
November 2014

Craig Stirling , Michael Alexander.

WebSphere MQ Performance

IBM UK Laboratories

Hursley Park

Winchester

Hampshire

SO21 2JN

Property of IBM

IBM MQ for IBM i v8.0

Performance Evaluations

 Version 1

IBM MQ for IBM i v8.0 – Performance Evaluations

Page II

Please take Note!

Before using this report, please be sure to read the paragraphs on “disclaimers”, “warranty

and liability exclusion”, “errors and omissions”, and the other general information paragraphs

in the "Notices" section below.

First Edition, November 2014.

This edition applies to IBM MQ for IBM i v8.0 (and to all subsequent releases and

modifications until otherwise indicated in new editions).

© Copyright International Business Machines Corporation 2014. All rights reserved.

Note to U.S. Government Users

Documentation related to restricted rights.

Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule

contract with IBM Corp.

Notices

DISCLAIMERS

The performance data contained in this report were measured in a controlled environment.

Results obtained in other environments may vary significantly.

You should not assume that the information contained in this report has been submitted to

any formal testing by IBM.

Any use of this information and implementation of any of the techniques are the responsibility

of the licensed user. Much depends on the ability of the licensed user to evaluate the data

and to project the results into their own operational environment.

WARRANTY AND LIABILITY EXCLUSION

The following paragraph does not apply to the United Kingdom or any other country where

such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-

INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions,

therefore this statement may not apply to you.

In Germany and Austria, notwithstanding the above exclusions, IBM's warranty and liability

are governed only by the respective terms applicable for Germany and Austria in the

corresponding IBM program license agreement(s).

ERRORS AND OMISSIONS

The information set forth in this report could include technical inaccuracies or typographical

errors. Changes are periodically made to the information herein; any such change will be

incorporated in new editions of the information. IBM may make improvements and/or changes

in the product(s) and/or the program(s) described in this information at any time and without

notice.

INTENDED AUDIENCE

This report is intended for architects, systems programmers, analysts and programmers

IBM MQ for IBM i v8.0 – Performance Evaluations

Page III

wanting to understand the performance characteristics of IBM MQ for IBM i v8.0. The

information is not intended as the specification of any programming interface that is provided

by IBM. It is assumed that the reader is familiar with the concepts and operation of IBM MQ

v8.0.

LOCAL AVAILABILITY

References in this report to IBM products or programs do not imply that IBM intends to make

these available in all countries in which IBM operates. Consult your local IBM representative

for information on the products and services currently available in your area.

ALTERNATIVE PRODUCTS AND SERVICES

Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be used

instead. However, it is the user’s responsibility to evaluate and verify the operation of any

non-IBM product, program, or service.

USE OF INFORMATION PROVIDED BY YOU

IBM may use or distribute any of the information you supply in any way it believes appropriate

without incurring any obligation to you.

TRADEMARKS AND SERVICE MARKS

The following terms used in this publication are trademarks of International Business

Machines Corporation in the United States, other countries or both:

- IBM

- MQ

- DB2

- IBM i

Other company, product, and service names may be trademarks or service marks of others.

EXPORT REGULATIONS

You agree to comply with all applicable export and import laws and regulations.

IBM MQ for IBM i v8.0 – Performance Evaluations

Page IV

Preface

Target audience

This report is designed for people who:

 Will be designing and implementing solutions using MQ v8.0

 Want to understand the performance limits of MQ v8.0

 Want to understand what actions may be taken to tune MQ v8.0

The reader should have a general awareness of the IBM i operating system and of IBM MQ in order to

make best use of this report.

The contents of this Report

This report includes:

 Release highlights performance charts.

 Performance measurements with figures and tables to present the performance capabilities of

MQ local queue manager, client channel, and distributed queuing scenarios.

 Interpretation of the results and implications on designing or sizing of the MQ local queue

manager, client channel, and distributed queuing configurations.

Feedback on this Report

We welcome constructive feedback on this report.

 Does it provide the sort of information you want?

 Do you feel something important is missing?

 Is there too much technical detail, or not enough?

 Could the material be presented in a more useful manner?

Please direct any comments of this nature to WMQPG@uk.ibm.com.

Specific queries about performance problems on your MQ system should be directed to your local IBM

Representative or Support Centre.

Information in this report should be used alongside the publicly available knowledge centre for IBM

MQ V8.

http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/maps/WelcomePagev8r0.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/maps/WelcomePagev8r0.html?lang=en

IBM MQ for IBM i v8.0 – Performance Evaluations

Page V

Introduction
Full details of the workloads and the harware & software levels used are given in section 7 but in

summary:

The three scenarios used in this report to generate the performance data are:

 Local queue manager.

 Client channel

 Distributed queuing

Unless otherwise specified, the standard message sized used for all the measurements in this report is

2KB (2,048 bytes).

Device under test (server)

An IBM Power 780 (7-way CPU 3.86GHz POWER7) with 25.25GB or RAM was used as the device

under test.

Driver

An IBM Power 570 (8-way CPU 4.2GHz POWER6) with 16GB of RAM was used as the driver for all

client tests

An IBM Power 780 (8-way CPU 3.86GHz POWER7) with 32GB of RAM was used as the driver for

all distributed tests.

Software Levels

Operating system : IBM i V7R1M0

MQ version : Version 7.1, Version 8.0

Compiler : IBM Rational Development Studio for i V7R1M0

IBM MQ for IBM i v8.0 – Performance Evaluations

Page VI

How this document is arranged

Chapter 2

Contains the performance headlines for each of the three scenarios, with MQI applications connected

to:

 A local queue manager.

 A remote queue manager over MQI-client channels.

 A local queue manager, driving throughput between the local and remote queue manager over

server channel pairs.

The headline tests show:

 The maximum message throughput achieved with an increasing number of MQI applications.

 The maximum number of MQI-clients connected to a queue manager.

 The maximum number of server channel pairs between two queue managers, for a fixed think

time between messages until the response time exceeds one second.

Chapter 3

Contains performance measurements for large messages. This includes 20K, 200K and 2M byte

messages using the same scenarios as for the 2KB messages.

Chapter 4

Contains performance measurements for 'trusted, shared, and isolated' server applications, using the

same three scenarios as for the 2KB messages.

Chapter 5

Contains information on some of the limits to IBM MQ performance and scaling.

Chapter 6

Contains tuning guidance specific to v8.0 on IBM i

Chapter 7

Contains a summary of the way in which the workload is used in each test scenario is given in section

2. This includes a more detailed description of the workload, hardware and software specifications.

Chapter 8

Contains a short glossary of the terms used in the tables throughout this document.

CONTENTS
1 Overview ... 1
2 Performance Headlines ... 2

2.1 Local Queue Manager Test Scenario ... 2
2.1.1 Non-persistent Messages – Local Queue Manager ... 3
2.1.2 Non-persistent Messages – Non-trusted – Local Queue Manager .. 4
2.1.3 Persistent Messages – Local Queue Manager ... 5

2.2 Client Channels Test Scenario ... 6
2.2.1 Non-persistent Messages – Client Channels ... 7
2.2.2 Non-persistent Messages – Non-Trusted Client Channels.. 8
2.2.3 Persistent Messages – Client Channels ... 9
2.2.4 Client Channels .. 10

2.3 Distributed Queuing Test Scenario .. 12
2.3.1 Non-persistent Messages – Server Channels .. 13
2.3.2 Non-Persistent non-Trusted – Server Channels .. 14
2.3.3 Persistent Messages – Server Channels .. 15
2.3.4 Server Channels.. 16

3 Large Messages .. 18
3.1 20KB Messages ... 18

3.1.1 Local Queue Manager .. 18
3.1.2 Client Channel .. 20
3.1.3 Distributed Queuing ... 22

3.2 200K Messages.. 24
3.2.1 Local Queue Manager .. 24
3.2.2 Client Channel .. 26
3.2.3 Distributed Queuing ... 28

3.3 2MB Messages .. 30
3.3.1 Local Queue Manager .. 30
3.3.2 Client Channel .. 32
3.3.3 Distributed Queuing ... 34

4 Application Bindings ... 36
4.1 Local Queue Manager ... 36

4.1.1 Non-persistent Messages .. 36
4.1.2 Persistent Messages .. 37

4.2 Client Channels ... 38
4.2.1 Non-persistent Messages .. 38
4.2.2 Persistent Messages .. 39

4.3 Distributed Queuing .. 40
4.3.1 Non-persistent Messages .. 40
4.3.2 Persistent Messages .. 41

5 Performance and Capacity Limits ... 41
5.1 Client channels – capacity measurements ... 41
5.2 Distributed queuing – capacity measurements .. 42

6 Tuning Recommendations .. 44
6.1 Tuning the Queue Manager ... 44

6.1.1 Queue Disk, Log Disk, and Message Persistence ... 44
6.1.2 Log Buffer Size, Log File Size, and Number of Log Extents ... 44
6.1.3 Channels: Process or Thread, Standard or Fastpath? .. 46

6.2 Applications: Design and Configuration ... 46
6.2.1 Standard (Shared or Isolated) or Fastpath? ... 46
6.2.2 Parallelism, Batching, and Triggering .. 46

6.3 Tuning the Operating System (IBM i) ... 47
6.4 TCP Buffer size changes for V8.0 ... 47
6.5 Virtual Memory, Real Memory, & Paging .. 47

6.5.1 BufferLength .. 47
6.5.2 MQIBINDTYPE .. 48

7 Measurement Environment .. 49
7.1 Workload description .. 49

7.1.1 MQI response time tool .. 49
7.1.2 Test scenario workload ... 49

7.2 Hardware ... 50

IBM MQ for IBM i v8.0 – Performance Evaluations

Page VIII

7.3 Device under test (Server) ... 50
7.4 Software .. 50

8 Glossary .. 51

IBM MQ for IBM i v8.0 – Performance Evaluations

Page IX

TABLES
Table 1 – Performance headline, non-persistent messages and local queue manager 3
Table 2 – Performance headline, non-persistent messages and local queue manager 4
Table 3 – Performance headline, persistent messages and local queue manager 5
Table 4 – Performance headline, non-persistent messages and client channels 7
Table 5 – Performance headline, non-persistent messages and client channels 8
Table 6 – Performance headline, persistent messages and client channels... 9
Table 7 – 1 round trip per driving application per second, client channels .. 11
Table 8 – Performance headline, non-persistent messages and server channels 13
Table 9 – Performance headline, non-persistent, non trusted messages and server channels 14
Table 10 – Performance headline, persistent messages and server channels .. 15
Table 11 – 1 round trip per driving application per second, client channels .. 17
Table 12 – 20KB non-persistent messages, local queue manager .. 18
Table 13 – 20KB persistent messages, local queue manager ... 19
Table 14 – 20KB non-persistent messages, client channels ... 20
Table 15 – 20KB persistent messages, client channels... 21
Table 16 – 20KB non-persistent messages, client channels ... 22
Table 17 – 20KB persistent messages, client channels... 23
Table 18 – 200KB non-persistent messages, local queue manager .. 24
Table 19 – 200KB persistent messages, local queue manager ... 25
Table 20 – 200KB non-persistent messages, client channels ... 26
Table 21 – 200KB persistent messages, client channels... 27
Table 22 – 200KB non-persistent messages, distributed queuing .. 28
Table 23 – 200KB persistent messages, distributed queuing ... 29
Table 24 – 2MB non-persistent messages, local queue manager ... 30
Table 25– 2MB persistent messages, local queue manager .. 31
Table 26 – 2MB non-persistent messages, client channels ... 32
Table 27 – 2MB persistent messages, client channels .. 33
Table 28 – 2MB non-persistent messages, distributed queuing ... 34
Table 29 – 2MB persistent messages, distributed queuing ... 35
Table 30 – Application binding, non-persistent messages, local queue manager 36
Table 31 – Application binding, persistent messages, local queue manager .. 37
Table 32 – Application binding, non-persistent messages, client channels .. 38
Table 33 – Application binding, persistent messages, client channels. .. 39
Table 34 – Application binding, non-persistent messages, distributed queuing 40
Table 35 – Application binding, persistent messages, distributed queuing .. 41
Table 36 – Capacity measurements, client channels .. 42
Table 37 – Capacity measurements, server channels ... 43

IBM MQ for IBM i v8.0 – Performance Evaluations

Page X

FIGURES
Figure 1 – Connections into a local queue manager ... 2
Figure 2 – Connections into a local queue manager ... 3
Figure 3 - Performance headline, non-persistent, non-trusted messages and local queue manager. 4
Figure 4 - Performance headline, persistent messages and local queue manager 5
Figure 5 - MQI-client channels into a remote queue manager ... 6
Figure 6 - Performance headline, non-persistent messages and client channels 7
Figure 7 - 1 round trip per driving application per second, client channels, persistent messages 8
Figure 8 - Performance headline, persistent messages and client channels .. 9
Figure 9 - 1 round trip per driving application per second, client channels and non-persistent messages

 .. 10
Figure 10 - 1 round trip per driving application per second, client channels, persistent messages 10
Figure 11 - Server channels between two queue managers .. 12
Figure 12 Server channels between two queue managers .. 13
Figure 13 – Performance headline, non-persistent, not trusted messages and server channels 14
Figure 14 – Performance headline, persistent messages and server channels .. 15
Figure 15 – 1 round trip per driving application per second, server channel, non-persistent messages . 16
Figure 16 – 1 round trip per driving application per second, server channel, persistent messages 16
Figure 17 – 20KB non-persistent messages, local queue manager ... 18
Figure 18 – 20KB persistent messages, local queue manager .. 19
Figure 19 – 20KB persistent messages, local queue manager .. 20
Figure 20 – 20KB persistent messages, client channels ... 21
Figure 21 – 20KB non-persistent messages, distributed queuing ... 22
Figure 22 – 20KB persistent messages, distributed queuing .. 23
Figure 23 – 200KB non-persistent messages, local queue manager ... 24
Figure 24 – 200KB persistent messages, local queue manager .. 25
Figure 25 – 200KB non-persistent messages, client channels .. 26
Figure 26 – 200KB persistent messages, client channels ... 27
Figure 27 – 200KB non-persistent messages, distributed queuing ... 28
Figure 28 – 200KB persistent messages, distributed queuing .. 29
Figure 29 – 2MB non-persistent messages, local queue manager .. 30
Figure 30 – 2MB persistent messages, local queue manager ... 31
Figure 31 – 2MB non-persistent messages, client channels ... 32
Figure 32 – 2MB persistent messages, client channels... 33
Figure 33 – 2MB non-persistent messages, distributed queuing .. 34
Figure 34 - 2MB persistent messages, distributed queuing .. 35
Figure 35 – Application binding, non-persistent messages, local queue manager 36
Figure 36 – Application binding, persistent messages, local queue manage .. 37
Figure 37 – Application binding, non-persistent messages, client channels... 38
Figure 38 – Application binding, persistent messages, client channels .. 39
Figure 39 – Application binding, non-persistent messages, distributed queuing 40
Figure 40 – Application binding, persistent messages, distributed queuing ... 41

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 1

1 Overview
IBM MQ v8.0 on IBM i has improved performance especially for smaller messages using a small number of

queues. For 2KB messages, almost every test shows improvements over earlier versions of MQ.

Other improvements in IBM MQ v8.0

Faster Client Connection Time
 - Elapsed time to connect a large number of clients has been reduced by up to 75%

Logger Optimisations
- Single threaded code scope has been reduced in V8

Sharecnv[1] Optimisations
- Up to 20% improvement in throughput using Sharecnv[1]

Internal MQ object processing optimised to reduce locking scopes.
- Improved performance for workloads with many object access requests (e.g. PUT1).

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 2

2 Performance Headlines
The measurements for the local queue manager scenario are for processing messages with no think-time. For

the client channel scenario and distributed queuing scenario, there are also measurements for rated messaging.

No ‘think-time’ is when the driving applications do not wait after getting a reply message before submitting

subsequent request messages—this is also referred to as ‘tight-loop’.

The rated messaging tests used one round trip per driving application per second. In the client channel test

scenarios, each driving application uses a dedicated MQI-client channel, whilst in the distributed queuing test

scenarios, one or more applications submit messages over a fixed number of server channels.

2.1 Local Queue Manager Test Scenario

Figure 1 – Connections into a local queue manager

1) The Requester application puts a message to the common input queue on the local queue manager,

and holds on to the message identifier returned in the message descriptor. The Requester

application then waits indefinitely for a reply to arrive on the common reply queue.

2) The Responder application gets messages from the common input queue and places a reply to the

common reply queue. The queue manager copies over the message identifier from the request

message to the correlation identifier of the reply message.

3) The Requester application gets a reply from the common reply queue using the message identifier

held from when the request message was put to the common input queue, as the correlation

identifier in the message descriptor.

Non-persistent and persistent messages were used in the local queue manager tests, with a message size of 2KB.

The effect of message throughput with larger messages sizes is investigated in section 3.

Application Bindings of the Responder program are ‘Shared’ and the Requester program is normally ‘Trusted’

except in the ‘non-trusted’ scenario where both programs use ‘Shared’ bindings.

Responder application Requester applications

Input queue

Reply queue Local queue manager

1

2
3

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 3

2.1.1 Non-persistent Messages – Local Queue Manager

Figure 2, Figure 3 and Figure 4 shows the non-persistent, non-persistent/non-trusted and persistent message

throughput achieved using an increasing number of driving applications in the local queue manager scenario

(see Figure 1 on the previous page) for different production levels of IBM MQ (versions 7.1, 8.0).

LOCAL NP

IBMi

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 2 – Connections into a local queue manager

Figure 2 and Table 1 show that the peak throughput of non-persistent messages has increased by 2% when

comparing V8.0 to V7.1

Test Name: LOCAL NP Apps Round Trips/Sec Response time (s) CPU

MQv7.1 13 80944 0.00018 90%

MQv8.0 13 82843 0.00017 89%

Table 1 – Performance headline, non-persistent messages and local queue manager

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 4

2.1.2 Non-persistent Messages – Non-trusted – Local Queue Manager

LOCAL NP NT

IBMi

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 3 - Performance headline, non-persistent, non-trusted messages and local queue manager.

Figure 3 and Table 2 shows that the peak throughput of non-persistent, non-trusted messages (shared bindings -

MQIBINDTYPE=STANDARD) has increased by 4% when comparing V8.0 to V7.1.

Test Name: LOCAL NP NT Apps Round Trips/Sec Response time (s) CPU

MQv7.1 12 61509 0.00022 91%

MQv8.0 12 64137 0.0002 90%

Table 2 – Performance headline, non-persistent messages and local queue manager

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 5

2.1.3 Persistent Messages – Local Queue Manager

LOCAL PM

IBMi

0

1000

2000

3000

4000

5000

6000

7000

8000

4 12 20 28 36 44 52 60 68 76 84 92 10
0

10
8

11
6

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 4 - Performance headline, persistent messages and local queue manager

Figure 4 and Table 3 shows that the peak throughput of persistent messages is similar when comparing V8.0 to

V7.1.

Test Name: LOCAL PM Apps Round Trips/Sec Response time (s) CPU

MQv7.1 40 7045 0.0066 35%

MQv8.0 44 7011 0.0074 35%

Table 3 – Performance headline, persistent messages and local queue manager

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 6

2.2 Client Channels Test Scenario

Figure 5 - MQI-client channels into a remote queue manager

1, 2) The Requester application puts a request message (over a client channel), to the common input queue,

and holds on to the message identifier returned in the message descriptor. The Requester application

then waits indefinitely for a reply to arrive on the common reply queue.

3) The Responder application gets messages from the common input queue and places a reply to the

common reply queue. The queue manager copies over the message identifier from the request message

to the correlation identifier of the reply message.

4, 5) The Requester application gets the reply message (over the client channel), from the common reply

queue. The Requester application uses the message identifier held from when the request message was

put to the common input queue, as the correlation identifier in the message descriptor.

Non-persistent and persistent messages were used in the client channel tests, with a message size of 2KB. The

effect of message throughput with larger messages sizes is investigated in section 3.

Application Bindings of the Responder program are ‘Shared’ and the Client Channel is set to ‘MQIBindType =

FASTPATH’ except in the ‘non-trusted’ scenario where ‘MQIBindType =STANDARD’ is used.

Version 7 onwards will multiplex multiple clients from the same process over one TCP socket. We have

standardized all client measurements to use SHARECNV(1) since we have various tests that have between 1

and 100 clients per process and we are interested in results when all the clients come from different computers.

Further information is in section 7.1

Driving machine

Requester
application

Responder

application

Input queue

Reply queue

Client channel

Server machine

Remote queue manager

1
2

3

4

5

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 7

2.2.1 Non-persistent Messages – Client Channels

Figure 6, Figure 8 and Figure 9 shows the non-persistent, non-persistent/non-trusted and persistent message

throughput achieved using an increasing number of driving applications in the client channel scenario (see

Figure 5 on the previous page) for different production levels of IBM MQ (versions 7.1 and 8.0).

CLNP

IBMi

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 6 - Performance headline, non-persistent messages and client channels

Figure 6 and Table 4 show that the peak throughput of non-persistent messages has increased by 20% when

comparing version 8.0 to 7.1.

Test Name: CLNP Apps Round Trips/Sec Response time (s) CPU

MQv7.1 19 25636 0.00086 60%

MQv8.0 19 30518 0.00074 62%

Table 4 – Performance headline, non-persistent messages and client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 8

2.2.2 Non-persistent Messages – Non-Trusted Client Channels

CLNP NT

IBMi

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 7 - 1 round trip per driving application per second, client channels, persistent messages

Figure 8 and Table 5 shows that the peak throughput of non-persistent, non-trusted messages (shared bindings -

MQIBINDTYPE=STANDARD) has increased by 10% when comparing V8.0 to V7.1

Test Name: CLNP NT Apps Round Trips/Sec Response time (s) CPU

MQv7.1 19 26191 0.00086 61%

MQv8.0 19 28285 0.0008 67%

Table 5 – Performance headline, non-persistent messages and client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 9

2.2.3 Persistent Messages – Client Channels

CLPM

IBMi

0

1000

2000

3000

4000

5000

6000

7000

4 12 20 28 36 44 52 60 68 76 84 92 10
0

10
8

11
6

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

100%

120%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 8 - Performance headline, persistent messages and client channels

Figure 8 and Table 6 shows that the peak throughput of persistent messages has improved by 8% when

comparing V8.0 to V7.1

Test Name: CLPM Apps Round Trips/Sec Response time (s) CPU

MQv7.1 32 5780 0.0062 45%

MQv8.0 44 6291 0.012 45%

Table 6 – Performance headline, persistent messages and client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 10

2.2.4 Client Channels

For the following client channel measurements, the messaging rate used is 1 round trip per second per MQI-

client channel, i.e. a request message outbound over the client channel and a reply message inbound over the

channel per second.

CLNP R3600

IBMi

0

5000

10000

15000

20000

25000

30000

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

21
00

23
00

25
00

27
00

29
00

31
00

33
00

35
00

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

CPU%

MQv8.0 MQv7.1
MQv8.0 cpu % MQv7.1 cpu %

Figure 9 - 1 round trip per driving application per second, client channels and non-persistent messages

Note: Messaging in these tests is 1 round trip per driving application per second.

CLPM R3600

IBMi

0

1000

2000

3000

4000

5000

6000

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

100%

120%

CPU%

MQv8.0 MQv7.1
MQv8.0 cpu % MQv7.1 cpu %

Figure 10 - 1 round trip per driving application per second, client channels, persistent messages

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 11

Figure 9, Figure 10 and Table 7 show that the peak throughput of non-persistent messages has improved by 8%

when comparing V8.0 to V7.1 but Persistent messages the peak throughput is 22% better when comparing v8.0

to v7.1

Test Name: CLNP R3600 Apps Round Trips/Sec Response time (s) CPU

MQv7.1 2300 22623 0.069 68%

MQv8.0 2900 27731 0.077 70%

Test Name: CLPM R3600 Apps Round Trips/Sec Response time (s) CPU

MQv7.1 600 4886 0.14 42%

MQv8.0 600 5293 0.12 42%

Table 7 – 1 round trip per driving application per second, client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 12

2.3 Distributed Queuing Test Scenario

Figure 11 - Server channels between two queue managers

1) The Requester application puts a message to a local definition of a remote queue located on the

server machine, and holds on to the message identifier returned in the message descriptor. The

Requester application then waits indefinitely for a reply to arrive on a local queue.

2) The message channel agent takes messages off the channel and places them on the common input

queue on the server machine.

3) The Responder application gets messages from the common input queue, and places a reply to the

queue name extracted from the messages descriptor (the name of a local definition of a remote

queue located on the driving machine). The queue manager copies over the message identifier

from the request message to the correlation identifier of the reply message.

4) The message channel agent takes messages off the transmission queue and sends them over the

channel to the driving machine.

5) The Requester application gets a reply from a local queue. The Requester application uses the

message identifier held from when the request message was put to the local definition of the

remote queue, as the correlation identifier in the message descriptor

Non-persistent and persistent messages were used in the distributed queuing tests, with a message size of 2KB.

The effect of message throughput with larger messages sizes is investigated in section 3.

Application Bindings of the Responder program are ‘Shared’ , the Requester program is normally ‘Trusted’ ,

and the channels specified as ‘MQIBindType = FASTPATH’ except in the ‘non-trusted’ scenario where both

programs use ‘shared’ bindings and the channels are specified as ‘MQIBindType = STANDARD’.

Server channel

Driving machine Server machine

Transmission queue
per channel

Input queue

Reply queue

Transmission queue
per channel

Remote queue manager Local queue manager

1 2

3
4

5

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 13

2.3.1 Non-persistent Messages – Server Channels

Figure 12, Figure 13 and Figure 14 show the non-persistent, non-persistent/non-trusted and persistent message

throughput achieved using an increasing number of driving applications in the distributed queuing scenario (see

Figure 11 on the previous page) and IBM MQ (versions 7.1 and 8.0).

DQNP

IBMi

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

100%

120%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 12 Server channels between two queue managers

Figure 12 and Table 8 shows that the peak throughput of non-persistent messages is similar when comparing

version 8.0 to 7.1.

Test Name: DQNP Apps Round Trips/Sec Response time (s) CPU

MQv7.1 20 36311 0.00064 52%

MQv8.0 20 36090 0.00062 51%

Table 8 – Performance headline, non-persistent messages and server channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 14

2.3.2 Non-Persistent non-Trusted – Server Channels

DQNP NT

IBMi

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

100%

120%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 13 – Performance headline, non-persistent, not trusted messages and server channels

Figure 13 and Table 9 shows that the peak throughput of non-persistent, non-trusted messages is similar when

comparing version 8.0 to 7.1

Test Name: DQNP NT Apps Round Trips/Sec Response time (s) CPU

MQv7.1 18 25517 0.00085 36%

MQv8.0 20 25573 0.001 45%

Table 9 – Performance headline, non-persistent, non trusted messages and server channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 15

2.3.3 Persistent Messages – Server Channels

DQPM

IBMi

0

1000

2000

3000

4000

5000

6000

7000

4 12 20 28 36 44 52 60 68 76 84 92 10
0

10
8

11
6

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 14 – Performance headline, persistent messages and server channels

Figure 14 and Table 10 shows that the peak throughput of persistent messages using 2 pairs of channels is

similar when comparing V8.0 to V7.1.

Test Name: DQPM Apps Round Trips/Sec Response time (s) CPU

MQv7.1 116 6096 0.027 25%

MQv8.0 120 5795 0.021 23%

Table 10 – Performance headline, persistent messages and server channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 16

2.3.4 Server Channels

For the following distributed queuing measurements, the messaging rate used is 1 round trip per driving

application per second, i.e. a request message outbound over the sender channel, and a reply message inbound

over the receiver channel per second. Note that there are a fixed number of 4 server channel pairs for the non-

persistent messaging tests, and 2 pairs for the persistent message tests.

DQNP R3600

IBMi

0

5000

10000

15000

20000

25000

30000

35000

40000

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

21
00

23
00

25
00

27
00

29
00

31
00

33
00

35
00

37
00

39
00

41
00

43
00

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

100%

120%

CPU%

MQv8.0 MQv7.1
MQv8.0 cpu % MQv7.1 cpu %

Figure 15 – 1 round trip per driving application per second, server channel, non-persistent messages

Note: Messaging in these tests is 1 round trip per driving application per second.

DQPM R3600

IBMi

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

10
50

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 16 – 1 round trip per driving application per second, server channel, persistent messages

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 17

Figure 15 and Figure 16 shows that the throughput of non-persistent and persistent messages has improved by

3% and 5% respectively when comparing version 8.0 to 7.1.

Test Name: DQNP R3600 Apps Round Trips/Sec Response time (s) CPU

MQv7.1 3500 34884 0.028 50%

MQv8.0 3700 35850 0.079 51%

Test Name: DQPM R3600 Apps Round Trips/Sec Response time (s) CPU

MQv7.1 1050 7429 0.16 30%

MQv8.0 950 7777 0.14 31%

Table 11 – 1 round trip per driving application per second, client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 18

3 Large Messages

3.1 20KB Messages

3.1.1 Local Queue Manager

Figure 22 and Figure 23 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the local queue manager scenario.

LOCAL NP 20K

IBMi

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 17 – 20KB non-persistent messages, local queue manager

Figure 17 and Table 12 shows that the peak throughput of non-persistent messages has increased by 3% when

comparing V8.0 to V7.1.

Test Name: LOCAL NP 20K Apps Round Trips/Sec Response time (s) CPU

MQv7.1 15 60224 0.00027 92%

MQv8.0 14 62043 0.00025 88%

Table 12 – 20KB non-persistent messages, local queue manager

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 19

3.1.1.1 Persistent Messages

LOCAL PM 20K

IBMi

0

500

1000

1500

2000

2500

3000

3500

4000

4500

4 12 20 28 36 44 52 60 68 76 84 92 10
0

10
8

11
6

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 18 – 20KB persistent messages, local queue manager

Figure 18 and Table 13 shows that the peak throughput of persistent messages has increased by 5% when

comparing V8.0 to V7.1.

Test Name: LOCAL PM 20K Apps Round Trips/Sec Response time (s) CPU

MQv7.1 24 3852 0.0069 25%

MQv8.0 44 4037 0.012 28%

Table 13 – 20KB persistent messages, local queue manager

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 20

3.1.2 Client Channel

Figure 25 and Figure 26 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the client channel scenario.

3.1.2.1 Non-persistent Messages

CLNP 20K

IBMi

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

100%

120%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

 Figure 19 – 20KB persistent messages, local queue manager

Figure 19 and Table 14 shows that the peak throughput of non-persistent messages is 9% improved when

comparing V8.0 to V7.1.

Test Name: CLNP 20K Apps Round Trips/Sec Response time (s) CPU

MQv7.1 20 13760 0.0017 58%

MQv8.0 20 14996 0.0015 58%

Table 14 – 20KB non-persistent messages, client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 21

3.1.2.2 Persistent Messages

CLPM 20K

IBMi

0

500

1000

1500

2000

2500

3000

3500

4000

4 12 20 28 36 44 52 60 68 76 84 92 10
0

10
8

11
6

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 20 – 20KB persistent messages, client channels

Figure 20 and Table 15 shows that the peak throughput of persistent messages has increased by 6% when

comparing version 8.0 to 7.1.

Test Name: CLPM 20K Apps Round Trips/Sec Response time (s) CPU

MQv7.1 48 3462 0.015 39%

MQv8.0 64 3672 0.02 39%

Table 15 – 20KB persistent messages, client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 22

3.1.3 Distributed Queuing

Figure 27 and Figure 28 shows the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the distributed queuing scenario.

For the non-persistent 200K distributed queuing scenario, a migrated queue manager from MQ V7.1 to MQ

V8.0 was used. This was done to provide a true comparison of throughput regardless of TCP buffer settings on

the system. See section 6.4 for an explanation of TCP buffer changes in MQ V8.0

3.1.3.1 Non-persistent Messages

DQNP 20K

IBMi

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

100%

120%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 21 – 20KB non-persistent messages, distributed queuing

Figure 21 and Table 16 shows that the peak throughput of non-persistent messages has improved by 10% when

comparing V8.0 to V7.1.

Test Name: DQNP 20K Apps Round Trips/Sec Response time (s) CPU

MQv7.1 20 12648 0.0019 38%

MQv8.0 19 13950 0.0015 40%

Table 16 – 20KB non-persistent messages, client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 23

3.1.3.2 Persistent Messages

DQPM 20K

IBMi

0

500

1000

1500

2000

2500

3000

3500

4000

4 12 20 28 36 44 52 60 68 76 84 92 10
0

10
8

11
6

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 22 – 20KB persistent messages, distributed queuing

Figure 22 and Table 17 shows that the peak throughput of persistent messages has increased by 27% when

comparing V8.0 to V7.1.

Test Name: DQPM 20K Apps Round Trips/Sec Response time (s) CPU

MQv7.1 112 2724 0.051 19%

MQv8.0 120 3463 0.038 23%

Table 17 – 20KB persistent messages, client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 24

3.2 200K Messages

3.2.1 Local Queue Manager

Figure 23 and Figure 24 shows the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the local queue manager scenario.

3.2.1.1 Non-persistent Messages

LOCAL NP 200K

IBMi

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 23 – 200KB non-persistent messages, local queue manager

Figure 23 and Table 18 shows that the peak throughput of non-persistent messages has improved by 4% when

comparing V8.0 to V7.1.

Test Name: LOCAL NP 200K Apps Round Trips/Sec Response time (s) CPU

MQv7.1 20 18763 0.001 95%

MQv8.0 20 19586 0.00098 95%

Table 18 – 200KB non-persistent messages, local queue manager

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 25

3.2.1.2 Persistent Messages

LOCAL PM 200K

IBMi

0

100

200

300

400

500

600

700

800

900

1000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 24 – 200KB persistent messages, local queue manager

Figure 24 and Table 19 shows that the peak throughput of persistent messages is similar when comparing V8.0

to V7.1.

Test Name: LOCAL PM 200K Apps Round Trips/Sec Response time (s) CPU

MQv7.1 56 836 0.077 20%

MQv8.0 56 858 0.082 20%

Table 19 – 200KB persistent messages, local queue manager

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 26

3.2.2 Client Channel

Figure 25 and Figure 26 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the client channel scenario.

3.2.2.1 Non-persistent Messages

CLNP 200K

IBMi

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 25 – 200KB non-persistent messages, client channels

Figure 25 and Table 20 shows that the peak throughput of non-persistent messages is similar when comparing

V8.0 to V7.1.

Test Name: CLNP 200K Apps Round Trips/Sec Response time (s) CPU

MQv7.1 20 1610 0.016 38%

MQv8.0 20 1588 0.01 37%

Table 20 – 200KB non-persistent messages, client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 27

3.2.2.2 Persistent Messages

CLPM 200K

IBMi

0

100

200

300

400

500

600

700

800

900

4 12 20 28 36 44 52 60 68 76 84 92 10
0

10
8

11
6

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 26 – 200KB persistent messages, client channels

Figure 26 and Table 21 shows that the peak throughput of persistent messages has increased by 3% when

comparing V8.0 to V7.1.

Test Name: CLPM 200K Apps Round Trips/Sec Response time (s) CPU

MQv7.1 48 765 0.077 35%

MQv8.0 60 791 0.087 36%

Table 21 – 200KB persistent messages, client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 28

3.2.3 Distributed Queuing

Figure 27 and Figure 28 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the distributed queuing scenario

For the non-persistent 2MB distributed queuing scenario, a migrated queue manager from MQ V7.1 to MQ

V8.0 was used. This was done to provide a true comparison of throughput regardless of TCP buffer settings on

the system. See section 6.4 for an explanation of TCP buffer changes in MQ V8.0

3.2.3.1 Non-persistent Messages

DQNP 200K

IBMi

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 27 – 200KB non-persistent messages, distributed queuing

Figure 27 and Table 22 shows that the throughput of non-persistent messages is similar when comparing V8.0

to V7.1. At lower number of applications, V8.0 is better than V7.1.

Test Name: DQNP 200K Apps Round Trips/Sec Response time (s) CPU

MQv7.1 18 1449 0.015 30%

MQv8.0 8 1460 0.0068 28%

Table 22 – 200KB non-persistent messages, distributed queuing

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 29

3.2.3.2 Persistent Messages

DQPM 200K

IBMi

0

100

200

300

400

500

600

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

10%

20%

30%

40%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 28 – 200KB persistent messages, distributed queuing

Figure 28 and Table 23 shows that the peak throughput of persistent messages has improved by 10% when

comparing V8.0 to V7.1.

Test Name: DQPM 200K Apps Round Trips/Sec Response time (s) CPU

MQv7.1 60 441 0.15 16%

MQv8.0 56 486 0.13 17%

Table 23 – 200KB persistent messages, distributed queuing

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 30

3.3 2MB Messages

3.3.1 Local Queue Manager

Figure 29 and Figure 30 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the local queue manager scenario.

3.3.1.1 Non-persistent Messages

LOCAL NP 2M

IBMi

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 29 – 2MB non-persistent messages, local queue manager

Figure 29 and Table 24 shows that the peak throughput of non-persistent messages is similar when comparing

V8.0 to V7.1.

Test Name: LOCAL NP 2M Apps Round Trips/Sec Response time (s) CPU

MQv7.1 4 555 0.0072 32%

MQv8.0 4 557 0.0072 32%

Table 24 – 2MB non-persistent messages, local queue manager

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 31

3.3.1.2 Persistent Messages

LOCAL PM 2M

IBMi

0

10

20

30

40

50

60

70

80

90

100

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

10%

20%

30%

40%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 30 – 2MB persistent messages, local queue manager

Figure 30 and Table 25 shows that the peak throughput of persistent messages is similar when comparing V8.0

to V7.1.

Test Name: LOCAL PM 2M Apps Round Trips/Sec Response time (s) CPU

MQv7.1 40 86 0.55 18%

MQv8.0 44 87 0.61 19%

Table 25– 2MB persistent messages, local queue manager

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 32

3.3.2 Client Channel

Figure 37 and Figure 38 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the client channel scenario.

3.3.2.1 Non-persistent Messages

CLNP 2M

IBMi

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

WMQ 8.0 WMQ 7.1
WMQv8.0 cpu % WMQv7.1 cpu %

Figure 31 – 2MB non-persistent messages, client channels

Figure 31 and Table 26 shows that the peak throughput of non-persistent messages is similar when comparing

V8.0 to V7.1.

Test Name: CLNP 2M Apps
Round

Trips/Sec
Response time

(s) CPU

MQv7.1 20 158 0.0015 44%

MQv8.0 20 156 0.15 44%

Table 26 – 2MB non-persistent messages, client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 33

3.3.2.2 Persistent Messages

CLPM 2M

IBMi

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 32 – 2MB persistent messages, client channels

Figure 32 and Table 27 shows that the peak throughput of persistent messages has increased by 8% when

comparing V8.0 to V7.1.

Test Name: CLPM 2M Apps Round Trips/Sec Response time (s) CPU

MQv7.1 30 72 0.48 32%

MQv8.0 30 78 0.45 34%

Table 27 – 2MB persistent messages, client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 34

3.3.3 Distributed Queuing

Figure 33 and Figure 34 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the distributed queuing scenario.

3.3.3.1 Non-persistent Messages

DQNP 2M

IBMi

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 33 – 2MB non-persistent messages, distributed queuing

Figure 33 and Table 28 shows that the peak throughput of non-persistent messages is similar when comparing

V8.0 to V7.1. At lower number of applications V8.0 is better than V7.1

Test Name: DQNP 2M Apps Round Trips/Sec Response time (s) CPU

MQv7.1 14 130 0.13 31%

MQv8.0 13 134 0.15 31%

Table 28 – 2MB non-persistent messages, distributed queuing

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 35

3.3.3.2 Persistent Messages

DQPM 2M

IBMi

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

MQv7.1 MQv8.0
MQv7.1 cpu % MQv8.0 cpu %

Figure 34 - 2MB persistent messages, distributed queuing

Figure 34 and Table 29 shows that the peak throughput of persistent messages has improved by 15% when

comparing version 7.1 to 7.0.

Test Name: DQPM 2M Apps Round Trips/Sec Response time (s) CPU

MQv7.1 18 51 0.68 21%

MQv8.0 28 59 0.55 23%

Table 29 – 2MB persistent messages, distributed queuing

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 36

4 Application Bindings
This report analyzes the message rate between a Requester (Driver) application and a Responder (Server)

application. This chapter looks at the effect of various combinations of application bindings for Requester and

Responder programs.

 Requester Responder

Normal Trusted Non Trusted

Isolated Isolated Isolated

Trusted Trusted Trusted

Non Trusted Shared Shared

4.1 Local Queue Manager

Figure 35 and Figure 36 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the local queue manager scenario.

4.1.1 Non-persistent Messages

MQv8.0 - Local Queuing - Application Bindings with Non-Persistent Messages

IBMi

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

Isolated Trusted

Normal Shared

Isolated cpu % Trusted cpu %

Normal cpu % Shared cpu %

Figure 35 – Application binding, non-persistent messages, local queue manager

Figure 35 and Table 30 shows that the throughput of non-persistent messages when comparing Normal,

Isolated, Trusted and Shared bindings.

 Local Queuing Non-Persistent Apps
Round

Trips/Sec
Response time

(s) CPU

Isolated 6 41988 0.00016 62%

Trusted 9 105218 0.00009 70%

Normal 13 82843 0.00017 89%

Shared 12 64137 0.0002 90%

Table 30 – Application binding, non-persistent messages, local queue manager

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 37

4.1.2 Persistent Messages

MQv8.0 - Local Queuing - Application Bindings with Persistent Messages

IBMi

0

1000

2000

3000

4000

5000

6000

7000

8000

4 12 20 28 36 44 52 60 68 76 84 92 10
0

10
8

11
6

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

100%

120%

CPU%

Isolated Trusted

Normal Isolated cpu %

Trusted cpu % Normal cpu %

Figure 36 – Application binding, persistent messages, local queue manage

Figure 36 and Table 31 shows the throughput of persistent messages when comparing Normal, Isolated and

Trusted bindings

Local Queuing Persistent Apps
Round

Trips/Sec
Response time

(s) CPU

Isolated 44 6730 0.0086 43%

Trusted 36 7145 0.0064 30%

Normal 44 7011 0.0074 35%

Table 31 – Application binding, persistent messages, local queue manager

.

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 38

4.2 Client Channels

Figure 37 and Figure 38 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the client channel scenario.

4.2.1 Non-persistent Messages

MQv8.0 - Client Channels - Application Bindings with Non-Persistent Messages

IBMi

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

CPU%

Isolated Trusted

Normal Shared

Isolated cpu % Trusted cpu %

Normal cpu % Shared cpu %

Figure 37 – Application binding, non-persistent messages, client channels

Figure 37 and Table 32 shows that the peak throughput of non-persistent messages when comparing Normal,

Isolated and Trusted bindings.

Client Channels Non-Persistent Apps
Round

Trips/Sec
Response time

(s) CPU

Isolated 20 29567 0.0008 62%

Trusted 20 31665 0.00077 53%

Normal 20 31191 0.00075 63%

Shared 20 29118 0.00082 69%

Table 32 – Application binding, non-persistent messages, client channels

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 39

4.2.2 Persistent Messages

MQv8.0 - Client Channels - Application Bindings with Persistent Messages

IBMi

0

1000

2000

3000

4000

5000

6000

7000

4 12 20 28 36 44 52 60 68 76 84 92 10
0

10
8

11
6

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

100%

120%

CPU%

Isolated Trusted

Normal Isolated cpu %

Trusted cpu % Normal cpu %

Figure 38 – Application binding, persistent messages, client channels

Figure 38 and Table 33 shows the peak throughput of non-persistent messages when comparing Isolated and

Trusted bindings.

Client Channels Persistent Apps
Round

Trips/Sec
Response time

(s) CPU

Isolated 60 6160 0.011 45%

Trusted 40 6591 0.007 42%

Normal 40 6591 0.007 42%

Table 33 – Application binding, persistent messages, client channels.

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 40

4.3 Distributed Queuing

Figure 39 and Figure 40 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the distributed queuing scenario.

4.3.1 Non-persistent Messages

MQv8.0 - Distributed Queuing - Application Bindings with Non-Persistent Messages

IBMi

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

100%

120%

CPU%

Isolated Trusted

Normal Shared

Isolated cpu % Trusted cpu %

Normal cpu % Shared cpu %

Figure 39 – Application binding, non-persistent messages, distributed queuing

Figure 39 and Table 34 show that the peak throughput of non-persistent messages when comparing Normal,

Isolated and Trusted bindings.

Distributed Queuing Non-Persistent Apps
Round

Trips/Sec
Response time

(s) CPU

Isolated 17 31832 0.0006 57%

Trusted 20 39456 0.0006 41%

Normal 20 36090 0.00062 51%

Shared 20 25573 0.001 45%

Table 34 – Application binding, non-persistent messages, distributed queuing

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number

of driving applications used to achieve the peak throughput.

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 41

4.3.2 Persistent Messages

MQv8.0 - Distributed Queuing - Application Bindings with Persistent Messages

IBMi

0

1000

2000

3000

4000

5000

6000

7000

4 12 20 28 36 44 52 60 68 76 84 92 10
0

10
8

11
6

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

Isolated Trusted

Normal Isolated cpu %

Trusted cpu % Normal cpu %

Figure 40 – Application binding, persistent messages, distributed queuing

Figure 40 and Table 35 show that the peak throughput of non-persistent messages when comparing Isolated and

Trusted bindings.

Distributed Queuing Persistent Apps
Round

Trips/Sec
Response time

(s) CPU

Isolated 120 5988 0.023 27%

Trusted 120 5939 0.024 20%

Normal 120 5795 0.021 23%

Table 35 – Application binding, persistent messages, distributed queuing

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number

of driving applications used to achieve the peak throughput.

5 Performance and Capacity Limits

5.1 Client channels – capacity measurements

The measurements in this section are intended to test the maximum number of client channels into a server

queue managers with a messaging rate of 1 round trip per client channel per minute while additional

connections are made. The maximum number of connected applications is likely to be determined by other

criteria such as recovery time or manageability. Measurements are also made with smaller number of Client

channels where the message insertion rate is increased until the system gets congested. This information is

intended to be useful to the reader sizing a system with similar scenarios. These client measurements of V8.0

allocate a separate socket for each client (sharecnv=1 on svrcon channel).

Queue manager configuration for client channels capacity tests:

MaxChannels=50000 (100,000 for clnp_cmax). MQIBINDTYPE=FASTPATH

The tests run are as follows:

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 42

 clnp
For test description see 2.2 Client Channel Test Description

 clnp_r3600
For test description see 2.2.4 Client Channels.

 clnp_c6000
6000 remote clients connect, each delivering messages at a fixed rate of 1msg/sec and then the rate is

increased until a constraint is hit. Usually response time > 1 sec. In the table below Apps *

Rate/app/hr = Round Trips/sec

 clnp max

30000 remote clients connect, each delivering messages at a fixed rate of 1msg/sec and then the rate is

increased until a constraint is hit. Usually response time > 1 sec. In the table below Apps * Rate/app/hr

= Round Trips/sec

Test name: Apps
Rate/app/hr Round

Trips/sec

Response

time (s)
CPU

clnp
20

n/a (unrated)
26140 0.00089

61%

clnp_r3600 2300 3600 22623 0.069 68%

clnp_c6000 6000 10000 16666 0.0007 41%

clnp max 30000 90 750 0.00204 3%

Table 36 – Capacity measurements, client channels

* There was no delay between the response to the previous message and the insertion of the next message

with 20 clients.

The maximum message throughput is achieved when there are a small number of requester applications. The

clnp_3600 measurement peaks when the queue of input messages waiting to be processed by the Server

application builds up because the server application threads can no longer keep up with the demand. Although

this ensures the server threads are always busy, the messages are being spilt from the Queue buffer to the file

system and possibly to the disk. Each client uses a thread in the AMQRRMPA processes and the management

of lots of threads and lots memory objects results in a larger CPU cost to handle each message.

Measurements normally use a Get by Correlation_Id from a common reply queue for all clients whereas the

tests labelled ‘no_correlid’ have a separate reply queue per client. Each additional Client needs a thread in the

AMQRMPPA process. Using a separate queue per client needs additional shared memory per client.

5.2 Distributed queuing – capacity measurements

The measurements in this section are intended to test the maximum number of server channel pairs between two

queue managers with a messaging rate of 1 round trip per server channel per minute while applications are

being attached. For the same number of server channel pairs, a faster message rate gives a higher total message

throughput over each channel pair. This information is intended to be useful to the reader sizing a system with

similar scenarios.

Queue manager and log configuration for distributed queuing capacity tests:

MaxChannels=30000, LogPrimaryFiles=16, LogFilePages=16384, LogBufferPages=512

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 43

Note: The large log capacity for this test is for writing the object definitions to the log disk (the transmission queue

definitions for both sides of the server channel pair, and reply queue per receiver channel on the driving

machine).

 dqnp
For test description see 2.3 Distributed Queuing Test Description

 dqnp_r3600
For test description see 2.3.4 Server Channels.

 dqnp_qmax
17500 remote clients connect, each delivering messages at a fixed rate of 1msg/sec and then the rate is

increased until a constraint is hit. Usually response time > 1 sec. In the table below Apps *

Rate/app/hr = Round Trips/sec.

 dqnp_q1000

This test shows the throughput experienced when 1000 queues are connected into a central hub for non

persistent messages. In the table below Apps * Rate/app/hr = Round Trips/sec.

 dq-persist_q1000

This test shows the throughput experienced when 1000 queues are connected into a central hub for

persistent messages. In the table below Apps * Rate/app/hr = Round Trips/sec.

Test name: Apps
Rate/app/hr Round

Trips/sec

Response

time (s)
CPU

dqnp 20 n/a (unrated) 36311 0.0006 52%

dqnp_r3600 3500 3600 34884 0.03 50%

dqnp_q1000 1000 25000 5908 0.02139 12%

dqnp_qmax 17500 60 291 0.00178 2%

dq-persist_q1000 1000 1500 416 0.75 5%

Table 37 – Capacity measurements, server channels

* There was no delay between the response to the previous message and the insertion of the next message with

20 driving applications..

The dqnp and dqnp_r3600 both used a total of 4 pairs of Sender/Receiver pairs of channels between queue

managers while the dqnp_qmax used a pair of channels per application.

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 44

6 Tuning Recommendations

6.1 Tuning the Queue Manager

This section highlights the tuning activities that are known to give performance benefits for IBM MQ V8.0; The

reader should note that the following tuning recommendations may not necessarily need to be applied,

especially if the message throughput and/or response time of the queue manager system already meets the

required level. Some tuning recommendations that follow may degrade the performance of a previously

balanced system if applied inappropriately. The reader should carefully monitor the results of tuning the queue

manager to be satisfied that there have been no adverse effects.

Generally only one parameter should be changed and tested at a time before considering further changes.

Customers should test that any changes have not used excessive real resources in their environment and make

only essential changes. For example, allocating several megabytes for multiple queues reduces the amount of

shared and virtual memory available for other subsystems, as well as over committing real storage.

Note: The ‘TuningParameters’ stanza is not a documented external interface and maybe changed or be removed in

future releases.

6.1.1 Queue Disk, Log Disk, and Message Persistence

Non-persistent messages are held in main memory, spilt to the file system as the queues become deep and lazily

written to the Queue file (i.e. operating system I/O buffers are used). Persistent messages are synchronously

written to the log by an MQCmit (writing tho I/O the operating system buffers to maintain integrity) and are

also periodically flushed (lazily) to the Queue file.

To avoid potential queue and log I/O contention due to the queue manager simultaneously updating a queue file

and log extent on the same disk, it is important that queues and logs are located on separate and dedicated

physical devices. Multiple disks can be redirected to a Storage Area Network (SAN) but multiple high volume

Queue managers can require different Logical Volumes to avoid congestion.

With the queue and log disks configured in this manner, careful consideration must still be given to message

persistence. Persistent messages should only be used if the message needs to survive a queue manager restart

(forced by the administrator or as the result of a power failure, communications failure, or hardware failure). In

guaranteeing the recoverability of persistent messages, the pathlength through the queue manager is

significantly longer than for a non-persistent message. This overhead does not include the additional time for

the message to be written to the log, although this can be minimised by using cached disks or SAN.

6.1.1.1 Non-persistent and Persistent Queue Buffer

The default non-persistent queue buffer size is 64KB per queue and the default persistent is 128KB per queue

for 32 bit Queue Managers and 128KB /256KB for 64 bit Queue Managers.. They can all be increased to

100MB using the qm.ini TuningParameters stanza and the DefaultQBufferSize and DefaultPQBufferSize

parameters. (For more details see SupportPac MP01: MQSeries – Tuning Queue Limits). Increasing the queue

buffer provides the capability to absorb peaks in message throughput at the expense of real storage. Once these

queue buffers are full, the additional message data is given to the file system that will eventually find its way to

the disk. Defining queues using large non-persistent or persistent queue buffers can degrade performance if the

system is short of real memory either because a large number of queues have already been defined with large

buffers, or for other reasons (e.g. a large number of channels are defined).

Queues can be defined with different values of DefaultQBufferSize and DefaultPQBufferSize. The value is

taken from the TuningParameters stanza in use by the queue manager when the queue was defined. When the

queue manager is restarted existing queues will keep their earlier definitions and new queues will be created

with the current setting. When a queue is opened, resources are allocated according to the definition held on

disk from when the queue was created.

6.1.2 Log Buffer Size, Log File Size, and Number of Log Extents

The Log component is often the bottleneck when processing persistent messages. Sufficient information is

stored on the log to restart the queue manager after failure. Circular logging is sufficient to recover from

application, software, or power failure while linear logging will also recover from media (or disk) failure. Log

records are written at each MQPut, MQGet, and MQCmit into the log buffer. This information is moved onto

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 45

the log disk. Periodically the Checkpoint process will decide how many of these logfile extents are in the Active

log and need to be kept online for recovery purposes. Those extents no longer in the active log are available for

achieving when using Linear logging or available for reuse when using circular. There should be sufficient

Primary logs to hold the Active log plus the new log extents used until the next checkpoint otherwise some

Secondary logs are temporarily included in the log set and they have to be instantly formatted which is an

unnecessary delay when using circular logging.

The log buffer is a circular piece of main memory where the log records are concatenated so that multiple log

records can be written to the log file in a single I/O operation. The default values used for LogBufferPages and

LogFilePages have been increased in V7 and are probably suitable for most installations. The default size of the

log buffer is 512 pages with a maximum size of 4096 pages. To improve persistent message throughput of large

messages (messages size > 1M bytes) the LogBufferPages could be increased to improve likelihood of

messages only needing one I/O to get to the disk. Environments that process under 100 small (< 10K byte

messages) Persistent messages per second can reduce the memory footprint by using smaller values like 32

pages without impacting throughput. LogFilePages (i.e. crtmqm –lf <LogFilePages>) defines the size of

one physical disk extent (default 4096 pages). The larger the disk extent, the longer the elapsed times between

changing disk extents. It is better to have a smaller number of large extents but long running UOW can prevent

Checkpointing efficiently freeing the disk extent for reuse. The largest size (maximum 65536 pages) will reduce

the frequency of switching extents. The number of LogPrimaryFiles (i.e. crtmqm -lp <LogPrimaryFiles>)

can be configured to a large number and the maximum number of Primary plus Secondary extents is

255(Windows) and 511(UNIX) but it is for functional reasons rather than performance that need more than 20

primary extents for Circular logging. Circular logging should be satisfied by Primary logs because Secondary

logs are formatted each time they are reused. The Active log set is the number of extents that are identified by

the Checkpoint process as being necessary to be kept online. As additional messages are processed, more space

is taken by the active log. As UOWs complete, they enable the next Checkpoint process to free up extents that

now become available for archiving with Linear logging. Some installation will use Linear logging and not

archive the redundant logs because archiving impacts the run time performance of logging. They will

periodically (daily or twice daily) use ‘rcdmqimg’ on the main queues thus moving the ‘point of recovery’

forward , compacting the queues, and freeing up log disk extents. The cumulative effect of this tuning will:

 Improve the throughput of persistent messages (enabling by default a possible 2Mb of log records to be

written from the log buffer to the log disk in a single write). Initial target - half to one second of log

datastreaming into the Logbuffer.

 Reduce the frequency of log switching (permitting a greater amount of log data to be written into one

extent). Initial target - LogFile extent hold at least 10 seconds of log datastreaming.

 Allow more time to prepare new linear logs or recycle old circular logs (especially important for long-

running units of work).

Changes to the queue manager LogBufferPages stanza take effect at the next queue manager restart. The

number of pages can be changed for all subsequent queue managers by changing the LogBufferPages parameter

in the product default Log stanza.

It is unlikely that poor persistent message throughput will be attributed to a 2Mb queue manager log but

processing of large messages will be helped by these enhanced limits. It is possible to fill and empty the log

buffer several times each second and reach a CPU limit writing data into the log buffer, before a log disk

bandwidth limit is reached.

6.1.2.1 LogWriteIntegrity: SingleWrite or TripleWrite

The default value is TripleWrite. MQ writes log records using the TripleWrite method because it provides full

write integrity where hardware that assures write integrity is not available.

Some hardware guarantees that, if a write operation writes a page and fails for any reason, a subsequent read of

the same page into a buffer results in each byte in the buffer being either:

 The same as before the write, or

 The byte that should have been written in the write operation

On this type of hardware (for example, SSA write cache enabled), it is safe for the logger to write log records in

a single write as the hardware assures full write integrity. This method provides the highest level of

performance.

Queue manager workloads that have multiple streams asynchronously creating high volume log records will not

benefit from ‘SingleWrite’ because the logger will not need to rewrite partial pages of the log file. Workloads

that serialize on a small number of threads where the response time from an MQGet, MQPut, or MQCmit

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 46

inhibits the system throughput are likely to benefit from Singlewrite and could enhance throughput by 25%.

Measurements in this report used LogWriteIntegrity=TripleWrite

6.1.3 Channels: Process or Thread, Standard or Fastpath?

Threaded channels are used for all the measurements in this report (‘runmqlsr’, and for server channels an

MCATYPE of ‘THREAD’) the threaded listener ‘runmqlsr’ can now be used in all scenarios with client and

server channels. Additional resource savings are available using the ‘runmqlsr’ listener rather than ‘inetd’,

including a reduced requirement on: virtual memory, number of processes, file handles, and System V IPC.

Fastpath channels, and/or fastpath applications—see later paragraph for further discussion, can increase

throughput for both non-persistent and persistent messaging. For persistent messages, the improvement is only

for the path through the queue manager, and does not affect performance writing to the log disk.

Note: The reader should note that since the greater proportion of time for persistent messages is in the queue

manager writing to the log disk, the performance improvement for fastpath channels is less apparent with

persistent messages than with non-persistent messages.

6.2 Applications: Design and Configuration

6.2.1 Standard (Shared or Isolated) or Fastpath?

The reader should be aware of the issues associated with writing and using fastpath applications—described in

the ‘MQSeries Application Programming Guide’. Although it is recommended that customers use fastpath

channels, it is not recommended to use fastpath applications. If the performance gain offered by running

fastpath is not achievable by other means, it is essential that applications are rigorously tested running fastpath,

and never forcibly terminated (i.e. the application should always disconnect from the queue manager). Fastpath

channels are documented in the MQ V8 knowledge centre..

6.2.2 Parallelism, Batching, and Triggering

An application should be designed wherever possible to have the capability to run multiple instances or multiple

threads of execution. Although the capacity of a multi-processor (SMP) system can be fully utilised with a

small number of applications using non-persistent messages, more applications are typically required if the

workload is mainly using persistent messages. Processing messages inside syncpoint can help reduce the

amount of time the queue managers takes to write a group of persistent messages to the log disk. The

performance profile of a workload will also be subject to variability through cycles of low and heavy message

volumes, therefore a degree of experimentation will be required to determine an optimum configuration.

Queue avoidance is a feature of the queue manager that allows messages to be passed directly from an MQ

‘Putter’ to an MQ ‘Getter’ without the message being placed on a queue. This feature only applies for

processing messages outside of syncpoint. In addition to improving the performance of a workload with

multiple parallel applications, the design should attempt to ensure that an application or application thread is

always available to process messages on a queue (i.e. an MQ ‘Getter’), then messages outside of syncpoint do

not need to ever be physically placed on a queue.

The reader should note that as more applications are processing messages on a single queue there is an

increasing likelihood that queue avoidance will not be maintainable. The reasons for this have a cumulative and

exponential effect, for example, when messages are being placed on a queue quicker than they can be removed.

The first effect is that messages begin to fill the queue buffer—and MQ ‘Getters’ need to retrieve messages

from the buffer rather than being received directly from an MQ ‘Putter’. A secondary effect is that as messages

are spilled from the buffer to the queue disk, the MQ ‘Getters’ must wait for the queue manager to retrieve the

message from the queue disk rather than being retrieved from the queue buffer. While these problems can be

addressed by configuring for more MQ ‘Getters’ (i.e processing threads in the server application), or using a

larger queue buffer, it may not be possible to avoid a performance degradation.

Processing persistent messages inside syncpoint (i.e. in batches) can be more efficient than outside of syncpoint.

As the number of messages in the batch increases, the average processing cost of each message decreases. For

persistent messages the queue manager can write the entire batch of messages to the log disk in one go while

outside of syncpoint control, the queue manager must wait for each message to be written to the log before

returning control to the application.

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 47

Only one log record per queue can be written to the disk per log I/O when processing messages outside of

syncpoint. This is not a bottleneck when there are a lot of different queues being processed. When there are a

small number of queues being processed by a large number of parallel application threads, it is a bottleneck. By

changing all the messages to be processed inside syncpoint, the bottleneck is removed because multiple log

records per queue can share the same log I/O for messages processed within syncpoint.

A typical triggered application follows the performance profile of a short session. The ‘runmqlsr’ has a much

smaller overhead compared to inetd of connecting to and disconnecting from the queue manager because it does

not have to create a new process. The programmatical implementation of triggering is still worth consideration

with regard to programming a disconnect interval as an input parameter to the application program. This can

provide the flexibility to make tuning adjustments in a production environment, if for instance, it is more

efficient to remain connected to the queue manager between periods of message processing, or disconnect to

free queue manager and Operating System resources.

6.3 Tuning the Operating System (IBM i)

Please refer to IBM i specific tuning literature for IBM i tuning techniques

Journal Considerations on IBM i

Persistent messaging on IBM i uses native journaling support to ensure that messages are recoverable. To

ensure that maximum rates of throughput are achieved when using persistent messages, you should consider the

following:

When the queue manager is created on IBM i, a journal receiver is automatically created and located on the

system ASP disk arms. To avoid contention with other IO on these arms, it is recommended that the user

manually create and attach a new journal receiver, ensuring that it is located on a user ASP with dedicated

disk arms. This will help improve response times for the synchronous disk writes to the journal that are

needed for each persistent message.

It will also be helpful to ensure that the disk arms and IOPs used in the user ASP have good overall

performance characteristics for write activity, including good write cache performance. Slower disk arms and

IOPs will result in less favourable response times and less overall capacity in terms of message throughput.

6.4 TCP Buffer size changes for V8.0

 In MQ V8.0, a newly created queue manager will set TCP buffers in the qm.ini to a value of 0. This indicates

that the operating system will manage the buffer sizes, as opposed to the buffer sizes being fixed by MQ.

A migrated queue manager from V7.1 will, by default, not have these buffers set to a value in the qm.ini, unless

they had been previously modified.

Therefore, there can be differences in performance throughput for a migrated queue manager vs a new queue

manager in V8.0, depending on the system buffer settings. The system TCP buffers are changed using the

CHGTCPA command. Great care should be taken when changing either the qm.ini TCP stanza or the system

settings. For further information about how this affects performance, refere to the TCP/IP documentation for

your environment. For more information on qm.ini TCP properties, refer to the MQ V8.0 Knowledge Center.

6.5 Virtual Memory, Real Memory, & Paging

6.5.1 BufferLength

The AMQRMPPA process contains a thread per connected client. The BufferLength parameter of

the MQGet is also used to allocate a long term piece of storage of this size in which the message is

held before being retrieved by the client. If the size of the arriving messages cannot be predicted

then the application should provide a buffer than can deal with 90% of the messages and redrive

the MQGet after return code 2080 (X'0820') MQRC_TRUNCATED_MSG_FAILED by providing a

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 48

larger BUFFER for retrieving this particular message. There is a mechanism to gradually reduce

the size of the storage in AMQRMPPA if the recent BufferLength size is significantly smaller

than previous BufferLength.

6.5.2 MQIBINDTYPE

MQIBINDTYPE=FASTPATH will cause the channel to run ‘Trusted’ mode. Trusted applications

do not use a thread in the Agent (AMQZLLA) process. This means there is no IPC between the

Channel and Agent because the Agent does not exist in this connection. If the channel is run in

STANDARD mode then any messages passed between the channel and agent will use IPCC

memory (size = BufferSize with a maximum size of 1Mb) that is dynamically obtained and only

held for the lifetime of the MQGet. Standard channels each require an additional 80K bytes of

memory. As the message rate increases, there will be more IPCC memory used in parallel.

The power of the machine used to process a workload needs to handle the peaks of troughs. Customers may

specify a daily workload but this number cannot be divided by the number of seconds in a day to find the

necessary system configuration. The peak hourly rate cannot be divided by 3600 because the peak rate per

second will probably be 2-3 times higher. The system must process these peak loads without building up a

backlog of queued work. It is important to prevent the queue depths increasing because they will occupy

memory from the 'free' pool or be spilled out to disk. Over commitment of real memory is handled by the

page manager but sudden large jumps (storms) possibly due to queues becoming deep can cause the

throughput to break down completely if the page manager chooses too much working set memory to be

paged. Gradual over commitment enables the page manager to shuffle out those pages that are not part of

the working set.

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 49

7 Measurement Environment

7.1 Workload description

7.1.1 MQI response time tool

The MQI tool exercises the local queue manager by measuring elapsed times of the 8 main MQSeries

verbs: MQConn(x), MQDisc, MQOpen, MQClose, MQPut, MQGet, MQCmit, and MQBack. The

following MQI calls are paired together inside a test application:

 MQConn(X) with MQDisc

 MQOpen with MQClose

 MQPut with MQGet

 MQCmit and MQBack with MQPut and MQGet

Note: MQClose elapsed time is only measured for an empty queue.

Note: Performance of MQCmit and MQBack is measured in conjunction with MQPut and MQGet, putting and

getting messages inside a unit of work (i.e. inside syncpoint control). The unit of work is committed at the end

of each batch. The number of messages per batch is a parameter of the test.

Note: This tool is not used to measure the performance of verbs: MQSet, MQInq, or MQBegin.

7.1.2 Test scenario workload

The MQI applications use 64 bit libraries for MQ

7.1.2.1 The driving application programs

The test scenario workload simulates many driving applications running on a single driving machine. This

is not typical of a customer environment and is only used to facilitate test coordination. Driving

applications were multi-threaded with each thread performing a sequence of MQI calls. The driving

applications (Requesters) for Local and DQ tests used Trusted bindings. The number of threads in each

application was adjusted according to whether the test was measuring a local queue manager, a client

channel, or distributed queuing scenario. This was done to reduce storage overheads on the driving system.

Message rate: in all but the rated and capacity limit tests, message processing was performed in a tight-

loop. In the rated tests a message rate of 1 round trip per driving application per second was used, and in

the capacity limit tests a message rate of 1 round trip per channel per minute was used.

Non-persistent and persistent messages were used in all but the capacity limit tests.

Note: The driving applications gathered timing information for all MQI calls using a high-resolution timer.

7.1.2.2 The server application program

The server application is written as a multi-threaded program configured to use various threads for

processing non-persistent messages and persistent messages. Each server thread performed the sequence of

actions as outlined in the test scenario illustrations.

Non-persistent messaging is done outside of syncpoint control. Persistent messaging is done inside of

syncpoint control. The average message throughput expressed as a number of round trips per second was

calculated and reported by the server program.

7.1.2.3 Analysis techniques

In the overview section, the percentage throughput comparison used the area under the graph as an

alternative method of interpreting the performance data. Elsewhere, the percentage throughput comparison

used the peak throughputs found in the tables associated with the graphs. The area under the curve is

favored in this instance as it gives a much more general performance indicator.

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 50

7.2 Hardware

7.3 Device under test (Server)

Server system: IBM POWER7 with IBM i

Model: Power 780

Processor: 3.86GHz POWER7

Architecture: 7-core partition

Memory (RAM): 25.25GB

Disk: 20x 70GB disk, Nearline (NL) SAS disk, direct attach from DS887
Network: 10GBit Ethernet Adapter

Driver system used for client scenarios

Driver system: IBM POWER6 with IBM p

Model: Power 570

Processor: 4.2GHz

Architecture: 8-way CPU

Memory (RAM): 16GB

Disk: 1x locally attached 146GB SAS disk plus two SAN disks, 20GB and 5GB,
from DS8870 via SVC
Network: 10GBit Ethernet Adapter

Driver system used for distributed scenarios

Driver system: IBM POWER7 with IBM i

Model: Power 780

Processor: 3.86GHz POWER7

Architecture: 8-core partition

Memory(RAM): 32GB

Disk: 40x 35GB disk, from DS8870 through VIOS and the IBM System Storage
SAN Volume Controller (SVC)

Network: 10GBit Ethernet Adapter

Driver system used in capacity and short sessions

IBM x3850: Driver system

Model: x3850 M2 8864 4RG

Processor: 2.93GHz Intel Xeon x7350

Architecture: 2 x quad core CPU

Memory (RAM): 32GB

Disk: 2 SAN disks on DS8700 (5GB each, 1 queue, 1 log)

Network: 10Gbit Ethernet Adapter

7.4 Software

Operating system : IBM i V7R1M0

MQ version : Version 7.1, Version 8.0

Compiler : IBM Rational Development Studio for i V7R1M0

IBM MQ for IBM i v8.0 – Performance Evaluations

Page 51

8 Glossary

Test name The name of the test.

Note: The test names in some cases are rather long. This is done to provide a descriptive

qualification of the test measurement to relate to the performance discussion in the

sections throughout the document:

local => local queue manager test scenario

cl => client channel test scenario

dq => distributed queuing test scenario

np => non-persistent messages

pm => persistent messages

r3600 => 1 round trip per driving application per second

runmqlsr => channels using the ‘runmqlsr’ listener (client channel test scenario,

in addition to ‘runmqchi’ for distributed queuing test scenarios)

c6000 => 6,000 client driving applications (i.e. 6,000 MQI-client connections)

q1000 => 1,000 server channel pairs

max => maximum number of channels (or channel pairs)

no_correl_id => correlation identifier not used in the response messages (as each

response is placed on a unique reply-to queue per driving application)

Messages /sec => Round Trips/sec

Apps The number of driving applications connected to the queue manager at the point

where the performance measurement is given.

Rate/App/hr The target message throughput rate of each driving application.

Round T/s The average achieved message throughput rate of all the driving applications

together, measured by the server application.

% (Round T/s) The percentage increase in the total message throughput rate.

Note: The nature of the comparison is noted under each table where percentage

improvements have been given.

CPU As reported by VMSTAT

Resp time (s) The average response time each round trip, as measured and averaged by all the

driving applications.

Swap The total amount of swap area reservation for all processes in Mb, unless

otherwise specified as swap/app (i.e. swap area reservation per driving

application).

FREE Free memory as reported by IOSTAT

