
Performance Report - SupportPac MP1G

WebSphere MQ for z/OS V7.0.1

Version 1.0

October 2009

Tony Sharkey

Pete Hickson

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 2 of 45

Take Note!

Before using this report please read the general information under “Notices”

First Edition, October 2009

This edition applies to Version 7.0.1 of WebSphere MQ for z/OS.

© Copyright International Business Machines Corporation 2009. All rights

reserved. Note to U.S. Government Users – Documentation related to restricted rights

– Use, duplication or disclosure is subject to restrictions set forth in GSA ADP

Schedule contract with IBM Corp.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 3 of 45

Notices

This report is intended for Architects, Systems Programmers, Analysts and

Programmers wanting to understand the performance characteristics of WebSphere

MQ for z/OS V7.0.1. The information is not intended as the specification of any

programming interfaces that are provided by WebSphere MQ. Full descriptions of the

WebSphere MQ facilities are available in the product publications. It is assumed that

the reader is familiar with the concepts and operation of WebSphere MQ.

References in this report to IBM products or programs do not imply that IBM intends

to make these available in all countries in which IBM operates.

Information contained in this report has not been submitted to any formal IBM test

and is distributed “as is”. The use of this information and the implementation of any

of the techniques is the responsibility of the customer. Much depends on the ability of

the customer to evaluate these data and project the results to their operational

environment.

The performance data contained in this report was measured in a controlled

environment and results obtained in other environments may vary significantly.

Trademarks and service marks
The following terms, used in this publication, are trademarks or registered trademarks

of the IBM Corporation in the United States or other countries or both:

 Enterprise Storage Server

 IBM

 SupportPac

 WebSphere

 WebSphere MQ

z/OS

zSeries

Other company, product and service names may be trademarks or service marks of

others.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 4 of 45

Summary of Amendments

Date Changes

October 2009 Initial Version

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 5 of 45

Table of Contents

PERFORMANCE HIGHLIGHTS – WEBSPHERE MQ FOR Z/OS V7.0.16

EXISTING FUNCTION...6
General Statement of Regression..6
Page Set Usage with Small Messages...6
Above Bar Storage Usage...8

NEW FUNCTION ..9
Log Compression ..9
Select on Get ...10

PERFORMANCE DATA ..11

SMALL MESSAGE SCAVENGER ...11
Out-Of-Syncpoint Workload ...12
Workload where Server application gets and puts within Syncpoint ..16

INDEXED QUEUES...19
How deep can I make my local queues? ...19
Cost of putting messages to local indexed queues ..20
Cost of getting messages from indexed queues ...22
How long will it take to restart a queue manager with deep indexed local queues?24

SECURITY MANAGER..27
How much storage does a single user use? ..27
How much storage is required to access multiple MQ resources? ...27
Why is storage retained after security timeout has been reached?...27
Predicting Memory Usage with Increasing User IDs...28

LOG COMPRESSION ..29
How do I know if Log Compression will help? ...32

SELECT ON GET ..33
Using Correlation ID as a Selector ..33
Local Bindings using Local Queue with Single Queue Manager..34
Local Bindings using Shared Queue with 1 Queue Manager in QSG ..38
Local Bindings using Shared Queue with 2 Queue Managers in QSG...39
Local Bindings with JMS Selectors and Correlation ID...42
Client Bindings with JMS Selectors and Correlation ID ..43

HARDWARE AND SOFTWARE ..44
CPU COST CALCULATIONS ON OTHER ZSERIES SYSTEMS..45

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 6 of 45

Performance Highlights – WebSphere MQ for z/OS v7.0.1
This report focuses on performance changes since the previous versions (V6.0.0 and

V7.0.0) and on the performance of new function in this release.

SupportPac MP16 “Capacity Planning and Tuning For WebSphere MQ for z/OS” will

be updated to include WMQ Version 7.0.1 information. MP16 will continue to be the

repository for ongoing advice and guidance learnt as systems increase in power and

experience is gained.

Existing Function

General Statement of Regression

CPU costs and throughput are not significantly different in version 7.0.1 for typical

messaging workloads.

Page Set Usage with Small Messages

As processors become faster and using more processors becomes more common, it

becomes more important that the MQ queue manager operates in an optimum manner.

A queue with relatively few
1
 messages can hold all of its messages in the associated

bufferpool. This means the message can be put and gotten much faster than if the

message has been written to the page set.

In a high-workload, low queue depth environment, it is necessary for the messages to

remain in buffers to ensure the best performance is obtained.

MQ operates a scavenger process to remove “dead” pages, allowing them to be re-

used.

For messages that fit on one or more 4K pages, the scavenger process can be run

immediately after the message has been deleted, which leave the number of used

pages to be an accurate measure of the number of messages on the queue.

Prior to version 7.0.1, small messages were stored such that multiple messages could

co-exist on the same page. This meant that the scavenger could not run once a

message was deleted as there were potentially other messages still on the page.

Instead, the small message scavenger would run periodically – up to every 5 seconds .

This means that a workload using small messages could see a build up of dead pages

that were waiting to be scavenged. With ever faster processors, the time taken to fill

the bufferpool with dead pages becomes significantly reduced. In turn, this meant that

the messages would overflow onto the pageset and potentially the queue manager

could be spending time performing I/O – causing slower MQGETs and MQPUTs.

1
 The number of messages that can be held in the bufferpool depends on the size of the bufferpool and

the size and number of messages on the queue.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 7 of 45

To allow the scavenger to work more efficiently with small messages, each message

is now stored in a separate page. In addition a separate index page is used to hold data

for approximately 72 messages. Once the message is deleted, the page holding the

message data can be re-used immediately but the index page can only be scavenged

once all messages referenced are deleted.

We recognise that not all customers operate in a high workload, low queue depth

environment and the increase in storage usage for small messages may affect other

factors in the queue managers’ performance. For example, it will take less small

messages to cause pageset expansion than previously.

To this end, it is now possible to force the queue manager to store multiple small

messages on a page as per releases prior to version 7.0.1 by adding the following

statement to the CSQINP2 DD card:

Using this “maxshortmsgs” tuning attribute means that the small message scavenger

uses pre-version 7.0.1 function.

We do not recommend overriding the default behaviour of the queue manager except

under the direction of IBM service.

The benefits of the new scavenger process can be seen in the section “Small Message

Scavenger”

The following table shows the size of page sets for a given number of messages:

Message Size

(user data plus all headers except MQMD)

Pages per Message V6 V7.0.1

As shipped

V7.0.1

MAXSHORTMSGS 0

 Approx
Msgs per

4GB pageset

 Approx
Msgs per

 64GB pageset

8 27992-32040 27924 – 31971 27924 – 31971 125K 2M

7 23942-27991 23876 – 27923 23876 – 27923 142K 2285K

6 19894-23942 19828 - 23875 19828 - 23875 166K 2666K

5 15845-19893 15780 - 19827 15780 - 19827 200K 3200K

4 11796-15844 11732 - 15779 11732 - 15779 250K 4M

3 7747-11795 7684 - 11731 7684 - 11731 333K 5333K

2 3698-7746 3636 – 7683 3636 - 7683 500K 8M

 Messages per page

 1 1656-3697 0 – 3635 1568-3635 1M 16M

2 981-1655 N/A 892-1567 2M 32M

3 643-980 N/A 554-891 3M 48M

4 440-642 N/A 351-553 4M 64M

5 305-439 N/A 216-350 5M 80M

6 208-304 N/A 119-215 6M 96M

7 136-207 N/A 47-118 7M 112M

8 79-135 N/A 0-46 8M 128M

9 34-78 N/A N/A 9M 144M

10 0-33 N/A N/A 10M 160M

REC QMGR (TUNE MAXSHORTMSGS 0)

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 8 of 45

Above Bar Storage Usage

Since z/OS V1.2, 64-bit virtual storage has been available within a single address

space. This 64-bit storage is also known as “above the bar” storage. The “bar” refers

to the 2 GB line that was the 31-bit virtual addressing limit. The introduction of z/OS

V1.5 allowed for shared 64-bit virtual storage.

WebSphere MQ V7.0 is the first MQ release on z/OS to begin to exploit this feature.

Version 7.0.1 extends the usage of 64-bit storage.

In version 7.0.1, two further areas of the queue manager have been changed to exploit

the 64-bit “above the bar” storage.

• Indexed queues

• Security manager

Using 64-bit storage to hold data for queue indices, intra-group queuing and

publish/subscribe allows the queue manager to use the below the bar storage for other

purposes. It should be noted that usage of the 64 bit storage can require an increase to

amount of space available to the MVS paging datasets.

This constraint relief to indexed queues and security manager means that the storage

previously used to hold index data and security data inside the queue managers

address space is now available for other purposes.

Indexed Queues

WebSphere MQ for z/OS version 7.0.1 moves the storage used for the index for

indexed queues into above the bar storage.

Rather than being restricted to approximately 1.6GB minus queue manager usage, the

index is no longer as constrained at it has access to all of the storage above the bar.

Security Manager

WebSphere MQ for z/OS version 7.0.1 moves the storage used for security

management into above the bar storage.

This constraint relief means that the storage previously used to hold security data

inside the queue managers address space is available for other purposes.

When the security timeout period is reached, the storage obtained by security manager

is released back to a pool for re-use, rather than being released.

This re-using of the pooled memory uses less CPU cycles than the initial allocation.

There is no difference in ECSA usage in a version 7.0.1 queue manager whether using

1 or 50,000 unique user ids.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 9 of 45

New Function

Log Compression

WebSphere MQ for z/OS version 7.0.1 introduces a new option to enable the

compression of log data. This can be enabled by issuing

The log compression process applies RLE (Run Length Encoding) compression.

Log compression is either enabled for all queue manager work or none.

RLE compression is ideal for message data which includes large numbers of repeating

characters; a printed report that includes long strings of blanks, for example, might be

highly compressible using the RLE technique.

Compression of log data can reduce the amount of data being written to the active

logs and can therefore improve the throughput of persistent message workload.

Even with totally incompressible messages, MQ can compress its own MQ headers,

making a saving on the amount of data that is logged.

The CPU costs of log compression vary with the nature of the message data and are

not readily predictable.

Log data is written in chunks of 4KB. The log compression routine attempts to

compress data in those 4KB chunks, so a 100KB message will be split into 25 chunks

and each chunk will be compressed, rather than compressing the 100KB message in a

single attempt.

On a system where the DASD logging rate is the constraining factor, log compression

can help improve throughput.

SET LOG COMPLOG(RLE)

Log compression does not come at zero cost.

In a CPU constrained system, the transaction rate may be degraded by using log

compression

The benefits to be gained from log compression depend significantly on the actual

message payload. If the data does not contain repeating characters, log

compression may not be the answer.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 10 of 45

Select on Get

WebSphere MQ for z/OS version 7.0.1 introduces the capability to specify a message

selection criteria at the time the MQOPEN (for input) is issued.

This allows messages to be selected from a queue where the messages on the queue or

messages to be put to the queue contain message properties
2
.

By specifying an MQOD “SelectionString”, it is possible to notify the queue manager

of the message selection criteria in order to limit the messages provided to the

application to those actually required by the application.

In a client/server environment, this has an additional benefit. In previous releases of

MQ, all messages would flow to the MQ client, only for the MQ code to filter out the

unwanted messages. In version 7.0.1, only the selected messages are sent over the

network to the client. This filtering by the queue manager should reduce the load on

the network.

2
 The correlation ID may be specified, so even if a message does not contain properties, selection

criteria can still be applied.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 11 of 45

Performance Data

Small Message Scavenger

The changes to the way small local messages are stored have improved the scalability

of using small messages on local queues and may improve how long pages are used in

the queue at a cost of slightly higher CPU, and more total pages.

1. Increase the amount of storage required to store small messages.. By changing the

way messages fewer than 1568 bytes are stored so that each message uses a 4KB

page, less messages can be stored on a pageset for a V701 queue manager than a

V600 or indeed a V700 queue manager. In the event of a system outage that

causes messages to build up on a queue, it will require fewer messages to cause

pageset expansion and also to reach the point where the putting application is

returned an MQ return code 2192 “MQRC_STORAGE_MEDIUM_FULL”

2. Reduce the time taken to scavenge dead pages. By reducing the time that the

scavenger takes to complete its work, the sooner those dead pages are available to

be re-used.

o MQ attempts to keep the messages in buffers for as long as possible as it is

much faster to access memory than to access DASD.

o If there is not enough space in the buffer, the data needs to be written to the

pageset DASD.

o When a pageset reaches its 85% used threshold, the rate of messages put is

slowed to allow the pageset to expand.

By reducing the time the scavenger runs, it is less likely that in a high-workload

low-queue depth workload that the buffers will become full, causing overflow into

pagesets and also less likely that pagesets will get expanded.

The benefits of the changes to small messages and the scavenger can be seen in the

scenarios described below.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 12 of 45

Out-Of-Syncpoint Workload

This section measures show the benefits of the enhanced small message scavenger in

2 scenarios where all messages are put and gotten with no syncpoint.

1. Low contention on Queues – find the maximum sustainable transaction rate

when the workload is spread across multiple queues.

2. High contention on Queues – find the maximum sustainable transaction rate

using a single pair of queues.

Low Contention on Queues with all messages out of syncpoint

The following chart shows the transaction rate achieved on a 17-processor LPAR of a

z10 EC64. In this measurement, a transaction is defined as:

o Requester application puts a message to a queue and goes into MQGET-with-

wait for reply on separate queue that is indexed by correlation ID.

o Server application gets a message from the queue and puts the reply to the

reply-to queue

o Requester application gets the message using a known correlation ID.

o All work is performed out of syncpoint.

Initially there was 1 batch requester task and 1 batch server task per request/reply

queue pair. As the test progressed, more pairs of queues were used – from 1 to 30.

There should never be more than 1 message on any pair of queues.

The queue manager has been configured as follows:

o 16 buffer pools (0 to 15) each of size 10,000 buffers.

o 16 pagesets (0 to 15), with pagesets 1 to 15 expanded to 4GB.

o 30 request queues spread evenly over pagesets 1 to 15, i.e. 2 queues per

pageset.

o 30 reply queues, spread evenly over pagesets 1 to 15 and are located on the

same pageset as their corresponding request queue.

All reply queues have INDXTYPE(CORRELID).

Transaction Rate - 1KB Non-Persistent Messages using Request/Reply Model.

All messages are out-of-syncpoint

17-way LPAR running z/OS 1.9 on z10 EC64

0

50000

100000

150000

200000

250000

300000

0 5 10 15 20 25 30

Queue Pairs

T
ra

n
s

a
c

ti
o

n
s

 /
 s

e
c

o
n

d

V600 V701

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 13 of 45

The above chart shows a much smoother increase in the transaction rate as more

queues are used than was achievable in previous releases of MQ as well as a higher

peak transaction rate – 250,000 transactions per second.

Note the rate drop at 20-22 queue pairs for V7.0.1 – This is a point where the queue

manager was restarted and there was a period where the transaction rate took time to

stabilise.

The transaction rate peaks at 15 queue pairs. Once the measurement goes beyond 15

queue pairs, an increasing number pagesets and therefore buffer pools in use are

shared. CPU also becomes a constraining factor.

Transaction Cost - 1KB Non-Persistent Messages using Request/Reply Model.

All messages are out-of-syncpoint

17-way LPAR running z/OS 1.9 on z10 EC64

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30

Queue Pairs

C
o

s
t

/
T

ra
n

s
a

c
ti

o
n

 (
c
p

u

m
ic

ro
s

e
c

o
n

d
s

)

V600 V701

The previous chart shows the cost per transaction as more queue pairs are used.

The costs are based on the total amount of CPU used by the queue manager, requester

and server tasks divided by the number of transactions per second.

Reviewing the data generated by the queue manager running with TRACE(A)

CLASS(3) shows that the MQGET CPU cost in this measurement for version 6.0 is

24 microseconds compared to 10 microseconds in version 7.0.1.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 14 of 45

High Contention on Queues with all messages out of syncpoint

The following measurement compares the throughput achieved on a single queue pair

for a range of message sizes when using a version 7.0.0 queue manager and a version

7.0.1 queue manager when multiple requester and server tasks are used.

In these measurements, the following configuration is used:

o A single z/OS 1.9 LPAR with 3 dedicated processors on a z10 EC64

o 5 batch requester applications put a message to a request queue. All requester

tasks then go into an MQGET-with-wait on an indexed reply queue.

o 4 batch server applications are running in an MQGET on the request queue.

Upon successful MQGET, the applications MQPUT a reply message to the

known reply queue.

o The requester application then MQGETs the reply message using a known

correlation ID.

o All messages are out of syncpoint.

o A transaction is defined as each requester putting a request message and

getting a reply message.

The queue manager has been configured as follows:

o 4 buffer pools (0 to 3), buffer pool 0 to 2 are defined with 20,000 buffers and

buffer pool 3 has 99,000 buffers.

o 5 pagesets (0 to 4), pageset 0, 1, 2 and 4 defined with 20,000 records. Pageset

3 defined with 99,000 records.

o Request and reply queues are defined to pageset 3. All reply queues have

INDXTYPE(CORRELID).

o Pageset 3 is defined to buffer pool 3.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 15 of 45

The following chart shows the achieved transaction rate:

Transaction Rate

 Request / Reply model on Single Queue Pair with Multiple Requesters and Servers

 All messages are out of syncpoint

3-way LPAR running z/OS 1.9 on z10 EC64

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

2048 8192 32768 102400 1048576

Message Size

T
ra

n
s
a

c
ti
o

n
s
 /
 S

e
c

o
n

d

V700

V701

The following chart shows the cost per transaction for the achieved transaction rate:

Transaction Cost

 Request / Reply model on Single Queue Pair with Multiple Requesters and Servers

 All messages are out of syncpoint

3-way LPAR running z/OS 1.9 on z10 EC64

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2048 8192 32768 102400 1048576

Message Size

C
o

s
t
/
T

ra
n

s
a
c
ti

o
n

 (
C

P
U

m
ic

ro
s
e
c

o
n

d
s

)

V700

V701

The cost is calculated from the total cost of the queue manager as well as the requester

and server batch applications divided by the transaction rate.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 16 of 45

Workload where Server application gets and puts within Syncpoint

This section measures show the benefits of the enhanced small message scavenger in

2 scenarios where all messages processed by the server applications are put and gotten

within syncpoint.

1. Low contention on Queues – find the maximum sustainable transaction rate

when the workload is spread across multiple queues.

2. High contention on Queues – find the maximum sustainable transaction rate

using a single pair of queues.

Low Contention on Queues where Server application uses Syncpoint

The following chart shows the transaction rate achieved on a 17-processor LPAR of a

z10 EC64. In this measurement, a transaction is defined as:

o Requester application puts a message to a queue and goes into MQGET-with-

wait for reply on separate queue that is indexed by correlation ID.

o Server application gets a message from the queue and puts the reply to the

reply-to queue. The MQGET and MQPUT are within syncpoint.

o Requester application gets the message using a known correlation ID.

Initially there is 1 batch requester task and 1 batch server task per request/reply queue

pair. As the test progresses, more pairs of queues are used – from 1 to 30.

There should never be more than 1 message on any pair of queues.

The first chart shows the transaction rate achieved in this environment. The

transaction rate achieved rises steadily until the number of queue pairs in use

corresponds with the number of processors available, i.e. 17 and then levels out.

Transaction Rate - 1KB Non-Persistent Messages using Request/Reply Model.

Server gets and puts messages within syncpoint

17-way LPAR running z/OS 1.9 on z10 EC64

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 5 10 15 20 25 30

Queue Pairs

T
ra

n
s
a

c
ti

o
n

s
 /
 s

e
c

o
n

d

V701

The second chart shows the transaction cost which rises steadily up to 11 queue pairs

and then levels out.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 17 of 45

Transaction Cost - 1KB Non-Persistent Messages using Request/Reply Model.

Server gets and puts messages within syncpoint

17-way LPAR running z/OS 1.9 on z10 EC64

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30

Queue Pairs

C
o

s
t

/
T

ra
n

s
a

c
ti

o
n

 (
c
p

u

m
ic

ro
s

e
c
o

n
d

s
)

V701

High Contention on Queues where Server application uses Syncpoint

The following measurement compares the throughput achieved on a single queue pair

for a range of message sizes when using a version 7.0.0 queue manager and a version

7.0.1 queue manager when multiple requester and server tasks are used.

In these measurements, the following configuration is used:

o A single z/OS 1.9 LPAR with 3 dedicated processors on a z10 EC64

o 5 batch requester applications put a message to a request queue. All requester

tasks then go into an MQGET-with-wait on an indexed reply queue.

o 4 batch server applications are running in an MQGET on the request queue.

Upon successful MQGET, the applications MQPUT a reply message to the

known reply queue. The MQGET and MQPUT are in-syncpoint.

o The requester application then MQGETs the reply message using a known

correlation ID.

o A transaction is defined as each requester putting a request message and

getting a reply message.

The queue manager has been configured as follows:

o 4 buffer pools (0 to 3), buffer pool 0 to 2 are defined with 20,000 buffers and

buffer pool 3 has 99,000 buffers.

o 5 pagesets (0 to 4), pageset 0, 1, 2 and 4 defined with 20,000 records. Pageset

3 defined with 99,000 records.

o Request and reply queues are defined to pageset 3. All reply queues have

INDXTYPE(CORRELID).

o Pageset 3 is defined to buffer pool 3.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 18 of 45

The following chart shows the achieved transaction rate:

Transaction Rate

 Request / Reply model on Single Queue Pair with Multiple Requesters and Servers

 Server gets and puts messages within syncpoint

3-way LPAR running z/OS 1.9 on z10 EC64

0

5000

10000

15000

20000

25000

2048 8192 32768 102400 1048576

Message Size

T
ra

n
s

a
c

ti
o

n
s
 /
 S

e
c
o

n
d

V700

V701

The following chart shows the cost per transaction for the achieved transaction rate:

Transaction Cost

 Request / Reply model on Single Queue Pair with Multiple Requesters and Servers

 Server gets and puts messages within syncpoint

3-way LPAR running z/OS 1.9 on z10 EC64

0

1000

2000

3000

4000

5000

6000

7000

8000

2048 8192 32768 102400 1048576

Message Size

C
o

s
t

/
T

ra
n

s
a
c

ti
o

n
 (

C
P

U

m
ic

ro
s
e

c
o

n
d

s
)

V700

V701

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 19 of 45

Indexed Queues

There are 4 areas relating to observations made when utilising indexed queues with

64-bit indices:

1. How deep can I make my local queues?

2. Cost of putting messages to indexed queues

3. Cost of getting messages from indexed queues

4. How long will it take to restart a queue manager with deep indexed local queues?

The following section attempts to answer these questions.

How deep can I make my local queues?

As previously mentioned, the storage used to hold index data for queues has been

moved into 64-bit storage.

In versions 7.0 and earlier of WebSphere MQ for z/OS, the maximum depth of an

indexed queue could be limited by the amount of 31-bit storage available to the queue

manager.

On our test system, this occurred at approximately 7.2 million messages on a single

queue before the queue manager reported being critically short on storage.

Using a version 7.0.1 queue manager, we were able to put in excess of 100 million
3

messages to an indexed queue.

o In this particular case, we were limited by the size of the pageset.

o More messages could have been put, had the pageset been defined with

EXPAND(USER | SYSTEM) and place in a storage class that allowed multi-

volume expansion.

Putting many millions of messages to an indexed queue will use a significant amount

of 64-bit storage.

o Each message put to an indexed queue uses 272 bytes of above the bar storage.

This means that for 100 million messages

o 29,940 MB (29.2GB) of storage will be used above the bar.

How does this affect you?

o The queue manager may be limited to the virtual storage it can use if an IEFUSI

exit is used

o MEMLIMIT=NOLIMIT can be coded in the queue manager proc member

to override this.

o Real storage usage will increase as the number of virtual storage pages increases,

particularly if the WLM storage protect option is set – so the storage is not

released.

o Virtual storage usage will increase if more messages are put to indexed queues.

3
 The queue manager was configured with “MAXSHORTMSGS 0” to allow multiple messages per

4KB page. By default a small message in V701 will use a single 4KB page – which means a 64GB

pageset can hold a maximum of 16.7 million messages.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 20 of 45

o The following message is issued when MVS detects that 70% of the available

slots are in use:

IRA200E AUXILIARY STORAGE SHORTAGE

o To avoid this situation occurring, it may be necessary to add extra paging

volumes.

The MVS command “D ASM” can show the paging volumes and how full they are,

but it is rare to see the datasets above 70% before being classed as full.

Cost of putting messages to local indexed queues

In releases of MQ prior to version 7.0.1, the cost of putting messages to an indexed

queue increased as the depth of the queue increased.

By using 64 bit storage to hold the index for an indexed queue, version 7.0.1 is able to

maintain the cost of putting messages to an indexed queue to be the same value

whether it is the 1
st
 or the 100,000,000

th
 message put to the queue.

The chart below shows the cost for a batch application putting 1KB non-persistent

messages to an indexed queue, when the target queue already holds an increasing

number of messages.

The queue manager is configured such that the indexed queue is held on a buffer pool

with 200,000 records.

For version 6.0.0, note the increasing cost of the MQPUT as the depth of the queue

increases.

For version 7.0.1, the cost of the MQPUT is flat, although the cost is less when the

queue manager is running with “maxshortmsgs 0” – the difference being

approximately 5 microseconds per message.

The costs shown are the total cost to the application putting the message plus the

queue manager cost.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 21 of 45

Cost of Put of 1KB Non-Persistent Message to Indexed Queue

Using 3-way LPAR (zOS 1.9) on z10 EC64

0

10

20

30

40

50

60

70

80

90

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000

Depth of Queue before MQPUTs

C
o

s
t

o
f

M
Q

P
U

T
 (

c
p

u
 m

ic
ro

s
e
c
o

n
d

s
)

V600 V701 maxshortmsgs(0) V701

The following chart shows the rate at which the messages were put by a single batch

application when the target indexed queue held an increasing number of messages.

Rate of Put of 1KB Non-Persistent Message to Indexed Queue

Using 3-way LPAR (zOS 1.9) on z10 EC64

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000

Depth of Queue before MQPUTs

M
e
s
s
a
g

e
s
 P

u
t

/
S

e
c
o

n
d

 (
e
la

p
s
e
d

)

V600 V701 maxshortmsgs(0) V701

When putting messages to the version 7.0.1 queue manager (red line with diamonds),

the first 200,000 messages are held in bufferpools. After that point, there is an

increase in the disk I/O as messages are written to pageset.

Both version 6.0.0 and version 7.0.1 with “maxshortmsgs 0” are able to put 400,000

messages to the bufferpools before messages are put to pageset.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 22 of 45

Cost of getting messages from indexed queues

The previous section has shown that the cost of putting messages to indexed queues is

now a flat cost in version 7.0.1, unlike in version 6.0.0.

On an indexed queue, the deeper the queue, the more expensive the MQGET.

In a request/reply model with increasing depth of indexed queues, we see that the

achieved transaction rate and cost per transaction for version 6.0.0 and version 7.0.1 is

similar. The following 2 charts show this in more detail.

In the 2 sets of measurements, the queue managers are configured identically.

The queue managers are running with:

o TRACE(S) enabled

o TRACE(A) CLASS(3) enabled

o TRACE(G) disabled.

Prior to each iteration of the measurements, the indexed queue is initialised with

increasing numbers of messages – from 0 to 1,000,000.

Transaction Rate when queue depth increases

Request/Reply workload - 1KB Non-Persistent Out of Syncpoint

3 processor LPAR on z10 EC64 running z/OS 1.9

0

5000

10000

15000

20000

Queue Depth

T
ra

n
s

a
c

ti
o

n
s

/S
e

c
o

n
d

v600 V701

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 23 of 45

Transaction Cost when queue depth increases

Request/Reply workload - 1KB Non-Persistent Out of Syncpoint

3 processor LPAR on z10 EC64 running z/OS 1.9

0

50

100

150

200

250

300

350

400

Queue Depth

C
o

s
t

/
T

ra
n

s
a

c
ti

o
n

(m

ic
ro

s
e

c
o

n
d

s
)

v600 V701

The previous 2 charts show that in a request/reply model using indexed queues,

version 7.0.1 is keeping parity with version 6.0.0.

Since the cost of the MQPUT to the indexed queue is constant, it can be assumed that

the cost of the MQGET is increasing. The following chart is taken from the SMF 116

data recorded during the measurements above.

CPU Time for MQGET from Indexed Queue as queue depth increases

Request/Reply Workload - 1KB Non-Persistent Out of Syncpoint

3 processor LPAR on z10 EC64 running z/OS 1.9

0

20

40

60

80

100

120

140

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Depth of Indexed Queue

C
P

U
 M

ic
ro

s
e

c
o

n
d

s
 p

e
r

M
Q

G
E

T

V600 V701

The above chart indicates that the cost of the MQGET on version 7.0.1 does increase

at a higher rate than in version 6.0.0.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 24 of 45

How long will it take to restart a queue manager with deep indexed
local queues?

When a queue manager is restarted and there are persistent messages on the indexed

queues, it is necessary for the queue manager to rebuild those indexes.

This rebuilding process can be seen in the queue manager log as below:

The queue manager is not available for work until all the indices are rebuilt.

o Unless CSQ6SYSP parameter QINDXBLD is set to NOWAIT

o Any applications attempting to use the indexed queue where the index has

not been rebuilt will wait until the index build has completed.

As indexed queues may be significantly deeper in version 7.0.1 than previously, the

depth of the queues impacts the time taken to restart a queue manager.

The queue manager allocates a maximum of 10 threads to rebuild indexes

o If durable subscriptions exist, the

SYSTEM.DURABLE.SUBSCRIBER.QUEUE may be rebuilt first.

o The deepest indexed queues are rebuilt next.

To be able to index a queue, each message has to be read:

o For short messages where MAXSHORTMSGS 0 has been set, multiple

messages may exist on a single page

o For other messages, there will be one page read for each message

o For deep queues, there will be significant page set activity

The Effect of a Single Deep Indexed queue upon Queue Manager Restart

The following chart shows the measured CPU cost to start a V7.0.1 queue manager

when a single indexed queue has increasing depth. The queue manager has been

configured with “MAXSHORTMSGS 0” to allow up to 8 messages of 100 bytes per

4K page.

CSQI007I @VKW7 CSQIRBLD BUILDING IN-STORAGE INDEX FOR <queueName>

CSQI006I @VKW7 CSQIRBLD COMPLETED IN-STORAGE INDEX FOR <queueName>

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 25 of 45

CPU Time Taken to Restart Queue Manager

with a single deep indexed queue

Queue Manager configured with MAXSHORTMSGS 0

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100

Millions of Persistent Messages on Indexed Queue at Queue Manager Start

C
P

U
 S

e
c
o

n
d

s

V701 Linear (V701)

A trend line has been added to provide an indication of how long it would take to

restart a queue manager with 100 million small messages.

In our measurements for the single queue, the index rebuilding process was able to

use a single processor at approximately 15%.

This means that for a queue with 8 million short messages on the queue, the CPU time

taken was 42 seconds but the elapsed time was 280 seconds.

Using the trend line, we would expect that a queue with 100 million messages on

would use 530 CPU seconds and would take approximately 1 hour to restart on our 3-

processor LPAR of a z10 EC64.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 26 of 45

The Effect of Multiple Deep Indexed Queues upon Queue Manager Restart

The following measurement shows the measured CPU cost to restart a queue manager

with an increasing number of deep indexed queues – each on separate pagesets.

As the queue manager is not using “MAXSHORTMSGS 0”, the 4GB pagesets are

unable to hold more than 1 million messages of up to 3635 bytes.

CPU Time taken to restart Deep Indexed Queues

(Queue Manager restart on 3-way z/OS 1.9 LPAR on z10 EC64)

1 Message per Page

0

5

10

15

20

25

30

35

40

45

0 100000 200000 300000 400000 500000

Queue Depth

C
P

U
 S

e
c

o
n

d
s

1 Queue 2 Queues 3 Queues 4 Queues 5 Queues

The rebuilding of the indices is not a particularly CPU-intensive function so we are

not constrained by having 3 processors available when re-building more than 3 queues

concurrently. In this case the time taken to rebuild the queue indices is constrained by

the rate at which the data can be read from DASD.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 27 of 45

Security Manager

WebSphere MQ for z/OS version 7.0.1 uses 64-bit storage for security manager

purposes. This releases storage within the queue manager for other purposes and

means that effectively the number of user IDs that can access MQ resources is limited

only by the amount of auxiliary storage available.

How much storage does a single user use?

When a user issues a sign-on to CICS followed by a single transaction involving MQ,

there is an associated cost of approximately 8.80KB of 64-bit storage for each user –

which includes storage for a single queue. This is an approximate since the 64-bit

storage is allocated in 1MB blocks.

Monitoring the real storage usage by using the SDSF© option “DA” (active users),

we have found that the real storage usage increases for the queue manager address

space increases by approximately 53% of the 64-bit storage used, i.e. 1.17 frames or

4.66KB per user.

Whether using 1 or 50,000 user IDs, the queue managers 31-bit storage usage remains

consistent – i.e. SQA, CSA, ESQA and ECSA usage are not impacted by security

manager.

How much storage is required to access multiple MQ resources?

For each MQ resource accessed by a particular user, an average of 405 bytes of 64-bit

storage is used.

Why is storage retained after security timeout has been reached?

The security timeout refers to the number of minutes from last use that the

information about a user ID is retained by WebSphere MQ.

The security interval is the time that passes between an MQ process checking the last

use time of all the authenticated user IDs to determine whether the security timeout

period has passed.

Use the “DISPLAY SECURITY” command to review the security timeout period i.e.

CSQH015I MQPB Security timeout = 54 minutes
CSQH016I MQPB Security interval = 12 minutes

In releases prior to version 7.0.1, once the first security timeout following the security

interval had been reached, any memory used for an expired user was released and the

queue managers address space real storage usage would decrease by the

corresponding amount.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 28 of 45

The security manager in version 7.0.1 uses a pooling principle. The storage is

allocated when required and when it is no longer required, the storage is returned to

the pool.

This re-using of the pooled memory uses less CPU cycles than the initial allocation.

In our measurements we saw the re-use cost was approximately 10% less when

50,000 users performed activity against 10 MQ resources once all security data had

been expired and the storage returned to the pool compared to the initial cost of the

50,000 users performing activity against 10 MQ resources.

Predicting Memory Usage with Increasing User IDs

The following chart shows the amount of 64-bit storage used within the queue

managers address space for an increasing number of users.

There are 3 lines –

o Where each user uses 1 MQ resource

o Where each user uses 10 MQ resources

o Where each user uses 50 MQ resources.

WebSphere MQ v7.01: Above the Bar Storage Usage with Increasing Users

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10000 20000 30000 40000 50000 60000

Number of UserIds

A
b

o
v

e
 B

a
r

S
to

ra
g

e
 U

s
e

d
 (

M
B

)

1 Queue 10 Queues 50 Queues

The data was gathered using Workload Simulator “WSim” running CICS sign-on

followed by 1, 10 or 50 serialised transactions to put and get a non-persistent message

from up to 50 queues.

As previously reported, each user ID that uses an MQ resource that has security

enabled will use 8.80KB of 64-bit storage. Therefore if a system has 100,000 users

that each access 1 MQ queue, we can predict that security manager will use 859MB of

64-bit storage.

We can also predict that 53% of this 859MB will be used as real storage utilisation for

the queue manager, unless the operation system needs to steal the storage for other

tasks.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 29 of 45

Log Compression

In version 7.0.1 of WebSphere MQ for z/OS, it is possible to enable log compression

at a queue manager level. This means that for each queue manager on a system, log

compression is either enabled or disabled.

Log Compression Measurements

We measured CPU costs and effect on throughput for 5 idealised models.

The first measurement was a baseline where log compression was not enabled.

All subsequent measurements ran with log compression enabled.

The models are described as below:

1. Log compression not enabled. Contents of message are irrelevant with regards

to log compression.

2. Message data totally incompressible using RLE.

3. Message data compressible to approximately 90% of original length (i.e.

message data is approximately 10% compressible).

4. Message data compressible to approximately 50% of original length.

5. Message data compressible to approximately 10% of original length.

The 5 models were measured using messages of the following sizes:

o 100 bytes, 1KB, 4KB, 100KB, 1MB.

A request/reply-type scenario was run, where a transaction is defined as:

o Requester puts message and commits

o Server get and put message to indexed reply-to-queue and commit

o Requester gets message by index and commit.

A fixed number of applications (60 batch requesters, 10 batch servers) are run on a

single z/OS 1.9 image with 3 dedicated processors on a 2097-EC64.

Measurements were run a single queue manager with:

o TRACE(A) CLASS(3) enabled

o TRACE(S) enabled

o TRACE(G) disabled

o SMF active.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 30 of 45

Transaction Rate for Varying Percent Compressible Messages

6
5
2
8

5
8
0
1

3
9
8
7

4
7
9

4
2

6
1
9
8

5
4
3
1

4
1
5
2

5
4
7

4
3

5
9
7
0

6
0
1
3

4
7
4
7

8
4
4

7
9

6
4
3
9

6
0
9
7

5
3
8
7

1
5
5
0

1
7
5

5857
5524

3686

491

43

0

1000

2000

3000

4000

5000

6000

7000

100 1024 4096 100000 1048576

Message Size (bytes)

T
ra

n
s
a
c
ti

o
n

s
 /

 S
e
c
o

n
d

RLE at 0% RLE at 10% RLE at 50% RLE at 90% No Compression

As can be seen in the above chart, using RLE compression has enabled the throughput

to increase. For example, comparing the transaction rate for 100KB messages:

% Compressible Transactions / Second Delta % over

“none attempted”

None Attempted 491

0 479 -2.4

10 541 10.2

50 844 71.9

90 1550 315.6

In the above table, it can be seen that by compressing the 100KB message that

contains 90% compressible data, we are able to increase the transaction rate by over 3

times.

Attempting to compress messages regardless of whether or not the message is

compressible does not come at zero cost.

In the following chart, we can see that the cost of attempting to compress messages is

similar no matter how compressible the data is, but it is cheaper to process message

containing 90% compressible data compared to a message with 50% compressible

data.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 31 of 45

Transaction Cost for Varying Percent Compressible Messages

2
8
5

2
9
1

3
3
5 1

6
8
4

1
8
8
1
4

2
8
3

2
9
1

3
4
1 1

6
6
9

1
8
5
7
8

2
8
4

2
9
3

3
3
8 1

5
6
9

1
7
4
0
7

2
8
5

2
9
1

3
3
6 1

6
5
6

1
5
2
5
8

2
7
5

2
8
3

3
1
2 1
2
0
5

1
4
0
4
1

0

5000

10000

15000

20000

100 1024 4096 100000 1048576

Message Size (bytes)

M
ic

ro
s
e
c
o

n
d

s
 /

 T
ra

n
s
a
c
ti

o
n

 (
L

o
g

 S
c
a
le

)

RLE at 0% RLE at 10% RLE at 50% RLE at 90% No Compression

The following chart plots the amount of data written to MQ logs based on the

message size and the percentage compressible.

For small messages with little opportunity for data compression, log compression is

still able to save 0.33 KB per transaction by compressing MQ header structures.

KB Written per Transaction for Varying Percent Compressible Messages

(Log Scale on y-axis)

2
.2

2

4
.1

0

1
0
.3

2

2
0
8
.1

6

2
1
8
6
.3

5

2
.1

8

3
.8

8

9
.7

8

1
9
2
.7

2

1
9
8
9
.1

9

2
.3

5

3
.2

4

6
.6

8

1
1
3
.4

3

1
1
7
2
.2

4

2
.1

0

2
.3

7

3
.4

0

3
3
.8

5

3
3
5
.7

7

2.63

4.51

10.99

211.77

2203.68

1.00

10.00

100.00

1000.00

10000.00

100 1024 4096 100000 1048576

Message Size (bytes)

T
ra

n
s
a
c
ti

o
n

s
 /

 S
e
c
o

n
d

RLE at 0% RLE at 10% RLE at 50% RLE at 90% No Compression

The previous chart shows the amount of data being written to the log datasets for each

transaction.

In the measurements run, a transaction is:

o PUT+COMMIT (requester)

o GET+PUT+COMMIT (server)

o GET+COMMIT (requester)

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 32 of 45

Comparing the data for 1MB messages:

Compressible Message Amount of log data written per

transaction in MB

No 2.15

50% 1.14

90% 0.33

How do I know if Log Compression will help?

To help determine whether log compression is providing any benefit, the Accounting

and Statistics records have been updated to provide information on the success of data

compression.

The SMF 115 record includes the data and can be viewed by running CSQW1150.

The following diagram shows a sample data compression report generated by

CSQW1150, taken following a workload involving 100KB messages that were

approximately 50% compressible.

Only the first data compression section is used in version 7.0.1.

“Comp_fail” is where the message is larger after message compression has been

attempted.

Compression Before / After – if the numbers are similar, log compression has

achieved little benefit. In the above example, the amount of data has been compressed

to 51.9% of its original size, i.e. a compression of 48%.

z/OS:MV25 MQ QMGR:VKW8 Time: 2009227 05:32:32.25
Log manager : QJST
 Write_Wait 0, Write_Nowait 22417134, Write_Force 1729, WTB 0
 Read_Stor 12, Read_Active 0, Read_Archive 0, TVC 0
 BSDS_Reqs 3037, CIs_Created 2731415, BFWR 319241, ALR 0
 ALW 0, CIs_Offload 0, Checkpoints 0
 WUR 0, LAMA 0, LAMS 0
 Write_Susp 319215, Write_Reqs 107092, CI_Writes 5472360
 Write_Serl 0, Write_Thrsh 8, Buff_Pagein 0

 Data compression : 1
 Comp_Req 4905830, Comp_fail 0, Decomp_req 1, Fail 0
 Compression: Before 19788652806, After 10272387011 48%
 Decompression: Before 487, After 878 44%
 Data compression : 2
 Comp_Req 0, Comp_fail 0, Decomp_req 0, Fail 0
 Compression: Before 0, After 0 0%
 Decompression: Before 0, After 0 0%
 Data compression : 3
 Comp_Req 0, Comp_fail 0, Decomp_req 0, Fail 0
 Compression: Before 0, After 0 0%
 Decompression: Before 0, After 0 0%

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 33 of 45

Select on Get

In WebSphere MQ for z/OS version 7.0.1 it is possible to specify a message selection

criteria at the time the MQOPEN is issued.

Using this function ensures that all messages received by the application match the

selected criteria and that filtering does not have to be performed at the application,

whether the application is connected locally or as a client.

An optimisation has been added in version 7.0.1 to allow the application to use

Correlation ID as the selector.

Using Correlation ID as a Selector

Selection using correlationId or messageId follows an optimised path through

WebSphere MQ for z/OS version 7.0.1 and the selection occurs on the server-side

(i.e. the queue manager). This gives better selection than when using arbitrary

selectors.

To use the optimised path, the correlationId must be prefixed with “ID:” and must be

formatted correctly as 24 bytes represented as a hexadecimal string (of 48 characters).

Failure to adhere to this results in the selection using the more expensive client-side

methods.

In the above example, the hexadecimal represents a 24-byte ASCII string

“WMQ70SampleCorrelationID”.

Use of the provider-specific “ID:” tag is applicable to only the messageId and the

correlationId fields and is of practical use only with correlation identifiers.

The safest way to generate a correct identifier is to use

JMSMessageSet.setJMSCorrelationIDAsBytes. This allows the formatted version to

be set by getJMSCorrelationID. The number of bytes input should not be more than

24 otherwise the identifier will be truncated.

JMS Example:

Session.createConsumer(

 destination,

 “JMSCorrelationID=’ID:574d51373053616d706c65436f7272656c6174696f6e4944’”);

JMS Example:

Message.setJMSCorrelationIDAsBytes(

 “WMQ70SampleCorrelationID”.getBytes(“UTF8”));

Session.createConsumer(

 destination,

 “JMSCorrelationID=’” + message.getJMSCorrelationID() + “’”);

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 34 of 45

Changing the correlationId (or indeed any selector) that is being used to match

against, requires the old MessageConsumer to be discarded and a new

MessageConsumer to be opened. This is an expensive operation if it is performed for

every message that is processed since it involves closing and re-opening the

underlying queue.

For this reason, it is suggested that a unique correlationId for each client is used,

rather than the more typical design pattern of using the messageId of a sent message

as the correlationId of the reply message. Alternatively a temporary queue could be

used for each client.

Local Bindings using Local Queue with Single Queue Manager

A message put to a queue may or may not have been put with message properties.

Similarly a message gotten from the queue using a selection criteria on MQGET need

not have properties, provided the selection criteria is the correlationId.

The act of adding the first message property to our message added 12 microseconds to

the cost of the MQPUT. The next 14 properties added to the message added

approximately 1 microsecond per property to the cost of the MQPUT.

This suggests that if the required message can be identified using the correlationId,

then the cost of processing the message is significantly less.

Measurements:

The following charts show the maximum sustainable throughput using 1KB non-

persistent messages with batch application putting and getting the messages.

The test is configured thus:

o A single pair of queues. Both are indexed with INDXTYPE(CORRELID).

One is a request queue and the other is a reply queue.

o The getter applications are getting the messages as fast as possible. The

message is gotten and a reply message is put out of syncpoint.

o The putter applications put a message to the request queue and waits for a

corresponding message on the reply queue, before repeating.

o The applications are written in C and run in batch to eliminate as many of the

overheads incurred in a more complex environment, such as CICS or Java.

o All messages are put with 15 properties.

o The test begins with one putter and one getter application. The number of

putters and getters increases by one until there are fifteen putter and fifteen

getter applications.

o When there is one putter, all messages will be valid for the getter. As more

putters are added, the less likely it is that any message will be valid for a

particular getter, i.e. when there are 10 putters and 10 getting applications,

there is a 10% chance that any message is for a particular getter.

o There are 3 measurements

1. When the getter applications specify the correlation ID in the MQMD.

2. When the getter applications specify the correlation ID in the MQOD

SelectionString

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 35 of 45

3. When the getter applications specify a property in the MQOD

SelectionString.

Local Bindings using Local Queue with Single Queue Manager

Transaction Rate when match rate decreases

3 processor LPAR on z10 EC64 running z/OS 1.9

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Putter/Getter pairs

T
ra

n
s

a
c

ti
o

n
s

/S
e

c
o

n
d

Get By Correlid Select By Correlid Select using property

The above chart shows the achieved transaction rate.

Specifying the correlationID in the MQMD allows the best throughput rate. Using the

SelectionString to specify the correlationID is significantly faster than selecting a

message using a message property.

Local Bindings using Local Queue with Single Queue Manager

Transaction Cost when match rate decreases

3 processor LPAR on z10 EC64 running z/OS 1.9

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Putter/Getter pairs

T
ra

n
s

a
c

ti
o

n
 C

o
s

t
(m

ic
ro

s
e

c
o

n
d

s
)

Get By Correlid Select By Correlid Select using Property

The above chart shows the cost per transaction in CPU microseconds for the

described measurements. Essentially the transaction rates and transaction cost begin

to flatten out as the machine runs close to capacity.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 36 of 45

The following measurements are a repeat of the previous scenario, except the LPAR

used has 17 processors available. This should remove any CPU constraints.

Local Bindings using Local Queue with Single Queue Manager

Transaction Rate when match rate decreases

17 processor LPAR on z10 EC64 running z/OS 1.9

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Putter/Getter pairs

T
ra

n
s

a
c

ti
o

n
s

/S
e

c
o

n
d

Get By Correlid Select By Correlid Select using property

The above chart suggests that for “Get by Correlid”, the maximum achievable

transaction rate for a single queue has been reached.

The transaction rate for “Select using property” is decreasing as each message needs

to be evaluated potentially by more and more getter tasks to determine if the particular

message is required by the particular getter.

Local Bindings using Local Queue with Single Queue Manager

Transaction Cost when match rate decreases

17 processor LPAR on z10 EC64 running z/OS 1.9

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Putter/Getter pairs

T
ra

n
s

a
c

ti
o

n
 C

o
s

t
(m

ic
ro

s
e

c
o

n
d

s
)

Get By Correlid Select By Correlid Select using Property

The above chart shows how the cost of additional getter tasks parsing more messages

increases at approximately n-squared.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 37 of 45

Does the depth of the queue affect message selection rates?

In the earlier section “Cost of getting messages from indexed queues” it has been

shown that as the depth of the indexed queue increases, the cost of the MQGET

increases and the transaction rate decreases.

When selecting messages using the correlationID either by the MQMD or the MQOD

SelectionString, the transaction rate and cost are similar.

When selecting messages by specifying a selection string other than correlationID in

the MQOD SelectionString, the selection process needs to re-scan all the messages on

the queue, each time the MQGET is issued. The effect of this can be seen in the

following 2 charts.

Message Selection on Deep Queues - Transaction Rate

3 processor LPAR on z10 EC64 running z/OS 1.9

Message has 1 property

17620.50 17193.3017568.20 17111.9015429.90 0.12
0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

16000.00

18000.00

0 100000

Queue Depth

T
ra

n
s

a
c

ti
o

n
s

/S
e

c
o

n
d

Get by CorrelId Select by CorrelId Select using Property

Message Selection on Deep Queues - Transaction Cost

3 processor LPAR on z10 EC64 running z/OS 1.9

Message has 1 property

59.08 63.2359.38 61.5465.74 998836.79
1.00

10.00

100.00

1000.00

10000.00

100000.00

1000000.00

0 100000

Queue Depth

C
o

s
t
in

 M
ic

ro
s
e

c
o

n
d

s
 p

e
r

T
ra

n
s
a

c
ti

o
n

 (
L

o
g

 S
c

a
le

)

Get by CorrelId Select by CorrelId Select using Property

The above chart shows that when selecting using a property from a queue that has

100,000 messages that are not of interest to the selecting application, the cost of

getting the required message is almost 1 CPU second, i.e. almost 1,000,000 CPU

microseconds.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 38 of 45

Local Bindings using Shared Queue with 1 Queue Manager in QSG

The following charts show the maximum sustainable throughput using 1KB non-

persistent messages with batch application putting and getting the messages to and

from shared queues.

The test is configured thus:

o A single pair of queues in a queue sharing group. Both queues are in the same

coupling facility structure, also both are indexed using

INDXTYPE(CORRELID). One is a request queue and the other is a reply

queue.

o The getter applications are getting the messages as fast as possible. The

message is gotten and a reply message is put out of syncpoint.

o The putter applications put a message to the request queue and waits for a

corresponding message on the reply queue, before repeating.

o The applications are written in C and run in batch to eliminate as many of the

overheads incurred in a more complex environment, such as CICS or Java.

o All messages are put with 15 properties.

o The test begins with one putter and one getter application. The number of

putters and getters increases by one until there are fifteen putter and fifteen

getter applications.

o When there is one putter, all messages will be valid for the getter. As more

putters are added, the less likely it is that any message will be valid for a

particular getter, i.e. when there are 10 putters and 10 getting applications,

there is a 10% chance that any message is for a particular getter.

o There are 3 measurements

1. When the getter applications specify the correlation ID in the MQMD.

2. When the getter applications specify the correlation ID in the MQOD

SelectionString

3. When the getter applications specify a property in the MQOD

SelectionString.

Local Bindings using Shared Queue with Single Queue Manager

Transaction Rate when match rate decreases

3 processor LPAR on z10 EC64 running z/OS 1.9

3 processor internal CF (CFCC 16)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Putter/Getter pairs

T
ra

n
s

a
c

ti
o

n
s

/S
e

c
o

n
d

Get By Correlid Select By Correlid Select using property

The above chart shows the achieved transaction rate. As with local queues, the

MQGET using correlationID is significantly faster than using the select on get

functionality.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 39 of 45

Local Bindings using Shared Queue with Single Queue Manager

Transaction Cost when match rate decreases

3 processor LPAR on z10 EC64 running z/OS 1.9

3 processor internal CF (CFCC 16)

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Putter/Getter pairs

T
ra

n
s

a
c

ti
o

n
 C

o
s

t
(m

ic
ro

s
e

c
o

n
d

s
)

Get By Correlid Select By Correlid Select using Property

The above chart shows the transaction cost for the 3 different measurements. The

costs include both the requester and server applications as well as the associated

queue manager costs for each transaction.

Local Bindings using Shared Queue with 2 Queue Managers in
QSG

The following charts show the maximum sustainable throughput using 1KB non-

persistent messages with batch application putting and getting the messages to and

from shared queues.

In this scenario, there are 2 queue managers in the queue sharing group on separate

LPARs of a z10 EC64. Each LPAR has 3 dedicated processors and are running z/OS

1.9.

The test is configured thus:

o A single pair of queues in a queue sharing group. Both queues are in the same

coupling facility structure, also both are indexed using

INDXTYPE(CORRELID). One is a request queue and the other is a reply

queue.

o The getter applications are getting the messages as fast as possible. The

message is gotten and a reply message is put out of syncpoint. The getter

application is on LPAR 2.

o The putter applications put a message to the request queue and waits for a

corresponding message on the reply queue, before repeating. The putting

application is on LPAR 1.

o The applications are written in C and run in batch to eliminate as many of the

overheads incurred in a more complex environment, such as CICS or Java.

o All messages are put with 15 properties.

o The test begins with one putter and one getter application. The number of

putters and getters increases by one until there are fifteen putter and fifteen

getter applications.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 40 of 45

o When there is one putter, all messages will be valid for the getter. As more

putters are added, the less likely it is that any message will be valid for a

particular getter, i.e. when there are 10 putters and 10 getting applications,

there is a 10% chance that any message is for a particular getter.

o There are 3 measurements

1. When the getter applications specify the correlation ID in the MQMD.

2. When the getter applications specify the correlation ID in the MQOD

SelectionString

3. When the getter applications specify a property in the MQOD

SelectionString.

Transaction Rate Across a Coupling Facility when match rate decreases

Local Bindings using Shared Queue with 2 Queue Managers

2 LPARs, each with 3 processors on z10 EC64 running z/OS 1.9

3 processor internal CF (CFCC 16)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Putter/Getter pairs

T
ra

n
s

a
c

ti
o

n
s

/S
e
c
o

n
d

Get By Correlid Select By Correlid Select using property

The above chart shows the achieved transaction rate when using message selection

across a coupling facility.

The “Get by Correlid” measurement is optimised such that the Coupling Facility is

able to pass the appropriate message to the getting application.

The “Select using Correlid” measurement sees the getting queue manager given the

message with the appropriate correlationID but then parses the message to ensure that

the JMS correlationID has not been overridden.

In the “Select using Property” measurement, the getting queue manager has to get

every message from the queue and parse the message to determine whether the

message is required by the particular getter task.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 41 of 45

The following chart shows the cost per transaction. Whilst the cost of the “Select by

Correlid” measurement tracks the “Get by Correlid”, the “Select using Property” costs

are significantly higher. This high cost has been explained above.

Transaction Cost Across a Coupling Facility when match rate decreases

Local Bindings using Shared Queue on 2 Queue Managers

2 LPARs, each with 3 processors on z10 EC64 running z/OS 1.9

3 processor internal CF (CFCC 16)

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Putter/Getter pairs

T
ra

n
s

a
c

ti
o

n
 C

o
s

t
(m

ic
ro

s
e

c
o

n
d

s
)

Get By Correlid Select By Correlid Select using Property

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 42 of 45

Local Bindings with JMS Selectors and Correlation ID

The following chart shows the maximum sustainable throughput using 1KB non-

persistent messages with JMS applications putting and getting the messages.

The test is configured thus:

o A single local queue is used.

o The JMS applications are running in the USS environment.

o The getter application is getting messages as fast as possible.

o The putter application is throttled to ensure the queue depth does not increase to a

point where the messages are out of buffer pools.

o The test starts with 1 putting application and 1 getting application. The number of

application increases by 1 until there are 10 putting and 10 getting applications.

o When there is 1 putting application, all messages put will be valid for the getter.

As more putters are added, the less likely it is that any message will be for any

particular getter, i.e. when there are 10 putters and 10 getters, there is only a 10%

chance that any message is for a particular getter.

JMS Selector Performance, z/OS Queue Manager

local bindings

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8 9 10

Application Threads / Selection Match Ratio

M
a
x
.

S
u

s
ta

in
a
b

le
 M

s
g

 R
a
te

No Selection Selectors

CorrelidAsBytes CorrelidAsString

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 43 of 45

Client Bindings with JMS Selectors and Correlation ID

The following chart shows the maximum sustainable throughput using 1KB non-

persistent messages with JMS applications putting and getting the messages.

The test is configured thus:

o A single local queue is used.

o The JMS applications are running on a client machine

o The getter application is getting messages as fast as possible.

o The putter application is throttled to ensure the queue depth does not increase to a

point where the messages are out of buffer pools.

o The test starts with 1 putting application and 1 getting application. The number of

application increases by 1 until there are 10 putting and 10 getting applications.

o When there is 1 putting application, all messages put will be valid for the getter.

As more putters are added, the less likely it is that any message will be for any

particular getter, i.e. when there are 10 putters and 10 getters, there is only a 10%

chance that any message is for a particular getter.

JMS Selector Performance, z/OS Queue Manager

client bindings

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10

Application Threads / Selection Match Ratio

M
a
x
.

S
u

s
ta

in
a
b

le
 M

s
g

 R
a
te

No Selection Selectors

CorrelidAsBytes CorrelidAsString

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 44 of 45

Measurement Environment and Methodology

Hardware and Software

The hardware configuration was:

• CPU: 3-CPU logical partition (LPAR) of a z10 EC64 (2097-EC64). An

internal CF with 3 floating processors was used for shared queue

measurements.

• DASD: FICON-connected Enterprise Storage Server (ESS) Model F20.

Software levels were:

• z/OS 1.9

• WebSphere MQ v6 GA

• WebSphere MQ v7.0.1 pre-GA levels

• CICS CTS 3.2

• DB2 v9

• IMS v10

• Java 1.5

Client testing was performed on:

• 64-bit RHEL Linux on 4-way XEON 3.66 Ghz processor.

WebSphere MQ for z/OS V7.0.1

Performance Report

Page 45 of 45

CPU cost calculations on other zSeries systems

CPU costs can be translated from a measured system to the target system on a different
z/Series machine by using Large Systems Performance Reference (LSPR) tables. These are
available at: http://www.ibm.com/servers/eserver/zseries/lspr/zSerieszOS.html

This example shows how to estimate the CPU cost for a zSeries 2064-1C5 where the
measurement results are for a 2084-304:

1. The LSPR gives the 2064-1C5 an Internal Throughput Ratio (ITR) of 2.45
(this is for a “Mixed Workload”, which we found best fits WMQ in our environment).

2. As the 1C5 is a 5-way processor, the single engine ITR is
2.45 / 5 = 0.49

3. The “Mixed Workload” ITR of the 2084-304 used for the measurement is 3.60.
The 304 is a 4-way processor. Its single engine ITR is
3.60 / 4 = 0.90

4. The 2064-1C5 / 2084-304 single engine ratio is
0.49 / 0.90 = 0.54 approx

this means that a single engine of a 2084-304 is nearly twice as powerful as that of a 2064-
1C5.

5. Take a CPU cost of interest from this report, say x CPU microseconds (2084-304) per
message, then the equivalent on a 2064-1C5 will be
 x / 0.54 CPU microseconds/message

6. To calculate CPU busy, calculate using the number of processors multiplied either by 1000
(milliseconds) or 1000000 (microseconds) to find the available CPU time per elapsed second.

I.E. a 2064-1C5 has 5 processors so has 5,000 milliseconds CPU time available for every
elapsed second.

So, for a CPU cost of interest from the report of 640 milliseconds on a 2064-1C5, the CPU
busy would be:

640 / (5*1000) * 100 (to calculate as a percentage) = 12.8 %

