
MP1K: IBM MQ for z/OS version 9.0 Performance Report

June 2016

IBM MQ Performance

IBM UK Laboratories

Hursley Park

Winchester

Hampshire

SO21 2JN

Take Note!

Before using this report, please be sure to read the paragraphs on “disclaimers”, “warranty and
liability exclusion”, “errors and omissions” and other general information paragraphs in the “Notices”
section below.

First edition, June 2016. This edition applies to IBM MQ for z/OS version 9.0 (and to all
subsequent releases and modifications until otherwise indicated in new editions).

© Copyright International Business Machines Corporation 2016.
All rights reserved.

Note to U.S. Government Users Documentation related to restricted rights. Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

Notices

DISCLAIMERS The performance data contained in this report were measured in a controlled
environment. Results obtained in other environments may vary significantly.

You should not assume that the information contained in this report has been submitted to any
formal testing by IBM.

Any use of this information and implementation of any of the techniques are the responsibility of the
licensed user. Much depends on the ability of the licensed user to evaluate the data and to project
the results into their own operational environment.

WARRANTY AND LIABILITY EXCLUSION

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

In Germany and Austria, notwithstanding the above exclusions, IBM’s warranty and liability are
governed only by the respective terms applicable for Germany and Austria in the corresponding
IBM program license agreement(s).

ERRORS AND OMISSIONS

The information set forth in this report could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; any such change will be incorporated in
new editions of the information. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this information at any time and without notice.

INTENDED AUDIENCE

This report is intended for Architects, Systems Programmers, Analysts and Programmers wanting to
understand the performance characteristics of IBM MQ for z/OS version 9.0. The information
is not intended as the specification of any programming interfaces that are provided by IBM MQ.
Full descriptions of the IBM MQ facilities are available in the product publications. It is assumed
that the reader is familiar with the concepts and operation of IBM MQ.

Prior to IBM MQ for z/OS version 8.0, the product was known as WebSphere MQ
and there are instances where these names may be interchanged.

LOCAL AVAILABILITY

References in this report to IBM products or programs do not imply that IBM intends to make
these available in all countries in which IBM operates. Consult your local IBM representative for
information on the products and services currently available in your area.

ALTERNATIVE PRODUCTS AND SERVICES

Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program,
or service.

USE OF INFORMATION PROVIDED BY YOU

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you.

TRADEMARKS and SERVICE MARKS

The following terms, used in this publication, are trademarks or registered trademarks of the IBM
Corporation in the United States or other countries or both:

• IBM®

• z/OS®

• zSeries®

• zEnterprise®

• MQSeries®

• CICS®

• DB2 for z/OS®

• IMS™

• MVS™

• zEC12™

• z13™

• FICON®

• WebSphere®

• IBM MQ®

Other company, product and service names may be trademarks or service marks of others.

EXPORT REGULATIONS

You agree to comply with all applicable export and import laws and regulations.

Summary of Amendments

Date Changes

2016 Version 1.0 - Initial Version.

Table of contents

1 Performance Highlights 1

2 Existing Function 2
General Statement Of Regression . 2
Storage Usage . 3

CSA Usage . 3
Initial CSA usage . 3
CSA usage per connection . 3

Object Sizes . 4
PAGESET(0) Usage . 4
Virtual Storage Usage . 5

Capacity of the queue manager and channel initiator . 6
How much storage does a connection use? . 6
How many clients can I connect to my queue manager? 7
How many channels can I run to or from my queue manager? 8

3 New Function for version 9.0 9
IBM Advanced Message Security (AMS) . 10

AMS general performance . 11
Reduced impact of using unprotected queues when AMS enabled 11
Relative performance of protected queues . 11
Performance of AMS Integrity-level protection 12
Performance of AMS Privacy-level protection 14
What if cryptographic offload is not available? 15

AMS Confidentiality . 16
How many times should I reuse the key? . 16
How does AMS Confidential compare with Integrity and Privacy level protection? 21
What if cryptographic offload is not available for AMS Confidential? 23
How does AMS Confidential compare with other message protection options . 23

Using IBM MQ classes for JMS in a CICS OSGi JVM Server 26
Comparing JMS performance with more traditional languages 26

MQ API calls based on application programming language 27
What impact does the application language have on the MQ API cost? . . . 27
Comparing the performance in similarly configured systems 30
Reducing transaction cost by using zIIP specialty engines 31

Using IBM MQ classes for JMS in IMS . 34
Comparison of JBP with BMP region types . 34
Comparison of JMP with MPR region types . 36

JMP performance compared with MPR . 36
Page set statistics . 38

What affects the cost of page set statistics? 38

6

Appendix A Regression 39
Private Queue . 40

Non-persistent out-of-syncpoint workload . 40
Maximum throughput on a single pair of request/reply queues 40
Scalability of request/reply model across multiple queues 41

Non-persistent server in-syncpoint workload . 43
Maximum throughput on a single pair of request/reply queues 43
Scalability of request/reply model across multiple queues 44

Persistent server in-syncpoint workload . 48
Maximum throughput on a single pair of request/reply queues 48
Upper bounds of persistent logging rate . 49

CICS Workload . 50
Shared Queue . 52

Non-persistent out-of-syncpoint workload . 52
Maximum throughput on a single pair of request/reply queues 52

Non-persistent server in-syncpoint workload . 56
Maximum throughput on a single pair of request/reply queues 56
Data sharing non-persistent server in-syncpoint workload 60

Moving messages across channels . 63
Non-persistent out-of-syncpoint - 1 to 4 sender-receiver channels 64
Non-persistent out-of-syncpoint - 10 to 50 sender-receiver channels 68
Channel compression using ZLIBFAST . 70
Channel compression using ZLIBHIGH . 71
Channel compression using ZLIBFAST on SSL channels 72
Channel compression using ZLIBHIGH on SSL channels 73

Moving messages across cluster channels . 74
Bind-on-open . 75
Bind-not-fixed . 77

Moving messages across SVRCONN channels . 79
Client pass through tests using SHARECNV(0) . 80
Client pass through tests using SHARECNV(1) . 81

IMS Bridge . 82
Commit mode 0 (commit-then-send) . 83
Commit mode 1 (send-then-commit) . 84

Trace . 85
Queue manager global trace . 85
Channel initiator trace . 87

Appendix B System configuration 88

Chapter 1

Performance Highlights

This report focuses on performance changes since previous versions, V7.1.0 and V8.0.0, and on the
performance of new function in this release.

SupportPac MP16 “Capacity Planning and Tuning Guide” will continue to be the repository for
ongoing advise and guidance learned as systems increase in power and experience is gained.

1

http://www-01.ibm.com/support/docview.wss?uid=swg24007421

Chapter 2

Existing Function

General statement of regression

CPU costs and throughput are not significantly difference in version 9.0 for typical messaging work-
loads when compared with version 8.0.

A user can see how that statement has been determined by reviewing details of the regression test
cases in the Regression appendix.

2

Storage usage

Virtual storage constraint relief has not been a primary focus of this release, however the introduction
of 64-bit buffer pools in version 8.0 can offer some storage relief.

CSA usage

Common Service Area (CSA) storage usage is important as the amount available is restricted by
the amount of 31-bit storage available and this is limited to an absolute limit of 2GB.

The CSA is allocated in all address spaces in an LPAR, so its use reduces the available private
storage for all address spaces.

In real terms, the queue manager does not have 2GB of storage to use - as there is some amount
used by MVS for system tasks and it is possible for individual customer sites to set the limit even
lower.

From the storage remaining of the 2GB of 31-bit storage, a large (but configurable) amount of
storage may be used by the queue manager for buffer pools. This storage usage may be reduced
from version 8.0 onwards with the use of 64-bit buffer pools.

The storage remaining is available for actually connecting to the queue manager in a variety of ways
and using IBM MQ to put and get messages.

Initial CSA usage

CSA usage for V900 is similar to both V710 and V800 when similarly configured queue managers
are started. On our systems this is approximately 6MB per queue manager.

CSA usage per connection

CSA usage has seen little change in the following releases: V710, V800 and V900.

• For local connections, MCA channels and SVRCONN channels with SHARECNV(0), CSA
usage is 2.45KB per connection.

• For SVRCONN channels with SHARECNV(1), CSA usage is approximately 4.9KB per con-
nection.

• For SVRCONN channels with SHARECNV(5), CSA usage is approximately 2.9KB per con-
nection, based on 5 clients sharing the channel instance.

• For SVRCONN channels with SHARECNV(10), CSA usage is approximately 2.7KB per con-
nection, based on 10 clients sharing the channel instance.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 3 of 89

Object Sizes

When defining objects, the queue manager may store information about that object in pageset 0
and may also require storage taken from the queue manager’s extended private storage allocation.

The data shown on the following 2 charts only includes the storage used when defining the objects.

PAGESET(0) Usage

Chart: Pageset usage by object type

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 4 of 89

Virtual Storage Usage

Chart: Virtual Storage usage by object type

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 5 of 89

Capacity of the queue manager and channel initiator

How much storage does a connection use?

When an application connects to a queue manager, an amount of storage is allocated from the queue
manager’s available storage.

Some of this storage is held above 2GB, such as security data, and other data is storage on storage
taken from that available below the 2GB bar. In the following examples, only allocations from below
the 2GB bar are reported.

In V7.1.0, typical storage usage is around 22KB per connection. From V8.0.0-onwards, due to some
control areas being moved above the 2GB "bar", the typical storage usage decreases to 14KB per
connection, however there is additional usage in the following (non-exhaustive) cases:

• Where connection is over a SHARECNV(1) channel, the usage increases to 21KB.

• Where connection is over a SHARECNV(10) channel and has a CURSHCNV of 10, the usage
is 15.5KB per connection (155KB per channel).

• Where connection is over a SHARECNV(1) channel to shared queues - either CFLEVEL(4)
or CFLEVEL(5) backed by SMDS, the storage is 27.5KB, giving an additional shared queue
overhead of 6.7KB.

These numbers are based upon the connecting applications accessing a small number of queues. If
your application has more than 32 objects open, the amount of storage will be increased.

If the number of messages held in a unit of work is large and the size of the messages is large then
additional lock storage may be required.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 6 of 89

How many clients can I connect to my queue manager?

The maximum number of clients you can connect to a queue manager depends on a number of
factors, for example:

• Storage available in the queue manager’s address space.

• Storage available in the channel initiator’s address space.

• How large the messages being put or got are.

• Whether the channel initiator is already running its maximum number of connected clients
(either 9,999 or the value specified by channel attributes like MAXCHL).

The table below shows the typical footprint when connecting a client application to a z/OS queue
manager via the channel initiator.

The value used in the SHARECNV channel attribute can affect the footprint and consideration
as to the setting should be taken. Guidance on the SHARECNV attribute can be found in Sup-
portPacs MP16 “Capacity Planning and Tuning Guide” and MP1F “WebSphere MQ for z/OS V7.0
Performance Report”.

Channel initiator footprint
(KB / SVRCONN channel)

Message size (KB)
IBM MQ release SHARECNV 1 10 32 64

V710 0 113 129 191 223

V800 0 114 131 191 221

V900 0 96 109 166 196

V710 1 176 199 286 352

V800 1 179 201 288 355

V900 1 179 202 291 357

V710 10 251 276 686 1041

V800 10 248 268 680 1041

V900 10 242 274 685 1031

Note: For the SHARECNV(10) channel measurements, the channels are running with 10 conversa-
tions per channel instance, so the cost per conversation would be the value in the table divided by
10.

Example: How many clients can I run?

When the channel initiator was started it logged the following message prior to starting channels:

“CSQX004I Channel initiator is using 117 MB of local storage, 1355 MB are free”.

This means that the channel initiator had 1472MB of storage available and has 1355MB available
for channels to be started. To avoid letting the channel initiator run short on storage, it is advisable
to aim to keep the usage below 80% of the total available. In the example this means keeping the
channel initiator storage usage below 1177MB, which in turn means that there is 1060 MB available
for channels.

If the workload is expected to be clients connecting via SHARECNV(0) SVRCONN channels and
using 32KB messages, we could predict that the channel initiator could support a maximum of 6,538
running SVRCONN channels.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 7 of 89

http://www-01.ibm.com/support/docview.wss?uid=swg24007421
http://www-01.ibm.com/support/docview.wss?uid=swg24020142

How many channels can I run to or from my queue manager?

This depends on the size of the messages flowing through the channel.

A channel will hold onto a certain amount of storage for its lifetime. This footprint depends on the
size of the messages.

Message Size 1KB 32KB 64KB 4MB
Footprint per channel
(channel initiator) 90 99 109 1125

Overhead of message size
increase on 1KB messages +9 +18 +1034

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 8 of 89

Chapter 3

New Function for version 9.0

This release has introduced a number of items that can affect performance and these include:

• Advanced Message Security (AMS)

To extend the use of JMS on the z/OS platform, the following environments are now supported:

• Using IBM MQ classes for JMS in a CICS OSGi JVM Server

• IMS

In addition the following items have been added to aid the monitoring of the queue manager:

• Page set statistics

9

IBM Advanced Message Security (AMS)

There have been a number of changes to AMS in version 9.0 that affect both existing protection
options and offer a new quality of protection and these are detailed in the following sections.

The existing two qualities of protection for IBM MQ Advanced Message Security, namely Integrity
and Privacy have been supplemented in version 9.0 to include a third quality of Confidentiality.

Integrity protection is provided by digital signing, which provides assurance on who created the
message, and that the message has not been altered or tampered with.

Privacy protection is provided by a combination of digital signing and encryption. Encryption
ensures that message data is viewable by only the intended recipient, or recipients.

Confidentiality protection is provided by encryption only.

IBM MQ AMS uses a combination of symmetric and asymmetric cryptographic routines to pro-
vide digital signing and encryption. As symmetric key operations are very fast in comparison to
asymmetric key operations, which are CPU intensive and some of the cost may be offloaded to
cryptographic hardware such as Crypto Express5, this in turn can have a significant impact on the
cost of protecting large numbers of message with IBM MQ AMS.

• Asymmetric cryptographic routines

For example, when putting a signed message the message hash is signed using an asymmetric
key operation. When getting a signed message, a further asymmetric key operation is used to
verify the signed hash. Therefore, a minimum of two asymmetric key operations are required
per message to sign and verify the message data. Some of this asymmetric cryptographic work
can be offloaded to cryptographic hardware.

• Asymmetric and symmetric cryptographic routines

When putting an encrypted message, a symmetric key is generated and then encrypted using
an asymmetric key operation for each intended recipient of the message. The message data
is then encrypted with the symmetric key. When getting the encrypted message the intended
recipient needs to use an asymmetric key operation to discover the symmetric key in use for
the message. The symmetric key work cannot be offloaded to cryptographic hardware but will
be performed in part by CPACF processors.

All three qualities of protection, therefore, contain varying elements of CPU intensive asymmetric key
operations, which will significantly impact the maximum achievable messaging rate for applications
putting and getting messages.

Confidentiality policies do, however, allow for symmetric key reuse over a sequence of messages.

Key reuse can significantly reduce the costs involved in encrypting a number of messages intended
for the same recipient or recipients.

For example, when putting 10 encrypted messages to the same set of recipients, a symmetric key is
generated. This key is encrypted for the first message using an asymmetric key operation for each
of the intended recipients of the message.

Based upon policy controlled limits, the encrypted symmetric key can then be reused by subsequent
messages that are intended for the same recipient(s). An application that is getting encrypted
messages can apply the same optimization, in that the application can detect when a symmetric key
has not changed and avoid the expense of retrieving the symmetric key.

In this example 90% of the asymmetric key operations can be avoided by both the putting and
getting applications reusing the same key.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 10 of 89

AMS general performance

MP1J “IBM MQ for z/OS version 8.0.0 Performance Report” offers information on the performance
of IBM MQ and AMS version 8.0 and this document will highlight differences in performance beween
versions 8.0 and 9.0.

• Reduced impact of using unprotected queues when AMS enabled.

• Relative performance of protected queues

• Is the impact of cryptographic offload the same in V9.0?

Reduced impact of using unprotected queues when AMS enabled

MP1J “IBM MQ for z/OS version 8.0.0 Performance Report” reported that prior to IBM MQ for
z/OS version 8.0 the cost of interacting with an unprotected queue when AMS was enabled was of
the order of 25 microseconds per MQ API. These costs reduced in version 8.0 to between 2.5 to 10
microseconds per MQ API.

In IBM MQ for z/OS version 9.0, the costs have reduced further to between 0.5 to 1 microseconds
per MQ API.

Relative performance of protected queues

MP1J “IBM MQ for z/OS version 8.0.0 Performance Report” reported that the overhead of running
low-business logic workloads with AMS protected-queues using privacy-level protection against V8.0
queue managers was quite significant. In the worst-case scenario where the applications perform only
messaging workload and contain little business logic, file I/O etc the impact of AMS has decreased
e.g.

Batch workload

Message size MQ V8.0 MQ V9.0

2KB +1.1 CPU ms +0.7 CPU ms

64KB +2.7 CPU ms +2.3 CPU ms

4MB +106 CPU ms +102 CPU ms

Notes on table:

• The value in the cell e.g. “+1.1 CPU ms” equates to the actual increase in the cost per
transaction in CPU milliseconds as a result of adding AMS privacy-level protection to the
queues for the indicated release.

CICS workload

For a simple short-lived CICS COBOL transaction, such as described in the regression tests for CICS
workloads, the impact of AMS is much less, primarily due to the increased cost of the transaction,
rather than any decrease in AMS processing costs, i.e the proportion of the application out of the
total transaction cost is larger in the CICS environment.

For example IBM MQ for z/OS version 8.0 as reported in MP1J “IBM MQ for z/OS version 8.0.0
Performance Report” showed a 7 times increase in transaction cost when adding AMS privacy-level
protection to the queues. Similar performance is seen in IBM MQ for z/OS version 9.0 although
some reduction may be seen in the CICS transaction cost.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 11 of 89

http://www-01.ibm.com/support/docview.wss?uid=swg24038347
http://www-01.ibm.com/support/docview.wss?uid=swg24038347
http://www-01.ibm.com/support/docview.wss?uid=swg24038347
http://www-01.ibm.com/support/docview.wss?uid=swg24038347

When the CICS COBOL transaction is replaced with a CICS JMS transaction, as described in
“Using IBM MQ classes for JMS in a CICS OSGi JVM Server”, the overhead of AMS privacy-level
protection is 2.5 times that of the same workload running without AMS protection.

Performance of AMS Integrity-level protection

Integrity-level protection is the process of digitally signing the message, which provides assurance
on who created the message, and that the message has not been altered or tampered with. It does
not provide protection against viewing the data by unintended parties.

Some of the cost of digital signing can be offloaded using cryptographic hardware, such as Crypto-
Express5S. Section “What if cryptographic offload is not available?” provides guidance to the impact
when the cryptographic hardware offload facility is not available.

The performance data provided in this section relies on cryptographic hardware to assist in digitally
signing the message as detailed in Appendix B.

Does the type of digital signature algorithm chosen affect cost?

When a policy dictates that a message is signed, there is a significant increase in the cost of the
message. In the case of a long running request/reply workload running batch applications with
minimal non-MQ related processing, the transaction cost increased approximately 15 times.

Varying the signing type between MD5, SHA1, SHA256 and SHA512 saw the largest increase with
MD5, particularly with larger messages, as demonstrated in the following charts.

The messages are not encrypted in the workloads illustrated by the 3 charts below.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 12 of 89

Chart: Transaction cost of 2KB message whilst varying digital signature algorithm

Chart: Transaction cost of 64KB message whilst varying digital signature algorithm

Chart: Transaction cost of 4MB message whilst varying digital signature algorithm

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 13 of 89

Notes on charts:

• Signing algorithm MD5 is sensitive to message size. The impact of MD5 signing on 2KB
messages was 15 times, but as the message size increased, the impact grew to 25 times that of
an unsigned message.

• Signing messages can make high usage of the CryptoExpress coprocessor and accelerators,
particularly with high messaging rates such as those achieved with smaller messages. In our
measurements using 2KB messages, the 2 available coprocessors chips usage was of the order
of 70% utilised each, with the single available accelerator being 14% busy.

Performance of AMS Privacy-level protection

Privacy-level protection is provided by a combination of digital signing and encryption. Encryption
means that the message data is viewable only by the intended recipient, or recipients.

Prior to IBM MQ for z/OS version 9.0, if a message needed to be encrypted, it also had to be signed.
There is an additional cost incurred when encrypting the message in addition to those incurred from
signing the message and the impact of this is similar regardless of encryption type, except for RC2.

Impact of encryption type when using SHA1 signing

Encryption Type Message Size 2KB Message Size 64KB Message size 4MB
DES
3DES
AES128
AES256

1.15 times 1.4 times 1.4 times

RC2 1.5 times 4.4 times 6 times

Notes on table:

• A 64KB message that is signed and encrypted using AES128 uses typically 1.4 times more
CPU than a 64KB message that is just signed.

• A 64KB message that is signed and encrypted using RC2 uses typically 4.4 times more CPU
than a 64KB message that is just signed.

Impact of encryption type when using MD5 signing

In the preceding table, the signing algorithm used was SHA1, which we have previously seen to have
a growing influence as message size increases. For completeness sake, the following table reports the
impact of the encryption type when using signing algorithm MD5.

Encryption Type Message Size 2KB Message Size 64KB Message size 4MB
DES
3DES
AES128
AES256

1.2 times 1.3 times 1.4 times

RC2 1.5 times 3.6 times 4.6 times

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 14 of 89

What if cryptographic offload is not available?

For messages protected using Integrity-level protection the impact of cryptographic hardware, such
as CryptoExpress, being unavailable saw the cost of an MQPUT and MQGET increase by 3 CPU
milliseconds regardless of message size or signing algorithm.

For messages protected using Privacy-level protection, the impact of cryptographic hardware being
unavailable saw the cost of the encrypt and decrypt is increased by a further 3 CPU milliseconds
for per message encrypted and decrypted on z/OS for messages up to 4MB.

From analysis of the RMF cryptographic reports from the messaging workloads when both crypto-
graphic coprocessor and accelerators were available, the following observations have been made:

• The cryptographic coprocessors were used for signing the message.

• The cryptographic accelerator was used for verifying the digital signature of the message.

• The cost of signing the message using coprocessors was approximately 5 times that of verifi-
cation of digital signature of the message using accelerator.

• The CPACF processors handle the encryption and decryption of the data.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 15 of 89

AMS Confidentiality

AMS Confidential is a new level of protection introduced in IBM MQ for z/OS version 9.0, which
allows the user to specify how many messages will use the same symmetric key. This is specified by
setting a value for the -c parameter when defining a policy using the setmqspl program. Note that
setting “-c *” means unlimited reuse of the key.

How many times should I reuse the key?

When using queues protected by policies with AMS Confidential attributes, it is possible to set
values from 0 to reusing forever and the value chosen should reflect a sensible value for the security
of your data. For example, it may not be advisable when transferring many customer details to use
the same key for all customers, as if the encryption is broken for one message, it will be broken for
all.

From a performance perspective the impact of key reuse can depend largely on the message size as
can be seen in the charts on the following pages but in summary, small messages benefit more from
higher key reuse values where appropriate.

The workloads used in the charts is a local request/reply workload running batch applications where
there is a single requester and single server task using a request and reply queue.

In each case, the signing algorithm specified is SHA1 which we have previously demonstrated has
similar performance characteristics to SHA256 and SHA512, and better performance than MD5.

With regards to encryption, we are categorising as “AES” which includes AES128 and AES256 and
“DES” which includes DES and Triple-DES. Specifically AES measurements are AES256 and DES
are Triple-DES.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 16 of 89

Chart: AES-encryption - 2KB message workload with varying key reuse values

Chart: AES-encryption - 64KB message workload with varying key reuse values

Chart: AES-encryption - 4MB message workload with varying key reuse values

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 17 of 89

Notes on AES-encryption charts

• For small messages, reusing the key 32 times or more gives the best performance

• As the message size increases, the benefits of higher key reuse values decrease.

• Large messages, such as the 4MB example, show little difference in performance regardless of
the key reuse value, i.e. the difference between key reuse of 1 and unlimited is less than a 1%
decrease in transaction cost.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 18 of 89

Chart: DES-encryption - 2KB message workload with varying key reuse values

Chart: DES-encryption - 64KB message workload with varying key reuse values

Chart: DES-encryption - 4MB message workload with varying key reuse values

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 19 of 89

Notes on DES-encryption charts

• For small messages, reusing the key 32 times or more gives the best performance

• As the message size increases, the benefits of higher key reuse values decrease.

• Large messages, such as the 4MB example, show little difference in performance regardless of
the key reuse value, i.e. the difference between key reuse of 1 and unlimited is less than a 1%
decrease in transaction cost.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 20 of 89

How does AMS Confidential compare with Integrity and Privacy level protection?

This section compares the performance of the 3 available AMS qualities of service with regards to
transaction cost and throughput.

For comparison purposes, a request / reply workload is being used between 2 queue managers on
separate LPARs that are connected via multiple-sender receiver channels. The workloads begins
with one pair of busy channels, i.e. on LPAR 1 there is a sender channel for outbound messages
and a receiver channel for the inbound (reply) messages. The workload is increased until there are
5 busy outbound and 5 busy inbound channels.

For the purpose of these comparisons:

• The signing algorithm is SHA1.

• The encryption type is AES256.

• The key reuse value for the AMS Confidential -level measurement is 32.

• Cryptographic hardware is available.

• Each LPAR has 10 dedicated CPUs.

In our measurements with regards to throughput and cost, AMS confidential performed best, with
AMS integrity next and followed by AMS privacy. However this does not take into account any
audit, security or company policies that may need to be adhered to in your messaging environment.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 21 of 89

Chart: Compare AMS Quality of Protection - Transaction Cost

Chart: Compare AMS Quality of Protection - Transaction Rate

Notes on Quality of Protection charts

• The AMS Privacy workload costs 90% more than the AMS Confidential workload.

• The AMS Integrity workload costs 50% more than the AMS Confidential workload.

• The AMS Confidential workload achieves 3 times higher throughput than the AMS Privacy
workload.

• The AMS Confidential workload achieves 2 times higher throughput than the AMS Integrity
workload.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 22 of 89

What if cryptographic offload is not available for AMS Confidential?

Encryption is largely performed by the CPACF processors and as a result the impact of having no
cryptographic coprocessor or accelerators is reduced over the AMS Integrity or Privacy configura-
tions.

There will be a higher impact from a lack of cryptographic hardware when the key is reused less.

Previously we have reported a 3 millisecond impact (per message put and got) from a lack of
cryptographic hardware for AMS Integrity policies, which increases to 6 milliseconds when using
AMS Privacy.

With AMS Confidential policies protecting a queue, we saw an increase of 1.5 CPU milliseconds per
message (put and got).

How does AMS Confidential compare with other message protection options?

In the previous section we demonstrated the difference in performance between the three AMS
qualities of protection, but how does this compare with a workload running today that may not
have any protection, or protection offered from using SSL-enabled channels.

This section offers comparisons of the same workload being run in different configurations includ-
ing:

• A basic sender-receiver channel pair

• SSL enabled channels where the secret key is negotiated only at channel start, i.e. SSLRK-
EYC(0).

• SSL enabled channels where the secret key is negotiated every 1MB or every 10MB processed
i.e. SSLRKEYC(1048576) and SSLRKEYC(10485760).

• SSL cipher specification is “ECDHE_RSA_AES_256_CBC_SHA384”.

• Where the queues are protected by AMS Integrity level protection where signing is SHA1.

• Where the queues are protected by AMS Privacy level protection where signing is SHA1 and
encryption is AES256.

• Where the queues are protected by AMS Confidential level protection where the key reuse is
32, signing is SHA1 and encryption is AES256.

In these measurements, data is shown for 1 outbound and 1 inbound channel pair.

Cryptographic hardware is available in all measurements.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 23 of 89

Chart: Impact of message protection type on transaction cost

Chart: Impact of message protection type on transaction rate

Notes on impact of message protection type charts

• In these simple workloads, the AMS Confidential measurements transaction cost, which is
using the same key for 1 MB of data, is similar to that achieved when using SSL channels
where the secret key is negotiated every 1MB.

• The throughput of this AMS Confidential workload is higher than this SSL measurement as
the workload is not delayed for renegotiating the secret key.

Whilst the AMS options Integrity, Privacy and Confidential transaction costs appear high, consider a
scenario where the data flowing over the channels needs to cross (hop) over multiple queue managers,
such as a gateway between the main office and a client system.

In this example, the SSL transaction cost would double, as the gateway queue manager would need to
decrypt the data from the main office queue manager and re-encrypt the data for the clients system.
This would result in the message being encrypted and decrypted twice, as well as potentially being

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 24 of 89

on the gateway queue manager unencrypted. Furthermore the secret key negotiation would need
to be done twice as often. In this case we might expect the transaction to approximately double
in cost. In the case of a frequent renegotiation such as at 1MB, this would mean the increase in
transaction cost would be 880 microseconds.

With the AMS protection, the message is only encrypted and decrypted once, so if a gateway queue
manager is added, the additional cost would be similar to that of the baseline measurement, i.e. of
the order of 280 microseconds per transaction.

The following table demonstrates the increase in cost for the scenario of adding a gateway queue
manager into the configuration. Costs shown are in CPU microseconds per transaction.

Table: Impact of adding a gateway queue manager to the protected workload measure-
ments

Configuration Transaction Cost Cost of adding a
gateway Total Cost

Baseline 280 280 560

SSLRKEYC(1M) 880 880 1760

SSLRKEYC(10M) 570 570 1140

SSLRKEYC(0M) 490 490 980

Integrity 1390 280 1670

Privacy 1780 280 2060

Confidential (key reuse = 32) 770 280 1050

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 25 of 89

Using IBM MQ classes for JMS in a CICS OSGi JVM Server

IBM MQ classes for Java™ Message Service (IBM MQ classes for JMS) is the JMS provider that is
supplied with IBM MQ. As well as implementing the interfaces described in the javax.jms package,
the IBM MQ classes for JMS provide two sets of extensions to the JMS API. The main focus of these
extensions concerns creating and configuring connection factories and destinations dynamically at
run time, but the extensions also provide function that is not directly related to messaging, such as
function for problem determination.

The IBM MQ classes for JMS have been built with Java 7 since IBM MQ for z/OS version 8.0.

WebSphere MQ for z/OS version 7.1 provides support for using IBM MQ classes for JMS via APAR
PI29770 when using CICS version 5.2 or later.

IBMMQ for z/OS version 8.0 added support for using the IBMMQ classes for JMS in certain versions
of the CICS Open Services Gateway initiative (OSGi) Java™ Virtual Machine (JVM) server.

Using the IBM MQ classes for JMS in a CICS OSGi JVM Server allows a continuation of the
principle objectives of JMS:

• To provide a greater level of consistency across IBM JMS providers

• To make it easier to write a bridge application between two IBM messaging systems

• To make it easier to port an application from one IBM JMS provider to another.

The ease of development however can come at a cost to performance, and the following section
attempts to indicate some of that impact.

Comparing JMS performance with more traditional languages

As part of the regression tests running CICS workloads, a simple CICS COBOL program is used to
drive an MQ workload. The transaction actions and model are shown in the following diagram.

Chart: Simple CICS COBOL transaction running MQ message workload

The transaction is initiated and once the message workload is complete, initiates the next transaction
in the chain, before ending. Multiple chains are run to emulate concurrent transactions.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 26 of 89

http://www-01.ibm.com/support/docview.wss?uid=swg1PI29770

To compare the performance of JMS against this COBOL application, both a JMS and a Java™
application were created using the same model.

MQ API calls based on application programming language

Whilst the core MQ APIs invoked for logically similar transactions written in different languages
remain the same, additional interaction with the queue manager may be required when implementing
applications in Java or JMS.

For example the MQT1 program referred to earlier performs a simple function - put a message and
get a reply message. In order to do this a number of MQ APIs were called, some directly and some
as a result of the program actions. The following table shows that for similar function implemented
in different languages will result in different MQ API calling patterns, i.e the table shows the number
of MQ API calls per transaction.

API function COBOL Java MQ JMS

Open queue 2 2 2

Put message 1 1 1

Get message 1 1 1

Commit 2 1 2

Close queue 2 2 2

Other 1 14 7

Backout 1 1 1

Notes on table:

• The Java application is only doing 1 commit, unlike both the COBOL and JMS applications
which do a MQPUT followed by an EXEC CICS SYNCPOINT and then a MQGET followed
by another EXEC CICS SYNCPOINT.

• Both the Java and MQ JMS applications see a significant increase in the number of “other”
type calls, which include the equivalent of MQINQ of the queue manager and queues in use.

• IBM MQ Classes for Java have been functionally stabilized at the level shipped in IBM MQ
for z/OS version 8.0. Existing applications that use the IBM MQ classes for Java will continue
to be fully supported, but this API is stabilized, so new features will not be added.

What impact does the application language have on the MQ API cost?

The previous section shows that for similar function applications written in different languages, the
amount of interaction with the MQ queue manager can vary, but how might this affect the cost of
the MQ workload?

The following table reports the total MQ API cost (CPU time) for each of the functions invoked based
on the average costs as reported by TRACE(A) CLASS(3) accounting data from a measurement
using 2 chains of transactions. Costs shown are in CPU microseconds.

API function COBOL Java MQ JMS

Open queue 4.08 4.14 4.42

Put message 5.52 6.39 15.42

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 27 of 89

Get message 5.28 6.66 8.3

Commit 6.01 3.18 6.09

Close queue 0.05 0.48 0.73

Other 0 7.87 5.59

Backout 1.01 1.02 1.02

Total 21.95 29.74 41.57

Notes on table:

• The put message function of the MQ JMS application is significantly more expensive than
either COBOL or Java, primarily due to the format of the message being created.

• The impact of the additional “other” calls does cause a marked increase in the MQ API cost
which is particularly noticeable in the Java measurement.

The following chart is a representation of the data in the table.

Chart: Total MQ API cost (CPU time) for each of the functions invoked based on the
average costs as reported by TRACE(A) CLASS(3) accounting data from a measure-
ment using 2 chains of transactions.

This of course does not tell the full story - this is just the direct interaction with the queue manager.

In addition to this, there is the overhead of the running the application environment under CICS plus
the work that the queue manager must do as part of commit processing. The following table shows
a breakdown of the transaction cost in CPU microseconds for each of the application languages.

Component COBOL Java MQ JMS

CICS 96.26 445.12 500.43

MQ APIs 21.95 29.74 41.57
Queue Manager
(processing of commit, SRB time) 7.14 4.57 8.32

Total 125.34 479.43 550.32

What this suggests is that the cost of a Java application is of the order 3.8 times that of the
equivalent COBOL application, and the MQ JMS application might be 4.4 times that of the

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 28 of 89

COBOL application.

The following chart is a graphical representation of the data in the chart.

Chart: Breakdown of transaction cost from measurement using 2 chains of transactions.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 29 of 89

Comparing the performance in similarly configured systems

The charts in this section demonstrate the performance differences, when using the 3 application
languages described earlier, as the workload is increased. The system under test is limited to 16
dedicated processors and the performance is limited by CPU when running with the maximum
reported number of concurrent transactions.

Chart: Achieved transaction rate using MQ messaging as workload increases.

Chart: Actual transaction cost when using MQ messaging as workload increases.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 30 of 89

Reducing transaction cost by using zIIP specialty engines

The IBM z Systems Integrated Information Processor (zIIP) has been available since the System z9
server. It is designed to free-up general computing capacity and lower overall total cost of computing
for select data and transaction processing workload. From IBM z13, zIIP specialty engines also run
workloads that are eligible to run on zAAP specialty engines.

In addition Simultaneous Multithreading (SMT) support for zIIP processors on z13 servers is de-
signed to offer throughput improvements to address the growing volume of zIIP-eligible work such
as Java-based transactions and XML parsing.

zIIP eligible workloads include, but are not limited to, portions of the following:

• zAAP eligible workloads, such as Java (or JMS).

For a more complete list, please refer to IBM z Systems Integrated Information Processor (zIIP)

What tuning options are available for zIIP specialty engines?

There are a number of IEAOPTxx parameters that can help or enforce usage of specialty processors
including:

• IFAHONORPRIORITY=YES| NO

◦ YES: Specifies that standard processors run both zAAP processor eligible and non-zAAP
processor eligible work in priority order when the zAAP processors indicate the need for
help from standard processors.

◦ NO: Specifies that standard processors will never examine zAAP processor eligible work.
This can lead to waits for zAAP processors even when there are available general purpose
CPs available. Note that standard processors also run zAAP processor eligible work if it
is necessary to resolve contention for resources with non-zAAP processor eligible work.

• IIPHONORPRIORITY=YES | NO

◦ YES: Specifies that standard processors run both zIIP processor eligible and non-zIIP
processor eligible work in priority order when the zIIP processors indicate the need for
help from standard processors.

◦ NO: Specifies that standard processors will never examine zIIP processor eligible work.
Note that standard processors also run zIIP processor eligible work if it is necessary to
resolve contention for resources with non-zIIP processor eligible work.

• PROJECTCPU=YES | NO

◦ Specifies whether to activate or deactivate the projection of how work could be offloaded
from regular CPs to special assist processors like zIIP. This option can be used when no
zIIP is available as a guide to projected savings.

• MT_ZIIP_MODE=1 | 2

◦ Specifies the multi-threading mode (MT) for each online zIIP core. The value is limited
to what the underlying hardware and operating system support.

Example measurements using zIIP processors

The following JMS measurements have been run on a system where there is 1 zIIP processor avail-
able replacing 1 general purpose processor to demonstrate the effect of specialty processors on the
transaction cost. In these measurements the following options are in specified.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 31 of 89

http://www-03.ibm.com/systems/z/hardware/features/ziip/

• PROJECTCPU=YES

• MT_ZIIP_MODE=1

Chart: Impact of zIIP on MQ for JMS transaction in CICS OSGi CICS JVM Server.

Notes on chart:

• In the configuration used, only the CICS workload is eligible for offloading onto zIIP.

• The data for the “no zIIP” measurement was run on a system with 4 dedicated general purpose
CPU’s.

• The data for the “1 zIIP” measurement was run on a system with 3 dedicated general purpose
CPU’s and 1 zIIP.

• The CICS cost per transaction for the “Enough zIIP” data is based upon the projected CPU
usage, so includes the CPU that was run on the available zIIP plus the time that was used on
the general purpose processors that was eligible for zIIP offload. This is the maximum saving
that could be achieved given a surplus of zIIP processors.

• Providing “enough zIIP” reduces the total transaction cost on chargeable processors by 17%,
which in this simple measurement equates to a 20% reduction in CICS transaction cost.

• The benefits of SMT-2 are discussed in the IBM CICS Performance Report: CICS TS for
z/OS V5 Performance Report, specifically section 7.10 “Simultaneous multithreading with
Java workloads”.

Process used for calculating “Enough zIIP” cost savings

An extract of the RMF Workload report is provided to demonstrate how the “Enough zIIP” data
was calculated.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 32 of 89

http://www.redbooks.ibm.com/abstracts/sg248298.html?Open
http://www.redbooks.ibm.com/abstracts/sg248298.html?Open

The RMF workload report has a column headed “APPL %” which reports the percentage of processor
time used by transactions on different processor types e.g. CP or IIP.

• The “IIPCP” field reports the percentage of processor time used by zIIP-eligible transactions
that ran on general purpose processors.

• The “IIP” field reports the percentage of processor time actually executed on the zIIP
processor.

• The sum of the IIP and IIPCP fields give the projected percentage for zIIP-eligible transactions.

• Multiplying the sum of the IIP and IIPCP by the interval length gives an indication of the
CPU that could be offloaded to zIIP given sufficient zIIP resource, which we will call ’total
projected zIIP time’.

• The CPU service time includes the seconds consumed by both general purpose CPUs and the
specialty processors, so we can subtract the total projected zIIP time from the CPU service
time to give an indication of the chargeable CPU time for this interval.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 33 of 89

Using IBM MQ classes for JMS in IMS

Support for IBM MQ classes for Java™ Message Service (IBM MQ classes for JMS) was added in
IBM MQ for z/OS version 8.0, via APAR PI41909, which is a cumulative fixpack, and can be used
with IMS versions 13 and later.

The classes are supported in the following IMS dependent region types:

• MPR

• BMP

• IFP

• JMP

• JBP

The IBM MQ classes for JMS requires Java Platform, Standard Edition 7 (Java SE 7) or later.

This chapter will compare the performance of JBP and BMP region types and demonstrate some of
the CPU savings that may be found from exploiting zIIP specialty engines.

The chapter will also compare the performance of JMP with MPR region types and consider some
additional impact from using the IBM MQ classes for JMS in IMS regions.

If the IMS region e.g. BMP, MPR, JBP, or JMP runs an application that issues any MQ verbs, it
is advised that that certain modules are preloaded by IMS as detailed in the ”Preloading the IMS
adapter” section in the IBM MQ for z/OS version 9.0 Knowledge Centre. Of particular interest is
the CSQBAPPL module which is a new addition to the list.

Comparison of JBP with BMP region types

Java Batch Processing (JBP) regions run flexible programs that perform batch-like processing online
and can access the IMS message queues for output, similar to non-message driven BMP applications.
JBP applications are like BMP applications except that they cannot read input messages from the
IMS message queue. Like BMP applications, JBP applications are started by submitting a job with
JCL.

The IMS PROCLIB contains the proc DFSJBP which can be used to run JBP regions. This runs
the same program as used for more traditional BMP regions, i.e. DFSRRC00. There are a number
of parameters that are of particular interest when running a JBP region:

• IMSID

The IMS subsystem ID under which to execute.

• MBR

The application program name. To indicate which Java application to invoke when running the
JBP, specify a 1-8 character name in the MBR parameter. When the MBR name is specified,
the JBP tries to load the DFSJVMAP IMS proclib member. This DFSJVMAP member maps
the MBR names to fully qualified Java class names.

• ENVIRON

Name of the IMS proclib member that contains the library path (LIBPATH) definition for the
Java environment.

• JVMOPMAS

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 34 of 89

http://www-01.ibm.com/support/docview.wss?uid=swg1PI41909

Name of the IMS proclib member that contains the CLASSPATH and JVM options for the
master JVM.

The following diagram is intended to assist clarification of how the different files are related for IMS
JBP regions.

Diagram: Demonstrate JPB parameters

As with the measurements shown in the section “Using IBM MQ classes for JMS in a CICS OSGi
JVM Server”, the cost of the JMS applications can be reduced with the use of specialty processors
such as zIIP. The extent of this is demonstrated in the following chart.

Chart: Compare cost of BMP against JBP, with zIIP offload savings

Notes on chart:

• The workload run is a set of request/reply workloads each using 1 channel pair, moving mes-
sages between LPAR 1 and LPAR 3

• The transaction costs shown are a reflection of the data from the server-side of the workload

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 35 of 89

and includes the server MQ queue manager, channel initiator, IMS control region and IMS
batch processing region, whether a BMP or a JBP.

• The server application connects once to the MQ queue manager, opens the request queue once
and then processes each message until requested to end. The processing of each message is
simple and results in the reply message being put to a reply queue.

• The transaction costs with zIIP offload available are based on the projected savings from the
RMF Workload report, where the minimum cost is calculated from the value reported in the
interval with the least zIIP usage predicted, and the maximum cost is calculated from the
values reported in the interval with the most zIIP usage predicted.

• The transaction rate achieved in the measurements is comparable for BMP and JBP regions
as there was sufficient CPU capacity in the LPAR.

• In the optimum JBP measurement, with 5 inbound and 5 outbound channels being busy, the
non-offloaded JBP workload equates to the 32% more than the BMP workload or 70 CPU
microseconds per transaction.

• The BMP uses an application written in C.

Comparison of JMP with MPR region types

A JMP application program is similar to an MPP application program, except that JMP applications
are written in Java or object-oriented COBOL. Like an MPP application, a JMP application is
started when there is a message in the message queue for the JMP application. IMS schedules the
message for processing.

JMP applications can do the following:

• Retrieve input messages from the IMS message queue.

• Access IMS and DB2 for z/OS databases, connect to an MQ subsystem and put or get messages.

• Commit or roll back transactions.

• Send output messages.

The IMS PROCLIB contains the proc DFSJMP which can be used to run a JMP region. As with
the JBP region, the JVMOPMAS parameter references a file that sets the CLASSPATH and JVM
options for the master JVM, the ENVIRON parameter specifies the LIBPATH, and the DFSJVMAP
provides a cross reference between the transaction and the Java class to be run.

Note that the IBM MQ classes for JMS build upon existing the IBM MQ adapter support which
makes use of the External Subsystem Attach Facility (ESAF). This means that the documented
behaviour applies, including all open handles being closed by the IMS adapter when a syncpoint
occurs. For this reason it is advisable to ensure that the MQ preload list is passed to the JMP (or
MPR) when the IMS transaction makes MQ API calls, to avoid having to load the files for each unit
of work.

JMP performance compared with MPR

The tests detailed in this section run an IMS Bridge workload:

• The workload is driven by multiple batch applications that put a 2KB message to an IMS
Bridge queue.

• These IMS Bridge queues are served by a local IMS region with multiple message processing
regions, either MPR or JMP.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 36 of 89

• Once the message is gotten from IMS using a GETUNIQ call, the region connects to an MQ
queue manager, opens pair of request and reply queues, puts a message to the request queue
and waits for the reply message.

• These request messages are processed by long running batch tasks that MQGET-next the
request message, process the message contents and MQPUT a reply message

• Once the reply message is received by the IMS message processing region, the application
closes the queue and returns a modified reply message to IMS using the IMS ISRT verb.

• The inserted message is returned to the original batch application via the IMS Bridge.

The measurements interchange between an MPR running a C program and a JMP running a JMS
application.

Chart: Compare performance of JMP against MPR

Notes on chart comparing performance of JMP with MPR

• The JMP transaction cost was nearly 22 times higher than the equivalent MPR transaction
cost, although a large proportion of this cost can be reduced through the use of zIIP offload.
The PROJECTCPU predicted the JMP cost could be reduced such that the JMP cost 4 times
that of the MPR transaction.

• In order to achieve the reported transaction rates, the MPR test used 4 processors whereas
the JMP test used 12 processors.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 37 of 89

Page set statistics

Page set statistics have been added to IBM MQ for z/OS version 9.0 and are enabled as part of
CLASS(1) statistics trace.

The gathered data can be formatted using programMQSMF, which is available as part of SupportPac
MP1B “Interpreting accounting and statistics data”.

The data collected as part of page set statistics includes the following:

• How full each page set was during each interval

• Whether the page set needed to expand, and if so, how many times

• How many pages were written / read in the interval

• How long the queue manager took to write data to the page set. MQ can write multiple pages
in one I/O.

• How long the queue manager took to read data from the page set. MQ will read 1 page per
I/O.

Guidance on how to use this data will be provided in MP1B “Interpreting accounting and statistics
data”.

What affects the cost of page set statistics?

The processing performed by page set statistics is similar to that by the command DISPLAY USAGE
TYPE(PAGESET).

The cost of this processing is affected by the total number of pages in the page sets allocated to
the queue manager. For example on a 2964-NE1 (z13), an MQ queue manager was able to process
600GB of page set data at the cost of 1 CPU second.

This means that for a queue manager with 100 page sets each of 64GB we would predict a CPU
cost 10.66 CPU seconds at the end of each SMF interval. This work is performed by a single TCB
running at the queue managers’ dispatching priority.

A more typically sized queue manager might have 10-20 page sets with a total of 600 GB of page
set disk space allocated. The following table uses LSPR capacity data to provide a guide to how
much page set statistics (or indeed DISPLAY USAGE TYPE(PAGESET)) might cost on different z/OS
machines:

Machine Model Average Relative Nest
Intensity

CPU seconds to
process 600GB

z13 2974-703 8.3 1

zEC12 2827-703 7.42 1.12

zEnterprise 196 2817-703 5.92 1.4

z10 2097-703 4.41 1.88

z9 2094-703 2.97 2.79

Note: The cost has been calculated by dividing the average relative nest intensity (RNI) of the z13
(2964-703) by the appropriate model e.g. for the z9 cost, 8.3 / 2.97 = 2.79, which as the cost on z13
is 1, means the cost of z9 is expected to be approximately 2.79 CPU seconds and this cost would be
incurred at the end of each SMF interval when TRACE(S) CLASS(1) is enabled on an IBM MQ for
z/OS version 9.0 queue manager.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 38 of 89

http://www-01.ibm.com/support/docview.wss?uid=swg24005907
http://www-01.ibm.com/support/docview.wss?uid=swg24005907
https://www-304.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprITRzOSv2r1

Appendix A

Regression

When performance monitoring IBM MQ for z/OS version 9.0, a number of different categories of
tests are run, which include:

• Private queue

• Shared queue

• Moving messages using MCA channels

◦ SSL

◦ Channel compression (ZLIBFAST / ZLIBHIGH)

• Moving messages using Cluster channels

• Client

• Bridges and adaptors

• Trace

These tests are run against version V7.1 (V710), V8.0 (V800) and V9.0 (V900) and the comparison
of the results is shown in subsequent pages.

The statement of regression is based upon these results.

All measurements were run on a performance sysplex of a z13 (2964-NE1) which was configured as
described in “System Configuration”.

Given the complexity of the z/OS environment even in our controlled performance environment, a
tolerance of +/-6% is regarded as acceptable variation.

39

Private Queue

Non-persistent out-of-syncpoint workload

Maximum throughput on a single pair of request/reply queues

The test uses 5 batch requester tasks that each put a message to a common request queue and wait
for a specific response on the reply queue. Once they have gotten the message, they put another
message to the request queue. The messages are put and got out of syncpoint.

There are 4 batch server tasks that action MQGET-with-wait calls on the request queue, get the
message and put a reply to the known (and pre-opened) reply queue and then the application goes
back into the MQGET-with-wait call. The messages are put and got out of syncpoint.

Chart: Transaction rate for non-persistent out-of-syncpoint workload

Chart: Transaction cost for non-persistent out-of-syncpoint workload

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 40 of 89

Scalability of request/reply model across multiple queues

The queue manager is configured with pagesets 0 through 15 and with 1 buffer pool per pageset.

On each of pagesets 1 to 15, a pair of request and reply queues are defined. The test starts up 1
requester and 1 server task accessing the queues on pageset 1 and runs a request/reply workload.
At the end, the test starts a second pair of requester and server tasks which access the queues on
pageset 2 and so on until there are 15 requester and 15 server tasks using queues on all 15 pagesets
with the application queues defined.

The requester and server tasks specify NO_SYNCPOINT for all messages.

The measurements are run on a single LPAR with 16 dedicated processors online on the z13 (2964)
used for testing.

Chart: Transaction rate for non-persistent out-of-syncpoint scalability workload

Chart: Transaction cost for non-persistent out-of-syncpoint scalability workload

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 41 of 89

The preceding 2 charts show that a single queue manager is able to drive in excess of 575,000
transactions per second - or 1,150,000 non-persistent messages per second on a 16-way LPAR.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 42 of 89

Non-persistent server in-syncpoint workload

Maximum throughput on a single pair of request/reply queues

The test uses 5 batch requester tasks that each put a message to a common request queue and wait
for a specific response on the reply queue. Once they have gotten the message, they put another
message to the request queue. The messages are put and got out of syncpoint.

There are 4 batch server tasks that action MQGET-with-wait calls on the request queue, get the
message and put a reply to the known (and pre-opened) reply queue and then the application goes
back into the MQGET-with-wait call. The messages are got and put in syncpoint with 1 MQGET
and 1 MQPUT per commit.

Chart: Transaction rate for non-persistent in syncpoint workload

Chart: Transaction cost for non-persistent in syncpoint workload

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 43 of 89

Scalability of request/reply model across multiple queues

The queue manager is configured with pagesets 0 through 15 and with 1 buffer pool per pageset.

On each of pagesets 1 to 15, a pair of request and reply queues are defined. The test starts up 1
requester and 1 server task accessing the queues on pageset 1 and runs a request/reply workload.
At the end, the test starts a second pair of requester and server tasks which access the queues on
pageset 2 and so on until there are 15 requester and 15 server tasks using queues on all 15 pagesets
with the application queues defined.

The requester tasks specify NO_SYNCPOINT for all messages and the server tasks get and put
messages within syncpoint.

The measurements are run on a single LPAR with 16 dedicated processors online on the z13 (2964)
used for testing.

The measurements are run using 2KB, 64KB and 4MB messages. The 4MB message measurement
uses a maximum of 6 sets of queues and tasks.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 44 of 89

Chart: Transaction rate for non-persistent in syncpoint scalability workload with 2KB
messages

Chart: Transaction cost for non-persistent in syncpoint scalability workload with 2KB
messages

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 45 of 89

Chart: Transaction rate for non-persistent in syncpoint scalability workload with 64KB
messages

Chart: Transaction cost for non-persistent in syncpoint scalability workload with 64KB
messages

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 46 of 89

Chart: Transaction rate for non-persistent in syncpoint scalability workload with 4MB
messages

Chart: Transaction cost for non-persistent in syncpoint scalability workload with 4MB
messages

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 47 of 89

Persistent server in-syncpoint workload

Maximum throughput on a single pair of request/reply queues

The test uses 60 batch requester tasks that each put a message to a common request queue and wait
for a specific response on the reply queue. Once they have gotten the message, they put another
message to the request queue. The messages are put in-syncpoint and got in-syncpoint.

There are 10 batch server tasks that action MQGET-with-wait calls on the request queue, get the
message and put a reply to the known (and pre-opened) reply queue and then the application goes
back into the MQGET-with-wait call. The messages are got and put in syncpoint with 1 MQGET
and 1 MQPUT per commit.

Chart: Transaction rate for persistent in syncpoint workload

Chart: Transaction cost for persistent in syncpoint workload

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 48 of 89

Upper bounds of persistent logging rate

This test uses 3 batch tasks that each put and get messages from a common queue. One of the tasks
only uses a 1KB persistent message. The remaining 2 tasks vary the size of their message from 1KB
to 4MB.

The following chart shows the achieved log rate on a 3-way LPAR of the z13.

Chart: Peak log rate achieved during persistent message workload

Notes:

The peak log rate in excess of 300MB per second is for each copy of the dual logs, i.e. there is more
than 600 MB of data being written to IBM MQ log data sets per second.

These logs are configured with 4 stripes.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 49 of 89

CICS Workload

When a CICS transaction makes a call using an MQ API, the resulting processing performed at
end of task can have a significant effect on the transaction cost. This cost is most noticeable when
adding the first MQ call e.g. MQPUT1 to the application.

In version 8.0.0, the processing performed by the queue manager at end of CICS task was optimised
for scalability purposes with intention of reducing the impact of adding the first MQ call.

In previous releases on high N-way machines with high volume CICS transactions, the end of task
processing would elongate as the workload increased. This was due to more storage being allocated
for CICS tasks, and subsequently taking more time to scan that storage. In the worst case scenarios,
the queue manager storage could rapidly be used, resulting in a queue manager failure. One solu-
tion was to limit the number of CICS transactions running at any point by configuring the MXT
parameter.

From IBM MQ for z/OS version 8.0.0, the storage is more efficiently re-used which reduces the CPU
cost per transaction and increases the throughput capacity.

The following charts use a set of simple CICS transactions that open queues, put a 2KB non-
persistent message, get a 2KB non-persistent message, close queues and initiate a new CICS trans-
action. Running multiple sets of these transactions simulates a number of concurrent transactions
across multiple CICS regions.

In each case the system is running with 16 dedicated processors and becomes CPU constrained with
512 concurrent CICS tasks.

Notes on charts:

• The scale used on each chart is consistent.

• For version 7.1.0, the queue manager cost associated with the CICS workload is approximately
23 CPU microseconds and this rises as the workload increases.

• For versions 8.0.0 and 9.0.0, the queue manager cost associated with the CICS workload is 7
CPU microseconds and rises at a similar rate as the workload increases.

• There is also an associated saving in the transaction cost, which means that in a CPU con-
strained system, the upper bound on transaction rate is raised by nearly 50% in these mea-
surements.

• As the V800 and V900 data is similar, only V900 data is shown.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 50 of 89

Chart: V710 CICS workload

Chart: V900 CICS workload

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 51 of 89

Shared Queue

Version 7.1.0 introduced CFLEVEL(5) with Shared Message Data Sets (SMDS) as an alternative to
DB2 as a way to store large shared messages. This resulted in significant performance benefits with
both larger messages (greater than 63KB) as well as smaller messages when the Coupling Facility
approached its capacity by using tiered thresholds for offloading data. For more details on the
performance of CFLEVEL(5), please refer to performance report MP1H “WebSphere MQ for z/OS
V7.1 Performance Report”.

CFLEVEL(5) with SMDS with the default offload thresholds has been used for the shared queue
measurements.

Non-persistent out-of-syncpoint workload

Maximum throughput on a single pair of request/reply queues

The test uses 5 batch requester tasks that each put a message to a common request queue and wait
for a specific response on the reply queue. Once they have gotten the message, they put another
message to the request queue. The messages are put and got out of syncpoint.

There are 4 batch server tasks that action MQGET-with-wait calls on the request queue, get the
message and put a reply to the known (and pre-opened) reply queue and then the application goes
back into the MQGET-with-wait call. The messages are put and got out of syncpoint.

An increasing number of queue managers are allocated to process the workload. Each queue manager
has 5 requester tasks and 4 server tasks.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 52 of 89

http://www-01.ibm.com/support/docview.wss?uid=swg24031663

Chart: Transaction rate for non-persistent out-of-syncpoint workload - 2KB messages.

Chart: Transaction cost for non-persistent out-of-syncpoint workload - 2KB messages.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 53 of 89

Chart: Transaction rate for non-persistent out-of-syncpoint workload - 64KB messages.

Chart: Transaction cost for non-persistent out-of-syncpoint workload - 64KB messages.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 54 of 89

Chart: Transaction rate for non-persistent out-of-syncpoint workload - 4MB messages.

Chart: Transaction cost for non-persistent out-of-syncpoint workload - 4MB messages.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 55 of 89

Non-persistent server in-syncpoint workload

Maximum throughput on a single pair of request/reply queues

The test uses 5 batch requester tasks that each put a message to a common request queue and wait
for a specific response on the reply queue. Once they have gotten the message, they put another
message to the request queue. The messages are put and got out of syncpoint.

There are 4 batch server tasks that action MQGET-with-wait calls on the request queue, get the
message and put a reply to the known (and pre-opened) reply queue and then the application goes
back into the MQGET-with-wait call. The messages are got and put in syncpoint with 1 MQGET
and 1 MQPUT per commit.

An increasing number of queue managers are allocated to process the workload. Each queue manager
has 5 requester and 4 server tasks.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 56 of 89

Chart: Transaction rate for non-persistent in syncpoint workload - 2KB

Chart: Transaction cost for non-persistent in syncpoint workload - 2KB

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 57 of 89

Chart: Transaction rate for non-persistent in syncpoint workload - 64KB

Chart: Transaction cost for non-persistent in syncpoint workload - 64KB

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 58 of 89

Chart: Transaction rate for non-persistent in syncpoint workload - 4MB

Chart: Transaction cost for non-persistent in syncpoint workload - 4MB

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 59 of 89

Data sharing non-persistent server in-syncpoint workload

The previous shared queue tests are configured such that any queue manager within the queue
sharing group (QSG) can process messages put by any particular requester application. This means
that the message may be processed by a server application on any of the available LPARs. Typically
the message is processed by a server application on the same LPAR as the requester.

In the following tests, the message can only be processed by a server application on a separate LPAR.
This is achieved by the use of multiple pairs of request/reply queues.

The test uses 5 batch requester tasks that each put a message to a common request queue and wait
for a specific response on the reply queue. Once they have gotten the message, they put another
message to the request queue. The messages are put and got out of syncpoint.

There are 4 batch server tasks that action MQGET-with-wait calls on the request queue, get the
message and put a reply to the known (and pre-opened) reply queue and then the application goes
back into the MQGET-with-wait call. The messages are got and put in syncpoint with 1 MQGET
and 1 MQPUT per commit.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 60 of 89

Chart: Transaction rate for data sharing non-persistent in syncpoint workload - 2KB

Chart: Transaction cost for data sharing non-persistent in syncpoint workload - 2KB

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 61 of 89

Chart: Transaction rate for data sharing non-persistent in syncpoint workload - 64KB

Chart: Transaction cost for data sharing non-persistent in syncpoint workload - 64KB

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 62 of 89

Moving messages across channels

The regression tests for moving message across channels e.g. sender-receiver channels, are designed
to use drive the channel initiator such that the network is the constraining factor. Therefore the
tests use non-persistent messages out-of-syncpoint, so that they are not constrained by logging etc.

Within the channel tests there are measurements with small numbers of channels (1 to 4 inbound
plus the same number outbound), which was suitable for driving the network to capacity and also
tests with up to 50 channels outbound and 50 channels inbound.

For each of the test types, the channels are used both with and without SSL encryption enabled.

The cipher spec “ECDHE_RSA_AES_256_CBC_SHA384” was used for all SSL tests as this is
the most secure cipher spec available across the supported releases. The SSLRKEYC attribute was
set so that 1MB of data can flow across the channel before renegotiating the key.

In IBM MQ version 8.0.0, the ZLIBFAST compression option was updated to be able to exploit
zEDC hardware compression, which is discussed in detail in MP1J “IBM MQ for z/OS version 8.0.0
Performance Report”. The compression measurements shown in this document use zEDC hardware
compression where possible.

For further guidance on channel tuning and usage, please refer to performance report MP16 “Capacity
Planning and Tuning Guide”.

The measurements using 1 to 4 channels use batch applications to drive the workload at each end
of the channel.

The measurements using 10 to 50 channels use long-lived CICS transactions to drive the workload.
This means that each CICS application will put and get thousands of messages before ending. This
model means that we are not including the cost of starting a CICS transaction, opening and closing
queues and the teardown of the transaction at the end of the workload.

The compression tests use 64KB message of varying compressibility, so there is something to com-
press, e.g. a message of 64KB that is 80% compressible would reduce to approximately 13KB. These
tests are run using 1 outbound and 1 inbound channel so include the compression and inflation costs
for the request and reply message.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 63 of 89

http://www-01.ibm.com/support/docview.wss?uid=swg24038347
http://www-01.ibm.com/support/docview.wss?uid=swg24007421

Non-persistent out-of-syncpoint - 1 to 4 sender receiver channels

Chart: Transaction rate with 2KB messages

Chart: Transaction cost for 2KB messages

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 64 of 89

Chart: Transaction rate with 64KB messages

Chart: Transaction cost for 64KB messages

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 65 of 89

Chart: Transaction rate with 2KB messages over SSL channels

Chart: Transaction cost for 2KB messages over SSL channels

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 66 of 89

Chart: Transaction rate with 64KB messages over SSL channels

Chart: Transaction cost for 64KB messages over SSL channels

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 67 of 89

Non-persistent out-of-syncpoint - 10 to 50 sender receiver channels

Chart: Transaction rate with 2KB messages

Chart: Transaction cost for 2KB messages

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 68 of 89

Chart: Transaction rate with 2KB messages over SSL channels

Chart: Transaction cost for 2KB messages over SSL channels

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 69 of 89

Channel compression using ZLIBFAST

Version 7.1.0 performs compression using software whereas both versions 8.0.0 and 9.0.0 are able to
exploit the available zEDC hardware for compression.

Chart: Transaction rate with ZLIBFAST on 64KB messages

Chart: Transaction cost for ZLIBFAST on 64KB messages

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 70 of 89

Channel compression using ZLIBHIGH

For ZLIBHIGH we have seen between 5-15% reduction in cost in the channel initiator for versions
8.0.0 and 9.0.0 compared to version 7.1.0.

Chart: Transaction rate with 64KB messages with ZLIBHIGH

Chart: Transaction cost for 64KB messages with ZLIBHIGH

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 71 of 89

Channel compression using ZLIBFAST on SSL channels

Version 7.1.0 performs compression using software whereas both versions 8.0.0 and 9.0.0 are able to
exploit the available zEDC hardware for compression.

Chart: Transaction rate with 64KB messages with ZLIBFAST on SSL channels

Chart: Transaction cost for 64KB messages with ZLIBFAST on SSL channels

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 72 of 89

Channel compression using ZLIBHIGH on SSL channels

For ZLIBHIGH we have seen between 10-20% reduction in cost in the channel initiator for versions
8.0.0 and 9.0.0 compared to version 7.1.0.

Chart: Transaction rate with 64KB messages with ZLIBHIGH on SSL channels

Chart: Transaction cost for 64KB messages with ZLIBHIGH on SSL channels

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 73 of 89

Moving messages across cluster channels

The regression tests for moving messages across cluster channels are relatively simple, providing
multiple destinations for each message put.

The cluster has 3 queue managers - one for the requester workload and two for the server workload.
The queue managers hosting the server workload are both full repository queue managers.

A set of requester tasks is run against one queue manager and the application chooses either bind-
on-open or bind-not-fixed. The messages flow across the cluster channels to one of the server
queue managers to be processed by the server applications, at which point they are returned to
the originating requesting applications.

An increasing number of queues (with the corresponding increase in applications) are used.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 74 of 89

Bind-on-open

Chart: Bind-on-open transaction rate with 2KB messages

Chart: Bind-on-open transaction cost for 2KB messages

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 75 of 89

Chart: Bind-on-open transaction rate with 64KB messages

Chart: Bind-on-open transaction cost for 64KB messages

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 76 of 89

Bind-not-fixed

Chart: Bind-not-fixed transaction rate with 2KB messages

Chart: Bind-not-fixed transaction cost for 2KB messages

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 77 of 89

Chart: Bind-not-fixed transaction rate with 64KB messages

Chart: Bind-not-fixed transaction cost for 64KB messages

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 78 of 89

Moving messages across SVRCONN channels

The regression tests for moving messages across SVRCONN channels have a pair of client tasks for
each queue that is hosted on the z/OS queue manager.

One of the pair of client tasks puts messages to the queue and the other client task gets the messages
from the queue. As the test progresses, an increasing number of queues is used, with a corresponding
increase in the number of putting and getting client tasks.

Two sets of tests are run, the first uses SHARECNV(0) on the SVRCONN channel to run in a
mode comparable to that used pre-version 7.0.0. The second uses SHARECNV(1) so that func-
tion such as asynchronous puts and asynchronous gets are used via the DEFPRESP(ASYNC) and
DEFREADA(YES) queue options.

Choosing which SHARECNV option is appropriate can make a difference to capacity and the per-
formance which is discussed in more detail in performance report MP16 “Capacity Planning and
Tuning Guide” Channel Initiator section.

Note: The rate and costs are based upon the number of MB of data moved per second rather than
the number of messages per second.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 79 of 89

http://www-01.ibm.com/support/docview.wss?uid=swg24007421

Client pass through test using SHARECNV(0)

Chart: Throughput rate for client pass through tests with SHARECNV(0)

Chart: Cost per MB of client pass through tests with SHARECNV(0)

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 80 of 89

Client pass through test using SHARECNV(1)

Chart: Throughput rate for client pass through tests with SHARECNV(1)

Chart: Cost per MB of client pass through tests with SHARECNV(1)

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 81 of 89

IMS Bridge

The regression tests used for IMS Bridge use 3 queue managers in a queue sharing group (QSG)
each on separate LPARs. A single IMS region is started on 1 LPAR and has 16 Message Processing
Regions (MPRs) started to process the MQ workload.

The IMS region has been configured as detailed in performance report MP16 “Capacity Planning and
Tuning Guide” using the recommendations in the section “IMS Bridge: Achieving Best Throughput”.

Note: 16 MPRs are more than really required for the 1, 2 and 4 TPIPE tests but they are available
for consistent configuration across the test suite.

There are 8 queues defined in the QSG that are configured to be used as IMS Bridge queues.

Each queue manager runs a set of batch requester applications that put a 2KB message to one of
the bridge queues and waits for a response on a corresponding shared reply queue.

Tests are run using both Commit Mode 0 (Commit-then-Send) and Commit Mode 1 (Send-then-
Commit).

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 82 of 89

http://www-01.ibm.com/support/docview.wss?uid=swg24007421

Commit mode 0 (commit-then-send)

Chart: IMS Bridge commit mode 0 - Throughput rate

Chart: IMS Bridge commit mode 0 - Transaction cost

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 83 of 89

Commit mode 1 (send-then-commit)

Chart: IMS Bridge commit mode 1 - Throughput rate

Chart: IMS Bridge commit mode 1 - Transaction cost

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 84 of 89

Trace

The regression tests for trace cover both queue manager global trace and the channel initiator trace.

Queue manager global trace

The queue manager global trace tests are a variation on the private queue non-persistent 2KB
scalability tests with TRACE(G) DEST(RES) enabled.

From version 7.1.0, the global trace uses 64-bit storage which allows the queue manager to store a
trace record for each thread and reduces contention on the trace storage. As a result the throughput
achieved is significantly improved over previous releases of WebSphere MQ for z/OS.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 85 of 89

Chart: Queue manager TRACE(G) DEST(RES) - transaction rate

Chart: Queue manager TRACE(G) DEST(RES) - transaction cost

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 86 of 89

Channel initiator trace

The channel initiator trace tests are a variation on the client pass through tests using SHARECNV(0)
with TRACE(CHINIT) enabled.

Chart: Channel initiator TRACE(CHINIT) - throughput rate

Chart: Channel initiator TRACE(CHINIT) - cost per MB

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 87 of 89

Appendix B

System configuration

IBM MQ Performance Sysplex running on z13 (2964-NE1) configured thus:

LPAR 1: 1-16 dedicated CP processors, 128GB of real storage.

LPAR 2: 1-3 dedicated CP processors, 32GB of real storage.

LPAR 3: 1-10 dedicated CP processors, plus 1 zIIP, 32GB of real storage.

Default Configuration:

3 dedicated processors on each LPAR, where each LPAR running z/OS v2r1 FMID HBB7790.

Coupling Facility:

• Internal coupling facility with 4 dedicated processors.

• Coupling Facility running CFCC level 21 service level 00.66.

• Dynamic CF Dispatching off.

• 3 x ICP links between each z/OS LPAR and CF

DASD:

• FICON Express 16S connected DS8870.

• 4 dedicated channel paths (shared across sysplex)

• HYPERPAV enabled.

System settings:

• zHPF disabled by default.

• HIPERDISPATCH enabled by default.

• LPARs 1 and 3 configured with different subnets such that tests moving messages over channels
send data over 10GbE performance network.

◦ SMC-R enabled by default between LPARs 1 and 3.

• zEDC compression available by default - exploited in V800 onwards for ZLIBFAST compres-
sion.

• Crypto Express5 card configured thus:

◦ 1 x Accelerator, shared between LPARs 1 and 3.

88

◦ 2 x Coprocessor on LPAR1.

◦ 2 x Coprocessor on LPAR3.

IBM MQ trace status:

• TRACE(GLOBAL) disabled.

• TRACE(CHINIT) disabled.

• TRACE(S) CLASS(1,3,4) enabled where supported.

• TRACE(A) CLASS(3,4) enabled where supported.

General information:

• Client machines:

◦ 2 x IBM SYSTEM X3850 each with 8 x 3.16GhZ Processor, 6GB memory

• Client tests used a 10GbE performance network.

• Other IBM products used:

◦ CICS V6.9 CTS5.2 with latest service applied as of May 2016.

◦ IMS V13.

◦ WebSphere MQ for z/OS version 7.1 with latest service applied as of May 2016.

◦ IBM MQ for z/OS version 8.0 with latest service applied as of May 2016.

IBM MQ for z/OS version 9.0
Performance report MP1K

Page 89 of 89

	Performance Highlights
	Existing Function
	General Statement Of Regression
	Storage Usage
	CSA Usage
	Initial CSA usage
	CSA usage per connection

	Object Sizes
	PAGESET(0) Usage
	Virtual Storage Usage

	Capacity of the queue manager and channel initiator
	How much storage does a connection use?
	How many clients can I connect to my queue manager?
	How many channels can I run to or from my queue manager?

	New Function for version 9.0
	IBM Advanced Message Security (AMS)
	AMS general performance
	Reduced impact of using unprotected queues when AMS enabled
	Relative performance of protected queues
	Performance of AMS Integrity-level protection
	Performance of AMS Privacy-level protection
	What if cryptographic offload is not available?

	AMS Confidentiality
	How many times should I reuse the key?
	How does AMS Confidential compare with Integrity and Privacy level protection?
	What if cryptographic offload is not available for AMS Confidential?
	How does AMS Confidential compare with other message protection options

	Using IBM MQ classes for JMS in a CICS OSGi JVM Server
	Comparing JMS performance with more traditional languages
	MQ API calls based on application programming language
	What impact does the application language have on the MQ API cost?
	Comparing the performance in similarly configured systems
	Reducing transaction cost by using zIIP specialty engines

	Using IBM MQ classes for JMS in IMS
	Comparison of JBP with BMP region types
	Comparison of JMP with MPR region types
	JMP performance compared with MPR

	Page set statistics
	What affects the cost of page set statistics?

	Appendix Regression
	Private Queue
	Non-persistent out-of-syncpoint workload
	Maximum throughput on a single pair of request/reply queues
	Scalability of request/reply model across multiple queues

	Non-persistent server in-syncpoint workload
	Maximum throughput on a single pair of request/reply queues
	Scalability of request/reply model across multiple queues

	Persistent server in-syncpoint workload
	Maximum throughput on a single pair of request/reply queues
	Upper bounds of persistent logging rate

	CICS Workload

	Shared Queue
	Non-persistent out-of-syncpoint workload
	Maximum throughput on a single pair of request/reply queues

	Non-persistent server in-syncpoint workload
	Maximum throughput on a single pair of request/reply queues
	Data sharing non-persistent server in-syncpoint workload

	Moving messages across channels
	Non-persistent out-of-syncpoint - 1 to 4 sender-receiver channels
	Non-persistent out-of-syncpoint - 10 to 50 sender-receiver channels
	Channel compression using ZLIBFAST
	Channel compression using ZLIBHIGH
	Channel compression using ZLIBFAST on SSL channels
	Channel compression using ZLIBHIGH on SSL channels

	Moving messages across cluster channels
	Bind-on-open
	Bind-not-fixed

	Moving messages across SVRCONN channels
	Client pass through tests using SHARECNV(0)
	Client pass through tests using SHARECNV(1)

	IMS Bridge
	Commit mode 0 (commit-then-send)
	Commit mode 1 (send-then-commit)

	Trace
	Queue manager global trace
	Channel initiator trace

	Appendix System configuration

