribute which allows a queue to be indexed by MSGID
or CORRELID and eliminates the need for a sequential scan of the queue.

◦ Change the design of the application to eliminate the use of MQGET with MSGID
or CORRELID, or the get next with browse option. Applications using long lived
messages typically process the �rst available message and do not use MQGET with
MSGID or CORRELID, and they might browse only the �rst available message.

155

Example of a badly tuned bu�er pool

This example was taken from a production system. Bu�er pool 0 contains only page set 0.

The system was being monitored using the ISPF interface on TSO to display information about
queues and channels. The initial symptom was that throughput to the distributed MQ systems
dropped by a factor of 100.

Table: Bu�er pool statistics for intervals

Field Previous interval Problem interval

QPSTNBUF 1050 1050

QPSTCBSL 300 154

QPSTCBS 308 225

QPSTGETP 1800000 23000000

QPSTGETN 16000 13000

QPSTRIO 0 310000

QPSTSTW 508000 432000

QPSTTPW 940 1938

QPSTWIO 59 107

QPSTIMW 29 47

QPSTDWT 0 11

QPSTDMC 0 0

QPSTSTL 84 732000

QPSTSTLA 0 421000

QPSTSOS 0 0

Observations on the problem interval

1. The value for QPSTSTLA (contention when getting a stealable bu�er) is 421000. This is
extremely high.

2. More than half the request for a stealable bu�er had contention
(QPSTSTLA/QPSTSTL) = 421000/732000.

3. The number of pages read (QPSTRIO) is very high. 310,000 I/O in 30 minutes is approximately
172 I/O per second (about the maximum capacity of the device).

4. QPSTDMC is zero so the bu�er pool was not critically short of bu�ers.

5. QPSTDWT is greater than zero, QPSTCBSL/QPSTNBUF=154/1050 is 14.6%, QPSTTPW=1938,
these �gures are not unusual.

6. QPSTGETN is lower than the previous interval, but QPSTGETP is signi�cantly higher. Also
QPSTSTW is lower, indicating less updates. This implies that there were more requests for
MQGET with browse or by MSGID or CORRELID.

156

What was happening

1. In the mover, information on channels is held in messages on the SYSTEM.CHANNEL.SYNC.QUEUE.
At the end of a batch, the messages relating to the channel are retrieved from the queue. The
MQGET request uses MSGID which is the index type on the queue in the sample.

2. The SYSTEM.CHANNEL.SYNC.QUEUE was in page set 0 and in bu�er pool 0.

3. Normally there were su�cient stealable pages for the whole of the SYSTEM.CHANNEL.SYNC.QUEUE
to be kept in the bu�er pool.

4. The model queue de�nitions for command requests and responses pointed to page set 0.

5. For some reason (perhaps the ISPF operator asked for all information about all queues, which
produced many response messages) bu�er pool 0 �lled up.

6. DWT processing moved the older pages out to disk and made the pages stealable.

7. When a channel reached the end of a batch, it had to read pages for the channel from the
page set looking for a particular message. Because there were insu�cient stealable bu�ers to
hold the whole of the SYSTEM.CHANNEL.SYNC.QUEUE in the bu�er pool, stealable pages
were reused and so, for example, the bu�er that held the �rst page of the queue was reused
and was replaced with the 100th page of the queue.

8. When the next channel reached the end of a batch, it had to read the �rst page of SYS-
TEM.CHANNEL.SYNC.QUEUE from disk and re-use a stealable bu�er. The stealable bu�ers
were then "thrashing".

9. In time, the problem would gradually have corrected itself as pages on the SYSTEM.CHANNEL.SYNC.QUEUE
became changed when messages were put to and retrieved from the queue. However the ISPF
panels were used to display information about the system, and pages were being written out
to disk again, and the whole cycle repeated itself.

Actions taken to �x the problem

1. The SYSTEM.COMMAND.REPLY.MODEL queue was altered to use a storage class on a
di�erent page set, and so in a di�erent bu�er pool.

2. The size of bu�er pool 0 was doubled. This was not strictly necessary but it allowed room for
any unexpected expansion.

157

Log manager

The log manager is responsible for writing recovery information to the log data sets. This information
is used to recover in the event of a failure or a request to roll back recoverable changes. Recoverable
resources includes persistent messages and MQ objects. Non-persistent messages are not recoverable
and are not handled by the log manager; they are lost at system restart.

This section discusses only recoverable resources.

The log is conceptually a very long bu�er. In practice the log is implemented using virtual storage
and DASD. The position of information in this bu�er is de�ned by the Relative Byte Address (RBA)
from the start of the bu�er.

Description of log manager concepts and terms

This section describes the concepts and terms used in this section. They are described more fully in
the IBM MQ for z/OS Concepts section of the IBM Knowledge Center.

� Each log bu�er is 4096 bytes long and resides in virtual storage.

� The number of log bu�ers is determined from the OUTBUFF keyword of the CSQ6LOGP
macro.

� When the log bu�ers �ll, or an application issues a commit, the bu�ers are moved from virtual
storage to log data sets, called the active log data sets. When the log records have been
written, the log bu�ers can be reused.

� There are at least two active log data sets, which are used cyclically.

� Dual logging describes the situation where the log bu�ers are written to two log data sets. In
the event of the loss of one data set, the other data set can be used. This facility is enabled
with the TWOACTV keyword of the CSQ6LOGP macro.

� Single logging is when only one ring of active data sets are used.

� When an active log data set �lls up, an archive log data set is allocated and the active log is
copied to it. When the copying has completed, the active log data set can then be reused.

� A data set called the bootstrap data set (BSDS) records which RBA range is on which active
or archive log. At system restart, the BSDS is used to identify which log data set to use �rst.

� You can have two copies of the BSDS data set, so in the event of the loss of one BSDS, the
other can be used.

� When an active log is archived, the BSDS data sets are also archived.

Other terms used in this description

� The current log bu�er is the log bu�er that is being �lled. When this bu�er �lls up, the next
bu�er is used and becomes the current log bu�er.

� The logger is a task, running within the queue manager, that handles the I/O to log data sets.

� A log check request occurs while work is being committed. If the data up to the RBA has
not been written out to disk, a request is made to the logger passing the RBA value, and the
requester is suspended. The logger writes the data up to the RBA out to disk and resumes
any tasks waiting for the logger. When the log check request completes, the data has been
copied to disk and it can be used in the event of a failure. A log check is issued when:

◦ A commit is issued.

158

◦ A persistent message is put or got out of syncpoint.

◦ An MQ object, such as a local queue, is de�ned, deleted or altered.

Illustration of logging

The following section gives a simpli�ed view of the data that is logged when an application gets a
persistent message and issues a commit.

When a message is got, a �ag is set to indicate that the message is no longer available. The change
to the �ag and information to identify the message within the page, along with information to
identify the unit of work, are written to the log bu�ers. During the commit, "end of unit of work"
information is written to disk and a log check request is issued with an RBA of the highest value
used by the application.

When does a write to the log data set occur?

Log bu�ers are written to disk at the following times:

� When a log check request is issued. When the application is running under a syncpoint
coordinator (for example, CICS Transaction Server) and has issued update requests to multiple
resource managers (such as MQ requests) and recoverable CICS resources, the sync level
2 protocol is used at commit time. This causes two MQ log check requests, one for the
PREPARE, and the other for the COMMIT verbs.

� If the number of �lled log bu�ers is greater than or equal to the value of WRTHRSH speci�ed
in the CSQ6LOGP macro, a request is made to the logger to write out up to the RBA of the
previous page.

� When all of the log bu�ers are in use and there are none free.

� When the system shuts down.

The logger writes up to 128 log bu�ers at a time to the log data sets, so 129 log bu�ers require at
least two I/O requests, but the bu�ers might be written out when other applications are issuing log
check requests.

How data is written to the active log data sets

The current log bu�er is the bu�er that is currently being �lled with data. When this bu�er �lls
up, the next bu�er is used and becomes the current log bu�er.

Single logging

If the log check request speci�es an RBA that is not in the current bu�er, the logger writes up to
and including the page containing the speci�ed RBA.

If the log check request speci�es an RBA that is in the current bu�er, the logger writes any log
bu�ers up to, but not including, the current bu�er, and then writes the current bu�er up to the
requested RBA (a partial page) with another I/O.

159

Dual logging

If the log check request speci�es an RBA that is not in the current log bu�er, the I/Os are performed
on each log data set in parallel.

If the check request speci�es an RBA in the current bu�er:

� The logger writes any log bu�ers up to, but not including, the current bu�er. Any I/O to the
two data sets is performed in parallel.

� It writes the current log bu�er to each log data set. The �rst time the current bu�er is written
to the log data sets, the I/O is performed in parallel. Any rewrite of the bu�er writes to each
log data set in series. This happens when a log check speci�es an RBA in the same log bu�er,
or the log bu�er is full and there is a new current log bu�er. This is to maintain data integrity
in case the update of the current log bu�er on disk fails.

Rule of thumb In e�ect, for a log check request with dual logging, the elapsed time for the write
of the current page to the log data sets is the time required for two I/Os in series; all other log writes
take the time for one log I/O.

Interpretation of key log manager statistics

Consider an application that gets two messages and issues a commit.

When a message is retrieved, a �ag is set to indicate that the message is no longer available. The
change to the �ag and information to identify the message within the page, along with information
to identify the unit of work, are written to the log bu�ers. The same happens for the second message.
During the commit, "end of unit of work" information is written to disk and a log check request is
issued with an RBA of the highest value used by the application. data records`. If this is the only
work running in the queue manager, the three log requests are likely to �t in one log bu�er. The
log manager statistics (described in the IBM Knowledge Center section 'Log manager system data
records) would show the following:

QJSTWRNW Number of log writes with no wait 3

QJSTBFFL Number of log pages used 1

QJSTBFWR Number of calls to logging task 1

QJSTLOGW Number of I/O to each log data set 1

In reality, more data than just one �ag is logged and there might be more than one I/O involved.
This is explained below.

Detailed example of when data is written to log data sets

Consider two applications, each putting a persistent message and issuing a commit. Assume that:

� Each message needs 16 log bu�ers to hold all of the data

� The WRTHRSH value in CSQ6LOGP is 20

� Dual logging is used

The following �gure shows the log bu�ers used:

Message 1 Message 2 Commit 1 Commit 2

160

B1 B2 ... B15 B16 B17 B18 ... B31 B32 B33 B34

Where:

� B1...B16 are the 16 log bu�ers for message 1

� B17...B32 are the 16 log bu�ers for message 2

� B33 is the log bu�er for the commit of the �rst application

� B34 is the log bu�er for the commit of the second application. In reality, each log bu�er
usually contains information from di�erent applications, so an individual log bu�er might
contain information from message 1 and message 2.

If the interval between each MQPUT and the commit is relatively long compared to the time taken
to do a disk I/O (for example, more than 20 milliseconds), the following happens:

1. The �rst message is put, bu�ers B1-B16 are �lled.

2. When the second message is being put, and bu�er B21 is about to be �lled, because the
number of full log bu�ers is greater than the value of WRTHRSH in CSQ6LOGP, this signals
the logger to write out pages up to (but not including) the current bu�er. This means that
bu�ers B1-B20 are written out, bu�ers B1-15 in one I/O, and bu�ers B16-B20 in a second
I/O.

3. When bu�er B22 is being �lled, the number of full log bu�ers is greater than WRTHRSH so
a request is made to the logger, passing the RBA of page B21. Similarly, when writing B23 a
request is made to the logger to write out bu�er B22.

4. When the I/O to bu�ers B1-B15 has completed, these bu�ers are available for reuse, and so
the number of full bu�ers falls below the value in WRTHRSH and no more requests are made
to the logger.

5. When bu�er B23 is being �lled, the number of full log bu�ers is not greater than WRTHRSH,
so a request is not made to the logger.

6. When the logger has �nished processing the requests for bu�ers B1-15 and B16-20, it checks
the work on its input queue. It takes the highest RBA found and writes up to that page to
the data sets (so it would write out pages B21-B22). In practice, all of the bu�ers B23-B32
would be �lled while the I/O of bu�ers B1-B15 is happening.

7. When commit 1 is issued, a log check is issued and bu�ers B23-B32 are written out in one I/O
and bu�er B33 (the current bu�er) written out in a second I/O. The I/O for bu�ers B21-B32
is performed in parallel, and because this is the �rst time B33 has been written, the I/O is
performed in parallel. The time taken for the commit is at least the time to perform two I/Os.

8. When commit 2 is issued, bu�er B33 is rewritten, so the I/O is performed in series. Bu�er
B34 (the current bu�er) is written out and the I/O to the two logs is performed in parallel.
This commit request takes at least the time to do three I/O requests. When B34 is rewritten,
the I/O is performed in series.

If the interval between the MQPUTs and the commits is very short compared to a disk I/O (for
example less than 5 milliseconds), the following happens:

1. As before, when the second message is being put, and bu�er B21 is about to be �lled, because
the number of full log bu�ers is greater than the value of WRTHRSH in CSQ6LOGP this
signals the logger to write out pages up to (but not including) the current bu�er. Bu�ers
B1-B20 are written out, bu�ers B1-15 in one I/O, and bu�ers B16-B20 in a second I/O. The
I/Os to each log data set are done in parallel.

161

2. If both the commits are issued while the above I/Os are happening, when the I/Os have
�nished, the logger writes bu�ers B21-B33 out in one I/O and bu�er B34 (the current bu�er)
in a second I/O. The I/O for bu�ers B21-B33 is done in parallel, and the I/O for the current
log bu�er (B34) is also done in parallel to the two log data sets. The next time bu�er B34 is
rewritten, the I/O is done in series. The following table summarizes which bu�ers are written
in each I/O:

Long interval Short interval

B1...B15 in parallel B1...B15 in parallel

B16...B20 in parallel B16...B20 in parallel

B21...B22 in parallel B21...B33 in parallel

B23...B30 in parallel B34 in parallel

B33 in parallel

B33 in series

B34 in parallel

Time taken: 8 I/O.
Time taken: 4 I/O. However, because more
data is written in each I/O on average, each
I/O takes longer than the long interval case

The next log check request rewrites B34 in
series

The next log check request rewrites B34 in
series.

The e�ect of one log I/O containing data from multiple transactions is called coat-tailing. As a
general rule, as the amount of data written to the log increases, the response time of requests
requiring a log check increases.

In the example above, if the value of OUTBUFF was 80 (giving 20 log bu�ers) the put of message 2
would be suspended just before the write of bu�er 21 because there are no free log bu�ers because
bu�ers B1-B20 are all in use, with bu�ers B1-B15 being written to the log data sets. When the
I/O completes and bu�ers B1-B15 are available again, the application can be resumed. The number
of times that an application is suspended because no bu�ers are available is recorded in the log
manager statistic QJSTWTB. If you get a nonzero value in this �eld, you should increase the value
of OUTBUFF until the value of QJSTWTB remains at zero.

MQPUT example

Table: Interpretation of log statistics from MQPUT and commit of 100,000-byte messages

QJSTWRNW Number of log writes with no wait 215

QJSTBFFL Number of log pages used 2 550

QJSTBFWR Number of calls to logging task 200

� The information in the table is for 100 messages, so each message used approximately 25 log
pages per message. Each log page is 4096 bytes long, so the 25 pages use 102,400 bytes. This
includes the information about which pages have been changed, and information about the
unit of work.

� For each MQPUT and commit there were two calls to the logging task, one call was made
because the number of full log bu�ers was greater than the value of WRTHRSH (20), the
other call was made during the commit.

� To write out 25 pages causes one I/O for 15 pages, another I/O for 9 pages, and an I/O for
the current log bu�er. The elapsed time taken to log the data is the duration of 4 I/Os, the

162

parallel I/O for the 15 pages and the 9 pages, and two I/Os in series for the current log bu�er.

163

MQGET example

Table: Interpretation of the log statistics from MQGET and commit of 100 000-byte mes-
sages

QJSTWRNW Number of log writes with no wait 110

QJSTBFFL Number of log pages used 29

QJSTBFWR Number of calls to logging task 102

� The information in the table is for 100 messages so there is approximately one call to the logger
per message.

� Only 29 pages were used to hold the log data. This shows that not very much data was logged
and the same page used for several requests before the page was full.

� The same page was written out several times, even though it had not been completely �lled.

� Because the current log bu�er only was written each time, there was one I/O to each log, and
because it was for the current bu�er, these I/O were done in series.

Interpretation of total time for requests

In some measurements, the time taken to put a 100 000-byte message and a commit was 67 millisec-
onds on average, and the time to get a 100 000-byte message and a commit was 8 milliseconds on
average. In both cases, most of the elapsed time was spent waiting for log I/O.

For the MQGET, the write I/Os to the dual logging devices were done in series. Because little data
was written each time the connect time, when data was transmitted to the device, was small and
RMF reports showed that the device had a short response time of 3-4 milliseconds. Two I/Os taking
3-4 milliseconds is close to the time of 8 milliseconds.

For the MQPUT, the write of the 15 and the 9 pages were done in parallel, and the write of the
current bu�er were done in series; in e�ect the time taken for four I/Os. Because a lot of data
was written in a request, this caused a longer connect time, which leads to a longer overall DASD
response time. RMF showed a response time of about 16-17 milliseconds for the log DASD. Four
I/Os of 16-17 milliseconds is close to the measured time of 67 milliseconds.

What is the maximum message rate for 100 000-byte messages?

If we assume that:

� Put and commit of 100 messages use 2550 bu�ers (from the �gures above)

� Get and commit of one message uses less than 1 bu�er

� MQ writes a maximum 128 bu�ers for every I/O

� The I/O response time when writing 15 bu�ers per I/O was about 20 milliseconds

� The I/O response time for writing the current log bu�er was 4 milliseconds

� There were no delays when writing to DASD (this includes within zOS and within the DASD
subsystem)

� Concurrent copies of an application which puts a message, commits, gets the message, and
commits again. We can estimate the maximum message rate as follows:

1. Out of the 2550 log bu�ers used for MQPUTs, 100 are written as the current log bu�er,
so 2450 can be written in parallel

164

2. We can write up to 15 pages per I/O, so 2450 pages need 164 I/Os

3. 164 I/Os, each taking 20 milliseconds gives a total of 3280 milliseconds

4. Each commit writes the current log bu�er to each log data set in series. There are 100
commits for puts and 100 commits for gets. For two I/Os in series, each of 4 milliseconds,
the total time for writing the current log bu�ers is (100 + 100) * 2 * 4 giving a total of
1600 milliseconds.

5. Total time for the I/O is 3280 + 1600 giving a total of 4880 milliseconds.

6. If it takes 4.88 seconds to process 100 messages, 20.5 messages could be processed in
1 second. This means that the theoretical absolute message rate is 20.5 messages per
second.

This is the theoretical maximum with the given assumptions. In practice, the maximum will be
di�erent because the assumptions made are not entirely realistic. In a measurement made using a
requester/reply application model where a CICS transaction put a 100 000-byte message to a server,
and received the same message back, the transaction rate was 10-11 transactions (21 messages) per
second.

165

Chapter 6

Advice

Use of LLA to minimize program load caused throughput e�ects

IBM MQ sometimes needs to load programs when applications or channels start. If this happens
very frequently then the I/O to the relevant program libraries can be a signi�cant bottleneck.

Using the Library Lookaside (LLA) facility of the operating system can result in very signi�cant
improvement in throughput where program load I/O is the bottleneck.

The member CSVLLAxx in SYS1.PARMLIB speci�es the LLA setup. The inclusion of a li-
brary name in the LIBRARIES statement means that a program copy will always be taken from
VLF(Virtual Lookaside Facility) and hence will not usually require I/O when heavily used. Inclusion
in the FREEZE statement means that there is no I/O to get the relevant DD statement concatena-
tion directories (this can often be more I/O than the program load itself). Use the operating system
�F LLA,REFRESH� command after any changes to any of these libraries.

The following are some speci�c examples of when programs are loaded:

Frequent use of MQCONN/MQDISC - for example WLM Stored Proce-
dures

Every time an MQCONN is used, an IBM MQ program module has to be loaded. If this is done
frequently then there is a very heavy load on the STEPLIB library concatenation. In this case it
is appropriate to place the SCSQAUTH library in the CSVLLAxx parmlib member LIBRARIES
statement and the entire STEPLIB concatenation in the FREEZE statement.

For example: Ten parallel batch applications running on the same queue manager were used to drive
WLM (Work Load Manager) stored procedures, where each application looped 1000 times issuing
'EXEC SQL CALL Stored_Proc()'. All stored procedures ran in a single WLMSPAS address space.
The stored procedures issued MQCONN, MQOPEN, MQPUT (a single 1K nonpersistent message),
MQCLOSE, MQDISC, but no DB2 calls were made, and were linked with the MQ/RRS stub
CSQBRSTB.

1. We achieved 300 transactions a second with all of the WLMSPAS's STEPLIB concatenation
in LLA (in both the LIBRARIES(..) and FREEZE(..) dataset lists of the parmlib member
CSVLLAxx

2. We achieved 65 transactions a second with just the LIBRARIES(..)

3. We achieved 17 transactions a second without any such tuning

166

Frequent loading of message conversion tables

Each conversion from one code page to another requires the loading of the relevant code page
conversion table. This is done only once per MQCONN, however, if you have many batch programs
instances which process only a few messages each then this loading cost and elapsed time can be
minimised by including the STEPLIB concatenation in both the LIBRARIES(..) And FREEZE(..)
Lists.

Frequent loading of exits - for example, channel start or restart after failure

Channels, including SVRCONN thin client channels, can have four separate exits, MSGEXIT,
RCVEXIT, SCYEXIT, SENDEXIT. If a signi�cant number of channels start in a short time then a
heavy I/O requirement is generated to the exit libraries.

In this case the CSQXLIB concatenation must be included in the FREEZE(..) dataset lists to gain
any bene�t as a BLDL is done for every exit for every channel.

System resources which can signi�cantly a�ect IBM MQ per-
formance

Clearly, having more than enough CPU power is desirable in any system.

DASD I/O capability, particularly write response time and data rate through DASD controller NVS
can signi�cantly a�ect the IBM MQ log and hence persistent message throughput. DASD I/O
capability, particularly page set reads for MQGET, can a�ect performance where large amounts of
message data require messages to be spilled from bu�er pools and later read back from page sets.

For shared queues,

� CF link type can signi�cantly a�ect performance. ICP links are faster than CBP links which
are faster than CFP links.

� Enough CF CPU power must be allowed for, remembering that it is recommended not to
exceed 60% busy on a CF.

� CFLEVEL(4) application structures can use DB2 table and log resources for which DASD I/O
capability is important for performance.

167

Large Units of Work

Multiple messages can be processed in a single unit of work, i.e. within the scope of a single commit.
Unless changed at your site, the default setting of MAXUMSGS is 10,000 and can be reviewed using
the �DISPLAY QMGR MAXUMSGS� command.

Using larger units of work can use additional storage. In the case of messages on private queues,
additional storage will be used from the queue managers private storage, whereas shared queue
messages will use storage in the CSQ_ADMIN structure.

The MQPUT cost is typically consistent for units of work up to 10,000 messages.

The MQGET cost is typically consistent for units of work up to 10,000 messages except:

� When the queue is indexed and the messages use a common value for the index. In this case,
whether using get-next or get-speci�c there can be additional cost incurred when the unit of
work is exceeds 1000 messages.

� If the gets are running at the same time as puts, there will be interaction. For example a task
tries to get a message from a queue whilst another task is putting a large number of messages
in a unit of work. As the messages being put are in a unit of work, they are not available. This
results in the getter task attempting to get each message on the queue. If there are 100,000
messages in the unit of work, the getter task may attempt up to 100,000 gets. If each of these
gets takes 1 microsecond, the failed get could cost 100 milliseconds of CPU.

Typically the time of taken to commit will increase as more data needs to be committed. As the
number of messages per commit increases, the duration of the commit time is spread across more
messages, so the impact is reduced as the number of messages per commit increases.

The following chart shows the CPU and elapsed time per commit as the number of messages in a
unit of work increases.

Note: When there is 1 message per commit, for 1000 messages there will be 1000 commits. This
means that the commit cost would be 2000 microseconds and the elapsed time would be 7000
microseconds. Contrast this 1000 messages per commit where the commit cost is 4 microseconds
and the elapsed time is 51 microseconds.

168

Application level performance considerations

If and when appropriate consider:

� Is there really a requirement to use persistent messages?

� Processing multiple reasonably small messages in one unit of work (that is, within the scope
of one commit)

◦ But do not usually exceed 200 messages per unit of work

� Combining many small messages into one larger message, particularly where such messages will
need to be transmitted over channels. In this case a message size of 30KB would be sensible.

� The following are particularly important for thin client applications

◦ Minimise the number of calls, in particular keep connected, and keep a queue open.

◦ Is it necessary to use temporary dynamic queues?

◦ Use MQPUT1 rather than MQOPEN, MQPUT, MQCLOSE, unless multiple MQPUTs
are going to be issued against the same queue.

� Application requirement for strict message ordering.

� If using IMS message processing regions, preload the IBM MQ modules.

Some applications require messages to be processed in strict order of arrival. This requires that a
single application instance process a queue of messages. There would be many requester applications
but only a single reply application. If this application should fail or slow down due to resource
contention, the queue depth could rise dramatically.

169

Chapter 7

Queue Information

Tuning queues

There are a number of options that can be applied to queues that can reduce cost or help identify
problems in the appropriate environment.

Queue option ACCTQ

Speci�es whether accounting data collection is to be enabled for this queue. In order for this data to
be collected, it is necessary to enable class 3 accounting data. Whilst setting the ACCTQ attribute
to a value other than QMGR can allow targeted analysis of costs, there is a risk that when evaluating
the data gathered, there will be incomplete data from access to queues where the ACCTQ queue
attribute is set to a di�erent value.

Queue option DEFPRESP

Speci�es the behaviour to be used by applications when the put response type, within the MQPMO
options, is set to MQPMO_RESPONSE_AS_Q_DEF.

Using asynchronous puts can improve message put rate and reduce the round-trip time when putting
messages using an MQ client application. If your messaging requirements allow it, running with
asynchronous puts from a client application can reduce the cost of the put on the z/OS queue
managers and channel initiator by between 18% and 55% for messages ranging in sizes 100,000 to
1000 bytes.

Queue option DEFREADA

Speci�es the default read ahead for non-persistent messages delivered to the client. Enabling read
ahead can improve the performance of client application consuming non-persistent messages. In a
queuing model, where the client application is just getting messages from a queue and not putting
messages, we have seen the get rate improve 4 times over synchronous gets and costs drop by between
12 and 55%.

High-latency networks, where the time to respond to a request is extended due to a long time in
the network can see signi�cant improvements in MQGET � however a request/reply model will not
bene�t in this way.

170

Queue option MONQ

Controls the collection of online monitoring data for queues and is supported on local and model
queues only. The queue option is used in conjunction with the �RESET QSTATS� command to
report the number of messages put and removed from the queue and the peak queue depth since the
last reset.

Queue option PROPCTL

This attribute speci�es how message properties are handled when the messages are retrieved from
the queue. Specifying a value of V6COMPAT can reduce the amount of parsing the queue manager
has to complete and can reduce the cost. See the WebSphere MQ for z/OS version 7.0.1 Performance
report �MP1F� for further details.

Maximum throughput using non-persistent messages

What factors a�ect non persistent throughput

Throughput for non-persistent messages in private queues:

� Is ultimately limited by CPU power assuming messages can be contained within a bu�er pool
without spilling to DASD page sets.

� Where messages do have to be read from page sets then the I/O rate sustainable to that DASD
will be the constraining factor for MQGET.

� In practise, the limiting factor for non-persistent throughput is likely to be in business logic
IO rather than anything internal to IBM MQ.

Throughput for non-persistent messages in shared queues depends on:

� For messages up to 63KB (64512 bytes)

◦ z/OS heuristics which can change CF calls from synchronous to asynchronous.

◦ The type of link(s) between individual z/OS's and the CF(s).

◦ This a�ects the elapsed time to complete CF calls and so in�uences the heuristics.

◦ The CF machine type and CF CPU %BUSY.

� For messages > 63KB

◦ As above for up to 63KB messages plus, the throughput performance of the Shared
Message Data Set (SMDS) or the DB2 data sharing group tablespace used to store these
messages.

171

http://www-01.ibm.com/support/docview.wss?uid=swg24020142

Private queue

What is the maximum message rate through a single private queue ?

Using a 3 processor MVS image on a 2827-7A1 system running z/OS 2.1 and IBM MQ for z/OS
V8.0.0 we could sustain the following non-persistent message rates to a private queue.

V8.0.0 on 2827-7A1

Message size Message rate / sec

1,000 79,090

5,000 72,260

10,000 66,820

30,000 52,450

100,000 27,330

Sustained means, in this case, that messages are MQPUT/MQCMIT and MQGET/MQCMIT at
about the same rate so that the queue does not get very large.

We run four MQPUT/MQCMIT jobs in parallel with a four MQGET/MQCMIT jobs to obtain
these results. Each job has 400,000 iterations.

NOTE:When running in a WLM controlled environment, it is advisable to ensure that the getting
application has equal or higher priority than the putting application otherwise there is a risk that
the queue depth will increase, resulting in page set I/O as bu�erpools �ll.

172

Throughput for request/reply pairs of private queues

The following message rates are for locally driven request/reply scenarios.

Each request/reply scenario uses:

� One or more request/reply applications, each of which uses

◦ A pair of queues (a common server queue and a common `indexed by MsgId' reply queue)

◦ One or more reply programs using that pair of queues using MQGET, MQPUT, MQCMIT

◦ One or more requester programs per reply program using out-of-syncpoint MQPUT and
MQGET by MsgId for the reply message speci�c to that requester.

◦ Queue depths were always low, as is usual for request/reply applications. Thus no page
set IO is required.

Locally driven Request/Reply on 2827-7A1 using 1000 byte non-persistent mes-
sages. Measurements on 8-way LPAR unless otherwise stated.

Q pairs
Replyers
/ Q pair

Requesters
/ Q pair

Msgs/sec Txns/sec
CPU Microsec /

transaction

1 1 1 41375 20687 55

1 4 1 38673 19336 57

1 4 2 58420 29210 67

1 4 3 76052 38026 73

1 4 4 87212 43406 79

1 1 4 60886 30443 57

2 2 4 92587 46293 66

3 3 4 98487 49243 72

4 4 4 90003 45001 76

Following measurements are on 3-way LPAR

1 1 1 29272 19912 49

2 1 1 52428 36062 53

3 1 1 73601 49953 57

4 1 1 72667 49413 57

The following chart shows how running non-persistent workload with increased numbers of processors
can improve the throughput.

173

NOTE:When there are 3 processors available, the rate at which the throughput peaks corresponds
directly with the number of processors available on the above chart. This pattern is repeated when
there are up to 6 processors. As the number of processors exceeds 6, the transaction rates still
increase accordingly but the peak rate is less marked.

Transaction cost can be a�ected by the number of processors available. The following chart compares
the transaction costs observed for the previous measurement.

174

Shared queue

Throughput for non-persistent messages in shared queues is dependent on

For messages up to 63KB (64512 bytes):

� z/OS heuristics which can change CF calls from synchronous to asynchronous.

� The type of link(s) between individual z/OS's and the CF(s).

◦ This a�ects the elapsed time to complete CF calls and so in�uences the heuristics.

◦ The CF CPU %BUSY

For messages > 63KB that are stored in DB2:

� As above for up to 63KB messages plus the throughput performance of the DB2 data sharing
group tablespace used to store these messages.

The performance a�ect of these factors can vary signi�cantly from one machine range to another.

For messages > 63KB that are stored in shared message data sets (SMDS):

� Refer to �MP1H: WebSphere MQ for z/OS V7.1.0 Performance Report� for detailed perfor-
mance of SMDS.

175

http://www-01.ibm.com/support/docview.wss?uid=swg24031663

Maximum persistent message throughput - private queue ex-
amples

Using a request/reply workload with no business logic where

� Requester application(s) use a commit for each MQPUT to a server queue and each MQGET
from a reply queue

� Reply application(s) use a commit for each MQGET from the server queue and each MQPUT
to the reply queue.

� A request/reply `round trip' uses 2 persistent messages (a request message and a reply message
of the same size)

� Thus there is 1 log force for each MQPUT and each MQGET.

We have achieved the following on our 2187-703 z/OS system with DS8870 DASD. On di�erent
systems, particularly with di�erent DASD, you may get di�erent results.

As a comparison with older type DASD such as 2105-F20, see �Maximum Request/Reply throughput
(DS8870)�.

Strict ordering - single reply application

The following chart shows how many persistent transactions can be processed by a single reply
application with an increasing number of requester applications.

By reviewing the class(3) accounting data for the reply application we can see that it is the limiting
factor, as can be seen in data taken from the run using 12 requester tasks with 10KB messages e.g.

== Commit : Count 115602, Avg elapsed 727, Avg CPU 4

..

-MQ call- N ET CT Susp LOGW

Put : 115603 16 14 1 0

..

Get : 115607 14 13 1 0

176

Since the reply transaction is �get, put, commit� we can see that the elapsed time per transaction
is: 14 + 16 + 727 = 757 microseconds.

As the reply application is single threaded, it can process a maximum of 1321 transactions per
second (1,000,000 CPU microseconds per second divided by elapsed time of a transaction).

The chart shows 2653 messages of 10KB were processed with 12 requester tasks running � which is
the same as 1327 transactions per second, which is approximately 100% of the maximum possible
transactions processed.

Increasing number of reply applications

The following chart shows persistent message throughput with an increasing number of reply appli-
cations and many (12) requester applications.

177

Maximum persistent message throughput - shared queue ex-
amples

We have processed more than 59000 1KB persistent messages per second with three queue managers,
each on a separate z/OS, using a pair of shared queues when zHPF is enabled.

Persistent message throughput is limited by the rate at which data can be written to the log. Having
multiple queue managers each with its own log allows a many times increase in the throughput.
Using shared queues means that this many times increase is available through a single queue or set
of queues.

The subsequent measurements were run using queue managers running CFLEVEL(5), using default
o�oad thresholds. Due to the size of the messages and the depths of the queues, no o�oad ca-
pacity was required, so the o�oad medium is irrelevant in these measurements. In all following
con�gurations, zHPF is not enabled.

NOTE: Dual logging and no archiving used unless otherwise stated.

These results were obtained on a parallel sysplex LPARed out of one 2827-7A1 box with a connected
DS8870 DASD subsystem. Real production parallel sysplexes would need, and might reasonably be
expected to have, su�cient log DASD I/O rate capacity for the required number of logs and archives.

Results on 2827-7A1 systems were obtained using IBM MQ V8.0.0.

�Local Request/Reply� is a set of identical request applications and a set of identical reply applica-
tions running on each queue manager such that requesters MQPUT a message to a common server
shared queue and MQGET their speci�c reply message from a common reply shared queue that is
indexed by MSGID. The reply applications MQGET the next request message from the common
queue, MQPUT the speci�c reply message to the indexed shared queue and MQCMIT. Thus there
are two messages completely processed (that is created with MQPUT and consumed with MQGET)
for each request/reply transaction.

The preceding chart demonstrates the following.

� More than 45000 messages per second (two messages per transaction) with 1KB messages.

� More than 36000 messages per second with 5KB messages.

178

� Single queue manager workload for shared queue saw the machine running at 62% of capacity
compared to 43% of capacity for private queues.

� Archiving versus no archiving can have an e�ect on throughput of up to 10% for 1 queue
manager (dual logging and archiving) versus 1 queue manager.

� Scalability for 1 to 3 queue managers, where there is su�cient:

◦ log DASD capacity

◦ CF link connectivity

◦ CF processing power.

Shared queue persistent message - CPU costs

CPU costs for shared queue are more than usually di�cult to estimate from measurements of indi-
vidual IBM MQ operations. These measurements are the most representative of likely costs for real
workloads. This is because they include the interactions between the CF and the queue managers in
real life queue sharing under load including waiting MQGET situations. These CPU milliseconds are
derived from RMF reported `MVS BUSY TIME PERC' for each total system. Thus they include
all system overheads and are larger than would be found from adding `WORKLOAD ACTIVITY'
reported CPU usage by address space.

NOTE: Unless otherwise speci�ed, dual logging and no archiving are used.

Based on the preceding chart, a rule of thumb may be derived that shared queue persistent CPU
costs compared to `best case' private local queue:

� Of the order 170% more than for 1000 byte persistent messages. Each extra queue manager
adds 5% to the CPU cost.

� Of the order 160% for 5000 byte persistent messages. Each extra queue manager adds 2% to
the CPU cost.

`Best case' means all messages remain within the bu�er pool. One of the advantages of shared queue
is that there can be enough capacity to keep going even when there is an application instance outage.

179

With private local queues any such outage could severely restrict throughput and/or cause bu�er
pools to �ll with consequently more expensive performance until any backlog is cleared.

Shared queue persistent message - CF usage

MQ calls to the CF are mainly to the application structures. There is no di�erence in the number
and type of calls between persistent and non-persistent messages. There are more calls to the
CSQ_ADMIN structure for persistent messages.

The following chart shows the RMF reported `CF UTILIZATION (% BUSY)' matching the persistent
message local request/reply charts above.

As discussed in �When do I need to add more engines to my CF?�, the CPU �% Busy� �gure of
the CF remains below 50%, therefore we would surmise that there is su�cient CF capacity for this
workload. Were more queue managers to be added driving the workload above 50% we would advise
activating an additional engine to the CF. The number of asynchronous calls increases as the CPU
usage increases, causing a slower response from the CF.

A rule of thumb for CF cost is about 36 CF microseconds per message (72 CF microseconds per
transaction) for 1000 byte messages when using ICP links.

For 5000 byte messages the CF cost is 77 CF microseconds per message when using ICP links. CF
costs per message do not change signi�cantly with increasing number of queue managers unless the
proportion of asynchronous requests increases as a result of adding additional queue managers.

The following chart shows the cost in the CF per transaction.

180

Note: Were there insu�cient CPU capacity in the CF, the number of asynchronous requests would
have increased which would also result in an increase to the CF cost per transaction.

181

Message ordering - logical groups

Messages on queues can occur, within each priority order, in physical or logical order.

� Physical order is the order that in which the messages arrive on a queue.

� Logical order is when all of the messages and segments within a group are in their logical
sequence, adjacent to each other, in the position determined by the physical position of the
�rst item belonging to the group.

These physical and logical orders can di�er because:

� Groups can arrive at a destination at similar times from di�erent applications, therefore losing
any distinct physical order

� Even with a single group, messages can get arrive out of order because of re-routing or delay
of some of the messages in the group.

There are 2 main reasons for using logical messages in a group:

� You might need to process the messages in a particular order

� You might need to process each message in the group in a related way

Does size of group matter?

When a message group consists of large numbers of messages, there is the potential for deep queues,
with many uncommitted messages.

Should the transaction fail, there is the potential for a longer back-out time.

We found that there was no signi�cant overhead associated with putting messages in logical groups.

Large groups of small messages OR small groups of large messages?

Purely from an MQ perspective it is more cost-e�cient and faster to transport small logical groups
containing large messages than it is to transport large groups with small messages.

To show a comparison, the following example demonstrates a transaction that moves 5MB of data.

In this example, a transaction is:

� An application that puts the speci�ed number of persistent messages in a logical group, com-
mits the group and then waits for a single reply message.

� The costs include the application that puts the messages in a logical group and the application
that processes the logical group and sends a reply message.

� All measurements were performed on a queue manager using WebSphere MQ v7.0.0 on a single
z/OS 1.9 LPAR with 3 dedicated processors from a z10 EC64.

182

Message Size Group Size
Message volume transported

(message size * group size)

1KB 5000 4.88MB

16KB 320 5MB

32KB 160 5MB

64KB 80 5MB

1MB 5 5MB

Notes on preceding chart:

� Using a logical group of 5000 with 1KB persistent messages, the achieved transaction rate was
0.3 transactions per second.

� Using 16KB persistent messages with a logical group of 320, the transaction rate increased to
4.5 per second, an increase of 15 times.

� Using 1MB messages with logical groups of 5 messages, the transaction rate increasesd to 11.5
per second, an increase of 38 times.

183

Notes on preceding chart:

� From an MQ perspective, it is clearly less expensive to process fewer large messages in a logical
group than many smaller messages.

Notes on preceding chart:

� When using small (1KB) messages, the rate at which the queue manager can write the logs is
much lower (around 16MB/second).

� By contrast, when using large messages, the queue manager can log much faster (70+MB/second
for 1MB messages) and in the above measurements that limit is being reached.

� When batching the application messages into fewer MQ messages, there are less MQ overheads
� for example there are only 5 MQMDs logged rather than 5000 MQMDs for a group containing
1KB messages.

184

Application tuning

How much extra does each waiting MQGET cost?

The cost of an MQGET with wait is insigni�cant - approximately 1 microsecond on a 2817-703.
This cost is not dependent on message length, persistence, or whether in or out of syncpoint.

If you have more than one application waiting for a message on a particular queue then every such
application will race for any newly arriving message. Only one application will win this race, the
other applications will have to wait again. So if you have, for example, �ve applications all waiting
for a message on a particular queue the total cost to get the message is the cost of a successful
MQGET, (which does depend on message length, persistence, and whether in or out of syncpoint),
plus 5 times 1 CPU microsecond (2817-703).

NOTE: Multiple applications in a get-with-wait can ensure processing throughput even if the cost
is slightly higher at low-volume periods.

How much extra does code page conversion cost on an MQGET?

Code page conversion from one single byte character set to another using MQFMT_STRING costs
about the same as a basic MQGET out of syncpoint for the same non persistent message size.

DBCS to DBCS conversion costs are of order 4 times a basic MQGET out of syncpoint for the same
non-persistent message size.

Event messages

The cost of creating each event message is approximately the same as MQPUT of a small persistent
message.

Triggering

For shared queue, there can be a trigger message generated on all queue managers in the QSG. If
there are many trigger monitors, only one will get the message, so there may be multiple unsuccessful
gets.

Trigger EVERY is suitable when there are low message rates. You should consider having long
running transactions to drain the queue or refer to �A pattern for implementing WebSphere MQ
CICS Adapter�.

If trigger every is used with a high message rate, this can add signi�cantly to the CPU cost due
to all of the trigger messages generated and any additional processing, for example starting CICS
transactions.

What is the cost of creating a trigger or event message?

The cost of creating one trigger message is approximately the same as an MQPUT of a small non-
persistent message (less than 100 bytes).

When evaluating the cost of triggering, remember to include the cost of the process initiation.

185

http://www.ibm.com/developerworks/websphere/library/techarticles/0511_suarez/0511_suarez.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0511_suarez/0511_suarez.html

Chapter 8

Two / Three Tier con�gurations

A typical two-tier con�guration is shown in the following diagram. It shows a number of IBM MQ
clients connecting using SVRCONN channels directly into the queue manager's channel initiator
address space.

A typical three-tier con�guration is shown in the following diagram, which uses a concentrator
queue manager to accept the SVRCONN connections from the clients and use a single pair of MCA
channels to send the messages onto the target queue manager.

186

Why choose one con�guration over the other?

There are several performance factors that should be considered when deciding whether to use a 2
or 3 tier con�guration.

� Cost on the z/OS platform

� Achievable rate (latency / persistence / maximum throughput for a channel)

� Number of connecting tasks (footprint)

It should be noted that performance is not the only reason to choose between a 2 or 3 tier con�gu-
ration. For example if high availability (HA) is a key concern, using a 3 tier model may make the
con�guration more complex.

Cost on the z/OS platform

The cost of transporting data onto the z/OS platform is often a key criteria when deciding whether
to use a two or three tier model.

The cost of connecting directly into a z/OS queue manager via SVRCONN channels can be higher
than accessing the z/OS queue manager via MCA channels, from a distributed queue manager,
particularly with short-lived connections, where the high connect cost forms a larger proportion of
the total cost.

As the number of messages processed during a connection increases, the relative cost of the MQ
connect decreases in relation to the total workload. For example:

� If the client connects, puts a 2KB message and then disconnects, the relative cost of the connect
is high.

� If the client application were to follow this connect-put-disconnect model but the message is
much larger, e.g. a 1MB message, the relative cost of the connect would be much lower.

� Similarly if the client application were to connect, perform many puts and gets, then disconnect,
the relative cost of the connect is low.

187

The key factors relating to cost would be:

� How much work is processed under a single connection, i.e. are the clients long-lived or short-
lived?

� The size of the messages.

With very long running transactions or where connection pooling is used resulting in long SVRCONN
instances, the costs on z/OS of servicing a SVRCONN connection may be similar to a pair of SDR-
RCVR channels.

With regards to MCA channels, as can be seen in the section �Costs of moving messages to and
from MVS images�, achieving larger batch sizes can reduce transaction cost. This means that more
e�cient batch sizes can be achieved when multiple clients are putting messages to the distributed
queue manager.

Achievable Rate

Volume of data � at channel capacity

The volume of data that each client is likely to send/receive may in�uence any decision on two or
three tier con�gurations.

A channel, whether a SVRCONN or an MCA channel will have a maximum capacity on any partic-
ular network and this will depend on a number of factors including network capacity and latency.

If the combined messaging rate of the clients exceeds the maximum capacity of a single channel,
using a 3-tier model may result in reduced throughput, however this can be alleviated by using
multiple MCA channels between the distributed and z/OS queue managers.

Latency

Adding the third tier in the form of a distributed queue manager may add latency to the time to
transport data from client to z/OS or vice versa. In a low latency network or one with short distance
between distributed queue manager and z/OS queue manager this may not be a signi�cant amount.

The transport time between distributed and z/OS queue managers may be further reduced if the
distributed queue manager is in a zLinux LPAR and the connection is con�gured to use HiperSockets.

Persistent Messaging

In the case of persistent messages, adding in a second queue manager will mean that the messages
are logged twice, once on the intermediate queue manager and again on the z/OS queue manager,
which will add latency to the message �ow.

In addition with persistent messages that �ow over an MCA channel, each one will be processed
serially by the channel initiator adaptor tasks, whereas multiple SVRCONN channels could exploit
separate adaptor tasks which in turn can drive the queue managers logger task more e�ciently.

188

Number of connecting tasks

The channel initiator on z/OS has a limit of 9,999 channels, as de�ned by the MAXCHL attribute,
however the number of channels that can be run will depend partially on the size of the messages
being used. For further information, please refer to the section �What is the capacity of my channel
initiator task?�

A distributed queue manager is not subject to the same 2GB storage limit as a z/OS channel initiator
and as such can be con�gured to support many times the number of client connections that a z/OS
channel initiator can support.

As has been documented in the performance report MP1J, the footprint of a SVRCONN chan-
nel is 177KB when a 1KB message is being sent and received over a channel con�gured with
SHARECNV(0).

By contrast an MCA channel that sends or receives a 1KB message uses 107KB � however if the
connecting task requires a message to be sent and received, it will require 2 channels, with a combined
footprint of 214KB.

This suggests that the SVRCONN has a lower footprint, however when multiple clients need to
attach, it can be more e�cient from a storage usage perspective to use an intermediate queue
manager as a �concentrator�, allowing the MCA channels to support multiple clients concurrently.

Measurements

The following con�gurations were measured:

� Local bindings � requesting application running on z/OS.

� Requesting application uses bindings connection to distributed QM and then use SDR-RCVR
channels to interact with z/OS QM.

� Client connection directly to z/OS QM, using SHARECNV(0) and SHARECNV(non-0)

� Client connection to local distributed QM and then use SDR-RCVR channels to interact with
z/OS QM.

� Client connection to remote distributed QM and then use SDR-RCVR channels to interact
with z/OS QM.

For each of these con�gurations, two models of requesting application were used:

1. Requesting applications use model of: connect, [put, get]*100,000, disconnect.

2. Requesting application use model of: [connect, put, get, disconnect]*100,000.

In each case:

� Messages used were 2KB non-persistent.

� There was a set of long-running batch tasks on z/OS that got the input messages and generated
a reply message.

The following 2 charts show the costs of these con�gurations and include the queue manager, channel
initiator, TCPIP and server application costs per message put and got.

189

http://www-01.ibm.com/support/docview.wss?uid=swg24038347

CHART: Transaction cost with model: connect, [put, get]*100,000, disconnect

In the preceding chart, the cost of using the SVRCONN channel with SHARECNV(0) in a 2-tier
model is similar to that of an application connecting either using bindings or client to a distributed
queue manager and that queue manager then using MCA channels into the z/OS queue manager.

CHART: Transaction cost with model: [connect, put, get, disconnect]*100,000

The preceding chart shows that when a client is connecting to the z/OS queue manager for a short
period of time, the costs increase signi�cantly.

In each case, connecting a SVRCONN channel with SHARECNV greater than 0 results in additional
CPU cost, however this con�guration does o�er other bene�ts including asynchronous gets.

Regarding round-trip times (latency of the workload), the con�gurations achieved the shortest round-
trip time were as per the order they were described earlier i.e. local bindings had shortest round-trip

190

time and �client to remote distributed queue manager and then use SDR-RCVR channels to z/OS�
had the highest round-trip times.

When using shared conversations (SHARECNV larger than 1), the cost of frequently connecting
applications can be reduced when there is already 1 or more active conversations when the new
connection is requested and there is capacity available (a di�erence between SHARECNV and the
value of CURSHCNV - from a �DISPLAY CHSTATUS� command).

The number of messages processed during the life-span of a channel can a�ect the cost of a trans-
action. The following chart provides an example when the number of messages is increased from 1
to 50 messages between connect and disconnect:

CHART: Varying the number of messages processed within connect to disconnect

The preceding chart shows that for a SHARECNV(0) channel, as the number of messages processed
between the connect and disconnect increases, the cost per message got and put on z/OS drops
signi�cantly, from 905 microseconds when only 1 message is got and put, to 165 microseconds when
50 messages are got and put.

191

Chapter 9

IMS Bridge: Achieving best
throughput

The IBM MQ IMS bridge, known as the IMS Bridge, provides the capability to schedule IMS trans-
actions directly on IMS from an IBM MQ message without the need to use an IMS trigger monitor.
The IMS Bridge, which is a component of the IBM MQ for z/OS queue manager, communicates
with IMS using the IMS Open Transaction Manager Access (OTMA) service: The IMS bridge is an
OTMA client.

When an IMS transaction is driven from a 3270-type screen, any data entered on the screen is made
available to the transaction by the IMS GU call. The transaction sends its response back to the
terminal using the IMS ISRT call.

An IBM MQ application can cause the same transaction to be scheduled by using the IMS Bridge.
An IBM MQ 'request' message destined for IMS, typically with an MQIIH header, is put to an
IMS bridge queue. The message is retrieved from the IMS bridge queue by the queue manager and
sent to IMS over OTMA logical connections called transaction pipes or tpipes, where the IBM MQ
message data becomes input to the IMS GU call. The data returned by the ISRT call will be put into
the reply-to queue, where the IBM MQ application can retrieve it using a standard MQGET call.
This sequence of events is a typical use of the IMS Bridge and forms the basis of the measurements
presented in this section. The IBM MQ request message and its associated reply are referred to as
a message-pair or transaction in the rest of this chapter.

This chapter will also provide:

1. Further information on how the IMS Bridge works

2. Suggestions on tuning the IMS subsystem for use with IBM MQ

3. Impact of using Commit Mode 0 or 1

4. How to identify when additional resources are required

5. Throughput achieved on our machines using a standard con�guration as detailed in the �Initial
Con�guration� section below.

192

Initial con�guration

The measurements have been performed using:

� An IMS subsystem

� 3 queue managers in queue sharing group.

� 3 z/OS LPARs running on a 2084-332. Measurements were run on LPAR 1 unless otherwise
stated.

◦ LPAR 1 and LPAR 2 are con�gured with 3 dedicated processors (each LPAR rated as
approximately 2084-303)

◦ LPAR 3 con�gured with 5 dedicated processors, rated as 2084-305.

◦ An internal CF with 3 processors.

� All jobs run were managed using WLM service classes such that the execution velocity is 50%
or higher.

� Batch applications were run to drive the workload. Unless otherwise stated, 1KB non-
persistent messages were used.

� Unless otherwise stated, the IMS was on the same image as the queue manager and has a
varying number of MPRs to process the workload.

� The IMS transaction run issues a �GU� to get the message, then sends the reply using �ISRT�
and then if there is another message will issue the �GU� and repeat, otherwise the transaction
will end.

� Since the default behaviour of the IMS Bridge is to copy the requester's message id to the
reply messages' correlation id, it is advisable to de�ne the reply queue with an index type of
CORRELID, and perform the get by correlation id.

How does the IMS bridge work?

There are 2 components to the IMS Bridge:

1. Putting messages from IBM MQ into IMS.

2. IMS putting reply messages back to MQ.

Putting messages from IBM MQ into IMS

For each IMS Bridge queue there is a task running in the queue manager. This task gets the message
from the MQ queue and puts them into IMS via XCF. The task is e�ectively issuing an MQGET
followed by a put to IMS and then commit.

If the messages are being put to this queue at a high rate, i.e. many applications putting to the
queue concurrently, the task may not be able to keep up, resulting in increased queue depths.

When using a shared queue, each additional queue manager often will also have a task per IMS
Bridge queue, and will be able to get messages from the queue and send them to IMS.

193

IMS putting reply messages to IBM MQ

IMS noti�es the queue manager that a reply is available and MQ schedules an SRB to process this
message. This SRB essentially does an MQOPEN, MQPUT of the reply and an MQCLOSE. If there
are multiple replies coming back from IMS, then multiple SRBs can be scheduled and provided there
are su�cient processors on the image, these can be run in parallel.

When using shared IMS Bridge queues and multiple queue managers are connected to the IMS
Bridge, IMS will usually, but not always, send the reply back to the queue manager that sent the
original request.

When an application puts a message to a shared IMS Bridge queue, the queue manager that the
application is connected to will not necessarily be the same queue manager that sends the request
to IMS. IMS will always put the reply message to the queue manager that put the original message.
As a result, this reply message needs to be made available to the original application. By default,
IGQ or the mover is used to send the message to the original system.

Using the queue manager option SQQMNAME(IGNORE) resolves the shared queue directly to the shared
reply queue rather than to any particular queue manager (which would require the message to be
moved).

Tuning the IMS subsystem

The IMS subsystem has been con�gured as described below:

� Checkpoint frequency has been adjusted so that checkpoints are not taken more than once
every 10 to 20 minutes. This is controlled using the CPLOG keyword on the IMSCTF system
de�nition macro. Supported values are 1000 to 16,000,000 (default 500,000). To override,
modify the DFSPBxxx member of the PROCLIB DD, e.g. �CPLOG=16M�.

� The IMS subsystem has the QBUF attribute set to 256. When the QBUF value was less than
the number of MPRs started, there was a signi�cant degradation in throughput.

� Ensure the primary and secondary online logs for the IMS subsystem are large enough to avoid
constant log switching and also to avoid being a�ected by the IMS archive job. Logs have been
de�ned at 1500 cylinders each.

� Only de�ne shared queues to the IMS storage class when they are needed. A �x was applied
for PK14315 that wakes up unused IMS Bridge queues every 10 seconds. This is not a large
overhead but if there are 100 shared queues de�ned with the IMS bridge storage class that are
not actively being used, there is a small degradation in performance (around 1%).

� Check the IMS attribute QBUF. The IMS trace report provides a �eld �NUMBER OF WAITS
BECAUSE NO BUFFER AVAILABLE�. When this is non-zero, this may be a hint that there
is a lack of bu�ers.

� Check the IMS attribute PSBW. When reviewing some IMS workloads, it was observed than
not all of the available MPRs were processing workload. This was because there was insu�cient
storage set aside to run all of the MPRs concurrently.

� Increase the size of the online datasets. Our default sizes of the DFSOLP* and DFSOLS*
datasets meant that they were switching frequently. By increasing them from 50 to 1500
cylinders we reduced the frequency of switching.

� Increase the number of online datasets. When increased throughput occurs, the IMS archive
jobs were attempting to process multiple logs in each step. We reached a point where no logs
were available. By increasing the number of logs, we were able to prevent waiting for active
logs to become available.

194

� The use of zHPF should be considered in the IMS environment as IMS always logs to disk. In
our measurements we saw up to a 20% improvement in throughput.

� A single IMS transaction type de�ned INQUIRY(YES,NORECOV) for use with non-persistent
messages.

� A single IMS transaction type de�ned INQUIRY(NO,RECOVER) for use with persistent mes-
sages.

� Both IMS transaction types are de�ned with

◦ SCHDTYP=PARALLEL

◦ PARLIM=0

◦ WFI=Y

This will allow the IMS transactions to run concurrently on multiple message processing regions,
removing a serialization bottleneck.

Note: Using the command �/DIS TRAN tranName� will show the value for �PARLM� � and NONE
is not the same as 0. NONE means do not allow multiple instances of the transaction.

The message processing regions (MPRs) are started using the IMS performance related options1

including:

� DBLDL=<null> which minimizes the cost of program loading by increasing program di-
rectory entries maintained in the MPR. This reduces I/O to program library to obtain the
direct address of the program. Default is 20.

� PRLD=TS results in PROCLIB DD being searched for member DFSMPLTS. This contains
a list of the recommended pre-loaded MQ modules plus the IMS transactions to be run e.g.

CSQACLST,CSQAMLST,CSQAPRH,CSQAVICM,CSQFSALM,CSQQDEFV,

CSQQCONN,CSQQDISC,CSQQTERM,CSQQINIT,CSQQBACK,CSQQCMMT,

CSQQESMT,CSQQPREP,CSQQTTHD,CSQQWAIT,CSQQNORM,CSQQSSOF,

CSQQSSON,CSQQRESV,CSQQSNOP,CSQQCMND,CSQQCVER,

CSQQTMID,CSQQTRGI,IB02INQ,IB02INR

� PWFI =Y (pseudo wait-for-input) which can potentially reduce CPU time by eliminating
the termination and re-scheduling of resources

NOTE: WFI=Y (Wait-For-Input) will keep the program loaded and ready for input. This reduces
program start costs but will result in the MPR being dedicated to this transaction. The bene�ts of
WFI=Y are seen when the workload driving the IMS is low and there would be frequent program
starts, for example when running with WFI=N and using only 1 batch requester to drive workload
using a single shared queue, there were 75 transactions per second. By specifying WFI=Y, the same
batch requester was able to drive workload at 880 transactions per second.

When the driving the workload harder, the queue depth for the TPIPE typically is greater than 0
so when the IMS transaction issues a �GU� to get the next message, it is successful. This means
that the transaction does not end and have to be restarted for subsequent messages and the MPR
does not have to be dedicated to this particular transaction.

1 These options are discussed at
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims12.doc.sag/system_admin/ims_tune_imsoptions.htm

195

Use of commit mode

The choice of IMS commit mode speci�ed on the MQIIH structure can a�ect the performance of
the IMS Bridge. Whether to use �Commit-Then-Send� (commit mode 0) or �Send-Then-Commit�
(commit mode 1) is dependent on a number of factors, for example, if the application is putting a
persistent message (i.e. an �important� message) it may be bene�cial to use �Send-Then-Commit�
(commit mode 1) � where the IMS message is not committed until the transaction completes. This
will ensure that in the event of a failure, the transaction will either have completed successfully or
will not have committed the work.

The �ows involved for these commit modes are shown below:

Commit Mode 0 (Commit-Then-Send)

1. IMS Bridge puts message to TPIPE

2. IMS acknowledges

3. MPR runs application that issues GU + ISRT, then issues syncpoint

4. IMS output is enqueued to TPIPE

5. MPR transaction completes

6. IMS output sent (with response requested)

7. MQ acknowledges

8. IMS output de-queued

Commit Mode 1 (Send-Then-Commit)

1. IMS Bridge puts message to TPIPE

2. MPR runs application that issues GU + ISRT

3. MPR starts syncpoint

4. IMS output is sent to TPIPE, no response requested

5. IMS confirms commit, and completes the syncpoint

6. MPR transaction completes

For commit mode 0 (CM0), the message processing region (MPR) is able to process the next message
before IMS sends the response to the MQ queue manager.

For commit mode 1 (CM1) case, the MPR is only available to process the next message when the
transaction completes � i.e. step 6, which is after IMS has sent the output. This means the MPR is
involved in each transaction for longer and this may mean additional MPRs are required sooner.

196

The following chart compares the transaction rate when increasing the number of batch requesters
putting 1K non-persistent messages to a single local queue that has been de�ned with the IMS
Bridge storage class. The commit mode is varied to show how CM1 can restrict the transaction rate
when there are insu�cient message processing regions.

Notes on chart:

� In none of the above measurements is the machine running at 100% capacity.

� When there is only 1 MPR servicing the workload, a peak transaction rate of 2000/second is
seen for the applications using CM1. By contrast, when running with 1 MPR and CM0, the
peak transaction rate is 2750/second.

� By adding a second MPR for the CM1 workload, the peak transaction rate is able to track the
CM0 workload.

� The chart also shows that in this environment2, adding a second MPR for the CM0 workload
gave little bene�t.

2 These measurements were run on a 2084-303 and the machine was running at approximately 90% of capacity.

197

Understanding limitations of the IMS bridge

There are a number of components involved when using the IMS bridge that need to be considered
when attempting to achieve the best transaction rate for an application.

Consider the scenario where the achieved transaction rate does not match the required rate. All of
the following components could be a�ecting the transaction rate:

� IMS

◦ Are the message processing regions running at capacity? There may not be su�cient
message processing regions available.

◦ Can the transaction process multiple requests? When the transaction �nishes without
checking for subsequent requests, there can be a signi�cant e�ect on the transaction rate
if the next transaction has to be loaded.

� IBM MQ

◦ Is there a build up of messages on the IMS Bridge queues? This may be for a number of
reasons including:

◦ Either the IMS subsystem or message processing regions are not being given su�cient
priority.

◦ The MQ task is unable to get the messages fast enough. Using more IMS Bridge queues
may help � alternatively if using shared queues, additional queue managers in the queue
sharing group may help.

◦ Is there a build-up of messages on the reply-to queue? Is the reply-to queue indexed
appropriately, e.g. if getting using the CORRELID, verify that the queue isindexed by
CORRELID.

� CPU

◦ Is the machine running at peak capacity? A quick indication can be seen from the �Active
Users� panel in SDSF � e.g. via �S.DA�. For a longer term view, the �LPAR Cluster
Report� report from RMF can be used to determine whether the machine is running at
or close to 100% capacity.

L P A R C L U S T E R R E P O R Ta

z/OS V1R9 SYSTEM ID MV25

RPT VERSION V1R9 RMF TIME 22.12.13

------ WEIGHTING STATISTICS ------ ---- PROCESSOR STATISTICS ----

--- DEFINED --- ---- NUMBER --- -- TOTAL% --

CLUSTER PARTITION SYSTEM INIT MIN MAX DEFINED ACTUAL LBUSY PBUSY

PLEX3 MVS2A MV2A DED 3 3 99.97 9.67

MVS2B MV2B DED 5 3 97.52 9.44

MVS25 MV25 DED 3 3 100.0 9.68

a Some detail has been removed from the LPAR cluster report shown since the system is using dedicated processors.

� Coupling Facility

◦ Is the coupling facility running at an optimum level � use of the RMF III reports will
show how utilised the coupling facility CPUs are.

198

◦ What type of links between the z/OS image and the coupling facility are in place � are
they ICP links or are they a physical cable?

◦ Are the coupling facility structures duplexed and how far apart are they located?

◦ For more information on coupling facility considerations, refer to the �Coupling Facility�
chapter.

� XCF

◦ Since the IMS Bridge function in the queue manager uses XCF to pass requests to the
IMS, there will is a requirement to ensure the XCF address space is running optimally.
The XCF address space allocates the Couple Datasets (XCF, Logger, CFRM, WLM,
ARM and OMVS). The document �Parallel Sysplex Performance: XCF Performance
Considerations�, gives guidelines on tuning XCF which may be of bene�t to improving
the IMS Bridge throughput.

The following sections aim to help to identify where the constraints may lie by giving guidance on
how to determine:

� When the constraint is due to the message processing region.

� When the constraint is due to the IBM MQ task that puts the message onto the IMS Bridge
queue.

199

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100743
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100743

When do I need more message processing regions?

By providing a message processing region (MPR) that has the IMS transaction to be run pre-loaded
and in a wait-for-input (WFI), there is a signi�cant reduction in the time taken to schedule the IMS
transaction.

The following trace examples are taken when the following environment is used:

� A single 2084-303 image

� A single queue manager in a queue sharing group

� A single IMS control region

� 2 MPRs con�gured as detailed at the top of this section, i.e. the transactions being run are
set to be WFI=Y.

� 6 batch applications each putting to a single IMS Bridge shared queue and getting a reply
message using the CORRELID from a corresponding reply-to shared queue that is indexed by
CORRELID.

� Commit Mode 1 � �Send then Commit� was speci�ed in the MQIIH data structure.

� The machine was seen to be running at 92% capacity and the overall transaction rate was 1803
transactions per second.

The following shows where the work was done in achieving the throughput mentioned above.

To identify whether the workload was constrained by lack of MPRs, the IMS trace function was
enabled using �/TRACE SET ON MONITOR ALL INTERVAL 60� and the IMS program DFSUTR20 was
used to print the records e.g.

//JOBLIB DD DISP=SHR,DSN=IMS.VXX.DBDC.SDFSRESL

// EXEC PGM=DFSUTR20,REGION=512K

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DISP=SHR,DSN=IMSDATA.IMXX.IMSMON

//ANALYSIS DD *

DLI

/*

200

This produced a number of useful reports3 including:

1. Run Pro�le

2. Call Summary

3. Region Summary Report

4. Region IWAIT (IMS Wait)

5. Program Summary

6. Program I/O

Understanding the trace reports - run pro�le

IMS MONITOR *** RUN PROFILE ***

TRACE ELAPSED TIME IN SECONDS..............59.9

TOTAL NUMBER OF MESSAGES DEQUEUED........107692

TOTAL NUMBER OF SCHEDULES.....................2

NUMBER OF TRANSACTIONS PER SECOND........1794.8

TOTAL NUMBER OF DL/I CALLS ISSUED........215380

NUMBER OF DL/I CALLS PER TRANSACTION........1.9

NUMBER OF OSAM BUFFER POOL I/O'S..............0, 0.0 PER TRANSACTION

NUMBER OF MESSAGE QUEUE POOL I/O'S..........115, 0.0 PER TRANSACTION

NUMBER OF FORMAT BUFFER POOL I/O'S............0, 0.0 PER TRANSACTION

Notes on `run pro�le' report

� The number of �messages dequeued� is the number of scheduled PSBs.

� The number of schedules (2) indicates that only 2 transactions were started during the moni-
toring period � this is as expected since the transactions are de�ned with WFI=Y and there
were 2 MPRs started

� The �transactions per second� is the number of PSB schedules per second, so in the above
example there are 1794.8 PSBs being scheduled each second for the lifetime of the monitoring
period (59.9 seconds). This is close to the previously reported transaction rate of 1803 trans-
actions/second � which was calculated using �gures output from the application programs.

3 Information on these reports can be found at
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims11.doc.sag/ims_reports/ims_imsmonrpt.htm

201

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims11.doc.sag/ims_reports/ims_imsmonrpt.htm

U
n
d
er
st
a
n
d
in
g
th
e
tr
a
ce

re
p
o
rt
s
�
ca
ll
su
m
m
a
ry

I
M
S

M
O
N
I
T
O
R

*
*
*

C
A
L
L

S
U
M
M
A
R
Y

*
*
*

C
A
L
L

L
E
V

S
T
A
T

I
W
A
I
T
S
/

.
.
E
L
A
P
S
E
D

T
I
M
E
.
.
.

.
N
O
T

I
W
A
I
T

T
I
M
E
.
.

P
S
B

N
A
M
E

P
C
B

N
A
M
E

F
U
N
C

N
O
.
S
E
G
M
E
N
T

C
O
D
E

C
A
L
L
S

I
W
A
I
T
S

C
A
L
L

M
E
A
N

M
A
X
I
M
U
M

M
E
A
N

M
A
X
I
M
U
M

I
B
0
2
I
N
Q

I
/
O

P
C
B

I
S
R
T

(
.
.
)
.
.
.
.
.
.
.
.

1
0
7
6
9
1

0
0
.
0
0

1
1

2
6
4
0

1
1

2
6
4
0

G
U

(
.
.
)
.
.
.
.
.
.
.
.

1
0
7
6
8
9

1
0

0
.
0
0

6
8
7

2
8
8
7
4

6
8
6

2
8
8
7
4

I
/
O

P
C
B

S
U
B
T
O
T
A
L

2
1
5
3
8
0

1
0

0
.
0
0

3
4
9

3
4
9

P
S
B

T
O
T
A
L

2
1
5
3
8
0

1
0

0
.
0
0

3
4
9

3
4
9

N
o
te
s
o
n
`c
a
ll
su
m
m
a
ry
'
re
p
o
rt

�
T
h
e
�C
a
ll
S
u
m
m
a
ry
�
re
p
o
rt
sh
ow

s
h
ow

si
m
p
le
th
e
IM

S
tr
a
n
sa
ct
io
n
is
�
it
is
su
es

a
�G
U
�
ca
ll
to

g
et

th
e
M
Q
m
es
sa
g
e
a
n
d
is
su
es

a
�I
S
R
T
�
to

se
n
d

th
e
re
p
ly

m
es
sa
g
e.

�
T
h
e
n
u
m
b
er

o
f
IW

A
IT
S
(I
M
S
w
a
it
s)

fo
r
th
e
G
U
fu
n
ct
io
n
is
1
0
,
w
h
ic
h
si
n
ce

th
er
e
w
er
e
1
0
7
,6
9
1
ca
ll
s
in
d
ic
a
te
s
th
a
t
th
e
M
P
R
w
a
s
b
ei
n
g
d
ri
ve
n

h
a
rd

en
o
u
g
h
su
ch

th
a
t
it
w
a
s
n
o
t
w
a
it
in
g
fo
r
w
o
rk
.

202

U
n
d
er
st
a
n
d
in
g
th
e
tr
a
ce

re
p
o
rt
s
�
re
g
io
n
su
m
m
a
ry

re
p
o
rt

.
.
.
.
.
.
.
.
E
L
A
P
S
E
D

T
I
M
E
.
.
.
.
.
.
.
.
.

N
O
T

I
W
A
I
T
T
I
M
E
(
E
L
A
P
S
E
D
-
I
W
A
I
T
)

O
C
C
U
R
R
E
N
C
E
S

T
O
T
A
L

M
E
A
N

M
A
X
I
M
U
M

T
O
T
A
L

M
E
A
N

M
A
X
I
M
U
M

S
C
H
E
D
U
L
I
N
G

A
N
D

T
E
R
M
I
N
A
T
I
O
N

S
C
H
E
D
U
L
E

T
O

F
I
R
S
T

C
A
L
L

*
*
R
E
G
I
O
N

1
1

3
2
3
5

3
2
3
5

3
2
3
5

*
*
R
E
G
I
O
N

4
1

1
0
0
7

1
0
0
7

1
0
0
7

*
*
T
O
T
A
L
S

2
4
2
4
2

2
1
2
1

E
L
A
P
S
E
D

E
X
E
C
U
T
I
O
N

*
*
R
E
G
I
O
N

1
1

3
8
2
1
9
9
4
8

3
8
2
1
9
9
4
8

3
8
2
1
9
9
4
8

*
*
R
E
G
I
O
N

4
1

3
8
1
1
7
7
6
5

3
8
1
1
7
7
6
5

3
8
1
1
7
7
6
5

*
*
T
O
T
A
L
S

2
7
6
3
3
7
7
1
3

3
8
1
6
8
8
5
6

D
L
/
I

C
A
L
L
S

I
W
T
/
C
A
L
L

*
*
R
E
G
I
O
N

1
1
0
7
8
2
1

3
7
6
7
9
7
8
3

3
4
9

2
7
2
6
4

3
7
6
6
8
3
0
6

3
4
9

2
7
2
6
4

0
.
0
0

*
*
R
E
G
I
O
N

4
1
0
7
5
5
9

3
7
5
7
1
8
1
7

3
4
9

2
8
8
7
4

3
7
5
6
8
0
4
8

3
4
9

2
8
8
7
4

0
.
0
0

*
*
T
O
T
A
L
S

2
1
5
3
8
0

7
5
2
5
1
6
0
0

3
4
9

7
5
2
3
6
3
5
4

3
4
9

0
.
0
0

I
D
L
E

F
O
R

I
N
T
E
N
T

N
O
N
E

C
H
E
C
K
P
O
I
N
T

6
1
4
3
5
7
1

2
3
9
2
8

2
9
3
9
6

1
4
3
5
7
1

2
3
9
2
8

2
9
3
9
6

R
E
G
I
O
N

O
C
C
U
P
A
N
C
Y

*
*
R
E
G
I
O
N

1
6
3
.
7
%

*
*
R
E
G
I
O
N

4
6
3
.
5
%

N
o
te
s
o
n
`c
a
ll
su
m
m
a
ry
'
re
p
o
rt

�
T
h
e
�C
h
ec
k
p
o
in
t�
se
ct
io
n
in
d
ic
a
te
s
th
er
e
w
er
e
6
ch
ec
k
p
o
in
ts
ta
k
en

d
u
ri
n
g
th
e
m
o
n
it
o
ri
n
g
p
er
io
d
(a
s
se
en

b
el
ow

).
Id
ea
ll
y
th
e
ch
ec
k
p
o
in
t
fr
eq
u
en
cy

w
il
l
b
e
b
et
w
ee
n
1
0
a
n
d
2
0
m
in
u
te
s,
so

in
th
e
a
b
ov
e
ex
a
m
p
le
,
w
e
a
re

ta
k
in
g
ch
ec
k
p
o
in
ts

to
o
fr
eq
u
en
tl
y.

C
h
an
gi
n
g
th
e
IM

S
�C
P
L
O
G
�
va
lu
e

sh
o
u
ld

ca
u
se

th
e
ch
ec
k
p
o
in
t
fr
eq
u
en
cy

to
ch
a
n
g
e.

�
T
h
e
�R
eg
io
n
O
cc
u
p
a
n
cy
�
se
ct
io
n
in
d
ic
a
te
s
th
e
ra
ti
o
o
f
th
e
el
a
p
se
d
ti
m
e
w
h
en

th
e
th
re
a
d
is
a
ct
iv
e
to

th
e
tr
a
ce

in
te
rv
a
l.
T
h
is
su
g
g
es
ts

th
a
t
th
e

M
P
R
s
a
re

ru
n
n
in
g
a
t
6
3
%

o
f
ca
p
a
ci
ty

a
n
d
th
er
ef
o
re

it
sh
o
u
ld

b
e
p
o
ss
ib
le
to

d
ri
ve

th
is
w
o
rk
lo
a
d
h
a
rd
er

th
a
n
in

th
is
ex
a
m
p
le
.
It
a
ls
o
su
g
g
es
ts

th
a
t
a
d
d
in
g
M
P
R
s
w
o
u
ld

n
o
t
n
ec
es
sa
ri
ly

im
p
ro
ve

th
e
th
ro
u
g
h
p
u
t
fo
r
th
is
sc
en
a
ri
o
.

203

IM
S
C
o
n
tr
o
l
R
eg
io
n
is
su
in
g
ch
ec
k
p
o
in
ts
w
h
il
st
m
o
n
it
o
ri
n
g
ru
n
n
in
g

1
2
.
2
4
.
5
4

S
T
C
0
0
9
9
7

D
F
S
2
2
1
2
I

D
C

M
O
N
I
T
O
R

S
T
A
R
T
E
D

I
M
9
A

1
2
.
2
5
.
0
3

S
T
C
0
0
9
9
7

D
F
S
2
7
1
6
I

N
O

M
S
D
B
S

F
O
U
N
D

-
N
O

M
S
D
B

C
H
E
C
K
P
O
I
N
T

T
A
K
E
N

I
M
9
A

1
2
.
2
5
.
0
3

S
T
C
0
0
9
9
7

D
F
S
9
9
4
I

*
C
H
K
P
T

0
8
2
9
6
/
1
2
2
5
0
3
*
*
S
I
M
P
L
E
*

I
M
9
A

1

1
2
.
2
5
.
0
3

S
T
C
0
0
9
9
7

D
F
S
3
4
9
9
I

A
C
T
I
V
E

D
D
N
A
M
E
S
:

M
O
D
B
L
K
S
A

I
M
S
A
C
B
A

F
O
R
M
A
T
A

M
O
D
S
T
A
T

I
D
:

0
I
M
9
A

1
2
.
2
5
.
0
3

S
T
C
0
0
9
9
7

D
F
S
3
8
0
4
I

L
A
T
E
S
T

R
E
S
T
A
R
T

C
H
K
P
T
:

0
8
2
9
6
/
1
2
2
4
3
6
,

L
A
T
E
S
T

B
U
I
L
D
Q

C
H
K
P
T
:

0
8
2
9
6
/
1
2
0
5
2
3

I
M
9
A

1
2
.
2
5
.
1
3

S
T
C
0
0
9
9
7

D
F
S
2
7
1
6
I

N
O

M
S
D
B
S

F
O
U
N
D

-
N
O

M
S
D
B

C
H
E
C
K
P
O
I
N
T

T
A
K
E
N

I
M
9
A

2

1
2
.
2
5
.
1
3

S
T
C
0
0
9
9
7

D
F
S
9
9
4
I

*
C
H
K
P
T

0
8
2
9
6
/
1
2
2
5
1
3
*
*
S
I
M
P
L
E
*

I
M
9
A

1
2
.
2
5
.
1
3

S
T
C
0
0
9
9
7

D
F
S
3
4
9
9
I

A
C
T
I
V
E

D
D
N
A
M
E
S
:

M
O
D
B
L
K
S
A

I
M
S
A
C
B
A

F
O
R
M
A
T
A

M
O
D
S
T
A
T

I
D
:

0
I
M
9
A

1
2
.
2
5
.
1
3

S
T
C
0
0
9
9
7

D
F
S
3
8
0
4
I

L
A
T
E
S
T

R
E
S
T
A
R
T

C
H
K
P
T
:

0
8
2
9
6
/
1
2
2
5
0
3
,

L
A
T
E
S
T

B
U
I
L
D
Q

C
H
K
P
T
:

0
8
2
9
6
/
1
2
0
5
2
3

I
M
9
A

1
2
.
2
5
.
2
2

S
T
C
0
0
9
9
7

D
F
S
2
7
1
6
I

N
O

M
S
D
B
S

F
O
U
N
D

-
N
O

M
S
D
B

C
H
E
C
K
P
O
I
N
T

T
A
K
E
N

I
M
9
A

3

1
2
.
2
5
.
2
2

S
T
C
0
0
9
9
7

D
F
S
9
9
4
I

*
C
H
K
P
T

0
8
2
9
6
/
1
2
2
5
2
2
*
*
S
I
M
P
L
E
*

I
M
9
A

1
2
.
2
5
.
2
2

S
T
C
0
0
9
9
7

D
F
S
3
4
9
9
I

A
C
T
I
V
E

D
D
N
A
M
E
S
:

M
O
D
B
L
K
S
A

I
M
S
A
C
B
A

F
O
R
M
A
T
A

M
O
D
S
T
A
T

I
D
:

0
I
M
9
A

1
2
.
2
5
.
2
2

S
T
C
0
0
9
9
7

D
F
S
3
8
0
4
I

L
A
T
E
S
T

R
E
S
T
A
R
T

C
H
K
P
T
:

0
8
2
9
6
/
1
2
2
5
1
3
,

L
A
T
E
S
T

B
U
I
L
D
Q

C
H
K
P
T
:

0
8
2
9
6
/
1
2
0
5
2
3

I
M
9
A

1
2
.
2
5
.
3
1

S
T
C
0
0
9
9
7

D
F
S
2
7
1
6
I

N
O

M
S
D
B
S

F
O
U
N
D

-
N
O

M
S
D
B

C
H
E
C
K
P
O
I
N
T

T
A
K
E
N

I
M
9
A

4

1
2
.
2
5
.
3
1

S
T
C
0
0
9
9
7

D
F
S
9
9
4
I

*
C
H
K
P
T

0
8
2
9
6
/
1
2
2
5
3
1
*
*
S
I
M
P
L
E
*

I
M
9
A

1
2
.
2
5
.
3
1

S
T
C
0
0
9
9
7

D
F
S
3
4
9
9
I

A
C
T
I
V
E

D
D
N
A
M
E
S
:

M
O
D
B
L
K
S
A

I
M
S
A
C
B
A

F
O
R
M
A
T
A

M
O
D
S
T
A
T

I
D
:

0
I
M
9
A

1
2
.
2
5
.
3
1

S
T
C
0
0
9
9
7

D
F
S
3
8
0
4
I

L
A
T
E
S
T

R
E
S
T
A
R
T

C
H
K
P
T
:

0
8
2
9
6
/
1
2
2
5
2
2
,

L
A
T
E
S
T

B
U
I
L
D
Q

C
H
K
P
T
:

0
8
2
9
6
/
1
2
0
5
2
3

I
M
9
A

1
2
.
2
5
.
4
1

S
T
C
0
0
9
9
7

D
F
S
2
7
1
6
I

N
O

M
S
D
B
S

F
O
U
N
D

-
N
O

M
S
D
B

C
H
E
C
K
P
O
I
N
T

T
A
K
E
N

I
M
9
A

1
2
.
2
5
.
4
1

S
T
C
0
0
9
9
7

D
F
S
9
9
4
I

*
C
H
K
P
T

0
8
2
9
6
/
1
2
2
5
4
1
*
*
S
I
M
P
L
E
*

I
M
9
A

5

1
2
.
2
5
.
4
1

S
T
C
0
0
9
9
7

D
F
S
3
4
9
9
I

A
C
T
I
V
E

D
D
N
A
M
E
S
:

M
O
D
B
L
K
S
A

I
M
S
A
C
B
A

F
O
R
M
A
T
A

M
O
D
S
T
A
T

I
D
:

0
I
M
9
A

1
2
.
2
5
.
4
1

S
T
C
0
0
9
9
7

D
F
S
3
8
0
4
I

L
A
T
E
S
T

R
E
S
T
A
R
T

C
H
K
P
T
:

0
8
2
9
6
/
1
2
2
5
3
1
,

L
A
T
E
S
T

B
U
I
L
D
Q

C
H
K
P
T
:

0
8
2
9
6
/
1
2
0
5
2
3

I
M
9
A

1
2
.
2
5
.
5
0

S
T
C
0
0
9
9
7

D
F
S
2
7
1
6
I

N
O

M
S
D
B
S

F
O
U
N
D

-
N
O

M
S
D
B

C
H
E
C
K
P
O
I
N
T

T
A
K
E
N

I
M
9
A

1
2
.
2
5
.
5
0

S
T
C
0
0
9
9
7

D
F
S
9
9
4
I

*
C
H
K
P
T

0
8
2
9
6
/
1
2
2
5
5
0
*
*
S
I
M
P
L
E
*

I
M
9
A

6

1
2
.
2
5
.
5
0

S
T
C
0
0
9
9
7

D
F
S
3
4
9
9
I

A
C
T
I
V
E

D
D
N
A
M
E
S
:

M
O
D
B
L
K
S
A

I
M
S
A
C
B
A

F
O
R
M
A
T
A

M
O
D
S
T
A
T

I
D
:

0
I
M
9
A

1
2
.
2
5
.
5
0

S
T
C
0
0
9
9
7

D
F
S
3
8
0
4
I

L
A
T
E
S
T

R
E
S
T
A
R
T

C
H
K
P
T
:

0
8
2
9
6
/
1
2
2
5
4
1
,

L
A
T
E
S
T

B
U
I
L
D
Q

C
H
K
P
T
:

0
8
2
9
6
/
1
2
0
5
2
3

I
M
9
A

1
2
.
2
5
.
5
4

S
T
C
0
0
9
9
7

D
F
S
2
2
1
3
I

D
C

M
O
N
I
T
O
R

S
T
O
P
P
E
D

-
(
T
I
M
E

I
N
T
E
R
V
A
L

E
L
A
P
S
E
D
)

I
M
9
A

N
o
te
s:

T
h
is
ex
tr
a
ct

co
n
�
rm

s
th
a
t
th
er
e
w
er
e
6
ch
ec
k
p
o
in
ts
ta
ke
n
d
u
ri
n
g
th
e
p
er
io
d
o
f
m
o
n
it
o
ri
n
g
a
s
se
en

in
th
e
p
re
v
io
u
s
�R
eg
io
n
S
u
m
m
a
ry

R
ep
o
rt
�.

204

U
n
d
er
st
a
n
d
in
g
th
e
T
ra
ce

re
p
o
rt
s
�
R
eg
io
n
IW

A
IT

R
ep
o
rt

T
h
er
e
w
il
l
b
e
a
�R
eg
io
n
IW

A
IT
�
re
p
o
rt
fo
r
ea
ch

re
g
io
n
,
so

in
th
is
ex
a
m
p
le
th
er
e
w
il
l
b
e
2
re
p
o
rt
s.

I
M
S

M
O
N
I
T
O
R

*
*
*

R
E
G
I
O
N

I
W
A
I
T

*
*
*

.
.
.
.
.
.
.
.
.
I
W
A
I
T

T
I
M
E
.
.
.
.
.
.
.
.
.
.

*
*
R
E
G
I
O
N

1
O
C
C
U
R
R
E
N
C
E
S

T
O
T
A
L

M
E
A
N

M
A
X
I
M
U
M

F
U
N
C
T
I
O
N

M
O
D
U
L
E

S
C
H
E
D
U
L
I
N
G

+
T
E
R
M
I
N
A
T
I
O
N

.
.
.
S
U
B
-
T
O
T
A
L
.
.
.

.
.
.
T
O
T
A
L
.
.
.

D
L
/
I

C
A
L
L
S

4
1
1
4
7
7

2
8
6
9

9
7
3
4

D
D
=
L
G
M
S
G

Q
M
G

.
.
.
T
O
T
A
L
.
.
.

4
1
1
4
7
7

2
8
6
9

C
H
E
C
K
P
O
I
N
T

.
.
.
T
O
T
A
L
.
.
.

I
M
S

M
O
N
I
T
O
R

*
*
*

R
E
G
I
O
N

I
W
A
I
T

*
*
*

.
.
.
.
.
.
.
.
.
I
W
A
I
T

T
I
M
E
.
.
.
.
.
.
.
.
.
.

*
*
R
E
G
I
O
N

4
O
C
C
U
R
R
E
N
C
E
S

T
O
T
A
L

M
E
A
N

M
A
X
I
M
U
M

F
U
N
C
T
I
O
N

M
O
D
U
L
E

S
C
H
E
D
U
L
I
N
G

+
T
E
R
M
I
N
A
T
I
O
N

.
.
.
S
U
B
-
T
O
T
A
L

.
.
.
T
O
T
A
L
.
.
.

D
L
/
I

C
A
L
L
S

6
3
7
6
9

6
2
8

9
9
5

D
D
=
L
G
M
S
G

Q
M
G

.
.
.
T
O
T
A
L
.
.
.

6
3
7
6
9

6
2
8

C
H
E
C
K
P
O
I
N
T

.
.
.
T
O
T
A
L
.
.
.

N
o
te
s:

T
h
es
e
re
p
o
rt
s
su
g
g
es
t
th
a
t
re
g
io
n
1
is
w
a
it
in
g
o
n
av
er
a
g
e
4
.5
ti
m
es

lo
n
g
er

th
a
n
re
g
io
n
4
o
n
th
e
fe
w
o
cc
a
si
o
n
s
th
a
t
th
e
re
g
io
n
s
a
re

in
a
w
a
it

(a
to
ta
l
o
f
1
0
ti
m
es
).
It
a
ls
o
su
g
g
es
ts
th
a
t
a
ll
o
f
th
e
w
a
it
s
w
er
e
fo
r
th
e
L
G
M
S
G
d
at
as
et
.

205

U
n
d
er
st
a
n
d
in
g
th
e
tr
a
ce

re
p
o
rt
s
�
P
ro
g
ra
m

S
u
m
m
a
ry

R
ep
o
rt

I
M
S

M
O
N
I
T
O
R

*
*
*

P
R
O
G
R
A
M

S
U
M
M
A
R
Y
*
*
*

I
/
O

T
R
A
N
.

C
P
U

.
E
L
A
P
S
E
D

S
C
H
E
D
.
T
O

.
E
L
A
P
S
E
D

N
O
.

T
R
A
N
S
.

C
A
L
L
S

I
/
O

I
W
A
I
T
S

D
E
Q
D
.

T
I
M
E

T
I
M
E

1
S
T

C
A
L
L

T
I
M
E

P
S
B
N
A
M
E

S
C
H
E
D
S
.

D
E
Q
.

C
A
L
L
S

/
T
R
A
N

I
W
A
I
T
S

/
C
A
L
L

/
S
C
H
.

/
S
C
H
E
D
.

/
S
C
H
E
D
.

/
S
C
H
E
D
.

/
T
R
A
N
S
.

I
B
0
2
I
N
Q

2
1
0
7
6
9
2

2
1
5
3
8
0

1
.
9

1
0

0
.
0
3
8
4
6
.
0

2
6

3
8
1
6
8
8
5
6

2
1
2
1

7
0
8

*
*
T
O
T
A
L
S

2
1
0
7
6
9
2

2
1
5
3
8
0

1
.
9

1
0

0
.
0

3
8
4
6
.
0

2
6

3
8
1
6
8
8
5
6

2
1
2
1

7
0
8

N
o
te
s:

T
h
is
re
p
o
rt
s
co
n
�
rm

th
a
t
th
er
e
w
er
e
1
0
w
a
it
s
fo
r
I/
O
(f
o
r
D
D
=
L
G
M
S
G
).
It
a
ls
o
te
ll
s
u
s
th
at

in
th
e
m
o
n
it
o
ri
n
g
p
er
io
d
,
1
0
7
,6
9
2
tr
a
n
sa
ct
io
n
s

w
er
e
ru
n
ov
er

th
e
2
m
es
sa
g
e
p
ro
ce
ss
in
g
re
g
io
n
s.

206

U
n
d
er
st
a
n
d
in
g
th
e
tr
a
ce

re
p
o
rt
s
�
P
ro
g
ra
m

I/
O
R
ep
o
rt

I
M
S

M
O
N
I
T
O
R

*
*
*

P
R
O
G
R
A
M

I
/
O

*
*
*

.
.
.
.
.
.
.
.
.
I
W
A
I
T

T
I
M
E
.
.
.
.
.
.
.
.
.
.

P
S
B
N
A
M
E

P
C
B

N
A
M
E

I
W
A
I
T
S

T
O
T
A
L

M
E
A
N

M
A
X
I
M
U
M

D
D
N
/
F
U
N
C

M
O
D
U
L
E

I
B
0
2
I
N
Q

I
/
O

P
C
B

5
0
6
0
0

2
1
7
5
3
5
4
2

4
2
9

2
8
5
2
5

*
*
W

F
I

5
0
3
7
9

2
1
8
5
8
0
4
4

4
3
3

2
3
5
3
5

*
*
W

F
I

1
0

1
5
2
4
6

1
5
2
4

9
7
3
4

L
G
M
S
G

Q
M
G

P
C
B

T
O
T
A
L

1
0

1
5
2
4
6

1
5
2
4

P
S
B

T
O
T
A
L

1
0

1
5
2
4
6

1
5
2
4

G
R
A
N
D

T
O
T
A
L

1
0

1
5
2
4
6

1
5
2
4

N
o
te
s:

T
h
is
re
p
o
rt

su
g
g
es
ts

th
a
t
th
e
IM

S
tr
a
n
sa
ct
io
n
�I
B
0
2
IN
Q
�
h
a
s
h
a
d
a
si
g
n
i�
ca
n
t
n
u
m
b
er

o
f
IM

S
w
a
it
s
(1
0
0
,9
7
9
)
w
it
h
a
n
av
er
a
g
e
ti
m
e
o
f

4
2
9
-4
3
3
m
ic
ro
se
co
n
d
s.

T
h
is
a
g
a
in

su
g
g
es
ts

th
a
t
th
er
e
a
re

su
�
ci
en
t
M
P
R
s
to

su
p
p
o
rt

th
e
M
Q

w
o
rk
lo
a
d
,
o
r
co
n
ve
rs
el
y
th
a
t
th
er
e
w
a
s
in
su
�
ci
en
t

w
o
rk
lo
a
d
to

d
ri
ve

th
e
M
P
R
a
t
ca
p
a
ci
ty
.

A
s
a
n
ex
a
m
p
le
o
f
w
h
en

a
d
d
it
io
n
a
l
M
P
R
s
m
ay

b
e
re
q
u
ir
ed
,
th
e
fo
ll
ow

in
g
2
re
p
o
rt
s
w
er
e
ta
ke
n
w
h
en

ru
n
n
in
g
w
it
h
1
6
b
a
tc
h
a
p
p
li
ca
ti
o
n
s
u
si
n
g
th
e

sa
m
e
T
P
IP
E
.

207

1
6
B
a
tc
h
A
p
p
li
ca
ti
o
n
s,
1
T
P
IP
E
,
4
M
P
R
s

I
M
S

M
O
N
I
T
O
R

*
*
*

P
R
O
G
R
A
M

I
/
O

*
*
*

.
.
.
.
.
.
.
.
.
I
W
A
I
T

T
I
M
E
.
.
.
.
.
.
.
.
.
.

P
S
B
N
A
M
E

P
C
B

N
A
M
E

I
W
A
I
T
S

T
O
T
A
L

M
E
A
N

M
A
X
I
M
U
M

D
D
N
/
F
U
N
C

M
O
D
U
L
E

I
B
0
2
I
N
Q

I
/
O

P
C
B

4
1

2
4
8
3
0

6
0
5

1
6
2
8

*
*
W

F
I

4
1

3
3
3
4
6

8
1
3

3
3
1
4

*
*
W
F

I

4
3

2
5
7
6
3

5
9
9

2
0
6
3

*
*
W

F
I

2
7

1
2
9
8
5

4
8
0

1
9
3
1

*
*
W

F
I

8
1
5
7
8
6

1
9
7
3

1
0
0
1
0

L
G
M
S
G

Q
M
G

P
C
B

T
O
T
A
L

8
1
5
7
8
6

1
9
7
3

P
S
B

T
O
T
A
L

8
1
5
7
8
6

1
9
7
3

G
R
A
N
D

T
O
T
A
L

8
1
5
7
8
6

1
9
7
3

1
6
B
a
tc
h
A
p
p
li
ca
ti
o
n
s,
1
T
P
IP
E
,
5
M
P
R
s

I
M
S

M
O
N
I
T
O
R

*
*
*

P
R
O
G
R
A
M

I
/
O

*
*
*

.
.
.
.
.
.
.
.
.
I
W
A
I
T

T
I
M
E
.
.
.
.
.
.
.
.
.
.

P
S
B
N
A
M
E

P
C
B

N
A
M
E

I
W
A
I
T
S

T
O
T
A
L

M
E
A
N

M
A
X
I
M
U
M

D
D
N
/
F
U
N
C

M
O
D
U
L
E

I
B
0
2
I
N
Q

I
/
O

P
C
B

1
5
9
3

9
0
0
4
3
0

5
6
5

5
3
2
3

*
*
W

F
I

1
5
3
0

8
5
3
9
6
2

5
5
8

3
3
9
1

*
*
W

F
I

1
5
2
5

8
8
6
9
1
0

5
8
1

8
1
0
3

*
*
W

F
I

1
5
9
5

8
8
7
4
6
6

5
5
6

5
6
8
5

*
*
W

F
I

1
6
1
3

8
9
9
2
4
9

5
5
7

4
5
6
5

*
*
W

F
I

1
0

6
8
4
3

6
8
4

1
1
2
4

L
G
M
S
G

Q
M
G

P
C
B

T
O
T
A
L

1
0

6
8
4
3

6
8
4

P
S
B

T
O
T
A
L

1
0

6
8
4
3

6
8
4

G
R
A
N
D

T
O
T
A
L

1
0

6
8
4
3

6
8
4

N
o
te
s:

In
b
o
th

ca
se
s,
th
e
n
u
m
b
er

o
f
IM

S
w
a
it
s
is
si
g
n
i�
ca
n
tl
y
le
ss

th
a
n
in

th
e
o
ri
g
in
a
l
ex
a
m
p
le
.
T
h
e
n
u
m
b
er
s
in

b
lu
e
co
rr
es
p
o
n
d
to

th
e
n
u
m
b
er

o
f

m
es
sa
g
e
p
ro
ce
ss
in
g
re
g
io
n
s
a
ct
iv
e.

W
h
en

th
er
e
a
re

4
M
P
R
s
se
rv
ic
in
g
th
e
M
Q

w
o
rk
lo
a
d
,
a
ve
ry

lo
w
n
u
m
b
er

o
f
IW

A
IT
S
ca
n
b
e
se
en
.
T
h
is
w
ou
ld

in
d
ic
a
te

th
a
t
th
e
M
P
R
s
a
re

n
ea
rl
y

a
lw
ay
s
b
u
sy
,
a
n
d
a
d
d
in
g
a
d
d
it
io
n
a
l
M
P
R
s
m
ay

b
e
o
f
b
en
e�
t.
T
h
er
e
is
a
ls
o
a
sm

a
ll
n
u
m
b
er

o
f
w
a
it
s
(8
)
o
n
th
e
L
G
M
S
G
d
a
ta
se
t.

W
h
en

th
er
e
a
re

5
M
P
R
s
se
rv
ic
in
g
th
e
w
o
rk
lo
a
d
,
th
e
n
u
m
b
er

o
f
IW

A
IT
S
in
cr
ea
se
s
w
h
ic
h
su
g
g
es
ts
th
er
e
is
sp
ar
e
ca
p
a
ci
ty
.

208

T
o
co
n
�
rm

th
is
,
a
lo
o
k
a
t
th
e
�R
eg
io
n
O
cc
u
p
a
n
cy
�
se
ct
io
n
o
f
th
e
�R
eg
io
n
S
u
m
m
ar
y
�
re
p
o
rt
,
sh
ow

s
th
a
t
fo
r
4
M
P
R
s,
ea
ch

re
g
io
n
w
a
s
ru
n
n
in
g
a
t

9
9
.7
%

w
h
er
ea
s
w
h
en

ru
n
n
in
g
w
it
h
5
M
P
R
s,
th
e
re
g
io
n
s
ra
n
a
t
9
8
.3
%

-
a
g
a
in

sh
ow

in
g
th
er
e
is
so
m
e,
b
u
t
n
o
t
m
u
ch
,
sp
a
re

ca
p
a
ci
ty
.

209

When do I need more TPIPEs?

At some point, the task running in the queue manager that is getting messages from the request
queue and putting to IMS cannot run any faster. At this point, additional throughput may be
achieved by using multiple IMS Bridge queues (which will each have a separate queue manager
task).

Alternatively, if shared queues are in use, the addition of another queue manager in the QSG will
provide another task to get the message from the queue and pass to IMS.

To determine whether more TPIPEs will bene�t the throughput, the IMS region will again need to
be monitored to determine whether the MPRs are working e�ciently. In addition, the MQ queues
need to be checked to see if a backlog is building either on the request or the reply queue.

This example is based on 2 sets of measurements:

Both measurements used local IMS Bridge queues with the workload running on LPAR 1 (rated as
a 2084-303).

Commit Mode
0

Commit-Then-Send
1

Send-Then-Commit

MPR 2 2

TPIPEs 1 1

Requester Tasks 6 6

Persistent Messages No No

Transaction Rate 2700 / sec 2747 / sec

CPU Utilisation 82.5% 87%

Cost / Transaction 917 microseconds 950 microseconds

What information can we get from the above table?

� The workload is not CPU-constrained.

� Whilst CM1 is achieving a higher transaction rate, the cost per transaction is also higher than
for CM0.

The following chart shows where the costs are incurred in these 2 measurements.

Compared to commit mode 0 �Commit-Then-Send�, the commit mode 1 �Send-Then-Commit� mea-
surements show:

� 10% increase in the cost of the queue manager processing the transaction over commit mode
0 �Commit-Then-Send�

� 13% increase in the cost of the MPR processing the transaction.

� 20% decrease in the cost to the IMS control region

� A 3.5% overall increase in cost per transaction.

210

Looking at the trace reports for these 2 measurements shows the Region Occupancy for the MPRs
at:

� 31.2% and 29.9% for the commit mode 0 �Commit-Then-Send� measurement.

� 72.3% and 72.3% for the commit mode 1 �Send-Then-Commit� measurement.

Looking at the �Program I/O� report for the Commit Mode 0 measurement:

IMS MONITOR *** PROGRAM I/O ***

.........IWAIT TIME..........

PSBNAME PCB NAME IWAITS TOTAL MEAN MAXIMUM DDN/FUNC ...

IB02INQ I/O PCB 82718 41191904 497 192534 **W F I

79081 42015547 531 168595 **W F I

52 111728 2148 25744 LGMSG

This above extract shows that there are a signi�cant number of IMS waits for each MPR, average
0.5 milliseconds.

Similarly the �Program I/O� report for Commit Mode 1 shows:

IMS MONITOR *** PROGRAM I/O ***

.........IWAIT TIME..........

PSBNAME PCB NAME IWAITS TOTAL MEAN MAXIMUM DDN/FUNC ...

IB02INQ I/O PCB 79882 16582118 207 29985 **W F I

79855 16592048 207 29200 **W F I

10 17574 1757 13233 LGMSG

This extract shows that there are a signi�cant number of IMS waits for each MPR, average 0.2
milliseconds.

This suggests that the MPRs have the capacity to be driven at higher transaction rate.

Since we also know that there is more capacity available on the LPAR, something else is causing the
constraint.

211

By issuing the queue manager command �RESET QSTATS� against the request and the reply queues,
�rstly to reset and then secondly (a period of time later) to review, it was seen that the request
queue has a HIQDEPTH of 6 for both commit modes. The reply queue had a HIQDEPTH of 1 for
commit mode 0 and 4 for commit mode 1.

That the request queue had a HIQDEPTH of 6 suggests that the queue manager task that gets
the message from the request queue and put to the IMS Bridge is not able to keep pace with the
workload.

In the case of the reply queue, the values for HIQDEPTH show that for commit mode 0, the replies
are being gotten by the batch applications as quickly as the messages are put.

The tests were re-run using 2 TPIPEs, to see if allowing the queue manager a second task to get
messages from the request queues will help drive the workload at a higher rate.

Commit Mode
0

Commit-Then-Send
1

Send-Then-Commit

MPR 2 2

TPIPEs 2 2

Requester Tasks 6 6

Persistent Messages No No

Transaction Rate 2852 / sec 3017 / sec

CPU Utilisation 89.5% 92.57%

Cost / Transaction 941 microseconds 920 microseconds

Looking at the trace reports for these 2 measurements shows the Region Occupancy for the MPRs
at:

� 33.6% and 34% for the Commit Mode 0 �Commit-Then-Send� measurement.

� 99.7% and 99.7% for the Commit Mode 1 �Send-Then-Commit� measurement.

Looking at the �Program I/O� report for the Commit Mode 0 (Commit-then-Send) measurement:

IMS MONITOR *** PROGRAM I/O ***

.........IWAIT TIME..........

PSBNAME PCB NAME IWAITS TOTAL MEAN MAXIMUM DDN/FUNC ...

IB02INQ I/O PCB 85064 39500980 464 13979 **W F I

84605 39736498 469 86560 **W F I

82 167153 2038 37939 LGMSG

This shows a slight increase in the number of IMS waits (from 161,799 to 169,669) but the average
time has also decreased slightly (from 500 microseconds to 467 microseconds).

For Commit Mode 1 (Send-then-Commit), there is a marked improvement �which can be seen in
the �Program I/O� report following:

IMS MONITOR *** PROGRAM I/O ***

.........IWAIT TIME..........

PSBNAME PCB NAME IWAITS TOTAL MEAN MAXIMUM DDN/FUNC ...

IB02INQ I/O PCB 713 166333 233 14037 **W F I

693 158148 228 13302 **W F I

16 48000 3000 14989 LGMSG

212

Compared to the previous run that used 1 TPIPE, the number of IMS waits has dropped signi�cantly,
from 159,737 to 1406, whilst the average wait is still approximately 0.2 milliseconds. This suggests
that the workload is potentially constrained by the MPRs.

Checking the information reported by the �RESET QSTATS� command, for both commit mode 0
and commit mode 1, the HIQDEPTH is now 3 for each of the two IMS Bridge Queues and 2 for
each of the reply queues.

In summary, for Commit Mode 0 there has been a 5.6% increase in the transaction rate simply by
using a second TPIPE. The MPRs are not running at capacity, which suggests that using further
TPIPEs will help drive the workload faster.

For Commit Mode 1, simply by using a second TPIPE, there has been 9.8% increase in the through-
put. Since the MPRs are now nearing 100% occupancy, the next step would be to add a further
MPR and re-evaluate.

213

IMS Bridge Throughput � Local Queues

The following section uses a standard con�guration for measuring performance of the IMS Bridge
queues as de�ned in the �Initial Con�guration� section. The aim of these charts is to provide a
comparison with other measurements such as �IMS Bridge Throughput � Shared Queue � Single
Queue Manager� rather than showing the optimum throughput achieved on our system.

For these particular measurements, the system under test is con�gured as follows:

� The LPAR in use is a 2084-303

� 8 IMS Bridge local queues de�ned

� 8 corresponding reply-to queues that have been de�ned with an index type of CORRELID.

� The IMS region will have 4 message processing regions started with �wait-for-input�.

� The workload will be 8 batch requester tasks that put a message to only 1 of the 8 IMS Bridge
queues and waits for a reply on the corresponding reply-to-queue.

� When only 1 TPIPE is being used, all 8 requesters will put to the same IMS Bridge queue and
get from a common reply queue.

� When 8 TPIPEs are being used, each of the 8 requester tasks will put to a separate IMS Bridge
queue and get from a corresponding reply-to queue.

NOTE: A transaction is de�ned as a batch task putting a message to an IMS Bridge queue and
then getting a reply message from a corresponding reply-to queue (indexed by CORRELID) using
CORRELID to get the message.

Since the queue manager will be on the same z/OS image as the IMS subsystem, the OTMA will
be local which will provide a greater throughput capacity than a remote link.

214

Non-Persistent Message Throughput � Local queues

NOTE: The con�guration for the preceding measurement saw the machine run at a peak of 60% of
capacity. By following the guidelines set out previously, we were able to drive workload using 1KB
non-persistent messages using 1 IMS Bridge queue supported by a single MPR at 2000 transactions
/ second, an increase of 35% and at close to 100% of the LPAR capacity.

Persistent Message Throughput � Local Queues

NOTE: The con�guration for the preceding measurement saw the machine run at a peak of 50% of
capacity and therefore it is possible to increase the throughput by following the instructions earlier
in this chapter.

Commit mode 1 (Send-then-Commit) can be seen to be signi�cantly out-performing the commit

215

mode 0 con�guation when using persistent messages. This is because CM1 has less IMS logging
than CM0.

IMS Bridge Throughput � Shared Queue � Single Queue Man-
ager

The following section uses a standard con�guration for measuring performance of the IMS Bridge
queues as de�ned in the �Initial Con�guration� section. The aim of these charts is to provide a
comparison with other measurements such as �IMS Bridge Throughput � Local Queues� rather than
showing the optimum throughput achieved on our system.

For these particular measurements, the system under test is con�gured as follows:

� The LPAR in use is a 2084-303.

� 8 IMS Bridge shared queues are de�ned.

� 8 corresponding reply-to shared queues that have been de�ned with an index type of COR-
RELID.

� The IMS region will have 4 message processing regions started with �wait-for-input�.

� The workload will be 8 batch requester tasks that put a message to only 1 of the 8 IMS Bridge
queues and waits for a reply on the corresponding reply-to-queue.

◦ When only 1 TPIPE is being used, all 8 requesters will put to the same IMS Bridge queue
and get from a common reply queue.

◦ When 8 TPIPEs are being used, each of the 8 requester tasks will put to a separate IMS
Bridge queue and get from a corresponding reply-to queue.

216

Non-Persistent Message Throughput � Shared Queue

Persistent Message Throughput � Shared Queue

217

IMS Bridge Throughput using Remote Queue Managers

The measurements in this section use a di�erent con�guration to previous sections � rather than
using 1 LPAR con�gured as a 2084-303, there will be 3 LPARs available, con�gured thus:

LPAR 1 2084-305 (5 CPUs)

Hosts the IMS subsystem,

8 message processing regions.

Hosts a queue manager that is part of queue sharing group (QSG).

LPAR 2 2084-303 (3 CPUs)

Hosts second queue manager in the QSG.

LPAR 3 2084-303 (3 CPUs)

Hosts third queue manager in the QSG.

Depending on the measurement, some of the queue managers in the QSG may be stopped.

Workload in the form of batch requester tasks will be run on di�erent LPARs depending on the
measurement.

In the case where shared queue IMS Bridge queues are used, there is a TPIPE from each queue
manager to IMS for every bridge queue. This means when there are 3 queue managers available,
there will be 3 TPIPEs per shared IMS Bridge queue. These TPIPEs will race for the next message
on each such shared queue. Thus the queue manager on LPAR 2 can MQGET a message that
was created by the queue manager on LPAR 1 and send it to IMS over its OTMA link. When
the response is returned (typically to the queue manager that put the message to IMS), the queue
manager on LPAR 2 must resolve the destination reply-to queue to a speci�c queue.

A queue manager with attribute SQQMNAME(IGNORE) resolves the reply-to-queue directly to the shared
queue. If the SQQMNAME(IGNORE) attribute is not set, the message may be put to the dead letter
queue with a reason code 2087 `Unknown Remote Queue Manager'.

218

Shared Queue � Non-Persistent Messages

The following chart shows the throughput achieved when the number of queue managers active are
all running a workload using 16 batch requesters to drive a varying number of IMS Bridge queues.
When there is 1 queue manager active, it is local to the IMS region.

The following chart shows the same con�guration as previously but using Commit Mode 0 (Commit-
Then-Send).

In the following chart, all 3 queue managers are running on separate LPARs but the workload will
be run on only 1, 2 or 3 of those queue managers.

When workload is run on any particular LPAR, there will be 16 batch requester tasks, i.e. when the
workload runs on 2 LPARs, there will be a total of 32 batch requester tasks, and 48 batch requester
tasks when running on 3 LPARs.

219

NOTE: When comparing the data from this chart for �CM1 workload on 1 of 3� with the �CM1 �
1000 bytes� data from the �Non-Persistent Message Throughput � Shared Queue� chart, there is a
signi�cant increase in through-put. There are several reasons for this:

1. The workload is being run on an LPAR with 5 processors rather than 3

2. The �idle� queue managers on LPARs 2 and 3 both have shared IMS Bridge queues de�ned
and as a result are active in processing messages put by the applications to the IMS Bridge
queues and receiving the reply messages sent by IMS.

220

IMS Bridge Non-Persistent Message Throughput � Remote Queue Man-
ager

The following chart shows the throughput achieved when there are no queue managers on the same
LPAR as the IMS subsystem. This ensures that the OTMA connections are across z/OS's.

In all of these measurements, there are 16 batch requester tasks, whether there are 1 or 2 queue
managers active, or example if there are 2 active queue managers, there are 8 batch requesters
connected to each queue manager.

221

Shared Queue � Persistent Messages

The following chart shows the throughput achieved when the number of queue managers active are
all running a workload using 16 batch requesters to drive a varying number of IMS Bridge queues.
When there is 1 queue manager active, it is local to the IMS region.

In the following chart, all 3 queue managers are running on separate LPARs but the workload will
be run on only 1, 2 or 3 of those queue managers.

When workload is run on any particular LPAR, there will be 16 batch requester tasks, i.e. when the
workload runs on 2 LPARs, there will be a total of 32 batch requester tasks.

The following chart shows the same workload con�guration as previously but varies the commit
mode to CM0 (Commit-Then-Send)

222

223

IMS Bridge Persistent Message Throughput � Remote Queue Manager

The following chart shows the throughput achieved when there are no queue managers on the same
LPAR as the IMS subsystem � This ensures that the OTMA connections are across z/OS's.

NOTE: In all of these measurements, there are 16 batch requester tasks, whether there are 1 or 2
queue managers active � if there are 2 active queue managers, there are 8 batch requesters connected
to each queue manager.

224

Chapter 10

Hardware Considerations

CPU cost calculations on other System z hardware

CPU costs can be translated from a measured system to the target system on a di�erent zSeries
machine by using Large Systems Performance Reference (LSPR) tables. These are available at:
System z LSPR ITR rations for IBM processors.

The LSPR workload is now calculated on a workload's relative nest intensity. For general IBM MQ
workload, it is recommended to use the AVERAGE relative nest intensity value as this is similar
to the previous mixed workload levels and is expected to represent the majority of production
workloads.

This example shows how to estimate the CPU cost for a zSeries 2097-703 where the measurement
results are for a 2094-704:

� The LSPR gives the 2094-704 an average relative nest intensity (RNI) of 3.79

� As the 2094-704 is a 4-way processor, the single engine RNI is 3.79 / 4 = 0.9475

� The �average� RNI of the 2097-703 used for the measurement is 4.41.

◦ The 2097-703 is a 3-way processor.

◦ Its single engine ITR is 4.41 / 3 = 1.47

� The 2094-704 / 2097-703 single engine ratio is 0.9475 / 1.47 = 0.64 approximately

◦ This means that a single engine of a 2097-703 is nearly 50% more powerful than a single
engine of a 2094-704.

� Take a CPU cost of interest from this report, e.g. x CPU microseconds (2094-704) per message,
then the equivalent on a 2097-703 will be x * 0.644 CPU microseconds per message

� To calculate CPU busy, calculate using the number of processors multiplied either by 1,000
(milliseconds) or 1,000,000 (microseconds) to �nd the available CPU time per elapsed second.

Example: A 2064-1C5 has 5 processors so has 5,000 milliseconds CPU time available for every
elapsed second. So, for a CPU cost of interest from the report of 640 milliseconds on a 2064-1C5,
the CPU busy would be: 640 / (5*1000) * 100 (to calculate as a percentage) = 12.8%

225

https://www-304.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprITRzOSv1r13?OpenDocument

Caveat

Such CPU cost calculations are useful for estimating purposes. However, extrapolation of throughput
potential from one system to another is much more risky because limitations other than CPU power
may easily become signi�cant. For instance:

� Inadequate BUFFERPOOL size could mean that page set I/O becomes the limiting factor.

� For persistent messages IBM MQ log data rate is often the limiting factor.

� There may be other limitations beyond the scope of IBM MQ whatever the message persistence
used. For instance,

◦ Network bandwidth when transmitting messages or using IBM MQ thin clients.

◦ You also need to factor in all business logic costs and constraints as there are none in our
workloads.

Example: LSPR compared to actual results

An initial set of measurements were run by the IBMMQ Performance group comparing MQ workload
on a zEnterprise 196 with workload on a z10-EC64 that has been con�gured in a similar manner.

The following section provides detail of those measurements.

For the set of measurements completed, the zEnterprise 196 out-performed the expectations that
were set based on the z10 numbers and the data obtained from the LSPR charts available from:

System z LSPR ITR rations for IBM processors.

In order to ensure that the tests run on both platforms were directly comparable, only CPU bound
tests were run. In conjunction with the relative simplicity of the applications in use, this means
that the actual results obtained on the zEnterprise 196 were signi�cantly better than the LSPR may
suggest.

Since these tests were CPU bound and the LSPR measurements are based on a mixed type of
workload, it is still the recommendation that for production MQ workload estimations, the average
relative nest intensity (RNI) value is used.

Overview of Environment: Workload

� A set of batch measurements were run against a single WebSphere MQ version 7.0.1 queue
manager.

� Only private queues were used.

◦ The set of tests incorporated a request/reply model. This took the form shown in the
diagram below. Tests were run using non-persistent messages of sizes ranging from 1KB
to 100KB.

226

https://www-304.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprindex?OpenDocument

Request / Reply model

Batch Applications

The batch applications used for the measurements are relatively simple and do not include any
business logic.

� The requester application is written in PL/X

� The server application is written in C

� All applications are self-monitoring and determine their costs of interest accordingly.

Hardware systems under test

z10 EC (2097-764)

� LPAR with 3 dedicated CPs � 2097 703 (LSPR)

zEnterprise 196 (2817-780)

� LPAR with 3 dedicated CPs � 2817 703 (LSPR)

LSPR tables

The information below is an extract of the relevant machines' information from the LSPR website
for z/OS v1 r11 for �IBM processors running multiple z/OS images�.

Machine Processor #CP PCI MSU Low Average High

z10 EC 2097-703 3 2468 312 4.7 4.41 3.95

zEnterprise 196 2817-703 3 3311 408 6.13 5.92 5.46

227

https://www-304.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprITRzOSv1r13?OpenDocument&pathID=

Non-Persistent Out-Of-Syncpoint Messages

This scenario used 5 requester applications that put a non-persistent out-of-syncpoint message to
a single queue that is being served by 4 applications that get-next the message and put a reply
message to a pre-opened queue. This reply message is then gotten by correlation ID by the original
requester task.

The following chart show the achieved transaction rates on the z10 and the z196 machines under
test for a range of message sizes. Also shown are the machine utilisation percentages.

Note: As can be seen in the preceding chart, the zEnterprise is able to process transactions at
between 65 and 100% faster than the z10. In each case the machine is running at in excess of 90%
of capacity.

The following chart shows the average cost per transaction based on the achieved (or external)
transaction rate and compares it to the expected costs calculated using the LSPR numbers for the
machines under test and the algorithm detailed in the section �CPU Cost calculations on other
System Z hardware�.

228

In the above chart, it can be seen that processing a 32KB message on a z10 costs around 110
microseconds, whereas on a z196 a transaction using the same message size costs around 60 mi-
croseconds.

229

Non-persistent in-syncpoint messages

This scenario used 5 requester applications that put a non-persistent in-syncpoint message to a single
queue that is being served by 4 applications that get-next the message and put a reply message to
a pre-opened queue. This reply message is then gotten by correlation ID by the original requester
task.

Note: In the type of measurement shown in the previous chart, the zEnterprise 196 has processed
the transactions between 60% and 70% faster than the equivalent z10. One of the factors in this
improvement is the relative simplicity of the measurement and being able to keep as much of the
code inside the zEnterprise 196's cache.

The following chart shows the average cost per transaction based on the achieved (or external)
transaction rate and compares it to the expected costs calculated using the LSPR numbers for the
machines under test and the algorithm detailed in the section �CPU Cost calculations on other
System Z hardware�.

230

Note: In the previous chart, it can be seen that processing a 32KB message on a z10 costs around
290 microseconds, whereas on a zEnterprise 196 a transaction using the same message size costs
around 170 microseconds.

231

	Queue Manager
	Queue manager attributes
	Log data set definition
	Should your archive logs reside on tape or DASD?
	How to minimize recovery time
	Should your installation use single or dual logging?
	How large can your active logs be?
	Striped logs
	Striped archive logs
	8-byte log RBA
	How much log space does my message use?
	What is my logging rate?
	How much log space do I need when backing up a CF structure?
	How can we estimate the required log data rate for a system?

	Page sets
	Page set usage
	Size of page sets for a given number of messages
	Number of page sets
	Recovering page sets
	How often should a page set be backed up?
	Why WebSphere MQ for z/OS changed how it manages small messages in V7.0.1

	Buffer pools
	Buffer pool default sizes
	Buffer pool usage
	Using buffers allocated in 64-bit storage
	Page fixed buffers
	Why not page fix by default?
	The effect of buffer pool size on restart time
	Deferred Write Process
	What changed in version 8.0?
	How many DWP tasks are there?
	How much data could DWP write at checkpoint?
	What impact is there when DWP writes large amounts of data?

	Recovery
	Restart
	How long will my system take to restart after a failure?
	What happens during a checkpoint
	What happens during the recovery phase of restart
	How long will each phase of the recovery take?
	What happens during the recovery phase of restart when in a QSG
	Log load - effect of LOGLOAD on restart time
	Increase in startup time after abnormal shutdown

	Tuning
	Performance implications of very large messages
	Use of MQ Utilities
	IBM MQ Utilities: CSQUTIL

	Queue Manager Trace
	Accounting Trace Costs
	Storage Usage
	Who pays for data collection?
	Who pays for writing to SMF?
	How much data is written?

	Statistics Trace Costs
	Global Trace Costs

	Performance / Scalability
	Maximum throughput using persistent messages
	What factors affect persistent message throughput ?
	Application syncpoint specifics
	Message size and number of messages per commit

	Indexed Queues
	Indexed queue considerations
	Private indexed queue rebuild at restart

	Queue manager initiated expiry processing
	Queue manager security
	How much storage is used?
	The environment being measured
	The data
	What can we gather from the chart?

	Virtual storage usage
	Object sizes
	Page set 0 usage
	Virtual storage usage by object type

	Initial CSA (and ECSA) usage
	CSA usage per connection
	Buffer Pool Usage
	Storage for security information
	Impact of number of objects defined
	Use of indexed queues
	Object handles
	Number of pages in use for internal locks
	Shared queue
	Using BACKUP CFSTRUCT command
	Clustering

	Coupling Facility
	CF link type and shared queue performance
	How many CF structures should be defined?
	What size CF structures should be defined?
	CSQ_ADMIN
	How large does my admin structure need to be?
	Application structures
	How many messages fit in a particular CF application structure size?
	CF at CFCC levels 14 and later
	Sizing structures at CFLEVEL(5)

	Increasing the maximum number of messages within a structure
	Use of system initiated alter processing
	User initiated alter processing

	How often should CF structures be backed up?
	Administration only queue manager
	When should CF list structure duplexing be used?
	How does use of duplexed CF structures affect performance of MQ?
	CPU costs
	Throughput
	CF Utilization (CF CPU)
	Environment used for comparing Simplex versus Duplex CF structures
	Duplexing the CSQ_ADMIN structure
	Duplexing an application structure

	Non persistent shared queue message availability
	Coupling Facility
	What is the impact of having insufficient CPU in the Coupling Facility?
	When do I need to add more engines to my Coupling Facility?
	What type of engine should be used in my Coupling Facility?
	CF Level 19 - Thin Interrupts
	Why do I see many re-drives in the statistics report?
	What is a re-drive?
	Why do I see many re-drives in the statistics report?
	Effect of re-drives on performance
	Batch delete of messages with small structures - CFLEVEL(4) and lower

	Shared Message Data Sets - CFLEVEL(5)
	DB2
	Is DB2 tuning important?
	Why does IBM MQ produce more DB2 rollbacks than I expect?

	Shared queue messages > 63KB
	Shared queue persistent message throughput after 63KB transition
	Shared queue persistent message request/reply CPU costs
	Shared queue persistent message request/reply CF costs

	Storage Class Memory (SCM)
	Using SCM with IBM MQ
	Impact of SCM on Coupling Facility capacity
	How much SCM is available?
	How do I know I am using SCM and how much?
	ALLOWAUTOALT(YES) usage with SCM
	Useful guidelines:

	Impact of CF Flash on Application performance
	Non-Sequential gets from deep shared queue
	RMF data
	Example use cases for IBM MQ with SCM
	Capacity – CFLEVEL(4 and less) – no offload available - ``Improved Performance''
	Capacity – CFLEVEL(5) Offload - ``Emergency Storage''
	Capacity – CFLEVEL(5) – no offload - ``Improved Performance''

	Performance / Scalability
	Does the CF Structure attribute ``CFLEVEL'' affect performance?
	The impact on MQ requests of the CURDEPTH 0 to 1 transition
	When would I need to use more than one structure?
	When do I need to add more Queue Managers to my QSG?
	What is the impact of having Queue Managers active in a QSG but doing no work?
	What is a good configuration for my shared queues?
	Shared queue persistent messages
	Shared queue performance affecting factors

	Channel Initiator
	What is the capacity of my channel initiator task?
	Channel initiator task storage usage
	What limits the maximum number of channels?
	How many channels can a channel initiator support?
	How many SVRCONN channels can a channel initiator support?
	Does SSL make a difference to the number of channels I can run?
	Channel initiator buffer pools
	What happens when the channel initiator runs out of storage?
	Channel Initiator Scavenger Task

	Defining channel initiator - CHINIT parameters
	CHIADAPS
	CHIDISPS and MAXCHL
	Checking the OMVS Environment
	Effect of Changing CHIDISPS

	Tuning Channels
	Channel option BATCHHB
	Channel option BATCHINT
	Channel option BATCHLIM
	Channel option BATCHSZ
	Channel option COMPHDR
	Channel option COMPMSG
	Channel option DISCINT
	Channel option HBINT
	Channel option KAINT
	Channel option MONCHL
	Channel option NPMSPEED
	SVRCONN channel option SHARECNV

	Tuning channels - BATCHSZ, BATCHINT, and NPMSPEED
	How batching is implemented
	Setting NPMSPEED
	Determine achieved batch size using MONCHL attribute
	Setting BATCHSZ and BATCHINT

	Channel Initiator Trace
	Why would I use channels with shared conversations?
	Performance / Scalability
	Channel start/stop rates and costs
	SSL channel start costs
	Factors affecting channel throughput and cost

	SSL and TLS
	When do you pay for encryption?
	How can I reduce the cost?
	Will using cryptographic co-processors reduce cost?
	Is the secret key re-negotiation a fixed cost?
	SHA-2 Algorithm Support for SSL Channels
	SSL and TLS Costs
	2KB messages using encrypted channels
	16KB messages using encrypted channels
	64KB messages using encrypted channels
	1MB messages using encrypted channels
	SSL costs – conclusions

	SSLTASKS
	How many do I need?
	Why not have too many?
	Why not have too few?
	SSLTASK statistics

	SSL channel footprint
	SSL over cluster channels?
	SSL over shared channels?

	Using AT-TLS to encrypt data flowing over IBM MQ channels
	Who pays for AT-TLS
	Limitations
	Performance comparison

	Costs of Moving Messages To and From MVS Images
	Non-persistent messages
	Persistent messages

	System
	Hardware
	DASD
	Maximum request/reply throughput (DS8870)
	Upper bound on persistent message capacity - DASD log data rate

	What is the effect of dual versus single logging on throughput?
	Will striped logs improve performance?
	Will striped logs affect the time taken to restart after a failure?
	Benefits of using zHPF with IBM MQ
	When can it help with IBM MQ work?

	Network

	IBM MQ and zEnterprise Data Compression (zEDC) with SMF

	How It Works
	Tuning buffer pools
	Introduction to the buffer manager and data manager
	The effect of message lifespan
	Understanding buffer pool statistics

	Definition of buffer pool statistics
	Interpretation of MQ statistics
	Observations on the problem interval
	What was happening
	Actions taken to fix the problem

	Log manager
	Description of log manager concepts and terms
	Illustration of logging
	When does a write to the log data set occur?
	How data is written to the active log data sets
	Single logging
	Dual logging
	Interpretation of key log manager statistics
	Detailed example of when data is written to log data sets
	MQPUT example
	MQGET example

	Interpretation of total time for requests
	What is the maximum message rate for 100 000-byte messages?

	Advice
	Use of LLA to minimize program load caused throughput effects
	Frequent use of MQCONN/MQDISC - for example WLM Stored Procedures
	Frequent loading of message conversion tables
	Frequent loading of exits - for example, channel start or restart after failure

	System resources which can significantly affect IBM MQ performance
	Large Units of Work
	Application level performance considerations

	Queue Information
	Tuning queues
	Queue option ACCTQ
	Queue option DEFPRESP
	Queue option DEFREADA
	Queue option MONQ
	Queue option PROPCTL

	Maximum throughput using non-persistent messages
	What factors affect non persistent throughput
	Private queue
	What is the maximum message rate through a single private queue ?
	Throughput for request/reply pairs of private queues

	Shared queue

	Maximum persistent message throughput - private queue examples
	Strict ordering - single reply application
	Increasing number of reply applications

	Maximum persistent message throughput - shared queue examples
	Shared queue persistent message - CPU costs
	Shared queue persistent message - CF usage

	Message ordering - logical groups
	Does size of group matter?
	Large groups of small messages OR small groups of large messages?

	Application tuning
	How much extra does each waiting MQGET cost?
	How much extra does code page conversion cost on an MQGET?
	Event messages
	Triggering
	What is the cost of creating a trigger or event message?

	Two / Three Tier configurations
	Why choose one configuration over the other?
	Cost on the z/OS platform
	Achievable Rate
	Number of connecting tasks
	Measurements

	IMS Bridge: Achieving best throughput
	Initial configuration
	How does the IMS bridge work?
	Putting messages from IBM MQ into IMS
	IMS putting reply messages to IBM MQ

	Tuning the IMS subsystem
	Use of commit mode
	Commit Mode 0 (Commit-Then-Send)
	Commit Mode 1 (Send-Then-Commit)

	Understanding limitations of the IMS bridge
	When do I need more message processing regions?
	Understanding the trace reports - run profile
	Understanding the trace reports – call summary
	Understanding the trace reports – region summary report
	IMS Control Region issuing checkpoints whilst monitoring running
	Understanding the Trace reports – Region IWAIT Report
	Understanding the trace reports – Program Summary Report
	Understanding the trace reports – Program I/O Report

	When do I need more TPIPEs?

	IMS Bridge Throughput – Local Queues
	Non-Persistent Message Throughput – Local queues
	Persistent Message Throughput – Local Queues

	IMS Bridge Throughput – Shared Queue – Single Queue Manager
	Non-Persistent Message Throughput – Shared Queue
	Persistent Message Throughput – Shared Queue

	IMS Bridge Throughput using Remote Queue Managers
	Shared Queue – Non-Persistent Messages
	IMS Bridge Non-Persistent Message Throughput – Remote Queue Manager
	Shared Queue – Persistent Messages
	IMS Bridge Persistent Message Throughput – Remote Queue Manager

	Hardware Considerations
	Example: LSPR compared to actual results
	Overview of Environment: Workload
	Batch Applications
	Hardware
	LSPR tables

	Non-Persistent Out-Of-Syncpoint Messages
	Non-persistent in-syncpoint messages

