
WebSphere MQ for z/OS V7.0 

Performance Report 
 
 
 

Version 1.0 

 

August 2008 

 

Tony Sharkey 

 

 

 

 

 

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 2 of 49  

 

Take Note! 

 

 

Before using this report please read the general information under “Notices” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First Edition, August 2008 

 

This edition applies to Version 7.0 of WebSphere MQ for z/OS. 

 

© Copyright International Business Machines Corporation 2008. All rights 

reserved. Note to U.S. Government Users – Documentation related to restricted rights 

– Use, duplication or disclosure is subject to restrictions set forth in GSA ADP 

Schedule contract with IBM Corp.



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 3 of 49  

 

Notices 
 
This report is intended for Architects, Systems Programmers, Analysts and 

Programmers wanting to understand the performance characteristics of WebSphere 

MQ for z/OS V7.0. The information is not intended as the specification of any 

programming interfaces that are provided by WebSphere MQ. Full descriptions of the 

WebSphere MQ facilities are available in the product publications. It is assumed that 

the reader is familiar with the concepts and operation of WebSphere MQ. 

 

References in this report to IBM products or programs do not imply that IBM intends 

to make these available in all countries in which IBM operates. 

 

Information contained in this report has not been submitted to any formal IBM test 

and is distributed “as is”. The use of this information and the implementation of any 

of the techniques is the responsibility of the customer. Much depends on the ability of 

the customer to evaluate these data and project the results to their operational 

environment. 

 

The performance data contained in this report was measured in a controlled 

environment and results obtained in other environments may vary significantly. 

 

Trademarks and service marks 
The following terms, used in this publication, are trademarks or registered trademarks 

of the IBM Corporation in the United States or other countries or both: 

 

 Enterprise Storage Server 

 IBM 

 SupportPac 

 WebSphere 

 WebSphere MQ 

z/OS 

zSeries 

 

 

Other company, product and service names may be trademarks or service marks of 

others. 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 4 of 49  

 

Summary of Amendments 
 

Date Changes 

4 August 2008 Initial version 

 

 

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 5 of 49  

 

Table of Contents 
 

PERFORMANCE HIGHLIGHTS – WEBSPHERE MQ FOR Z/OS V7.0 ..........................................6 

EXISTING FUNCTION.............................................................................................................................6 
General Statement of Regression....................................................................................................6 
Above Bar Usage ............................................................................................................................6 
ECSA Usage....................................................................................................................................7 
Memory Allocation..........................................................................................................................7 
Channel Initiator Enhancements ....................................................................................................7 

NEW FUNCTION ....................................................................................................................................8 
Above the Bar usage in Pub/Sub.....................................................................................................8 
Administratively defined Topics......................................................................................................8 
Message Properties.........................................................................................................................9 
Subscriptions.................................................................................................................................10 
Publish ..........................................................................................................................................11 
Publish/Subscribe .........................................................................................................................13 
Wildcards ......................................................................................................................................15 
Server-Connection Attribute SHARECNV()..................................................................................16 
Asynchronous Put .........................................................................................................................16 
Read-Ahead DEFREADA(YES | NO)............................................................................................17 
Asynchronous Consume ................................................................................................................17 
Asynchronous Consume in a Client Pub/Sub Environment ..........................................................18 

PERFORMANCE DATA ....................................................................................................................19 

MEMORY ALLOCATION ......................................................................................................................19 
ADMINISTRATIVELY DEFINED TOPICS ................................................................................................20 
MESSAGE PROPERTIES........................................................................................................................20 

How many properties can be added to a message? ......................................................................20 
SUBSCRIPTIONS ..................................................................................................................................21 

How long will my queue manager take to restart? .......................................................................22 
Pageset usage with Durable Subscriptions...................................................................................23 
Above the Bar usage with Durable Subscriptions.........................................................................23 

PUBLISH .............................................................................................................................................24 
How does the cost of Put compare to Publish?.............................................................................24 
Do message properties affect the cost of publish?........................................................................25 

SUBSCRIBE .........................................................................................................................................26 
How much does an Application MQSUB cost?.............................................................................26 
Cost of MQSUB as subscriptions increase ...................................................................................27 

PUBLISH/SUBSCRIBE...........................................................................................................................28 
Publishing when subscribers specify message properties.............................................................28 
Publish/Subscribe on a Local Queue Manager.............................................................................29 
Client Publishers to Local Subscribers.........................................................................................33 
Local Publish to Client Subscribers..............................................................................................35 
Client Publish to Client Subscribers .............................................................................................35 

SERVER-CONNECTION ATTRIBUTE SHARECNV() ............................................................................38 
ASYNCHRONOUS PUT .........................................................................................................................39 

How much cheaper are asynchronous puts? ................................................................................40 
Shared conversations with asynchronous puts..............................................................................41 

READ-AHEAD DEFREADA(YES | NO).............................................................................................42 
Are Messages on a DEFREADA(YES) Queue cheaper to consume?............................................43 

SHARED CONVERSATIONS WITH READ-AHEAD...................................................................................43 
ASYNCHRONOUS CONSUME................................................................................................................45 
CPU COST CALCULATIONS ON OTHER ZSERIES SYSTEMS....................................................................48 

MEASUREMENT ENVIRONMENT AND METHODOLOGY .....................................................49 

HARDWARE AND SOFTWARE ..............................................................................................................49 
 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 6 of 49  

 

Performance Highlights – WebSphere MQ for z/OS v7.0 
This report focuses on performance changes since the previous version (V6.0) and on 

the performance of new function in this release. 

 

SupportPac MP16 “Capacity Planning and Tuning For WebSphere MQ for z/OS” will 

be updated to include WMQ Version 7.0 information. MP16 will continue to be the 

repository for ongoing advice and guidance learnt as systems increase in power and 

experience is gained. 

 

Existing Function 

General Statement of Regression 

CPU costs and throughput are not significantly different in version 7.0 for typical 

messaging workloads.  

 

In a request/reply model, the new scavenger process has proven beneficial with 

smaller messages – for example, putting and getting 2KB non-persistent messages 

saw an 2.5% increase in throughput and an 8% decrease in the cost of processing a 

message. 

 

Client queuing, where a client application is putting messages to a queue or getting 

messages from a queue sees an improvement in the processing cost per message.  

 

Client messaging, where a client application is putting messages to a queue, a server 

application is getting the message and putting a reply to a common reply queue, 

which is then retrieved by the client using the correlation-id also sees a noticeable 

reduction in the cost per message. 

 

Above Bar Usage 

Since z/OS V1.2, 64-bit virtual storage has been available within a single address 

space. This 64-bit storage is also known as “above the bar” storage. The “bar” refers 

to the 2 GB line that was the 31-bit virtual addressing limit. The introduction of z/OS 

V1.5 allowed for shared 64-bit virtual storage. 

 

WebSphere MQ V7.0 is the first MQ release on z/OS to begin to exploit this feature. 

 

In version 7.0, two areas of the queue manager have been changed to exploit the 64-

bit “above the bar” storage.  

• Intra-Group Queuing (IGQ) buffer. 

• Pub/sub related function. 

 

In WebSphere MQ Version 6.0, APAR PK45456 ensures that the 100MB buffer 

allocated for IGQ is only allocated provided the queue manager is part of a Queue 

Sharing Group.  

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 7 of 49  

 

Version 7.0 goes a step further, in that it only allocates the 100MB IGQ buffer if the 

queue manager is part of a QSG and then ensures that the storage is allocated above 

the bar, allowing the storage below the bar to be used for buffer pools, message 

handles etc. 

 

Above the bar usage in the Pub/Sub related function will be discussed in the section 

titled “Above the Bar usage in Pub/Sub” 

  

ECSA Usage 

The extended common storage area (“ECSA”) usage between WebSphere MQ for 

z/OS version 6.0 and version 7.0 has increased for an idle queue manager by 1.5MB.  

 

When running with 9,000 clients connected, the delta for the ECSA in the queue 

manager has also increased by 70 bytes for each client.  

Memory Allocation 

In version 6, each 4KB page in each bufferpool was separately allocated, whereas in 

version 7, the queue manager allocates each bufferpool in a single request. 

 

This has a number of effects: 

1 Queue manager restart time is reduced 

2 The queue managers’ real storage footprint is reduced, when long term storage 

protection is set on by the WLM “storage critical” option. 

 

Channel Initiator Enhancements 

The channel initiator now produces a message reporting the state of memory usage, 

similar to the queue managers CSQY220I message. 

 

This new message “CSQX004I” takes the form of: 
 

+CSQX004I @qmgr CSQXSPRM Channel initiator is using 29 MB 

of local storage, 1444 MB are free                                         

 

The message is logged at channel initiator start and then either every hour if the usage 

does not change or when the memory usage changes (up or down) by more than 2%. 

 

A second change to the channel initiator involves the use of buffer pools for each 

dispatcher task. These are not the same as the queue manager’s buffer pools. The 

channel initiator buffer pool functionality allow a varying size of buffer to be 

allocated depending on the size of the message that is being put or gotten and results 

in a buffer much closer to the true size of the message.  

 

Should the channel initiator use 80% of its available memory, it will attempt to 

release unused buffer pools. 

 

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 8 of 49  

 

New Function 

Above the Bar usage in Pub/Sub 

The new publish/subscribe code is written using 64-bit addressability. This means 

there is virtually no hard limit on the number of topics and subscriptions that can be 

defined to a queue manager.  

 

Not all object information used for publish/subscribe-type processing can be retained 

using only above the bar storage. For example, when a local queue is defined to a 

z/OS queue manager, a record is written to PAGESET(0). Similarly, when an 

administrative topic object is defined, a record is written to PAGESET(0) and there is 

also information stored above the bar. Upon queue manager restart, this above the bar 

data needs to be rebuilt from the persisted PAGESET(0) data. 

 

Administratively defined Topics  

Administratively defined topics only need to be defined when a topic tree or part of a 

topic tree needs to have specific non-default attributes. For example, in order to keep 

part of the topic tree closed to specific users, the topic node may be set to reject 

wildcard subscriptions. As such, it is not expected to have significant numbers of 

topic nodes defined administratively (e.g. via MQSC commands). The section titled 

“Administratively defined Topics” shows how defining topics can affect queue 

manager restart times. 

  

How much storage does an administratively-defined Topic use? 

A Topic object has the potential to be costly in terms of pageset usage, primarily 

because the topic string attribute “TOPICSTR” may be a maximum of 10KB in 

length. 

 

Topic String length PAGESET(0) usage 

(KB) 

 

Below the Bar usage 
1
 

 (KB) 

Short (50 bytes) 2 6.6 

Med (1800 bytes) 4 14 

Long (9500 bytes) 12 36 

 

This sizing means that for 10,000 topic objects that have been administratively 

defined with short topic strings,  

• PAGESET(0) usage will require 20MB (or 5000 pages).  

• On top of this, there will be additional memory costs below the bar of 66MB  

• In addition, 53MB above the bar storage will be used. 

Since the “above the bar” storage is not restricted in a practical sense, the 10,000 

topics with short topic strings will cost the queue manager 86MB of its available 

extended private storage. 

 

 

                                                 
1
 Excluding pageset usage. 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 9 of 49  

 

Message Properties 

When using the MQSETMP verb to add message properties to a message, the 

message data will grow accordingly.  

 

How much storage does a message property use? 

When a message is published with properties, the message on the queue will contain 

the message properties even if the subscriber has requested PSPROP(NONE) and the 

target queue has PROPCTL(NONE). 

 

Only when the message is actually retrieved from the queue will the message 

properties be formatted into the subscribers required format. 

 

Do message properties affect the size of the message being got? 

When a message is put with properties attached, the message is held on the queue in 

an internal format such that the message is larger than just the message data plus the 

MQ headers. This also means that the setting of the PSPROP attribute on a 

subscription does not affect the size of the message held on the queue. 

 

When attempting to get a message with properties, there are several different cases to 

be aware of: 

1. Getter application uses MQCRTMH to create a message handle which can then be 

used to set, inquire or delete the properties. The MQGET will return a message the 

same size as the original putter application message buffer. 

2. Subscription has PSPROP(NONE) and target queue has PROPCTL(NONE). In 

this case there will be no properties associated with the message on the get, so the 

getter application will receive a message buffer of the same size as the putter 

applications’ message. 

3. Getter application gets the message from the queue, where the properties are still 

embedded in the message buffer. This will require additional parsing to get to the 

actual message data. In this case, different PSPROP values on the subscription 

will change the size of the message buffer returned to the getting application. 

 

To explain scenario 3 further, a topic “RAINBOW” has been defined with 5 

subscribers – the first four having different PSPROP options – NONE, MSGPROP, 

RFH2 or COMPAT. The fifth subscription has PSPROP(NONE) and the destination 

queue also has PROPCTL(NONE), e.g. 

 
DEF TOPIC(RAINBOW) TOPICSTR('/RAINBOW1') DURSUB(YES) REPLACE            

 

DEF SUB(PS1) TOPICOBJ(RAINBOW) DEST(LQ1) PSPROP(NONE)  

DEF SUB(PS2) TOPICOBJ(RAINBOW) DEST(LQ2) PSPROP(MSGPROP)  

DEF SUB(PS3) TOPICOBJ(RAINBOW) DEST(LQ3) PSPROP(RFH2)  

DEF SUB(PS4) TOPICOBJ(RAINBOW) DEST(LQ4) PSPROP(COMPAT)  

DEF SUB(PS5) TOPICOBJ(RAINBOW) DEST(LQ5) PSPROP(NONE)  

 

DEF QL(LQ1) DEFSOPT(SHARED) SHARE REPLACE STGCLASS(REMOTE)         

DEF QL(LQ2) DEFSOPT(SHARED) SHARE REPLACE STGCLASS(REMOTE)         

DEF QL(LQ3) DEFSOPT(SHARED) SHARE REPLACE STGCLASS(REMOTE)         

DEF QL(LQ4) DEFSOPT(SHARED) SHARE REPLACE STGCLASS(REMOTE)         

DEF QL(LQ5) DEFSOPT(SHARED) SHARE REPLACE STGCLASS(REMOTE) +       

  PROPCTL(NONE)   



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 10 of 49  

 

                                                      

DEF QA(RAINBOW) TARGET(RAINBOW1) TARGTYPE(TOPIC)                         

 

If a 100 byte message were to be published to the topic “RAINBOW” with a property 

name of “COLOUR” and a property value of “BLUE”, the 5 messages that gotten 

from the queues would be returned to the application with different buffer lengths. 

The following table shows the expected message data sizes. 

 

PSPROP value on subscription Message Buffer – required length 

(includes 100 bytes for actual message) 

NONE 172 

MSGPROP 240 

RFH2 384 

COMPAT 294 

NONE  

Queue is defined with 

PROPCTL(NONE) 

100 

 

How many properties can be added to a message? 

WebSphere MQ Version 7.0 has been tested to support in excess of 32,000 properties 

on a single message, but from a practical point of view, it is expected that a message 

will contain no more than 10 properties in a single folder.  

The chart in section “How many properties can be added to a message?” shows the 

increasing cost as more properties are added to a message using the MQSETMP verb.  
 

Subscriptions 

How big is a subscription? 

A subscription that has been created via an application program can specify all of the 

following MQSD attributes with lengths of up to 10KB:- SubName, SubUserData, 

SelectionString and ResObjectString. This means there is potential for subscriptions 

to be large compared to other MQ objects. From an administration perspective, a 

subscription name of 10KB is not going to be ideal to manage, so reaching the upper 

limit length-wise should be rare. 

 

A subscription with a SubName length of 30 bytes will use 830 bytes of pageset 

storage once the subscription has been consolidated. Each of these subscriptions 

additionally used 4KB of “above the bar” storage. 

 

For the most simple subscription case, the consolidated subscription length is 770 

bytes plus the length of the ObjectString (or topic string) being subscribed to plus the 

length of the subscription name. 

 

Durable subscriptions are stored on messages on a queue named 

“SYSTEM.DURABLE.SUBSCRIBER.QUEUE”. 

 

How long will my queue manager take to restart? 

It is envisaged that there will more subscriptions to topics than topic admin nodes by 

an order of magnitude. As such, it is paramount that a queue manager restart time is 

not significantly affected by large numbers of subscriptions. One way this restart time 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 11 of 49  

 

has been reduced is by consolidating durable subscriptions so that there is less 

overhead when reading the queue containing durable subscriptions upon queue 

manager restart. 

 

Non-durable subscriptions that exist on queue manager shutdown will not be present 

upon queue manager restart. As such, all measurements relating to subscriptions in 

this section are using durable subscriptions only. 

 

The subsection “How long will my queue manager take to restart?” in section 

“Subscriptions” show the CPU cost of queue manager restart with increasing numbers 

of durable subscriptions. 

 

When does consolidation occur? 

To reduce the queue manager restart time when there are significant numbers of 

durable subscribers, a consolidation process has been introduced. This process can be 

seen to be running in the queue managers’ log by the following messages: 

 
CSQM075I @qmgr CSQMDURR Consolidation of durable subscribers 

started  

CSQM076I @qmgr CSQMDURR Consolidation of durable subscribers 

finished 

 

The consolidation process is triggered when there are 100 durable subscriptions are 

added to the “SYSTEM.DURABLE.SUBSCRIBER.QUEUE”. The process then 

attempts to consolidate these subscriptions into as few 50KB messages as possible. 

 

The running of the consolidation process does not preclude further subscriptions 

taking place. 

  

What affects the maximum number of subscriptions for a queue manager? 

When durable subscriptions are made, a message is written to the subscription queue 

(“SYSTEM.DURABLE.SUBSCRIBER.QUEUE”). As previously mentioned, when 

100 subscriptions have been added, these subscriptions are consolidated into fewer, 

but longer, messages on the same queue.  

 

By default, the subscription queue is defined to storage class “SYSLNGLV” which in 

turn is defined to PAGESET(2). As more durable subscriptions are defined, the 

pageset usage increases. An example of this usage can be seen in the section “Pageset 

usage with Durable Subscriptions”. In addition, the subscription information is held in 

“above the bar” storage. An example of this usage can be seen in the section entitled 

“Above the Bar usage with Durable Subscriptions”. 

 

Publish 

Is publish more expensive than put? 

Compare a put to queue with the simplest case of publish to a topic with a single 

durable subscriber, where the subscriber is not in an MQGET-with-wait. 

 

This is a simple scenario to set up and can be used with a legacy application to exploit 

the new publish/subscribe capability e.g. 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 12 of 49  

 

 
* Define a local queue 

DEF QL(TARGETQ) DEFSOPT(SHARED) SHARE PROPCTL(NONE) 

* Define a topic  

DEF TOPIC(ATOPIC) TOPICSTR(‘/ATOPIC’) DURSUB(YES) 

* Define a subscription to the topic 

DEF SUB(TO_ATOPIC) TOPICSTR(‘/ATOPIC’) DEST(TARGETQ) +  

  PSPROP(NONE) 

* Define an alias to the topic that points to the target queue 

DEF QA(TOPICALIAS) TARGET(TARGETQ) 

 

This configuration allows the application to either put directly to the local queue 

“TARGETQ” or to put to the alias queue “TOPICALIAS”, which will use the pub/sub 

engine to route the message to “TARGETQ”. 

 

The path length for the pub/sub route is longer and as such will be more expensive but 

as more subscribers are added, the cost for the publish decreases. 

 

In the current implementation MQ on z/OS does not cache the handles to the 

subscribers. This means that for each put to “TOPICALIAS”, the pub/sub engine has 

to look up all subscribers to the topic and for each subscriber has to open, put to and 

close the queue. 

 

Do message properties affect the cost of publish to topic? 

Adding properties to a message using the MQSETMP verb increases the size of the 

message put to a queue. As the message size increases, the size of data written to the 

queue also increases, which in turn means a longer time to write the message to the 

queue.  

 

For up to 32 properties, the cost of publishing a message with properties is not 

noticeably more expensive than publishing a message without any properties. As the 

number of properties increases, the CPU cost for SRB used for publishing increases. 

 

Accounting for the cost of a Publish 

When a message is published to a topic, either directly or indirectly via an “alias-to-

topic” queue, the queue manager needs to ensure that the message is delivered to all 

the subscribers or none of the subscribers. To do this, MQ schedules a preemptible 

SRB
2
.  

 

MQ schedules the SRB to run under the publishers address space. This means that for 

a topic with many subscribers, the MQPUT can take a long time to respond as the 

SRB will attempt to put a message to all of the target queues before returning. 

                                                 
2
 An SRB is a “Service Request Block” that represents a dispatchable unit used to perform a particular 

function in a specified address space.  



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 13 of 49  

 

 
 

The cost of the work performed by this SRB is charged back to the client address 

space and accounted depending on the publishing environment: 

1. Batch - The publisher application is charged with the costs incurred by the SRB 

and as such the CPU cost will be included in the step and job totals as reported by 

the IEF374I message, rather than the queue managers’ address space. 

2. CICS – The CICS address space will be charged for the work the SRB performs 

rather than the individual transaction. CPU costs incurred by this SRB will be 

recorded in the MQ SMF (type 116) records.  

3. Client – The channel initiator will incur the cost of the SRB when a client 

application is publishing to a topic. 

 

Publish/Subscribe 

In a Publish/Subscribe environment there are two components – publish and 

subscribe. The performance of publish to an administratively defined subscription has 

been described earlier in this document. This section will introduce subscription via 

an application and publishing to that subscription and the cost of getting the published 

message. 

 

How much does a Subscribe cost from an application program? 

When using an application to make a subscription, a decision needs to be made as to 

whether the subscription is durable or non-durable and whether to let the queue 

manager manage the destination of published messages. 

 

All of these options have benefits so it is important to make that decision for each 

individual case. 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 14 of 49  

 

 

Some questions that may influence a decision are:-  

• Do the subscriptions need to be retained over a queue manager restart? 

• Is the subscriber application going to disconnect and re-connect at a later point 

and still require the messages that were published whilst it was not connected? 

• If using a client to subscribe, is the network unreliable, prone to outages etc? 

• Is every published message important to the subscriber? 

• Does the administrator want to be concerned with managing the destination 

queues? 

The performance section of this document gives a breakdown of the associated costs 

for subscribing via an application. 

 

When issuing the MQSUB verb, MQ schedules an SRB to ensure that the subscription 

and all associated topic tree changes will be completed or backed-out as one unit of 

work. 

 

Specifying Message Properties at Time of Subscription 

WebSphere MQ version 7.0 on z/OS supports the use of message properties when 

subscribing to a topic. This allows the application to rely on the queue manager to 

filter out unwanted messages and only be sent relevant messages. 

 

Messages properties are specified at the time the MQSUB is issued using the MQSD 

“SelectionString” attributes. The syntax of a message selector is based on a subset of 

the SQL92 conditional expression. 

 

Some simple examples of selection strings are: 

• COLOUR=’RED’ 

• (COLOUR=’BLUE’ OR COLOUR=’RED’) 

 

There is a small overhead associated with the cost of specifying message properties at 

subscription time but it is not expected that an application will be making many 

subscriptions. 

 

Publishing when subscribers specify message properties 

When a subscriber specifies message properties, the publisher of any message will 

incur an additional cost when it puts the message. This cost will be incurred by the 

SRB that runs in the publishers address space. 

 

The cost incurred varies depending on the selection criteria. For example, if a 

message is published with 128 properties and one subscriber is selecting on the first 

property and another subscriber is selecting on the last property, the publisher will see 

a higher cost associated with the second subscriber. Details of the cost variances can 

be seen in the performance section of this document. 

 

Similarly, for more complex selection criteria, such as “PROPERTY1=’MQ’ AND 

PROPERTY2=’CICS’, the cost to the publisher increases. 

 

 

 

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 15 of 49  

 

Wildcards 

The use of the wildcard characters as part of a subscription allows an application to 

subscribe to multiple topics in a single subscription, rather than issuing multiple 

MQSUB verbs. As there is no explicit subscription name, there is the potential to 

subscribe to more topics than required and as a result, some unwanted messages may 

be received. 

The cost of subscribing with a wildcard is negligible as is the cost of publishing when 

the subscribers have specified wildcards in their selection criteria. 

 

There is a balance that needs to be determined, potentially on an application by 

application basis - 

• Is the application interested in all messages for a topic or just some of them?  

• Can the topic be wildcarded to the required level of granularity and still be useful? 

• Will the application always be interested in all the messages that match the 

wildcarded topic name? 

• Is it difficult to filter out unwanted messages in the application?   

 

From a programming perspective, it may be simpler to request all of the messages for 

a particular set of topics rather than issuing many MQSUB verbs, but there may be 

information overload (i.e. too many messages) and the publisher incurs a cost for each 

subscriber, which means the unwanted messages are paid for twice – once by the 

publisher and then again for the subscriber who has to determine that it doesn’t need 

this message. 

 

Taking a topic tree such as the one below: 

 

 
 

If an application is interested in all “MQ” messages it can subscribe using wildcards 

and will receive all messages published to “IBM/iSeries/MQ”, “IBM/pSeries/MQ” 

and “IBM/zSeries/zOS/MQ”. 

Similarly if the application is interested in all subjects relating to “IBM/zSeries/zOS” 

then wildcards are again easy to use and may be the best solution. 

IBM 

iSeries pSeries zSeries 

zOS zLinux zVM 

CTS MQ Comms 
 Server 

DB2 Crypto 
Services 

…. 

MQ MQ 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 16 of 49  

 

However, if an application is only interested in messages published to “IBM/zSeries/ 

zOS/CTS”, “IBM/zSeries/zOS/MQ” and “IBM/zSeries/zOS/DB2”, the cost to 

subscribe explicitly to the 3 topics is far less than the cost of doing a wildcard 

subscribe to “IBM/zSeries/zOS/+” and filtering out the unwanted messages such as 

those published to “Comms Server”. 

 

 

Server-Connection Attribute SHARECNV() 

The SHARECNV attribute is only available on a server-connection channel and 

specifies the maximum number of conversations that can be sharing each TCP/IP 

channel instance. 

 

A value of 0 provides no sharing of conversations over a TCP/IP channel instance. 

This means the channel does not use the new WebSphere MQ Version 7.0 function 

with regards to: 

• Read Ahead (queue attribute DEFREADA) 

• Client Asynchronous Consume 

• Heartbeating 

A value of 0 does not preclude the use of the asynchronous put request, as specified 

by the queue (and topic) option DEFPRESP(ASYNC). 

 

A value of 1 allows no sharing of conversations over a TCP/IP channel instance but 

does allow channel heartbeats whether in an MQGET call or not. It also supports read 

ahead and client asynchronous consume. 

 

A value in excess of 1 allows sharing of conversation over a TCP/IP channel instance.  

 

High SHARECNV limits have the advantage of reducing queue manager thread usage 

when the client application is threaded. However, if a large number of conversations 

sharing a socket are all busy, there is a possibility of delays as the conversations 

contend with one another to use the receiving thread.  

 

Asynchronous Put  

In WebSphere MQ Version 7.0, you can choose to put a message to a queue or topic 

using the MQPUT or MQPUT1 verb without the application having to wait for the 

queue manager to complete the call.  

This can be achieved by: 

• The application setting the MQPMO_ASYNC_RESPONSE in the PMO 

• The application specifying MQPMO_RESPONSE_AS_Q_DEF when putting 

to a queue/topic that has been configured to have DEFPRESP(ASYNC). 

By using asynchronous puts, the MQPUT/MQPUT1 verb is not waiting for a response 

from the queue manager. This means that the client application is not dependent on 

the queue manager sending a confirmation-of-receipt message. On a slow or heavily 

utilised network, the client application will find these MQPUT/MQPUT1 verbs 

completing much faster than before.  

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 17 of 49  

 

If an MQ generated Message-ID is required, the MQ Client will require a response 

from the queue manager once in every 256 messages. 

 

 

Read-Ahead DEFREADA(YES | NO) 

Read ahead can be used on a client to allow non-persistent messages to be sent to a 

client without the client application having to request the messages. 

 

Typically, when a client requires a message from the server, it sends a request to the 

server. For each message required, a separate request is made.  

 

Using read ahead can improve performance when consuming non-persistent messages 

from either MQI or JMS applications. When read ahead is enabled, messages are sent 

to an in-memory buffer on the client, called the read ahead buffer.  

 

The client will have a read ahead buffer for each queue it has open with read ahead 

enabled. The messages in the read ahead buffer are not persisted. The client 

periodically updates the server with information on the amount of data in the read 

ahead buffer. 

 

Read ahead is not available when the SVRCONN channel attribute SHARECNV is 

set to zero. 

 

Asynchronous Consume 

“Asynchronous Consume” is a way to allow an application to register an interest in 

messages and identify a call-back routine which will get invoked when a message 

arrives. This gives the following benefits: 

• The application can continue processing non-MQ related work without the 

message arriving, instead of the thread remaining in an MQGET-with-wait call. 

• The call-back routine invoked as part of the message arriving will be given a 

message buffer of the correct size for the message. 

• The application can register an interest in multiple queues. This is much simpler 

than having to poll a set of queues for the next available message. 

• The application can choose to stop consuming from a queue at any time. When 

using MQGET with wait, the application is dependent upon a message arriving or 

the get-wait interval expiring.  

 

On z/OS, asynchronous consume can be used in batch and CICS (CTS TS 3.2). 

Additionally, when a client application that has connected over a SVRCONN channel 

(with a non-zero SHARECNV channel attribute) issues an MQGET, the channel 

initiators uses asynchronous consume to get the message. 

 

When the channel initiator uses asynchronous consume to get the message for a client 

application, put to waiting getter is not viable. 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 18 of 49  

 

 

Asynchronous Consume in a Client Pub/Sub Environment 

We have noticed when subscribing with clients over a server connection channel with 

a non-zero SHARECNV channel attribute which forces the use of asynchronous 

consume to drive messages onto the client, there is a delay in the messages being sent 

to the client. This performance delay is currently being investigated. 

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 19 of 49  

 

Performance Data 

Memory Allocation 

1. Queue manager restart time is reduced 

By changing the queue managers’ start-up code to allocate each bufferpools’ storage 

in a single storage obtain call, there has been a reduction of more than 1 CPU second. 

 

For example, a version 6.0 and a version 7.0 queue manager that have been 

configured with 4 bufferpools, 2 of which are 20,000 buffers, 1 is 50,000 buffers and 

the fourth is 99,000 buffers and both queue managers have the same objects defined, 

the version 6.0 queue manager used 2.6 CPU seconds to start. By contrast, the version 

7.0 queue manager took 1.3 CPU seconds to start. 

 

2. The queue managers’ memory footprint is reduced. 

With long-term storage protection set on by the WLM “storage critical” option, a 

Version 6.0 queue manager will page-in all of the bufferpool storage.  

E.g. A “DISPLAY USAGE” command would return: 
 Page Buffer     Total    Unused  Persistent  NonPersist Expansion    

 set   pool     pages     pages  data pages  data pages        count 

   0      0     20157     19865         292           0 USER       0 

   1      1     20157     20157           0           0 USER       0 

   2      2     20157     20157           0           0 USER       0 

   3      3     20157     20157           0           0 USER       0 

   4      1     20157     20157           0           0 USER       0 

 

 Since all of these pages are in real storage, the queue manager storage footprint is 

20157 * 5 = 100,785 pages. 

 

By comparison, issuing the “DISPLAY USAGE” an equivalently configured version 

7 queue manager would return:  
Page Buffer     Total    Unused  Persistent  NonPersist Expansion    

set   pool     pages     pages  data pages  data pages        count 

  0      0     20157     19865         292           0 USER       0 

  1      1     20157     20152           0           0 USER       0 

  2      2     20157     20157           0           0 USER       0 

  3      3     20157     20157           0           0 USER       0 

  4      1     20157     20157           0           0 USER       0 

 

For the version 7 queue manager, only the used data pages are actually paged in, i.e. 

292 pages from bufferpool 0. This gives a far smaller working footprint – 292 pages 

rather than 100,785 pages. 

 

Effects on storage usage of defining additional objects 

On version 6  any new objects defined will not require extra pages to be paged-in, 

provided that pageset expansion is not necessary since the bufferpools are held in real 

storage,. This means that the storage usage should remain constant irrespective of new 

objects defined. 

Version 7 shows the cost of an object definition much more clearly as for each new 

object being defined, more pages will be required to be paged in. For example, having 

defined 1000 local queues, the “DISPLAY USAGE” command now returns: 
 

Page Buffer     Total    Unused  Persistent  NonPersist Expansion    

set   pool     pages     pages  data pages  data pages        count 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 20 of 49  

 

  0      0     20157     19615         542           0 USER       0 

  1      1     20157     20152           5           0 USER       0 

  2      2     20157     20157           0           0 USER       0 

  3      3     20157     20157           0           0 USER       0 

  4      1     20157     20157           0           0 USER       0 

 

The version 7 queue manager now has 547 real pages, an increase of 250 pages – all 

of which are in real storage. Since a page is 4K, the cost of defining a queue can be 

derived as 1K in bufferpool usage. 

 

Administratively defined Topics 

Typically a topic node is only defined when the tree or part of the tree requires 

specific non-default attributes. This should mean that there is a relatively small 

number of administratively defined topics. 

 

The following chart gives an indication of how CPU-intensive a high number of topic 

objects can be and how they will affect the queue manager restart time. For 

comparison purposes, a similar number of local queues were defined. 

 

Object Definition effect on Queue Manager Restart Time

Time is the CPU time taken until the command server is available

0

50

100

150

200

250

0 5000 10000 15000 20000 25000 30000 35000

Objects defined

T
o

ta
l 

T
im

e
 t

o
 s

ta
rt

 Q
u

e
u

e
 

M
a
n

a
g

e
r 

(C
P

U
+

S
R

B
) 

s
e
c
o

n
d

s

Queues Topics

 
 

As can be seen, the number of queues defined to a queue manager does not 

significantly affect the CPU time taken to restart the queue manager. However, a large 

number of topic objects can increase the restart time noticeably.  

 

Message Properties 

How many properties can be added to a message? 

Whilst it is not envisaged that large numbers of properties will be added to a message, 

WebSphere MQ version 7.0 does support in excess of 30,000 properties, provided the 

destination queue supports the large message that will result from adding this number 

of message properties. 

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 21 of 49  

 

In the following measurement, a C application created a 100 byte message and added 

up to 32,768 message properties using the MQSETMP verb. The application then 

published the message to a topic that had one subscriber with PSPROP(NONE). 

 

The application used a simple algorithm to specify the properties, where a 5 digit 

sequence number (numbered from ‘00001’ to ‘32768’) is concatenated to a 3 

character string for the property name e.g. “IBM00001”. The property value was a 

fixed length of 7 bytes. 

 

When the message was consumed from the queue, the message buffer required to get 

the entire message was almost 1MB, which is a considerable overhead for a 100 byte 

message. 

 

Increasing Cost of adding Properties to message using MQSETMP

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5000 10000 15000 20000 25000 30000 35000

Number of properties

A
v
e
ra

g
e
 C

P
U

 t
im

e
 t

o
 a

d
d

 a
 

p
ro

p
e
rt

y
 (

m
il

li
S

e
c
o

n
d

s
)

Properties added to message using MQSETMP

 
 

The cost of adding up to 64 properties is low, but once the number of properties 

exceeds 128, the cost begins to increase noticeably. 

 

Subscriptions 

The information reported in this section is based upon a Version 7.0 queue manager 

that has been created with 200,000 pages in PAGESET(2) – which is used by the 

durable subscription queue. Additionally the following changes are made to the queue 

manager: 

• A small set of topic nodes is defined using MQSC. 

• The queue manager is altered to have MAXHANDS(999999999) 

An application is run to define a set of durable subscriptions to topics. The tree grows 

at an exponential rate and contains 78,000 subscriptions and can be defined as below: 

 

Topic Tree structure 

• Each tree has 1 admin node defined 

• From this admin node, the application creates 5 children or subscription points. 

(“level 2”) 

• From each of the subscription points on level 2, a further 5 subscription points are 

defined (“level 3”). 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 22 of 49  

 

• This process is repeated until there are 5 levels, and the following table indicates 

how many subscription points there are on each level. 

 

Level Subscription Points 

1 0 

2 5 

3 25 

4 125 

5 625 

 

This gives a total of 780 subscription points in this topic tree. For each of these 

subscription points, the application creates 100 subscriptions, which results in 78,000 

subscriptions for the topic tree. 

 

Following each set of subscriptions, the queue manager is restarted and a new set of 

subscriptions is defined – with a different admin node.  

 

This process is repeated until there are 1.5 million durable subscriptions defined on 

the queue manager. 

 

How long will my queue manager take to restart? 

Using the process defined above, the queue manager has increments of 78,000 

subscriptions defined between queue manager restarts. 

 

The following diagram shows the CPU cost for each restart. This is the point where 

then queue manager is considered ready for business, i.e. all queue manager start up 

tasks are complete. 

 

CPU time (seconds) to restart a Queue Manager 

with increasing numbers of durable subscribers

0

100

200

300

400

500

600

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000

Number of Durable Subscribers

C
P

U
 (

T
C

B
+

S
R

B
) 

s
e
c
o

n
d

s
 

V7.0 Queue Manager

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 23 of 49  

 

Pageset usage with Durable Subscriptions 

The following chart shows the number of persistent data pages used in PAGESET(2) 

following queue manager restart with increasing numbers of subscriptions. This is for 

subscriptions where the maximum length of the MQSD SubName variable is 27 

characters. As the length of the subscription name increases, fewer messages will be 

able to be compressed into the consolidated message. 

  

PageSet(2) Usage in a Version 7.0 z/OS Queue Manager 

with increasing numbers of durable subscribers

0

50000

100000

150000

200000

250000

300000

350000

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000

Number of Durable Subscribers

P
a
g

e
S

e
t 

u
s
a
g

e
 (

in
 4

K
 p

a
g

e
s
)

V7.0 Queue Manager

 
 

 

Above the Bar usage with Durable Subscriptions 

This chart show the number of megabytes of “above the bar” storage that the queue 

manager has allocated to retain the durable subscription information. Again the 

subscription name is a maximum of 27 characters. 

"Above the Bar" Usage in a Version 7.0 z/OS Queue Manager 

with increasing numbers of durable subscribers

0

1000

2000

3000

4000

5000

6000

7000

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000

Number of Durable Subscribers

A
b

o
v
e
 t

h
e
 B

a
r 

u
s
a
g

e
 b

y
 Q

u
e
u

e
 M

a
n

a
g

e
r 

(M
B

)

V7.0 Queue Manager

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 24 of 49  

 

 

Publish 

How does the cost of Put compare to Publish? 

When an application publishes a message to a topic, the queue manager code will 

schedule a preemptible SRB and the MQPUT verb will not return until all 

subscriptions have been satisfied.  

 

This can make the MQPUT run for an unexpectedly lengthy period of time. There are 

2 ways in which this data can be represented: 

1. How costly is a put to a queue compared to a put to each subscriber queue, i.e. if 

there are 64 subscribers to a topic, divide the total cost of the MQPUT to topic by 

64.  

2. How costly is the MQPUT to topic compared to issuing a separate 

MQPUT/MQPUT1 to each subscriber queue. This means that if a topic has 64 

subscribers, the cost of the MQPUT to topic is compared against an application 

issuing 64 separate MQPUT verbs. Strictly speaking the application should issue 

64 MQOPEN, 64 MQPUT and 64 MQCLOSE calls to simulate the publisher 

process but a well designed application would open and close the queues only 

once. 

 

The chart below shows the cost per MQPUT to a queue compared to the cost of the  

MQPUT to topic divided by the number of subscribers. 

 

Cost per message PUT onto target queue 

Subscriptions has PSPROP(NONE)

10

60

110

160

210

260

310

360

1000 2000 10000 20000 30000 40000 50000 100000

Message Size 

C
P

U
 m

ic
ro

s
e
c
o

n
d

s

Put to Local Queue Put to Alias-to-Topic w ith 1 Subscriber Put to Alias-to-Topic w ith 2 Subscribers

Put to Alias-to-Topic w ith 4 Subscribers Put to Alias-to-Topic w ith 8 Subscribers Put to Alias-to-Topic w ith 16 Subscribers

Put to Alias-to-Topic w ith 32 Subscribers Put to Alias-to-Topic w ith 64 Subscribers

 
Note: Messages are non-persistent. 

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 25 of 49  

 

As can be seen from the above chart, as the number of subscribers to a topic increase, 

the cost of each put to the subscriber queue decreases. 

 

Using different PSPROP options on the subscription made no noticeable difference to 

the costs of publishing. 

 

Clearly there is a significant overhead in publishing when there are low numbers of 

subscribers but as the number of subscribers increase, the overheads diminish. 

 

Comparing the total cost of MQPUT to topic with multiple subscribers against the 

cost of an application putting to queues gives the following chart: 

 

Cost of MQPUT to Topic with 64 subscribers

compared to MQPUT to 64 Queues 
Subscriptions have PSPROP(NONE)

2496 2560

3712

5120
6208

7616

9344

15616

3500 3657

4724

6219

7439

9405
10340

16772

7616 7680

8832

10240

11328

12736

14464

20736

0

5000

10000

15000

20000

25000

1000 2000 10000 20000 30000 40000 50000 100000

Message Size 

C
P

U
 m

ic
ro

s
e
c
o

n
d

s

Put to 64 Local Queues Put to Alias-to-Topic w ith 64 Subscribers Open, Put, Close to 64 Local Queues

 
Note: Messages are non-persistent. 

 

As can be seen from the above chart, an application that is considered to be badly 

behaved i.e. one that opens, puts and closes the queue repeatedly rather than open, put 

many and then close the queue, is more expensive than “publish once” to 64 

subscribers. The open and close cost has been calculated at 80 microseconds. 

Do message properties affect the cost of publish? 

For a topic that has durable subscribers with no selection criteria on the subscription, 

there is a small overhead in the put of a message with properties. For a 2KB non-

persistent message being published with 1 property, there is a 2% increase in the cost 

of the put over similar message with no properties. 

 

The following chart indicates the cost of publishing a message to a topic with 

increasing numbers of properties.  

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 26 of 49  

 

Cost of publishing a 2KB Non-Persistent Message with increasing properties
Topic has 1 subscriber with PSPROP(NONE).

Subscriber does not specify any selectors.

0

20

40

60

80

100

120

140

160

0 1 2 4 8 16 32 64 128

Number of Properties

C
P

U
 m

ic
ro

s
e
c
o

n
d

s

Putter Application CPU time SRB time in Publisher

 
 

Subscribe 

How much does an Application MQSUB cost? 

The following chart gives an indication of the cost of an MQSUB for durable and 

non-durable subscriptions plus the overheads of using managed subscriptions. 

 

Cost of MQSUB via an Application
(cost is microSeconds/Transaction)

0 500 1000 1500 2000 2500

N
o

n
-

D
u

ra
b

le

N
o

n
-

D
u

ra
b

le
 -

M
a

n
a

g
e

d
D

u
ra

b
le

D
u

ra
b

le

R
e

s
u

m
e

D
u

ra
b

le

M
a

n
a

g
e

d

D
u

ra
b

le

M
a

n
a

g
e

d

- 
R

e
s
u

m
e

S
u

b
s

c
ri

p
ti

o
n

 T
y

p
e

MicroSeconds / Subscribe

Qmgr Total Application TCB + SRB Application SRB for Subscribe
  

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 27 of 49  

 

As can be seen from the chart, the managed subscriptions are significantly more 

expensive than the non-managed. The use of managed subscriptions does mean the 

administrator does not need to define the queues that will be used to host the 

published messages. 

 

Comparing the cost of the durable managed subscription (2,154 microseconds) 

against the cost of the durable non-managed subscription (668 microseconds), would 

suggest that the overhead involved with managed subscription cost is high – but 

consider that for the non-managed durable subscription, the application has to specify 

a destination queue that has previously been opened. This destination queue will 

either have had to be pre-defined (at cost to the administrator) or will be a permanent 

dynamic temporary queue which will cost around 950 microseconds to create during 

the MQOPEN. 

 

This means the cost of dynamically creating a queue and then using that queue as the 

destination for a durable subscription is 1.6 milliseconds compared to the non-durable 

managed subscription costing 2.1 milliseconds.  

 

Cost of MQSUB as subscriptions increase 

As the number of subscriptions defined to a queue manager increases, the cost of 

adding a new subscription will increase. The following chart gives an indication of the 

cost of a subscription. 

Cost of MQSUB in Version 7.0 z/OS Queue Manager 

with increasing numbers of durable subscribers

0

500

1000

1500

2000

2500

3000

78000 156000 234000 312000 390000 468000 546000 624000 702000 780000

Number of Durable Subscribers

T
o

ta
l 
C

o
s
t 

(m
ic

ro
s
e
c
o

n
d

s
) 

fo
r 

M
Q

S
U

B

Cost to Queue Manager Cost to Application

 
 

Notes on chart: 

1. The queue manager has been restarted between data points. 

2. The cost shown is the average cost of a subscription until the total number of 

subscriptions matches the value in the x-axis, e.g. for the column labelled 78000, 

the average cost of each subscription was 1.12 milliseconds until the queue 

manager had 78000 durable subscriptions. When adding the next 78000 

subscriptions the cost of the subscription increased to 1.5 milliseconds. 

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 28 of 49  

 

Publish/Subscribe 

Publishing when subscribers specify message properties 

To show how specifying message properties at subscription time can affect the cost of 

publishing a message, the following scenario was measured: 

 

An application was run to generate 2KB non-persistent messages with 128 properties. 

Another application was run to subscribe to a topic using a number of different 

criteria: 

• Subscribe with 0 selectors 

• Subscribe with 1 selector – on property 1 

• Subscribe with 1 selector – on property 2 

• Subscribe with 1 selector – on property 100 

• Subscribe with 1 selector – on property 128. 

 
For all measurements in this scenario, a pre-defined queue was used as the destination 

for the published message. 

 
The following chart shows the cost of the MQPUT by the publishing application.  

The cost of the MQGET is consistently around 210 microseconds for each 2KB 

message. When the put to waiting getter
3
 criteria is satisfied, the cost of the MQGET 

dropped to approximately 20 microseconds for each message. 

 

Cost of MQPUT when MQSUB specifies message properties

21 20 21 20 21

137

180 183
202

211

0

50

100

150

200

250

0 1 2 100 128

Selection on Property 'n'

C
P

U
 c

o
s
t 

in
 m

il
li
s
e
c

o
n

d
s

TCB Publisher SRB
 

The x axis shows the property number that is being selected on, i.e. where the x axis 

has 0, the subscription has specified no selection criteria, whereas for the value of 

100, the subscriber has selected on property 100. 

 

The CPU costs shown as the y axis are for the queue manager and the application 

combined. 

 

                                                 
3
 Put to Waiting Getter was introduced in version 6.0 of WebSphere MQ for z/OS and allows an out-of-

syncpoint non-persistent message to be MQPUT directly to a waiting out-of-syncpoint MQGETter, 

rather than being placed onto a queue and then read from the queue. 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 29 of 49  

 

 

Using message properties to select messages can allow more complex selection 

criteria to be specified, by using “AND” or “OR” to create compound selection 

statements. To indicate the cost of using these criteria, further measurements were run 

using the following scenario: 

 
An application was run to generate 2KB non-persistent messages with 128 properties. 

Another application was run to subscribe to a topic using a number of different 

criteria: 

• Subscribe with 0 selectors (as a baseline) 

• Subscribe with 2 selectors – on property 1 OR property 2 

• Subscribe with 2 selectors – on property 1 OR property 128  

• Subscribe with 2 selectors – on property 2 OR property 128  

• Subscribe with 2 selectors – on property 1 AND property 2 

• Subscribe with 2 selectors – on property 1 AND property 128  

• Subscribe with 2 selectors – on property 2 AND property 128  

 

Cost of MQPUT when MQSUB specifies message properties
More complex selection

21 22 20 20 20 20 20

137

225
248 243

218
243 243

0

50

100

150

200

250

300

0 1 OR 2 1 OR 128 2 OR 128 1 AND 2 1 AND 128 2 AND 128

Criteria for message selection

C
P

U
 c

o
s
t 

in
 m

il
li

s
e
c
o

n
d

s

TCB Publisher SRB
 

 

As can be seen when comparing the 2 charts, the cost of selecting multiple properties 

is noticeable even when the selection is on the earlier properties. When selecting on 

property one, the cost was 200 microseconds but when selecting on property one or 

property two, the cost increased by a further 47 microseconds. 

 

Publish/Subscribe on a Local Queue Manager 

To illustrate how publishing messages with properties scales with increasing numbers 

of subscribers, the following scenario was measured: 

 

• An increasing number of subscriber applications were run. The subscriber would 

either specify 

o 0 properties on the subscribe 

o 1 property that would match the publisher  

o 1 property on the subscribe that did not match the publisher 

• Publisher application(s) were run with 

o 0 properties 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 30 of 49  

 

o 128 properties  

• A 2KB non-persistent message would be used 

• Subscriptions would be non-durable and would use a temporary dynamic queue 

 

As a reference, publishing a message for this configuration where there were no 

properties on message being put and no subscribers to the topic, saw a cost to the 

MQPUT of 55 microseconds. When there were 128 properties associated with the 

message being put and still no subscribers to the topic, the cost of the MQPUT 

increased to 68 microseconds. 

 

Cost of Publishing Messages to Increasing Subscribers
using Message Properties

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 4 8 16 32

Number of Subscriptions

C
o

s
t 

(m
ic

ro
s

e
c

o
n

d
s

) 
o

f 
M

Q
P

U
T

Pub/Sub with 0 properties on put 

Pub/Sub where subscriber specifies no properties on Subscribe

Pub/Sub where subscriber specifies 1 matching property

Put/Sub where subscriber does not match properties
 

Notes on chart: 

• The messages being published have 128 properties associated unless otherwise 

stated. 

 

If message properties are not required on the subscriber, it is significantly cheaper for 

the publisher application to publish without properties. 

 

If a topic has subscribers but the message selectors specified do not match the 

message properties on the published message, the publisher will still incur a cost 

when attempting to match the properties on the message with those of the subscribers. 

 

The following chart shows the number of MQPUTs completed per second for a batch 

application putting a 2KB non-persistent message where there are increasing numbers 

of non-durable subscribers. There are 7 scenarios measured: 

1. Publish message with no properties, where there are no subscribers to the topic. 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 31 of 49  

 

2. Publish message with 128 properties, where there are no subscribers to the topic. 

3. Publish message with 1 property, where subscriber has specified 1 selector that 

does not match the publishers’ property. 

4. Publish message with 128 properties, where subscriber has specified 1 selector 

that does not match the publishers’ property. 

5. Publish message with 128 properties, where subscriber does not specify any 

selectors 

6. Publish message with 1 property, where subscriber specifies 1 selector that 

matches the publishers’ property. 

7. Publish message with 128 properties, where subscriber specifies 1 selector that 

matches the publishers’ property. 

 

Only scenarios 5, 6 and 7 see messages received by the subscriber applications. 

 

Local Publisher Rate - Comparing effect of Properties on 

Publish and Subscribe

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 1 2 4 8 16 32

Subscribers

M
e

s
s

a
g

e
s

 P
u

b
li
s

h
e

d
 /
 S

e
c

o
n

d

Publish 0 property on pub, no subs Publish 0 property on pub, 0 property on sub

Pub/Sub 1 property on pub, 1 property on sub, no match Pub/Sub 128 property on pub, 1 property on sub, no match

Publish 128 property on pub, 0 property on sub Pub/Sub 128 property on pub, 1 property on sub, match

Pub/Sub 1 property on pub, 1 property on sub, match

 
 

The following chart shows the total rate per second that the messages get to the 

subscribers’ queues. The same scenarios were run as in the previous chart, but only 

the scenarios that result in messages getting to queues are displayed. The numbers are 

calculated by multiplying MQPUTs per second by the number of subscribers. 

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 32 of 49  

 

Local Subscriber Rate - Comparing effect of Properties on 

Publish and Subscribe

0

1000

2000

3000

4000

5000

6000

1 2 4 8 16 32

Subscribers

T
o

ta
l 
M

e
s

s
a

g
e

s
 P

u
t 

to
 Q

u
e

u
e

s
 

/ 
S

e
c

o
n

d

Publish 128 property on pub, 0 property on sub Pub/Sub 128 property on pub, 1 property on sub, match

Pub/Sub 1 property on pub, 1 property on sub, match

 
 

Benefits of using message properties 

If a subscribing application will require every message that is published to a topic, 

message properties may be an unnecessary overhead, both on publish and subscribe. 

 

However, if a subscriber application only requires for example 1 in 4 messages that 

get published to the topic, it may be cheaper or easier for the application to use 

message properties to filter out the unwanted messages. 

 

Earlier in this section, the cost of the MQGET for a 2KB non-persistent message was 

established to be 20 microseconds when put to waiting getter was viable and 210 

microseconds when it was not.  

 

The following table shows a comparison of the expected costs comparing when the 

subscriber application has to filter out unwanted messages rather than relying on 

selecting on message property in the MQSUB verb. 

 

The cost shown for the MQPUT is for a message with 128 properties. Measurements 

with 1 property show a negligible cost saving on publish where the subscriber 

matches on the message property. Where the subscriber does not match the 

publishers’ message property, a 2KB non-persistent message published with 1 

property is 2% cheaper than a message published with 128 properties. 

 

This following table is based on a subscriber only being interested in 1 in every 4 

messages that is published. 

 

Cost is in microseconds (uS). 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 33 of 49  

 

 

 Subscribing Application provides 

filtering logic 

MQ Message Properties and Selectors 

filter undesired messages 

Subscribers 1 1 32 32 1 1 32 32 

Publisher of the  1 desired message 

  

MQSETMP 
 (128 properties) 

N/A N/A N/A N/A 25 25 25 25 

 MQPUT 104 104 1294 

 

1294 312 312 7239 7239 

Publisher of the 3 undesired messages  

 MQSETMP 
 (128 properties) 

N/A N/A N/A N/A 75 

 

(25*3) 

75 

 

(25*3) 

75 

 

(25*3) 

75 

 

(25*3) 

  MQPUT 312 

 

(104*3) 

312 

 

(104*3) 

3882 

 

(1294*3) 

3882 

 

(1294*3) 

396 

 

(132*3) 

396 

 

(132*3) 

5064 

 

(1688*3) 

5064 

 

(1688*3) 

Subscriber 

MQGET 
put to waiting 

getter viable 

80 

 

(20 *4) 

 2560 

 

(20*4*32) 

 20
4
 

 

 

 640 

 

(20*32) 

 

  MQGET 
Put to waiting 

getter not viable 

 840 

 

(210*4) 

 26680 

 

(210*4*32

) 

 210 

 

(210*1) 

 6720 

 

(210*32) 

TOTAL 

Cost 

496 1256 7736 32056 828 1018 13043 

 

19123 

Cost / 

Subscriber 

496 1256 242 1002 828 1018 407 598 

 

For the cases where the subscribing application provides the filtering logic, there will 

be additional cost in each subscribing application to parse the message data to 

determine whether the message is valid. 

 

As can be seen from the above table, even when put to waiting getter is viable, using 

message properties to filter out undesired publications can save processing cost when 

only 1 in 4 messages is appropriate to a subscribing application.  

 

Client Publishers to Local Subscribers 

The following scenario shows the cost of using client applications connected over a 

server-connection channel to publish when the subscribers to the topic are hosted on 

z/OS. 

 

• Each publisher will publish a 2KB non-persistent message every 5 seconds to the 

same topic. 

• An increasing number of subscribers to the topic are measured. Each subscriber is 

using a separate permanent dynamic queue. 

• An increasing number of publishers are measured. 

                                                 
4
 The 3 messages that the publisher puts that do not match the subscribers selection criteria are not 

gotten, so the subscribers’ MQGET only has to account for the single message received. 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 34 of 49  

 

• The cost is by transaction and includes the cost incurred by the queue manager, 

channel initiator and batch application(s) getting the published message.   

• A transaction is defined as “a client publisher putting the message and all 

subscribers getting their copy of the published message”. This means that when 

there is 1 publisher with 16 subscribers, the cost will include the cost of publish to 

the channel initiator, the replication of the message to the 16 destinations, and the 

cost of each of those 16 subscribers actually getting the message. 

• Over a 4 week period, an idle queue manager and channel initiator was seen to 

cost 33.7 CPU seconds per day (queue manager was 24 CPU seconds and channel 

initiator was 9.7 CPU seconds). This equates to 390 CPU microseconds per 

second. This “idle cost” has been deducted from the cost per transaction. 

 

Client Publisher with Local Subscribers
Cost is Queue Manager, Channel Initiator and Batch Applications

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

1 2 4 8 16

No. of z/OS Batch Subscribers

C
o

s
t 
o

n
 z

/O
S

 (
in

 

m
ic

ro
s
e

c
o

n
d

s
)

1 Client publisher 16 Client Publishers 128 Client Publishers
 

 

The chart confirms that for each number of publishers, as the number of subscribers 

increase, the cost per transaction also increases. 

The more interesting data appears to show that the cost per transaction is higher when 

there are fewer publishers. This highlights the cost of the scavenger process running 

once the messages are gotten, i.e. when 1 publisher is putting a message every 5 

seconds and the messages are gotten as they appear on the queues, the scavenger 

process will run 12 times in 60 seconds and each transaction will incur the full cost of 

the scavenger process from start up to close down, whereas when 16 publishers are 

running at the same rate, there are 16 times as many transactions per minute. As a 

result the cost of processing a message is lessened as the scavenger overheads are 

reduced by a factor of 16 as it will only run when the messages have been removed 

from the queue. 

 

The followed scenario is similar to the previous one except that the focus is on the 

number of messages that the subscriber receives in a fixed period, rather than the 

number of messages published at a fixed rate. Unlike the previous measurement, 

where the publishers were putting 1 message every 5 seconds independently of the 

number of subscribers, this measurement ensures that each subscriber gets a fixed 

number of messages per hour (46,000). This ensures that the scavenger overheads are 

similar in all cases. 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 35 of 49  

 

Client Publisher with Local Subscribers
Cost is Queue Manager, Channel Initiator and Batch Applications

0.0

500.0

1000.0

1500.0

2000.0

2500.0

1 2 4 8 16

No. of z/OS Batch Subscribers

C
o

s
t 
o

n
 z

/O
S

 (
in

 

m
ic

ro
s
e

c
o

n
d

s
)

1 Client publisher 16 Client Publishers 128 Client Publishers
 

 

In this measurement, the cost per transaction does increase as the number of 

publishing applications increase. It also shows the cost of running 1 publisher is less 

than running 16 or 128 publishers. 

  

Local Publish to Client Subscribers 

When running a local publisher with client subscribers, the local publisher will be 

able to publish messages at a far faster rate than the subscribers will be able to get or 

be given the messages. For large numbers of locally published messages that are 

published at high rates, this can lead to deep queues, and in the case of non-persistent 

messages can result in messages being written to disk, which will slow the rate more. 

 

Client Publish to Client Subscribers 

The first chart below shows the breakdown of the cost accounted to the resources 

involved when a client application publishes to a topic on a z/OS queue manager that 

has increasing numbers of subscribers. The publishing application(s) are publishing as 

fast as possible. 

As can clearly be seen and was stated earlier in this document, the majority of the cost 

involved is within the channel initiator address space. 

The chart shows the cost of a single client publisher with increasing numbers of non-

durable client subscribers with no selection criteria. The publisher puts a 2KB non-

persistent message. 

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 36 of 49  

 

Pub/Sub with 1 Publisher, Increasing Subscribers, 

Server Conn channel is SHARECNV(0) 

Publishers are putting to topic with DEFPRESP(SYNC)

0 5000 10000 15000 20000 25000 30000 35000 40000

2

8

32

128

256

S
u

b
s

c
ri

b
e

rs

Cost per publish (microseconds)

Queue Manager Channel Initiator TCP/IP
  

 

In the above scenario, running with DEFPRESP(ASYNC) makes little difference to 

cost as the majority of the work involves the pub/sub fan out to multiple subscribers 

and the retrieval of the published messages by the client subscribers. 

 

The following chart indicates the rate at which the publishers are able to put messages 

to the topic. 

 

Publish rate for increasing subscribers

SHARECNV(0)

DEFPRESP(SYNC) DEFREADA(N/A)

0

500

1000

1500

2000

2500

2 8 32 128 256

No. of Non-Durable Client Subscribers

M
e

s
s

a
g

e
s

 P
u

b
li
s

h
e
d

 /
 S

e
c
o

n
d

1 Publisher 2 Publishers 3 Publishers 4 Publishers
 

As a contrast, the next chart shows the rate the messages are received by all the client 

subscribers. 

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 37 of 49  

 

Message Receipt Rate on Subscriber for increasing subscribers

SHARECNV(0)

DEFPRESP(SYNC) DEFREADA(N/A)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

2 8 32 128 256

No. of Non-Durable Client Subscribers

M
s

g
s

 r
e

c
e

iv
e

d
 b

y
 S

u
b

s
c

ri
b

e
rs

 /
 S

e
c

o
n

d

1 Publisher 2 Publishers 3 Publishers 4 Publishers
 

The client subscription rate drops off as the number of messages being written 

increases, partly due as gets are slower than puts, so the queue depths begin to build 

up. As a result messages get written to disk and the get becomes slower still as they 

need to be read from disk – and when there are large numbers of subscribers, there are 

a large number of reads from disk. Larger bufferpools will reduce this slowdown up 

to a point. Realistically, publisher application(s) are unlikely to be publishing as fast 

as they can put a message – instead some business logic is likely to be involved. 

 

 

The next scenario is where the numbers of subscribers is fixed at 256 and 512. The 

number of publishers varies, from 1 to 8. Each publisher will attempt to publish 1 

message to a topic every 5 seconds. 

 

Cost on z/OS per Transaction for Client application(s) 

publishing to multiple client subscribers at a fixed rate (720 

messages/hour)

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16 18

No. of Publishers

C
o

s
t 

p
e

r 
T

ra
n

s
a

c
ti

o
n

 

(m
il
li
s

e
c

o
n

d
s

)

256 Subscribers 512 Subscribers
 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 38 of 49  

 

Notes on chart: 

• In this measurement, a transaction is defined as the publisher putting the message 

plus the cost of delivering the message to all subscribers.  

• The costs shown are the total costs incurred by the queue manager, channel 

initiator and TCP/IP address spaces.   

• The chart shows the cost of publishing to a topic decreases slightly as the number 

of publishing applications increase in a throttled-back environment, i.e. the 

publisher is not publishing as fast as it can. 

 

The chart also shows that by doubling the subscribers, the total cost of 

publish/subscribe has doubled. This does not mean that the cost of publish has 

doubled, as this total includes sending messages to an additional 256 subscribing 

applications. 

 

 

Server-Connection Attribute SHARECNV() 

The maximum number of channels is limited by 

• Channel initiator virtual storage in the extended private region (EPVT), which 

includes all of the channel types, including CHLTYPE(SVRCONN) channels. 

• Possibly, by achievable channel start (or restart after failure) and stop rates and 

costs. 

 

Under WebSphere MQ version 6, every non-SSL channel uses about 140KB and 

every SSL channel about 170KB of extended private region in the channel initiator 

address space. Storage usage is increased if messages larger than 32KB are being 

transmitted. 

 

Both the SHARECNV server-connection channel attribute and the channel initiator 

buffer pool functionality can affect the maximum number of channels that a channel 

initiator can support. 

 

With the introduction of channel initiator buffer pools, the size of the message directly 

affects the memory footprint. 

 

The following table shows the cost in memory of each new SVRCONN channel being 

run. The cost is in Kb. 

 

SHARECNV 

value 

1K  

Messages 

10K  

Messages 

32K  

Messages 

64K 

Messages 

0 90 106 170 202 

1 234 228 351 418 

10
5
  

Value in ( ) is 

footprint per 

connected 

client. 

514 

(51) 

546 

(55) 

947 

(95) 

1327 

(132) 

                                                 
5
 Channel is defined with SHARECNV(10) and has 10 shared conversations using the same server-

connection channel instance as can be seen from the “DISPLAY CHS(*) CURSHCNV” command. 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 39 of 49  

 

 

On a system that has an EPVT size of 1.6GB, this means that running server-

connection type channels with SHARECNV(0) with 1KB messages, the maximum 

number of clients that can be connected should be able to reach the WebSphere MQ 

defined limit for MAXCHL of 9,999. 

  

Compared to a server-connection channel with a SHARECNV value of 1 or more, 

where there are no shared conversations, the limit is much lower at 7,000 clients. 

 

However, if shared conversations are being used on a server-connection channel with 

a SHARECNV value of 10, it is possible to have in excess of 25,000 clients 

connected concurrently. 

 

Asynchronous Put  

The rate at which a client can put non-persistent messages is significantly improved 

using the DEFPRESP(ASYNC) queue option where the client application set the 

MQPMO option “MQPMO_RESPONSE_AS_Q_DEF”. 

 

In a queuing mode, i.e. the client application is just putting messages and not getting 

replies, a single threaded client application can be seen to perform as below: 

 

Put Message Rate - Single Threaded Client
Client and Server are WebSphere MQ V7.0 unless otherwise stated

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

100 500 1000 5000 10000 50000 100000

Message Size (bytes)

M
s

g
s

/S
e

c
o

n
d

V6 Client, V6 Server SHARECNV(0), queue has DEFPRESP(SYNC) SHARECNV(1), Queue has DEFPRES(SYNC)

SHARECNV(0), Queue has DEFPRESP(ASYNC) SHARECNV(1), Queue has DEFPRESP(ASYNC)

 
 

In the above example, the client application is putting the same message many times 

and performs no business logic between MQPUTs.  

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 40 of 49  

 

Whilst the above message rates are for local queues over local SVRCONN channels, 

similar throughput has been seen for shared queues and shared SVRCONN channels. 

How much cheaper are asynchronous puts? 

If your messaging requirements allow it, running with asynchronous puts from a 

client application can reduce the cost of the put on the z/OS queue manager and 

channel initiator by between 18% and 55% for a messages ranging in sizes from 

100,000 to 1000 bytes. 

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 41 of 49  

 

Shared conversations with asynchronous puts 

By setting the server connection channel attribute “SHARECNV” to a value greater 

than one it is possible to run multiple conversations down a single channel instance.  

 

Where the multi-threaded application is sending large amount of data to a z/OS queue 

manager, it is advisable to run with multiple channel instances rather than pushing all 

the data down a single channel instance. 

Conversely where the multi-threaded client application is sending messages less 

frequently, it may be beneficial to have a higher value in the SHARECNV attribute.  

 

In the following example, there is a single client application that runs 10 threads, each 

of which is putting to a separate z/OS queue and each client-thread is putting 

messages to their queue as fast as it can. 

 

SHARECNV value SVRCONN channels instances 

0 10 

1 10 

5 2 

10 1 

 

 

Put Message Rate - Multi-Threaded Client 

Application runs with 10 threads, each thread putting to separate queues
Client and Server are WebSphere MQ V7.0 unless otherwise stated

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

100 500 1000 5000 10000 50000 100000

Message Size (bytes)

A
v
e

ra
g

e
 M

e
s

s
a

g
e

s
 P

u
t/

S
e

c
o

n
d

V6 Client, V6 Server SHARECNV(0), DEFPRESP(SYNC) SHARECNV(1), DEFPRESP(SYNC)

SHARECNV(5), DEFPRESP(SYNC) SHARECNV(10), DEFPRESP(SYNC) SHARECNV(0), DESPRESP(ASYNC)

SHARECNV(1), DEFPRESP(ASYNC) SHARECNV(5), DEFPRESP(ASYNC) SHARECNV(10), DEFPRESP(ASYNC)
 

 

 

 

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 42 of 49  

 

With the larger messages, the various SHARECNV and DEFPRESP configurations 

are not being exploited as the application is attempting to send a volume of data close 

to the limits of the TCP/IP network used in this measurement – around 50MB/Second. 

 

The smaller messages are not being sent fast enough to approach the network limits. 

Taking the put message rate for the 1000 byte messages and calculating the volume of 

data being transmitted over the network gives the following table: 

  

WMQ 

Version 

SHARECNV 

value 

SVRCONN 

channels 

instances 

DEFPRESP MB/Sec 

(allowing 500 bytes for 

MQ Headers) 

6.0 N/A 10 N/A 6.7 

7.0 0 10 SYNC 8.0 

7.0 1 10 SYNC 10.8 

7.0 5 5 SYNC 7.3 

7.0 10 1 SYNC 6.1 

7.0 0 10 ASYNC 13.3 

7.0 1 10 ASYNC 20 

7.0 5 5 ASYNC 10.9 

7.0 10 1 ASYNC 9.2 

 

When sending large volumes of non-persistent messages from a multi-threaded client 

application, there are clearly benefits in not sharing conversations in a channel 

instance, since for the SHARECNV(1) measurement, there is a 20MB/sec throughput 

rate, which drops significantly when the SHARECNV() value is increased.  

 

However, if the application is not flooding the network, the benefits of running shared 

conversations over a channel instance can be seen on the channel initiator as there is a 

lower memory usage per conversation in a shared channel instance.  

 

Read-Ahead DEFREADA(YES | NO) 

The rate at which a client can get non-persistent messages is significantly improved 

using the DEFREADA(YES) queue option. 

  

In a queuing mode, i.e. the client application is just getting messages from a queue 

and is not putting message, a single threaded client application can be seen to perform 

as below: 

 

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 43 of 49  

 

Get Message Rate - Single Threaded Client

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

100 500 1000 5000 10000 50000 100000

Message Size (bytes)

M
e
s
s
a
g

e
s
 /

 S
e
c
o

n
d

V6 Client, V6 Server V7 Client, V6 Server

V7 Client, V7 Server, ShareCnv(0), DEFREADA(NO) V7 Client, V7 Server, ShareCnv(10), DEFREADA(NO)

V7 Client, V7Server, ShareCnv(10), DEFREADA(YES)

 
 

In the above example, the queues are pre-filled and the client application is getting the 

next available message from the queue. Once the client application has got one 

message, it performs no business logic before issuing the next MQGET. 

 

Whilst the above message rates are for local queues over local SVRCONN channels, 

similar throughput has been seen for shared queues and shared SVRCONN channels. 

Are Messages on a DEFREADA(YES) Queue cheaper to consume?  

Provided the messaging requirements allow it, the cost to the queue manager and 

channel initiator on z/OS of a client getting a message from a queue that has the 

DEFREADA(YES) attribute set can reduce the cost of the MQGET on the queue 

manager and channel initiator by between 55% for messages of size 1KB to 12% for 

messages of size 50KB. 

Shared Conversations with Read-ahead 

By setting the server connection channel attribute “SHARECNV” to a value greater 

than one it is possible to run multiple conversations down a single channel instance.  

 

In the following example, there is a single client application that runs 10 threads, each 

one is getting messages from a separate z/OS queue and each client-thread is getting 

messages from their queue as fast as it can. 

 

SHARECNV value SVRCONN channels instances 

0 10 

1 10 

5 2 

10 1 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 44 of 49  

 

Get Message Rate - Multi-Threaded Client

DEFREADA(NO)
Client and Queue Manager are V7.0 unless stated

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

100 500 1000 5000 10000 50000 100000

Message Size (bytes)

T
o

ta
l 

M
e

s
s

a
g

e
s

 G
o

t/
S

e
c

o
n

d

V6 Client, V6 Queue Manager SHARECNV(0) SHARECNV(1) SHARECNV(5) SHARECNV(10)

 
 

 

 

Get Message Rate - Multi-Threaded Client

DEFREADA(YES)
Client and Queue Manager are V7.0 unless stated

0

5000

10000

15000

20000

25000

100 500 1000 5000 10000 50000 100000

Message Size (bytes)

T
o

ta
l 

M
e
s
s
a
g

e
s
 G

o
t/

S
e
c
o

n
d

V6 Client, V6 Queue Manager SHARECNV(1) SHARECNV(5) SHARECNV(10)

 
 

Note: In the above chart, there is no measurement for SHARECNV(0) as read-ahead 

is not available in that configuration. 

 

Both charts indicate that Version 7.0 is able to get messages at a faster rate than 

Version 6.0. The optimum rate can be achieved by using SHARECNV(non-zero) 

configured channels, where conversations are not shared. However the channel 

footprint, as indicated in section “Server-Connection Attribute SHARECNV()” may 

preclude the use of SHARECNV(non-zero) server connection channels unless the 

installation is able to share conversations over those channel instances. 

  

Where it is required to sustain a high message get rate of non-persistent messages, the 

DEFREADA(YES) queue option will provide a visible benefit, so it could be 

beneficial to have multiple server-connection channels defined, some with the 

SHARECNV attribute set to 1 and restrict use of this channel to a relatively low 

number of clients.  



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 45 of 49  

 

Asynchronous Consume 

The benefits of asynchronous consume when used by the channel initiator with 

server-connection channels running with the SHARECNV attribute set to greater than 

zero can be seen in the charts entitled “Shared Conversations with Read-ahead”. Even 

when DEFREADA is set to off, the rate at which the client is able to get messages far 

exceeds the rate at which at which a version 6.0 client was able. 

 

The benefits of asynchronous consume are not so obvious in a batch only 

environment. The following scenario compares the cost and throughput capabilities of 

asynchronous consume against MQGET. 

 

• A single batch application is run that puts a non-persistent out-of-syncpoint 

message to a queue and waits for a reply on a separate queue and then repeats a 

number of times. 

• The message size is varied from 1KB to 64KB. 

• A batch server application is run to get the message from the queue and MQPUT1 

a reply message to the specified reply queue. 

 

The batch server application runs in 3 modes: 

1. Application goes into an MQGET with wait and upon receipt of message, uses 

MQPUT1 to put a reply message. 

2. Application issues: 

• an MQCB “register” to register a message handler routine,  

• MQCTL “start with wait”  

• (when the main thread gets control back, it issues an MQCTL “resume”) 

• The message handler routine is driven upon receipt of a message. The message 

handler uses MQPUT1 to put the reply message and then issues a MQCTL 

“suspend” to give control back to the main thread. 

3. Application issues: 

• an MQCB “register” to register a message handler routine,  

• MQCTL “start”  

• Main thread goes into a sleep for a fixed period. 

• The message handler routine is driven upon receipt of a message. The message 

handler uses MQPUT1 to put the reply message. 

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 46 of 49  

 

Comparing MQGET with Asynchronous Consume 
(Cost / Transaction)

0

50

100

150

200

250

300

0 10000 20000 30000 40000 50000 60000 70000

MsgSize in Bytes

C
o

s
t 

/ 
T

ra
n

s
a

c
ti

o
n

 i
n

 

S
e

rv
e

r 
A

p
p

li
c

a
ti

o
n

Server Application does MQGET Server Application does MQCTL (START_WAIT)

Server Application does MQCTL(START)
 

 

Comparing MQGET with Asynchronous Consume
(Transactions / Second)

0

2000

4000

6000

8000

10000

12000

0 10000 20000 30000 40000 50000 60000 70000

MsgSize in Bytes

T
ra

n
s

a
c

ti
o

n
s

/S
e

c
o

n
d

 

Server Application does MQGET Server Application does MQCTL (START_WAIT)

Server Application does MQCTL(START)
 

 

In this environment, asynchronous consume is shown to reduce transaction rates and 

increase cost per transaction. However the server application does not have any 

business logic included and in certain circumstances it may be appropriate and 

beneficial to use the MQCB and MQCTL verbs to schedule a message handler to get 

a message whilst the main thread continues with business processing. 

 

Using Asynchronous Consume to run a message handler on multiple queues 

When an application needs to monitor a set of queues, asynchronous consume 

provides a simple mechanism to allow the application to get messages from those 

queues as they are put to the queues.  

 

Consider an application that uses MQGET to monitor multiple queues. The 

application needs to open all of those queues and then poll each queue in turn using 

MQGET to see if there are any messages available.  

 

Compare this to an application that uses asynchronous consume to monitor those 

same queues. The application will open all of the queues, issue an MQCB “register” 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 47 of 49  

 

for each of the open handles, issue an MQCTL “start” or “start wait” and the message 

handler will only be driven when a message is put to any of those queues.  

 

In the asynchronous consume scenario, the message handler is only be driven upon a 

message being available. By contrast, the application using MQGET may or may not 

get a message for a particular queue. If two of the queues it is monitoring are getting 

messages, there are other queues that are being polled unsuccessfully for messages at 

cost to the application. 

 

The following scenario compares the cost of monitoring multiple queues: 

 

• 10 batch applications are run to put 2KB non-persistent message to separate 

queues and wait for a reply before repeating the put/get. 

• 1 server application is run to monitor 50 queues. The server application will either 

run using: 

o MQGET with no wait and when a successful get takes place, a 

corresponding MQPUT1 will be used to put a reply message. 

o MQCB and MQCTL “start wait”, where the message handler issues an 

MQPUT1 to put the reply message followed by a MQCTL “suspend”. The 

main thread will restart the message handler by issuing a MQCTL 

“resume” after each message is processed. 

o MQCB and MQCTL “start”, where the message handler issues an 

MQPUT1 to put the reply message. The main thread sleeps for a fixed 

period of time. 

  

. 

Comparing MQGET with Asynchronous Consume 

on Multiple Queues

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

T
ra

n
s

a
c

ti
o

n
s

 /
 S

e
c

o
n

d

Server Application does MQGET Server Application does MQCTL(START_WAIT)

Server Application does MQCTL(START)
 

 

By using asynchronous consume to monitor a set of queues, the transaction rate has 

increased by 33% over the scenario that uses MQGET to poll for messages. Using 

MQGET, the more queues that need to be polled, the slower the transaction rate will 

become. 

 

In the above case, the cost of polling 50 queues where only 10 are successful is 200 

microseconds per processed message, whereas the asynchronous consume case sees 

the cost of a processed message at 122 microseconds.  



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 48 of 49  

 

CPU cost calculations on other zSeries systems 

CPU costs can be translated from a measured system to the target system on a different 
z/Series machine by using Large Systems Performance Reference (LSPR) tables. These are 
available at: http://www.ibm.com/servers/eserver/zseries/lspr/zSerieszOS.html 

This example shows how to estimate the CPU cost for a zSeries 2064-1C5 where the 
measurement results are for a 2084-304: 

1. The LSPR gives the 2064-1C5 an Internal Throughput Ratio (ITR) of 2.45 
(this is for a “Mixed Workload”, which we found best fits WMQ in our environment). 

2. As the 1C5 is a 5-way processor, the single engine ITR is  
2.45 / 5 = 0.49   

3. The “Mixed Workload” ITR of the 2084-304 used for the measurement is 3.60. 
The 304 is a 4-way processor. Its single engine ITR is 
3.60 / 4 = 0.90 

4. The 2064-1C5 / 2084-304 single engine ratio is 
0.49 / 0.90 = 0.54 approx 
 
this means that a single engine of a 2084-304 is nearly twice as powerful as that of a 2064-
1C5. 

5. Take a CPU cost of interest from this report, say x CPU microseconds (2084-304) per 
message, then the equivalent on a 2064-1C5 will be 
 x / 0.54 CPU microseconds/message 

6. To calculate CPU busy, calculate using the number of processors multiplied either by 1000 
(milliseconds) or 1000000 (microseconds) to find the available CPU time per elapsed second. 

I.E. a 2064-1C5 has 5 processors so has 5,000 milliseconds CPU time available for every 
elapsed second. 

So, for a CPU cost of interest from the report of 640 milliseconds on a 2064-1C5, the CPU 
busy would be: 

640 / (5*1000) * 100 (to calculate as a percentage) = 12.8 % 

 



WebSphere MQ for z/OS V7.0 

Performance Report 

Page 49 of 49  

 

Measurement Environment and Methodology 

Hardware and Software 

 

The hardware configuration was: 

 

• CPU: 3-CPU logical partition (LPAR) of a zSeries 990 (2084-332). CPUs 

were defined as floating but there were always 3 physical CPUs available. Its 

capacity is similar to that of a 2084-303. 

• DASD: FICON-connected Enterprise Storage Server (ESS) Model F20. 

 

Software levels were: 

• z/OS 1.9 

• WebSphere MQ v6 GA  

• WebSphere MQ v7 pre-GA levels 

• CICS CTS 3.1 

• DB2 v8 

• IMS v9 

• Java 1.5 

 

Client testing was performed on: 

• 64-bit RHEL Linux on 4-way XEON 3.66 Ghz processor. 


