
Performance report – SupportPac MP1H
WebSphere MQ for z/OS version 7.1.0

Version 1.2

WebSphere MQ Performance
IBM UK Laboratories

Hursley Park
Winchester
Hampshire
SO21 2JN

Property of IBM

WebSphere MQ for z/OS V7.1.0
Performance report

Take Note!

Page 2 of 140

Before using this report, please be sure to read the paragraphs on “disclaimers”, “warranty and liability exclusion”,
“errors and omissions” and other general information paragraphs in the “Notices” section below.

Third edition, May 2013.

This edition applies to WebSphere MQ for z/OS version 7.1.0 (and to all subsequent releases and modifications until
otherwise indicated in new editions).

© Copyright International Business Machines Corporation 2013.
All rights reserved.

Note to U.S. Government Users
Documentation related to restricted rights.
Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

WebSphere MQ for z/OS V7.1.0
Performance report

Notices
DISCLAIMERS
The performance data contained in this report were measured in a controlled environment. Results obtained in other
environments may vary significantly.

You should not assume that the information contained in this report has been submitted to any formal testing by IBM.

Any use of this information and implementation of any of the techniques are the responsibility of the licensed user.
Much depends on the ability of the licensed user to evaluate the data and to project the results into their own operational
environment.

WARRANTY AND LIABILITY EXCLUSION

The following paragraph does not apply to the United Kingdom or any other country where such provisions are
inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore this statement
may not apply to you.
In Germany and Austria, notwithstanding the above exclusions, IBM's warranty and liability are governed only by the
respective terms applicable for Germany and Austria in the corresponding IBM program license agreement(s).

ERRORS AND OMISSIONS

The information set forth in this report could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; any such change will be incorporated in new editions of the
information. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
information at any time and without notice.

INTENDED AUDIENCE

This report is intended for Architects, Systems Programmers, Analysts and Programmers wanting to understand the
performance characteristics of WebSphere MQ for z/OS V7.1.0. The information is not intended as the specification of
any programming interfaces that are provided by WebSphere MQ. Full descriptions of the WebSphere MQ facilities are
available in the product publications. It is assumed that the reader is familiar with the concepts and operation of
WebSphere MQ.

LOCAL AVAILABILITY

References in this report to IBM products or programs do not imply that IBM intends to make these available in all
countries in which IBM operates. Consult your local IBM representative for information on the products and services
currently available in your area.

ALTERNATIVE PRODUCTS AND SERVICES

Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any
IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

USE OF INFORMATION PROVIDED BY YOU
IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any
obligation to you.

Page 3 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

TRADEMARKS and SERVICE MARKS

The following terms, used in this publication, are trademarks or registered trademarks of the IBM Corporation in the
United States or other countries or both:

• IBM®
• z/OS®
• zSeries®
• zEnterprise®
• MQSeries®
• CICS®
• DB2 for z/OS®
• IMS™
• MVS™
• z9®
• z10™
• FICON®
• WebSphere®

Other company, product and service names may be trademarks or service marks of others.

EXPORT REGULATIONS

You agree to comply with all applicable export and import laws and regulations.

Page 4 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Summary of Amendments

Date Changes

April 2012 Initial Version

November 2012 Update to backup and recovery of structures.

May 2013 Correction of shared queue costs when using multiple
queue managers.

Page 5 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Table of Contents
Performance highlights...8
Existing function..9

General statement of regression...9
Storage usage..10

CSA usage..10
Initial CSA usage..10
CSA usage per connection..10

Object sizes...11
PAGESET(0) Usage...11
Virtual Storage Usage..12

Capacity of the queue manager and channel initiator...13
How much storage does a connection use?...13
How many clients can I connect to my queue manager?...14
How many channels can I run to or from my queue manager?...15

New function..16
CFLEVEL(5) – Shared message data sets (SMDS)...17

What is the problem being addressed?..17
Why use CFLEVEL(5)?..18

Performance of storing and accessing large messages on shared queues.................................18
Increasing the capacity of the Coupling Facility...19

Is there benefit in offloading all messages...20
Initial Configuration..22

What impact does CFLEVEL(5) have on queue manager storage?...22
How large to make my SMDS datasets...22
Where to allocate SMDS?...23
What is the maximum number of messages I can store?..23
Should I pre-format the dataset?...24
Should I allow SMDS to expand and if so, by how much?..25
Who pays for messages stored on Shared Message Data Sets?..26

Recovery..27
How long will it take to backup my structure?...27
Do multiple structures affect recovery?..27
How long will it take to recover my structure?...28

How do I know what is going on?...29
Messages...29

Are the default options the correct ones for me?...32
DSBUFS..32
DSBLOCK..36
How should I size my DSBLOCK?..37
OFFLDnTH / OFFLDnSZ..38

CFLEVEL(5) and small messages...39
Can I switch between offloading SMDS and DB2 mid-workload?...40
Predicting limits...41

V6 Compatibility Mode..42
Channel authentication rules..43

Page 6 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Channel authentication and the effect on queue manager restart..45
Queue manager trace (64-bit global trace)...46

Performance observations..46
Recommendations..47

Topic scavenger / queue manager attribute TREELIFE...48
What is it?..48
Can you see it running?...48
How do you configure it?..48
What is the impact of not running frequently enough?...48
What is the impact of running too frequently?..48
How do I know what is the right frequency?...49
Why are my topics still visible after the topic scavenger has run?..49
Topic scavenger measurements..50

Topic scavenger on an idle queue manager – with no topics..50
Topic scavenger on idle queue manager – with 100,000 Topics...51
Effect of topic scavenger on subscribe..52
DISPLAY TPSTATUS with many topics in your system...53

Performance data..54
Shared message data set scenarios...54

Single queue manager – non-persistent out-of-syncpoint...55
Single queue manager – non-persistent server-in-syncpoint..57
Single queue manager – persistent in-syncpoint...59
Two queue managers – data sharing, non-persistent, out-of-syncpoint....................................61
Two queue managers – non-data sharing, non-persistent, out-of-syncpoint.............................63
Two queue managers – data sharing, non-persistent, in-syncpoint...66
Two queue managers – non-data sharing, non-persistent, in-syncpoint...................................69
Three queue managers – data sharing, non-persistent, out of syncpoint..................................71
Three queue managers – data sharing, non-persistent, in-syncpoint..73
Three queue managers – data sharing, persistent, in-syncpoint..75
Six queue manager – data sharing, non-persistent, server in-syncpoint...................................78
Six queue manager – data sharing, persistent, server in-syncpoint...79
Scaling – non-persistent large shared queue messages...80

Non-persistent 10KB messages..81
Non-persistent 100KB messages..83
Non-persistent 1MB messages...85
Non-persistent 1MB messages – multiple applications per queue pair................................88

Appendix A – Regression...92
Regression – Private Queue...93
Regression – shared queue - CFLEVEL(4)...105
Regression – moving messages across channels...116
Regression – moving messages across cluster channels..123
Regression – moving messages across SVRCONN channels...128
Regression – IMS bridge...131
Regression – Trace...134

Appendix B – System configuration..138

Page 7 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Performance highlights
This report focuses on performance change since the previous versions (v6.0.0, v7.0.0 and v7.0.1)
and on the performance of new function in this release.
SupportPac MP16 “Capacity Planning and Tuning for WebSphere MQ for z/OS” will continue to be
the repository for ongoing advice and guidance learned as systems increase in power and experience
is gained.

Page 8 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Existing function

General statement of regression

CPU costs and throughput are not significantly different in version 7.1.0 for typical messaging
workloads.

A user can see how that statement has been determined by reviewing details of the regression test
cases in Appendix A.

Some areas where scalability was improved have led to a single queue manager being able to
process in excess of 1 million non-persistent messages per second on a 30-way LPAR of a
zEnterprise 196 (2817). For more details of this measurement, see Appendix A “Regression –
Private Queue”.

Page 9 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Storage usage
Virtual storage constraint relief has not been a primary focus of this release, however new function
in version 7.1.0 such as CFLEVEL(5) Shared Message Data Set offload capability and CHLAUTH
cache uses 64-bit storage.

CSA usage

Common Service Area (CSA) storage usage is important as the amount available is restricted by the
amount of 31-bit storage available and this is limited to an absolute maximum of 2GB.

The CSA is allocated in all address spaces in an LPAR, so its use reduces the available private
storage for all address spaces.

In real terms, the queue manager does not have 2GB of storage to use – as there is some amount
used by MVS for system tasks and it is possible for individual customer sites to set the limit even
lower.

From the storage remaining of the 2GB of 31-bit storage, a large (but configurable) amount of
storage is used by the queue manager for buffer pools.

The storage remaining is available for actually connecting to the queue manager in a variety of
ways and using WebSphere MQ to put and get messages.

Initial CSA usage

CSA usage increased by less than 0.2MB between V6.0.0 and V7.1.0 when similarly configured
queue managers are started.

CSA usage per connection

In Websphere MQ for z/OS version 6, the CSA usage was typically 2.4KB per connection.

In Websphere MQ for z/OS version 7.1 the CSA usage has increased slightly:
• For local connections, MCA channels and SVRCONN channels with SHARECNV(0), CSA

usage is 2.43KB per connection.

• For SVRCONN channels with SHARECNV(1), CSA usage is approximately 4.85KB per
connection

• For SVRCONN channels with SHARECNV(10), CSA usage is approximately 2.7KB per
connection (based on 10 clients sharing a channel instance)

Page 10 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Object sizes
When defining objects the queue manager may store information about that object in pageset 0 and
may also require storage taken from the queue manager's extended private storage allocation.
The data shown on the following 2 charts only includes the storage used when defining the objects.

PAGESET(0) Usage

Chart 1: Pageset usage by object type

Page 11 of 140

Shared Queues

Private Queues

Alias Queue

Indexed Queues

Xmit Queue

Model Queue (TempDyn)

Model Queue (PermDyn)

Remote Queues

Namelist

Process

Storage Class

Sender Channels

Receiver Channels

Server channels

Requester Channels

SVRCONN Channel: SHARECNV(0)

SVRCONN Channel: SHARECNV(1)

0 500 1000 1500 2000 2500

0

1024

345

1024

1024

820

820

459

164

680

287

1024

1024

1024

1024

1024

0

0

1024

345

1024

1024

820

820

459

164

680

287

1024

1024

1024

1024

2048

2048

0

1364

512

1369

1364

1024

1024

685

164

680

287

2048

1024

2048

1024

2048

2048

PageSet(0) usage within Queue Manager by object type

(Bytes per object)

V600 V701 V710

WebSphere MQ for z/OS V7.1.0
Performance report

Virtual Storage Usage

Chart 2: Virtual Storage Usage by object type

NOTE: CHLAUTH objects are cached in 64-bit storage.

Page 12 of 140

Shared Queues

Private Queues

Alias Queue

Indexed Queues

Xmit Queue

Model Queue (TempDyn)

Model Queue (PermDyn)

Remote Queues

Namelist

Process

Storage Class

Sender Channels

Receiver Channels

Server channels

Requester Channels

SVRCONN Channel: SHARECNV(0)

SVRCONN Channel: SHARECNV(1)

0 5 10 15 20 25 30 35 40 45 50

13.20

2.00

2.30

27.30

3.10

2.60

2.60

2.40

2.10

1.30

2.00

1.60

1.60

1.60

1.60

1.60

0.00

28.70

2.80

5.00

46.20

6.10

5.50

5.50

5.10

6.60

1.80

2.90

1.60

1.80

1.70

1.70

4.40

4.40

32.50

3.40

5.10

47.50

7.10

6.40

6.50

4.80

7.40

1.40

2.60

4.40

0.30

4.40

0.40

4.40

4.40

Extended Private Storage usage within Queue Manager by object type

(KB per object)

V600 V701 V710

WebSphere MQ for z/OS V7.1.0
Performance report

Capacity of the queue manager and channel initiator

How much storage does a connection use?

When an application connects to a queue manager , an amount of storage is allocated from the
queue manager's available storage.

Some of this storage is held above 2GB, such as security data, and other data is stored on storage
taken from that available below the 2GB bar. In the following examples, only allocations from
below the 2GB bar are reported.

Typical storage usage is around 22KB per connection however there is additional usage in the
following (non-exhaustive) cases:

• Where connection is over a SHARECNV(1) channel, the usage increases to 36.5KB
• Where connection is over a SHARECNV(10) channel and has a CURSHCNV of 10, the

usage is 23KB per connection (228KB per channel)
• When connection is over a SHARECNV(1) channel to shared queues - either CFLEVEL(4)

or CFLEVEL(5) backed by SMDS, the storage is 43.5KB, giving an additional shared queue
overhead of 7KB

These numbers are based upon the connecting applications accessing a small number of queues. If
your application has more than 32 objects open, the amount of storage used will be increased.

If the number of messages held in a unit of work is large and the size of the messages is large then
additional lock storage may be required.

Page 13 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

How many clients can I connect to my queue manager?

The maximum number of clients you can connect to a queue manager depends on a number of
factors, for example:

• Storage available in the queue manager's address space.

• Storage available in the channel initiator's address space.

• How large the messages being put or got are.

• Whether the channel initiator is already running its maximum number of connected clients
(either 9,999 or the value specified by channel attributes like MAXCHL).

The table below shows the typical footprint when connecting a client application to a z/OS queue
manager via the channel initiator.

The value used in the SHARECNV channel attribute can affect the size of the footprint and
consideration as to the setting should be taken. Guidance on the SHARECNV attribute can be found
in SupportPacs MP16 “Capacity Planning and Tuning Guide” and MP1F “WebSphere MQ for z/OS
V7.0 Performance Report”.

Channel initiator footprint
(KB / SVRCONN channel)

Message size (KB)

WebSphere
MQ release

SHARECNV 1 10 32 64

V600 N/A 155 155 210 -

V701 0 98 113 176 207

V710 0 88 102 168 199

V701 1 176 198 290 353

V710 1 173 194 285 349

V701 10 264 284 708 1069

V710 10 253 276 698 1055

NOTE: For the SHARECNV(10) channels measurements, the channels are running with 10
conversations per channel instance, so the cost per conversation is the value in the table divided by
10.

Page 14 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

How many channels can I run to or from my queue manager?

This depends on the size of the messages flowing through the channel.

A channel will hold onto a certain amount of storage for its lifetime. This footprint depends on the
size of the messages.

Message size 1KB 32KB 64KB 1MB

Footprint per channel
(channel initiator)

103 110 121 1134

Overhead of message size
increase on 1KB messages

+7K +18K +1029K

Page 15 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

New function
This release has introduced a number of items that can affect performance and these include:

1. CFLEVEL(5) - Shared Message Data Sets (SMDS)

2. V6COMPAT mode

3. CHLAUTH overhead

4. 64-bit global trace

5. Topic scavenger (queue manager “TREELIFE” attribute)

Page 16 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

CFLEVEL(5) – Shared message data sets (SMDS)

What is the problem being addressed?

WebSphere MQ for z/OS allows messages to be stored on shared queues. These messages are
typically stored in a z/OS Coupling Facility (CF). This allows all the queue managers in the Queue
Sharing Group (QSG) to access the messages.

Using queue sharing, WebSphere MQ applications are scalable and highly available.

Prior to WebSphere MQ for z/OS version 7.1.0, all messages put to shared queues that were larger
than 63KB were stored on DB2 tables, with entries associated to those messages stored in the CF.

Messages that exceed 63KB see a significant drop in performance when accessing the
messages involves DB2.

Coupling Facility storage is expensive, often meaning that capacity is restricted by budgetary
constraints.

WebSphere MQ for z/OS version 7.1.0 introduces a new level of CF structure – CFLEVEL(5) to
store large messages in Shared Message Data Sets (SMDS), instead of DB2 for messages larger
than 63KB.

The term “offload” is used to mean the MQPUT-time process which stores the message payload in
either SMDS or DB2 and a reference to this payload in the CF. The CF reference is used for
locating the message, message selection and locking.

In addition, a 3-tiered message size offload threshold is introduced to increase the capacity of the
CF.

WebSphere MQ for z/OS version 7.1.0 still requires DB2 to be available to hold definitions for
shared and group objects and status.

Page 17 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Why use CFLEVEL(5)?

There are 2 primary reasons to use CFLEVEL(5) structures:
1) Performance of storing and accessing large messages on shared queues
2) Increasing the capacity of the Coupling Facility.

Performance of storing and accessing large messages on
shared queues

Queues defined to CF structures at CFLEVEL(5) have large message data offloaded to shared
message data sets (SMDS) instead of DB2, and the offload threshold and size parameters are
respected.

Prior to CFLEVEL(5), messages put onto shared queues that were larger than 63KB were offloaded
onto DB2. This offloading process was both relatively slow and expensive as can be seen in the
following chart.

Chart 3: Achieved transaction rate for 1 queue manager in QSG

There is still a marked step in performance when the message size increases from 63KB to 64KB,
but whilst the achieved transaction rate for messages less than 64KB is comparable between CF
levels 4 and 5, once the messages are 64KB or larger, there is a 3-times increase in transaction rate
in this simple configuration.

Page 18 of 140

1024 2048 8192 32768 64512 65536 102400 523264

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

433 428 275

1925 1561
596

Transaction Rate - Comparing CFLEVEL(4) with CFLEVEL(5)

Single Qmgr, Request/Reply, Server in Syncpoint
CFLEVEL(4) CFLEVEL(5) OFFLOAD(SMDS)

Message Size (bytes)

T
ra

n
sa

ct
io

n
s/

S
e

co
n

d

WebSphere MQ for z/OS V7.1.0
Performance report

Increasing the capacity of the Coupling Facility

CFLEVEL(5) provides the ability to increase the capacity of the CF by implementing a 3-tiered
offload procedure.

Implementing tiered thresholds allows higher capacity whilst not penalising performance until the
CF resource becomes constrained.

By default, the CFLEVEL(5) structure will offload messages greater than 63KB to the shared
message data set.

In addition, there are 3 default thresholds:
1. Offload all messages larger than 32KB (including headers) when the structure is 70% full.
2. Offload all messages larger than 4KB (including headers) when the structure is 80% full
3. Offload all messages when the structure is 90% full.

Example: Consider a 0.5GB structure that has only 16KB messages.

CFLEVEL(4)
A 16KB message would require 1 entry and 66 elements (applying algorithm detailed in the
“Shared Queue Setup Considerations - Application Structures of SupportPac MP16).

A 0.5GB structure would support approximately 24,000 messages (with ALLOWAUTOALT=YES)

CFLEVEL(5)
16KB messages stored in the CF would still require 1 entry and 66 elements, whereas all offloaded
messages use 1 entry and 2 elements.

For example, 16KB messages would not be offloaded until the structure reaches 80% full.
This means that 17,101 messages are stored in their entirety in the CF. Upon reaching the 80%
threshold, remaining messages are offloaded to the SMDS datasets. Provided the SMDS datasets
are large enough, the CF would then be able to store a total of 158,166 messages.

Page 19 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Is there benefit in offloading all messages

(Or how will performance be affected if the messages are being offloaded?)
Use a CFLEVEL(5) structure to set thresholds at which messages are offloaded to shared message
datasets rather than storing the message payload in the CF.

By lowering these thresholds, it is possible to store all messages in the shared message datasets,
significantly increasing the capacity of the CF, but this does affect the performance.

When putting a message to a shared queue, the queue manager must decide where to store it.
If the queue manager determines that the message is to be stored in the shared message dataset, it
will drive one or more I/O requests to write the data to the shared message dataset and then, upon
success, will update the CF.

What to consider:
• Type of links to Coupling Facility
• Location of Coupling Facility

In the case of a CF on lower speed hardware or with slower links there may be benefit in storing
the message payload in SMDS and only using the CF for the minimum storage.

As an example, consider the following configuration:
MVS LPAR running on z10 EC64, connected to an external CF on a z9 (2094-S38) via CFP link.

By comparing transaction rates when using a CFLEVEL(5) structure where the messages are stored
in the CF against a CFLEVEL(5) structure where all messages are offloaded, we can determine
whether it is more efficient to offload messages.

In this particular example, the CF is physically located within 100 metres and the majority of calls
to the CF are asynchronous.

Using messages of 32KB and larger, you see comparable performance between storing the entire
message in the CF and storing the message data in the SMDS.

Your configuration may be different and if CF capacity/performance is an issue with larger
messages you may consider offloading all messages of 32KB or larger when a remote CF is
involved.

The comparable costs between SMDS offloaded shared and private queues, coupled with increased
number of messages for a given size of CF suggests that using shared queues is now possible for
new classes of application.

Page 20 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Chart 4: Achieved transaction rate with remote Coupling Facility

Chart 5: Achieved transaction cost with remote Coupling Facility

Page 21 of 140

0 10000 20000 30000 40000 50000 60000 70000

0

50

100

150

200

250

300

350

400

450

Achieved Transaction Cost with remote Coupling Facility
Request/Reply Server in Syncpoint

CFLEVEL(5) OFFLOAD(SMDS) offload messages > 63KB
CFLEVEL(5) OFFLOAD(SMDS) offload all messages

Message Size

T
ra

ns
ac

tio
 C

o s
t

0 10000 20000 30000 40000 50000 60000 70000

0

200

400

600

800

1000

1200

1400

1600

Achieved Transaction Rate with remote Coupling Facility
Request/Reply Server in Syncpoint

CFLEVEL(5) OFFLOAD(SMDS) offload messages > 63KB
CFLEVEL(5) OFFLOAD(SMDS) offload all messages

Message Size

T
ra

ns
ac

tio
n

ra
te

WebSphere MQ for z/OS V7.1.0
Performance report

Initial Configuration

What impact does CFLEVEL(5) have on queue manager
storage?

The queue manager is primarily running with 31-bit addressability. This means that the queue
managers address space is limited to storage below a 2GB limit.

In reality, the queue manager will only have a subset of this 2GB to use - in our systems the queue
manager has 1.4GB available. Of this 1.4GB storage, the queue manager uses some for buffer
pools, trace tables etc. The CSQY220I message gives an indication of how much storage is
available e.g.

CSQY220I @VKW1 Queue manager storage usage
: local storage : used 576MB,free 884MB : above bar : used 215MB,free >10GB

For each structure that the queue manager connects to, some 64-bit “above bar” storage space is
reserved. This is calculated by multiplying the value of the DSBLOCK and DSBUFS attributes,
which may be specified in the DEFINE CFSTRUCT command.

For example, if the default values are used, i.e. DSBLOCK(256K) and DSBUFS(100), a total of
25MB of above bar queue manager storage will be reserved for use for each structure.

This means that if there are 63 application structures available and each has the default values,
1575MB of above bar storage will be used by each queue manager that is connected to the 63
application structures and this storage is reserved solely for SMDS usage.

How large to make my SMDS datasets

It is possible to define shared message data sets up to a maximum of 16TB. The following table
offers a guide as to the capacity that this offers:

Message Size
(including headers)

Messages in 16TB Size of CF (GiBytes)

100MB 167,772 0.12

4MB 4,194,304 3.00

1MB 16,777,216 12.00

100KB 171,798,692 122.88

64KB 268,435,457 192.00

10KB 1,717,986,918 1,228.80

=<4KB 4,319,967,296 3,072.00

NOTE: Each message offloaded requires 0.75KB of CF storage – 1 entry and 2 elements.
These sizes are approximate – some space is required for data management and each message is
stored on a 4KB boundary and this will reduce the capacity of the dataset – and also explains
why a 1KB message uses as much storage as a 3KB message.

Page 22 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Each queue manager owns 1 SMDS per structure. It can write to its own and read from others, so
message capacity is increased by adding queue managers to a queue sharing group.
Since a queue sharing group may have 31 queue managers and each queue manager in a queue
sharing group may connect to 63 application structures the absolute limit on capacity is:

Given sufficient DASD and Coupling Facility storage, SMDS is able to store 30.5 petabytes worth
of data or 327,658,716 messages of 100MB.

Where to allocate SMDS?

It is advisable to locate the shared message data sets on different volumes.
This allows multiple I/O operations to be performed concurrently and allows more I/O channel
paths to be utilised more efficiently.
By implementing multiple CFLEVEL(5) structures backed by shared message data sets on separate
volumes, the workload is able to drive the I/O subsystem more efficiently, rather than being
constrained on a single volume.
Examples of the benefit of this can be seen in the Scaling Performance measurements in the
performance data section.

What is the maximum number of messages I can store?

This depends on size of data set, size of CF and size of message since there is a limit on the number
of list entries in a list structure.

Page 23 of 140

Maximum Capacity: 16TB x 31 x 63 = 31,248TB (30.5PB)

WebSphere MQ for z/OS V7.1.0
Performance report

Should I pre-format the dataset?

Before a shared message data set can be used, it must be initialised.

There are 2 points at which this initialisation can occur –
• Prior to the dataset being accessed by an application connected to the queue manager. This

may be achieved by using the CSQJUFMT program to format the dataset, similar to the way
that LOGCOPY datasets are formatted.

• When the first application to open a queue that is hosted on the structure with the associated
data set.

Due to the large size of these data sets, it is recommended to use CSQJUFMT to initialise the data
set before the queue manager is started.
For example in our systems, using CSQJUFMT to format a shared message dataset of 900,000
records (3.43GB) took:

• 66 elapsed seconds (13,636 records per second)
• 2.49 CPU seconds (361,445 records per CPU second).

If the data set is not initialised prior to use, the first application to attempt to open any queue on that
structure may take a significant time to respond.

Page 24 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Should I allow SMDS to expand and if so, by how much?

The DSEXPAND option specifies whether the queue manager is able to expand a shared message
data set when it becomes nearly full.
If expansion is supported but no secondary allocation was specified at allocation time, a secondary
allocation amount of approximately 10% of the existing size is used.
This means that for a shared message data set of 1 million records, the first expansion will be
100,000 records and then second will be 110,000 records, as this is 10% of 1.1 million records.
There should be sufficient capacity within the primary allocation of the shared message data
set to handle peak message loads without expanding.

Should the shared message data set need to expand, the expanded space needs to be formatted.
Although expansion and formatting starts at 90% full threshold, any further MQPUTs are slowed
down to allow the expansion and formatting of the SMDS.

In addition, the following message may be observed on the queue manager's log:
CSQE239I @VKW8 CSQEDSS2 SMDS(VKW8) CFSTRUCT(APPLICATION1) data set
MQMDATA.VKW8.SMDS.APPL1 has become full so new large messages can no longer be

stored in it
Once the expansion and formatting have completed, MQPUTs may continue.

The slowed MQPUTs whilst the SMDS expands and formats can have a significant effect. For
example when running 10 applications putting 64KB messages to a single shared queue, the
average put rate was 1980 messages per second which dropped to 780 messages per second whilst
expanding and formatting.

Page 25 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Who pays for messages stored on Shared Message Data Sets?

Large shared queue messages offloaded to shared message data sets show different cost
characteristic compared to large shared queue messages that are offloaded to DB2.
Consider an application that performs an MQPUT and MQGET of a 100KB message to a shared
queue, where the message payload is stored in DB2.

• The costs are accumulated to the applications' address space until the queue manager needs
to insert the binary large object or blob to the DB2 table. At this point the queue manager
looks at the DB2 blob threads (as specified in the CSQ6SYSP macro under parameter
QSGDATA) to choose and / or wait for an available thread. The queue manager then
performs a task switch to that chosen thread and waits for the thread to complete before
resuming the applications' thread.

• The select blob thread performs the SQL INSERT to the DB2 table and the cost of work
performed by this thread is attributed to the queue managers' address space.

• With regards to the MQGET, the application is again charged for the work until the queue
manager performs a task switch to one of the blob threads to perform the SQL SELECT of
the data from the table. If the data is available in the DB2 buffer, the cost of this task may be
relatively small.

Compare this to an application that performs an MQPUT and MQGET of a 100KB message to a
shared queue, where the message is stored in shared message data sets:

• When a message is put to a queue defined in an CFLEVEL(5) OFFLOAD(SMDS) structure,
the queue manager does not need to perform a task switch when writing the message to the
shared message data set.

• Similarly when getting a message from a queue defined on a shared message data set, no
task switch is required.

• This lack of task switching performed when accessing a message stored on shared message
data sets means that:

◦ The cost of the put and get is attributed to the application.

◦ There is no need to wait for a DB2 blob thread in the queue managers address
space.

As a result, the application may see an increased cost but this should be more than offset by a
decreasing cost in the queue manager.

There is still be some queue manager cost associated with messaging that is not affected by using
CFLEVEL(5) OFFLOAD(SMDS), in particular (but not limited to):

• Issuing MQCMIT – This causes the queue manager to task switch to an SRB to ensure the
commit is completed.

• Persistent Messages – The logging of persistent messages by a single queue manager task.

Page 26 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Recovery

How long will it take to backup my structure?

Only persistent messages are backed up using the BACKUP CFSTRUCT(applicationName)
command.

When the BACKUP CFSTRUCT(applicationName) command is used, all messages held on
queues in that structure, whether offloaded to shared message data sets or not, are written to the log
of the issuing queue manager. This includes messages stored in other queue managers shared
message data sets connected to this structure.

For example:
If 16000 persistent messages each of 64KB were put to a shared queue on queue manager A, a
backup would log around 1GB.
If 16000 persistent messages each of 64KB were put to a shared queue on queue manager A and
also on queue manager B, for a total of 32000 messages, the BACKUP CFSTRUCT issued on
queue manager A would result in 2GB of data being written to the log data sets.

Consider 3 configurations:
1) 1K persistent messages on queue - structure offloads all messages

Achieved backup rate of 71MB/second
2) 5K persistent messages on queue - structure offloads all messages

Achieved backup rate of 74MB/second
3) 32K persistent messages on queue – offload rules have caused some messages be offloaded

to shared message data sets.
• 80,000 messages on queue:
• 7,597 are held in CF only – requires 250.4MB to backup data
• 72,403 are offloaded to shared message data set, requires 2,386MB to backup data.

Achieved backup rate of 73MB/second.

Do multiple structures affect recovery?

The space map used by SMDS is rebuilt in the following circumstances:
• At connect time if data set is marked as ACTIVE (or RECOVERED) but there is no saved

space map from the previous disconnect, probably because of queue manager abnormal
termination or problem accessing data set.

• Immediately following the recovery of the structures.

When the queue manager is restarted following a failure, the structure is connected to and the space
map is rebuilt.

When multiple structures are in use, each structure is connected to and the space map is rebuilt in
series.

For a single structure we saw a rebuild rate of approximately 77,000 messages per second.
When 20 structures were in use, each space map was able to process at 77,000 messages per
seconds but because there were 20 structure connects, the elapsed time is greater than expected.

Page 27 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

How long will it take to recover my structure?

Example 1:
1,000,000 messages on a single structure:

1,000,000 at 77,000 per second = 12.98 seconds
+ connect time = 0.5 seconds
TOTAL = 13.48 seconds.

Example 2:
50,000 messages on each of 20 structures (i.e. a total of 1,000,000 messages)

50,000 at 77,000 per second = 0.659 seconds
+ connect time = 0.5 seconds
TOTAL per structure = 1.159 seconds
TOTAL = 23.18 seconds

NOTE: The backup and recovery was run on a dedicated system with dedicated links to dedicated
disks.

With the increased throughput capability, additional workload will mean extra load on your I/O
subsystem and the period of time between structure backups should, therefore, be reviewed.

Page 28 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

How do I know what is going on?

When using CFLEVEL(5) in a queue manager, a number of messages will be displayed on the
queue manager's log.

Messages

Messages on start up
• connect to shared message data set

CSQE241I @VKW8 SMDS(VKW8) CFSTRUCT(APPLICATION1) now has STATUS(NEW)
CSQE241I @VKW8 SMDS(VKW8) CFSTRUCT(APPLICATION1) now has STATUS(ACTIVE)

• rebuild space map
CSQE252I @VKW8 SMDS(VKW8) CFSTRUCT(APPLICATION1) data set
MQMDATA.VKW8.SMDS.APPL1 space map will be rebuilt by scanning the structure

CSQE255I @VKW8 SMDS(VKW8) CFSTRUCT(APPLICATION1) data set
MQMDATA.VKW8.SMDS.APPL1 space map has been rebuilt, message count 141065

NOTE: There are 158,166 messages on the shared queue of which 141,065 have been offloaded to
shared message dataset and the remaining 17,101 are held on the CF in their entirety.

Messages whilst queue manager is running
• expand shared message data set

CSQE213I @VKW8 CSQEDSS2 SMDS(VKW8) CFSTRUCT(APPLICATION1) data set
MQMDATA.VKW8.SMDS.APPL1 is now 90% full

CSQE211I @VKW8 CSQEDSI1 Formatting is in progress for 10080 pages in SMDS(VKW8)
CFSTRUCT(APPLICATION1) data set MQMDATA.VKW8.SMDS.APPL1

CSQE213I @VKW8 CSQEDSS2 SMDS(VKW8) CFSTRUCT(APPLICATION1) data set
MQMDATA.VKW8.SMDS.APPL1 is now 92% full

CSQE213I @VKW8 CSQEDSS2 SMDS(VKW8) CFSTRUCT(APPLICATION1) data set
MQMDATA.VKW8.SMDS.APPL1 is now 94% full

CSQE213I @VKW8 CSQEDSS2 SMDS(VKW8) CFSTRUCT(APPLICATION1) data set
MQMDATA.VKW8.SMDS.APPL1 is now 96% full

CSQE213I @VKW8 CSQEDSS2 SMDS(VKW8) CFSTRUCT(APPLICATION1) data set
MQMDATA.VKW8.SMDS.APPL1 is now 98% full

CSQE212I @VKW8 CSQEDSI1 Formatting is complete for SMDS(VKW8)
CFSTRUCT(APPLICATION1) data set MQMDATA.VKW8.SMDS.APPL1

CSQE217I @VKW8 CSQEDSI1 Expansion of SMDS(VKW8) CFSTRUCT(APPLICATION1) data set
MQMDATA.VKW8.SMDS.APPL1 was successful, 10080 pages added, total pages 60120

Page 29 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Messages as a result of commands
• DIS CFSTATUS

CFSTATUS(APPLICATION1)
TYPE(SUMMARY)
CFTYPE(APPL)
STATUS(ACTIVE)
OFFLDUSE(SMDS)
SIZEMAX(512000)
SIZEUSED(1)
ENTSMAX(230014) ← Absolute maximum number of messages in structure
ENTSUSED(33)
FAILTIME()
FAILDATE()
 END CFSTATUS DETAILS

• DIS CFSTRUCT(APPLICATION1)
CFSTRUCT(APPLICATION1)
DESCR()
CFLEVEL(5)
RECOVER(YES)
OFFLOAD(SMDS)
OFFLD1TH(0) ← Chosen to offload all messages to SMDS
OFFLD1SZ(0K)
OFFLD2TH(0)
OFFLD2SZ(0K)
OFFLD3TH(0)
OFFLD3SZ(0K)
DSGROUP(MQMDATA.*.SMDS.APPL1)
DSBLOCK(256K)
DSBUFS(100)
DSEXPAND(YES)
RECAUTO(YES)
CFCONLOS(ASQMGR)
ALTDATE(2011-12-20)
ALTTIME(11.14.47)

• DIS CFSTATUS(APPLICATION1) TYPE(SMDS)
CFSTATUS(APPLICATION
TYPE(SMDS)
SMDS(VKW8)
STATUS(ACTIVE)
ACCESS(ENABLED)
RCVTIME(11.14.47)
RCVDATE(2011-12-20)
FAILTIME()
FAILDATE()

• DIS SMDS(VKW8) CFSTRUCT(APPLICATION1) ALL

SMDS(VKW8)
CFSTRUCT(APPLICATION1)
DSBUFS(DEFAULT)
DSEXPAND(DEFAULT)

Page 30 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

• DIS SMDSCONN(VKW8) CFSTRUCT(APPLICATION1)
SMDSCONN(VKW8)
CFSTRUCT(APPLICATION1)
OPENMODE(UPDATE) <--- Owned by this queue manager and open for update
STATUS(OPEN) <--- Has been opened successfully is is available
AVAIL(NORMAL)
EXPANDST(NORMAL) <--- No errors detected, so OK to expand.

• DIS USAGE TYPE(SMDS)
CSQE280I @VKW8 SMDS usage ...
 Application Offloaded Total Total data Used data Used
 structure messages blocks blocks blocks part
_APPLICATION1 601 14062 14061 260 1%
 End of SMDS report
CSQE285I @VKW8 SMDS buffer usage ...
 Application Block --------- Buffers --------- Reads Lowest Wait
 structure size Total In use Saved Empty saved free rate
_APPLICATION1 256K 100 2 0 98 100% 97 0%
 End of SMDS buffer report

The output from the “DISPLAY USAGE TYPE(SMDS)” command is for the current SMF interval
and reports the number of messages that have been offloaded to the shared message data set for the
structures defined appropriately.

In this above example, 601 messages were offloaded using 260 data blocks, where each data block
is 256K. This means that a maximum 66,560KB of data has been offloaded. Assuming that each
message is of the same size, we can calculate the message size to be 110.7KB.

Page 31 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Are the default options the correct ones for me?

(Or when do the following fields affect me, and by how much?)
DSBUFS
DSBLOCK
OFFLDnSZ / OFFLDnTH

When running messaging workload using shared message datasets, there are 2 levels of
optimizations that can be achieved by adjusting the DSBUFS and DSBLOCK attributes.

The amount of above bar queue manager storage used by the buffer is DSBUFS x DSBLOCK.
This means that by default, 100 x 256KB (25MB) is used for each CFLEVEL(5) structure in the
queue manager.

DSBUFS

The DSBUFS attribute specifies the number of buffers, taken from above bar storage, that is used to
hold a cached copy of the messages. This enables faster access when reading the message from the
queue, when performed by the putting (local) queue manager.

Level 1 Optimization: Avoid Put Time I/O waits
If there are insufficient buffers to handle the maximum concurrent number of I/O requests, then
requests will have to wait for buffers, causing a significant performance impact. This can be seen in
the CSQE285I message (issued as a response to the “DISPLAY USAGE TYPE(SMDS)” command)
when the “lowest free” is zero or negative and the “wait rate” is non-zero. If the “lowest free” is
negative, increasing the DSBUFS parameter by that number of buffers should avoid waits in similar
situations.

When the message data exceeds one SMDS block, a request to start overlapping I/O operations to
transfer multiple blocks concurrently is initiated but this is limited to a maximum of 10 active
buffers per request.

If the message is 100KB and DSBLOCK(8K) is set, each message would require 13 buffers but
would only be able to use 10 buffers. In this example, it would be more appropriate to use a larger
DSBLOCK size to ensure that the I/O operations were completed in an optimum manner, for
example if the message were 100KB and DSBLOCK(64K) is set, each message would use only 2
buffers.

Level 2 Optimization: Cache of recently put messages
Once there are sufficient buffers to avoid waits, the next level of optimization occurs when enough
data can be buffered so that when recently written data is read back from the same queue manager,
it is possible to find the data in a buffer rather than having to read it from disk. This can save
significant elapsed time in the reading transaction.

Page 32 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

The following example shows the benefits of tuning the DSBUFS attribute:
• A single queue manager in a QSG with a single CFLEVEL(5) application structure, with

DSBLOCK(64K)
• All messages are offloaded to the SMDS dataset.
• A request/reply workload is run.
• There are 12 requester tasks which each put a 63KB message to a single shared queue.
• These messages are got by 1 of 4 server tasks that get and put a reply message in-syncpoint

to a second shared queue which is indexed by CORRELID.
• These reply messages are got by the requester tasks using CORRELID.
• This is repeated multiple times until the requester tasks are stopped.

• Command DIS USAGE TYPE(SMDS) is used to determine the status of the SMDS buffer.
• The DSBUFS value is altered using ALT SMDS(*) CFSTRUCT(APPLICATION1)

DSBUFS(new_value).
• The test is repeated using DSBUFS values ranging from 4 to 32.

The following 2 charts show the two levels of optimization. There is a distinct increase in
transaction rate when there are sufficient buffers such that the tasks are not waiting for a buffer, i.e.
when “wait rate” is 0%. In these examples, a 65% increase in throughput is seen (from 1500 to 2500
transactions per second)

The second increase occurs when the queue manager is able to get the message data from the buffer
rather than having to perform disk I/O operations. In this example, an additional 50% increase in
transaction rate is seen (from 2750 to 4100 transactions per second)

Page 33 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Chart 6: Effect of DSBUFS on transaction rate

Chart 7: Using output from CSQE285I message to determine best DSBUFS value

Page 34 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

The value of DSBUFS is evident in the preceding charts. However this benefit is only realised when
the message is being got from the same queue manager that the message was put on, i.e. the get is
from the local queue manager.

Consider the following configuration:

When messages are put to a shared queue by an application connected to queue manager A, the
queue manager updates the CF with key information and writes the message to its SMDS. The
message will be kept in queue manager A's DSBUFS buffers, as well as the CF and SMDS, until
more messages are put to queues in that structure on that queue manager.

Once the buffers are full, they become re-used, so older messages are only stored in the SMDS and
CF.

Once the entire message is lost from the buffers and held only in the SMDS, the rate at which the
message can be retrieved is comparable, whether the get is from queue manager A (a local get) or
from queue manager B (a remote get)

NOTE: Transaction cost is comparable too, however when the get is from a remote queue manager,
the queue manager that held the message in its SMDS will perform the delete of the message from
the SMDS. This incurs a minor cost to that local queue manager.

Page 35 of 140

Queue
Manager A

Queue
Manager BQSG

QM A's
SMDS
APPL1

QM B's
SMDS
APPL1

WebSphere MQ for z/OS V7.1.0
Performance report

DSBLOCK

DSBLOCK is the logical block size in kilobytes in which the SMDS space is allocated for
individual queues.

The DSBLOCK attribute divides the SMDS and buffer into blocks for holding the WebSphere MQ
message.

• By selecting the DSBLOCK size that is larger than the message, storage usage in the buffer
is less efficient.

• By selecting a DSBLOCK size that is smaller than the message means that multiple I/O
requests are required to store the message on SMDS dataset.

To aid performance, SMDS attempts to overlap I/O requests, but each task is limited to :
10 buffers
OR where the total size of the buffer is less than or equal to 4MB

So, maximum overlapped I/O requests is currently 10 but if DSBLOCK(512K) is set, the maximum
overlapped I/O requests is 8 (4MB/512K).

Understanding how messages are stored in SMDS
Each message is written, starting at the next page within the current block and is allocated further
blocks as needed.

Using the default setting of DSBLOCK(256K), each logical block will be 256K (64 pages).

Consider messages that use 100KB:
• Message 1 will be written to block 1 (page 0, using 25 pages)
• Message 2 will be written to block 1 (page 25, using 25 pages)
• Message 3 will cause 2 I/O requests because part of the message will be in block 1 and the

remainder will be in block 2.

A larger DSBLOCK decreases space management overheads and reduces I/O for very large
messages but increases buffer space requirements and disk space requirements for small messages.

Page 36 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

How should I size my DSBLOCK?

The combination of DSBLOCK and DSBUFS affects how much above bar storage is used by
SMDS.

The following lists the order in preference for performance for sizing the DSBLOCK attribute:
1. Message fits into a single DSBLOCK (i.e. a single I/O request)
2. Message fits into maximum overlapped I/O requests, so that all writes can be requested

concurrently.
3. Message is too large and is split into separate I/O requests which cannot be overlapped.

An example of how these configurations affect transaction rate and cost is shown below.

Example:
• A single queue manager in a QSG with 1 structure at CFLEVEL(5).
• The SMDS under test has DSBUFS(200) – which has been determined to be sufficient

buffers for this work.
• Request/Reply workload is run against a pair of queues using 100KB non-persistent

messages
• The 12 requesters put a message to a request queue and wait for a reply message with a

known CORRELID on the reply queue. All requester work is performed out of syncpoint.
• The 4 server applications get-with-wait on the request queue and put a corresponding reply

message. These gets and puts are performed in syncpoint.
• Measurements are performed on a single z/OS v1r12 LPAR with 3 dedicated processors on

zEnterprise 196 (2817-779). CF is internal, with 3 shared processors.
• DSBLOCK is set to the 3 following values:

◦ 8K – Message does not fit into 10 buffers, so will require multiple overlapped I/O
requests.

◦ 16K – Message fits into 7 buffers, so will be written to disk in 1 set of overlapped I/O
requests.

◦ 128K – Message fits into a single buffer. One I/O request would typically be required to
write to disk, unless message spills over from a previously part-used DSBLOCK.

Page 37 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

The following table shows the achieved transaction rate and cost per transaction for these tests:
DSBLOCK 8K 16K 128K

Transaction Rate/Second 466 1603 2139

Cost/Transaction
(CPU microseconds)

741 573 451

LPAR %Busy 9.7 25.6 24.9

MB written to SMDS / second.
Based on:
Transaction rate * 100K * 2 messages put per
transaction

91 313 417

RMF “Channel Path Report” %Busy
(average for 4 channel paths in use)

24.7 39.5 27.6

Used Data Blocks in 4K pages
(“used data blocks” from CSQE280I
x DSBLOCK size/ 4)

352 384 448

What does this tell us?
It is more space efficient to use 8K buffers to store 128K messages than either 16K or 128K.
However the system allows a higher transaction rate with the larger DSBLOCK size and at less
strain to the I/O system.

OFFLDnTH / OFFLDnSZ

As can be seen in the earlier section “Is there benefit in offloading all messages”, there can be
performance benefits in setting the OFFLDnTH and OFFLDnSZ attributes so that all messages are
offloaded.
In addition to the benefits observed when running with a duplexed Coupling Facility (CF) on a
separate machine, it may be of benefit to offload messages when the CF's capacity is a limiting
factor.

Page 38 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

CFLEVEL(5) and small messages

Using the offload thresholds and sizes it is possible to specify that all messages are offloaded, which
will increase the capacity of the coupling facility.
Because of the way the message header is stored in the coupling facility, there is space in the
required elements for a message of less than 122 bytes to be stored. WebSphere MQ is optimized to
store these small messages in the CF structure as it does not impact the CF. This means that
messages of less than 122 bytes are not offloaded into the shared message data sets.

Page 39 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Can I switch between offloading SMDS and DB2 mid-workload?

Yes you can. The following 2 charts show the transaction rate and cost observed when the offload
option is changed from SMDS to DB2 and then back to SMDS.

Chart 8: Achieved transaction rate when switching offload destination

Chart 9: Actual transaction cost observed when switching offload destination

Page 40 of 140

1024 2048 8192

0

200

400

600

800

1000

1200

Cost Per Transaction

Switch offload(SMDS) --> offload(DB2) --> offload(SMDS)

SMDS DB2 SMDS

Message SizeC
o

st
 p

e
r

T
ra

n
s a

ct
io

n
 (

cp
u

 m
ic

ro
se

co
n

d
s)

1024 2048 8192

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

Transaction Rate

Switch offload(SMDS) --> offload(DB2) --> offload(SMDS)

SMDS DB2 SMDS

Message Size

T
ra

n
sa

ct
io

n
s

p
e

r
S

e
co

n
d

WebSphere MQ for z/OS V7.1.0
Performance report

Predicting limits

This prediction is based on workload running on a single queue manager in a QSG.
This means that all reads will be local and from the SMDS buffers.

• Workload is request/reply, 100KB, non-persistent, server gets and puts in-syncpoint.
• Workload is spread across multiple structures – each backed by a shared message dataset.
• Each SMDS is on a separate volume where possible, although there are some data sets

sharing volumes.

Previous measurements have shown our CF processors and links are capable of processing 22,000
transactions per second in this particular request/reply model with 2KB messages. Since the 100KB
message size means that the CF access is only 0.75KB we predict that the CF is not constrained.

Structures in Use Transaction Rate
(per structure)

Write MB/Sec
per SMDS

Total Transaction
Rate

Total Writes
MB/second

8 469 93 3752 744

32 469 93 15008 3976

Our system has 4 FICON channel paths defined to the DASD subsystem. Using the “Channel Path
Activity” RMF report from the 8 structure measurement, we can predict that each channel path is
capable of supporting writes to 32 shared message datasets whilst maintaining the 70MB/second
write rate.

Page 41 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

V6 Compatibility Mode
The parameter “V6COMPAT” can be applied to the queue attribute “PROPCTL” and applies for
local, alias and model queues.

V6COMPAT is the default value when migrating from WebSphere MQ V6.0.0, whereas when
migrating from either V7.0.0 or V7.0.1 the default value is COMPAT.

The V6COMPAT queue option causes the application to receive the MQRFH2 structure as it was
sent, subject to character set conversion and numeric encoding changes.

The V6COMPAT queue option reduces the amount of parsing that the queue manager has to
complete when storing the message and can reduce the cost and improve the performance.

In our measurements, V6COMPAT has not provided any benefit in JMS Publish/Subscribe tests.

However, in put/get measurements where message properties are present, the cost of the MQPUT
has decreased in some cases by up to 60% and the MQGET has decreased by up to 40%.

If you are not running JMS pub/sub on a specific queue, the V6COMPAT queue option may offer
some reduction in CPU cost over the equivalent costs in WebSphere MQ V7 when message
properties are included in the message.

Page 42 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Channel authentication rules
Channel authentication rules introduced in version 7.1.0, mean that the queue manager can deny
connections from unauthorised sources.
Queue managers migrated from previous versions have the queue manager attribute CHLAUTH set
to DISABLED.
Queue managers created against version 7.1.0 have basic channel authentication rules defined.
Additional channel authenication rules to permit specific connections or a range of connections
using wildcards can be defined.
Further documentation on setting up channel authentication rules is available in the WebSphere MQ
V7.1.0 infocenter.
The channel authentication checks are performed at channel start; in the case of server connections,
this occurs at WebSphere MQ connect time.
There is a small increase in the cost of the MQCONN when running with channel authentication
enabled. Typically we have observed a 5-10% increase in the cost of the MQCONN call but
will increase with larger numbers of rules defined.
The queue manager checks the information passed in the connection attempt against the rules
defined in the queue manager. Any explicitly defined rules are checked first, followed by wildcard
entries. This means that if many rules are defined, for example one rule for each user in a medium
to large organisation, additional cost may be observed in the queue managers address space for each
connect.
The cost attributed to the queue manager is relatively small when compared to the cost seen in the
channel initiator but with many rules to check, the proportion of cost can rise noticeably.
The following chart shows the increase in cost in the queue manager address space as more channel
authentication rules have to be checked before the user is accepted. The chart shows that with up to
8000 channel authentication records defined, the cost in the queue manager is relatively flat (at
around 30 microseconds on a 2817-703).
Chart 10: Queue manager cost per connect / disconnect with increasing CHLAUTH rules

Once the number of rules to check increases to 20,000, the queue manager cost increases to 350
microseconds. This cost can seem considerable but should be taken into context of the cost of the
connect in both the queue manager and channel initiator address space.

Page 43 of 140

10
00

30
00

50
00

70
00

90
00

11
00

0

13
00

0

15
00

0

17
00

0

19
00

0
0

100

200

300

400

Queue Manager Cost per Connect+Disconnect

Cost in cpu microseconds on 2817-703

CHLAUTH rules defined

C
o

st
 (

C
P

U
 m

ic
ro

se
co

n
d

s)

WebSphere MQ for z/OS V7.1.0
Performance report

The following 2 charts show the costs of an MQCONN and MQDISC with both few channel
authentication rules defined and with many rules defined.

Chart 11: MQCONN / MQDISC cost with minimal CHLAUTH rules defined

Chart 12: MQCONN / MQDISC cost with 20,000 CHLAUTH rules defined

Page 44 of 140

CHLAUTH(DISABLED) CHLAUTH(ENABLED)
0

500

1000

1500

2000

Cost of MQCONN/MQDISC with minimal CHLAUTH rules defined

(cpu microseconds on 2817-703)

Channel Initiator Queue Manager

cp
u

 m
ic

ro
se

co
n

d
s

CHLAUTH(DISABLED) CHLAUTH(ENABLED)
0

500

1000

1500

2000

Cost of MQCONN/MQDISC with 20,000 CHLAUTH rules defined

(cpu microseconds on 2817-703)

Channel Initiator Queue Manager

cp
u

 m
ic

ro
se

co
n

d
s

WebSphere MQ for z/OS V7.1.0
Performance report

Channel authentication and the effect on queue manager restart

Defining many rules can affect the performance of queue manager restart.

Each rule defined is stored in a message on the SYSTEM.CHLAUTH.DATA.QUEUE, and
depending on the number of specific channels, the depth of the queue may increase.

Rules are grouped by channel name; there is one message per channel name. Each message may
contain many rules. For example, if a set of channel authentication rules are defined for each user
on your system for explicit access using SYSTEM.DEF.SVRCONN, only 1 message on
SYSTEM.CHLAUTH.DATA.QUEUE is created for all of these rules.

If a significant number of unique channel names have rules defined, the depth of the
SYSTEM.CHLAUTH.DATA.QUEUE may be high and may benefit from having an index type of
MSGID defined, e.g. ALT QL(SYSTEM.CHLAUTH.DATA.QUEUE) INDXTYPE(MSGID), but it
is not expected that large numbers of channels will be explicitly referenced so the queue depth will
be low.

When there are a significant number of rules defined, either for many channels or on a few
channels, the restart time of the queue manager can be affected. The chart below shows the impact
on restart time with increasing numbers of users permitted to access the channels matching the
wildcard “SYSTEM.*”. In these tests, there were only 3 channels affected by the defined rules on
the SYSTEM.CHLAUTH.DATA.QUEUE, but with an increasing number of users defined.

Chart 13: Queue manager restart time with increasing CHLAUTH rules

Page 45 of 140

0 5000 10000 15000 20000
0

5

10

15

20

25

30

Queue Manager Restart Time with increasing CHLAUTH rules

Time taken on 2817-705

QM (Elapsed) QM (CPU+SRB)

CHLAUTH rules defined

S
e

co
n

d
s

WebSphere MQ for z/OS V7.1.0
Performance report

Queue manager trace (64-bit global trace)
WebSphere MQ for z/OS version 7.1.0 changes how the queue manager global trace is gathered.

In previous releases, the global trace data was stored in a single storage area which on a busy
system with multiple processors could result in a high degree of contention when writing the trace
data. Version 7.1.0 exploits 64-bit storage to allocate an area of storage for each thread, which
reduces the contention issues seen previously.

The relative performance benefits of 64-bit global trace can be seen in “Appendix A – Regression –
Queue Manager Global Trace”. The V6 trace costs are similar to the V7.1 trace costs as the
measurement was unable to drive the V6 workload at such a high rate without filling the pagesets
with unscavenged messages, so was artificially delayed, which in turn reduces the contention
impact discussed previously.

Performance observations

Where the trace data is captured can affect the performance achieved, for example specifying a
destination of GTF can impact the performance more than specifying RES as the destination.

The charts following show the effect of enabling global trace and varying the destination on both
transaction rate and transaction cost when running a non-persistent workload on a 16 processor
LPAR.

Chart 14: Impact of enabling queue manager global trace on transaction rate

The impact of specifying a destination of GTF is significant compared to using the RES destination.
This can also be seen in the chart below detailing the transaction costs.
NOTE: The applications do no work other than messaging and it is not expected that enabling trace
in the queue manager would double the cost of a typical business transaction.

Page 46 of 140

1 2 3 4 5 6 7 8

0.00

10000.00

20000.00

30000.00

40000.00

50000.00

60000.00

Impact of Queue Manager Trace - Transaction Rate

Non-Persistent In-Syncpoint 2K Messages

Trace(G) Disabled Trace(G) Dest(Res) Enabled Trace(G) Dest(GTF) Enabled

Queue Pairs

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

WebSphere MQ for z/OS V7.1.0
Performance report

Chart 15: Impact of enabling queue manager global trace on transaction cost

Recommendations

In a system with a high number of connected tasks and queue manager trace enabled, an increase in
page/swap activity may be seen.

For performance reasons, queue manager global trace should not run by default, but in V7.1.0, the
impact of running with global trace is reduced.

Page 47 of 140

1 2 3 4 5 6 7 8

0

200

400

600

800

1000

Impact of Queue Manager Trace - Transaction Cost

Non-Persistent In-Syncpoint 2K Messages

Trace(G) Disabled Trace(G) Dest(Res) Enabled Trace(G) Dest(GTF) Enabled

Queue Pairs

C
o

st
 /

T
ra

n
sa

c t
io

n
 (

cp
u

 m
ic

ro
se

co
n

d
s)

WebSphere MQ for z/OS V7.1.0
Performance report

Topic scavenger / queue manager attribute TREELIFE

What is it?

See WebSphere MQ V710 Infocenter “Reducing the number of unwanted topics in the topic tree”
for a detailed description of the role of the topic scavenger task.

Can you see it running?

No - There are no messages logged at start or end.

How do you configure it?

Use the queue manager attribute TREELIFE to set the frequency. This is the time in seconds which
non-administrative topics are allowed to remain in the system until they are removed. Valid values
range from 0 through 604,000 – approximately 7 days, where the default is 1800 seconds. A value
of 0 means that non-administrative topics are not removed.

What is the impact of not running frequently enough?

If you are using the pub/sub function and use the remove subscription or de-register subscription
options, the topic node remains in the topic tree until the topic scavenger runs.

In the majority of cases the topic tree will be fairly static. It is only applications which use dynamic
topic strings (for example containing a time or date stamp) where topic nodes become redundant
over time and require removing.

If there is a large amount of de-registering occurring between scavenger runs, the topic tree can
grow significantly which can affect the performance of any new subscriptions and increase the size
of the queue manager 64-bit storage used. The performance impact can be particularly significant :

• if lots of wildcard subscriptions are being used.
• If the topic tree is dynamic and changing significantly.

What is the impact of running too frequently?

The topic scavenger will use a small amount of CPU to complete its scan of the topic tree – the
more frequently it is run, the more CPU will be used. However there is a trade-off between the topic
scavenger costs and the increased cost of subscription against a topic tree with many unused topics.

In addition, the topic scavenger runs as a TCB within the queue manager address space. This means
that it is a high priority task and running it frequently on a system that is CPU constrained may
affect the response times of other tasks.

Page 48 of 140

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/ps22042_.htm

WebSphere MQ for z/OS V7.1.0
Performance report

How do I know what is the right frequency?

This depends on the type of work the queue manager is processing.
Running the topic scavenger incurs a small cost but when your business model results in a build up
of redundant topics, this scavenger cost is offset by the cost reduction at subscribe time.
If there is no pub/sub, then alter the queue manager and set TREELIFE(0).
If there is pub/sub then it depends on whether there is a high turn-over of subscriptions eligible for
the topic scavenger.
We saw benefits of running the topic scavenger frequently enough, such that there were no more
than 200,000 unwanted topics known to the queue manager.
The actual setting of TREELIFE depends on the rate of unsubscribing and the number of leaf nodes
available for scavenging.

Why are my topics still visible after the topic scavenger has run?

The topic scavenger can only remove topics that have no child topics (also known as leaf nodes) in
each pass, so a large topic tree with many levels may take multiple passes of the topic tree to
remove all unused topics.
The diagram following shows a simple tree with just 4 levels – this tree would take 4 passes of the
scavenger to remove all of the unwanted topics – so TREELIFE(120) would take 8 minutes.

Page 49 of 140

2 31 1

1 2

4

1 1

The number in each node is the iteration number that the
topic scavenger will remove the node

Scavenging a simple topic tree takes multiple runs of the topic scavenger

WebSphere MQ for z/OS V7.1.0
Performance report

Topic scavenger measurements

Topic scavenger on an idle queue manager – with no topics

Running the topic scavenger has an impact on the costs attributed to the queue manager address
space.

The following chart shows the queue manager address space CPU usage per minute. Costs are CPU
microseconds on a 3 processor LPAR of a 2817-779

Between measurements, the TREELIFE attribute of the queue manager is altered.

The queue manager is not being used for any activities so only the additional cost of the TREELIFE
setting is observed.

Chart 16: CPU usage on an idle queue manager

As can be seen from the measurements for TREELIFE(1800), when the topic scavenger runs there
is a noticeable peak after 30 minutes.

The measurement for TREELIFE(120) shows peaks for the intervals where the scavenger is
running.

The measurement for TREELIFE(60) is consistently higher and suggests that with no topics in the
queue manager and no pub/sub occurring, a value of 60 is too frequent.

Page 50 of 140

1 74 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
0

1000
2000
3000
4000

5000
6000
7000
8000

CPU Usage per minute on Idle Queue Managers

Where there are few topics and none are eligible to be scavenged

TREELIFE(60) TREELIFE(120) TREELIFE(1800)

C
P

U
 M

ic
ro

se
c o

n
d

s
/ M

in
u

te

WebSphere MQ for z/OS V7.1.0
Performance report

Topic scavenger on idle queue manager – with 100,000 Topics

In a system which involves a number of topic nodes, their eligibility for removal can affect your
decision to set the value of TREELIFE.

The following chart shows the cost of an idle queue manager when the TREELIFE is set to 120
seconds. In each case, the queue manager costs are the total for 60 second periods.
The costs are in CPU microseconds on a 3 processor LPAR of a 2817-779.
The 2 measurements shown on the chart are for:

1. 100,000 topics nodes are known to the queue manager but are not eligible for removal
2. 100,000 topics nodes are known to the queue manager and are eligible for removal

Chart 17: Cost of topic scavenger on an idle queue manager

The measurement for the topics that are ineligible for removal shows the peaks when the topic
scavenger runs, scanning the entire tree for eligible leaf nodes to remove, and finding none.
Once all topics have been removed in the scavengable case, the costs go back to those shown for no
topics on the previous page.
The measurement for topics that are eligible for removal shows several peaks where the topic
scavenger is able to remove leaf nodes over several runs. This is shown in more detail in the
following chart.
Chart 18: Cost of scavenging 100,000 topics

Page 51 of 140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

100000

200000

300000

Idle Queue Manager Cost per Minute

100,000 Topics in Topic Tree - TREELIFE(120)

TREELIFE(120) 100K Topics – Non-scavengable TREELIFE(120) 100K Topics – Scavengable

C
P

U
 M

ic
ro

se
c o

n
d

s
/ M

in
u

te

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

100000

200000

300000

Scavenging 100,000 Topics

As there are 6 levels, it takes multiple passes from the scavenger

C
P

U
 M

ic
ro

se
c o

n
d

s
/ M

in
u

te

WebSphere MQ for z/OS V7.1.0
Performance report

The 2 previous charts show that if there are a significant number of topics known to the queue
manager that are ineligible for removal there will be an increased cost associated with running the
scavenger too often.

Effect of topic scavenger on subscribe

When a topic tree contains many unwanted topics, the cost of adding a new subscription can be
higher than subscribing to an empty tree. This can be particularly significant where wildcard
subscriptions are being made and the wildcard topic string needs to be evaluated against all of the
topic nodes that exist below the point in the wildcard topic string where the first wildcard character
is located or where the topic tree is dynamic.
Each point on the chart is the average cost (in CPU microseconds) of the MQSUB based on an
average of 100,000 subscribes.
When the topic scavenger is not running (TREELIFE(3600)) the average cost of the MQSUB when
there are 1,000,000 unwanted topics is 3.5 times higher than when there are fewer than 100,000
subscriptions in the queue manager.
By running the topic scavenger sufficiently frequently, the cost of the subscribe remains consistent
as the number of unwanted topics does not increase.

Chart 19: Cost of subscriber application with increasing subscriptions in the queue manager

The total CPU usage for the queue manager when the scavenger was running often was 3% higher
than when running with the scavenger running too infrequently.
However this 3% increase in queue manager cost was more than offset by the 45% reduction in
application cost gained from running the topic scavenger.
In total, the CPU costs were 10% less when running the subscribes with topic scavenger running
every 120 seconds.
This show that in an environment with a high turnover of topic subscriptions, there is benefit to be
had running the topic scavenger more frequently than the default.

Page 52 of 140

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

Subscribe CPU usage in Application

Topic Scavenger Not Running Topic Scavenger Running

C
P

U
 M

ic
ro

se
c o

n
d

s
/ S

u
b

sc
ri

b
e

WebSphere MQ for z/OS V7.1.0
Performance report

DISPLAY TPSTATUS with many topics in your system

The command “DISPLAY TPSTATUS('#') TYPE(TOPIC)” can be used to display the status of all
of the topics in the topic tree.

WARNING: When there are many topics in the topic tree, this command should be used with
caution.

If the command is issued to the console, only a small subset of the responses is displayed in the
queue manager log, however the queue managers command server task builds an internal list of all
of the matching topics which will have 2 effects:

1. A significant amount of queue manager private storage is used, potentially leaving the queue
manager short on storage for a period of time. This can be seen with the appearance of
CSQY220I messages.

2. A significant amount of CPU is used to scan all of the topics.

In addition, if the command is issued using CSQUTIL, the RESPTIME attribute passed should be
increased from the default of 30 seconds otherwise the job will time-out. In the event of a time-out,
the outstanding responses are delivered to the dead letter queue, potentially resulting in thousands
of messages appearing on that queue.

As a guide, when the command was issued against a queue manager with 1 million topics defined in
the system, the queue manager used 500MB of private storage to hold the response and 1 processor
on a 3-processor LPAR of a zEnterprise 196 (2817-779) was running at 100% for 55 minutes
processing the command.

Page 53 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Performance data

Shared message data set scenarios

• Single Queue Manager – non-persistent out-of-syncpoint
• Single Queue Manager – non-persistent server-in-syncpoint
• Single Queue Manager – persistent in-syncpoint

• Two Queue Manager – data sharing non-persistent out-of-syncpoint
• Two Queue Manager – non-data sharing non-persistent out-of-syncpoint
• Two Queue Manager – data sharing non-persistent server-in-syncpoint
• Two Queue Manager – non-data sharing non-persistent server-in-syncpoint

• Three Queue Manager - data sharing non-persistent out-of-syncpoint
• Three Queue Manager - data sharing non-persistent server-in-syncpoint
• Three Queue Manager - data sharing persistent in-syncpoint

• Six Queue Manager – data sharing non-persistent (server-in-syncpoint)
• Six Queue Manager – data sharing persistent

• Scaling – Non-Persistent Large Messages
• Non-Persistent 10KB Messages
• Non-Persistent 100KB Messages
• Non-Persistent 1MB Messages
• Non-Persistent 1MB Messages – multiple applications per queue pair

Notes:
1. Costs are in CPU microseconds unless otherwise stated.
2. For simplicity, the two, three and six queue manager measurements show comparisons

between CFLEVEL(4) and CFLEVEL(5) with OFFLOAD for all messages. For message
sizes below 63KB, there is no difference between CFLEVEL(4) and CFLEVEL(5) with no
OFFLOAD.

Page 54 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Single queue manager – non-persistent out-of-syncpoint

These tests run a request/reply model for a range of message sizes.
The requesters put a request message to a shared queue and waits for a reply message on a separate
shared queue using CORRELATION-ID. These puts and gets are out of syncpoint.
The servers get the next available message from the request queue and puts a corresponding reply
message to the pre-agreed reply queue. These gets and puts are out of syncpoint.

Chart 20: Achieved transaction rate

The above chart shows that CFLEVEL(4) and CFLEVEL(5) are comparable for messages up to
63KB. Once the message size exceeds 63KB, offloading the message to SMDS rather than DB2
allows the transaction rate to decrease more steadily as the message size increases.
The “CFLEVEL(5) offload all” (to SMDS) column shows the effect where the offload thresholds
have been exceeded, and messages smaller than 64KB are offloaded.

Page 55 of 140

1024 2048 8192 32768 64512 65536 102400 523264 524288 1048576 2097152 4194304

0

5000

10000

15000

20000

25000

30000

35000

40000

33
8

4
0

33
26

1

31
5

1
9

22
8

1
0

16
4

7
6

43
2

9

40
36

22
7

7

16
3

0

91
5

55
3

27
6

34
7

3
2

34
2

0
7

31
80

6

22
8

8
1

16
5

2
2

12
7

7
7

10
8

2
7

42
25

42
8

3

26
9

4

17
80

71
8

17
47

8

17
2

9
8

15
1

6
6

13
79

1

10
9

5
9

11
2

2
1

10
0

2
9

41
5

6

43
73

26
8

4

16
8

0

73
9

Achieved Transaction Rate

Single Qmgr, Request/Reply, Out-of-Syncpoint

CFLEVEL(4) CFLEVEL(5) CFLEVEL(5) offload all

Message Size (bytes)

T
ra

n
sa

ct
io

n
s/

S
e

co
n

d

WebSphere MQ for z/OS V7.1.0
Performance report

Chart 21 and 21a: Observed transaction cost

The cost of offloading messages to shared message data sets is significantly less than offloading to
DB2.

Page 56 of 140

1024 2048 8192 32768 64512

0

50

100

150

200

250

300

Achieved Transaction Cost

Single Qmgr, Request/Reply, Out-of-Syncpoint
Messages up to 63KB

CFLEVEL(4) CFLEVEL(5) CFLEVEL(5) offload all

Message Size (bytes)

C
o

st
 p

e
r

T
ra

n
s a

ct
io

n

65536 102400 523264 524288 1048576 2097152 4194304

0

500

1000

1500

2000

2500

3000

3500

18
5

19
8 41

7

48
3 83

5

14
28

30
4

7

11
0

11
3 25

7

25
1 4
2

1 70
0

15
7

9

13
0

13
2 26

9

26
5 43

9 73
9

15
5

6

Achieved Transaction Cost

Single Qmgr, Request/Reply, Out-of-Syncpoint
Messages greater than 63KB

CFLEVEL(4) CFLEVEL(5) CFLEVEL(5) offload all

Message Size (bytes)

C
o

st
 p

e
r

T
ra

n
s a

ct
io

n

WebSphere MQ for z/OS V7.1.0
Performance report

Single queue manager – non-persistent server-in-syncpoint

These tests run a request/reply model for a range of message sizes.
The requesters put a request message to a shared queue and waits for a reply message on a separate
shared queue using CORRELATION-ID. These puts and gets are out of syncpoint.
The servers get the next available message from the request queue and puts a corresponding reply
message to the pre-agreed reply queue. These gets and puts are in-syncpoint.

Chart 22: Achieved transaction rate

This chart shows that CFLEVEL(4) and CFLEVEL(5) are comparable for messages up to 63KB.
Once the message size exceeds 63KB, offloading the message to SMDS rather than DB2 allows the
transaction rate to decrease more steadily as the message size increases.
The “CFLEVEL(5) offload all” column shows the achieved transaction rate when the offload
thresholds have been exceeded, and messages smaller than 64KB are offloaded.

Page 57 of 140

1024 2048 8192 32768 64512 65536 102400 523264 524288 1048576 2097152 4194304

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

18
5

9
3

18
2

7
5

15
0

7
1

10
66

6

74
46

43
3

42
8

27
5

18
7

11
2

63 34

18
6

7
4

18
1

8
8

16
2

4
8

11
6

6
4

86
0

9

19
2

5

15
61

59
6

65
3

40
1

20
5

96

63
3

0

65
0

5

50
4

4

32
77

20
23

22
1

2

18
1

6

71
6

69
8

42
3

21
0

10
7

Achieved Transaction Rate

Single Qmgr, Request/Reply, Server-in-Syncpoint

CFLEVEL(4) CFLEVEL(5) CFLEVEL(5) offload all

Message Size (bytes)

T
ra

n
sa

ct
io

n
s/

S
e

co
n

d

WebSphere MQ for z/OS V7.1.0
Performance report

Chart 23 + 23a: Observed transaction costs

Again the cost of offloading the messages to shared message datasets is considerably less than
offloading to DB2.

Page 58 of 140

1024 2048 8192 32768 64512

0

100

200

300

400

500

600

Achieved Transaction Cost

Single Qmgr, Request/Reply, Server-in-Syncpoint
Messages up to 63KB

CFLEVEL(4) CFLEVEL(5) CFLEVEL(5) offload all

Message Size (bytes)

C
o

st
 /

tr
a

n
sa

ct
io

n
 (

cp
u

 m
ic

ro
se

co
n

d
s)

L
o

g
 s

ca
le

65536 102400 523264 524288 1048576 2097152 4194304

0

5000

10000

15000

20000

25000

Achieved Transaction Cost

Single Qmgr, Request/Reply, Server-in-Syncpoint
Messages greater than 63KB

CFLEVEL(4) CFLEVEL(5) CFLEVEL(5) offload all

Message Size (bytes)

C
o

st
 /

tr
a

n
sa

ct
io

n
 (

cp
u

 m
ic

ro
se

co
n

d
s)

L
o

g
 s

ca
le

WebSphere MQ for z/OS V7.1.0
Performance report

Single queue manager – persistent in-syncpoint

These tests run a request/reply model for a range of message sizes.
The requesters put a persistent request message to a shared queue and waits for a reply message on
a separate shared queue using CORRELATION-ID. The put is in-syncpoint, as is the get.
The servers get the next available message from the request queue and puts a corresponding reply
message to the pre-agreed reply queue. These gets and puts are in-syncpoint.
Chart 24: Achieved transaction rate

This chart shows that CFLEVEL(4) and CFLEVEL(5) are comparable for messages up to 63KB.
Once the message size exceeds 63KB, offloading the message to SMDS rather than DB2 allows the
transaction rate to decrease more steadily as the message size increases.
The “CFLEVEL(5) offload all” column shows the achieved transaction rate when the offload
thresholds have been exceeded, and messages smaller than 64KB are offloaded.

Page 59 of 140

1024 2048 8192 32768 64512 65536 102400 523264 524288 1048576 2097152 4194304

0

1000

2000

3000

4000

5000

6000

7000

8000

70
1

7

65
2

4

41
6

6

19
0

0

11
3

4

66
5

59
6

14
0

13
5

69 35 18

68
38

64
0

4

4
3

17

19
9

5

1
1

38

10
2

9

7
2

1

13
3

13
2

67 33 17

5
0

25

49
5

2

3
8

01

18
8

5

11
25

10
9

1

75
0

13
8

13
7

69 34 17

Achieved Transaction Rate

Single Qmgr, Request/Reply, Persistent, In-Syncpoint

CFLEVEL(4) CFLEVEL(5) CFLEVEL(5) offload all

Message Size (bytes)

T
ra

n
sa

ct
io

n
s/

S
e

co
n

d

WebSphere MQ for z/OS V7.1.0
Performance report

Chart 25 + 25a: Observed transaction cost

Page 60 of 140

1024 2048 8192 32768 64512

0

100

200

300

400

500

600

700

800

V710 Transaction Cost

Single Qmgr, Request/Reply, Persistent In-Syncpoint,
Messages less than 64KB

CFLEVEL(4) CFLEVEL(5) CFLEVEL(5) offload all

Message Size (bytes)

C
o

st
 /

tr
a

n
sa

ct
io

n
 (

cp
u

 m
ic

ro
se

co
n

d
s)

65536 102400 523264 524288 1048576 2097152 4194304

0

5000

10000

15000

20000

25000

30000

35000

40000

15
0

1

16
2

8

37
9

7

44
0

2 81
8

8

16
1

7
8

33
8

4
7

57
2

67
0 23

6
3

23
9

5

45
8

1 95
3

8

19
8

3
8

56
6

66
9 23

4
4

2
3

37 45
8

9 95
87

19
8

7
0

V710 Transaction Cost

Single Qmgr, Request/Reply, Persistent In-Syncpoint,
Messages greater than 64KB

CFLEVEL(4) CFLEVEL(5) CFLEVEL(5) offload all

Message Size (bytes)

C
o

st
 /

tr
a

n
sa

ct
io

n
 (

cp
u

 m
ic

ro
se

co
n

d
s)

WebSphere MQ for z/OS V7.1.0
Performance report

Two queue managers – data sharing, non-persistent, out-of-syncpoint

These tests run a request/reply model for a range of message sizes.
The requesters put a non-persistent request message to a shared queue and waits for a reply message
on a separate shared queue using CORRELATION-ID. The put is out of syncpoint as is the get.
The servers get the next available message from the request queue and puts a corresponding reply
message to the pre-agreed reply queue. These gets and puts are also out of syncpoint.
The messages put by applications connected to queue manager 1 will be got by applications
connected to queue manager 2 and vice versa. Hence the term “data sharing”.

Chart 26: Achieved transaction rate – small messages

Chart 27: Achieved transaction rate – larger messages

Page 61 of 140

1024 2048 8192 32768 64512 65536

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

38805 40924

34450

25170

17033

175

6125 5876 5340
3013 2692 2466

V710 Transaction Rate - 1KB to 64KB Messages

2 Queue Manager, Request/Reply, Data sharing, Out-of-Syncpoint, Non-Persistent

CFLEVEL(4) CFLEVEL(5) OFFLOAD(SMDS) all messages

Message Size (bytes)

T
ra

n
sa

ct
io

n
/S

e
co

n
d

65536 102400 523264 524288 1048576 2097152 4194304

0

500

1000

1500

2000

2500

3000

175 171 152 102 74 46 28

2466

1570

562 583
383

204 105

V710 Transaction Rate - 64KB to 4MB Messages

2 Queue Manager, Request/Reply, Data sharing, Out-of-Syncpoint, Non-Persistent

CFLEVEL(4) CFLEVEL(5) OFFLOAD(SMDS) all messages

Message Size (bytes)

T
ra

n
sa

ct
io

n
/S

e
co

n
d

WebSphere MQ for z/OS V7.1.0
Performance report

Chart 28: Observed transaction cost – small messages

Chart 29: Observed transaction cost – larger messages

As the measurements shown by charts 26 to 29 are data-sharing, this means that the queue manager
performing the MQGET always has to read another queue managers' shared message data set. This
means that there is no performance optimisation that can be made from shared message buffers.

Page 62 of 140

65536 102400 523264 524288 1048576 2097152 4194304

0

5000

10000

15000

20000

25000

30000

35000

40000

3082 3232 5018 6715
10931

19208

37172

361 430 1335 1316 2389 4558
9042

V710 Transaction Cost - 64KB to 4MB Messages

2 Queue Manager, Request/Reply, Data sharing, Out-of-Syncpoint, Non-Persistent

CFLEVEL(4) CFLEVEL(5) OFFLOAD(SMDS) all messages

Message Size (bytes)

C
o

st
 p

e
r

T
ra

n
s a

ct
io

n
 (

cp
u

 m
ic

ro
se

co
n

d
s)

1024 2048 8192 32768 64512 65536

0

500

1000

1500

2000

2500

3000

3500

162 166 187 261 397

2985

265 270 287 335 398 387

V710 Transaction Cost - 1KB to 64KB Messages

2 Queue Manager, Request/Reply, Data sharing, Server get and put in-Syncpoint, Non-Persistent

CFLEVEL(4) CFLEVEL(5) OFFLOAD(SMDS) all messages

Message Size (bytes)

C
o

st
 p

e
r

T
ra

n
s a

ct
io

n
 (

cp
u

 m
ic

ro
se

co
n

d
s)

WebSphere MQ for z/OS V7.1.0
Performance report

Two queue managers – non-data sharing, non-persistent, out-of-
syncpoint

These tests run a request/reply model for a range of message sizes.
The requesters put a non-persistent request message to a shared queue and waits for a reply message
on a separate shared queue using CORRELATION-ID. The put is out of syncpoint, as is the get.
The servers get the next available message from the request queue and puts a corresponding reply
message to the pre-agreed reply queue. These gets and puts are also out of syncpoint.
In these measurements, a common set of queues are used – all applications putting messages use the
same set of request and reply queues. This means that a message put by an application connected to
queue manager 1 may be processed by an application connected to either queue manager 1 or queue
manager 2.

Page 63 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Chart 30: Achieved transaction rate – small messages

Chart 31: Achieved transaction rate – larger messages

Page 64 of 140

1024 2048 8192 32768 64512 65536

0

10000

20000

30000

40000

50000 44093 43262
37645

25419

15935

169
6172 5525 5035 3534 2393 2510

V710 Transaction Rate - 1KB to 64KB Messages

2 Queue Manager, Request/Reply, Non-Data sharing, Out-of-Syncpoint, Non-Persistent

CFLEVEL(4) CFLEVEL(5) OFFLOAD(SMDS) all messages

Message Size (bytes)

T
ra

n
sa

ct
io

n
/S

e
co

n
d

65536 102400 523264 524288 1048576 2097152 4194304

0

500

1000

1500

2000

2500

3000

169 171 158 114 78 50 30

2510

1862

634 637
375

204 105

V710 Transaction Rate - 64KB to 4MB Messages

2 Queue Manager, Request/Reply, Non-Data sharing, Out-of-Syncpoint, Non-Persistent

CFLEVEL(4) CFLEVEL(5) OFFLOAD(SMDS) all messages

Message Size (bytes)

T
ra

n
sa

ct
io

n
/S

e
co

n
d

WebSphere MQ for z/OS V7.1.0
Performance report

Chart 32: Observed transaction cost – small messages

Chart 33: Observed transaction cost – larger messages

As the measurements shown by charts 30 to 33 are non-datasharing, this means that the queue
manager performing the MQGET may be the same as the queue manager that performed the
MQPUT. As a result some benefit can be gained from the use of shared message buffers but the
majority of any gains are more likely to be in putting the message to the getting application's buffer.

Page 65 of 140

1024 2048 8192 32768 64512 65536

0

500

1000

1500

2000

2500

3000

3500

126 129 149 223 349

3171

242 238 260 314 386 400

V710 Transaction Cost - 1KB to 64KB Messages

2 Queue Manager, Request/Reply, Non-Data sharing, Out-of-Syncpoint, Non-Persistent

CFLEVEL(4) CFLEVEL(5) OFFLOAD(SMDS) all messages

Message Size (bytes)

C
o

st
 p

e
r

T
ra

n
s a

ct
io

n
 (

cp
u

 m
ic

ro
se

co
n

d
s)

65536 102400 523264 524288 1048576 2097152 4194304

0

10000

20000

30000

40000

50000

3171 3394 5273 7826
12716

23025

45781

400 498 1580 1648 2436 4560
9059

V710 Transaction Cost - 64KB to 4MB Messages

2 Queue Manager, Request/Reply, Non-Data sharing, Out-of-Syncpoint, Non-Persistent

CFLEVEL(4) CFLEVEL(5) OFFLOAD(SMDS) all messages

Message Size (bytes)

C
o

st
 p

e
r

T
ra

n
s a

ct
io

n
 (

cp
u

 m
ic

ro
se

co
n

d
s)

WebSphere MQ for z/OS V7.1.0
Performance report

Two queue managers – data sharing, non-persistent, in-syncpoint

These tests run a request/reply model for a range of message sizes.
The requesters put a non-persistent request message to a shared queue and waits for a reply message
on a separate shared queue using CORRELATION-ID. The put is out of syncpoint as is the get.
The servers get the next available message from the request queue and puts a corresponding reply
message to the pre-agreed reply queue. These gets and puts are in-syncpoint.
The messages put by applications connected to queue manager 1 will be got by applications
connected to queue manager 2 and vice versa. Hence the term “data sharing”.

Page 66 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Chart 34: Achieved transaction rate – small messages

Chart 35: Achieved transaction rate – larger messages

Page 67 of 140

1024 2048 8192 32768 64512 65536

0

5000

10000

15000

20000

25000

30000

35000 32015 31207
27920

19984

12597

190

6321 6554 5471
3583 2496 2531

V710 Transaction Rate - 1KB to 64KB Messages

2 Queue Manager, Request/Reply, Data sharing, Server get and put in-Syncpoint, Non-Persistent

CFLEVEL(4) CFLEVEL(5) OFFLOAD(SMDS) all messages

Message Size (bytes)

T
ra

n
sa

ct
io

n
/S

e
co

n
d

65536 102400 523264 524288 1048576 2097152 4194304

0

500

1000

1500

2000

2500

3000

190 183 139 111 75 49 29

2531

1860

573 543
284 141 69

V710 Transaction Rate - 64KB to 4MB Messages

2 Queue Manager, Request/Reply, Data sharing, Server get and put in-Syncpoint, Non-Persistent

CFLEVEL(4) CFLEVEL(5) OFFLOAD(SMDS) all messages

Message Size (bytes)

T
ra

n
sa

ct
io

n
/S

e
co

n
d

WebSphere MQ for z/OS V7.1.0
Performance report

Chart 36: Observed transaction cost – small messages

Chart 37: Observed transaction cost – larger messages

Page 68 of 140

1024 2048 8192 32768 64512 65536

0

500

1000

1500

2000

2500

3000

3500

162 166 187 261 397

2985

265 270 287 335 398 387

V710 Transaction Cost - 1KB to 64KB Messages

2 Queue Manager, Request/Reply, Data sharing, Server get and put in-Syncpoint, Non-Persistent

CFLEVEL(4) CFLEVEL(5) OFFLOAD(SMDS) all messages

Message Size (bytes)

C
o

st
 p

e
r

T
ra

n
s a

ct
io

n
 (

cp
u

 m
ic

ro
se

co
n

d
s)

65536 102400 523264 524288 1048576 2097152 4194304

0

5000

10000

15000

20000

25000

30000

35000

40000

2985 3184 5048 6813
11087

19672

37823

387 457 1316 1308 2367 4434
8921

V710 Transaction Cost - 64KB to 4MB Messages

2 Queue Manager, Request/Reply, Data sharing, Server get and put in-Syncpoint, Non-Persistent

CFLEVEL(4) CFLEVEL(5) OFFLOAD(SMDS) all messages

Message Size (bytes)

C
o

st
 p

e
r

T
ra

n
s a

ct
io

n
 (

cp
u

 m
ic

ro
se

co
n

d
s)

WebSphere MQ for z/OS V7.1.0
Performance report

Two queue managers – non-data sharing, non-persistent, in-syncpoint

These tests run a request/reply model for a range of message sizes.
The requesters put a non-persistent request message to a shared queue and waits for a reply message
on a separate shared queue using CORRELATION-ID. The put is out of syncpoint as is the get.
The servers get the next available message from the request queue and puts a corresponding reply
message to the pre-agreed reply queue. These gets and puts are in-syncpoint.
In these measurements, a common set of queues are used – all applications putting messages use the
same set of request and reply queues. This means that a message put by an application connected to
queue manager 1 may be processed by an application connected to either queue manager 1 or queue
manager 2.

Page 69 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Chart 38: Achieved transaction rate – small messages

Chart 39: Achieved transaction rate – larger messages

Page 70 of 140

1024 2048 8192 32768 64512 65536

0

10000

20000

30000

40000 34753
30970 28664

19606
13425

209

7380 7613 6560 4466 3456 3049

V710 Transaction Rate - 1KB to 64KB Messages

2 Queue Manager, Request/Reply, Non-Data sharing, Server get and put in-Syncpoint,
Non-Persistent

CFLEVEL(4) CFLEVEL(5) OFFLOAD(SMDS) all messages

Message Size (bytes)

T
ra

n
sa

ct
io

n
/S

e
co

n
d

65536 102400 523264 524288 1048576 2097152 4194304

0
500

1000
1500
2000
2500
3000

202 201 144 118 79 53 28

2647

2000

520 469
229 109 56

V710 Transaction Rate - 64KB to 4MB Messages

2 Queue Manager, Request/Reply, Non-Data sharing, Server get and put in-Syncpoint,
Non-Persistent

CFLEVEL(4) CFLEVEL(5) OFFLOAD(SMDS) all messages

Message Size (bytes)

T
ra

n
sa

ct
io

n
/S

e
co

n
d

WebSphere MQ for z/OS V7.1.0
Performance report

Chart 40: Observed transaction cost – small messages

Chart 41: Observed transaction cost – larger messages

Page 71 of 140

1024 2048 8192 32768 64512 65536

0

1000

2000

3000

4000

163 183 199 293 419

3523

265 260 283 314 374 381

V710 Transaction Cost - 1KB to 64KB Messages

2 Queue Manager, Request/Reply, Non-Data sharing, Server get and put in-Syncpoint,
Non-Persistent

CFLEVEL(4) CFLEVEL(5) OFFLOAD(SMDS) all messages

Message Size (bytes)

C
o

st
 p

e
r

T
ra

n
s a

ct
io

n
 (

cp
u

 m
ic

ro
se

co
n

d
s)

65536 102400 523264 524288 1048576 2097152 4194304

0

10000

20000

30000

40000

50000

3523 3664 5063 7467
14525

21664

46210

381 457 1262 1321 2291 5194
11924

V710 Transaction Cost - 64KB to 4MB Messages

2 Queue Manager, Request/Reply, Non-Data sharing, Server get and put in-Syncpoint,
Non-Persistent

CFLEVEL(4) CFLEVEL(5) OFFLOAD(SMDS) all messages

Message Size (bytes)

C
o

st
 p

e
r

T
ra

n
s a

ct
io

n
 (

cp
u

 m
ic

ro
se

co
n

d
s)

WebSphere MQ for z/OS V7.1.0
Performance report

Three queue managers – data sharing, non-persistent, out of syncpoint

These tests run a request/reply model for a range of message sizes.

The requesters put a non-persistent request message to a shared queue and waits for a reply message
on a separate shared queue using CORRELATION-ID. The put is out of syncpoint as is the get.

The servers get the next available message from the request queue and puts a corresponding reply
message to the pre-agreed reply queue. These gets and puts are out-of-syncpoint.

The messages put by requester applications connected to queue manager 1 will be got by server
applications connected to queue manager 2. Messages put by requester applications connected to
queue manager 2 will be got by server applications connected to queue manager 3 and messages put
by requester applications connected to queue manager 3 will be got by server applications
connected to queue manager 1.

Chart 42: Achieved transaction rate – small messages

Chart 43: Achieved transaction rate – larger messages

Page 72 of 140

1024 2048 8192 32768 64512 65536

0

20000

40000

60000 45680 44012 38905
26515

18268

235
6948 6779 5946 4299 3071 3006

Achieved Transaction Rate - 3 Qmgrs, Out of Syncpoint, Non-Persistent

Message Sizes 1K to 64K

CFLEVEL(4) CFLEVEL(5) All offloaded

Message Size (bytes)

65536 102400 523264 524288 1048576 2097152 4194304

0
500

1000
1500
2000
2500
3000
3500

235 239 206 161 102 66 36

3006

2279

723 702
398 205 104

Achieved Transaction Rate - 3 Qmgrs, Out of Syncpoint, Non-Persistent
Message Sizes 64K to 4MB

CFLEVEL(4) CFLEVEL(5) All offloaded

Message Size (bytes)

WebSphere MQ for z/OS V7.1.0
Performance report

Chart 44: Observed transaction cost

Page 73 of 140

1024 2048 8192 32768 64512 65536 102400 523264 524288 1048576 2097152 4194304

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

17
8

18
5

21
3

31
7

44
4 36

36

37
60 57

30 75
87

12
62

4

22
61

6

46
23

2

23
1

23
4

25
1

29
9

36
7

36
3

43
1

13
45

13
55

24
66 47

41

10
05

3

Actual Transaction Costs - 3 Qmgr, Out of Syncpoint, Non-Persistent

Message Sizes 1K to 4MB

CFLEVEL(4) CFLEVEL(5) All offloaded

Message Size

C
P

U
 M

ic
ro

se
c o

n
d

s/
T

ra
n

WebSphere MQ for z/OS V7.1.0
Performance report

Three queue managers – data sharing, non-persistent, in-syncpoint

These tests run a request/reply model for a range of message sizes.

The requesters put a non-persistent request message to a shared queue and waits for a reply message
on a separate shared queue using CORRELATION-ID. The put is out of syncpoint as is the get.

The servers get the next available message from the request queue and puts a corresponding reply
message to the pre-agreed reply queue. These gets and puts are in-syncpoint.

The messages put by requester applications connected to queue manager 1 will be got by server
applications connected to queue manager 2. Messages put by requester applications connected to
queue manager 2 will be got by server applications connected to queue manager 3 and messages put
by requester applications connected to queue manager 3 will be got by server applications
connected to queue manager 1.

Chart 45: Achieved transaction rate – small messages

Chart 46: Achieved transaction rate – larger messages

Page 74 of 140

1024 2048 8192 32768 64512 65536

0

10000

20000

30000

40000

50000 41718 40870
36048

25337
17585

214
6698 6619 5627 4193 2932 2948

Achieved Transaction Rate - 3 Qmgrs, Server In-Syncpoint, Non-Persistent

Message Sizes 1K to 64K

CFLEVEL(4) CFLEVEL(5) All offloaded

Message Size (bytes)

65536 102400 523264 524288 1048576 2097152 4194304

0

1000

2000

3000

4000

214 204 177 122 85 55 27

2948
2249

728 708 389 200 101

Achieved Transaction Rate - 3 Qmgrs, Server In-Syncpoint, Non-Persistent

Message Sizes 64K to 4MB

CFLEVEL(4) CFLEVEL(5) All offloaded

Message Size (bytes)

WebSphere MQ for z/OS V7.1.0
Performance report

Chart 47: Observed transaction cost

Page 75 of 140

1024 2048 8192 32768 64512 65536 102400 523264 524288 1048576 2097152 4194304

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

20
3

20
8

23
6

33
8

47
3 35

95

36
18 56

16 73
64

12
32

2

22
23

0

44
45

9

26
0

26
1

28
1

32
6

40
1

39
3

46
3

13
93

13
81

25
24 47

70

21
18

2

Actual Transaction Costs - 3 Qmgr, Server In-Syncpoint, Non-Persistent

Message Sizes 1K to 4MB

CFLEVEL(4) CFLEVEL(5) All offloaded

Message Size

C
P

U
 M

ic
ro

se
c o

n
d

s/
T

ra
n

WebSphere MQ for z/OS V7.1.0
Performance report

Three queue managers – data sharing, persistent, in-syncpoint

These tests run a request/reply model for a range of message sizes.

The requesters put a persistent request message to a shared queue and waits for a reply message on
a separate shared queue using CORRELATION-ID. The put is in-syncpoint as is the get.

The servers get the next available message from the request queue and puts a corresponding reply
message to the pre-agreed reply queue. These gets and puts are in-syncpoint.

The messages put by requester applications connected to queue manager 1 will be got by server
applications connected to queue manager 2. Messages put by requester applications connected to
queue manager 2 will be got by server applications connected to queue manager 3 and messages put
by requester applications connected to queue manager 3 will be got by server applications
connected to queue manager 1.

Chart 48: Achieved transaction rate – small messages

Chart 49: Achieved transaction rate – larger messages

Page 76 of 140

1024 2048 8192 32768 64512 65536

0

5000

10000

15000

20000

13738
16423

10658

4703
2788

210

5679 5650 4894
2812 1739 1569

Achieved Transaction Rate - 3 Qmgrs, In-Syncpoint, Persistent

Message Sizes 1K to 64K

CFLEVEL(4) CFLEVEL(5) All offloaded

Message Size (bytes)

65536 102400 523264 524288 1048576 2097152 4194304

0

500

1000

1500

2000

210 225 114 83 39 21 16

1569

1177

252 251 131 66 33

Achieved Transaction Rate - 3 Qmgrs, In-Syncpoint, Persistent

Message Sizes 64K to 4MB

CFLEVEL(4) CFLEVEL(5) All offloaded

Message Size (bytes)

WebSphere MQ for z/OS V7.1.0
Performance report

Chart 50: Observed transaction cost

Page 77 of 140

1024 2048 8192 32768 64512 65536 102400 523264 524288 1048576 2097152 4194304

0

10000

20000

30000

40000

50000

60000

70000

80000

27
1

28
6

30
7

41
5

56
9 54

98

52
00 78

94 13
39

4 23
19

1

43
43

2

71
73

4

45
4

44
1

42
0

45
4

56
8

58
1

69
8

25
42

25
45 50

32 10
25

6

21
22

4

Actual Transaction Costs - 3 Qmgr, In-Syncpoint, Persistent

Message Sizes 1K to 4MB

CFLEVEL(4) CFLEVEL(5) All offloaded

Message Size

C
P

U
 M

ic
ro

se
c o

n
d

s/
T

ra
n

WebSphere MQ for z/OS V7.1.0
Performance report

When reviewing the Channel Path Activity report in RMF for the 4MB message size, the following
was observed:

CF LEVEL(4):

 CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) FICON OPERATIONS
ID TYPE G SHR PART TOTAL BUS PART TOTAL PART TOTAL RATE ACTIVE DEFER
9C FC_S 9 Y 15.28 46.83 28.48 27.45 81.78 47.66 146.04 2751.1 3.6 0.0
9D FC_S 9 Y 15.22 46.50 28.21 27.28 81.86 47.42 143.84 2737.0 3.5 0.0
9E FC_S 9 Y 14.99 46.34 28.11 27.53 82.03 46.12 142.85 2734.0 3.5 0.0
9F FC_S 9 Y 15.27 46.47 28.30 27.26 80.42 48.11 146.01 2725.1 3.6 0.0

CF LEVEL(5):

 CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) FICON OPERATIONS
ID TYPE G SHR PART TOTAL BUS PART TOTAL PART TOTAL RATE ACTIVE DEFER
9C FC_S 9 Y 15.11 46.20 35.81 23.20 69.69 71.67 216.81 1073.8 8.3 10.2
9D FC_S 9 Y 15.17 46.25 35.87 22.51 69.21 72.74 217.77 1068.0 8.3 11.4
9E FC_S 9 Y 14.97 45.87 35.55 22.90 69.64 71.13 214.72 1073.2 8.0 10.6
9F FC_S 9 Y 15.15 46.04 35.69 23.40 69.82 71.88 215.74 1074.0 8.1 11.3

This shows that despite the CFLEVEL(5) measurement achieving twice the transaction rate, the
channel paths are similarly loaded.

NOTE: The amount of data written per FICON instruction is significantly higher under
CFLEVEL(5) when looking at “FICON OPERATIONS RATE x WRITE for this PARTition” e.g:
CFLEVEL 4 channel path “9C” has 47.66MB / 2751.1 = 17.74KB / FICON instruction
CFLEVEL 5 channel path “9C” has 71.67 MB / 1073.8 = 68.35KB / FICON instruction.

Page 78 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Six queue manager – data sharing, non-persistent, server in-syncpoint

These tests run a request/reply model for a range of message sizes.

The requester applications run on 2 queue managers, on LPAR1, and put a non-persistent request
message to a shared queue and waits for a reply message on a separate shared queue using
CORRELATION-ID. The put is in-syncpoint as is the get.

The server applications run on the remaining 4 queue managers which are running on 2 other
LPARs. The servers get the next available message from the request queue and puts a corresponding
reply message to the pre-agreed reply queue. These gets and puts are in-syncpoint.

Chart 51: Achieved transaction rate

Chart 52: Observed transaction cost

Page 79 of 140

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

1000

2000

3000

Achieved Transaction Rate - Non-Persistent Messages

Comparing CFLEVEL(4) with CFLEVEL(5)

CFLEVEL(4) CFLEVEL(5)

Message Size (KB)

T
ra

ns
ac

tio
n s

 /
S

ec
on

d

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

20000

40000

60000

80000

Achieved Transaction Cost - Non-Persistent Messages

Comparing CFLEVEL(4) with CFLEVEL(5)

CFLEVEL(4) CFLEVEL(5)

Message Size (KB)

C
P

U
 M

ic
ro

s e
co

nd
s

/ T
r a

ns
ac

tio
n

WebSphere MQ for z/OS V7.1.0
Performance report

Six queue manager – data sharing, persistent, server in-syncpoint

These tests run a request/reply model for a range of message sizes.

The requester applications run on 2 queue managers, on LPAR1, and put a persistent request
message to a shared queue and waits for a reply message on a separate shared queue using
CORRELATION-ID. The put is in-syncpoint as is the get.

The server applications run on the remaining 4 queue managers which are running on 2 other
LPARs. The servers get the next available message from the request queue and puts a corresponding
reply message to the pre-agreed reply queue. These gets and puts are in-syncpoint.

Chart 53: Achieved transaction rate

Chart 54: Observed transaction cost

Page 80 of 140

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

500

1000

1500

Achieved Transaction Rate - Persistent Messages

Comparing CFLEVEL(4) with CFLEVEL(5)

CFLEVEL(4) CFLEVEL(5)

Message Size (KB)

T
ra

ns
ac

tio
n s

 /
S

ec
on

d

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

20000

40000

60000

80000

100000

Achieved Transaction Cost - Persistent Messages

Comparing CFLEVEL(4) with CFLEVEL(5)

CFLEVEL(4) CFLEVEL(5)

Message Size (KB)

C
P

U
 M

ic
ro

s e
co

nd
s

/ T
r a

ns
ac

tio
n

WebSphere MQ for z/OS V7.1.0
Performance report

Scaling – non-persistent large shared queue messages

For this type of scenario a single queue manager is created and connects to a queue sharing group
with 20 structures.
Request/Reply workload is run on this queue manager, where the measurement begins using one
pair of request and reply queues and increments this by one until there are 15 request and 15 reply
queues in use.
Each pair of request and reply queues is used by an equal number of request/reply applications.
Typically the measurements begins with 1 requester application and 1 server application using a
single request and reply queue pair.
The requester puts a message to the request queue and wait for a corresponding reply message on
the reply queue. This is completed out of syncpoint.
The server application action an MQGET-with-wait for the message and then puts a reply message
to the reply queue. This is completed within syncpoint.

With this configuration the measurements are run with the least possible contention for messages on
the queues and is not necessarily typical of production workload.

Each structure is the same size.
Structures 1 to 15 are CFLEVEL(5) OFFLOAD(SMDS).
Structures 16 to 20 are CFLEVEL(4).
Queues are defined on each application structure such that a scaling workload can be run on 1
structure or multiple structures.

Page 81 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Non-persistent 10KB messages

The following charts compare transaction cost and throughput rates when using 10KB non-
persistent messages.
The CFLEVEL(5) structures have been altered to ensure that all messages are offloaded to SMDS,
e.g.
ALT CFSTRUCT(APPLICATION1) OFFLD1SZ(0K) OFFLD1TH(0) +
 OFFLD2SZ(0K) OFFLD2TH(0) +
 OFFLD3SZ(0K) OFFLD3TH(0)

Regarding the data displayed in following 2 charts, the following comments apply:
When reviewing the transaction rate chart, it is expected that the rate achieved on the CFLEVEL(4)
structure exceeds the CFLEVEL(5) structure as the accesses are only to the Coupling Facility.
The CFLEVEL(4) measurement tails off when the coupling facility reaches a state where it requires
additional processors to service the work in a timely manner.
For 10KB messages, the rate at which the I/O subsystem was being driven was sufficient such that
benefits were seen by using multiple structures and by implication, multiple shared message data
sets.

NOTE: With regard to the transaction cost – the increasing cost of incurred when running using
queues defined on the CFLEVEL(4) can partly be attributed to the CF responses becoming
asynchronous as it becomes CPU constrained.

Page 82 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Chart 55: Achieved transaction rate

Chart 56: Observed transaction cost

Page 83 of 140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5000

10000

15000

20000

25000

Achieved Transaction Rate

Single Queue Manager - 10KB Non-Persistent In-Sync messages

CFLEVEL(5) OFFLOAD(SMDS) all queues in 1 structure
CFLEVEL(5) OFFLOAD(SMDS) all queues in many structures
CFLEVEL(4)

Queues

T
ra

ns
ac

tio
n

/ s
ec

on
d

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

100

200

300

400

500

Actual Transaction Cost

Single Queue Manager - 10KB Non-Persistent In-Sync messages

CFLEVEL(5) OFFLOAD(SMDS) all queues in 1 structure
CFLEVEL(5) OFFLOAD(SMDS) all queues in many structures
CFLEVEL(4)

Queues

C
os

t /
 T

ra
ns

ac
tio

n

WebSphere MQ for z/OS V7.1.0
Performance report

Non-persistent 100KB messages

The following charts compare transaction cost and throughput rates when using 100KB non-
persistent messages.
Chart 57: Achieved Transaction Rate

Chart 58: Observed Transaction Cost

Page 84 of 140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1000
2000
3000
4000
5000
6000

Achieved Transaction Rate

Single Queue Manager - 100KB Non-Persistent In-Sync messages

CFLEVEL(5) OFFLOAD(SMDS) all queues in 1 structure
CFLEVEL(5) OFFLOAD(SMDS) queues in 15 structures
CFLEVEL(4) OFFLOAD(DB2) all queues in 1 structure

Queues

T
ra

ns
ac

tio
n

/ s
ec

on
d

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

500

1000

1500

2000

2500

Actual Transaction Cost

Single Queue Manager - 100KB Non-Persistent In-Sync messages

CFLEVEL(5) OFFLOAD(SMDS) all queues in 1 structure
CFLEVEL(5) OFFLOAD(SMDS) queues in 15 structures
CFLEVEL(4) OFFLOAD(DB2) all queues in 1 structure

Queues

C
os

t /
 T

ra
ns

ac
tio

n

WebSphere MQ for z/OS V7.1.0
Performance report

Notes on previous 2 charts:
• The achieved transaction rate using a single CFLEVEL(4) structure peaks at approximately

900 per second. This means that there are approximately 180MB/second being written to the
DB2 blob tablespaces. As there are 4 tablespaces defined to hold the large messages, this
means that each of the 4 channel paths to the I/O subsystem being used, each is writing
45MB per second.

• By comparison, using a single CFLEVEL(5) structure, backed by a single SMDS, the peak
transaction rate is 5,350 per second, at significantly less cost. In this measurement, the
system is writing over 1,000MB/second to the single SMDS. In this instance, 4 channel
paths are being used, each writing 250MB/second.

• When multiple CFLEVEL(5) structures are used to host the queues, there is less contention
waiting for the I/O write to complete for a particular volume – the queue manager is able to
request I/O is completed on multiple data sets concurrently. The transaction rate can reach
5,400 per second.

• Whether the workload is run on a single CFLEVEL(5) structure or multiple CFLEVEL(5)
structures, the cost per transaction is similar and is significantly less than the equivalent
CFLEVEL(4) transaction cost.

Page 85 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Non-persistent 1MB messages

The following charts compare transaction cost and throughput rates when using 1MB non-persistent
messages.
Chart 59: Achieved transaction rate

Chart 60: Observed transaction cost

Page 86 of 140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

200

400

600

800

Achieved Transaction Rate

Single Queue Manager - 1MB Non-Persistent In-Sync messages

CFLEVEL(5) OFFLOAD(SMDS) all queues in 1 structure
CFLEVEL(5) OFFLOAD(SMDS) queues in 15 structures
CFLEVEL(4) OFFLOAD(DB2) all queues in 1 structure

Queues

T
ra

ns
ac

tio
n

/ s
ec

on
d

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2000

4000

6000

8000

Achieved Transaction Cost

Single Queue Manager - 1MB Non-Persistent In-Sync messages

CFLEVEL(5) OFFLOAD(SMDS) all queues in 1 structure
CFLEVEL(5) OFFLOAD(SMDS) queues in 15 structures
CFLEVEL(4) OFFLOAD(DB2) all queues in 1 structure

Queues

C
P

U
 M

ic
ro

s e
co

nd
s

pe
r

T
ra

ns
ac

tio
n

WebSphere MQ for z/OS V7.1.0
Performance report

Notes on previous 2 charts:
The achieved transaction rate using a single CFLEVEL(4) structure peaks at approximately 200 per
second. This means that there are approximately 400MB/second being written to the DB2 blob
tablespaces. Using RMF data, we can determine whether the I/O subsystem is the constraining
factor.

Using the RMF “Direct Access Device Activity” reports we can see high activity on DB2's log
datasets as well as the 4 volumes used for each of the 4 tablespaces used to hold large WebSphere
MQ shared messages.

Extract from “Direct Access Device Activity” report
 DEVICE
STORAGE DEV DEVICE NUMBER VOLUME PAV LCU ACTIVITY
 GROUP NUM TYPE OF CYL SERIAL RATE
DSNLOG1 C009 33909 32760 AADS10 1.0H 0002 1406.44 - DB2 Log Dataset
DSNLOG2 C00A 33909 32760 AADS20 1.0H 0002 1393.75 - DB2 Log Dataset
SGPRIME C007 33909 65520 AAP001 1.3H 0002 987.105 - MQ LOB Tablespace
SGPRIME C031 33909 65520 AAP002 1.8H 0003 915.086 - MQ LOB Tablespace
SGPRIME C032 33909 65520 AAP003 1.3H 0003 925.770 - MQ LOB Tablespace
SGPRIME C033 33909 65520 AAP004 1.1H 0003 904.537 - MQ LOB Tablespace

Using the reported LCUs with the “I/O Queuing Activity” report, we can see that LCUs 0002 and
0003 both use channel paths 9C, 9D, 9E and 9F.
Referring to the “Channel Path Activity” report:

 DETAILS FOR ALL CHANNELS

 CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) FICON OPERATIONS
 ID TYPE G SHR PART TOTAL BUS PART TOTAL PART TOTAL RATE ACTIVE DEFER
 9C FC_S 9 Y 26.07 26.26 14.80 1.97 2.02 116.41 116.41 1654.4 1.5 0.0
 9D FC_S 9 Y 26.12 26.32 14.82 2.18 2.21 116.35 116.36 1654.5 1.5 0.0
 9E FC_S 9 Y 26.10 26.31 14.82 1.94 1.98 116.56 116.57 1655.6 1.5 0.0
 9F FC_S 9 Y 26.17 26.36 14.84 2.01 2.04 116.66 116.67 1655.3 1.5 0.0

This report shows us that the particular channel paths used for I/O to the DB2 volumes is not
significantly busy (less than 30% utilised).

Page 87 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

By comparison, using a single CFLEVEL(5) structure, backed by a single shared message data set,
the peak transaction rate is 620 per second, at significantly less cost. In this measurement, the
system is writing over 1300MB/second to the single SMDS. Again in this instance, only 4 channel
paths are being used, each writing 330MB/second and are each 59% utilised:

 DETAILS FOR ALL CHANNELS

 CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) FICON OPERATIONS
ID TYPE G SHR PART TOTAL BUS PART TOTAL PART TOTAL RATE ACTIVE DEFER
9C FC_S 9 Y 59.39 59.86 42.92 10.55 10.59 332.78 332.78 1651.0 8.5 0.0
9D FC_S 9 Y 59.30 59.77 42.76 10.83 10.86 331.22 331.23 1650.1 8.8 0.0
9E FC_S 9 Y 59.33 59.78 42.86 10.34 10.37 332.47 332.48 1650.7 8.4 0.0
9F FC_S 9 Y 59.39 59.84 42.89 10.34 10.37 332.73 332.73 1651.0 8.5 0.0

When multiple CFLEVEL(5) structures are used to host the queues, there is less contention waiting
for the I/O write to complete for a particular volume ; the queue manager is able to request I/O is
completed on multiple data sets concurrently. The transaction rate can exceed 630 per second.
Because the datasets are spread across many volumes, a distribution of workload takes place, so that
more channel paths can be used, however on our systems we only have 4 channel paths available.
When testing with more channel paths we have seen significant improvements in throughput as
this increases the capacity of the I/O subsystem and allows the higher transaction rate

 DETAILS FOR ALL CHANNELS

 CHANNEL PATH UTILIZATION(%) READ(MB/SEC) WRITE(MB/SEC) FICON OPERATIONS
ID TYPE G SHR PART TOTAL BUS PART TOTAL PART TOTAL RATE ACTIVE DEFER
9C FC_S 9 Y 58.58 59.04 42.45 0.13 0.16 339.43 339.44 1611.6 8.8 0.0
9D FC_S 9 Y 58.64 59.10 42.50 0.19 0.22 339.76 339.76 1611.5 9.1 0.0
9E FC_S 9 Y 58.65 59.11 42.50 0.18 0.21 339.82 339.83 1611.6 8.8 0.0
9F FC_S 9 Y 58.65 59.12 42.47 0.13 0.16 339.58 339.59 1611.6 9.1 0.1

NOTE: In the multiple structure measurement there is less channel path activity for reading. This is
due to there being sufficient buffers available for the queue manager to avoid needing to read the
message from the dataset.
Whether the workload is run on a single CFLEVEL(5) structure or multiple CFLEVEL(5)
structures, the cost per transaction is similar and is significantly less than the equivalent
CFLEVEL(4) transaction cost.

Page 88 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Non-persistent 1MB messages – multiple applications per queue pair

By increasing the number of applications using each pair of queues we can determine the maximum
rate of writing to our disks.
We would not expect the CFLEVEL(4) measurements to significantly change and as can be seen
from the chart following, the peak transaction rate is still at 200 transactions per second.

Chart 61: Achieved Transaction Rate using CFLEVEL(4) with multiple applications

Page 89 of 140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

50

100

150

200

250

Achieved Transaction Rate using DB2 as offload medium

1MB Non-Pers, In-Sync, Increasing Requester/Servers per Queue Pair

1 2 3 4 5

Queue Pairs

T
ra

n
sa

ct
io

n
s/

S
e

co
n

d

WebSphere MQ for z/OS V7.1.0
Performance report

Chart 62: Achieved transaction rate using CFLEVEL(5) offload(SMDS) with 1 structure

When using a single CFLEVEL(5) structure, we would not expect the transaction rate to increase as
we are reaching the limits as to how fast we can access a single volume. The chart shows that
additional tasks using the queues does not increase the throughput – signifying that the I/O rate on
the single volume has peaked.
In this measurement, additional tasks has caused a reduction in achieved throughput to around 400
transactions per second.

Page 90 of 140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

100

200

300

400

500

600

700

Achieved Transaction Rate - Single Structure
1MB Non-Pers, In-Sync, Increasing Requester/Servers per Queue Pair

1 2 3 4 5

Queue Pairs

T
ra

n
sa

ct
io

n
s/

S
e

co
n

d

WebSphere MQ for z/OS V7.1.0
Performance report

Chart 62-A: DASD activity report for the 3 requester/server per queue pair measurement.

This chart shows the average IOSQ time has significantly increased from the measurement with 5
queue pairs, which corresponds to the peak transaction rate achieved.
The Average IOSQ time is defined as “The average number of milliseconds an I/O request must
wait on an IOS queue before a SSCH instruction can be issued.” in the RMF manuals.

Page 91 of 140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

14

DASD Activity Report Data

3 Requester/Servers per Queue Pair

AVG_CONN_TIME
AVG_DISC_TIME
AVG_PEND_TIME
AVG_DB_DLY
AVG_CMR_DLY
AVG_IOSQ_TIME
AVG_RESP_TIME

Queue Pairs

M
ill

is
e

co
n

d
s

WebSphere MQ for z/OS V7.1.0
Performance report

The CFLEVEL(5) multiple structures measurement should increase throughput until becoming
constrained by channel path usage.
The following chart shows a peak rate of 650 transactions per second which is not significantly
higher than the peak throughput achieved for the single structure measurements.

Chart 63: Achieved transaction Rate using CFLEVEL(5) offload(SMDS) with multiple
structures

In this measurement, the multiple SMDS datasets are spread across 3 volumes – AAPG00, AAPG10
and AAPG30.
As the number of queue pairs in use increases, the average IOSQ time for each of these volumes
rose to over 20 milliseconds. By comparison, the single structure measurement peaked at an average
IOSQ time of 7 milliseconds.

Page 92 of 140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

100

200

300

400

500

600

700

Achieved Transaction Rate with Multiple SMDS Structures

1MB Non-Pers, In-Sync, Increasing Requester/Servers per Queue Pair
1 2 3 4 5

Queue Pairs

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

WebSphere MQ for z/OS V7.1.0
Performance report

Appendix A – Regression
When performance monitoring WebSphere MQ for z/OS version 7.1.0, a number of different
categories of tests are run, which include:

• Private Queue
• Shared Queue
• Moving messages using MCA Channels
• Moving messages using Clustered Channels
• Client
• Bridges and Adaptors
• Trace

These tests are run against V6.0.0, V7.0.1 and V7.1.0 and the comparison of the results is shown in
subsequent pages.

The statement of regression is based upon these results.
All measurements were run on a performance sysplex of a zEnterprise 196 (2194-779) which was
configured as described in Appendix B.

Given the complexity of the z/OS environment even in our controlled performance environment, a
tolerance factor of +/-6% is regarded as acceptable.

Page 93 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Regression – Private Queue

Non-Persistent Out-of-Syncpoint workload

Maximum Throughput on single pair of request/reply queues
The test uses 5 batch requester tasks that each put a message to a common request queue and wait
for a specific response on the reply queue. Once they have gotten the message, they put another
message to the request queue. The messages are put and got out of syncpoint.

There are 4 batch server tasks that action MQGET-with-wait calls on the request queue, get the
message and put a reply to the known (and pre-opened) reply queue and then the application goes
back into an MQGET-with-wait. The messages are got and put out of syncpoint.

Page 94 of 140

2KB 64KB 4MB
0

10000

20000

30000

40000

50000

60000

70000

80000

26017 23652

1172

62262

33061

1128

71505

35299

1112

Private Queue - Maximum Sustained Transaction Rate using Request/Reply workload

Non-Persistent Out-of-Syncpoint - using a single pair of queues - 3 CPs

V600 V701 V710

Message Size (Bytes)

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

WebSphere MQ for z/OS V7.1.0
Performance report

Scalability of request/reply model across multiple queues
The queue manager is configured with 16 pagesets – 0 through 15 and a corresponding number of
buffer pools.
On each of pagesets 1 to 15, a pair of request and reply queues are defined. The test starts up 1
requester and 1 server task accessing the queues on pageset 1 and runs a request/reply workload.
At the end, the test starts a second pair of requester and server tasks which access the queues on
page set 2 and so on until there are 15 requester and 15 server tasks using queues on all 15 pagesets
with application queues defined.
The requester and the server tasks specify NO_SYNCPOINT for all messages.
The measurements are run on a single LPAR with 16 dedicated processors online on the zEnterprise
196 (2817) used for testing.
The following chart shows the performance of V6.0.0 for small messages (where multiple messages
can fit on a single page) does not scale on the fast hardware. In releases prior to V7.0.0, the
scavenger task would run on a fixed interval. As the zEnterprise 196 runs significantly faster than
previous generations of mainframe, the scavenger task was unable to keep pace with the workload
and the workload spilled over into pageset usage. As a result, the requester application had to slow
its rate of put.

Page 95 of 140

2KB 64KB 4MB
0

500

1000

1500

2000

2500

3000

66 111

2490

45 87

2595

38 79

2581

Private Queue - Achieved Transaction Cost using Request/Reply workload

Non-Persistent Out-of-Syncpoint - using a single pair of queues - 3 CPs

V600 V701 V710

Message Size (Bytes)C
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 M

IC
R

O
S

E
C

O
N

D
S

)

WebSphere MQ for z/OS V7.1.0
Performance report

Page 96 of 140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.00

20.00

40.00

60.00

80.00

100.00

Private Queue - Scalability - Actual Transaction Rate
Request/Reply Workload with Increasing Queue Pairs

2KB Messages, Out-of-Syncpoint - 1 Requester, 1 Server per pair of queues - 16 CPs

V600 V701 V710

Queue PairsC
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 M

ic
ro

se
co

n
d

s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.00

50000.00

100000.00

150000.00

200000.00

250000.00

300000.00

350000.00

Private Queue - Scalability - Sustained Transaction Rate
Request/Reply Workload with Increasing Queue Pairs

2KB Messages, Non-Persistent Out-of-Syncpoint -
1 Requester, 1 Server per pair of queues - 16 CPs

V600 V701 V710

Queue Pairs

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

WebSphere MQ for z/OS V7.1.0
Performance report

By increasing the number of requester and server tasks accessing each pair of queues, we can drive
the 16-way LPAR at close to 100% of capacity. This gives the transaction rate and costs shown in
the following charts:

Each transaction involves the requester putting a message, the server getting a message and putting
a reply and then the requester getting the reply. This means that each transaction is a total of 2
MQPUTs and 2 MQGETs.

Page 97 of 140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.00

100000.00

200000.00

300000.00

400000.00

500000.00

Private Queue - Scalability - Sustained Transaction Rate
Request/Reply Workload with Increasing Queue Pairs

2KB Messages, Non-Persistent Out-of-Syncpoint
3 Requester, 3 Server per pair of queues - 16 CPs

V701 V710

Queue Pairs

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

Private Queue - Scalability - Actual Transaction Rate
Request/Reply Workload with Increasing Queue Pairs

2KB Messages, Out-of-Syncpoint - 3 Requester, 3 Server per pair of queues - 16 CPs

V701 V710

Queue PairsC
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 M

ic
ro

se
co

n
d

s)

WebSphere MQ for z/OS V7.1.0
Performance report

The preceding 2 charts show that a single queue manager is able to drive 400,000 transactions per
second – or 800,000 non-persistent messages per second on a 16-way LPAR.

By increasing the number of processors available and using multiple request/reply queues per
pageset, we have driven a V.71.0 queue manager to process 1.1 million messages per second (or
550,000 transactions per second) on a 30-way LPAR as shown in the chart following:

Page 98 of 140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0
100000
200000
300000
400000
500000
600000

Achieved Transaction Rate, Private Queue
2KB Non-Persistent Workload

Out-of-Syncpoint, Low-Contention

z196 30-way, z/OS v1r12, Hiperdispatch(ON), RMF(OFF), TRACE(A)

1 requester/server per queue pair
2 requester/servers per queue pair

Queue PairsT
r
a
n
s
a
c
t
i
o
n
s

/

S
e
c
o
n
d

WebSphere MQ for z/OS V7.1.0
Performance report

Non-persistent server in-syncpoint workload

Maximum throughput on single pair of request/reply queues
The test uses 5 batch requester tasks that each put a message to a common request queue and wait
for a specific response on the reply queue. Once they have got the message, they put another
message to the request queue. The messages are put and got out of syncpoint.

There are 4 batch server tasks that use MQGET-with-wait calls on the request queue, get the
message and put a reply to the known (and pre-opened) reply queue and then the application goes
back into an MQGET-with-wait. The messages are got and put in syncpoint with 1 MQGET and 1
MQPUT per commit.

As in the out of syncpoint workload, the performance of V6.0.0 does not look good. In releases
prior to V7.0.0, the scavenger task would run on a fixed interval. As the zEnterprise 196 runs
significantly faster than previous generations of mainframe, the scavenger task was unable to keep
pace with the workload and the workload spilled over into pageset usage. As a result, the requester
application needed to slow its rate of put.

Page 99 of 140

2KB 64KB 4MB
0

5000

10000

15000

20000

25000

30000

35000

4582

12266

282

30683

12894

326

32527

13014

314

Private Queue - Maximum Sustained Transaction Rate using Request/Reply workload

Non-Persistent Server-in-Syncpoint - using a single pair of queues - 3 CPs

V600 V701 V710

Message Size (Bytes)

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

WebSphere MQ for z/OS V7.1.0
Performance report

Scalability of Request/Reply model across multiple queues
The queue manager is configured with 16 pagesets – 0 through 15 and a corresponding number of
buffer pools.
On each of pagesets 1 to 15, a pair of request and reply queues are defined. The test starts up 1
requester and 1 server task accessing the queues on pageset 1 and runs a request/reply workload.
At the end, the test starts a second pair of requester and server tasks which access the queues on
page set 2 and so on until there are 15 requester and 15 server tasks using queues on all 15 pagesets
with application queues defined.
The requester tasks specify NO_SYNCPOINT for all messages and the server tasks get and put
messages within syncpoint.
The measurements are run on a single LPAR with 16 dedicated processors online on the 2817
(z196) used for testing.

Page 100 of 140

2KB 64KB 4MB
0

2000

4000

6000

8000

10000

12000

131 233

10437

93 219

9021

86 213

9172

Private Queue - Achieved Transaction Cost using Request/Reply workload

Non-Persistent Server-in-Syncpoint - using a single pair of queues - 3 CPs

V600 V701 V710

Message Size (Bytes)C
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 M

IC
R

O
S

E
C

O
N

D
S

)

WebSphere MQ for z/OS V7.1.0
Performance report

Page 101 of 140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20000

40000

60000

80000

100000

Private Queue - Scalability - Sustained Transaction Rate
Request/Reply Workload with Increasing Queue Pairs

2KB Messages, Non-Persistent Server-In-Syncpoint
- 1 Requester, 1 Server per pair of queues - 16 CPs

V600 V701 V710

Queue Pairs

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20
40
60
80

100
120
140
160

Private Queue - Scalability - Observed Transaction Cost
Request/Reply Workload with Increasing Queue Pairs

2KB Messages, Non-Persistent Server-In-Syncpoint
 - 1 Requester, 1 Server per pair of queues - 16 CPs

V600 V701 V710

Queue PairsC
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 M

ic
ro

se
co

n
d

s)

WebSphere MQ for z/OS V7.1.0
Performance report

Page 102 of 140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

100

200

300

400

500

600

Private Queue - Scalability - Actual Transaction Cost
Request/Reply Workload with Increasing Queue Pairs

64KB Messages, Non-Persistent Server-In-Syncpoint
 1 Requester, 1 Server per pair of queues - 16 CPs

V600 V701 V710

Queue Pairs

C
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 M

ic
ro

se
co

n
d

s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10000

20000

30000

40000

50000

Private Queue - Scalability - Sustained Transaction Rate
Request/Reply Workload with Increasing Queue Pairs

64KB Messages, Non-Persistent Server-In-Syncpoint
1 Requester, 1 Server per pair of queues - 16 CPs

V600 V701 V710

Queue Pairs

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

WebSphere MQ for z/OS V7.1.0
Performance report

Page 103 of 140

1 2 3 4 5 6
0

100

200

300

400

500

600

Private Queue - Scalability - Sustained Transaction Rate
Request/Reply Workload with Increasing Queue Pairs

4MB Messages, Non-Persistent Server-In-Syncpoint
1 Requester, 1 Server per pair of queues - 16 CPs

V600 V701 V710

Queue Pairs

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

1 2 3 4 5 6
0

5000

10000

15000

20000

Private Queue - Scalability - Actual Transaction Cost
Request/Reply Workload with Increasing Queue Pairs

4MB Messages, Non-Persistent Server-In-Syncpoint
1 Requester, 1 Server per pair of queues - 16 CPs

V600 V701 V710

Queue Pairs

C
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 M

ic
ro

se
co

n
d

s)

WebSphere MQ for z/OS V7.1.0
Performance report

Persistent in-syncpoint workload

Maximum throughput on single pair of request/reply queues
The test uses 5 batch requester tasks that each put a message to a common request queue and wait
for a specific response on the reply queue. Once they have got the message, they put another
message to the request queue. The messages are put in-syncpoint and got in-syncpoint.

There are 4 batch server tasks that action MQGET-with-wait calls on the request queue, get the
message and put a reply to the known (and pre-opened) reply queue and then the application goes
back into an MQGET-with-wait. The messages are got and put in syncpoint with 1 MQGET and 1
MQPUT per commit.

Page 104 of 140

2KB 64KB 4MB
0

1000

2000

3000

4000

5000

6000

7000

8000

6376

1039

16

7026

1041

14

6766

993

15

Private Queue - Maximum Sustained Transaction Rate using Request/Reply workload

Persistent In-Syncpoint - using a single pair of queues - 3 CPs

V600 V701 V710

Message Size (Bytes)

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

WebSphere MQ for z/OS V7.1.0
Performance report

Page 105 of 140

2KB 64KB 4MB
0

5000

10000

15000

20000

25000

30000

35000

40000

227 714

35763

189 684

34128

164 585

29765

Private Queue - Achieved Transaction Cost using Request/Reply workload

Persistent In-Syncpoint - using a single pair of queues - 3 CPs

V600 V701 V710

Message Size (Bytes)C
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 M

IC
R

O
S

E
C

O
N

D
S

)

WebSphere MQ for z/OS V7.1.0
Performance report

Regression – shared queue - CFLEVEL(4)

Non-persistent out-of-syncpoint workload

Maximum throughput on single pair of request/reply queues
The test uses 5 batch requester tasks that each put a message to a common request queue and wait
for a specific response on the reply queue. Once they have got the message, they put another
message to the request queue. The messages are put and got out of syncpoint.

There are 4 batch server tasks that use MQGET-with-wait calls on the request queue, get the
message and put a reply to the known (and pre-opened) reply queue and then the application goes
back into an MQGET-with-wait. The messages are got and put out of syncpoint.

An increasing number of queue managers are allocated to process the workload. Each queue
manager has 5 requester and 4 server tasks.

Page 106 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

2KB messages

Page 107 of 140

1 2 3
0

10000
20000
30000
40000
50000
60000
70000
80000

23812

42748

56984

30553

51264

64575

32090

56467

71531

Shared Queue - Maximum Sustained Transaction Rate
using Request/Reply workload

2KB Non-Persistent Out-of-Syncpoint - using a single pair of queues - 3 CPs/LPAR

V600 V701 V710

Queue Managers

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

1 2 3
0

50

100

150

107
123

140

90
108

128

80
97

115

Shared Queue - Actual Transaction Cost using Request/Reply workload

2KB Non-Persistent Out-of-Syncpoint - using a single pair of queues - 3 CPs/LPAR

V600 V701 V710

Queue Managers

C
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 M

ic
ro

se
co

n
d

s)

WebSphere MQ for z/OS V7.1.0
Performance report

64KB messages

Page 108 of 140

1 2 3
0

2000

4000

6000

8000

10000
8090 8442

93749322

7183
8076

9083

7401 7821

Shared Queue - Maximum Sustained Transaction Rate using Request/Reply workload

64KB Non-Persistent Out-of-Syncpoint CFLEVEL(4) - using a single pair of queues - 3 CPs/LPAR

V600 V701 V710

Queue Managers

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

1 2 3
0

50

100

150

200

250

153 167
184

123
165

191

115
140

163

Shared Queue - Actual Transaction Cost using Request/Reply workload

64KB Non-Persistent Out-of-Syncpoint CFLEVEL(4) - using a single pair of queues - 3 CPs/LPAR

V600 V701 V710

Queue Managers

C
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 M

ic
ro

se
co

n
d

s)

WebSphere MQ for z/OS V7.1.0
Performance report

4MB messages

Page 109 of 140

1 2 3
0

100
200
300
400
500
600
700
800

635
744 722

581

403

581624
524

603

Shared Queue - Maximum Sustained Transaction Rate using Request/Reply workload

4MB Non-Persistent Out-of-Syncpoint CFLEVEL(4) - using a single pair of queues - 3 CPs/LPAR

V600 V701 V710

Queue Managers

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

1 2 3
0

1000

2000

3000

4000

1769
2280

2863

1864

3043
3434

1703

2736 2971

Shared Queue - Actual Transaction Cost using Request/Reply workload

4MB Non-Persistent Out-of-Syncpoint CFLEVEL(4) - using a single pair of queues - 3 CPs/LPAR

V600 V701 V710

Queue Managers

C
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 M

ic
ro

se
co

n
d

s)

WebSphere MQ for z/OS V7.1.0
Performance report

Non-persistent server in-syncpoint workload

Maximum throughput on single pair of request/reply queues
The test uses 5 batch requester tasks that each put a message to a common request queue and wait
for a specific response on the reply queue. Once they have got the message, they put another
message to the request queue. The messages are put and got out of syncpoint.

There are 4 batch server tasks that action MQGET-with-wait calls on the request queue, get the
message and put a reply to the known (and pre-opened) reply queue and then the application goes
back into an MQGET-with-wait. The messages are got and put in-syncpoint.

An increasing number of queue managers are allocated to process the workload. Each queue
manager has 5 requester and 4 server tasks.

Page 110 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

2KB messages

Page 111 of 140

1 2 3
0

10000

20000

30000

40000

50000

15907

27069

36058

16457

29377
35266

17368

33185

43139

Shared Queue - Maximum Sustained Transaction Rate using Request/Reply workload

2KB Non-Persistent Server-In-Syncpoint - using a single pair of queues - 3 CPs/LPAR

V600 V701 V710

Queue Managers

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

1 2 3
0

50
100
150
200
250
300

176
209

236

171
193

242

162 170
198

Shared Queue - Actual Transaction Cost using Request/Reply workload

2KB Non-Persistent Server-in-Syncpoint - using a single pair of queues - 3 CPs/LPAR

V600 V701 V710

Queue Managers

C
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 M

ic
ro

se
co

n
d

s)

WebSphere MQ for z/OS V7.1.0
Performance report

64KB messages

Page 112 of 140

1 2 3
0

100

200

300

400

500

600
479

199 232

485

204
253

498

211
263

Shared Queue - Maximum Sustained Transaction Rate using Request/Reply workload
64KB Non-Persistent Server-in-Syncpoint CFLEVEL(4)

- using a single pair of queues - 3 CPs/LPAR

V600 V701 V710

Queue Managers

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

1 2 3
0

2000

4000

6000

1258

3434 3827

1246

3516 3934

1300

3121 3451

Shared Queue - Actual Transaction Cost using Request/Reply workload

64KB Non-Persistent Server-in-Syncpoint CFLEVEL(4)
using a single pair of queues - 3 CPs/LPAR

V600 V701 V710

Queue Managers

C
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 M

ic
ro

se
co

n
d

s)

WebSphere MQ for z/OS V7.1.0
Performance report

4MB messages

Page 113 of 140

1 2 3
0

10

20

30

40
31

21
27

32
27

3333
28

35

Shared Queue - Maximum Sustained Transaction Rate using Request/Reply workload
4MB Non-Persistent Server-in-Syncpoint CFLEVEL(4)

 using a single pair of queues - 3 CPs/LPAR

V600 V701 V710

Queue Managers

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

1 2 3
0

20000

40000

60000

21343

41693
47587

22810

44557 45963

18386

37787 41753

Shared Queue - Actual Transaction Cost using Request/Reply workload

4MB Non-Persistent Server-in-Syncpoint CFLEVEL(4)
using a single pair of queues - 3 CPs/LPAR

V600 V701 V710

Queue Managers

C
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 M

ic
ro

se
co

n
d

s)

WebSphere MQ for z/OS V7.1.0
Performance report

Data sharing non-persistent server in-syncpoint workload

The previous shared queue tests are configured so that any queue manager within the queue sharing
group can process messages put by any particular requester application. This means that the
message may be processed by a server application on any of the available LPARs. Typically, the
message is processed by a server application on the same LPAR as the requester.

In the following tests, the message can only be processed by a server application on a separate
LPAR. This is achieved by using multiple pairs of request/reply queues.

The test uses 5 batch requester tasks on each queue manager that put a message to a specific request
queue and wait for a specific response on a specific queue. Once they have got the message, they
put another message to the request queue. The messages are put and got out of syncpoint.

There are 4 batch server tasks on each queue manager that use MQGET-with-wait calls on the
request queue of one of the remote queue managers, get the message and put a reply to the known
(and pre-opened) reply queue and then the application goes back into an MQGET-with-wait. The
messages are got and put in-syncpoint.

Page 114 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

2KB messages

Page 115 of 140

2 3
0

10000

20000

30000

40000

50000

30637

41115

30402
39932

33412

45992

Shared Queue - Data Sharing - Maximum Sustained Transaction Rate
using Request/Reply workload

2KB Non-Persistent Server-In-Syncpoint - 3 CPs/LPAR

V600 V701 V710

Queue Managers

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

2 3
0

100

200

300

183 204186 213
169 184

Shared Queue - Data Sharing - Actual Transaction Cost
using Request/Reply workload

2KB Non-Persistent Server-In-Syncpoint - 3 CPs/LPAR

V600 V701 V710

Queue Managers

C
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 M

ic
ro

se
co

n
d

s)

WebSphere MQ for z/OS V7.1.0
Performance report

64KB messages

Page 116 of 140

2 3
0

100

200

300

176
235

176

246
186

256

Shared Queue - Data Sharing - Maximum Sustained Transaction Rate
using Request/Reply workload

64KB Non-Persistent Server-In-Syncpoint - 3 CPs/LPAR

V600 V701 V710

Queue Managers

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

2 3
0

2000

4000

6000
3543 39163487 3851

3072 3405

Shared Queue - Data Sharing - Actual Transaction Cost
using Request/Reply workload

64KB Non-Persistent Server-In-Syncpoint - 3 CPs/LPAR

V600 V701 V710

Queue Managers

C
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 M

ic
ro

se
co

n
d

s)

WebSphere MQ for z/OS V7.1.0
Performance report

Regression – moving messages across channels

The regression tests for moving messages across channels e.g. sender-receiver channels, are
designed to drive the channel initiator such that the network is the constraining factor. Therefore the
tests use non-persistent messages out-of-syncpoint, so that they are not constrained by logging
capacity, etc.

Within the channel tests there are measurements with small numbers of channels e.g 1 to 4, which
was suitable for driving the network to capacity and also tests with 10 to 50 channels.

For each of the test types, the channels are used both with and without SSL encryption enabled.

The SSL tests are configured to use “TRIPLE_DES_SHA_US” encryption on the Crypto-
Accelerator processor. The SSLRKEYC attribute is set so that 1MB of data can flow across the
channel before renegotiating the key.

For further guidance on channel tuning and usage, please refer to the supportpac MP16 – Capacity
Planning and Tuning Guide.

The measurements using 1 to 4 channels use batch applications to drive the workload at each end of
the channel.

The measurements using 10 to 50 channels use long-lived CICS transactions to drive the workload.
This means that each CICS application will put and get thousands of messages before ending. This
model means that we are not including the cost of starting a CICS transaction, opening and closing
queues and the teardown of the transaction at the end of the workload.

Page 117 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Non-persistent out-of-syncpoint – 1 to 4 sender-receiver channels

2KB messages

Page 118 of 140

1 2 3 4
0

2000

4000

6000

8000

10000

12000

14000

3900

6149
7727 8266

6035

8889
10332

11459

6493

8998

11068
12625

Mover - Maximum Sustained Transaction Rate between 2 z/OS queue managers
using Request/Reply Workload with small numbers of channels

2KB Non-Persistent Out-of-Syncpoint - 3 CPs/LPAR

V600 V701 V710

Channel Pairs

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

1 2 3 4
0

50

100

150

200

250

300

350
280 282 277

295

229 236 244 246
213 223 227 230

Mover - Actual Transaction Cost between 2 z/OS queue managers
using Request/Reply Workload with small numbers of channels

2KB Non-Persistent Out-of-Syncpoint - 3 CPs/LPAR

V600 V701 V710

Queue ManagersC
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 M

ic
ro

se
co

n
d

s)

WebSphere MQ for z/OS V7.1.0
Performance report

64KB messages

Page 119 of 140

1 2 3 4
0

500

1000

1500

2000

1146
1382

1528 1543

1158
1386

1526 1490

1124

1392
1519 1496

Mover - Maximum Sustained Transaction Rate between 2 z/OS queue managers
using Request/Reply Workload with small numbers of channels

64KB Non-Persistent Out-of-Syncpoint - 3 CPs/LPAR

V600 V701 V710

Channel Pairs

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

1 2 3 4
580

600

620

640

660

680

700

652
659

689
679680 675

684
691

671

633 629 627

Mover - Actual Transaction Cost between 2 z/OS queue managers
using Request/Reply Workload with small numbers of channels

64KB Non-Persistent Out-of-Syncpoint - 3 CPs/LPAR

V600 V701 V710

Queue ManagersC
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 M

ic
ro

se
co

n
d

s)

WebSphere MQ for z/OS V7.1.0
Performance report

2KB messages using SSL channels

Page 120 of 140

1 2 3 4
0

2000

4000

6000

8000

10000

3154

5736

7664
8807

3152

6089
7503

8573

3252

5815
7404

8847

Mover using SSL - Maximum Sustained Transaction Rate between 2 z/OS
queue managers using Request/Reply Workload with small numbers of channels

2KB Non-Persistent Out-of-Syncpoint - 3 CPs/LPAR
Encryption using SSLCIPH(TRIPLE_DES_SHA_US)

with SSLRKEYC(1MB)

V600 V701 V710

Channel Pairs

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

1 2 3 4
0

100

200

300

400

500
387 386 396 407397 385 401 416

374
330 340 341

Mover using SSL - Actual Transaction Cost between 2 z/OS queue managers
 using Request/Reply Workload with small numbers of channels

2KB Non-Persistent Out-of-Syncpoint - 3 CPs/LPAR
Encryption using SSLCIPH(TRIPLE_DES_SHA_US)

with SSLRKEYC(1MB)

V600 V701 V710

Channel Pairs

C
o

st
/T

ra
n

sa
ct

i o
n

 (
C

P
U

 M
ic

ro
se

co
n

d
s)

WebSphere MQ for z/OS V7.1.0
Performance report

64KB messages using SSL channels

Page 121 of 140

1 2 3 4
0

500

1000

1500

655

1069
1272

1421

541

933
1155

1323

552

933
1169

1287

Mover using SSL - Maximum Sustained Transaction Rate between 2 z/OS
queue managers using Request/Reply Workload with small numbers of channels

64KB Non-Persistent Out-of-Syncpoint - 3 CPs/LPAR
Encryption using SSLCIPH(TRIPLE_DES_SHA_US)

with SSLRKEYC(1MB)

V600 V701 V710

Channel Pairs

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

1 2 3 4
2200

2300
2400
2500
2600
2700
2800

2397

2507
2586

2645

2447
2530

2615
2702

2371 2384

2554
2623

Mover using SSL - Actual Transaction Cost between 2 z/OS queue managers
using Request/Reply Workload with small numbers of channels

64KB Non-Persistent Out-of-Syncpoint - 3 CPs/LPAR
Encryption using SSLCIPH(TRIPLE_DES_SHA_US)

with SSLRKEYC(1MB)

V600 V701 V710

Channel Pairs

C
o

st
/T

ra
n

sa
ct

i o
n

 (
C

P
U

 M
ic

ro
se

co
n

d
s)

WebSphere MQ for z/OS V7.1.0
Performance report

Non-persistent out-of-syncpoint – 10 to 50 sender-receiver channels

2KB messages

Page 122 of 140

10 20 30 40 50
0

2000

4000

6000

8000

10000

12000

14000

96
34 11

26
6

10
87

8

10
87

9

10
65

1

96
34 11

26
6

10
87

8

10
87

9

10
65

1

10
27

7 12
25

0

11
88

4

11
48

8

11
11

8

Mover - Maximum Sustained Transaction Rate between 2 z/OS queue managers
using Request/Reply Workload driven by multiple CICS regions

2KB Non-Persistent Server-in-Syncpoint - 3 CPs/LPAR

V600 V701 V710

Channel Pairs

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

10 20 30 40 50
0

100

200

300

400

500

29
0

41
4 44

0
44

3
45

1

35
9 41

4 44
0

44
3

45
1

33
0 37

8 39
8

40
6 42

0

Mover - Actual Transaction Cost between 2 z/OS queue managers
using Request/Reply Workload driven by multiple CICS regions

2KB Non-Persistent Server-in-Syncpoint - 3 CPs/LPAR

V600 V701 V710

Channel PairsC
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 M

ic
ro

se
co

n
d

s)

WebSphere MQ for z/OS V7.1.0
Performance report

2KB messages using SSL channels

Page 123 of 140

10 20 30 40 50
6000

6500

7000

7500

8000

72
32

67
56 69

11 72
12

76
42

72
32

67
56 69

11 72
12

76
4277

33

71
96

70
15

67
96 69

51

Mover using SSL - Maximum Sustained Transaction Rate between 2 z/OS queue
managers using Request/Reply Workload driven by multiple CICS regions

2KB Non-Persistent Server-in-Syncpoint - 3 CPs/LPAR
Encryption using SSLCIPH(TRIPLE_DES_SHA_US)

with SSLRKEYC(1MB)

V600 V701 V710

Channel Pairs

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

10 20 30 40 50
0

200

400

600

800
65

6 74
2

73
3

70
3

66
3

65
6 74

2
73

3
70

3
66

3
60

1 68
3

69
4 72

1
68

9

Mover using SSL - Actual Transaction Cost between 2 z/OS queue managers
using Request/Reply Workload driven by multiple CICS regions

2KB Non-Persistent Server-in-Syncpoint - 3 CPs/LPAR
Encryption using SSLCIPH(TRIPLE_DES_SHA_US)

with SSLRKEYC(1MB)

V600 V701 V710

Channel Pairs

C
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 M

ic
ro

se
co

n
d

s)

WebSphere MQ for z/OS V7.1.0
Performance report

Regression – moving messages across cluster channels

The regression tests for moving messages across cluster channels are relatively simple, providing
multiple destinations for each message put.

The cluster has 3 queue managers – one for the requester workload and two for the server workload.
The queue managers hosting the server workload are both full repository queue managers.

A set of requester tasks is run against one queue manager and the application chooses either bind-
on-open or bind-not-fixed. The messages flow across the cluster channels to one of the server queue
managers to be processed by the server applications, at which point they are returned to the
originating requesting applications.

An increasing number of queues (with an corresponding increase in applications) are used.

Page 124 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

2KB messages – bind-on-open

Page 125 of 140

1 2 3 4
0

5000

10000

15000

2913 3109

5355 5432
6848

9483
11061

12464

7433

10541
12430

14015

Clustering - Maximum Sustained Transaction Rate with
1 requesting queue managers, 2 server queue manager

using Request/Reply Workload with bind-on-open

2KB Non-Persistent Out-of-Syncpoint - 3 CPs/LPAR

V600 V701 V710

Queue Pairs

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

1 2 3 4
0

100

200

300

400

500

600
486 516

467
523

395
360 343 339369

330 311 306

Clustering - Achieved Transaction Cost with
1 requesting queue managers, 2 server queue manager

using Request/Reply Workload with bind-on-open

2KB Non-Persistent Out-of-Syncpoint - 3 CPs/LPAR

V600 V701 V710

Queue PairsC
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 m

ic
ro

se
co

n
d

s)

WebSphere MQ for z/OS V7.1.0
Performance report

64KB messages – bind-on-open

Page 126 of 140

1 2 3 4
1200

1300

1400

1500

1600

1700

1412 1420

1571
14971515

1576
1648

15541541 1564 1575
1537

Clustering - Maximum Sustained Transaction Rate with
1 requesting queue managers, 2 server queue manager

using Request/Reply Workload with bind-on-open

64KB Non-Persistent Out-of-Syncpoint - 3 CPs/LPAR

V600 V701 V710

Queue Pairs

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

1 2 3 4
920
940
960
980

1000
1020
1040
1060 1043

1023

965

1014

1040

1001

969

999
984

972 972
987

Clustering - Achieved Transaction Cost with
1 requesting queue managers, 2 server queue manager

using Request/Reply Workload with bind-on-open

64KB Non-Persistent Out-of-Syncpoint - 3 CPs/LPAR

V600 V701 V710

Queue PairsC
o

st
/T

ra
n

sa
ct

i o
n

 (
 C

P
U

 m
ic

r o
se

co
n

d
s)

WebSphere MQ for z/OS V7.1.0
Performance report

2KB messages – bind-not-fixed

Page 127 of 140

1 2 3 4
0

5000

10000

15000

4889

8084

5369 5451
6642

9500
11552

12678

6907

10308
12406

13971

Clustering - Maximum Sustained Transaction Rate with
1 requesting queue managers, 2 server queue manager

using Request/Reply Workload with bind-not-fixed

2KB Non-Persistent Out-of-Syncpoint - 3 CPs/LPAR

V600 V701 V710

Queue Pairs

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

1 2 3 4
0

100
200
300
400
500
600
700

564

435

612 649

422
377 355 352

401
353 330 322

Clustering - Achieved Transaction Cost with
1 requesting queue managers, 2 server queue manager

using Request/Reply Workload with bind-not-fixed

2KB Non-Persistent Out-of-Syncpoint - 3 CPs/LPAR

V600 V701 V710

Queue PairsC
o

st
/T

ra
n

sa
ct

i o
n

 (
C

P
U

 m
ic

ro
se

co
n

d
s)

WebSphere MQ for z/OS V7.1.0
Performance report

64KB messages – bind-not-fixed

Page 128 of 140

1 2 3 4
1350

1400

1450

1500

1550

1600

1650

1466

1512
1529 1522

1494

1612

1562

1609

1510
1551 1566

1587

Clustering - Maximum Sustained Transaction Rate with
1 requesting queue managers, 2 server queue manager

using Request/Reply Workload with bind-not-fixed

64KB Non-Persistent Out-of-Syncpoint - 3 CPs/LPAR

V600 V701 V710

Queue Pairs

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

1 2 3 4
920
940
960
980

1000
1020
1040
1060

1014
1003

986
1002

1021

973

1004

982

1040

1007 1005
989

Clustering - Achieved Transaction Cost with
1 requesting queue managers, 2 server queue manager

using Request/Reply Workload with bind-not-fixed

64KB Non-Persistent Out-of-Syncpoint - 3 CPs/LPAR

V600 V701 V710

Queue Pairsco
st

/T
ra

n
sa

ct
io

n
 (

C
P

U
 m

ic
ro

se
co

n
d

s)

WebSphere MQ for z/OS V7.1.0
Performance report

Regression – moving messages across SVRCONN channels

The regression tests for moving messages across SVRCONN channels have a pair of client tasks for
each queue that is hosted on the z/OS queue manager.

One of the pair of client tasks puts messages to the queue and the other client task gets the messages
from the queue. As the test progresses, an increasing number of queues is used, with a
corresponding increase in the number of putting and getting clients.

2 sets of tests are run – the first uses SHARECNV(0) on the SVRCONN channel to run in a mode
comparable to that used on WebSphere MQ V6. The second uses SHARECNV(1) so that function
such as asynchronous puts and asynchronous gets are used via the DEFPRESP(ASYNC) and
DEFREADA(YES) queue options.

As WebSphere MQ for z/OS version 6 does not support the SHARECNV channel attribute, the
SHARECNV(1) charts do not show values for V6.0.0.

Choosing which SHARECNV option is appropriate can make a difference to performance and is
discussed in more detail in the supportpac MP16 – “Capacity Planning and Tuning Guide”.

NOTE: The rate and costs are based on the number of MB of data moved per second rather than the
number of messages per second.

Page 129 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Client pass through tests using SHARECNV(0)

Page 130 of 140

1 2 3 4 5 6
0

10

20

30

40

10

16
21

26
28 30

12

19
22

26 29
32

12

19
24

29
31

34

Client - "Pass Through" - Achieved Throughput using SVRCONN channels
1 putter and 1 getter per queue with SHARECNV(0) or equivalent

2KB Non-Persistent Messages

V600 V701 V710

Queue PairsM
B

 /
S

e
co

n
d

 m
o

ve
d

 b
e

tw
e

e
n

 C
lie

n
ts

1 2 3 4 5 6
0

50

100

150

200

250
198 191 199 190 188 200186

166 173 174 172 181
159 166

149 148 160 167

Client - "Pass Through" - Achieved Throughput using SVRCONN channels
1 putter and 1 getter per queue with SHARECNV(0) or equivalent

2KB Non-Persistent Messages

V600 V701 V710

Queues

C
o

st
/M

B
 (

C
P

U
 m

ic
ro

se
co

n
d

s)

WebSphere MQ for z/OS V7.1.0
Performance report

Client pass through tests using SHARECNV(1)

Page 131 of 140

1 2 3 4 5 6
0

20
40
60
80

100
120
140

0 0 0 0 0 0

52

75 77 77
63

121

61
81 86

97 95

127

Client - "Pass Through" - Achieved Throughput using SVRCONN channels
1 putter and 1 getter per queue with SHARECNV(1)

- Asynchronous Puts and Gets

2KB Non-Persistent Messages

V600 V701 V710

QueuesM
B

 /
S

e
co

n
d

 m
o

ve
d

 b
e

tw
e

e
n

 C
lie

n
ts

1 2 3 4 5 6
0

20
40
60
80

100
120
140

0 0 0 0 0 0

110
120 125 124 122 129

113 111 116 117 117 115

Client - "Pass Through" - Achieved Throughput using SVRCONN channels
1 putter and 1 getter per queue with SHARECNV(1)

- Asynchronous Puts and Gets

2KB Non-Persistent Messages

V600 V701 V710

Queues

C
o

st
 /

M
B

 (
C

P
U

 m
ic

ro
se

co
n

d
s)

WebSphere MQ for z/OS V7.1.0
Performance report

Regression – IMS bridge

The regression tests used for the IMS bridge use 3 queue managers in a queue sharing group (QSG)
each on separate LPARs. A single IMS region is started on 1 image and has 16 Message Processing
Regions (MPRs) started to process the MQ workload.

The IMS region has been configured as detailed in the supportpac MP16 using the
recommendations in the section “IMS Bridge: Achieving Best Throughput”.

NOTE: 16 MPRs are more than really required for the 1, 2 and 4 TPIPE tests but they are available
for a consistent configuration across the test suite.

There are 8 queues defined in the QSG that are configured to be used as IMS Bridge queues.

Each queue manager runs a set of batch requester applications that put a 2KB message to one of the
bridge queues and waits for a response on a corresponding shared reply queue.

Tests are run using both Commit Mode 0 (Commit-Then-Send) and Commit Mode 1 (Send-Then-
Commit)

Page 132 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Commit mode 0 (commit-then-send)

Page 133 of 140

1 2 4 8
0

1000
2000
3000
4000
5000
6000
7000
8000

2405

4023

6762

5657

2681

4448

6800
5860

2541

4197

7135

5824

IMS Bridge - Commit Mode 0 (commit-then-send) - Achieved Throughput
with increasing Queues / TPIPEs

2KB Non-Persistent Shared Queue Messages

V600 V701 V710

Queue / TPIPEs

M
B

 /
S

e
co

n
d

 m
o

ve
d

 b
e

tw
e

e
n

 C
lie

n
ts

1 2 4 8
0

500

1000

1500

2000

2500

3000

1976 1943 1939

2540

1857 1818
2005

2456

1892 1890 1812

2302

IMS Bridge - Commit Mode 0 (commit-then-send) - Actual Cost
with increasing Queues / TPIPEs

2KB Non-Persistent Shared Queue Messages

V600 V701 V710

Queue / TPIPEs

C
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 m

ic
ro

se
co

n
d

s
-

to
ta

l S
ys

te
m

 c
o

s t
)

WebSphere MQ for z/OS V7.1.0
Performance report

Commit mode 1 (send-then-commit)

Page 134 of 140

1 2 4 8
6800
7000
7200
7400
7600
7800
8000
8200
8400

7383 7366

7696
7794

7488

7770 7768

8093

7302 7325

7576

8155

IMS Bridge - Commit Mode 1 (send-then-commit) - Achieved Throughput
with increasing Queues / TPIPEs

2KB Non-Persistent Shared Queue Messages

V600 V701 V710

Queue / TPIPEs

M
B

 /
S

e
co

n
d

 m
o

ve
d

 b
e

tw
e

e
n

 C
lie

n
ts

1 2 4 8
1600

1700

1800

1900

2000

2100

1892
1927

1966

2033

1834 1811

1900 1899

1814
1855 1835

1790

IMS Bridge - Commit Mode 1 (send-then-commit) - Actual Cost
with increasing Queues / TPIPEs

2KB Non-Persistent Shared Queue Messages

V600 V701 V710

Queue / TPIPEs

C
o

st
 /

T
ra

n
sa

c t
io

n
 (

C
P

U
 m

ic
ro

se
co

n
d

s
-

to
ta

l S
ys

te
m

 c
o

s t
)

WebSphere MQ for z/OS V7.1.0
Performance report

Regression – Trace

The regression tests for trace cover both queue manager global trace and the channel initiator trace.

Queue manager global trace
The queue manager global trace tests are a variation on the private queue non-persistent 2KB
scalability tests with TRACE(G) DEST(RES) enabled.

In V7.1.0, the global trace uses 64-bit storage which allows the queue manager to store a trace
record for each thread and reduces contention on the trace storage. As a result the throughput
achieved is significantly improved over previous releases of WebSphere MQ for z/OS.

It appears that the V6.0.0 costs are significantly lower than those observed in V7.0.1, but this is
offset as the transaction rate achieved in V6.0.0 is significantly less due to the way the queue
manager stored small messages and as a result the V600 workload had to be artificially constrained
to prevent messages spilling into pageset usage. In turn, this meant that the V6.0.0 workload did not
reach the level of workload where contention for the trace storage was observed.

Page 135 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Page 136 of 140

1 2 3 4 5 6 7 8
0

5000

10000

15000

20000

25000

30000

35000

Queue Manager TRACE(G) DEST(RES) - Sustained Transaction Rate
- Private Queue - Scalability

2KB Messages, Non-Persistent Server-In-Syncpoint
 1 Requester, 1 Server per pair of queues - 16 CPs

V600 V701 V710

Queue Pairs

T
ra

n
sa

ct
io

n
s

/ S
e

co
n

d

1 2 3 4 5 6 7 8
0

100
200
300
400
500
600
700

Queue Manager TRACE(G) DEST(RES) - Actual Transaction Cost
- Private Queue - Scalability

2KB Messages, Non-Persistent Server-In-Syncpoint
 1 Requester, 1 Server per pair of queues - 16 CPs

V600 V701 V710

Queue Pairs

C
o

st
 /

T
ra

n
sa

c t
io

n
s

 (
C

P
U

 m
ic

ro
se

co
n

d
s)

WebSphere MQ for z/OS V7.1.0
Performance report

Channel initiator trace
The channel initiator trace tests are a variation on the moving messages across SVRCONN
regression tests using channels with SHARECNV(0) and TRACE(CHINIT) enabled.

In V7.0.1 a significant increase in the number of trace points recorded was added, which had the
effect of increasing the overhead of channel initiator trace over V6.0.0.

In V7.1.0, the trace routines are called more efficiently than in V7.0.1 but there are still more trace
points being recorded than V6.0.0.

Page 137 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

Page 138 of 140

1 2 3 4 5 6
0

5

10

15

20

25

30

10

17
20 22 22

26

10

15
19

21 20 22

11

16

22 23 22 23

TRACE(CHINIT) Client - "Pass Through" -
Achieved Throughput using SVRCONN channels

1 putter and 1 getter per queue with SHARECNV(0) or equivalent

2KB Non-Persistent Messages

V600 V701 V710

Queue PairsM
B

 /
S

e
co

n
d

 m
o

ve
d

 b
e

tw
e

e
n

 C
lie

n
ts

1 2 3 4 5 6
0

100

200

300

400

289 290 281 278 281 298
344 330 330 331 338 345

317 318 297 293 305 306

TRACE(CHINIT) Client - "Pass Through" -
Achieved Throughput using SVRCONN channels

1 putter and 1 getter per queue with SHARECNV(0) or equivalent

2KB Non-Persistent Messages

V600 V701 V710

Queues

C
o

st
/M

B
 (

cp
u

 m
ic

ro
se

co
n

d
s)

WebSphere MQ for z/OS V7.1.0
Performance report

Appendix B – System configuration
MVS: zEnterprise 196 (2817-779) configured thus:

LPAR 1

Between 1 and 16 dedicated CP processors

LPAR 2

Between 1 and 3 dedicated CP processors

LPAR 3

Between 1 and 5 dedicated CP processors.

Default configuration:

3 dedicated processors on each LPAR

Coupling Facility

Internal coupling facility with 3 shared processors.
Priority weighted as 5 times shared LPAR processors (against non-performance sysplex's).
Dynamic Dispatching switched OFF

DASD
FICON-connected DS8800
4 dedicated channel paths (shared across sysplex)
HYPERPAV enabled.

System Settings:

Each MVS image running z/OS v1r12
Coupling facility running CFCC level 17.
ZHPF available, but by default is configured as disabled.
HIPERDISPATCH enabled by default.
Tests moving messages between LPARs that were on different TCP/IP subnets

Trace Status:

• TRACE(GLOBAL) disabled.
• TRACE(S) enabled
• TRACE(A) CLASS(3) enabled

General Information
• Client machine was:

◦ IBM SYSTEM X3850 - 6 x 3.16GHz Processor, 6Gb Memory

• Client tests used a 1Gb performance network

Page 139 of 140

WebSphere MQ for z/OS V7.1.0
Performance report

• Other IBM products used:

◦ CICS V6.6 CTS4.2

◦ IMS v10
◦ WebSphere MQ v6.0.0 with latest service applied as of May 2011.
◦ WebSphere MQ v7.0.1 with latest service applied as of May 2011.

Page 140 of 140

	Performance highlights
	Existing function
	General statement of regression

	Storage usage
	CSA usage
	Initial CSA usage
	CSA usage per connection

	Object sizes
	PAGESET(0) Usage
	Virtual Storage Usage

	Capacity of the queue manager and channel initiator
	How much storage does a connection use?
	How many clients can I connect to my queue manager?
	How many channels can I run to or from my queue manager?

	New function
	CFLEVEL(5) – Shared message data sets (SMDS)
	What is the problem being addressed?
	Why use CFLEVEL(5)?
	Performance of storing and accessing large messages on shared queues
	Increasing the capacity of the Coupling Facility

	Is there benefit in offloading all messages
	Initial Configuration
	What impact does CFLEVEL(5) have on queue manager storage?
	How large to make my SMDS datasets
	Where to allocate SMDS?
	What is the maximum number of messages I can store?
	Should I pre-format the dataset?
	Should I allow SMDS to expand and if so, by how much?
	Who pays for messages stored on Shared Message Data Sets?

	Recovery
	How long will it take to backup my structure?
	Do multiple structures affect recovery?
	How long will it take to recover my structure?

	How do I know what is going on?
	Messages

	Are the default options the correct ones for me?
	DSBUFS
	DSBLOCK
	How should I size my DSBLOCK?
	OFFLDnTH / OFFLDnSZ

	CFLEVEL(5) and small messages
	Can I switch between offloading SMDS and DB2 mid-workload?
	Predicting limits

	V6 Compatibility Mode
	Channel authentication rules
	Channel authentication and the effect on queue manager restart

	Queue manager trace (64-bit global trace)
	Performance observations
	Recommendations

	Topic scavenger / queue manager attribute TREELIFE
	What is it?
	Can you see it running?
	How do you configure it?
	What is the impact of not running frequently enough?
	What is the impact of running too frequently?
	How do I know what is the right frequency?
	Why are my topics still visible after the topic scavenger has run?
	Topic scavenger measurements
	Topic scavenger on an idle queue manager – with no topics
	Topic scavenger on idle queue manager – with 100,000 Topics
	Effect of topic scavenger on subscribe
	DISPLAY TPSTATUS with many topics in your system

	Performance data
	Shared message data set scenarios
	Single queue manager – non-persistent out-of-syncpoint
	Single queue manager – non-persistent server-in-syncpoint
	Single queue manager – persistent in-syncpoint
	Two queue managers – data sharing, non-persistent, out-of-syncpoint
	Two queue managers – non-data sharing, non-persistent, out-of-syncpoint
	Two queue managers – data sharing, non-persistent, in-syncpoint
	Two queue managers – non-data sharing, non-persistent, in-syncpoint
	Three queue managers – data sharing, non-persistent, out of syncpoint
	Three queue managers – data sharing, non-persistent, in-syncpoint
	Three queue managers – data sharing, persistent, in-syncpoint
	Six queue manager – data sharing, non-persistent, server in-syncpoint
	Six queue manager – data sharing, persistent, server in-syncpoint
	Scaling – non-persistent large shared queue messages
	Non-persistent 10KB messages
	Non-persistent 100KB messages
	Non-persistent 1MB messages
	Non-persistent 1MB messages – multiple applications per queue pair

	Appendix A – Regression
	Regression – Private Queue
	Regression – shared queue - CFLEVEL(4)
	Regression – moving messages across channels
	Regression – moving messages across cluster channels
	Regression – moving messages across SVRCONN channels
	Regression – IMS bridge
	Regression – Trace

	Appendix B – System configuration

