
Documentation for the OEMPUT program

Documentation for the OEMPUT program
Colin Paice
April 2017
Document Number OEMPUT Version: 1.2

Property of IBM

Take Note!

Before using this User’s Guide and the product it supports, be sure to read the general informa-
tion under "Notices".

This edition works with all supported versions of "IBM MQ for z/OS" and "WebSphere MQ for
z/OS"
Sending your comments to IBM You can send your comments electronically to idrcf@uk.ibm.com.
When you send information to IBM, you grant IBM a non-exclusive right to use or distribute
the information in any way it believes appropriate without incurring any obligation to you. You
may continue to use the information that you supply.
©Copyright International Business Machines Corporation 2001, 2017. All rights reserved. Note
to US 77 Government Users -- Documentation related to restricted rights – Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.
Document generated Friday 16th June, 2017 at 13:38

Fourth edition, April 2017
This edition name applies to Documentation for the OEMPUT program Version 1.2 and to all
subsequent versions and modifications until otherwise indicated.
Notices
Trademarks and service marks
The following terms, used in this publication, are trademarks of the IBM Corporation in the
United States or other countries or both:

1. IBM

2. WebSphere MQ

3. DB2

4. z/OS

1

OEMPUT
OEMPUT is an MQ application program which may prove useful when evaluating the costs and
throughput of MQ on z/OS.

At the simplest level OEMPUT can do the following

1. Put messages to a queue

2. Get messages from a queue

3. Put messages to a queue and get messages from the same or a different(a reply-to-queue)
queue

Message properties can be specified by parameters passed to the program. These include

1. Message persistence - Persistent or Non Persistent

2. Message size

3. Message attributes, such as the value to be used in the MQMD.ApplIdentityData

4. The number of messages to process before a commit is issued

At the end of a run message rate, elapsed time and CPU usage information is printed.
The program reports Workload Manager Information about the selected jobs.

Changes
In 1.2 of the program

1. -jms options puts a header on the front of the message suitable for JMS programs

2. -IMStransaction you can specify the transaction name for the IMS bridge data

Program syntax
Below is the a typical use of the OEMPUT program.

OEMPUT -mMQPA -qrequestQ -rreplyQ -n1000
If SYSIN dataset is specified then the parameters are read from the file, before the parameters

in the JCL PARM statement. This allows you to have common definitions in a file, and override
them at run time. Data following a * in the SYSIN file is treated as a comment up to the end
of the input line.

Note that there is no space between an option and its associated value, for example
OEMPUT -mMQM1 -qREQ_Q1 -n1000 -s4096

Option descriptions
The options can be specified in upper case or lower case, so -APPLID, -applid, -Applid are all
the same.

If a parameter is specified multiple times, the last one is used.

-applid Specify the name of the applid to be put into the MQMD.ApplIdentityData.

-browse Use Browse instead of destructive get.

-c Commit every msgs_in_loop messages. Default is no syncpoint. See
option -l below.

-cb Backout the request

-ccsid<nnn> Set nnn as the MQMD.CodedCharSetId to use for the MQPUT of the
request message.

2

-clear Drain (clear) the reply before starting test. Be careful using this with
multiple jobs getting messages from this queue, in case required replies
are deleted.

-cgcpc Commit processing. After initial load of messages do

• Get Msgs_in_loop msgs
• COMMIT
• put Msgs_in_loop msgs
• COMMIT

This emulates a typical client program. Compare this with option
-cgpc below.

-cgpc Commit processing. After initial put of messages do

• get Msgs_in_loop messages
• put Msgs_in_loop messages
• COMMIT

This is typical of a server application. Compare this with option -
cgcpc above. -cgpc will usually give a higher throughput as there are
less commits.

-convert Issue an MQGET with convert.

-coop Use cooperative Browse

-cp<nnn> Same as option -ccsid. Set nnn as the MQMD.CodedCharSetId to use
for the MQPUT of the request message.

-crlf Each line in the input message file is used in sequence as message data.
If end-of-file is reached, data is read from the top of the file again. This
option is only applicable if used with option -file.

-crtmh Issue MQCRTMH at the start of the program and MQDLTMH at the
end of the program. See -mp to specify or display a message property.

-crtmh1 Same as -crtmh. Issue MQCRTMH at the start of the program and
MQDLTMH at the end of the program. See -mp to specify or display
a message property so issued once(1) per job

-crtmhn Issue MQCRTMH before every MQPUT or MQGET and MQDLTMH
after the call. So issued many times in the job. See -mp to specify or
display a message property.

-d<description> The <description> is written into the summary file. This is used to
write the output from multiple runs into a summary file.

-dump Causes the qmgr dump to take an SDUMP after the last close request,
just before exiting.

-expiry<Value> Set the expiry time to Value milliseconds.

-file<msg_file> Read message data from the indicated file and put into the message
body. If msg_file is a ddname it must be preceded by DD:, for exam-
ple: -fileDD:MSGIN

-fmt<format> Sets an MQMD.Format to format, padded to the right with blanks
(or sets format to eight blanks if just -fmt is specified.) The default
format is MQFMT_STRING (= ’MQSTR ’)

-group Process all the messages in the same group.

3

-gm Use same MQMD.MsgId for all MQPUTs in the loop, and MQGET
replies by this MsgId

-gc Use same MQMD.MsgId for all MQPUTs in loop. The get uses
MQGET.CorrelId = MQPUT.MsgId for the replies. This can be used
if the reply message from a server has put the message id into the
Correlid field.

-IMS<value> for messages going to the IMS bridge and reading the
IMS Bridge data from a file, replace the transaction with value.

-j<jobname> Specify additional address spaces for which CPU usage is to be recorded.
Multiple -j options may be specified. A wildcard ’*’ may be added to
the end of jobname to match multiple address spaces.

-jms This creates a JMS header with the following format

<jms>
<Dst>queue://requestQueue</Dst>
<Rto>queue://ReplytoQueue</Rto>
<Tms>timeStamp</Tms>
<Cid>TimeStamp</Cid>
<Dlv>persistence</Dlv>
</jms>

-l<msgs_in_loop> Number of messages per MQPUT and MQGET batch. E.g. -l10
means MQPUT 10 msgs, then MQGET 10 replies, then repeat. De-
fault is 1 msg per batch.

-lr<nnn> Where nnn is the expected Length Received. If nnn is not specified
the put length is used. If the received length is not what was expected
the received message is printed and the program returns with return
code 1.

-m<qmgr> Queue manager name. This option is mandatory.

-mpx=y For each MQPUT sets message property x to value y, where x and y
are strings, for example -mpcolour=red. For MQGETs it inquires on
each message properties.

This sets option -crtmh.

-n<no_of_msgs> Total number of request messages to put. A value of -1 will result in
an endless put/get loop. Default is to put 1 message.

-nl Change new line (x’15’) to blank. This is useful when processing USS
files.

-np use non persistent messages. See option -p below

-o<model_queue> Use named model queue for MQOPEN of request queue.

-openclose open and close the queue for every message processed. This can be
used to simulate the behaviour of a short lived CICS transaction.

-p Use persistent messages. The default is non-persistent.

-ph Prints the headers for the summary file to the summary file.

-plnnn Preload the queue with the specified number of messages, followed by
a commit, then put and get. This is to allow you to keep the server
busy with work.

4

-pm< print_size,
print_freq>

Print MQMD and message buffer. print_size is no. of bytes to print.
print_freq is how often to print. If just -pm is specified, this will print
all message data and every message.

-putapplname Use this value in the put application.

-putwait<value> wait for <value> hundredths of a second between puts. So -putwait10
will wait for 0.1 of a second between puts.

-put1 Use put1 instead of open put put ... close

-q<requestQ> Request queue name, i.e. the queue to which messages are put (MQPUT).
This option is mandatory. At least one of -q and -r must be specified.
If the requestQ starts with a / then the data following the / is used
as a topic name.

-r<replyQ> Reply-to-queue from which replies will be retrieved (MQGET). If the
-r option is omitted, MQGETs will not be issued. If -r is used without
a replyQ name, the reply to queue is the same as the request queue,
so the puts and gets use the same queue.

At least one of -q and -r must be specified. If you want to specify a
reply queue, but do not want to get messages from the queue then
specify a wait time of 0 as in -w0.

-retain sets mqpmo.Options |= MQPMO_RETAIN.

-remqm<value> sets the remote queue manager name to value.

-rfh2 Create an rfh2, or treat the input as rfh2.

-report<value>

rrs Use RRS as the coordinator Value is a hexadecimal value which is
converted to internal format and put into the report field.

-s<msg_size> Size of message (excluding the MQMD header) to put to the request
queue. Omit -s (or use -s0) in combination with option -file to have
message size determined by the data read from the input file. The
default message size is 1024 bytes. You can specify nnn | -nnnK |
-nnnM.

-sc<file> Set MQMD.CorrelId from value in the file on MQPUT calls. Default
MQCI_NONE. Prefix file with DD: for a ddname.

-sf<value> Write a summary of the transaction to the Summary File(SF). If
dd:ddname is not specified it defaults to stderr.

-sm file Set MQMD.MsgId from value in the file on MQPUT calls. Prefix
file with DD: for a ddname. The default MQMD.MsgId value is
MQMI_NONE

-sr<reply size> Size of reply buffer. The default is to get a 100MB buffer. You might
need to change this if you are using products like AMS which intercept
MQI requests. You can specify nnn | -nnnK | -nnnM.

-ss.. selection string Specify a selectionString (which allows you to select a message by
message properties see -mp) Use underscore _instead of blanks in the
string. For example -ss_COLOUR_= _’RED’

-subtopic/string Issue MQSUB using sd.ObjectName of topic, and sd.ObjectString of
string

5

-t Time each MQPUT and MQGET call and report statistics

-tm<n> Time to run the test for in minutes.

-ts<tn> Time to run the test for in seconds.

-tydatagram Sets msgType = MQMT_REPORT

-tyrequest Sets msgType = MQMT_REQUEST .

-tyreply Sets msgType = MQMT_REPLY

-tyreport -tyreport Sets msgType = MQMT_REPORT

-ty<value> sets the value of msgType to be

1. 1 MQMT_REQUEST

2. 2 MQMT_REPLY

3. 4 MQMT_DATAGRAM

4. 8 MQMT_REPORT

-v For use when debugging. Pauses before each MQPUT and after each
MQGET, using WTOR.

-w<wait_time> Set the MQGET MQMD.WaitInterval to wait_time seconds. A value
of 0 (or <0) means don’t get a reply message at all (but still set the
MQMD.ReplyToQ from -r<replyQ>). Default wait time is 60 seconds

-x Set MQMD.Format based on message data contents (XML, RFH and
RFH2 data currently) supported.

JCL required
1. Parameters will be read from SYSIN if specified. This is a fixed block file with record

length of 80 bytes.

2. The results are put to the file SYSPRINT. This is typically SYSOUT=*

3. If SUMMARY is specified then a one line summary is written to this file. The option
-ph can be used to display the column headings in the file.

4. If -fileDD:ddname option is used, then the ddname is require which points to the data
set. This can be a sequential file, a member of a PDS, or an HFS file.

CPUIO option
This option gives a measure of your system in terms of CPU constraint and I/O response time.

The program loops for a short time (approx 1 millisecond) and measures the CPU time used,
and elapsed time taken. It then loops for a longer period, (about 1 second on the 2064 used at
Hursley). If you are constrained for CPU the elapsed time is likely to be much longer than the
CPU used.

After the CPU has been measured, 100 records are written to a data set, to produced a
measure of the I/O response time. The records written are 4KB long, which is typically the size
of a record written by DB2 and MQ in a lightly loaded system.

The first I/O is always reported separately as this is often a long time
The I/O statistics include average, maximum and minimum response times, and which record

had the maximum write response time.
Below is some output from a test system at IBM Hursley

6

CPU loop short et = 983 uS CPU Time 975 uS 99 %busy
CPU loop long et = 979380 uS CPU Time 962603 uS 98 %busy
CPU Time 26 uS per write-and-flush
I/O average elapsed time 1001 uS per write-and-flush
I/O min Elapsed time 641 uS
I/O maximum elapsed time 1044 uS, record number 3
I/O first record took 28743 uS

The %busy is calculated from cpu used /elapsed time and a value in the high 90’s shows an
unconstrained system

Examples of using OEMPUT
Example 1:
An application runs on a remote system, AIX1. AIX1 is connected to the local queue manager
QM01 on the z/OS system, by an MQ channel pair.

In order to test the correct operation of the system, OEMPUT might be run on ZOS1 using
the following JCL:

//DBTEST JOB CLASS=A,MSGCLASS=H
// EXEC PGM=OEMPUT
// PARM=(’-mQM01 -qAIXQ -rREPLY -fileDD:MSGIN -n1 -pm -w120 ’)
//STEPLIB DD DISP=SHR,DSN=MQM.SCSQLOAD
// DD DISP=SHR,DSN=PAICE.xxx.LOAD
//SYSPRINT DD SYSOUT=*
//MSGIN DD DISP=SHR,DSN=WMQ.MSG.DATA

1. OEMPUT will MQPUT one request message to the AIX queue (-q option), which is a
remote queue pointing to the appropriate queue on AIX1,

2. wait 120 (-w option) seconds for a reply message to appear on queue REPLY(-r option).

3. The message data for the request is read from the input file specified by ddname MSGIN(-
file option).

4. The MQMD and message data of the request message and of the reply message received
will be printed in SYSOUT(-pm option).

Once it has been established that the system functions correctly, the transaction throughput
rate might be measured using OEMPUT as follows:

//DBTEST JOB CLASS=A,MSGCLASS=H
// EXEC PGM=OEMPUT
// PARM=(’-mQM01 -qAIXQ -rREPLY -fileDD:MSGIN -ts30 -w120 ’)
//STEPLIB DD DISP=SHR,DSN=MQM.SCSQLOAD
// DD DISP=SHR,DSN=PAICE.xxxx.LOAD
//SYSPRINT DD SYSOUT=*
//MSGIN DD DISP=SHR,DSN=WMQ.MSG.DATA

Here OEMPUT will run for 30 seconds (-ts option), without printing any message data (the
-pm option is not specified). The message rate achieved will be reported in SYSOUT.

7

Example output

Workload Manager data
Data is reported from some of the control blocks relating to Workload Manager. These give
an indication of any delays. If there are no samples available then no output is displayed

Note. You should use standard z/OS facilies to give a true picture.
The information is extracted from the WLM control blocks at the start of the job,
Example output

Workload manager data
Starting loop at 2015-08-11 12:15:12.197100
Workload manager data

Samples %idle %unknown(MQ?) %using CPU %doing I/O %Wait for CPU
MQPACHIN.00A6 20 100 0 0 0 0
MQPAMSTR.00A5 5 0 0 60 0 0

CSA paging 40

Where

Samples is the number of samples, the PAICEPUT job was short lived so
there was only one WLM sample available. The Queue manager
MQ03MSTR had been running for longer, and so there were many
more samples. WLM resets these statistics periodically and so the
report may be incomplete.

%idle is the percentage of the number of samples that the job was idle.

%unknown(MQ?) is the percentage of the number of samples when the job is in an
unknown wait - this is often because the job is in an MQGET with
wait.

%using CPU is the percentage of the number of samples that the job was using
CPU

%doing I/O is the percentage of the number of samples when the job was doing
I/O

%Wait for CPU is the percentage of the number of samples when the job would run if
it could, but was waiting to be dispatched due to higher priority work.

Any other reasons for delay are printed at the end of the line. See the WLM manuals for
more information. For specific fields http://publibz.boulder.ibm.com/epubs/pdf/iea2v260.pdf.
See z/OS Diagnosis reference GA22-7588-06 and search for Hyperspace Delay.

Interpretation of the CPU figures

The CPU used for the application is a true measure of the amount of CPU used. The CPU
used figures for other address spaces is valid only if the OEMPUT application is the only
application using the subsystems. The CPU used is obtained by examining z/OS control
blocks, and extracting the CPU time used before and after the measurement. This is thus the
total time used, not the time used by this application, so if there are other concurrent users, the
figures for the subsystems will include CPU costs for those users as well.

The % CPU figures on the right hand side of the output is the total CPU used by that
address space divided by the duration. The percentages are not the percentage of where the
CPU time is spent out of all the address spaces.

The figures in the ENCLAVE column are when work is done for the address space by another
address space in the enclave, for example when running a DB2 stored procedure, the CPU used
is recorded against the Enclave.

8

Example
Using the input parameters

parm: -MMQPA -TM1 -RREPLY -QREPLY -S2K -CGCPC -P
the output produced is given below

Total Transactions : 607350
Elapsed Time : 60.004 seconds
Application CPU Time: 29.453 seconds (49.1%)
Transaction Rate : 10121.894 trans/sec

Round trip per msg : 98 microseconds
Avg App CPU per msg : 48 microseconds

Jobname.ASID TCB(uS) SRB(uS) Tot(uS) (%)

/tran /tran /tran
------------- -------- -------- -------- ----
MQPAMSTR.00A5 00000000 00000003 00000004 4.2
MQPACHIN.00A6 00000000 00000000 00000000 0.0
Total CPUmicrosecs/tran 4
Grand Total CPUmicrosecs/msg 52

Ending loop at 2015-08-11 12:56:57.347588
OEMPUT Normal Exit: End of program
Exiting at 2015-08-11 12:56:57.357426

The data in bold font is explained below.

1. The Transaction rate is how many messages were processed per second.

2. The Round trip per msg is the average time it took to process a message. Note that
Transaction rate * Round trip per msg = 1.

3. The Avg App CPU per msg is the amount of CPU used by the OEMPUT program when
putting and getting messages

4. The figures for VCP0BRK6 show the average CPU used by this address space, TCB time
475 micro seconds, SRB 2 microseconds, total 478 microseconds. The small difference is
due to rounding,

5. The 77.9% in the VCP0BRK6 line is the percentage amount of CPU time used during the
time period. It is possible for the CPU time used/elapsed time to be greater than 100% if
there are more than one flow, or instance of a flow, within an execution group, and there
is more than one CPU in the z/OS image.

6. The VCP0BRK* is the sum of the figures for the VCP0BRK jobs

-End of document-

9

	Documentation for the OEMPUT program
	
	OEMPUT
	Changes
	Program syntax
	Option descriptions
	JCL required
	CPUIO option
	Examples of using OEMPUT

	Example output
	Workload Manager data
	Interpretation of the CPU figures

	Example

