
Interpreting accounting & statistics for WebSphere MQ for z/Os V5 & V6

MP1B: WebSphere MQ for OS/390 V5.3
& WebSphere MQ for z/OS V6

Interpreting accounting and statistics data
Version 1.6 MQSeries for z/OS

Author

May 2002
(Updated July 2006)

Document Number MP1B

Property of IBM

Take Note!
Before using this User's Guide and the product it supports, be sure to read the general information under
"Notices".

Sixth Edition, July 2006

Version 1.6

MQSeries for OS/390 - Log extract program

This edition applies to Version 1.4 of "MQSeries for OS/390 V5 - Interpreting
accounting and statistics data" and to all subsequent releases and
modifications until otherwise indicated in new editions.
A form for reader's comments is provided at the back of this publication. If the form has been
removed, address your comments to:
IBM United Kingdom Laboratories
AIM WW Technical Sales (MP102)
Hursley Park
Hursley
Hampshire, SO21 2JN, England
When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you. You may continue
to use the information that you supply.
© Copyright International Business Machines Corporation 2001, 2003. All rights reserved. Note to
US Government Users -- Documentation related to restricted rights -- Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

2

Interpreting accounting & statistics for WebSphere MQ for z/Os V5 & V6

Notices

This report is intended to give guidance on the use and interpretation of the statistics and accounting in
MQSeries for OS/390 Version 5.2, 5.3 and 5.3.1. The information in this report is not intended as the
specification of any programming interfaces that are provided by OS/390 or MQSeries.
References in this report to IBM products or programs do not imply that IBM intends to make these available in
all countries in which IBM operates.
Information contained in this report has not been submitted to any formal IBM test and is distributed "as is". The
use of this information, and the implementation of any of the techniques, is the responsibility of the customer,
and depends on the customer's ability to evaluate and integrate them into their operational environment.
The following terms, used in this document, are trademarks of the IBM Corporation in the United States or other
countries or both:
CICS
DFSORT
IMS/ESA
MQSeries
MVS/ESA
OS/390
Performance Reporter
The following term, used in this document, are trademarks of the SAS Corporation in the United States or other
countries or both:
SAS
The following term, used in this document, are trademarks of the Lotus Corporation in the United States or other
countries or both:
 Lotus 123

Version 1.6

Interpreting accounting & statistics for WebSphere MQ for z/Os V5 & V6

Summary of Amendments
Date Changes

November 2000 Initial release

June 2001 Inclusion of SAS definitions, minor textual updates, and update to Sample C program to
resolve problem when processing buffer pool statistics.

August 2002 Additional explanations of how to interpret statistics and other editorial changes. SAS
definitions updated, and the programs to print out the statistics have been improved, mainly
to display times in hh:mm:ss format rather than internal STCK format.

May 2003 Changes for Websphere MQ V5.3

September 2003 Additional explanations of accounting and statistics fields
Update MQ116S to print Persistent message counts
Document *new* MQCSMFC header file
Document *new* MQCDUMP C program

JULY 2006 Version 1.6 – Support for Version 6
Updates to samples and documentation
Version 6 introduces extensions to

• DB2 manager statistics

• WTAS and WQ blocks
Summary of Amendments.. 4

Introduction.. 7
MQSeries accounting and statistics.. 7

Summary of changes in Version 5.2.. 7
Contents of this report.. 8
Required fixes.. 8
Additional materials with this SupportPac.. 8

Overview of Performance Reporter... 11
Input data definition.. 11
DB2 definitions... 11
Processing the records.. 11
Deleting old data.. 14

Accounting information.. 15
Who uses the data?... 15
What can you do with the data?... 15
Accounting information available before Version 5.2.. 15
Summary of the new accounting information available in Version 5.2.. 16
Understanding and using the accounting data available in and before Version 5.2.. 17
Interpretation.. 18
Records containing zero CPU time.. 18
Thread cross reference data.. 18
Special considerations when using IMS accounting records.. 19

Understanding and using the new accounting data... 20
When is the queue related accounting data produced?... 20
What is in the accounting record?.. 20
How to process the data.. 21
Typical daily analysis... 25

How to interpret the data..29
A simple CICS transaction... 29
A CICS transaction that drains a queue... 29
A sender channel... 30
A receiver channel... 30

Understanding the fields in the records... 31
Constants used in the records... 31
How to interpret durations.. 31
Other programming considerations.. 31

4

Interpreting accounting & statistics for WebSphere MQ for z/Os V5 & V6

 .. 31
Understanding and using MQSeries statistics data .. 31

Statistics information..33
Who uses the data?... 33
What can you do with the data?... 33
How to collect statistics.. 33
Statistics information available before Version 5.2... 33
New statistics information in Version 5.2.. 33

Statistics on MQSeries' use of DB2... 35
Shared-channel-status and shared-sync-key tables.. 36
Shared large message support.. 36
Interpreting the data... 36
Copying the statistics data to DB2 tables... 37
Performing queries on the data.. 37

Coupling Facility statistics.. 43
How the data is stored... 43
What you should monitor... 43
Typical query.. 43
Coupling Facility record layout (QEST).. 44

Message manager statistics.. 47
Interpretation.. 47

Data manager statistics... 48
Interpretation.. 48

Buffer manager statistics... 49
Interpreting buffer manager statistics... 49
Buffer pool management.. 50
Examples of buffer pool statistics... 51

Log manager statistics... 57
Cross reference ... 58

Interpreting log manager statistics...59
Some useful DB2 queries for processing accounting and statistics data..................... 64

Display which shared queues were used, with their attributes... 64
Display the queues which had I/O to a page set.. 64
Display MQI verbs used by transaction by queue.. 65
Display where a queue is used.. 66
Display the length of time messages were on a queue.. 66
Display count of get specific and get first message.. 66
Display out of line log manager statistics
... 67

Sample C program for displaying statistics and accounting... 68
Using the sample program... 68

Execute the sample code...69
SMFIN data set.. 69
SYSPRINT contents... 69
SUMMARY contents.. 69
STATS contents... 70
PUT contents... 71
GET contents... 71
DB2 contents... 72
CF contents... 73
SCF contents... 73
MM contents.. 74
BM contents... 74
SDB2 contents... 74
THREAD contents.. 75
LOG contents... 75

Supplied programs to print out the SMF records... 76
Example output and description of the MQSeries statistics printout... 77
Example output and description of the MQSeries accounting printout... 78
Example output and description of the new MQSeries accounting printout.. 78

Version 1.6

Interpreting accounting & statistics for WebSphere MQ for z/Os V5 & V6

Sample C program to dump statistics and accounting.. 80
Execute the sample code...81

SMFIN data set.. 81
Sample output (QMST).. 81
 Sample output (WTID).. 82

Appendix A. Overall layout of MQSeries SMF records... 83
SMF record layout.. 83
SMF record header description.. 83
Processing accounting records (SMF type 116)... 83
Processing statistics records (SMF type 115).. 84
Self-defining sections... 84

Appendix B: Detail layout of MQSeries accounting and statistics records....................87
Queue records (WQ).. 87
Cross reference... 90
Cross reference
... 94

... 96
Cross reference... 96
Meaning of the channel names.. 97

Structure of the MQSeries SMF header QHWS.. 98
Appendix C. Bibliography...99
Sending your comments to IBM...100

Readers' Comments.. 101

6

Interpreting accounting & statistics for WebSphere MQ for z/Os V5 & V6

Introduction

MQSeries accounting and statistics

MQSeries for OS/390 provides statistics information about processing within the queue manager, and provides
accounting information about individual application and channel usage. Both statistics and accounting
information are written to the OS/390 SMF facility. For information about SMF see the MVS System
Management Facilities (SMF) manual.

MQSeries statistics These are produced periodically, typically every half an hour, or every hour.
Information is provided by the different resource managers (components) within
the queue manager, and allows you to identify potential problems in the setup
and usage of your queue manager. For example the buffer pool statistics can tell
you that you need to increase the size of a buffer pool.
You should keep the data for several months and look for trends to see if
changing usage patterns will cause problems. For information about processing
and interpreting MQSeries statistics see Understanding and using MQSeries
statistics data on page 31.

MQSeries accounting MQSeries produces accounting information about the activities and resources
used by applications and channels. These can be used to analyze application
activity and to charge users for their MQSeries usage. For information about
processing and interpreting MQSeries accounting information see Understanding
and using MQSeries accounting data on page 14

Summary of changes in Version 5.2
In Version 5.2 of MQSeries for OS/390 the accounting information has been significantly enhanced to provide
information about the queues used by an application and the resources used when processing MQSeries
requests. The accounting information available in previous releases is also still available.
There are two new sections in the statistics to reflect the shared queue usage of DB2 and the Coupling Facility.

Version 1.6

Contents of this report
This document is complimentary to the MQSeries for OS/390 System Setup Guide and provides
examples and additional information on how to use and interpret MQSeries accounting and statistics
information. Some of the information in the System Setup guide is repeated in this document so as to have all
the relevant information in one place.
If you find this SupportPac useful, have suggestions on improving it, or spot any errors please contact the
author, MOULED@UK.IBM.COM.

Required fixes
The following APARS(PTF) fix various small problems.

w PQ43750(UQ50781)
w PQ56039(UQ61462)
w PQ56178(UQ62949)

Additional materials with this SupportPac
Included in the SupportPac are programs (including one written in C) and JCL which can be used to display the
data. Sample SMF data is also included to allow these programs to be run without having to first collect real
data.

These additional files are contained in mp1b.zip and are named as follows:

mp1b.loa Load library

mp1b.src Source library

mp1b.smf Sample SMF data

mp1b.sas SAS definitions for layout of SMF records

The files need to be transferred to the destination TSO system as sequential binary files with a record format of
FB 80. Use one of the following methods to accomplish this:

1. Use the SEND commands below to send the files to TSO as sequential binary files:
w send mp1b.loa A:mp1b.loadseq
w send mp1b.src A:mp1b.srcseq
w send mp1b.smf A:mp1b.smfseq
w send mp1b.sas A:mp1b.sasseq

where A is the TSO session ID.

2. To send them via ftp ensure the BINARY option is set then use the following commands:
w site fixrecfm 80 (Optional)
w put mp1b.loa mp1b.loadseq
w put mp1b.src mp1b.srcseq
w put mp1b.smf mp1b.smfseq
w put mp1b.sas mp1b.sasseq

3. With Personal Communications, use the "Send Files to Host" option under the Transfer menu item to
transmit to TSO
w PC File mp1b.loa etc
w Host File mp1b.loadseq etc

8

Interpreting accounting & statistics for WebSphere MQ for z/Os V5 & V6

w Transfer Type pds
w The Transfer type of pds may need to be correctly setup. To do this, use the "Setup.Define Transfer Types"

option under the Transfer menu item and create the pds type with the ASCII, CRLF and Append checkboxes
all unselected, the Fixed radio button selected and the LRECL set to 80

On TSO, issue the following commands to unload these sequential files into TSO partitioned datasets:

w receive indsname(mp1b.loadseq)
when prompted for a filename, reply dsn(mqload)
w receive indsname(mp1b.srcseq)
when prompted for a filename, reply dsn(mqsource)
w receive indsname(mp1b.smfseq)
when prompted for a filename, reply dsn(mqsmf)
w receive indsname(mp1b.sasseq)
when prompted for a filename, reply dsn(mqsas)

Contents of MQLOAD

From MQLOAD you will get a load library with the following attributes: record format undefined, record length 0,
and block size 6144. This dataset has the following members:
MQ1150 This prints out MQSeries statistics, see Supplied programs to print out the SMF records.on

page 76.
MQ116S This prints out the new task and queue accounting records, see Supplied programs to print out

the SMF records.on page.76
MQ1160 This prints out the accounting information which was also available in earlier releases, see

Supplied programs to print out the SMF records.on page.76
MQCSMF The load module from Sample C program for displaying statistics and accounting on page 68

MQCDUMP The load module from Sample C program to print all statistics data out in a dump like format on
page 80

Contents of MQSOURCE

From MQSOURCE you will get a PDS with the following attributes: record format FB, record length 80, block
size 800. This dataset has some C structures and the following members:
CCOMPILE Sample JCL to compile sample C program

COPYSMF This extracts the data from SMF into a temporary file and invokes MQ116S to process the
statistics.

MQCDUMP This dumps out MQSeries statistics, see Supplied programs to dump out the SMF records on
Page 80

MQCSMF This prints out MQSeries statistics, see Supplied programs to print out the SMF records.on
page 68.

MQCSMFC C header file containing layouts to SMF 115 (statistics) and 116 (Accounting) records.

RUNCDUMP This runs the C MQCDUMP program which dumps out the accounting and statistics records

RUNCSMF This runs the C MQCSMF program which prints out the accounting and statistics information.

Contents of MQSMF

This dataset has some SMF data collected after a batch job put some messages to a batch server which sent
the replies back to the originator. This file is provided so you can run the programs with this SupportPac without
having to collect any data yourself.
From MQSMF you will get sequential file with the following attributes: record format VBS, record length 32767,
block size 27998.

Version 1.6

Contents of MQSAS

This dataset has some SAS definitions for the layout of the MQSeries accounting and statistics records. There is
a $$README in the PDS which describes the contents.

10

Interpreting accounting & statistics for WebSphere MQ for z/Os V5 & V6

Overview of Performance Reporter
This document gives examples of processing MQSeries accounting and statistics data using the IBM product
Performance Reporter. This chapter describes the facilities available with Performance Reporter so that you can
understand the examples, if you are not familiar with Performance Reporter.
Performance Reporter is an IBM program product which is now part of Tivoli Decision support. In the past it has
also called EPDM (Enterprise Performance Data Manager) which replaced SLR (Service Level reporter). The
IBM product number for Performance Reporter is 5695-101, and Tivoli Decision Support is 5698-TD9. Some
Performance Reporter publications are listed in the bibliography.
Performance Reporter runs on OS/390 and takes data from various sources (including SMF), manipulates the
data and stores the results in DB2 tables. The facilities of DB2 and QMF can then be used to display reports and
charts from the data. The Performance Reporter language definitions are similar to DB2 command language.

Input data definition
Although Performance Reporter can process data from many sources, this chapter describes how SMF data is
processed.
The source of the data is defined using LOG definitions, and the layout of the data is described using RECORD
statements.
The Performance Reporter definitions are available via APAR PQ46511.

DB2 definitions
The input data is processed and put into DB2 tables. You need to decide what data you want to keep, and how
you want to summarize it. This will in turn define the columns you want in your DB2 table. For example, when
looking at trends it is better to combine accounting records into one DB2 table row than to have one DB2 row for
every accounting record. You could have the data summarized by day, week, month (or even all of them), with
one table for each date type. If you want to be able to report by queue manager, you will need to have a column
for queue manager. If you are not currently interested in which queue manager the records came from, you can
omit this column from your table, or you might choose to keep this column in case you want to examine usage
by queue manager at a later date.

Processing the records
Performance Reporter has UPDATE definitions that describe how the input data updates the DB2 tables. You
can have multiple UPDATE definitions using the same record if you want to update multiple tables with different
information from the input record (for example, summarizing the data by week, and by month).
Consider the scenario where only the total number of commits per queue manager per day are wanted. The
DB2 table is called MQSTATS_TABLE and has following columns:
DATE The date the SMF record was produced

QMGR The queue manager name

TOTALCOMMITS The total number of commits issued by all applications

The following fields in the SMF_116_01 update definition are of interest:
SM116DTE The date the SMF records were produced

SM116SSI The MQSeries subsystem ID

WTASCMN The number of commits issued by the application

Example Performance Reporter definitions

Some examples of Performance Reporter definitions that would update the DB2 table are as follows:

Version 1.6

 DEFINE UPDATE UPDATEMQ
 FROM SMF_116_01
 TO MQSTATS_TABLE
 GROUP BY
 (DATE = SM116DTE,
 QMGR = SM115SSI)
 SET (TOTALCOMMITS =SUM(WTASCMN))
Where:
DEFINE UPDATE UPDATEMQ This defines UPDATEMQ to Performance Reporter as definitions that

update the DB2 tables.
FROM SMF_116_01 This is the RECORD definition that defines the layout of the SMF 116

records.
TO MQSTATS_TABLE This is the DB2 table to be updated.

GROUP BY Identifies how the data is summarized.

DATE = SM116DTE Sets the DB2 column DATE to the value in SM116DTE. This will also do
conversion from one data type to another if required, for example from
00yydddF (the format of SMF116DTE) to DB2 internal date format.

QMGR = SM115SSI Sets the DB2 column QMGR to the value in SM116SSI.

SET (TOTALCOMMITS =SUM
(WTASCMN))

This defines how the data is summarized.

How the records are processed

The processing is as follows:
1. The first record is read from the input.
2. The fields are extracted using the definitions in the RECORD definition.
3. The table MQSTAT_TABLE is read with key date=SM116DTE and QMGR=SM116SSI.
If the record does not exist, a record is inserted into the table with date=SM116DTE, QMGR=SM116SSI and
TOTALCOMMITS=WTASCMN.
If the record does exist in the table, the value of WTASCMN is added to TOTALCOMMITS and the record
rewritten to the table.
4. The next record is read from the input file.

12

Interpreting accounting & statistics for WebSphere MQ for z/Os V5 & V6

Other processing that can be done includes the following:
column=MIN(inputfield) The value of column is the minimum of the input field of

all the records
column=MAX(inputfield) The value of column is the maximum of the input field

of all the records
hh=HOUR(SM116TME) This extracts the hour value of a time

days=DAYS(date) This gives the day number from January 1st 0001

date = DATE(indate) Converts the input value (indate) to a date (an example
is converting a day number obtained by DAYS back to
a date)

Monday = DATE(((DAYS(date)/7)*7) + 1) This gives the date of the Monday of that week (this
makes it easy to report data on a weekly basis)

month = MONTH(date) Extracts the month number from the date

time5 = TIME(ROUND(SM116TME,5 MINUTES)) This rounds down the date/time to the specified
interval, in this case to the 5 minute boundary (this
could be used to summarize accounting data to 5
minute periods over a day)

tran = substr(text,start,count) This extracts a portion of a text string

string = part1||part2 This concatenates two strings

If.. then.. Else
answer = CASE
 WHEN A=1 then 'YES'
 WHEN A=2 then 'NO '
 ELSE '???'
 END

This allow conditional processing. This could be used to
extract different data depending on whether it is an IMS
or a batch job.

Many of these are illustrated in the samples supplied with this SupportPac.

Sample query

Using the table above, you can use DB2 commands to extract and display the data. For example the following
query displays the data in the table.

SELECT DATE,QMGR,TOTALCOMMITS from MQSTATS_TABLE

To summarize the total number of commits across all queue managers in a day you can use the following query.

Version 1.6

SELECT DATE,SUM(TOTALCOMMITS)
 from MQSTATS_TABLE
 group by DATE

If you use QMF, you can design how you want the data laid out, including headings, and if you want totals and
subtotals. You can also use QMF to display the data graphically using GDDM.
You can also use the ODBC interface from products like Lotus 123 to extract and display the data in a
spreadsheet.

Deleting old data
Performance Reporter provides the facility to remove unwanted data, so for example you can easily delete
detailed accounting records that are older than a week.

Understanding and using MQSeries accounting data

14

Interpreting accounting and statistics data for MQSeries for OS/309 V5

Accounting information
MQSeries produces accounting information about the activities and resources used by applications and
channels.

Who uses the data?
People with different roles might want different views of the data:

w Application architects might be interested in data about applications and queues.
w Systems programmers might be interested in the resources used, and response time of DASD.

People need different views of the data at different times, and so you might keep all data for only 24 hours, but
keep only a summary of the data for long term analysis.
w You might want detailed information about the last 24 hours to be able to identify any out of line conditions,

and display the data from individual accounting records to explain any unusual events.
w For the long term you might want to have the data summarized by week, so you can do trend analysis on the

number of transactions, the amount of data processed, and the delay caused by writing to the log for
example.

What can you do with the data?
The examples below show some ways in which the accounting information can be used.

w Charge users' departments for their MQSeries usage, by CPU and by bytes processed. This can be done
using information about the application users and the remote destination by using the channel name and
network address.

w Identify high use queues and perform trend analysis on throughput over time.
w Show those applications using MQSET on a queue. You can check that if an error occurs, these

applications reset any attribute they might change. For example make sure they reset the trigger attribute if
the application sets the queue to NOTRIGGER.

w Identify where the MQI calls are being delayed, for example waiting for log I/O or waiting for page set I/O. If
the log I/O takes a long time, you might need to consider moving the log data sets to a volume that is used
less heavily, or splitting the queue manager work into multiple queue managers.

w Show where queues have been set up incorrectly, for example a queue that is not indexed when all of the
requests are to get with a specific message ID, or an indexed queue where only get next requests are used.

w Evaluate application changes to make sure that there is no unexpected increase in MQSeries usage. For
example if an application puts additional persistent messages, the volume of data logged increases, and so
larger or a greater number of logs might be needed.

w Determine why application response time is different between two days. For example after MQSeries startup,
messages might have to be read from the page set rather than just accessed from a buffer.

w Correlate the MQSeries accounting information for a CICS transaction with CICS and DB2 accounting in
order to understand the complete transaction picture.

Some useful DB2 queries for processing accounting and statistics data on page 64 has some example DB2
queries illustrating some of the above.

Accounting information available before Version 5.2
The following information was available in MQSeries releases before Version 5.2.

w Information to identify the task, but not channel names.
w The amount of CPU used on the application TCB.
w Number of MQPUT or MQPUT1 requests for messages of length 0 through 99 bytes, 100 through 999

bytes, 1000 through 9999 bytes, and greater than or equal to 10000 bytes.

15

Interpreting accounting and statistics data for MQSeries for OS/309 V5

w Number of MQGET requests for where the message obtained is of length 0 through 99 bytes, 100 through
999 bytes, 1000 through 9999 bytes, and greater than or equal to 10000 bytes.

For more information see Understanding and using the accounting data available in and before Version 5.2 on
page 17 .
The data is written to SMF when the application or channel ends.

What does it cost to collect accounting information?

The cost of collecting the "old" accounting records is about 2-3% CPU overhead.
The amount of data produced can be significant. An application that gets a message, puts a message to a
different queue and ends, produces a 436 byte record. The space used by 160,000 of these transactions is
about 100 cylinders of 3390 DASD.

Summary of the new accounting information available in Version 5.2
The new accounting information can be broken down into the following areas:

w Task identification. This now includes channel names in addition to other information, and allows you to
correlate accounting records with CICS and DB2.

w CPU used per MQSeries call, by queue where appropriate.
w Reasons why calls were delayed, for example waiting for log I/O to complete.
w Other information, for example the time a message spent on a queue from the time it was put to the time it

was got, and total number of bytes processed.
The data is written to SMF when the application or channel ends, or when OS/390 issues the SMF interval
broadcast - typically every hour or half hour. This interval is defined by the INTVAL statement in the SMFPRMxx
member of SYS1.PARMLIB, see OS/390 MVS Initialization and Tuning Reference.

What does it cost to collect accounting information?

The cost of collecting the "new" accounting records is between 5-10% CPU overhead.
The amount of data produced can be significant. An application that gets a message, puts a message to a
different queue and ends produces 2260 byte records. The space used by 18,000 of these transactions is about
100 cylinders of 3390 DASD.

16

Interpreting accounting and statistics data for MQSeries for OS/309 V5

Understanding and using the accounting data available in and before Version 5.2
The accounting information described in this chapter is available in Version 5.2 and earlier releases.
The accounting data is in SMF type 116 records, subtype 0. For information about the SMF record layout, and
how to locate the data in the records see Appendix A. Overall layout of MQSeries SMF records on page 83.
The following tables show the format of the message manager accounting records that are available in Version
5.2 and earlier releases.

Table 1. Structure of the Common MQSeries SMF header record QWHS

Offsets

Dec Hex Type Len Name
0 (0) Structure 128 QWHS

0 (0) 6 Reserved.

6 (6) Character 1 QWHSNSDA Number of self defining sections in the SMF records. See Table
20 on page 17

7 (7) 5 Reserved.

12 (0C) Character 4 QWHSSSID QWHSSSID

16 (10) 24 Reserved.

40 (28) Character 8 QWHCAID User ID associated with the OS/390 job.

48 (30) Character 12 QWHCCV Thread cross reference (see Thread cross reference data on
page 18)

60 (3C) Character 8 QWHCCN Connection name.

68 (44) 8 Reserved.

76 (4C) Character 8 QWHCOPID User ID associated with the transaction.

84 (54) Signed 4 QWHCATYP Type of connecting system (1=CICS, 2=Batch or TSO, 3=IMS
control region, 4=IMS MPP or BMP, 5=Command server,
6=Channel initiator, 7=RRS Batch).

88 (58) Character 22 QWHCTOKN Accounting token set to the OS/390 accounting information for
the user.

110 (6E) Character 16 QWHCNID Network identifier

126 (7E) 2 Reserved.

17

Interpreting accounting and statistics data for MQSeries for OS/309 V5

Table 2. Structure of the message manager accounting record QMAC

Offsets

Dec Hex Type Len Name
0 (0) Structure 48 QMAC Message manager accounting data

0 (0) Bitstring 2 QMACID Control block identifier.

2 (2) Unsigned 2 QMACLL Control block length.

4 (4) Character 4 QMACEYEC Control block eye catcher (QMAC).

8 (8) Character 8 QMACCPUT CPU time used (TOD format).

16 (10) Signed 4 QMACPUTA Number of MQPUT requests for messages of length 0 through 99 bytes.

20 (14) Signed 4 QMACPUTB Number of MQPUT requests for messages of length 100 through 999 bytes.

24 (18) Signed 4 QMACPUTC Number of MQPUT requests for messages of length 1000 through 9999
bytes.

28 (1C) Signed 4 QMACPUTD Number of MQPUT requests for messages of length greater than or equal to
10000 bytes.

32 (20) Signed 4 QMACGETA Number of MQGET requests for messages of length 0 through 99 bytes.

36 (24) Signed 4 QMACGETB Number of MQGET requests for messages of length 100 through 999 bytes.

40 (28) Signed 4 QMACGETC Number of MQGET requests for messages of length 1000 through 9999
bytes.

44 (2C) Signed 4 QMACGETD Number of MQGET requests for messages of length greater than or equal to
10000 bytes.

Interpretation
The QWHC* fields gives you information about the user (for example, the user ID (QWHCAID) and the type of
application (QWHCATYP)).
The QMAC* fields gives you information about the CPU time spent processing MQI calls, and counts of the
number of MQPUT and MQGET requests for messages of different sizes.

Records containing zero CPU time
Records are sometimes produced that contain zero CPU time in the QMACCPUT field. These records occur
when long running TCBs identified to MQSeries either terminate or are prompted to output accounting records
by accounting trace being stopped. Such TCBs exist in the CICS adapter and in the channel initiator (for
distributed queuing without CICS). The number of these TCBs with zero CPU time depends upon how much
activity there has been in the system:

w For the CICS adapter, this can result in up to nine records with zero CPU time.
w For the channel initiator, the number of records with zero CPU time can be up to the sum of Adapters +

Dispatchers + 6, as defined in the channel initiator parameters.

Thread cross reference data
The interpretation of the data in the thread cross reference (QWHCCV) field varies. This depends on what the
data relates to:

w CICS (QWHCATYP=1) – see Table 3. Structure of the thread cross reference record for a CICS system
w IMS (QWHCATYP=3 or 4) - see Table 5. Example columns in a DB2 table for long term analysis
w Batch, TSO, or RRS Batch (QWHCATYP=2 or 7) - this field consists of binary zeros
w Others - no meaningful data

18

Interpreting accounting and statistics data for MQSeries for OS/309 V5

Table 3. Structure of the thread cross reference record for a CICS system

Offsets

Dec Hex Type Len Name
48 (30) Signed 4 QWHCTNO CICS thread number.

52 (34) Character 4 QWHCTRN CICS transaction name.

56 (38) Packed Decimal 4 QWHCTASK CICS task number.

Accounting records for the CICS adapter TCBs have a blank thread cross reference. You can identify which
records apply to the adapter because the QHWCTRN field is blank, as records for CICS transactions have the
transaction code in this field.

Table 4 Structure of the thread cross reference record for an IMS system

Offsets

Dec Hex Type Len Name
48 (30) Character 4 QWHCPST IMS partition specification table (PST) region identifier.

52 (34) Character 8 QWHCPSB IMS program specification block (PSB) name.

Special considerations when using IMS accounting records
A single IMS application might write two SMF records. In this case, the figures from both records should be
added to provide the correct totals for the IMS application.

19

Interpreting accounting and statistics data for MQSeries for OS/309 V5

Understanding and using the new accounting data

The new accounting data is in SMF type 116 records, subtypes 1 and 2. For information about the SMF record
layout, and how to locate the data in the records see Appendix A. Overall layout of MQSeries SMF records on
page 83.

When is the queue related accounting data produced?
An SMF record is produced when the accounting trace class (3) has been activated (for example "+cpf START
TRACE(A) CLASS(3)") and either:

w The job or application ends.
w The SMF statistics broadcast occurs, and it is a long running application, such as a channel. This means it

was running prior to the last SMF statistics broadcast. Before Version 5.2 the records were produced only
when the job or application ended. So for a channel that was active for a year, you would get one record. In
Version 5.2 you can request that records are produced at the SMF broadcast, typically every 30 minutes, by
setting STATIME=0 in the CSQ6SYSP system parameter macro.

What is in the accounting record?
In the accounting record there are three sections covering the new data: task identification, task accounting, and
queue related.

Task identification

This information is in a structure called the WTID. The detailed description and layout of the fields is given in
Table 17. Layout of theTask Id structure(WTID) page 96 and includes the following:

w Job name
w User ID
w Transaction name, if applicable
w Channel name, if applicable, including the TCP/IP address or APPC LU

Task accounting data

This information is in a structure called the WTAS. It includes information about commit and backout verbs, and
other information that is not specific to a particular queue. The detailed description and layout of the fields is
given in Table 16. Layout of the task related information (WTAS) structure on page 93 and includes the
following:

w Number, accumulated elapsed time, and accumulated CPU time per verb for commit and backout requests.
w How many times a request was made to ensure data has been written to the log, and the accumulated time

waiting for the write to the logs to complete for commit and backout requests.

Queue related accounting data

The information is in a structure called the WQ. The detailed description and layout of the fields is given in
Queue records (WQ) on page87.

w Queue type, for example model queue or local queue.
w Queue name as used by the application, and the base queue name. These might be different, for example

an alias queue maps to a base queue name.
w Number, accumulated elapsed time, and accumulated CPU time for MQOPEN, MQCLOSE, MQPUT,

MQPUT1, MQGET, MQINQ, and MQSET. The accumulated elapse time for each API call is in STCK
format.

20

Interpreting accounting and statistics data for MQSeries for OS/309 V5

w Number of successful MQGET, MQPUT and MQPUT1 calls that successfully processed a message.
For example an MQGET that returned 'no message found' is considered an unsuccessful get.

w How many times a request was made to ensure that data has been written to the log, and the accumulated
time waiting for the write to the logs to complete. (MQPUT, MQPUT1, MQGET, and MQSET.)

w How many page set reads, and the accumulated time doing page set reads, and page set number.
(MQGET, MQPUT, and MQPUT1.)

w Type of MQGET request, get by message ID or correl ID, or get first; destructive get or get browse.
(MQGET.)

w Total number of bytes put or got, maximum and minimum message size. (MQPUT and MQGET.)
w Time on queue (TOQ). The time between the message arriving on the queue, and the get of the message.

Total for all messages, the maximum and the minimum time for messages processed on the queue. These
values are in STCK format.

w Number of generated messages, such as trigger or event messages.

How to process the data
If you want to examine a few accounting records you can use programs described in "Supplied programs to print
out the SMF records" on page 76 to print out the contents of the records. With a large number of records the
amount of output quickly becomes unmanageable.
If you want to write your own procedures to process the data you should read "Understanding the fields in the
records" on page 31 for guidance on how to interpret the fields.
You could write a program that reads the SMF 116 records and inserts records into a DB2 table where the fields
in the DB2 table match the field names in the SMF records. If you want one row in the table per SMF 116
record, insert the row into the database. If you want to accumulate the data, so that you have one row per
transaction for a particular day, you need to read the record, update the fields, and rewrite the record.
The IBM product Performance Reporter does all of this for you, and you can easily migrate the SMF data into
DB2, and have the power of DB2 and QMF to query the data. See Overview of Performance Reporter on page
11 for a summary of the facilities available with Performance Reporter.
Alternatively, instead of using a database you could write an application that summarized the data and displayed
information when the end of the input file has been reached. This is not as flexible as storing the data in a DB2
database.
Other analysis tools, in addition to Performance Reporter include SAS from the SAS corporation.
The way you store the data depends on the analysis you want to perform. For example:

w If you are displaying trends over a long period of time, you might want to summarize the data so there is one
row of data per application per week.

w If you want the raw, un-summarized data, you might want to have one row per accounting record, and
include all of the fields. You might want one table for the task information, and another table for the individual
queue records. You can use the fields in the WTID record to link the tables together.

w If you are displaying the data on an hourly basis, you might want to combine the records, but extract all of the
fields.

We recommend that you summarize the information on a daily basis, and keep the last 28 days worth of data.
For these different analyses the data and database structure will be very different.

Typical long term analysis

When you are looking at data over the long term you are looking for trends rather than individual accounting
records. The following section gives an example of the sort of data you can use for trend analysis.

21

Interpreting accounting and statistics data for MQSeries for OS/309 V5

Table 5. Example columns in a DB2 table for long term analysis

This DB2 table has one row per transaction or channel and each row has the data for a whole weeks worth of
data. So if your MQSeries system had only one batch job that puts messages to a queue, and a channel that
sends them to a remote site there would be two records for each week.
Date Date of start of week (Monday)

MVS OS/390 subsystem name

QMGR Queue manager name

Jobtype This is a character representation of the job type, for example 'CICS'

Jobname This could be the batch job name, or CICS region

Tran The CICS or IMS transaction

Channel The channel name

Channelq The channel connection name - the TCP/IP address or LU name

NCommits Number of commits of this task, transaction, channel combination

ET Total elapsed time

CT Total CPU time used

Logtime Time spent waiting for logging

PSTime Time waiting for page set activity

DB2time Time waiting for DB2 requests to be processed

CFtime Time waiting for CF requests to be processed

Bytes Bytes processed

Some charts you might use for analysis might include

w Total CPU used by task per week, by week. For illustration see Figure 1. Growth in CPU over time by major
application on page 23

w Total elapsed time in MQSeries per task per week, by week.
If this is plotted in a bar chart, the height of the bar gives the total elapsed time for all transactions, and with in
the bar, it shows how much was CPU and logging for example. For illustration see Figure 2. Breakdown of
where time in MQSeries is spent for transaction AAAA. on page 23.

w Bytes processed per task, per week, by week.
w CPU used by the all tasks per week, by week.

22

Interpreting accounting and statistics data for MQSeries for OS/309 V5

Figure 1. Growth in CPU over time by major application

1 2 3 4 5 6 7 8 9 1 0
W e e k n u m b e r

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

T
o

ta
l

C
P

U
 t

im
e

 i
n

 M
Q

S
e

ri
e

s

B a t c h
C H I N
C I C S

C P U u s e d i n M Q S e r i e s b y a p p l i c a t i o n

Figure 2. Breakdown of where time in MQSeries is spent for transaction AAAA.

1 2 3 4 5 6 7 8 9 1 0
W e e k n u m b e r

0

5

1 0

1 5

2 0

2 5

3 0

3 5

T
o

ta
l

ti
m

e
in

 M
Q

s
e

ri
e

s

O th e r
C P U
L o g g in g
P a g e s e t

T im e s p e n d in M Q S e r ie s f o r t r a n s a c t io n A A A A

23

Interpreting accounting and statistics data for MQSeries for OS/309 V5

Example Performance Reporter update definition for queue records

3The figure below shows the Performance Reporter definitions to update the DB2 table DRL.MQ_Weekly_stats
using the field names of the SMF records in Appendix A. Overall layout of MQSeries SMF records on page 83.
For information on Performance Reporter definitions see Overview of Performance Reporter on page 11.
3Performance Reporter update definition for queue records

DEFINE UPDATE MQ_weekly_stats - As known by Performance Reporter (1)
 FROM SMF_116_01 section QUEUE_BLOCK - Which part of the SMF record (2)
 TO DRL.MQ_Weekly_stats - DB2 table name (3)
GROUP BY - These are the key to the records (4)
 (DATE = DATE(DAYS(SM116DTE - 7 DAYS)/7*7 + 1),
 - Date of the start of the week (5)
 MVS = SM116SID, - OS/390 subsystem name (6)
 QMGR = SM116SSI, - Queue manager name (7)
 JOBNAME = WTIDCCN, - Region name (8)
 TRAN = WTIDCTRN, - Transaction name (if any) (9)
 Channel = WTIDCHL, - Channel name (10)
 Channelq = WTIDCHLC) - Channel qualifier (10)
 SET (11)
 (
 CT = SUM(OPENCT/4096+ - Total CPU used from queue records (12)
 CLOSECT/4096+
 GETCT/4096+
 PUTCT/4096+
 PUT1CT/4096+
 INQCT/4096+
 SETCT/4096),
 ET = SUM(OPENET/4096+ - Total elapsed time-queue records (13)
 CLOSEET/4096+
 GETET/4096+
 PUTET/4096+
 PUT1ET/4096+
 INQET/4096+
 SETET/4096),
 Logtime =SUM(GETJWET/4096+ - Total time writing to the log (14)
 PUTJWET/4096+
 PUT1JWET/4096+
 SETJWET/4096),
 PStime =SUM(GETPSET/4096+ - Total time processing a page set (15)
 PUTPSET/4096+
 PUT1PSET/4096),
 Bytes = sum(Putbytes+getbytes) - Total bytes processed (16)
);

The numbers in brackets are explained below:

1. The DEFINE UPDATE statement defines how data will be taken from the SMF record and applied to the
DB2 table. Each update definition has a name, this one is named MQ_weekly_stats.

2. The SMF116_01 is the definition of the SMF 116 record layout. It has the same layout as the structures in
Appendix B: Detail layout of MQSeries accounting and statistics records on page 87. Section
QUEUE_BLOCK says to repeat this update for every queue record in the SMF record.

DRL.MQ_Weekly_stats is the name of the DB2 table. This table has columns that match Table 5 on
page 22.

The fields in GROUP BY define the unique key to the record, so all accounting records with the same
combination of values in GROUP BY map to the same DB2 row.

1. DATE(DAYS(SM116DTE - 7 DAYS)/7*7 + 1) takes the date the record was created
(SM116DTE), and calculates the date of the first day of the week, so all records for that week map to the
same value.

2. The OS/390 subsystem name from the SMF record header.
3. The queue manager subsystem name from the SMF record header.

24

Interpreting accounting and statistics data for MQSeries for OS/309 V5

4. The jobname of the application, for example the CHINIT or the CICS region.
5. The transaction name, taken from the task identification block, see Table 17. Layout of theTask Id structure

(WTID)on page.96
6. The channel name taken from the WTIDCHL field. The WTIDCHLC field is the TCP/IP address or LU name.
7. The SET command specifies how the data is accumulated from the SMF record.
8. This calculation does the following SMF record into the DB2 record:
1. Convert the times from STCK format into microseconds (by dividing by 4096).
2. Accumulate the CPU used for the different verbs, and calculate the SUM of all the records processed.
3. Save the accumulated value in CT.
9. Performs a similar calculation on the elapsed time.
10. Accumulates the time spent waiting for log I/O to complete.
11. Accumulates the time spent waiting for page set I/O to complete.
12. Accumulates the number of bytes put and got.

Example Performance Reporter update definition for task accounting

Performance Reporter update definition for task records

DEFINE UPDATE MQ_weekly_stats_T - As known by Performance Reporter
 FROM SMF_116_01 - Use the task section by default
 TO DRL.MQ_weekly_stats - DB2 table name
 GROUP BY - These are the key to the records
 (DATE = DATE(DAYS(SM116DTE - 7 DAYS)/7*7 + 1),
 - Date of the start of the week
 MVS = SM116SID, - MVS subsystem name
 QMGR = SM116SSI, - Queue manager name
 JOBNAME = WTIDCCN, - Region or channel name
 TRAN = WTIDTRN, - Transaction name (if any)
 Channel = WTIDCHL, - Channel name
 Channelq = WTIDCHLC) - Channel qualifier
 SET
 (
 CT = SUM(WTASCMCT/4096+ - Total CPU used
 WTASBACT/4096+
 WTASOTCT/4096),
 ET = SUM(WTASCMET/4096+ - Total Elapsed time
 WTASBAET/4096+
 WTASOTET/4096),
 Logtime =SUM(WTASJWET/4096), - Total time writing to the log
 PStime =SUM(WTASPSE0/4096), - Total time processing a page set
 NCOMMITS = SUM(WTASCMN) - The number of records accumulated
);

See the previous page for a description of what the definition means.
The updates are made from the task accounting of the SMF record instead of the queue sections.

Typical daily analysis
When looking at the data over a short term, you are usually looking for out of line conditions, or exceptions to
normal processing. In these cases you normally want individual records, or data summarized over a short
interval, perhaps 5 minutes. You are likely to want to keep the detailed information about individual queues. One
way of holding this data is to have two tables, one similar to the table above, and a table containing the
individual queue records for a task.

Update definition for the daily statistics for task information

Update definition for the daily statistics for task information

25

Interpreting accounting and statistics data for MQSeries for OS/309 V5

DEFINE UPDATE MQ_Daily_Task - As known by Performance Reporter
 FROM SMF_116_01 - Use the task section by default
 TO DRL.MQ_Daily_Task - DB2 table name
 GROUP BY - These are the key to the records
 (DATE = SM116DTE, - Date the record produced
 TIME = SM116TME, - Time the record was produced
 MVS = SM116SID, - OS/390 subsystem name
 QMGR = SM116SSI, - Queue manager name
 JOBNAME = WTIDCCN, - Region or channel name
 TRAN = WTIDCTRN, - Transaction name (if any)
 Channel = WTIDCHL, - Channel name
 Channelq = WTIDCHLC) - Channel qualifier
 SET(
 ...
);
The definitions are the same as above except the date and time are different. There is one row in this DB2 table
for every SMF 116 accounting record.
The SET part of the update definitions would be the same as above.
A typical query that could be issued against the above DB2 table is shown in below.
5Identify transactions whose average time in MQSeries is outside a value

Select Date,mvs,qmgr,jobname,tran,et/NCommits from
 DRL.MQ_Daily_Task
 Where tran='TRA1' - Select specific CICS transaction
 and
 et/NCommits > 10000 - The average response time is
 - greater than 10000 microseconds

In this example the CICS transaction gets a message, puts a reply, commits the request and ends. In this case
et/Ncommits is a valid measure. For long running jobs, long running transactions, or channels,
et/NCommits is not valid.

26

Interpreting accounting and statistics data for MQSeries for OS/309 V5

Update definition for queue records for daily statistics

Update definition for queue records for daily statistics

DEFINE UPDATE MQ_Queue_stats - As known to Performance Reporter
 FROM SMF_116_01 Section QUEUE_block - The queue section of the 116
 TO DRL.MQ_Daily_Queue - This DB2 table
 GROUP BY - These are the fields that
 - uniquely identify a record
 (DATE = SM116DTE, - Date record produced
 TIME = SM116TME, - Time record produced
 MVS_SYSTEM_ID = SM116SID, - OS/390 subsystem name
 MQ_SUBSYSTEM = SM116SSI, - Queue manager name
 JOBNAME = WTIDCCN, - Region or channel name
 TRANSACTION = WTIDCTRN - Transaction name (if any)
 Channel = WTIDCHL, - Channel name
 Channelq = WTIDCHLC, - Channel qualifier
 Queue = Basename) - Base queue name
 SET
 (
 openET = SUM(openET/4096), - Convert open elapsed time in stck to microseconds
 openCT = SUM(openCT/4096), - Convert open CPU time in stck to microseconds
 openN = SUM(openN), - Count of open
 closeET = SUM(closeET /4096), - Convert close elapsed time in stck to microseconds
 closeCT = SUM(closeCT /4096), - Convert close CPU time in stck to microseconds
 closeN = SUM(closeN), - Count of close
 getET = SUM(getET /4096), - Convert get elapsed time in stck to microseconds
 getCT = SUM(getCT /4096), - Convert get CPU time in stck to microseconds
 GetN = SUM(GetN),
 GetBrwA = SUM(GetBrwA),
 GetBrwS = SUM(GetBrwS),
 ...
);

This update updates rows in the DB2 table DRL.MQ_Queue_stats. There is one row in this DB2 table for
queue for every task in the SMF 116 accounting record.
As the two tables DRL.MQ_Daily_Task and DRL.MQ_Daily_Queue have the similar key fields, these key fields
can be used to join the two tables and produce detailed reports.
The partial query below shows how a DB2 can be used to process the data to produce reports, similar to the
output on page. 28:

Figure 3. Part of a DB2 query to extract data from the queue table

SELECT TRANSACTION,QUEUE,'OPEN ',OPENN,OPENET/OPENN,OPENCT/OPENN
 FROM DRL.MQ_QUEUE_STATS
 WHERE OPENN > 0
UNION
SELECT TRANSACTION,QUEUE,'CLOSE ',CLOSEN,CLOSEET/CLOSEN,CLOSECT/CLOSEN
 FROM DRL.MQ_QUEUE_STATS
 WHERE CLOSEN > 0
UNION

27

Interpreting accounting and statistics data for MQSeries for OS/309 V5

Figure 4. Growth in CPU over time by major application

TRAN QUEUE VERB COUNT AVG ET AVG CT
____ ________ _____ _____ ______ ______
A8EA Q_INPUT CLOSE 3 64 63
A8EA Q_INPUT GET 3 8251 237
A8EA Q_INPUT OPEN 3 250 181
A8EA Q_OUTPUT PUT1 3 9651 621

28

Interpreting accounting and statistics data for MQSeries for OS/309 V5

How to interpret the data
The way you analyze the data depends on the application. For example consider the following four scenarios:

w A simple CICS transaction that gets a message, puts a reply, commits and ends.
w A CICS transaction that drains a queue. This transaction loops doing {MQGET (with wait option),

MQPUT1, commit} and ends when no further messages have arrived in a short period of time.
w A sender channel that gets messages from a transmission queue (and sends them to a remote queue

manager).
w A receiver channel that receives messages from a remote queue manager and puts them to various queues.
The following sections show how the data could be interpreted.

A simple CICS transaction
This transaction starts, opens a queue for input, gets a message from the queue, puts a message using
MQPUT1 to the replyto queue, commits the request and ends.
In this case, each transaction will have one accounting record that shows one commit, and the record will have 2
queue subsections.
Some typical analysis and reports might include:

w The average of the total CPU used in MQI calls across all transactions during the day. Plot in a line graph
this average and number of records against the day.

w The average of the total elapsed time of the MQSeries calls for a transaction, across all transaction during
the day.

w A bar chart, showing the constituent parts of the elapsed time, CPU, log wait, page set I/O, and other
suspend time.

w The total CPU time used for MQI calls by transaction, charged back to the user's department.
w The average number of bytes put and got per transaction per day, or the total divided by the number of

commits per day.
w The number of transactions where the time spent in MQSeries was greater than a particular value per day.
w The maximum total time in MQSeries per transaction per day.

A CICS transaction that drains a queue
The CICS transaction is triggered, starts, opens the input queue, and loops, getting a message from the queue
(with the wait option), putting a reply to the specified queue using MQPUT1, committing the work, and going
round the loop again. When there are no more messages and the wait interval expires, the transaction
terminates.
In this case, there might be multiple units of work within one transaction, and so there might be multiple commits
in the accounting record. The elapsed time information is accumulated over many calls, so the average time per
call can be obtained, but the maximum time for the calls cannot be obtained. If the transaction runs over half an
hour, there might be multiple accounting records, which are produced on the SMF accounting broadcast.
Some typical analysis or reporting might include:

w A plot of total MQSeries CPU used across all transactions by day.
Total CPU used divided by the number of commits give a measure of the transaction cost. This can be plotted
by day to see if there is a trend to the resources used.

w A breakdown of the total elapsed time of the MQI calls across all transaction during the day.
w A bar chart showing the constituent parts of the elapsed time, CPU, log wait, page set I/O, and other

suspend time (similar to that for the simple CICS transaction).

29

Interpreting accounting and statistics data for MQSeries for OS/309 V5

w A plot of total elapsed time/number of commits is approximately the same as for the simple CICS
transaction.

Because the program issues an MQGET with the wait option, there might be two MQGET calls for every
message processed. The first MQGET finds no message, and so waits in the adapter. When a message
arrives the MQGET is re-issued by the adapter. If there was a message to process, the adapter does not have
to wait, and only one MQGET call is issued. So in this scenario there are more MQGET requests than in the
simple CICS transaction.

w The total CPU time used for MQI calls, charged back to the user's department. This might be difficult to do
because messages can come from many sources and be processed by this transaction. You might be able
to charge back depending on the bytes put to specific application queues.

w The total number of bytes put and got per transaction per day, or the total divided by the number of commits
per day.

w The number of transactions where the time spent in MQSeries was greater than a particular value per day.
w The "average response time per day" (total of time in MQSeries calls/number of

commits) is a useful measure which gives the average amount of time in MQSeries each Unit of Work
took. Strictly the "average response time per day" refers to the response time of the transaction.

A sender channel
A sender channel gets one or more messages from a transmission queue and sends them to a remote queue
manager. There might be some processing to internal queues at the end of batch. Because there can be a
variable number of messages per batch, the cost/(number of commits) does not give a very
meaningful answer. The number of commits could be zero if only fast messages have been processed, so
calculations such as Elapsed time/Number of commits are meaningless and could result in a
divide by zero condition.
Some of the typical analysis and reports might include:

w Total CPU used by the channel per day
w The total bytes read from the transmission queue per day
w The total number of messages got per day
w The average achieved batch size per day (or per interval)
With data for multiple applications on a channel it might not be possible to charge back usage to departments
because you cannot identify who gets charged for what.

A receiver channel
A receiver channel receives one or more messages from a remote queue manager and puts them to one or
more queues. There might be some processing to internal queues at the end of a batch. The number of
commits could be zero if only fast messages have been processed, so calculations such as Elapsed
time/Number of commits are meaningless and could result in a divide by zero condition.

Some of the typical analysis and reporting might include:

w Total CPU used by the channel per day
w The total bytes put to each queue per day
w The total number of messages put per day
w The average achieved batch size per day (or per interval)

30

Interpreting accounting and statistics data for MQSeries for OS/309 V5

Understanding the fields in the records
MQI calls like MQPUT and MQGET act on a queue, where a commit call applies to the whole transaction
and is not queue specific.

Constants used in the records
For fields like the queue type (QTYPE in the WQ) the values used are in the cmq* member in the SAMPLIB
library, depending on the programming language; for example CMQC.H for C.

How to interpret durations
Information on durations is usually stored as a cumulative time, and the number of times that event happened.
The figures used in this section are for illustration and do not reflect real figures.

Consider an application that issued 2 MQSET requests:
1. The first request, which took 10 ms of elapsed time, and used 1 ms of CPU.
2. The second request on the same queue, which took 10 ms elapsed time and 3 ms of CPU.
This would be reported as:

w SETN - the number of SEQ requests = 2.
w SETET - the accumulated elapsed time of the calls = 20 ms
w SETCT - the accumulated CPU time of the calls = 4ms.
This can be interpreted as follows:

w The average time of the MQSET calls was 10 milliseconds.
w The average CPU time used for the MQSET calls was 2 milliseconds.
The time values are in S/390 Store Clock format (STCK), which is a double word where bit 53 is a microsecond.
To convert a STCK value to microseconds ignore the bottom 12 bits. In C this can be done by treating the
values as long long and dividing by 4096 to get to microseconds.

Other programming considerations
w Most fields are initialized to zero.
w The get minimum message size, and the put minimum message size are set to a large value. You should

only use these fields if the number of valid puts (VALIDPUT) or valid gets (VALIDGET) is non zero.
w When an MQSeries application ends, it posts an asynchronous task to create the SMF accounting record.

The time in the SMF record (SM116TME) is the time the record was produced (the number of hundredths of
a second since midnight). It is usually close (within a second) to the time the transaction or channel ended. If
you need more accurate times, you should use the time interval end time (WTASINTE), which is in STCK
format.

w Time on queue is calculated when the MQGET was successful and it was a destructive get.

Understanding and using MQSeries statistics data

31

Interpreting accounting and statistics data for MQSeries for OS/309 V5

32

Interpreting accounting and statistics data for MQSeries for OS/309 V5

Statistics information
The statistics data is in SMF type 115 records, subtypes 1 and 2. For information on the SMF record layout, and
how to locate the data in the records see Appendix A. Overall layout of MQSeries SMF records on page 83.
MQSeries produces statistics providing information on the resource managers (components) of the queue
manager.
Note: The layout of the SMF header changed in MQSeries Version 5.2 to conform to the standard SMF layout.
The subtype field is now 2 bytes long at offset decimal 22 (x'16'), in previous releases it used to be only one
byte long. This is field SM115STF and SM116STF.

Who uses the data?
Usually the systems programmer and people responsible for monitoring performance use the MQSeries
statistics.

What can you do with the data?
Some data should be reviewed daily, and some is used in the long term to identify potential problems early, to
allow preventive actions to be taken.
Exceptions should be reviewed daily as these indicate a problem with your setup, for example a Coupling
Facility structure filling up.
Usually statistics are reviewed weekly or monthly and any trends examined.

How to collect statistics
You start the statistics trace using the "+cpf START TRACE(S)" command.

Statistics information available before Version 5.2
The following is a summary of the information available in releases before Version 5.2

w Message manager statistics - counts of MQSeries verbs used
w Data manager statistics - count of access to objects
w Buffer manager statistics - information about the size and usage of buffer pools
w Log manager statistics - information about data written to the log data sets
The data is written to SMF every STATIME minutes (where STATIME is a value you set using the CSQ6SYSP
system parameter macro).

New statistics information in Version 5.2
There are new statistics sections for DB2 and the Coupling Facility (the components needed to support shared
queues).
There are new statistics sections on storage manager and lock manager, but these are for IBM's use and are
not described further.

What does it cost to collect statistics?

The CPU cost of collecting statistics is negligible.

33

Interpreting accounting and statistics data for MQSeries for OS/309 V5
The amount of data produced is typically a few thousand bytes every hour.
The data is written to SMF every STATIME minutes, or if STATIME is zero, when OS/390 issues the SMF
interval broadcast - typically every half hour or hour.
Many components of the queue manager produce statistics.
The follow list summarizes what is available and where to get more information:

w The number, and elapsed time of MQI requests issuing DB2 calls, as used by shared queues (see Statistics
on MQSeries' use of DB2 on page 35).

w The number, type, and duration of Coupling Facility calls as used by shared queues (see Coupling Facility
statistics on page 43.

w The number of requests for each MQSeries call used (see Message manager statistics on page 47).
w The number of different requests to access data within the queue manager (see Data manager statistics on

page 47).
w For each buffer pool, information about the usage of the buffer pool (see Buffer manager statistics on page

49).
w Information about the log (see Log manager statistics on page 57).

34

Interpreting accounting and statistics data for MQSeries for OS/309 V5

Statistics on MQSeries' use of DB2
The DB2 manager manages the interface with the DB2 database that is used as the shared repository.
When using shared queues, object definitions and other information are stored in DB2 tables. This means you
may be involved in tuning DB2.
DB2 requests are made from the queue manager by passing a request to a pool of server tasks that issue the
DB2 request on behalf of the applications.
The figure below shows how DB2 requests are issued
Flow of a request for a DB2 service from a thread to server task

 Thread Server
 *
 |
 |STCK_thread_before
 |
 V--------------Post---------->
 Wait |
 | STCK_server_before
 |
 |
 |
 |
 <--------------Post----------V STCK_server_after
 |STCK_thread_afterWait
 V

The processing for a thread wanting to issue a read request is as follows:
1. The thread puts a request onto a server work list.

2. The thread determines the current time (STCK_thread_before).

3. The thread posts a server task.
4. The thread waits.

5. The server task wakes up, and determines the current time (STCK_server_before).

6. The server takes the first request off the server work list and issues the DB2 request.
7. When the request has ended it posts the thread task.

8. The server task determines the current time (STCK_server_after) and updates the statistics:

1. It increments the number of read requests READCNT.

2. It calculates the time taken it took to process the request, STCK_server_after-
STCK_server_before and adds this to the cumulative time READSCUW.

3. If the time for the request was larger than the previous maximum if replaces the READSMXW with the
delta.

Note: For other request, other counters are updated. These are LIST*, UPDT*, DELE*, and
WRIT*.

1. The original thread wakes up and determines the current time (STCK_thread_after) and updates the
statistics:

1. It calculates the time spent waiting (STCK_thread_after - STCK_thread_before) and
adds this to the cumulative time READTCUW.

35

Interpreting accounting and statistics data for MQSeries for OS/309 V5

2. If the time spent waiting for the request was greater than the previous maximum if replaces the
READTMXW with the larger value.

Note: For other request, other counters are updated. These are LIST*, UPDT*, DELE*, and
WRIT*.

2. The thread continues processing.
The processing is similar for update, write, and delete requests. The list request is more complex and can result
in reads being done from the server task issuing the list request.

Shared-channel-status and shared-sync-key tables
If you are using shared channels, shared-channel-status information and information about the shared-sync-
queue are stored in DB2 tables. The fields with names starting SCS* are for DB2 selects, inserts, updates, and
deletes from the shared-channel-status table. The fields with names starting SSK* are for DB2 selects, inserts,
updates, and deletes for information about the shared-synch-key table.
The shared-sync-key table is used to locate the message id for messages on the shared sync queue. The
Shared Channel Sync queue is used when the channel NPMSPEED(NORMAL) is used. There are messages
on the queue have information about the status of messages in a batch. The Shared Sync Key table, provides a
mapping from channel name, XMITQ name, and remote queue manager name to the messages for the channel
in the Shared Channel Sync queue. Information is inserted into the Shared Sync Key table, when a channel
processes messages with NPMSPEED(normal) for the first time. Both of these have times for the thread and
the server, as described above.

Shared large message support
In version 6 the maximum supported size of a shared message was increased from 63kb to 100Mb. For
messages greater than 63K the data is stored in DB2 shared tables as binary large objects (BLOBs).

The SMF 115 statistics records have been extended to report counts, maximum and cumulative thread and SQL
response times for the message insertion, browse and deletion operations. The new fields begin with LMS. The
time fields are store clock (STCK) differentials consistent with the information collected in prior releases.

As the message processing functions are more performance critical than the object functions they have
dedicated server tasks to reduce the possibility of requests being queued. The QSGDATA parameter in
CSQ6SYSP controls the number of server tasks dedicated to object and message processing.

Interpreting the data
You should monitor the following:

w The average time for server requests.
The average times in the server are a measure of the response time from DB2. Update requests to DB2
(update, write, and delete) have to wait for DB2 to log the changes, the response time will typically be between 5
and 10 milliseconds. If the average time is larger than this, you should investigate the DB2 system.

w The average difference between the wait time on thread and the time on the server.
If the difference between the wait time on thread, and time on server (for example readtcuw-readscuw)
is greater than a millisecond, this indicates that there was a delay before the server could process the request,
and so you should increase the number of server tasks. You change the number of server task using the
DB2Servers parameter of keyword QSGDATA in the CSQ6SYSP macro.

w The peak number of requests queued up for the server (field DHIGMAX).
The field DHIGMAX tells you the maximum number of requests queued waiting for a server. If this value is
greater than 10 you should consider increasing the number of servers. In our testing, this value was 20 when we
started 1000 channels at the same time; the rest of the time it was usually 1.
Notes:
1. The maximum time waiting for a request can occasionally be large if the information is not in the DB2 buffers

and so DB2 has to read it from disk.
2. The list request average and maximum values might be large if a lot of data is requested.

36

Interpreting accounting and statistics data for MQSeries for OS/309 V5

Copying the statistics data to DB2 tables
You can use Performance Reporter to copy the data from the SMF record into a DB2 table.
 The figure below shows part of the some Performance Reporter statements that will copy the DB2 statistics to a
DB2 table, where the columns in the DB2 table match the names in the MQSeries record.
 Performance Reporter definition for MQSeries DB2 statistics

DEFINE UPDATE MQ_DB2_Calls
 FROM SMF_115_02
 TO DRL.MQ_DB2_Calls
 GROUP BY
 (DATE = SM115DTE,
 PERIOD_NAME = VALUE(PERIOD(SM115SID,SM115DTE,
 TIME(SM115TME)),'?'),
 TIME = TIME(ROUND(SM115TME,5 MINUTES)),
 MVS = SM115SID,
 QMGR = SM115SSI)
 SET
 (
 NUMTASK = MAX(NUMTASK) ,
 ACTTASK = MAX(ACTTASK) ,
 CONNCNT = MAX(CONNCNT) ,
 DISCCNT = SUM(DISCCNT),
 DHIGMAX = MAX(DHIGMAX),
 ...
 DELETCUW = SUM(DELETCUW /4096),
 DELETMXW = MAX(DELETMXW /4096),
 ...
);

Performing queries on the data
You can use DB2 to perform queries on the data. The figure below shows part of a query that displays the
following:

w The average difference between the time the thread had to wait and the time the server was executing
w The average time the thread had to wait
w The maximum time the thread had to wait
w The maximum time the server had to wait
w The maximum number of requests on the server work queue
Sample DB2 query for displaying statistics

SELECT 'READ ',(READTCUW-READSCUW)/READCNT,READTCUW/READCNT,READTMXW,
 READSMXW,DHIGMAX

 FROM DRL.MQ_DB2_CALLS
 WHERE READCNT> 0
UNION
SELECT 'WRITE ',(WRITTCUW-WRITSCUW)/WRITCNT,WRITTCUW/WRITCNT,WRITTMXW,
 WRITSMXW,DHIGMAX
 FROM DRL.MQ_DB2_CALLS
 WHERE WRITCNT> 0
 ...

Part of the output from this query is displayed in below.
 Sample output of DB2 statistics . Part of the output from the DB2 query above.

37

Interpreting accounting and statistics data for MQSeries for OS/309 V5

 Times in uSecs for DB2 request
VERB AVG T-S AVG T MAX T MAX S DHIGMAX
------ ----------- ----------- ----------- ----------- -------
DELETE 66 22363 77011 77011 1
LIST 281 62131 405399 405291 1
READ 72 3808 6032 5961 1
UPDATE 247 5791 6125 6011 1
WRITE 85 8390 59886 59796 1

Exception queries

The queries shown below illustrate how you can monitor out of line conditions described in Interpreting the data
on page 36.

w The peak number of requests queued up for the server:

Select DATE,TIME,MVS,QMGR,DHIGMAX from DRL.MQ_DB2_CALLS
where DHIGMAX > 20

w The average difference between the wait time on thread and the time on the server:

SELECT 'WRITE ',(WRITTCUW-WRITSCUW)/WRITCNT
 from DRL.MQ_DB2_CALLS
 Where WRITCNT > 0 and (WRITTCUW-WRITSCUW)/WRITCNT > 1000

w The average time for server requests:

Select DATE,TIME,MVS,QMGR,'WRITE ', WRITTCUW/WRITCNT
 where WRITCNT > 0 and WRITTCUW/WRITCNT > 10000
Union

Select DATE,TIME,MVS,QMGR,'WRITE ', SCSUSCUW/SCSUPD
 from DRL.MQ_DB2_CALLS
 where SCSUPD > 0 and SCSUSCUW/SCSUPD > 10000
Union
 ...
Select DATE,TIME,MVS,QMGR,'WRITE ', SSKUSCUW/SSKUPD
 from DRL.MQ_DB2_CALLS
 where SSKUPD > 0 and SSKUSCUW/SSKUPD > 10000
Union
 ...

DB2 statistics record (Q5ST)

Table 6. DB2 statistics record

Offsets

Dec Hex Type Len Name (Dim)
0 (0) Structure 488 Q5ST DB2 manager statistics

0 (0) Bitstring 2 Q5STID Control block identifier
2 (2) Unsigned 2 Q5STLL Control block length
4 (4) Character 4 Q5STEYEC Control block eye catcher
8 (8) Character 480 Q5STZERO QMST part cleared on occasion
8 (8) Unsigned 4 NUMTASK Number of server tasks

12 (C) Unsigned 4 ACTTASK Number of active server tasks
16 (10) Unsigned 4 CONNCNT Number of connect requests
20 (14) Unsigned 4 DISCCNT Number of disconnect requests
24 (18) Unsigned 4 DHIGMAX Max. request queue depth
28 (1C) Unsigned 4 ABNDCNT Number of DB2SRV task abends

38

Interpreting accounting and statistics data for MQSeries for OS/309 V5
32 (20) Unsigned 4 REQUCNT Number of requests requeued
36 (24) Unsigned 4 DEADCNT Number of deadlock timeouts
40 (28) Unsigned 4 DELECNT Number of delete requests
44 (2C) Unsigned 4 LISTCNT Number of list requests
48 (30) Unsigned 4 READCNT Number of read requests
52 (34) Unsigned 4 UPDTCNT Number of update requests
56 (38) Unsigned 4 WRITCNT Number of write requests
60 (3C) Unsigned 4 SCSSEL SCST selects (shared-channel-status)
64 (40) Unsigned 4 SCSINS SCST inserts (shared-channel-status)
68 (44) Unsigned 4 SCSUPD SCST updates (shared-channel-status)
72 (48) Unsigned 4 SCSDEL SCST deletes (shared-channel-status)
76 (4C) Unsigned 4 SSKSEL SSKT selects (shared-sync-key)
80 (50) Unsigned 4 SSKINS SSKT inserts (shared-sync-key)
84 (54) Unsigned 4 SSKDEL SSKT deletes (shared-sync-key)
88 (58) Unsigned 4 SCSBFTS SCST number of times buffer too small
92 (5C) Unsigned 4 SCSMAXR SCST maximum rows on query
96 (60) Unsigned 4 * (2) Reserved

104 (68) Character 8 DELETCUW Cumulative STCK difference - Thread delete
112 (70) Character 8 DELETMXW Maximum STCK difference - Thread delete
120 (78) Character 8 DELESCUW Cumulative STCK difference - SQL delete
128 (80) Character 8 DELESMXW Maximum STCK difference - SQL delete
136 (88) Character 8 LISTTCUW Cumulative STCK difference - Thread list
144 (90) Character 8 LISTTMXW Maximum STCK difference - Thread list
152 (98) Character 8 LISTSCUW Cumulative STCK difference - SQL list
160 (A0) Character 8 LISTSMXW Maximum STCK difference - SQL list
168 (A8) Character 8 READTCUW Cumulative STCK difference - Thread read
176 (B0) Character 8 READTMXW Maximum STCK difference - Thread read
184 (B8) Character 8 READSCUW Cumulative STCK difference - SQL read
192 (C0) Character 8 READSMX

W
Maximum STCK difference - SQL read

200 (C8) Character 8 UPDTTCUW Cumulative STCK difference - Thread update
208 (D0) Character 8 UPDTTMXW Maximum STCK difference - Thread update
216 (D8) Character 8 UPDTSCUW Cumulative STCK difference - SQL update
224 (E0) Character 8 UPDTSMXW Maximum STCK difference - SQL update
232 (E8) Character 8 WRITTCUW Cumulative STCK difference - Thread write
240 (F0) Character 8 WRITTMXW Maximum STCK difference - Thread write
248 (F8) Character 8 WRITSCUW Cumulative STCK difference - SQL write
256 (100) Character 8 WRITSMXW Maximum STCK difference - SQL write
264 (108) Character 8 SCSSTCUW Cumulative STCK difference - Thread select
272 (110) Character 8 SCSSTMXW Maximum STCK difference - Thread select
280 (118) Character 8 SCSSSCUW Cumulative STCK difference - SQL select
288 (120) Character 8 SCSSSMXW Maximum STCK difference - SQL select
296 (128) Character 8 SCSITCUW Cumulative STCK difference - Thread insert
304 (130) Character 8 SCSITMXW Maximum STCK difference - Thread insert
312 (138) Character 8 SCSISCUW Cumulative STCK difference - SQL insert
320 (140) Character 8 SCSISMXW Maximum STCK difference - SQL insert
328 (148) Character 8 SCSUTCUW Cumulative STCK difference - Thread update
336 (150) Character 8 SCSUTMXW Maximum STCK difference - Thread update
344 (158) Character 8 SCSUSCUW Cumulative STCK difference - SQL update
352 (160) Character 8 SCSUSMX

W
Maximum STCK difference - SQL update

360 (168) Character 8 SCSDTCUW Cumulative STCK difference - Thread delete
368 (170) Character 8 SCSDTMXW Maximum STCK difference - Thread delete
376 (178) Character 8 SCSDSCUW Cumulative STCK difference - SQL delete
384 (180) Character 8 SCSDSMX

W
Maximum STCK difference - SQL delete

392 (188) Character 8 SSKSTCUW Cumulative STCK difference - Thread select
400 (190) Character 8 SSKSTMXW Maximum STCK difference - Thread select
408 (198) Character 8 SSKSSCUW Cumulative STCK difference - SQL select
416 (1A0) Character 8 SSKSSMXW Maximum STCK difference - SQL select
424 (1A8) Character 8 SSKITCUW Cumulative STCK difference - Thread insert
432 (1B0) Character 8 SSKITMXW Maximum STCK difference - Thread insert
440 (1B8) Character 8 SSKISCUW Cumulative STCK difference - SQL insert
448 (1C0) Character 8 SSKISMXW Maximum STCK difference - SQL insert
456 (1C8) Character 8 SSKDTCUW Cumulative STCK difference - Thread delete
464 (1D0) Character 8 SSKDTMXW Maximum STCK difference - Thread delete

39

Interpreting accounting and statistics data for MQSeries for OS/309 V5
472 (1D8) Character 8 SSKDSCUW Cumulative STCK difference - SQL delete
480 (1E0) Character 8 SSKDSMXW Maximum STCK difference - SQL delete
488 (1E8) Unsigned 4 LMSSEL # of DB2 BLOB read requests
492 (1EC) Unsigned 4 LMSINS # of DB2 BLOB insert requests
496 (1F0) Unsigned 4 LMSUPD # of DB2 BLOB update requests
500 (1F4) Unsigned 4 LMSDEL # of DB2 BLOB delete requests
504 (1F8) Unsigned 4 LMSLIS # of DB2 BLOB list requests
508 (1FC) Unsigned 4 * Reserved
512 (200) Character 8 LMSSTCUW Total elapse time - thd. BLOB read
520 (208) Character 8 LMSSTMXW Max Elapse time - thd. BLOB read
528 (210) Character 8 LMSSSCUW Total elapse time - SQL BLOB read
536 (218) Character 8 LMSSSMXW Max Elapse time - SQL BLOB read
544 (220) Character 8 LMSITCUW Total elapse time - thd. BLOB write
552 (228) Character 8 LMSITMXW Max Elapse time - thd. BLOB write
560 (230) Character 8 LMSISCUW Total elapse time - SQL BLOB write
568 (238) Character 8 LMSISMXW Max Elapse time - SQL BLOB write
576 (240) Character 8 LMSUTCUW Total elapse time - thd. BLOB update
584 (248) Character 8 LMSUTMXW Max Elapse time - thd. BLOB update
592 (250) Character 8 LMSUSCUW Total elapse time - SQL BLOB update
600 (258) Character 8 LMSUSMX

W
Max Elapse time - SQL BLOB update

608 (260) Character 8 LMSDTCUW Total elapse time - thd. BLOB delete
616 (268) Character 8 LMSDTMXW Max Elapse time - thd. BLOB delete
624 (270) Character 8 LMSDSCUW Total elapse time - SQL BLOB delete
632 (278) Character 8 LMSDSMX

W
Max Elapse time - SQL BLOB delete

640 (280) Character 8 LMSLTCUW Total elapse time - thd. BLOB list
648 (288) Character 8 LMSLTMXW Max Elapse time - thd. BLOB list
656 (290) Character 8 LMSLSCUW Total elapse time - SQL BLOB list
664 (298) Character 8 LMSLSMXW Max Elapse time - SQL BLOB list

Cross reference

Name

Hex
Offset

ABNDCNT 1C
ACTTASK C
CONNCNT 10
DEADCNT 24
DELECNT 28
DELESCUW 78
DELESMXW 80
DELETCUW 68
DELETMXW 70
DHIGMAX 18
DISCCNT 14
LISTCNT 2C
LISTSCUW 98
LISTSMXW A0
LISTTCUW 88
LISTTMXW 90
LMSDEL 1F4
LMSDSCUW 270
LMSDSMX
W

278

LMSDTCUW 260
LMSDTMXW 268
LMSINS 1EC
LMSISCUW 230
LMSISMXW 238
LMSITCUW 220
LMSITMXW 228
LMSLIS 1F8
LMSLSCUW 290
LMSLSMXW 298
LMSLTCUW 280
LMSLTMXW 288
LMSSEL 1E8

Name

Hex
Offset

LMSSSCUW 210
LMSSSMXW 218
LMSSTCUW 200
LMSSTMXW 208
LMSUPD 1F0
LMSUSCUW 250
LMSUSMX
W

258

LMSUTCUW 240
LMSUTMXW 248
NUMTASK 8
Q5ST 0

Q5STEYEC 4

Q5STID 0

Q5STLL 2

Q5STZERO 8

READCNT 30

READSCUW B8

READSMXW C0

READTCUW A8

READTMXW B0

REQUCNT 20

SCSBFTS 58

Name

Hex
Offset

SCSDEL 48

SCSDSCUW 178

SCSDSMXW 180

SCSDTCUW 168

SCSDTMXW 170

SCSINS 40

SCSISCUW 138

SCSISMXW 140

SCSITCUW 128

SCSITMXW 130

SCSMAXR 5C

SCSSEL 3C

SCSSSCUW 118

SCSSSMXW 120

SCSSTCUW 108

SCSSTMXW 110

SCSUPD 44

SCSUSCUW 158

SCSUSMXW 160

Name

Hex
Offset

SCSUTCUW 148

SCSUTMXW 150

SSKDEL 54

SSKDSCUW 1D8

SSKDSMXW 1E0

SSKDTCUW 1C8

SSKDTMXW 1D0

SSKINS 50

SSKISCUW 1B8

SSKISMXW 1C0

SSKITCUW 1A8

SSKITMXW 1B0

SSKSEL 4C

SSKSSCUW 198

SSKSSMXW 1A0

SSKSTCUW 188

SSKSTMXW 190

UPDTCNT 34

UPDTSCUW D8

40

Interpreting accounting and statistics data for MQSeries for OS/309 V5

Name

Hex
Offset

UPDTSMXW E0

UPDTTCUW C8

Name

Hex
Offset

UPDTTMXW D0

WRITCNT 38

Name

Hex
Offset

WRITSCUW F8

WRITSMXW 100

Name

Hex
Offset

WRITTCUW E8

WRITTMXW F0

The field names in the record reflect the content, for example SCSSTCUW is
SCSSTCUW SCS is for Shared Channel Status

SCSSTCUW S is for Select, I for Insert, U for Update, D for Delete

SCSSTCUW T is for Thread wait, S is for SQL waits

SCSSTCUW CUW is for CUmulative Wait, MXW is for MaXimum Wait

So SCSSSCUW is for the Shared Channel Status, Select request, SQL time, Cumulative wait time.

Examples of some MQSeries’ DB2 statistics

A queue manager doing no work
The statistics are given below for a 15 minute period.

DB2 manager : Q5ST
 Tasks : Servers 4 Active 5 Conns 0 Discs 0 High 1 Abend 0 Requeue 0
 Number of deadlock conditions : 0
 Lists : #:180 Task avg m/s : 2 Task max m/s : 3 DB2 avg m/s : 2 DB2 max m/s : 2

1. There were 4 DB2 tasks requested(NUMTASK), and the Queue Manager started another task, so there are
5 active(ACTTASK).

2. The maximum number of requests queued was 1(DHIGMAX).
3. There were 180 read requests(READCNT) taking an average of 2 ms(READTCUW/READCNT)and a

maximum of 3 ms(READTMXW). Most of this time was spent in DB2(READSCUW, READSMXW).
4. The 180 list requests were in a 15 minute period, this is one request every 5 seconds. This is due to the

queue manager querying DB2 for any changed definitions every 5 seconds.

Defining a shared queue
The command "DEF QL(SQFRED) QSGDISP(SHARED) LIKE(SQ0000)" was issued. The statistics produced
are given below.

DB2 manager : Q5ST
 Tasks : Servers 4 Active 5 Conns 0 Discs 0 High 1 Abend 0 Requeue 0
 Number of deadlock conditions : 0
 Reads : #: 3 Task avg m/s : 1 Task max m/s : 1 DB2 avg m/s : 1 DB2 max m/s : 1
 Writes : #: 1 Task avg m/s :110 Task max m/s : 110 DB2 avg m/s : 109 DB2 max m/s : 109
 Lists : #: 12 Task avg m/s : 2 Task max m/s : 3 DB2 avg m/s : 2 DB2 max m/s : 3

1. There were 3 read requests taking a maximum and average of 1 ms, most of this time was spent in DB2.
2. There was 1 write request (WRITCNT). The (average) time was 110 milliseconds (WRITTCUW/WRITCNT)

most of which (109 milliseconds) was spent in DB2 (WRITSCUW/WRITCNT).
3. The number of list requests was 12, which happen every 5 seconds, so a total time of 60 seconds, which

matches the SMF interval of 61 seconds.

In the example below, a shared receiver channel was started. This accessed the Shared Channel Status table,
and the Shared Key Table.

41

Interpreting accounting and statistics data for MQSeries for OS/309 V5

DB2 manager : Q5ST
 Tasks : Servers 4 Active 5 Conns 0 Discs 0 High 1 Abend 0 Requeue 0 Reads : #: 19 Task avg m/s
: 6 Task max m/s :
 Lists : #: 56 Task avg m/s : 3 Task max m/s : 84
 SCS Maximum rows returned on query : 2
 SCS Selects: #: 1 Task avg m/s: 2 Task max m/s: 2 DB2 avg m/s : 2 DB2 max m/s : 2
 SCS Inserts: #: 1 Task avg m/s: 4 Task max m/s: 4 DB2 avg m/s : 4 DB2 max m/s : 4
 SCS Updates: #: 1 Task avg m/s: 6 Task max m/s: 6 DB2 avg m/s : 5 DB2 max m/s : 5
 SCS Deletes: #: 1 Task avg m/s: 6 Task max m/s: 6 DB2 avg m/s : 5 DB2 max m/s : 5
 SSK Selects: #: 1 Task avg m/s: 1 Task max m/s: 1 DB2 avg m/s : 1 DB2 max m/s : 1

1. When a channel starts it inserts an record into the Shared Channel Status table - which may exist already, so
the number of inserts is 1.

2. When a channel stops naturally (not as a result of a stop channel) then the record is deleted from the Shared
Channel Status table. The channel disconnect interval expired, so the channel stopped. There was one
delete request.

3. The maximum rows returned on a query was 2 (SCSMAXR).
4. There was one select from the Shared Channel Status table(SCSSEL) which took on average 2 ms

(SCSSTCUW/SCSSEL), and a maximum of 2 ms (SCSSTMXW).
5. Of this time the amount time in DB2 was 2 ms(SCSSSCUW/SCSSEL), with a maximum of 2ms

(SCSSSMXW).

42

Coupling Facility statistics
The Coupling Facility manager manages the interface with the Coupling Facility.
When using shared queues, messages are stored in the Coupling Facility (CF). During a commit of messages
being processed within syncpoint, information about the messages is changed to indicate that the commit has
occurred. The Coupling Facility can perform updates on many messages in one request. Updates to elements in
the CF can be made one at a time, or as a group of changes that have to be made together. Conceptually,
putting two messages in syncpoint followed by a commit is two requests to update an individual element
followed by one request to act on both elements.
The requests to update one element are performed using the IXLLSTE request, and the requests to update
multiple elements are performed using the IXLLSTM request.
When these requests are issued, the Coupling Facility might not be able to process the request completely, and
so the request might have to be reissued. The number of times a request was reissued is recorded in the
statistics as the number of redrives.

How the data is stored
The Coupling Facility statistics have a header and a number of records. Currently it is a 4096 byte data segment
with 64 bytes for each of the possible 64 structures. Unused structures have a QESTSTR containing nulls.

What you should monitor
w You should monitor the average time for the various requests. For example (QESTSSTC/4096)/

QESTCSEC (the division by 4096 converts the STCK value to microseconds).
w If the Number of structure full is greater than zero you need to determine if this is due to a

transient problem or due to an increasing trend. You may want to increase the size of the structure.
If this value is non zero, you will have got OS/390 console messages indicating capacity problems with the
structure which you should act on.

Typical query
The query in below produced the output following it. This assumes the appropriate Performance Reporter
definitions have been used to update the DB2 table.
Sample DB2 query on Coupling Facility statistics. The column names in DB2 table are the same as the
names in the statistics record. There is one row per entry in the array, where there is data in the array.

SELECT 'SINGLE ',QESTSTR,QESTSFUL,QESTSSTC/QESTCSEC,
 QESTRSEC,QESTMNUS,QESTMLUS
 FROM DRL.MQ_CF_CALLS
 WHERE QESTCSEC = 0
UNION
SELECT 'MULTIPLE',QESTSTR,QESTSFUL,QESTMSTC/QESTCMEC,
 QESTRMEC,QESTMNUS,QESTMLUS
 FROM DRL.MQ_CF_CALLS
WHERE QESTCMEC = 0

Sample output from Coupling Facility statistics

TYPE STR NAME FULL AVGE TIME REDRIVE MAX ELEM MAX
-------- ------------ ---- ----------- ------- ----------- --------
SINGLE CSQ_ADMIN 0 33 0 1127 1

Coupling Facility record layout (QEST)
Table 7. Coupling Facility record layout

Offsets

Dec Hex Type Len Name
0 (0) Structure 4104 QEST CF manager statistics
0 (0) Bitstring 2 QESTID Control block identifier
2 (2) Unsigned 2 QESTLL Control block length
4 (4) Character 4 QESTEYEC Control block eye catcher
8 (8) Character 4096 QESTZERO QEST part cleared on occasion
8 (8) Character 64 QESTSTUC

(0:63)
Array (one entry per structure)

8 (8) Character 12 QESTSTR Structure name
20 (14) Unsigned 4 QESTSTRN Structure number
24 (18) Unsigned 4 QESTCSEC Number of IXLLSTE calls
28 (1C) Unsigned 4 QESTCMEC Number of IXLLSTM calls
32 (20) Character 8 QESTSSTC Time spent doing IXLLSTE calls
40 (28) Character 8 QESTMSTC Time spent doing IXLLSTM calls
48 (30) Unsigned 4 QESTRSEC Number of IXLLSTE redrives
52 (34) Unsigned 4 QESTRMEC Number of IXLLSTM redrives
56 (38) Unsigned 4 QESTSFUL Number of structure fulls
60 (3C) Unsigned 4 QESTMNUS Maximum number of entries in use
64 (40) Unsigned 4 QESTMLUS Maximum number of elements in use
68 (44) Character 4 * Reserved

4104 (1008) Character 0 * End of control block
The QESTSTUC is an array of 64 elements, each element is 64 bytes long.

Cross reference

Name
Hex

Offset
QEST 0

QESTCMEC 1C

QESTCSEC 18

QESTEYEC 4

QESTID 0

Name
Hex

Offset
QESTLL 2

QESTMLUS 40

QESTMNUS 3C

QESTMSTC 28

QESTRMEC 34

Name
Hex

Offset
QESTRSEC 30

QESTSFUL 38

QESTSSTC 20

QESTSTR 8

QESTSTRN 14

Name
Hex

Offset
QESTSTUC 8

QESTZERO 8

Examples of some MQSeries CF statistics

A transaction of put commit with a 1000 byte non persistent message was repeated 1000 times.

CF manager : QEST
 Structure #: 0, Name CSQ_ADMIN , Structure-fulls 0
 Single 1000, Avg time uS 53, Single retries 0
 Multiple 0, Avg time uS 0, Multiple retries 0
 Max used entries 344, Max used elements 666
 Structure #: 1, Name APPLICATION1, Structure-fulls 0
 Single 1000, Avg time uS 73, Single retries 0
 Multiple 1000, Avg time uS 211, Multiple retries 0
 Max used entries 1313, Max used elements 7192

1. In the structure name(QESTSTR) corresponding to structure number 0 (QESTSTRN) the number of single
requests(QESTCSEC) corresponds to the number of commit requests.

2. The average time for these request (QESTSSTC/QESTCSEC) is 53 micro seconds.
3. In the application structure APPLICATION1 there were 1000 single requests, corresponding to the number of

puts, and 1000 requests where potentially multiple messages were committed in one call.
4. Before the run there were 313 used entries, so with 1000 messages the number of used entries is 313 +

1000 = 1313.
5. Before the run there were 1192 elements used.
6. A 1,000 byte message is composed of 6 256 byte segments.
7. The number of segments used is 6*1000 = 6000.
8. The number of segments before + number of segments used = 1192 + 6000 = 7192.
9. An ICS link was used for the Coupling Facility, which has a better response time than a CFS link.

A transaction of get commit with a 1000 byte non persistent message was repeated 1000 times.

CF manager : QEST
 Structure #: 0, Name CSQ_ADMIN , Structure-fulls 0
 Single 1000, Avg time uS 43, Single retries 0
 Multiple 0, Avg time uS 0, Multiple retries 0
 Max used entries 344, Max used elements 389
 Structure #: 1, Name APPLICATION1, Structure-fulls 0
 Single 1000, Avg time uS 52, Single retries 0
 Multiple 1000, Avg time uS 228, Multiple retries 0
 Max used entries 1037, Max used elements 6090

1. The statistics are similar to the put example above.

A transaction of put commit with a 10,000 byte non persistent message was repeated 1000 times. Then another
transaction issued get commit of the messages.

CF manager : QEST
 Structure #: 0, Name CSQ_ADMIN , Structure-fulls 0
 Single 2000, Avg time uS 50, Single retries 0
 Multiple 0, Avg time uS 0, Multiple retries 0
 Max used entries 344, Max used elements 389
 Structure #: 1, Name APPLICATION1, Structure-fulls 0
 Single 4000, Avg time uS 218, Single retries 1000
 Multiple 1000, Avg time uS 63, Multiple retries 0
 Max used entries 1040, Max used elements 41248

1. Before the measurement the Max used entries was 40 and the Max used elements was 248.
2. There are 2000 single requests for the CSQ_ADMIN structure because there are 1000 for the put requests,

and 1000 for the get requests.
3. 1000 messages were processed, and the Max used entries is 40 + 1000
4. A 10,000 byte message is stored in 256 segments, so 1000 messages used 41248 - 248 = 41,000 or 41

segments per message.
5. It is quicker to use a 4KB buffer than a 64KB buffer to get data There are 1000 single retries. When a

message is got from the CF an attempt is made using a 4KB, if this is not large enough the message is got
using a 64KB buffer. This getting a message using the larger buffer counts as a retry of reading the CF. As a
10,000 byte messages were being retrieved, the size is greater than 4KB so there was a retry for each
message.

6. There were 4000 single CF requests, of which 1000 were retries so there were 3000 successful
7. The calculation of the average time uses the total number of requests. This includes the number and time for

when the buffer was too small, in this case the response time was of the order of 10's of micro seconds,
compared to the 100's of microseconds when the message was retrieved

A more typical response time from the CF should exclude the count of the retries. So excluding the count of the
retries from the calculation gives the response time = (4000 * 218)/(4000-1000) = 290 micro seconds. So the
response time to actually get a message from the CF is between 218 and 290 micro seconds on average.

Message manager statistics
The message manager processes the MQI verbs.
The following table shows the format of the message manager statistics record. It is defined by member
CSQDQMST.

Table 8. Structure of the message manager statistics record QMST

Offsets
De
c Hex Type

Le
n Name

0 (0) Structure 48 QMST Message manager statistics

0 (0) Bitstring 2 QMSTID Control block identifier

2 (2) Unsigned 2 QMSTLL Control block length

4 (4) Character 4 QMSTEYEC Control block eye catcher (QMST)

8 (8) Signed 4 QMSTOPEN Number of MQOPEN requests
12 (C) Signed 4 QMSTCLOS Number of MQCLOSE requests
16 (10) Signed 4 QMSTGET Number of MQGET requests
20 (14) Signed 4 QMSTPUT Number of MQPUT requests
24 (18) Signed 4 QMSTPUT1 Number of MQPUT1 requests
28 (1C

)
Signed 4 QMSTINQ Number of MQINQ requests

32 (20) 4 Reserved
36 (24) Signed 4 QMSTSET Number of MQSET requests
40 (28) 4 Reserved

44 (2C
)

Signed 4 QMSTCALH Number of "close handle" requests

Interpretation
The data gives you counts of different MQI requests. There are no fields you should monitor on a regular basis.

Data manager statistics
The data manager manages the links between messages and queues. It calls the buffer manager to process
the pages with messages on them.
The following table shows the format of the data manager statistics record. It is defined in member CSQDQIST.

Table 9. Structure of the data manager statistics record QIST

Offsets

Dec Hex Type
Le
n Name

0 (0) Structure 60 QIST Data manager statistics
0 (0) Bitstring 2 QISTID Control block identifier
2 (2) Unsigned 2 QISTLL Control block length
4 (4) Character 4 QISTEYEC Control block eye catcher (QIST)
8 (8) Unsigned 4 QISTMGE

T
Number of message get requests

12 (C) Unsigned 4 QISTMPUT Number of message put requests
16 (10) 4 Reserved
20 (14) Signed 4 QISTDCRE Number of object create requests
24 (18) Signed 4 QISTDPUT Number of object put requests
28 (1C) Signed 4 QISTDDEL Number of object delete requests
32 (20) Signed 4 QISTDGET Number of object get requests
36 (24) Signed 4 QISTDLOC Number of object locate requests
40 (28) 4 Reserved
44 (2C) Signed 4 QISTALST Number of Stgclass change requests
48 (30) 4 Reserved
52 (34) 4 Reserved
56 (38) 4 Reserved
60 (3C) 4 Reserved
64 (40) 4 Reserved
68 (44) 4 Reserved
72 (48) 4 Reserved

Interpretation
The data gives you counts of different object requests. There are no fields you should monitor on a regular
basis.

Buffer manager statistics
The buffer manager manages the buffer pools in virtual storage and the writing of pages to, and reading pages
from, page sets.
The following table shows the format of the buffer manager statistics record. It is defined in member
CSQDQPST.
Note: If you have defined a buffer pool, but not used it, no values are set so the buffer manager

statistics record will not contain any data.

Table 10. Structure of the buffer manager statistics record QPST

Offsets

Dec Hex Type
Le
n Name

0 (0) Structure 104 QPST Buffer manager statistics.

0 (0) Bitstring 2 QPSTID Control block identifier.

2 (2) Unsigned 2 QPSTLL Control block length.

4 (4) Character 4 QPSTEYEC Control block eye catcher (QPST).

8 (8) Signed 4 QPSTPOOL Buffer pool identifier (0000-0003).

12 (C) Signed 4 QPSTNBUF Number of buffers in this buffer pool.

16 (10) Signed 4 QPSTCBSL Lowest number of available buffers.

20 (14) Signed 4 QPSTCBS Number of available buffers.

24 (18) Signed 4 QPSTGETP The number of page get requests where the current page contents are
required. This might involve a read DASD operation if the page is not
currently in the buffer pool.

28 (1C
)

Signed 4 QPSTGET
N

The number of MQGET requests for a new - or empty - page (that is,
no read operation is necessary).

32 (20) Signed 4 QPSTRIO The number of page read DASD operations.

36 (24) Signed 4 QPSTSTW The number of page updates.

40 (28) Signed 4 QPSTTPW Number of pages written to DASD.

44 (2C
)

Signed 4 QPSTWIO The number of page write operations.

48 (30) Signed 4 QPSTIMW The number of synchronous page write operations.

52 (34) Signed 4 QPSTDWT The number of times the asynchronous write processor was started.

56 (38) Signed 4 QPSTDMC The number of times the synchronous page processor was started
because the synchronous write threshold was reached.

60 (3C
)

Signed 4 QPSTSTL The number of times a page get request did not find the page already
in the buffer pool.

64 (40) Signed 4 QPSTSTLA Number of times the hash chain has been changed during a buffer
steal.

68 (44) Signed 4 QPSTSOS The number of times NO available buffers were found.

72 (48) 32 Reserved.

Interpreting buffer manager statistics
The buffer manager is the component of MQSeries that handles the movement of data between DASD and
virtual storage.
Buffer pools are areas of MQSeries virtual storage reserved to satisfy the buffering requirements for MQSeries
queues. Each buffer pool contains an installation defined number of 4 KB virtual storage pages or buffers. Page
sets are VSAM linear data sets and each page set is associated with a buffer pool. Queues are mapped to

page sets via their storage class attribute. For more information on the relationship between these entities, see
the MQSeries for OS/390 Concepts and Planning Guide.
Buffer pool 0 contains MQSeries objects and messages. Other buffer pools just contains messages. A buffer
pool treats pages containing messages and objects the same way. To be able to estimate the required size of
the buffer pools, you must understand their characteristics and how to interpret the buffer manager statistics
generated by MQSeries.
A buffer pool can hold MQSeries object definitions, as well as messages, in 4 KB virtual storage pages.
MQSeries is designed to keep pages in buffer pool virtual storage as long as possible in order to obtain the best
performance.
However, if a buffer pool starts to fill up, pages in the buffer pool which have been updated are written out to
their relevant DASD page sets to free up buffer pool space. This happens if, for example, messages are being
put onto queues associated with the buffer faster than they are being taken off.
Information contained in pages that have been written out to DASD page sets can be read in again on demand.
Ideally, a transaction pattern should be such that messages do not spend a long time on a queue waiting to be
retrieved. This means that messages never have to spill over to DASD because the pages used to hold them
remain in virtual storage.

Buffer pool management
To manage your buffer pools efficiently, you must consider the factors that affect the buffer pool I/O operations
and also the statistics associated with the buffer pools.

DASD operations

The following factors affect buffer pool I/O operations.

w If a page containing the required data is not found in the buffer pool, it is read synchronously from its DASD
page set to an available buffer.

w Whenever a buffer pool page is updated, it is put on an internal queue of pages to be (potentially) written out
to DASD. Once a buffer pool page has been updated, it cannot be reused until it has been written to DASD.

w If the number of pages queued to be written to DASD exceeds 85% of the total number of buffers in the pool,
an asynchronous write processor is started in order to write the buffers to DASD.

Similarly, should the number of buffers available for page get requests become less than 15% of the total
number of buffers in the pool, then the asynchronous write processor is started in order to perform the
write I/O operations. If the number of pages queued to be written to DASD is close to 85%, the number of
free pages is likely to be just over the 15% limit, so if there are many applications concurrently browsing a
queue, thus using pages, the number of free pages may drop below the 15%.
The write processor stops when the number of pages queued to be written to DASD has fallen to 75% of
the total number of buffer in the pool.

w If the number of pages queued for writing to DASD exceed 95% of the total number of buffers in the pool, all
updates result in a synchronous write of the page to DASD.

w If the number of buffers available for page get requests ever reaches zero, a transaction that encounters this
condition is suspended until the asynchronous write processor has finished.

w If a page is frequently updated, the page spends most of its time on the queue of pages waiting to be written
to DASD. Because this queue is in least recently used order, it is possible that a frequently updated page
placed on this least recently used queue will never be written out to DASD. For this reason, at the time of
update, if the page is found to have been waiting on the write to DASD queue for at least 2 checkpoints, it will
be synchronously written to DASD.

The aim of the above algorithm is to maximize the time pages spend in buffer pool memory while allowing
the system to function should system load put the buffer pool usage under stress.

Fields that you need to monitor daily

You should monitor the QPSTSOS field (the number of times that no buffers were available). If this value is non
zero, you should increase the size of your buffer pool and check that the page data sets in the buffer pool are
optimally placed to reduce contention.

Fields that you should monitor weekly

The values in the buffer manager statistics vary, depending on the applications that use the buffer pools. You
should monitor the values listed below, and investigate any out-of-line conditions, and take the appropriate
action. This might be:

w To make the buffer pool bigger.
w To move messages from one page set to another in order to move work to a different buffer pool. You can

do this using the COPY and LOAD functions in CSQUTIL. This is described in MQSeries for OS/390
System Administration Guide

w To investigate why the message pattern has changed. For example a channel might not be working, so
messages are accumulating on a transmission queue.

You should monitor the following:

w QPSTCBSL/QPSTNBUF (the ratio of how full the buffer is).
w QPSTRIO (the number of pages read from the page set). This might be non zero after a system restart,

and zero the rest of the time
w QPSTDMC (how many times the task was started to move pages out from the buffer pool to the page set).

Examples of buffer pool statistics.
In the examples below the statistics are given for the buffer pool where the messages are located. There will
also be activity in buffer pool 0 as information about the queue is updated, for example the current queue depth.

Putting 1000 1000 byte messages

Buffer manager : QPST
 ...
01 #buff 1000 #low 499 #now 499 #getp 2498 #getn 500
01 Rio 0 STW 2499 TPW 0 WIO 0 IMW 0
01 DWT 0 DMC 0 STL 500 STLA 0 SOS 0

1. Two 1000 byte message fit into a 4K page
2. 1000 messages require 500 pages, #getn is 500 (field QPSTGETN).
3. When there is space on the current(last) page for a second message, it can use the current page, so we

have 1 request for get current page with contents.
When there is not enough space to add the message to the current(last) page, a new page must be used. The
typical flow for adding a page for a 1000 byte message is

z get last page - determine there is not enough space on it
z get a page which has a list of free pages and locate a free page
z get the new page, and format it
z get the previous last page and change it to point to the new page
z get the new page and put the message in it

The 5 requests are 4 requests to get the page with contents, and one get new page.
Note: The get page requests are usually low cost calls, which just locates the page in memory. When the page
has to be read in from the page set then the request is more expensive.
4. So for 2 messages we need 5+1 get page requests, of which 1 is get new, and 5 are get page contents. For

500 pairs of messages we need 500 get new page, and 2500 get old page requests. The exception is for the
first message on the queue when there is no last page, so for the first message requires 2 fewer get
requests, so we have 2500-2 = 2498. This is the #getp 2498 (field QPSTGETP). Note that this is a simplified
description, it gets more complex when you have different sized messages and a busier system.

5. Whenever a buffer pool page is updated a flag is set called Set Write Intent. The number of times this flag is
set is given in the STW (field QPSTSTW).

In the above example, the current page is got

z If there is space in the page then the Set Write Intent is set.
z If there is no space, then the Set Write Intent is not set, and the flow above is followed. Each of these
require an update to the page, so Set Write Intent is set for the rest of the requests.
So for 2 messages we have 1 Set Write Intent when the new message fits in the existing page, and 4 write
intents when a new page is needed. For 500 pairs of messages we have 500*(1+4) = 2500. This is
approximately the same as the STW value in the statistics.
This field gives a measure of how many pages were updated, and how many were browsed, or searched for a
message, see Getting messages from an indexed queue on page 55 for an example.
6. These puts were done just after the queue manage started so there were no used buffers in the buffer pool,

so before the puts, #low (the lowest number of free buffers) and #now (the current number of free buffers)
were the same as the buffer pool size of 1000 pages

7. After the puts were done
1. The number of buffers in the buffer pool is 1000 (field QPSTNBUF).
2. The lowest number of unused buffers #low is 499 (field QPSTCBSL).
3. The current number of unused buffers, #now is 499(field QPSTCBS).
Note the number of buffers used is 1000-499 = 501. This is 500 for the pages containing messages, plus a page
which is used internally for keeping track of free/used pages.
8. Because the Queue Manager had just been restarted, the buffer pool was full of unused pages. Whenever a

new page was allocated, it did not have a buffer in the buffer pool, so one had to be stolen from the free
page list. The number of stolen pages STL was 500 (field QPSTSTL).

Getting 1000 1000 byte messages

Buffer manager : QPST
 ...
01 #buff 1000 #low 499 #now 499 #getp 2003 #getn 0
01 Rio 0 STW 1003 TPW 0 WIO 0 IMW 0
01 DWT 0 DMC 0 STL STLA 0 SOS 0

1. There are 0 requests for get new page, as we are getting existing messages, so we do not need any new
pages.

2. The 2003 requests to get a page with current contents(#GETP) include the requests from an internal task
which relocates empty pages to a free page list.

z 1000 get requests each requested a page
z In 500 cases there were no more messages on the page just obtained so the next page had to be got,
so 500 more pages got for this.
If the queue had been indexed, then the index would have enabled the correct page to be located directly, and
so there would be 500 get pages requests less.

z An internal task removed empty pages from the queue. When the queue is empty, all 500 pages have
been processed, and the last 3 represent when the internal task got a page, but could not free it, because it still
had messages on it. This is typical.
3. The pages were all in the buffer pool, as the STL count is zero.

Putting 2000 1000 byte messages

The buffer pool had 188 pages free (#now) before this measurement.

Buffer manager : QPST
 ...
01 #Buff 1000 #Low 149 #Now 189 #Getp 6033 #Getn 2011
01 Rio 0 STW 8033 TPW 2012 WIO 503 IMW 0
01 DWT 35 DMC 0 STL 2011 STLA 0 SOS 0

1. The total number of pages used for 2000 messages is 1000 pages.
2. When the buffer pool has 15% or less pages then a background task is started to move old pages from the

buffer pool to the page set. The task is called the Deferred Write Processor. The DWP stops when there are
25% free buffers in the buffer pool

3. DWT (field QPSTDWT) is 35, which shows that the DWP was started 35 times.
4. The fact that DWT is greater than 0 may or may not be an indicator of a problem. If you are writing

messages to a queue for deferred processing, such as overnight, you want a small buffer pool, which will fill
up frequently, and so DWT will be large. If you are processing short lived messages you expect to keep your
messages in the buffer pool so the fact that DWT is greater than 0 indicates a possible problem.

5. The ratio #now/#buff is less than 25%, so some more pages were used since the last time the DWP ran.
6. The DWP did WIO(503) write requests (field QPSTWIO) and wrote out TPW(2012) pages to the page set

(field QPSTTPW).
The write request process up to 4 pages per I/O, so TPW/WIO is usually close to 4.
STL (2011) pages were requested which were not in the buffer pool so had to be stolen
7. Before the messages were put to the queue, the buffer pool had 188 free pages. STL(2011) pages were

taken from the buffer pool, and 2012 pages were written to the page set. The current number is pages in the
buffer pool is 188 - 2011 + 2012 = 189 which is the number of current number of free pages in the buffer
pool.

Note: Normally TPW - STL is only approximately the change in the number of free pages from the start to the
end of the interval. For example if a page in the buffer pool is being browsed then the number of free pages is
decremented by 1, but the number of pages stolen and the number of pages written would be unchanged. When
the browse has finished the page is put back onto the free list, and so the number of pages on is incremented
back to the original value.

Getting 2000 1000 byte messages

Buffer manager : QPST
 ...
01 #buff 1000 #low 150 #now 195 #getp 4758 #getn 0
01 Rio 1000 STW 2005 TPW 972 WIO 243 IMW 0
01 DWT 9 DMC 0 STL 1000 STLA 0 SOS 0

1. The pages containing the oldest messages had been written out to the page set by the DWP task, and the
buffers they had been using had been reused by other pages.

2. RIO show that 1000 pages were read from the page set(QPSTRIO), so as 1000 pages had been used for
the 2000 messages, all the pages for the messages had been written to the page set

3. As pages were read from disk, they stole a buffer from the free list. As 1000 pages were read in, they
needed 1000 pages from the free list, this is the STL (1000) value.

4. As pages are taken from the free list, the number of free pages decreases. When the number of free pages
is 15% of the total buffer pool size the Deferred Write Processing task is started to move old pages from the
buffer pool to the page set. The DWP task stops when there are 25% free pages available The DWP task
was started DWP(9) times.

5. When the DWP task runs, it writes multiple pages to the page set. It had WIO(243) write requests, for a total
of TPW(972) pages.

6. The #low reflects the lowest number of free pages in the buffer pool.

Comparing 2 similar scenarios

In the figures below are the buffer pool statistics for the same scenario when the system was running normally,
and earlier during system set up when the applications were not started properly, and so messages built up on
the input queue.
Normal scenario. Scenario running normally 1,030,000 MQGETs, 722,000 MQPUTs

Buffer manager : QPST
 ...
02 #Buff 99000 #Low 92147 #Now 92147 #Getp 3903501 #Getn 360863
02 Rio 0 STW 2526190 TPW 0 WIO 0 IMW 0
02 DWT 0 DMC 0 STL 228 STLA 0 SOS 0

Bad setup scenario. Scenario during setup 162,000 MQGETs, 200,000 MQPUTs

Buffer manager : QPST
 ...
02 #Buff 99000 #Low 14841 #Now 17287 #Getp 963356 #Getn 98996
02 Rio 35636 STW 657001 TPW 116504 WIO 29126 IMW 0
02 DWT 56 DMC 0 STL 75619 STLA 0 SOS 0

1. The normal scenario processed many more message than the bad setup scenario, 722,000 messages
put compared to 200,000.

2. In the normal scenario
1. The lowest number of free pages is 92147 or 99000 - 92147=6853 have been used.
2. There were 360863 requests for new pages
3. As 360863 is much greater than 6853 this means that the messages in the pages were short lived, because

the same pages were frequently reused, as the number of used buffers is low.
4. The number of stolen pages (STL) is 228 which means that most of the pages were already in the buffer

pool, and 228 had to be acquired. This could be due to the queue depth increasing slightly. In the steady
state STL will typically be 0.

5. The buffer pool did not fill up as the lowest number free pages 92147/99000 = 93% which is much greater
than 15%. Also DWT is 0.

6. The total pages written to disk was 0, so if there was a checkpoint in the statistics interval, no pages were
written to disk.

3. In , the bad setup scenario
1. The lowest number of free pages is 14841 (15%) or 99000 - 14841=84159 have been used.
2. There were 98996 requests for new pages

3. As 98996 is close to 84159 this means that the messages in the pages were long lived, because the pages
were not reused.

4. The number of stolen pages (STL) is 75619 which means that most of the pages were not already in the
buffer pool. This could be due to the queue depth increasing significantly

5. The buffer pool did fill up as DWT is 56.
6. The total pages written to disk was 116504.
7. 35636 pages were read from disk.
8. As the number of disk writes is close to the number of disk reads, this indicates that the buffer pool was too

small for the work.
y If there had been few disk reads, but many disk writes, then this is typical of an application putting
messages for "overnight" processing.
y If there are many reads from disk, and few writes then this indicates that these "overnight" messages
are being processed.
y If there are approximately the same number disk writes as disk reads then this could be caused by the
buffer pool being too small, or that the "overnight" processing has started, and messages are still being put to
the queue.
y A long period between statistics intervals.

Getting messages from an indexed queue

1000 messages were put to an indexed queue. Then for the measurement a message was put and got by
message id, and this repeated 1000 times.
 Indexed queue

Buffer manager : QPST
 ...
02 #Buff 90000 #Low 89498 #Now 89498 #Getp 2498 #Getn 500
02 Rio 0 STW 2499 TPW 0 WIO 0 IMW 0
02 DWT 0 DMC 0 STL 500 STLA 0 SOS 0

1. The number of STW is as expected from item 5 on page 52.
1000 messages were put to an non-indexed queue. Then for the measurement a message was put (to the end
of the queue) and got by message id (from the end of the queue), and this repeated 1000 times. Because the
queue was not indexed the whole queue has to be searched to find the matching message.
Non Indexed queue

Buffer manager : QPST
 ...
02 #Buff 90000 #Low 88790 #Now 88790 #Getp 595913 #Getn 500
02 Rio 0 STW 3512 TPW 0 WIO 0 IMW 0
02 DWT 0 DMC 0 STL 207 STLA 0 SOS 0

1. The number of get pages is much larger in comparison to the indexed queue 595913 vs 2498.
2. The number of Set Write Intent STW(3512) is much smaller than the number of get pages (595913), this

indicates that there was a lot of browse, or sequential searching activity.
3. The number of pages used in the indexed queue case is getp+getn = 2498+500.
4. The number of pages used in the non indexed queue case is getp+getn = 595913+500.
5. The difference in the number of pages is 593415.
6. For every message got, it had to search 1000 messages, or 500 pages so when processing 1000 messages

the total of pages scanned, when looking for messages is 500 * 1000 = 500,000.

7. The difference in the total number of pages used, and the number used by the application is
is 593,415-500,000 = 93,415. This is the number of pages got by the internal task which moves empty pages to
the free list. The internal task starts at the front of the queue, and moves to the end. Most of the 93,415 pages
processed had messages on them, and could not be freed.

Log manager statistics
The log manager is responsible for managing recovery data on log datasets.

w Logging is done for persistent messages, and not for non persistent messages
w Data is written to log buffers
w Data is written from log buffers to active log data sets.

This occurs
 During a commit request - for two phase commit there will be two requests
 During a put or get out of syncpoint
 When an installation specified number of buffers have been filled and there has been no request to
force the buffers to disk.
 Any define, delete or alter command.
 An MQSET verb is issued.
The following table shows the format of the log manager statistics record. It is defined in member CSQDQJST.

Table 11. Structure of the log manager statistics record QJST

Offsets

Dec Hex Type Len Name
0 (0) Structure 120 QJST Log manager statistics.

0 (0) Character 2 QJSTID Control block identifier.

2 (2) Signed 2 QJSTLL Control block length.

4 (4) Character 4 QJSTEID Control block eye catcher (QJST).

8 (8) Signed 4 QJSTWRW Write_request count - Wait.
This request is converted to a write_force requests, so this value is always
zero.

12 (C) Signed 4 QJSTWRN
W

Write_request count - No wait.
Data is written to log buffers, these buffers are not explicitly written to the
active log data sets, and the requestor is not suspended.

16 (10) Signed 4 QJSTWRF Write_request count - Force.
Data is written to log buffers, these buffers are then written to the active log
data sets, and the requesting task is suspended until the write to active log
data sets is complete.

20 (14) Signed 4 QJSTWTB Wait count for unavailable buffers.
Number of times a task was suspended because all the buffers were waiting
to be written to the active log data set.

24 (18) Signed 4 QJSTRBUF Number of read log requests satisfied from in-storage buffers.

28 (1C) Signed 4 QJSTRACT Number of read log requests satisfied from the active log data set.

32 (20) Signed 4 QJSTRARH Number of read log requests satisfied from an archive log data set.

36 (24) Signed 4 QJSTWTL See QJSTTVC.

36 (24) Signed 4 QJSTTVC Number of read log requests delayed because the number of archive log data
sets that could be used was limited by the MAXRTU parameter in the
CSQ6LOGP system parameter macro.

40 (28) Signed 4 QJSTBSDS Total number of bootstrap data set (BSDS) access requests.

44 (2C) Signed 4 QJSTBFFL The number of active log control intervals (CIs) created (log pages used).

48 (30) Signed 4 QJSTBFWR Number of calls made that wrote to active log buffers.

52 (34) Signed 4 QJSTALR Number of times an archive log data set was allocated for a read request.

56 (38) Signed 4 QJSTALW Number of times an archive log data set was allocated for a write request.

60 (3C) Signed 4 QJSTCIOF Count of CIs off-loaded to the archive data set.

64 (40) Signed 4 QJSTLLCP Number of times that checkpoint was invoked because the number of
requests to write to the log buffers was the 57LOGLOAD value specified in
the CSQ6SYSP macro.

68 (44) Signed 4 QJSTWUR Number of read accesses delayed due to unavailable resource. This occurs
during restart or rollback when using archive logs.

72 (48) Signed 4 QJSTLAMA Number of look-ahead tape volume mounts attempted. QJSTLAMA-
QJSTLAMS shows how many times look-ahead mounting failed. This value
applies during restart or rollback when using archive logs.

76 (4C) Signed 4 QJSTLAMS Number of look-ahead tape volume mounts performed. This value applies
during restart or rollback when using archive logs.

80 (50) Signed 4 QJSTLSUS Number of times a request to write data to buffers was suspended. The
request can be suspended because it has to wait until a log buffer has been
written to the log data sets, or for example, there were insufficient log buffers -
see QJSTWTB.

84 (54) Signed 4 QJSTLOGW Total number of write requests to active log data sets.

88 (58) Signed 4 QJSTCIWR Total number of log CIs written to active log data sets.

92 (5C) Signed 4 QJSTSERW For dual logging this is the number of requests to rewrite a CI, when the I/O
was done to each log in series, rather than in parallel. For single logging this
is the number of requests to rewrite a CI.

96 (60) Signed 4 QJSTTHRW Number of times a log write request was scheduled because the log write
threshold (WRTHRSH in the CSQ6LOGP system parameter macro) was
reached.

100 (64) Signed 4 QJSTBPAG Number of times a log-write buffer had to be paged in before it could be used.

104 (68) Signed 16 Reserved.

120 (78) Character 0 QJSTEND End of log manager statistics block

Cross reference

 Name Hex
Offset

QJST 0
QJSTALR 34
QJSTALW 38
QJSTBFFL 2C
QJSTBFWR 30
QJSTBPAG 64
QJSTBSDS 28
QJSTCIOF 3C

 Name Hex
Offset

QJSTCIWR 58
QJSTEID 4
QJSTEND 78
QJSTHEAD 0
QJSTID 0
QJSTLAMA 48
QJSTLAMS 4C
QJSTLL 2

 Name Hex
Offset

QJSTLLCP 40
QJSTLOGW 54
QJSTLSUS 50
QJSTRACT 1C
QJSTRARH 20
QJSTRBUF 18
QJSTSERW 5C
QJSTTHRW 60

 Name Hex
Offset

QJSTTVC 24
QJSTWRF 10
QJSTWRN
W

C

QJSTWRW 8
QJSTWTB 14
QJSTWUR 44

Interpreting log manager statistics
w QJSTWRF is the number of times a request was made to force the log buffers to disk. This occurs when:
z Persistent messages are put or got out of syncpoint.
z A commit or backout request is issued where persistent messages have been processed in syncpoint.
z An MQSET call has been issued.
z An object has been changed using the DEFINE, DELETE or ALTER commands.
w Updates to QJSTRBUF, QJSTRACT, and QJSTRACH occur when work is backed out or at system restart.

The number of backouts you have should be small. If you do have backouts, you should try to have the data
in log buffers, or on active logs; you should not have tasks needing archive logs.

w QJSTTVC is the number of delays because the MAXRTU limit was reached. (MAXRTU is the maximum
number of tape units that can be allocated for archive read.)

w QJSTWUR is the number of delays that were not due to MAXRTU (QJSTTVC). For example this can be
caused by not having allocated enough tape units, or a delay due to a WTOR.

w QJSTTHRW is the number of times a log-write request was scheduled because the log write threshold
(WRTHRSH in the CSQ6LOGP system parameter macro) was reached.

w QJSTBSDS is the number of requests to write to the BSDS. The BSDS is updated periodically, such as
when an active log switches and when the log buffer is about to wrap.

Fields you need to monitor

You should
monitor the
following fields
daily or
weekly:
QJSTWTB

If this field is non zero you should increase the value of OUTBUFF in the CSQ6LOGP system
parameter macro.

QJSTRBUF If this value is large, applications are backing out and not committing requests; this might be
an application problem. You can use the queue level statistics to identify which tasks are
backing out rather than committing.

QJSTRACT If this value is non zero this means that you have long running tasks that are backing out.

QJSTRARH If this value is non zero this means that you have long running tasks that are backing out and
you are having to read from archive logs. You should determine why you have long running
tasks backing out, and consider increasing the size or number of your active log data sets.

QPSTBPAG If this field is non zero it indicates a possible problem with your OS/390 system. You might get
benefit by decreasing the number of log buffers (OUTBUFF in the CSQ6LOGP system
parameter macro) provided that QJSTWTB is zero.

QJSTTVC If this value is on zero then you should investigate why you need so many archive logs, and
consider increasing the value of MAXRTU to allow more devices to be used.

QJSTLLCP On a busy system you would expect to see typically 10 checkpoints an hour. If the QJSTLLCP
value is larger than this, it indicates a problem in the setup of the queue manager.
The most likely reason for this is that the LOGLOAD parameter of the CSQ6SYSP system
parameter macro is too small. The other event that causes a checkpoint is when an active log
fills up and switches to the next active log data set. If your logs are too small, this can cause
frequent checkpoints. ß
You should increase the value of the LOGLOAD parameter, or increase the size of your log
data sets as required.
"Display out of line log manager statistics" has an example DB2 query displaying some of the
above fields from the log statistics DB2 database produced by Performance Reporter.

Examples of some log manager statistics

The examples below are to illustrate the use of common log manager statistics. Many of the statistics are not
useful for day to day monitoring, and are not discussed.

The statistics are displayed with the supplied program described in "Supplied programs to print out the SMF
records"on page 76.

Putting 1000 1000 byte messages

A batch application put a 1000 byte message and issued a commit, then repeated this 1000 times.
In the observations following the log statistics the following interesting figures are discussed

w The number of pages used to hold the messages is 467
w There were 2934 write requests, each writing one page

Log manager : QJST
 Write_Wait 0 Write_Nowait 10030 Write_Force 0 WTB 0
 Read_Stor 0 Read_Active 0 Read_Archive 0 TVC 0
 BSDS_Reqs 13 CIs_Created 467 BFWR 1000 ALR 0
 ALW 0 CIs_Offload 0 Checkpoints 0
 WUR 0 LAMA 0 LAMS 0
 Write_Susp 1000 Write_Reqs 2934 CI_Writes 2934
 Write_Serl 2000 Write_Thrsh 0 Buff_Pagein 0

1. Description of activities involved in putting a message
1. Two 1000 byte messages fit into a 4K page
2. When there is space on the current(last) page for a second message, it can use the current page.

y The current queue depth is incremented, and the change logged.
y The data is put into the page and the insertion logged.
y When there is not enough space to add the message to the current(last) page, a new page must

be used and associated with the queue.
y The current queue depth is incremented, and the change logged.
y Allocate a page from the free page list, update the list to reflect the change, and log the changes
y Format the page, and log data to say the page has been formatted.
y Insert the page at the end of the queue, adjust various pointers to the new page, and log the

changes
y Put the message into the page and log the data inserted.

3. For every start Unit Of Work data will be written to the logs buffers
1. 4. For every commit or backout data will be written to the log buffers, and a request made to write

the buffers to disk.
5. For the put of a 1000 byte message, the number of writes to the log buffers is typically about 4 + 6*
number of messages per unit of work.
2. The number of log pages used (CIs_created) is 467 (field QJSTBFFL). The number bytes used in log buffers

is 467 * 4096 = 1,912,832 or about 1900 bytes per message
This number depends on message size, and how much data needs to be logged.

3. There were 10030 Write_Nowait requests (field QJSTWRNW). These are requests to put data in to log
buffers. For example, as well as inserting the message into the page, the current depth of the queue is
updated, pages have to be allocated, and pages have to be chained together.

4. There were 1000 Write_susp requests (field QJSTLSUS). This corresponds to the commit request where
data is forced out to the log data sets. With 2 phase commit there will be two write suspends per commit.

5. CI_Writes (field QJSTCIWR) shows 2934 pages were written to the log data sets. As there was dual logging
this is 1467 per log.

6. Although there were 467 CIs created, there were 1467 pages written to a log data set. This is because some
pages were rewritten one or more times. A CI is rewritten if it was only partially filled with log records on the
previous write.

7. There were 2934 Write_Reqs (field QJSTLOGW) and 2934 CI_Writes (field QJSTCIWR), or 1467 to each
log. As the number of pages written equals the number of write requests this shows that only one page was
written for each disk write request. As the rate of persistent messages processed increases you may get
more pages per I/O

8. Write_serl (field QJSTSERW) is the number of times a page was rewritten. 2000 with dual logging is 1000
per log data set. In a busy system this value is usually different from the number of number of write
suspends.

The first time a page is written it is written to both logs in parallel. If a CI is rewritten it is written to each
log in series. 467 CIs were created. So the first time these are written they will be written in parallel. So
467 of the 1467 CI_write request to a log are parallel, the rest are serial, so 1467-467 is 1000 which is the
number of Write_serl requests. On average each page was written 1467/467, or 3-4 times, or rewritten 2-
3 times. With PTF UQ61496 on V5.2, if the DASD is cached the I/Os are done in parallel, and not in
series.

9. The BFWR write requests is the number of requests to write data out to the log data sets (QJSTBFWR).
Internal tasks also issue these requests, and this number is typically higher than the number of application
commits.

10. When the last page in the log buffers is used then it causes the BSDS to be updated with information about
the information in the active logs. If the last page is rewritten then BSDS information is rewritten.

The system had OUTBUFF defined as 400KB, so there were 100 4K pages of log buffers allocated. With
467 CIs created the last page in the log buffers was used 4 or 5 times. So if the last page was written 3-4
(rewritten 2-3 times, see above) times on average, we would expect the number of BSDS requests to be
around the range of 3*4 to 4*5 or 12 to 20. The value of 15 matches this.
When an active log fills up, or a checkpoint occurs the BSDS is updated with information about the active
and archive logs, as well as checkpoint information.

Getting 1000 1000 byte messages

A batch application got a 1000 byte message and issued a commit, then repeated this 1000 times.

Log manager : QJST
 Write_wait 0 Write_Nowait 6511 Write_Force 2 WTB 0
 Read_stor 0 Read_Active 0 Read_archive 0 TVC 0
 BSDS_reqs 11 CIs_created 97 BFWR 1004 ALR 0
 ALW 0 CIs_offload 0 Checkpts 0
 WUR 0 LAMA 0 LAMS 0
 Write_susp 1004 Write_Reqs 2202 CI_Writes 2202
 Write_serl 2008 Write_Thrsh 0 Buff_Pagein 0

1. 1000 messages got had 97 CIs_created. This is about 97*4096/1000 or about 400 bytes per message
2. There were 2202 pages written, or 1101 pages per log data set.
3. The average number of times a page was written is 1101/97 or about 11 times.
4. The number of Write_susp requests is the number of application commits plus some requests from internal

tasks.
5. 97 pages were written. The first time these pages were written they were written in parallel. The remained

were written in serial so each log wrote 2008/2 = 1004 pages, in series. With the 97 in parallel we have total
CIs written = 1004 + 97 = 1101 which matches the number of CI_Writes requests.

Putting 100 100,000 byte messages

A batch application put a 100,000 byte message and issued a commit, then repeated this 100 times.

Log manager : QJST
 Write_wait 0 Write_Nowait 8214 Write_Force 0 WTB 0
 Read_stor 0 Read_Active 0 Read_archive 0 TVC 0
 BSDS_reqs 26 CIs_created 2550 BFWR 200 ALR 0
 ALW 0 CIs_offload 0 Checkpts 0
 WUR 0 LAMA 0 LAMS 0
 Write_susp 100 Write_Reqs 844 CI_Writes 5300
 Write_serl 200 Write_Thrsh 100 Buff_Pagein 0

1. For 100 messages there were 2550 CIs_created. This equates to 2550/100 pages per message or
2550*4096/100 or about 105000 bytes per message.

2. Each log wrote 5300/2 = 2650 pages.
3. 2550 of these 2650 were writing the data to the log, so 2650-2550 = 100 is the number of rewrite requests.
4. 2650 pages were written in 844/2 write requests, or about 6 pages per write request. This shows more data

is written for each I/O request
5. Each message needs more than 26 pages of log buffers. The WRTHRSH was specified as 15 pages. So for

each message the WRTHRSH value was exceeded, and can be seen in the value of Write_Thrsh(100) field
(QJSTTHRW) which in this case matches the number of messages processed.

6. There were 100 pages of log buffers, so the 2550 CIs created means that each page was used about
2550/100 times, or 25-26 times. The number of BSDS requests (QJSTBSDS) is 25, which matches the 25-
26 times.

Getting 100 100,000 byte messages

A batch application got a 100,000 byte message and issued a commit, then repeated this 100 times.

Log manager : QJST
 Write_wait 0 Write_Nowait 3108 Write_Force 1 WTB 0
 Read_stor 0 Read_Active 0 Read_archive 0 TVC 0
 BSDS_reqs 5 CIs_created 30 BFWR 102 ALR 0
 ALW 0 CIs_offload 0 Checkpts 0
 WUR 0 LAMA 0 LAMS 0
 Write_susp 102 Write_Reqs 264 CI_Writes 264
 Write_serl 204 Write_Thrsh 0 Buff_Pagein 0

1. Getting 100 messages had 30 CIs_created. This is about 1200 bytes per message
2. There were 132 pages written per log data set, so the pages were written 4 or 5 times.
3.

Processing messages concurrently
10 Batch jobs each put a 1000 byte message to a server queue and waited for a reply. Each job did this 1000
times, so there were 10,000 messages requests and 10,000 reply messages processed.
There were 3 server jobs getting from a server queue and sending a reply back to the originator. The processing
was get commit, put commit (to simulate two phase commit).

Log manager : QJST
 Write_wait 0 Write_Nowait 302738 Write_Force 247 WTB 0
 Read_stor 0 Read_Active 0 Read_archive 0 TVC 0
 BSDS_reqs 271 CIs_created 11010 BFWR 41263 ALR 0
 ALW 0 CIs_offload 0 Checkpts 0
 WUR 0 LAMA 0 LAMS 0
 Write_susp 41260 Write_Reqs 72084 CI_Write 72298
 Write_serl 50278 Write_Thrsh 0 Buff_Pagein 0

1. 10,000 messages put to the server and 10,000 replies is 20,000 messages. The number of write_susp is
41260 which reflects 40,000 commits from the applications, and 260 commits from the internal task which
removes empty pages from queues.

2. There were 11010 CIs_created. This equates to 11010*4096/20,000 or 2255 bytes per message. From the
figures above for puts and gets the number of bytes per message is 1900 + 400 = 2300 which is
approximately the same.

3. A write to a log data set can process one or more CIs. Each log processed 72298/2= 36149 pages, in
72084/2= 36042 write requests, so most I/O requests processed only one CI.

4. Each log processed 50278/2 = 25139 Write_serial request, so in most cases each page was rewritten
25139/11010 times - or written in parallel once and rewritten 2-3 times serially

After an archive log command was issued

Log manager : QJST
 Write_Wait 0 Write_Nowait 73 Write_Force 1 WTB 0
 Read_Stor 0 Read_Active 0 Read_Archive 0 TVC 0
 BSDS_Reqs 222 CIs_Created 2 BFWR 3 ALR 0
 ALW 2 CIs_Offload 6020 Checkpoints 0
 WUR 0 LAMA 0 LAMS 0
 Write_Susp 1 Write_Reqs 10 CI_Writes 10
 Write_Serl 6 Write_Thrsh 0 Buff_Pagein 0

1. The number of CIs offloaded is 6020, (field QJSTCIOF)
2. Data was written to active logs, Write_Nowait is > 0, and one Write_force. This is checkpoint information,

such as the status of applications, and other tasks.
3. There were 222 BSDS requests (field QJSTBSDS), these include request to read and update records.

Some useful DB2 queries for processing accounting and
statistics data

This chapter has some example DB2 queries using data in DB2 databases produced by Performance Reporter
from SMF records.

Display which shared queues were used, with their attributes
DB2 query to display the shared queues used with their attributes

SELECT QMGR,BASENAME,QSGDISP,QTYPE,INDXTYPE,CFSTRUCNAME,COUNT(*)
FROM DRL.MQ_DAILY_QUEUE
GROUP BY QMGR,BASENAME,QSGDISP,QTYPE,INDXTYPE,CFSTRUCNAME
ORDER BY BASENAME,QSGDISP

Example output showing shared queues used with their attributes

QMGR BASENAME QSGDISP QTYPE INDXTYPE CFSTRUCNAME COUNT
---- -------------------- -------- -------- -------- ------------ -----
V52F CCP Q_MGR LOCAL NONE 2
V521 CPV521 Q_MGR LOCAL MSGID 13
V521 CPV521 Q_MGR LOCAL MSGID 14
V520 CSIM_COMMON_REPLY_Q COPY LOCAL CORELID APPLICATION1 2
MQ07 MQ08.001 UNKNOWN REMOTE NONE 7
MQ07 MQ08.002 COPY LOCAL NONE APPLICATION1 4

Display the queues which had I/O to a page set
Query to display the queues which had I/O to a page set

SELECT QMGR,QSGDISP,QUEUE,NBUFFPOOL,PAGESET,PUTPSN+PUT1PSN+GETPSN
FROM DRL.MQ_DAILY_QUEUE
WHERE PUTPSN+PUT1PSN+GETPSN> 0

Example output showing which queues which had I/O to a page set

QMGR QSGDISP QUEUE NBUFFPOOL PAGESET NUM I/O
----++--------++--------------------++-----------++-----------++-----------
V521 Q_MGR TOV52F 2 2 8
V521 Q_MGR SYSTEM.CHANNEL.SYNCQ 1 1 12
V520 Q_MGR SYSTEM.ADMIN.CHANNEL 3 3 4
V520 Q_MGR SYSTEM.CLUSTER.REPOS 1 1 12

Display MQI verbs used by transaction by queue
Query to display MQI verbs used by transaction and queue

SELECT TRAN,QUEUE,'OPEN',OPENN,OPENET/OPENN,OPENCT/OPENN
FROM DRL.MQ_DAILY_QUEUE
WHERE OPENN > 0 AND TRAN =' '
UNION
SELECT TRAN,QUEUE,'CLOS',CLOSEN,CLOSEET/CLOSEN,CLOSECT/CLOSEN
FROM DRL.MQ_Daily_queue
WHERE CLOSEN > 0 AND TRAN =' '
UNION
SELECT TRAN,QUEUE,'PUT ',PUTN,PUTET/PUTN,PUTCT/PUTN
FROM DRL.MQ_Daily_queue
WHERE PUTN > 0 AND TRAN =' '
UNION
SELECT TRAN,QUEUE,'PUT1',PUT1N,PUT1ET/PUT1N ,PUT1CT/PUT1N
FROM DRL.MQ_Daily_queue
WHERE PUT1N > 0 AND TRAN =' '
UNION
SELECT TRAN,QUEUE,'GET ',GETN,GETET/GETN,GETCT/GETN
FROM DRL.MQ_Daily_queue
WHERE GETN > 0 AND TRAN =' '
UNION
SELECT TRAN,QUEUE,'GETV',VALIDGET,GETET/VALIDGET,GETCT/VALIDGET
FROM DRL.MQ_DAILY_QUEUE
WHERE VALIDGET > 0 AND TRAN =' '
UNION
SELECT TRAN,' ','COM ',WTASCMN,WTASCMET/WTASCMN,WTASCMCT/WTASCMN
FROM DRL.MQ_DAILY_TASK
WHERE WTASCMN > 0 AND TRAN =' '

ORDER BY TRAN,2

The calculations like PUTET/PUTN calculate the average response time in microseconds.
The line with GETV is for valid gets, those that returned a message.
Example output showing MQI verbs used by transaction and queue

TRAN QUEUE VERB COUNT AVG ET AVG CT
-------- ------------ ---- ----------- ----------- -----------
CP17 COM 2 4599 52
CP17 CP0000 CLOS 2 24 23
CP17 CP0000 GET 1 187 186
CP17 CP0000 GETV 1 187 186
CP17 CP0000 OPEN 2 93 92
CP17 CP0000 PUT 1 400 369

Where:
AVG ET Is the average time for the call in microseconds

AVG CT Is the CPU time used by the call in microseconds

GETV Is the number of valid MQGET calls
GET Is the total number of MQGET calls

Display where a queue is used
When a queue alias, queue remote, or dynamic queues are used, the name used when opening the queue is
different from the actual queue used. By selecting the basename field, you can display the queue name used by
the application.
Query to display the usage of Queue alias, queue remote and dynamic queues

SELECT BASENAME,JOBNAME,JOBTYPE,QTYPE,QUEUE
FROM DRL.MQ_DAILY_QUEUE

Output showing the usage of Queue alias, queue remote and dynamic queues

BASENAME JOBNAME JOBTYPE QTYPE QUEUE
--------------------++--------++-------++--------++-------
V52F PAICE4P MVS REMOTE TOV52F
V52F V521CHIN CHIN LOCAL V52F

Where:
Queue Is the name of the queue used by the application

Basename Is the actual queue used after any indirection

Display the length of time messages were on a queue
Query to display the message time on a queue

SELECT QUEUE,MAXTOQ,MINTOQ,TOTTOQ/VALIDGET,VALIDGET
FROM DRL.MQ_DAILY_QUEUE
WHERE VALIDGET > 0

Where TOTTOQ/VALIDGET is the total time on queue divided by the number of gets which returned messages,
to give the average time on queue.
Output showing the message time on queue

CHANNEL QUEUE MAXTOQ MINTOQ AVG TOQ VALIDGET
-------- ---------------------- -------- -------- -------- --------
 CP0000 4.9E+03 3.2E+03 4.1E+03 2
MQ1 SYSTEM.CHANNEL.SYNCQ 8.6E+09 3.2E+04 1.5E+06 5873
MQ2 SYSTEM.CHANNEL.SYNCQ 1.1E+06 9.3E+03 2.7E+04 11741

Where:
MAXTOQ is the maximum time on queue in microseconds. This could potentially be a very large number.

A message which was on a queue for a day would have a value of 8.6E+10
MINTOQ is the minimum time on queue in microseconds

AVG TOQ is the average time on queue in microseconds

The channel MQ1 was not active for a couple of hours. When the channel restarted it read its message from the
SYSTEM.CHANNEL.SYNCQ queue. In this case the maximum time on queue represents 2.3 hours (8.6E+09
microseconds).

Display count of get specific and get first message
Query to display count of Get specific and get first message

SELECT QMGR,QUEUE,QTYPE,QSGDISP,QTYPE,GETA,GETS,GETBRWA,GETBRWS
FROM DRL.MQ_DAILY_QUEUE

Sample output from the query

QMGR QUEUE INDXTYPE GETA GETS GETBRWA GETBRWS
---- -------------------- -------- -------- -------- -------- --------
V52F SYSTEM.CHANNEL.SYNCQ MSGID 0 23488 4 4
V52F SERVER NONE 108004 0 0 0

Where:
GETS is the number of get specific requests

GETBRWS is the number of get browse specific requests

GETA is the number of get any(first) requests

GETBRWA is the number of get browse any(first) requests

Display out of line log manager statistics

SELECT MQSERIES_SUB_ID,WAIT_COUNT_NO_BUF,
 READ_REQ_BUF,
 READ_REQ_ACTIVE,READ_REQ_ARCHIVE,READ_REQ_DELAYED,
 LOGBUF_PAGEDIN
FROM DRL.MQS_LOGMGR_T
WHERE READ_REQ_BUF+
 READ_REQ_ACTIVE+READ_REQ_ARCHIVE+READ_REQ_DELAYED+
 LOGBUF_PAGEDIN > 0

Example output showing the count of get specific and get first messages

MQSERIES READ READ READ READ
 SUB REQ REQ REQ REQ LOGBUF
 ID BUF ACTIVE ARCHIVE DELAYED PAGEDIN
-------- ----------- ----------- ----------- ----------- -----------
V52G 0 314 0 0 0
V52G 0 157 0 0 0
V52G 0 157 0 0 0
V52G 0 314 0 0 0
V520 0 147 0 0 0

Sample C program for displaying statistics and accounting

A C program is provided as an executable and as a source file to display MQSeries statistics and accounting
data. The program may be used as-is, but it is intended to be a starting point so you can tailor it to meet your
requirements.
This program and the header files provided with this SupportPac are not supported by IBM. But if you tell the
author (MOULED@UK.IBM.COM) of any problems, improvements may be incorporated in any future updates -
if there are any future updates.
Upload the MQSOURCE in binary to TSO and issue Receive indsn(MQSOURCE)
Some of the key members of this data set are
MQCSAMP The source of the C program which will read MQSeries SMF records and display information in

many forms. It contains JCL to compile and linkedit it to create a module MQCSMF.
RUNCSMF This executes the C program to print MQSeries SMF data.

This program is provided to illustrate ways that the data can processed. The output has been designed primarily
so that it fits in this report, rather than for functional value. For example if the reports were to print out channel
name, channel qualifier, queue used, there would be very little space left to display other information such as
number of bytes processed. In particular timestamps have been omitted from most reports.

Using the sample program
If you change the program beware of the following
1. APAR PQ43750 fixes some problems in the accounting information see Required fixes on page 8.
2. Some of the fields are 64 bit long, for example those containing time values. These can be processed using

"long long" variables available in the OS/390 C compiler. On one of our MVS systems, calculations using
long-long variables gave incorrect values. On other systems where the service included a 2000 PUT tape the
calculations worked properly. By using floating point, instead of long-long, in calculations this problem can be
circumvented.

3. Some numbers can be very large and will not format properly using integer arithmetic in printf. You should
consider displaying the data in floating point, like 6.221E+04. This applies to bytes processed, and "time on
queue" where some messages could be on a queue for a long period, and one day is 86400000000
microseconds. You could convert the data to other units such as MegaBytes processed instead of bytes
processed, and seconds instead of microseconds.

4. You can use the facilities of the ICETOOL facility of DFSORT to do simple accumulation and reporting of
maximum and minimum values, see DFSORT R13 ICETOOL Mini-User Guide GC26-7140-01 for more
information.

Execute the sample code
Example JCL to run the C program is in given below

//PAICEC2 JOB '1',MSGCLASS=H,MSGLEVEL=(0,0),COND=(0,LT)
//S1 EXEC PGM=MQCSMF
//STEPLIB DD DISP=SHR,DSN=MQM.LOAD
//SMFIN DD DISP=SHR,DSN=MQM.STATS
//SYSPRINT DD SYSOUT=*,DCB=(LRECL=132,RECFM=F)
//SUMMARY DD SYSOUT=*,DCB=(LRECL=133,RECFM=F,BLKSIZE=133)
//STATS DD SYSOUT=*,DCB=(LRECL=133,RECFM=F,BLKSIZE=133)
//PUT DD SYSOUT=*,DCB=(LRECL=133,RECFM=F,BLKSIZE=133)
//GET DD SYSOUT=*,DCB=(LRECL=133,RECFM=F,BLKSIZE=133)
//DB2 DD SYSOUT=*,DCB=(LRECL=133,RECFM=F,BLKSIZE=133)
//CF DD SYSOUT=*,DCB=(LRECL=133,RECFM=F,BLKSIZE=133)
//SCF DD SYSOUT=*,DCB=(LRECL=133,RECFM=F,BLKSIZE=133)
//MM DD SYSOUT=*,DCB=(LRECL=133,RECFM=F,BLKSIZE=133)
//BM DD SYSOUT=*,DCB=(LRECL=133,RECFM=F,BLKSIZE=133)
//SDB2 DD SYSOUT=*,DCB=(LRECL=133,RECFM=F,BLKSIZE=133)
//THREAD DD SYSOUT=*,DCB=(LRECL=133,RECFM=F,BLKSIZE=133)
//LOG DD SYSOUT=*,DCB=(LRECL=133,RECFM=F,BLKSIZE=133)

The files referenced in the JCL are explained below. All of the files need to be defined, but they can be set to
"DD DUMMY" if required.

SMFIN data set
The SMFIN data set is the SMF records which have been extracted from SMF using a job like that on page.76
This data set is typically Variable Blocked Spanned with a 32760 record length.

SYSPRINT contents
The records in this data set give notification of any major problems identified, as a buffer pool too small.

2000293 V52A Buffer pool 3 is too small make larger
2000293 V52A Log stats - make OUTBUFF larger.
2000293 V52A Archive logs read.

SUMMARY contents
The records in this data set give a summary of the usage of MQI verbs acting on a queue, and where time was
spent.

Jobname et_ms %open %clos %get %put %put1 %inq %set %cpu %log %pset %other
V52FCHIN 0 0 0 100 0 0 0 0| 97 0 0 3
PAICE4P 3329 7 1 85 4 0 0 0| 19 76 0 5

Where
Jobname Is the job name

et_ms Is the total time spent doing MQSeries calls against a queue in milliseconds

%open The percentage of the time spent doing MQOPEN calls
%clos The percentage of the time spent doing MQCLOSE calls
%get The percentage of the time spent doing MQGET calls
%put The percentage of the time spent doing MQPUT calls

%put1 The percentage of the time spent doing MQPUT1 calls
%inq The percentage of the time spent ding MQINQ calls
%set The percentage of the time spent doing MQSET calls
%cpu The percentage of the time using CPU

%log The percentage of the time waiting for log I/O to complete

%pset The percentage of the time waiting for page set I/O to complete

%other This is calculated as 100 - (%log + %pset + %cpu).

The et_ms for V52FCHIN is 0 because the total time was less than 1 millisecond.

STATS contents
The records in this data set give an overview of the MQI verbs used and the average elapsed time and average
CPU time user per call.

Jobname Queue Verb Number Avg et Avg CT
V52FCHIN Commit 5872 4358 49
V52FCHIN Other 6 63 62
V52FCHIN SERVER Open 1 103 102
V52FCHIN SERVER Put 5872 155 150
V52FCHIN SYSTEM.ADMIN.CHANNEL.EVENT Put1 1 3254 262
V52FCHIN SYSTEM.CHANNEL.SYNCQ Open 2 71 70
V52FCHIN SYSTEM.CHANNEL.SYNCQ Close 1 28 27
V52FCHIN SYSTEM.CHANNEL.SYNCQ Put 5872 117 109
V52FCHIN SYSTEM.CHANNEL.SYNCQ Get 5874 94 92
V52FCHIN Commit 5871 3485 46
V52FCHIN Other 6 54 54
PAICE4P Commit 2000 2143 28
PAICE4P CPV521 Open 1000 70 68
PAICE4P CPV521 Close 1000 26 25
PAICE4P CPV521 Get 2000 1431 93
PAICE4P V52F Open 1000 195 187
PAICE4P V52F Close 1000 19 19
PAICE4P V52F Put 1000 154 149
Where

Jobname Is the job name

Queue Is the queue name, or blank for commit, backout and "Other".

Verb The MQI verb used. "Other" is used for some internal verbs, and when data cannot be
collected, for example an when an MQOPEN fails.

Number The number of times this verb was used

Avg et The average elapsed time per call in microseconds

Avg CT The average cpu time per call in microseconds

PUT contents
The records in this data set give an overview of MQPUT and MQPUT1 verbs.

Jobname Queue Valid Put Put Put1 Put_Bytes PutMax PutMin
V52FCHIN SERVER 5872 5872 0 5872000 1000 1000
V52FCHIN SYSTEM.ADMIN.CHANNEL.EVENT 1 0 1 124 124 124
V52FCHIN SYSTEM.CHANNEL.SYNCQ 5872 5872 0 2513216 428 428
PAICE4P V52F 1000 1000 0 1000000 1000 1000

Where
Jobname Is the jobname

Queue Is the queue name used

Valid Put Is the number of valid MQPUT and MQPUT1 requests
Put Is the number of MQPUT requests
Put1 Is the number of MQPUT1 requests
Put_Bytes Is the number of bytes put to the queue.

Note: This is potentially a very large number so this may not display properly. You
may decide to modify this to be a floating point number or use MegaByte units.

PutMax Is the maximum message size in bytes

PutMin Is the minimum message size in bytes.

GET contents
The records in this data set give an overview of the MQGET verb.
There are entries for multiple channels and applications. There is a jobname/queue record for each. If the
channel name was specified it would be clearer.

Jobname Queue Get ValidGet Bytes MaxGet MinGet MaxTOQ MinTOQ AvgTOQ
V52FCHIN SYSTEM.CHANNEL.SYNCQ 5874 5873 2513644 428 428 8.6E+09 3.2E+04 1.5E+06
V52FCHIN SYSTEM.CHANNEL.SYNCQ 11743 11741 5166052 452 428 1.1E+06 9.3E+03 2.7E+04
V52FCHIN V521 17616 11744 8385216 1428 0 1.7E+04 2.7E+03 4.0E+03
V52FCHIN SYSTEM.CHANNEL.SYNCQ 6 3 1284 428 428 1.3E+09 1.3E+09 4.2E+08
V52FCHIN SYSTEM.CLUSTER.TRANSMIT.QUEUE 17 16 34008 2764 780 0.0E+00 0.0E+00 0.0E+00
V52FCHIN SYSTEM.CHANNEL.SYNCQ 6 3 1284 428 428 1.3E+09 1.3E+09 8.2E+08
V52FCHIN SYSTEM.CLUSTER.TRANSMIT.QUEUE 3 2 5528 2764 2764 0.0E+00 0.0E+00 0.0E+00
V52FCHIN SYSTEM.CHANNEL.SYNCQ 2 1 428 428 428 8.6E+09 3.1E+04 1.7E+05
PAICE4P CPV521 2000 2000 1000000 1000 0 2.1E+05 6.5E+03 4.1E+04

Where

Jobname Is the jobname

Queue Is the queue name used

Valid Get Is the number of valid gets. See Required fixes on page.8

Get Is the number of MQGET requests
Get_Bytes Is the number of bytes got from the queue. Note this is potentially a very large number so this

may not display properly.
Maxget Is the maximum message size in bytes

Minget Is the minimum message size in bytes

MaxTOQ Is the maximum time a message was on the queue in microseconds

MinTOQ Is the minimum time a message was on the queue in microseconds

AvgTOQ Is the average time a message was on the queue in microseconds.

The time on queue is the difference in time from when the message was put onto the queue to the time it was
got. This can be a very large number so it is displayed in floating point format.

DB2 contents
The records in this data set are for the time a task spent in DB2.

Jobname Count Avg_ET_T Avg_ET_S Max_Ti_T Max_Ti_S
V521CHIN 5 3179 3083 3344 3241
V521CHIN 5 3366 3260 3571 3462

Where
Jobname Is the jobname

Count Is the count of requests

Avg_ET_T Is the average wait time for the task in microseconds

Avg_ET_S Is the average wait time for the server in microseconds

Max_Ti_T Is the maximum wait time for the task in microseconds

Max_Ti_S Is the maximum wait time for the server in microseconds.

For information on task time and server time, see Statistics on MQSeries' use of DB2 on page 35

CF contents
The records in this data set are for time spent processing Coupling Facility requests by jobname.
See Coupling Facility statistics on page 43 for what the terms mean.

Jobname E_calls E_redrive Avg_E_time M_calls M_redrive Avg_M_time
V520CHIN 32 0 51 16 0 288
V5201 4667 0 43 1333 0 55

Where
Jobname Is the jobname

E_calls Is the count of IXLLSTE requests to the Coupling Facility

E_redrive Is the number of redrives for IXLLSTE

Avg_E_time Is the average time for the IXLLSTE in microseconds

M_calls Is the count if IXLLSTM requests to the Coupling Facility

M_redrive Is the number of redrives for IXLLSTM

Avg_M_time Is the average time for the IXLLSTM in microseconds.

SCF contents
The records in this data set are for the time spent processing Coupling Facility requests summarized by
Coupling Facility structure name.

Date QMGR CFN CFname | Num_E Avg_E_T %Redrive Num_M Avg_M_T %Redrive Num_full
2000293 V52D 0 CSQ_ADMIN 11914 32 0 0 0 0 0
2000293 V52D 1 APPLICATION1 35082 44 0 17531 156 0 0
2000293 V52D 0 CSQ_ADMIN 74621 33 0 0 0 0 0
2000293 V52D 1 APPLICATION1 223852 43 0 111937 156 0 0

Where

Date Is the date in yyyyddd format

QMGR Is the queue manager name

CFN Is the Coupling Facility number

CFname Is the name of the Coupling Facility Structure

Num_E Is the count if IXLLSTE requests

Avg_E_T Is the average time for the IXLLSTM in microseconds

%Redrive Is the number of redrives for IXLLSTE

Num_M Is the count if IXLLSTM requests

Avg_M_T Is the average time for the IXLLSTM in microseconds

%Redrive Is the number of redrives for IXLLSTM

Num_full Is the number of times the structure was full.

MM contents
The records in this data set are for the message manager statistics

 Date Open Close Get Put Put1 Inq Inql Set
 2000293 42 0 23193 5637 11914 0 0 0
 2000293 0 0 5 0 0 0 0 0

BM contents
The records in this data set are for the buffer manager statistics.

Date... QMGR BP NumBuff %now %low dwt dmc stl stla sos
2000293 V52D 0 50000 0 100 0 0 0 0 0
2000293 V52D 1 99000 0 100 0 0 0 0 0
2000293 V52D 2 99000 0 100 0 0 0 0 0
2000293 V52D 3 99000 0 100 0 0 0 0 0

See Buffer manager statistics on page 49 for information on the meaning of the columns.

SDB2 contents
The records in this data set are for the MQSeries usage of DB2 statistics

Date Time QMGR Max_Depth Num_deadlock
2000308 00:30:00.40 V52G 4 0
2000308 01:00:00.00 V52G 1 0
2000308 01:30:00.00 V52G 0 0

See Statistics on MQSeries' use of DB2 on page 35 for information on the meaning of the columns.

THREAD contents
The records in this data set show the job name, jobtype and channel name of active MQSeries threads.

Jobname type Channel channel qualifier
V52F RRS
V52FCHIN Channel
V52FCHIN Channel TO.V52G WINMVS2A(2163)
V52FCHIN Channel V521.TO.V52F 9.20.101.14
V52FCHIN Channel V52F.V521 WINMVS25(2171)
V52FCHIN Channel
V52FCHIN Channel TO.V520 WINMVS25(2170)
V52F IMS Control
V52FCHIN Channel V521.TO.V52F 9.20.101.14
V52FCHIN Channel V52F.V521 WINMVS25(2171)
V52FCHIN Channel
V52FCHIN Channel TO.V520 WINMVS25(2170)
V52FCHIN Channel TO.V52G WINMVS2A(2163)

See Meaning of the channel names on page 97 for information on the meaning of the columns.

LOG contents
The records in this data set are for the log manager statistics

 Date QMGR wr_wait wr_nwait wr_force Wait_Buf read_buf read_act read_arc r_delay N_CheckP Num I/O Num_CI_W paging
 2000293 V52F 0 273944 157 0 0 0 0 0 0 82188 82188 0
 2000293 V52D 0 0 0 0 0 0 0 0 0 0 0 0

Supplied programs to print out the SMF records.
Three program executables (no source) are available with this SupportPac.
MQ1150 This prints out MQSeries statistics

MQ116S This prints out the new task and queue accounting records

MQ1160 This prints out the accounting information which was also available in earlier releases.

These programs are suitable for displaying the contents of a few records, but are impractical for processing a
large number of records as they can generate a large amount of output.
You should use products like Performance Reporter® or SAS® for long term processing of the statistics or
accounting data.
To install these on OS/390, upload the file MQLOAD to OS/390 in binary, for example using FTP, and use the
TSO command "Receive indsn(xxx.xxx)" where xxx.xxx is the data set name on OS/390
To extract the SMF records from the SMF datasets you can use a job similar to the one below.
Sample job to extract the MQSeries SMF records from the SMF data sets. You can specify a time range in
hhmm format using START() and END().

Figure 5. Job to extract data from SMF

//RUNPROG JOB 1,CLASS=A
//*
//* Extract the records from the SMF database
//*
//SMFDUMP EXEC PGM=IFASMFDP,REGION=0M
//DUMPOUT DD DSN=PAICE.MQSMF,DISP=(NEW,CATLG),SPACE=(CYL,(10),RLSE)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 INDD(DUMPIN,OPTIONS(DUMP))
 START(0000)
 END(2359)
 OUTDD(DUMPOUT,TYPE(115,116))
/*
//DUMPIN DD DSN=SYS1.MAN1,DISP=SHR,AMP=('BUFSP=65536')

Figure 6. Example JCL to run the supplied programs to print the SMF records

//PAICESM1 JOB NOTIFY=PAICE,MSGCLASS=H,MSGLEVEL=(0,0)
//S1 EXEC PGM=CSQW1150
//STEPLIB DD DISP=SHR,DSN=MQM.MQLOAD
//SYSPRINT DD SYSOUT=*
//SMFIN DD DISP=SHR,DSN=PAICE.MQSMF

//PAICESM2 JOB NOTIFY=PAICE,MSGCLASS=H,MSGLEVEL=(0,0)
//S1 EXEC PGM=CSQW1160
//STEPLIB DD DISP=SHR,DSN=MQM.MQLOAD
//SYSPRINT DD SYSOUT=*
//SMFIN DD DISP=SHR,DSN=PAICE.MQSMF

//PAICESM3 JOB NOTIFY=PAICE,MSGCLASS=H,MSGLEVEL=(0,0)
//S1 EXEC PGM=CSQW116S
//STEPLIB DD DISP=SHR,DSN=MQM.MQLOAD
//SYSPRINT DD SYSOUT=*
//SMFIN DD DISP=SHR,DSN=PAICE.MQSMF

Example output and description of the MQSeries statistics printout
Example print out of MQSeries statistics - part 1

 MVS:MV25 MQ_Subsys:V520 Date 2000297 Time 16:40:34.25
 Storage manager : QSST
 fix. pools created: 1, Deallocated: 4
 fix. segments freed: 0, expanded: 0, contracted 0
 var. pools created: 3, Deallocated: 3
 var. segments freed: 4, expanded: 4, contracted 0
 # Getmains: 2003, # Freemains: 2007, # non-zero Rcs 0
 # SOS bit: 0, # contractions 0, # Abends 0
 Log manager : QJST
 Write_wait 0 Write_Nowait 0 Write_Force 0 WTB 0
 Read_stor 0 Read_Active 0 Read_archive 0 TVC 0
 BSDS_reqs 0 CIs_created 0 BFWR 0 ALR 0
 ALW 0 CIs_offload 0 Checkpts 0
 WUR 0 LAMA 0 LAMS 0
 Write_susp 0 Write_Reqs 0 CI_Writes 0
 Write_serl 0 Write_Thrsh 0 Buff_Pagein 0

The header MVS:MV25 MQ_Subsys:V520 Date 2000297 Time 16:40:34.25 is taken from the SMF header.
The Storage manager : QSST section is only of interest to IBM.
For section Log manager: QJST Log manager statistics on page 57. The fields are in the same order as Table
10 on page 61, and the fields have been given more meaningful names.
Example print out of MQSeries statistics - part 2

 MVS:MV25 MQ_Subsys:V520 Date 2000297 Time 16:40:34.25
 Message manager : QMST
 #MQOPEN 6001 #MQCLOSE 2001 #MQGET 9051 #MQPUT 4000 #MQPUT1 0 #MQINQ 0 #MQSET 0
 Data manager : QIST
 #Create 0 #Put 0 #Delete 0 #Get 7000 #Locate 18003 #stgclass 0
 Buffer manager : QPST
 00 #buff 50000 #low 49967 #now 49967 #getp 13944 #getn 0
 00 Rio 0 STW 13944 TPW 0 WIO 0 IMW 0
 00 DMC 0 STL 0 STLA 0 SOS 0
 01 #buff 99000 #low 98664 #now 98664 #getp 8334 #getn 672
 01 Rio 0 STW 6018 TPW 0 WIO 0 IMW 0
 01 DMC 0 STL 0 STLA 0 SOS 0
 02 #buff 99000 #low 94876 #now 94876 #getp 16176 #getn 1227
 02 Rio 0 STW 11725 TPW 0 WIO 0 IMW 0
 02 DMC 0 STL 0 STLA 0 SOS 0
 03 #buff 99000 #low 99000 #now 0 #getp 0 #getn 0
 03 Rio 0 STW 0 TPW 0 WIO 0 IMW 0
 03 DMC 0 STL 0 STLA 0 SOS 0
 Lock manager : QLST
 #lock gets 105821, already held 2998 releases 32873
 DB2 manager : Q5ST
 Tasks : Servers 10 Active 11 Conns 0 discs 0 High 1 Abend 0 Requeue 0
 Number of deadlock conditions : 0
 Reads : #: 304 Task Avg m/s : 2 Task Max m/s : 8 DB2 Avg m/s : 2 DB2 Max m/s : 8
 Writes : #: 24 Task Avg m/s : 9 Task Max m/s : 68 DB2 Avg m/s : 8 DB2 Max m/s : 68
 Lists : #: 60 Task Avg m/s : 20 Task Max m/s : 38 DB2 Avg m/s : 20 DB2 Max m/s : 38
 Deletes: #: 24 Task Avg m/s : 28 Task Max m/s : 104 DB2 Avg m/s : 27 DB2 Max m/s : 104
 SCS Selects: #: 21 Task Avg m/s : 7 Task Max m/s : 92 DB2 avg m/s : 7 DB2 Max m/s : 91
 SCS Inserts: #: 71 Task Avg m/s : 20 Task Max m/s : 259 DB2 avg m/s : 20 DB2 Max m/s : 259
 SCS Updates: #: 71 Task Avg m/s : 13 Task Max m/s : 31 DB2 avg m/s : 13 DB2 Max m/s : 31
CF manager : QEST
 Structure #: 0, Name CSQ_ADMIN , Structure-fulls 0
 Single 1000, Avg time uS 53, Single retries 0
 Multiple 0, Avg time uS 0, Multiple retries 0
 Max used entries 344, Max used elements 666
 Structure #: 1, Name APPLICATION1, Structure-fulls 0
 Single 1000, Avg time uS 73, Single retries 0
 Multiple 1000, Avg time uS 211, Multiple retries 0
 Max used entries 1313, Max used elements 7192

The header MVS:MV25 MQ_Subsys:V520 Date 2000297 Time 16:40:34.25 is taken from the SMF header.
For section Message manager : QMST see Message manager statistics on page 47 . The fields are in the
same order as in and the fields have been given more meaningful names.

For section Data manager : QIST see Data manager statistics on page 48. The fields are in the same order as
in Table 8 on page 52 and the fields have been given more meaningful names.
For section Buffer manager : QPST see Buffer manager statistics on page 49 The fields are in the same order
as in Table 9 on page 53 and the fields have been given more meaningful names, and the first field in the line
is the buffer pool number.
The Lock manager : QLST statistics are only of interest to IBM.
For section DB2 manager : Q5ST see Statistics on MQSeries' use of DB2 on page 41. The fields are taken
from Table 6 on page 43 . Rows which have all zero values are omitted, for example there was no Shared
Sync Queue activity so all of the SSK* counters are zero, and so the rows are omitted.
For section CF manager : QEST see Coupling Facility statistics on page 43. There are 0 or more subsections
taken depending on the number of Coupling Facility structures which have had any activity The fields are taken
from Table 6 on page 48. Row which have all zero values are omitted.

Example output and description of the MQSeries accounting printout
Example print out of the old MQSeries accounting records

 MVS:MV25 MQ_Subsys:V520 Date 2000297 Time 16:39:42.04
 QWHS: Job IMSV Job_Userid IMSCREG Tran_Userid IMSCREG Connection IMS Thread 4042322161
CSQQTRMN
 QWHC: Accounting token : , Network identifier : IMSV
 QMAC: CPU 00000318 MQPUT 0-99 0 100-999 0 1000-9999 0 >9999 0
 QMAC: MQGET 0-99 0 100-999 2002 1000-9999 0 >9999 0

The header MVS:MV25 MQ_Subsys:V520 Date 2000297 Time 16:39:42.04 is taken from the SMF header.
The fields are described in Understanding and using the accounting data available in and before Version 5.2 on
page 17. The CPU field is the CPU time used in milliseconds.

Example output and description of the new MQSeries accounting printout
The statistics are discussed in Understanding and using the new accounting data on page 20 , and the records
have information on

w Task identification, described in Table 17. Layout of theTask Id structure(WTID) on page 96. See page 79
for example printout.

w Task accounting data, described in Table 16. Layout of the task related information (WTAS) structure on
page.93. See page 79 for example printout.

w Queue accounting data, described in Queue records (WQ)on page 87 . See page 79 for example printout.

Figure 7. Example print out of the new MQSeries accounting records - task identification

 MVS:MV25 ,MQSeries sys:V520 ,Jobname:PAICEIMS ,Userid:PAICE1 ,Date 2000297 ,Time 16:37:36.61
 ====> New task record found <==========
 == Thread type............> MVS/TSO
 == Connection name........> PAICEIMS
 == Operator id............> PAICE1
 == User identifier........> PAICE1
 == Channel name...........>
 == Chl Connection.........>
 == Correlator Id..........>
 == Correlator Id.....(HEX)> 404040404040404040404040
 == Context token..........>
 == Context token.....(HEX)> 00000000000000000000000000000000
 == NID....................>
 == NID...............(HEX)> 40404040404040400000000000000000
 == accounting token.......>
 == accounting token..(HEX)> 00
 == UOW identifier.........> ¸O|·x79
 == UOW identifier....(HEX)> 40404040404040404040404040404040B4D611B3A73D0001

The header MVS:MV25 MQ_Subsys:V520 Date 2000297 ,Time 16:37:36.61 is taken from the SMF header.

Figure 8. Example print out of the new MQSeries accounting records - task identification

 == Task Token : 23/10/2000, 15:36:47.79, 7f14b7b8, 2741f038
 == Interval : START 23/10/2000, 15:36:47.79
 == Interval : END 23/10/2000, 15:37:56.61
 == Commit : Count 2000 ,avg elapse 130 ,avg CPU 34
 == Suspend : Count 2000 ,avg elapse 100
 == Pages : New 20878 ,Old 1672
 == Task Token : 23/10/2000, 15:36:47.79, 7f14b7b8, 2741f038

The row with == Commit gives the number of commit requests, and the average elapsed time for the commit
requests in microseconds and the average CPU time used on the users TCB in microseconds of CPU.

Figure 9. Example print out of the new MQSeries accounting records - task identification

 Open name CP0000 , Base name CP0000
 First opened : 23/10/2000, 15:36:47.80
 Last closed : 23/10/2000, 15:37:56.60
 Pageset identifier: 2, Bufferpool: 2
 Current opens : 0 , Total Requests : 6000
 GETs : Valid 4000 Max size 70 Min Size 0 Total bytes 00000000000222E0
 GETs : Dest-S 0, Dest-G 4000, Brow-S 0 Brow-G 0
 Gets : Maximum latency 00000 0:00:00.940
 Gets : Minimum latency 00000 0:00:00.002
 GETs : Average latency 00000 0:00:00.003
 Generated messages : 0
 MQCall N ET CT Susp LOGW PSET Epages skip expire
 Open 1000 62 60
 Close 1000 26 25
 Get 4000 63 62 0 0 0 2218 0 0

The row with GETs : Valid gives the number of gets which returned a message(valid gets) the maximum and
minimum message sizes in bytes, and the total number of bytes processed as an 8 character hex number. It is
displayed in hex because this number could be very large and normal 31 bit arithmetic may not work.
The row with GETs : Dest-S gives

w the number of destructive gets where a message id or correlation id was specified (Dest-S)
w the number of destructive gets where a message id or correlation id was not specified (Dest-G)
w the number of browse requests where a message id or correlation id was specified (Brow-S)

w the number of browse requests where a message id or correlation id was not specified (Brow-G)
The rows giving latency times give the value in yyddd hh:mm:ss.ttt format.
The row with MQCall N ET CT Susp LOGW PSET Epages skip expire is a heading for information about the
verbs following. The columns have the following meaning
MQCall MQOPEN, MQPUT etc
N Number of times the verb was issued

ET Average elapsed time in microseconds

CT Average CPU time used in microseconds

Susp Some verbs can be suspended, this gives the average time in microseconds if the verb was
suspended

LOGW This is the average time in microseconds the verb was suspended waiting for log I/O

PSET The average time in microseconds waiting for page set I/O in microseconds (when the page set
was not page set 0)

Epages The number of empty pages scanned during a get

skip the number of messages that were skipped when looking for the required message

expire the number of expired messages that were skipped when looking for the required message

Sample C program to dump statistics and accounting

A C program is provided as an executable and as a source file to print the MQSeries statistics and accounting
data in an unaltered dump like format. The program may be used as-is.
 This program and the header files provided with this SupportPac are not supported by IBM. But if you tell the
author (ARNDT.EADE@UK.IBM.COM) of any problems, improvements may be incorporated in any future
updates - if there are any future updates.
Upload the MQSOURCE in binary to TSO and issue Receive indsn(MQSOURCE)
Some of the key members of this data set are
MQCDUMP The source of the C program which will read MQSeries SMF records and output information in

a hex dump like format. It contains JCL to compile and linkedit it to create a module
MQCDUMP

RUNCDUMP This executes the C program to print MQSeries SMF data in a dump like format.

This program is provided to show each statistics and accounting control block in an unaltered dump like format.
It can be used to view the contents of the each complete block, or individual fields within the control block.
Integer fields are displayed as decimal number whereas doubleword and character fields are displayed in
hexadecimal and displayable character format.

Execute the sample code
Example JCL to run the C program is in given below

//S1 EXEC PGM=MQCDUMP
//STEPLIB DD DISP=SHR,DSN=++HLQ++.MP1B.LOAD
//SYSPRINT DD SYSOUT=*,DCB=(LRECL=132,RECFM=F)
//QMAC DD SYSOUT=*,DCB=(LRECL=233,RECFM=F,BLKSIZE=233)
//QWHS DD SYSOUT=*,DCB=(LRECL=233,RECFM=F,BLKSIZE=233)
//WTID DD SYSOUT=*,DCB=(LRECL=233,RECFM=F,BLKSIZE=233)
//WTAS DD SYSOUT=*,DCB=(LRECL=233,RECFM=F,BLKSIZE=233)
//WQ DD SYSOUT=*,DCB=(LRECL=233,RECFM=F,BLKSIZE=233)
//Q5ST DD SYSOUT=*,DCB=(LRECL=233,RECFM=F,BLKSIZE=233)
//QEST DD SYSOUT=*,DCB=(LRECL=233,RECFM=F,BLKSIZE=233)
//QIST DD SYSOUT=*,DCB=(LRECL=233,RECFM=F,BLKSIZE=233)
//QJST DD SYSOUT=*,DCB=(LRECL=233,RECFM=F,BLKSIZE=233)
//QLST DD SYSOUT=*,DCB=(LRECL=233,RECFM=F,BLKSIZE=233)
//QMST DD SYSOUT=*,DCB=(LRECL=233,RECFM=F,BLKSIZE=233)
//QPST DD SYSOUT=*,DCB=(LRECL=233,RECFM=F,BLKSIZE=233)
//QSST DD SYSOUT=*,DCB=(LRECL=233,RECFM=F,BLKSIZE=233)
//SMFIN DD DSN=++SMFIN++(0),DISP=SHR

The files referenced in the JCL are explained below. All of the files need to be defined, but they can be set to
"DD DUMMY" if required.

SMFIN data set
The SMFIN data set is the SMF records which have been extracted from SMF using a job like that on page.76
This data set is typically Variable Blocked Spanned with a 32760 record length.

Sample output (QMST)
message manager statistics data
--Q-M-S-T---H-E-X---P-R-I-N-T----
Address = 19309A48
00000000 : D40F0030 D8D4E2E3 00000000 00000000 <M...QMST........>
00000010 : 00000000 00000000 00000000 00000000 <................>
00000020 : 00000000 00000000 00000000 00000000 <................>
--Q-M-S-T---F-O-R-M-A-T-T-E-D----
qmstid = d40f
qmstll = 0048
qmsteyec = QMST
qmstopen = 00000000
qmstclos = 00000000
qmstget = 00000000
qmstput = 00000000
qmstput1 = 00000000
qmstinq = 00000000
qmstinql = 00000000
qmstset = 00000000
qmstendw = 00000000
qmstcalh = 00000000

 Sample output (WTID)
Class 3 Accounting - Thread identification data
--W-T-I-D---H-E-X---P-R-I-N-T----
Address = 19309A28
00000000 : F70000D0 E6E3C9C4 00000002 C1F8C5C1 <7..}WTID....A8EA>
00000010 : C4C5D740 C1F8C5C1 C4C54040 40404040 <DEP A8EADE >
00000020 : 40404040 00000000 00000000 40404040 < >
00000030 : 40404040 40404040 40404040 40404040 < >
00000040 : 40404040 40404040 BA138276 3CBC0001 < ..b.....>
00000050 : 00000000 00000000 00000000 00000000 <................>
00000060 : 00000000 00000000 00000000 00000000 <................>
00000070 : 00000000 00000000 00000000 00000000 <................>
00000080 : 00000000 00000000 00000000 00000000 <................>
00000090 : 00000000 00000000 00000000 00000000 <................>
000000A0 : 00000000 00000000 00000000 00000000 <................>
000000B0 : 00000000 00000000 0000C1F8 C5C1C4C5 <..........A8EADE>
000000C0 : 40400000 00000000 00000000 7BFD0838 < #...>
--W-T-I-D---F-O-R-M-A-T-T-E-D----
wtidshex = f700
wtidlen = 0208
wtideyec = WTID
wtidatyp = 00000002
wtidccn : (addr) '19309A34' (hex) 'C1F8C5C1C4C5D740' : (disp) 'A8EADEP '
wtidopid : (addr) '19309A3C' (hex) 'C1F8C5C1C4C54040' : (disp) 'A8EADE '
wtidnid : (addr) '19309A44' (hex) '40404040404040400000000000000000' : (disp) '
........'
wtidcori : (addr) '19309A54' (hex) '404040404040404040404040' : (disp) '
'

Appendix A. Overall layout of MQSeries SMF records

SMF record layout
The standard layout for SMF records involves three parts:
Part of record What it is used for

SMF header Provides format, identification, and time and date information about the record itself.

Self-defining section Defines the location and size of the individual data records within the SMF record.

Data records The actual data from MQSeries that you want to analyze.

For more information about SMF record formats, see the MVS System Management Facilities (SMF) manual.

SMF record header description
The SMF header is the same for subtypes 115 and 116 and the layout is given in Table 11. The fields are
labeled SM116* to match the description of other SMF records in the MVS System Management Facilities
(SMF) manual.
Note: The length of the record subtype(SM116ST) is now two bytes instead of 1 byte, to conform with the
standard SMF record layout.

Table 12. SMF record header description

Offsets

Dec Hex Type
Le
n Name

0 (0) Structure 28 SM116 SMF record header.

0 (0) Unsigned 2 SM116LEN SMF record length.

2 (2) 2 Reserved.

4 (4) Unsigned 1 SM116FLG System indicator.

5 (5) Unsigned 1 SM116RTY Record type. The SMF record type, for MQSeries accounting records
this is always 116 (X'74'). For MQSeries statistics this is 115 (X'73').

6 (6) Unsigned 4 SM116TME Time when SMF moved record.

10 (A) Unsigned 4 SM116DTE Date when SMF moved record.

14 (E) Character 4 SM116SID OS/390 subsystem ID. Defines the OS/390 subsystem on which the
records were collected.

18 (12) Character 4 SM116SSI MQSeries subsystem ID.

22 (16) Unsigned 2 SM116STY Record subtype.

24 (18) Character 3 SM116REL Websphere MQ version, release and modification

27 (1B) 1 SM116SEQ Reserved.

28 (1C) Character 0 SM116END End of SMF header and start of self-defining section.

Processing accounting records (SMF type 116)
Each SMF 116 record has a subtype, field SM116STY. The subtypes used are

Subtype Description

0 Message manager accounting. This is available in Version 5.2 and earlier, and is described in
Understanding and using the accounting data available in and before Version 5.2 on page 17

1 Queue level accounting. This was introduced in Version 5.2. It has data on task identification, task
related statistics and queue records. It is described in Understanding and using the new accounting
data on page 16.

2 Queue level accounting extension records. This was introduced in Version 5.2. It is used when there
are too many queue records to fix into a subtype 1 record. It has sections on task identification and
queue records. It is described in Understanding and using the new accounting data on page 16.

Processing statistics records (SMF type 115)
The SMF header is identical in structure to the SMF type 116 records, and these fields(SM116*) can be used to
access the fields.
Each SMF 115 record has a subtype. The subtypes used are

Subtype Description

1 Log manager statistics. These are described in Log manager statistics on page.57

2 Message manager, data manager, buffer manager, DB2 manager and Coupling Facility manager
These are described in Message manager statistics on page 47 , Data manager statistics on page
48, Buffer manager statistics on page 49, Statistics on MQSeries' use of DB2 on page 35 and
Coupling Facility statistics on page 43

Self-defining sections
A self-defining section of an SMF record tells you where to find the different records, how long they are, and how
many times that type of record is repeated. The self-defining sections follow the header, at a fixed offset from
the start of the SMF record.
The table below summarizes the offsets from the start of the SMF record header.

Table 13. SMF record header description
Offsets are from the start of the SMF record and are fixed for each type of accounting source.

Source of accounting data

Offsets

Dec Hex
Accounting SMF type 116, subtype 0

Common MQSeries SMF
header

28 (X'1C') Table 12. SMF record header description on page 83

Message manager 44 (X'2C') Table 8. Structure of the message manager statistics
record QMST on page 47

Accounting SMF type 116, subtype 1

Common MQSeries SMF
header

28 (X'1C') Table 20. Structure of the Common MQSeries SMF header
record QWHS on page 98

Task identification 36 (X'24') Table 17. Layout of theTask Id structure(WTID)on page 96

Task accounting 44 (X'2C') on page 92

Queue records 52 (X'34') Queue records (WQ) Present if QWHSNSDA is larger than
3. See Table 20. Structure of the Common MQSeries SMF
header record QWHS on page 98
Note that this section may not be present, if the application
did not process any queues in the time period.

Accounting SMF type 116, subtype 2

Common MQSeries SMF
header

28 (X'1C') Table 20. Structure of the Common MQSeries SMF header
record QWHS on page 98

Task identification 36 (X'24') Table 17. Layout of theTask Id structure(WTID)on page 96

There is no task accounting section in the subtype 2 record

Queue records 44 (X'2C') Table 15. Layout of the Queue (WQ) structure on page 87

Statistics SMF type 115, subtype 1

Storage manager 100 (X'64') This is of use only to IBM

Log manager 116 (X'74') Table 11. Structure of the log manager statistics record
QJST on page 57

Statistics SMF type 115, subtype 2

Message manager 36 (X'24') Table 8. Structure of the message manager statistics
record QMST on page 47

Data manager 44 (X'2C') Table 9. Structure of the data manager statistics record
QIST on page 48

Buffer manager 52 (X'34') Table 10. Structure of the buffer manager statistics record
QPST on page 49

Lock manager 60 (X'3C') This is of use only to IBM

DB2 manager 68 (X'44') Table 6. DB2 statistics record on page 38

Coupling Facility manager 76 (X'4C') Table 7. Coupling Facility record layouton page on page 44

Note: Other self-defining sections refer to data for IBM use only.

Each self-defining record is two fullwords long and has this format: ssssssssllllnnnn
where:
ssssssss Fullword containing the offset from start of the SMF record.

llll Halfword giving the length of this data record.

nnnn Halfword giving the number of data records in this SMF record.

Note: Always use offsets in the self-defining sections rather than the
absolute position in SMF record to locate the accounting
records, because if the length of a section or the number of
sections change, the absolute position in the SMF record will
change.

Table 14. Structure of the Common MQSeries SMF header record QWHS
This structure is the same as Structure of the MQSeries SMF header QHWS 101except the fields, such as connection
name, refer to the task that creates the SMF records, and not to the application.

Offsets

Dec Hex Type Len Name
0 (0) Structure 128 QWHS
0 (0) 6 Reserved.

6 (6) Character 1 QWHSNSD
A

Number of self defining sections in the SMF records.

7 (7) 5 Reserved.

12 (0C
)

Character 4 QWHSSSID Subsystem name.

Appendix B: Detail layout of MQSeries accounting and
statistics records

Queue records (WQ)
This member is defined in CSQDWQ.
This data is present in SMF 116 subtype 1 records, (if the number of self defining sections is greater than 3. See
Table 20. Structure of the Common MQSeries SMF header record QWHS on page 86) and in SMF 116
subtype 2 records. See Self-defining sections on page.84

Table 15. Layout of the Queue (WQ) structure

Offsets

Dec Hex Type Len Name
0 0 Structure 576 WQSTAT

0 0 Signed 2 WQID Control block hex ID
2 (2) Signed 2 WQLL Length of the block

4 (4) Character 4 WQEYE Eye catcher (WQST)

8 (8) Signed 4 WQVER Version number

12 (C) ADDRESS 4 WQNEXT Reserved

16 (10) Character 16 CORREL Correlator to tie block to owning WTAS

32 (20) Character 48 OBJNAME Object name as opened

80 (50) Character 48 BASENAME Base name or generate name if applicable

128 (80) Character 8 OPENTIME Time queue opened (this is the first time if data is
accumulated)

136 (88) Character 8 CLOSTIME Time the queue was closed (this is the last time if data is
accumulated)

Object information

144 (90) Signed 4 QTYPE Queue type (for example, local)

148 (94) Signed 4 INDXTYPE Index type of queue

152 (98) Signed 4 QSGDISP QSGDISP (for example, SHARED or GROUP)

MQOPEN

156 (9C) Character 4 OPENEYE Eye catcher (OPEN)

160 (A0) Character 8 OPENET Total elapsed time for MQOPEN processing
168 (A8) Character 8 OPENCT Total amount of CPU time processing MQOPEN calls
176 (B0) Unsigned 4 OPENN Number of MQOPEN calls

MQCLOSE

180 (B4) Character 4 CLOSEEYE Eye catcher (CLOS)

184 (B8) Character 8 CLOSEET Total elapsed time for MQCLOSE processing
192 (C0) Character 8 CLOSECT Total CPU times used for MQCLOSE processing
200 (C8) Unsigned 4 CLOSEN Number of MQCLOSE calls

MQGET

204 (CC) Character 4 GETEYE Eye catcher (GET)

208 (D0) Character 8 GETET Elapsed time processing MQGET calls
216 (D8) Character 8 GETCT CPU times used processing MQGET calls
224 (E0) Unsigned 4 GETN Total number of MQGET calls
228 (E4) Unsigned 4 GETBRWA Number of MQGET browses (any)
232 (E8) Unsigned 4 GETBRWS Number of MQGET browses (specific)
236 (EC) Unsigned 4 GETA Number of MQGET calls (any)
240 (F0) Unsigned 4 GETS Number of MQGET calls (specific)
244 (F4) Unsigned 4 GETERR Number of unaccountable MQGETs
248 (F8) Character 8 GETJWET Elapsed time waiting for a journal write to complete

This is for getting persistent messages.
256 (100) Unsigned 4 GETJWN Number of journal write requests

This is for getting persistent messages.
260 (104) Character 8 GETPSET Elapsed time waiting for a read from a page set

268 (10C) Unsigned 4 GETPSN Number of reads from a page set

272 (110) Character 8 GETSUSET Total suspend time for MQGET calls
280 (118) Unsigned 4 GETSUSN Number of times suspended

284 (11C) Unsigned 4 GETEPAGE Number of empty pages skipped over when doing an
MQGET

288 (120) Unsigned 4 GETSMSG Number of messages skipped when doing an MQGET,
either by MsgId or CorrelId

292 (124) Unsigned 4 GETEXMSG Number of expired messages processed (this causes an
increase in time because the event messages need to be
produced)

MQPUT

296 (128) Character 4 PUTEYE Eye catcher (PUT)

300 (12C) Character 8 PUTET Total elapsed time for the MQPUT calls
308 (134) Character 8 PUTCT CPU time used during MQPUT processing
316 (13C) Unsigned 4 PUTN Number of MQPUT requests
320 (140) Character 8 PUTJWET Elapsed time waiting for a journal write request.

This is for putting persistent messages.
328 (148) Unsigned 4 PUTJWN Number of journal write requests.

This is for putting persistent messages.
332 (14C) Character 8 PUTSUSET Elapsed time the task was suspended for

340 (154) Unsigned 4 PUTSUSN Number of times suspended

344 (158) Character 8 PUTPSET Time taken to read from a page set for MQPUT
352 (160) Signed 4 PUTPSN Number of page set put requests

MQPUT1

356 (164) Character 4 PUT1EYE Eye catcher (PUT1)

360 (168) Character 8 PUT1ET Total elapsed time for the MQPUT1 calls

368 (170) Character 8 PUT1CT CPU time used during MQPUT1 processing
376 (178) Unsigned 4 PUT1N Number of MQPUT1 requests
380 (17C) Character 8 PUT1JWET Elapsed time waiting for a journal write request.

This is for putting persistent messages.
388 (184) Unsigned 4 PUT1JWN Number of journal write requests.

This is for putting persistent messages.
392 (188) Character 8 PUT1SUSET Elapsed time the task was suspended

400 (190) Unsigned 4 PUT1SUSN Number of times suspended

404 (194) Character 8 PUT1PSET Time taken to read from a page set for MQPUT1
412 (19C) Signed 4 PUT1PSN Number of page set MQPUT1 requests

MQINQ

416 (1A0) Character 4 INQEYE Eye catcher (INQ)

420 (1A4) Character 8 INQET Total elapsed time for the MQINQ calls
428 (1AC) Character 8 INQCT CPU time used during MQINQ processing
436 (1B4) Unsigned 4 INQN Number of MQINQ requests

MQSET

440 (1B8) Character 4 SETEYE Eye catcher (SET)

444 (1BC) Character 8 SETET Total elapsed time for the MQSET calls
452 (1C4) Character 8 SETCT CPU time used during MQSET processing
460 (1CC) Unsigned 4 SETN Number of MQSET requests
464 (1D0) Character 8 SETJWET Elapsed time waiting for journal write requests

472 (1D8) Unsigned 4 SETJWN Number of journal write requests

Other statistics

476 (1DC) Unsigned 4 NPS Page set number

480 (1E0) Character 12 CFSTRUCNAME Name of CF structure

492 (1EC) Unsigned 4 NBUFFPOOL Buffer pool number

Putbytes/validput = average message size put.
Getbytes/validget = average size of message got. Failed put
and get count in the total above, but only those successful
calls get counted below
496 (1F0) Character 8 PUTBYTES Total number of bytes put successfully

504 (1F8) Character 8 GETBYTES Total number of bytes got successfully

512 (200) Unsigned 4 VALIDPUT Number of MQPUTs writing data
516 (204) Unsigned 4 VALIDGET Number of MQGETs with data
520 (208) Unsigned 4 NGEN Number of messages generated (including COA, COD, event,

and expiry messages)
524 (20C) Signed 4 GETMAXMS Get maximum messages size

528 (210) Signed 4 GETMINMS Get minimum messages size

532 (214) Signed 4 PUTMAXMS Put maximum messages size

536 (218) Signed 4 PUTMINMS Put minimum messages size

540 (21C) Character 8 MAXLATNT Maximum latency of message

548 (224) Character 8 MINLATNT Minimum latency of message

556 (22C) Character 8 TOTLATNT Total latency of messages

564 (234) Unsigned 4 * Reserved

568 (238) Signed 4 USE_COUNT Use count (plus 1 for MQOPEN, minus 1 for MQCLOSE)
572 (23C) Signed 4 TOTAL_USE Total number of calls using this queue

576 (240) Signed 4 GETPMSG Number of persistent messages created using MQGET

580 (244) Signed 4 PUTPMSG Number of persistent messages retrieved using MQPUT

584 (248) Signed 4 PUT1PMSG Number of persistent messages created using MQPUT1

588 (24C) Signed 4 MAXQDPTH From version 6 – Maximum queue depth encountered during
PUT/GET operations

592 (250) 4 * Reserved

596 (254) 4 GETDVAL From version 6 – Number of successful destructive MQGET
calls

600 (258) 8 GETJCET From version 6 – Elapse time waiting for force journal writes
to complete during MQGET calls

608 (260) 4 GETJCN From version 6 – Number of force journal writes during
MQGET calls

612 (264) 4 PUTPWG From version 6 – Number of MQPUT calls where message
was passed directly to waiting MQGETter

(This occurs when the message is out-of-syncpoint, non-
persistent the message satisfies an outstanding MQGET call)

620 (268) 8 PUTJCET From version 6 – Elapse time waiting for force journal writes
to complete during MQPUT calls

624 (270) 4 PUTJCN From version 6 – Number of force journal writes during
MQPUT calls

628 (274) 4 PUT1PWG From version 6 – Number of MQPUT1 calls where message
was passed directly to waiting MQGETter

(This occurs when the message is out-of-syncpoint, non-
persistent the message satisfies an outstanding MQGET call)

632 (278) 8 PUT1JCET From version 6 – Elapse time waiting for force journal writes
to complete during MQPUT1 calls

640 (280) 4 PUT1JCN From version 6 – Number of force journal writes during
MQPUT1 calls

644 (284) 8 SETJCET From version 6 – Elapse time waiting for force journal writes
to complete during MQSET calls

652 (28C) 4 SETJCN From version 6 – Number of force journal writes during
MQSET calls

656 (290) 16 * (4) Reserved

672 (2A0) Character 0 * End of Structure

Cross reference
Name Hex

Offset
BASENAME 50

CFSTRUCNAME 1E0

CLOSECT C0

CLOSEET B8

Name Hex
Offset

CLOSEEYE B4

CLOSEN C8

CLOSTIME 88

CORREL 10

Name Hex
Offset

GETA EC

GETBRWA E4

GETBRWS E8

GETBYTES 1F8

Name Hex
Offset

GETCT D8

GETDVAL 254

GETEPAGE 11C

GETERR F4

Name Hex
Offset

GETET D0

GETEXMSG 124

GETEYE CC

GETJCET 258

GETJCN 260

GETJWET F8

GETJWN 100

GETMAXMS 20C

GETMINMS 210

GETN E0

GETPMSG 240

GETPSET 104

GETPSN 10C

GETS F0

GETSMSG 120

GETSUSET 110

GETSUSN 118

INDXTYPE 94

INQCT 1AC

INQET 1A4

INQEYE 1A0

INQN 1B4

MAXLATNT 21C

MAXQDPTH 24C

MINLATNT 224

NBUFFPOOL 1EC

NGEN 208

NPS 1DC

OBJNAME 20

OPENCT A8

OPENET A0

OPENEYE 9C

OPENN B0

OPENTIME 80

PUT1CT 170

PUT1ET 168

PUT1EYE 164

Name Hex
Offset

PUT1JCET 278

PUT1JCN 280

PUT1JWET 17C

PUT1JWN 184

PUT1N 178

PUT1PMSG 248

PUT1PSET 194

PUT1PSN 19C

PUT1PWG 274

PUT1SUSET 188

PUT1SUSN 190

PUTBYTES 1F0

PUTCT 134

PUTET 12C

PUTEYE 128

PUTJCET 268

PUTJCN 270

Name Hex
Offset

PUTJWET 140

PUTJWN 148

PUTMAXMS 214

PUTMINMS 218

PUTN 13C

PUTPMSG 244

PUTPSET 158

PUTPSN 160

PUTPWG 264

PUTSUSET 14C

PUTSUSN 154

QSGDISP 98

QTYPE 90

SETCT 1C4

SETET 1BC

SETEYE 1B8

SETJCET 284

Name Hex
Offset

SETJCN 28C

SETJWET 1D0

SETJWN 1D8

SETN 1CC

TOTAL_USE 23C

TOTLATNT 22C

USE_COUNT 238

VALIDGET 204

VALIDPUT 200

WQBACK 234

WQEYE 4

WQID 0

WQLL 2

WQNEXT C

WQSTAT 0

WQVER 8

Interpreting accounting and statistics data for MQSeries for z/OS V5.3 and V6.0

Task related information (WTAS)

This data is present in SMF 116 subtype 1 records. See Self-defining sections on page 84.

Table 16. Layout of the task related information (WTAS) structure

Offsets

Dec Hex Type
Le
n Name

0 (0) Structure 712 WTAS
0 (0) Signed 2 WTASSHEX Hex ID of block
2 (2) Signed 2 WTASLEN Length of block
4 (4) Character 4 WTASEYEC Eye catcher
8 (8) Character 16 WTASCORR Correlator identifier
8 (8) Character 8 WTASSTRT When WTAS allocated

16 (10) Character 8 WTASHASH Reserved
16 (10) Signed 4 WTASMTHR Reserved
20 (14) Signed 4 WTASWTAS Reserved
24 (18) Character 8 WTASLATC Reserved
32 (20) Signed 4 WTASHSHI Reserved
36 (24) ADDRESS 4 * Reserved
40 (28) Bitstring 4 * Reserved
44 (2C) Signed 4 WTASWQC

T
From version 6 – Count of WQ blocks for this thread

48 (30) Character 384 WTASTHST Thread stats, of interest to all users of accounting
48 (30) Character 8 * Reserved
304 (130) INTEGER 4 Reserved

Non-queue 'other' statistics

432 (1B0) Character 8 WTASOTET Other MQI calls elapsed time
440 (1B8) Character 8 WTASOTCT Other MQI calls CPU time
448 (1C0) Unsigned 4 WTASOTN Number of other calls
452 (1C4) Character 8 WTASMLW Maximum latch wait time
460 (1CC) Signed 4 WTASMLW

N
Maximum wait latch number

464 (1D0) Character 4 * Reserved
468 (1D4) Signed 4 * Reserved

Commit statistics

472 (1D8) Character 8 WTASCMET Commit elapsed time
480 (1E0) Character 8 WTASCMCT Commit CPU time
488 (1E8) Signed 4 WTASCMN Commit number of calls

Backout statistics

492 (1EC) Character 8 WTASBAET Backout elapsed time
500 (1F4) Character 8 WTASBACT Backout CPU time
508 (1FC) Signed 4 WTASBAN Backout number of calls
512 (200) Character 4 * Reserved

93

Interpreting accounting and statistics data for MQSeries for z/OS V5.3 and V6.0

Journal and logging information

516 (204) Character 8 WTASJWET Log write elapsed time in STCK format
524 (20C) Unsigned 4 WTASJWN Number of log writes WTASJWB if required
528 (210) Unsigned 4 WTASJWB Number of bytes written to the log
532 (214) Character 8 WTASJCET Elapsed time waiting for log data to be forced to DASD
540 (21C) Unsigned 4 WTASJCN Number of times the log was forced
544 (220) Unsigned 4 WTASSUSN Number of times the task was suspended
548 (224) Character 8 WTASSUSE Total suspend time

Page set 0 logging activity

556 (22C) Character 8 WTASPSE0 Elapse time logging page set 0
564 (234) Unsigned 4 WTASPSN0 Logging requests page set 0

DB2 manager

568 (238) Character 8 WTASDBET DB2 elapse thread
576 (240) Character 8 WTASDBES DB2 elapse server
584 (248) Character 8 WTASDBMT DB2 maximum elapse thread
592 (250) Character 8 WTASDBMS DB2 maximum elapse server
600 (258) Signed 4 WTASDBCT DB2 requests

CF manager

604 (25C) Unsigned 4 WTASCSEC Number of IXLLSTE calls
608 (260) Unsigned 4 WTASCMEC Number of IXLLSTM calls
612 (264) Unsigned 4 WTASRSEC Number of IXLLSTE redrives
616 (268) Unsigned 4 WTASRMEC Number of IXLLSTM redrives
620 (26C) Character 8 WTASSSTC Time spent IXLLSTE calls
628 (274) Character 8 WTASMSTC Time spent IXLLSTM calls
640 (280) Character 8 * (3) Reserved

Interval data, page counts and chain pointers

664 (298) Character 8 WTASINTS Interval start - for post processing
672 (2A0) Character 8 WTASINTE Interval end - for post processing
680 (2A8) Signed 4 WTASGPO Get pages old
684 (2AC) Signed 4 WTASGPN Get rages new
688 (2B0) Character 8 * (3) Reserved
696 (2B8) Signed 4 WTASVER From version 6 - Version of WTAS block (Currently 1)
700 (2BC) Character 4 * Reserved
704 (2C0) Signed 8 WTASDBPT From version 6 – Number of message bytes written to DB2
712 (2C8) Signed 8 WTASDBGT From version 6 – Number of message bytes read from DB2
720 (2D0) Character 8 * Reserved

Cross reference

94

Interpreting accounting and statistics data for MQSeries for OS/309 V5
Name Hex

Offset
WTAS 0

WTASBACT 1F4

WTASBAET 1EC

WTASBAN 1FC

WTASCMCT 1E0

WTASCMEC 260

WTASCMET 1D8

WTASCMN 1E8

WTASCORR 8

WTASCQB 2B4

WTASCQF 2B0

WTASCSEC 25C

WTASDBCT 258

WTASDBES 240

Name Hex
Offset

WTASDBET 238

WTASDBGT 2C8

WTASDBMS 250

WTASDBMT 248

WTASDBPT 2C0

WTASEYEC 4

WTASGPN 2AC

WTASGPO 2A8

WTASHASH 10

WTASHSHI 20

WTASINTE 2A0

WTASINTS 298

WTASJCET 214

WTASJCN 21C

Name Hex
Offset

WTASJWB 210

WTASJWET 204

WTASJWN 20C

WTASLATC 18

WTASLEN 2

WTASLWET 30

WTASLWN 130

WTASMLW 1C4

WTASMLWN 1CC

WTASMSTC 274

WTASMTHR 10

WTASOTCT 1B8

WTASOTET 1B0

WTASOTN 1C0

Name Hex
Offset

WTASPSE0 22C

WTASPSN0 234

WTASRMEC 268

WTASRSEC 264

WTASSHEX 0

WTASSSTC 26C

WTASSTRT 8

WTASSUSE 224

WTASSUSN 220

WTASTHST 30

WTASVER 2B8

WTASWQCT 2C

WTASWTAS 14

95

Table 17. Layout of theTask Id structure(WTID)

Offsets

Dec Hex Type
Le
n Name

0 (0) Structure 208 WTID

0 (0) Signed 2 WTIDSHEX Hex ID of block

2 (2) Signed 2 WTIDLEN Length of block

4 (4) Character 4 WTIDEYEC Eye catcher

8 (8) Character 186 WTASID

8 (8) Signed 4 WTIDATYP CCBCTCOD 1=CICS etc

12 (C) Character 8 WTIDCCN CCBNAME connection name

20 (14) Character 8 WTIDOPID CCBOPID operator ID

28 (1C) Character 16 WTIDNID NID

44 (2C) Character 12 WTIDCORI Correlator

56 (38) Character 24 WTIDUOWI LUWID

80 (50) Character 22 WTIDACCT Accounting token

102 (66) Character 20 WTIDCHL Channel name

122 (7A) Character 48 WTIDCHLC Channel connection name

170 (AA) Character 16 WTIDCTXT Current context token

186 (BA) Character 8 WTIDTRAN CCBUSER MVS user ID

194 (C2) Character 2 * Reserved

196 (C4) ADDRESS 4 WTIDCFW
D

Reserved

200 (C8) ADDRESS 4 WTIDCBW
D

Reserved

204 (CC
)

ADDRESS 4 WTIDWTAS Reserved

208 (D0) Character 0 * Reserved

Cross reference
Name Hex

Offset
WTASID 8

WTID 0

WTIDACCT 50

WTIDATYP 8

WTIDCBWD C8

WTIDCCN C

WTIDCFWD C4

WTIDCHL 66

Name Hex
Offset

WTIDCHLC 7A

WTIDCORI 2C

WTIDCTXT AA

WTIDEYEC 4

WTIDLEN 2

WTIDNID 1C

WTIDOPID 14

WTIDSHEX 0

Name Hex
Offset

WTIDTRAN BA

WTIDUOWI 38

WTIDWTAS CC

96

How to interpret the correlator field

Table 18. Structure of the WTIDCORI for a CICS system

Offsets

Dec Hex Type Len Name
44 (2C) Hex 4 WTICTNO CICS thread number.

48 (30) Character 4 WTIDCTRN CICS transaction name.

52 (34) Packed
Decimal

4 WTIDCTSK CICS task number.

Table 19. Structure of WTIDCORI for an IMS system

Offsets

Dec Hex Type Len Name
44 (2C) Character 4 WTIDPST IMS partition specification table (PST) region identifier.

48 (30) Character 8 WTIDPSB IMS program specification block (PSB) name.

Meaning of the channel names
The channel name in the WTID has the following meaning. For a sender channel from queue manager V521 to
V52A the following fields are set with examples of their contents

Field name Meaning Example

For queue manager V521 the sender channel has the following fields set:

WTIDCCN The job name V521CHIN

WTIDCHL The channel name V521.V52A

WTIDCHLC This is defined in the CONNAME of the
channel

WINMVS2B(2162)

For the queue manager V52A the receiver channel has the following fields set:

WTIDCCN The job name V52ACHIN

WTIDCHL The channel name V521.V52A

WTIDCHLC Where the channel came from 9.20.101.14

97

Structure of the MQSeries SMF header QHWS
Table 20. Structure of the Common MQSeries SMF header record QWHS

Offsets

Dec Hex Type Len Name
0 (0) Structure 128 QWHS

0 (0) 6 Reserved.

6 (6) Character 1 QWHSNSDA Number of self defining sections in the SMF records.

7 (7) 5 Reserved.

12 (0C) Character 4 QWHSSSID Subsystem name.

16 (10) 24 Reserved.

40 (28) Character 8 QWHCAID User ID associated with the OS/390 job.

48 (30) Character 12 QWHCCV Thread cross reference (see Thread cross reference data on page 18)

60 (3C) Character 8 QWHCCN Connection name.

68 (44) 8 Reserved.

76 (4C) Character 8 QWHCOPID User ID associated with the transaction.

84 (54) Signed 4 QWHCATYP Type of connecting system (1=CICS, 2=Batch or TSO, 3=IMS control region,
4=IMS MPP or BMP, 5=Command server, 6=Channel initiator, 7=RRS Batch).

88 (58) Character 22 QWHCTOK
N

Accounting token set to the OS/390 accounting information for the user

110 (6E) Character 16 QWHCNID Network identifier

126 (7E) 2 Reserved.

98

Appendix C. Bibliography
This section describes the IBM documentation referred to in the document.

w MQSeries for OS/390 System Setup Guide SC34-5651
w MQSeries for OS/390 System Administration Guide SC34-5652
w MQSeries for OS/390 Concepts and planning Guide GC34-5650
w MVS System Management Facilities(SMF) GC28-1783
w Performance Reporter R5 Language Guide and Reference SH19-6817-05
w Performance Reporter for OS/390 Release 5 Administration Guide SH19-6816-05
w OS/390 MVS Initialization and Tuning Reference SC28-1752
w DFSORT R13 ICETOOL Mini-User Guide GC26-7140-01

99

Sending your comments to IBM
MP1B:MQSeries for OS/390 V5.3.1
Interpreting accounting and statistics data Version 1.4 MQSeries for OS/390 V5.3.1.

If you especially like or dislike anything about this book, please use one of the methods listed below to send your
comments to IBM.
Feel free to comment on what you regard as specific errors or omissions, and on the accuracy, organization,
subject matter, or completeness of this book. Please limit your comments to the information in this book and the
way in which the information is presented.
To request additional publications, or to ask questions or make comments about the functions of IBM products
or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate, without incurring any obligation to you.
You can send your comments to IBM in any of the following ways:

w By mail, to
IBM United Kingdom Laboratories
AIM WW Technical Sales (MP102)
Hursley Park
Hursley
Hampshire, SO21 2JN, England

w By fax:
z From outside the U.K., after your international access code use 44 1962 841409
z From within the U.K., use 01962 841409
w Electronically, use the appropriate network ID:
z IBMLink: IBMGB(AIMPACS)
z Internet: aimpacs@uk.ibm.com
Whichever you use, ensure that you include:

w The publication number and title
w The page number or topic to which your comment applies
w Your name and address/telephone number/fax number/network ID.

100

Readers' Comments
MP1B:mMQSeries for OS/390 V5.3.1
Interpreting accounting and statistics data Version 1.3 MQSeries for OS/390 V5.

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want to express
your opinion about it (such as organization, subject matter, appearance) or make suggestions for improvement,
this is the form to use.
To request additional publications, or to ask questions or make comments about the functions of IBM products
or systems, you should talk to your IBM representative or to your IBM authorized remarketer. This form is
provided for comments about the information in this manual and the way it is presented.
When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.
Be sure to print your name and address below if you would like a reply.

Name
Address

Company or Organization

Telephone
Email
MP1B:MQSeries for OS/390 V5
Interpreting accounting and statistics data Version 1.3 MQSeries for OS/390 V5.

101

