
August 2005

Peter Toghill .

WebSphere MQ Performance

IBM UK Laboratories

Hursley Park

Winchester

Hampshire

SO21 2JN

Property of IBM

WebSphere MQ for Solaris V6.0 -

Performance Evaluations

Version 1.3

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page II

Please take Note!

Before using this report, please be sure to read the paragraphs on “disclaimers”, “warranty
and liability exclusion”, “errors and omissions”, and the other general information paragraphs
in the "Notices" section below.

First Edition, August 2005.

This edition applies to WebSphere MQ V6 for Solaris (and to all subsequent releases and
modifications until otherwise indicated in new editions).

© Copyright International Business Machines Corporation 2005. All rights reserved.

Note to U.S. Government Users
Documentation related to restricted rights.
Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
contract with IBM Corp.

Notices

DISCLAIMERS
The performance data contained in this report were measured in a controlled environment.
Results obtained in other environments may vary significantly.

You should not assume that the information contained in this report has been submitted to
any formal testing by IBM.

Any use of this information and implementation of any of the techniques are the responsibility
of the licensed user. Much depends on the ability of the licensed user to evaluate the data
and to project the results into their own operational environment.

WARRANTY AND LIABILITY EXCLUSION
The following paragraph does not apply to the United Kingdom or any other country where
such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions,
therefore this statement may not apply to you.

In Germany and Austria, notwithstanding the above exclusions, IBM's warranty and liability
are governed only by the respective terms applicable for Germany and Austria in the
corresponding IBM program license agreement(s).

ERRORS AND OMISSIONS
The information set forth in this report could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; any such change will be
incorporated in new editions of the information. IBM may make improvements and/or changes
in the product(s) and/or the program(s) described in this information at any time and without
notice.

INTENDED AUDIENCE
This report is intended for architects, systems programmers, analysts and programmers

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page III

wanting to understand the performance characteristics of WebSphere MQ V6 for Solaris. The
information is not intended as the specification of any programming interface that is provided
by WebSphere MQ. It is assumed that the reader is familiar with the concepts and operation
of WebSphere MQ V6 for Solaris.

LOCAL AVAILABILITY
References in this report to IBM products or programs do not imply that IBM intends to make
these available in all countries in which IBM operates. Consult your local IBM representative
for information on the products and services currently available in your area.

ALTERNATIVE PRODUCTS AND SERVICES
Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and verify the operation of any
non-IBM product, program, or service.

USE OF INFORMATION PROVIDED BY YOU
IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you.

TRADEMARKS AND SERVICE MARKS
The following terms used in this publication are trademarks of International Business
Machines Corporation in the United States, other countries or both:

- IBM
- WebSphere
- DB2

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

EXPORT REGULATIONS
You agree to comply with all applicable export and import laws and regulations.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page IV

Preface
Target audience
This SupportPac is designed for people who:

• Will be designing and implementing solutions using WebSphere MQ for Solaris.
• Want to understand the performance limits of WebSphere MQ for Solaris V6.0.
• Want to understand what actions may be taken to tune WebSphere MQ for Solaris.

The reader should have a general awareness of the Solaris operating system and of MQSeries in order
to make best use of this SupportPac. Readers should read the section ‘How this document is
arranged’—Page VI to familiarise themselves with where specific information can be found for later
reference.

The contents of this SupportPac
This SupportPac includes:

• Release highlights performance charts.
• Performance measurements with figures and tables to present the performance capabilities of

WebSphere MQ local queue manager, client channel, and distributed queuing scenarios.
• Interpretation of the results and implications on designing or sizing of the WebSphere MQ

local queue manager, client channel, and distributed queuing configurations.

Feedback on this SupportPac
We welcome constructive feedback on this report.

• Does it provide the sort of information you want?

• Do you feel something important is missing?

• Is there too much technical detail, or not enough?

• Could the material be presented in a more useful manner?

Please direct any comments of this nature to WMQPG@uk.ibm.com.

Specific queries about performance problems on your WebSphere MQ system should be directed to
your local IBM Representative or Support Centre.

Acknowledgements
The author is very grateful to Richard Eures for his significant contribution to V1.0 of this report.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page V

Introduction
The three scenarios used in this report to generate the performance data are:

• Local queue manager scenario.
• Client channel scenario.
• Distributed queuing scenario.

Unless otherwise specified, the standard message sized used for all the measurements in this report is
2K (2,048 bytes).

A Solaris (model Z801) 4-way UltraSparc-II 440MHz with 4GB of RAM was used as the device under
test for all the measurements in this report.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page VI

How this document is arranged
Performance Headlines

Pages: 1-17
Section one contains the performance headlines for each of the three scenarios, with MQI applications
connected to:

• A local queue manager.
• A remote queue manager over MQI-client channels.
• A local queue manager, driving throughput between the local and remote queue manager over

server channel pairs.
The headline tests show:

• The maximum message throughput achieved with an increasing number of MQI applications.
• The maximum number of MQI-clients connected to a queue manager.
• The maximum number of server channel pairs between two queue managers, for a fixed think

time between messages until the response time exceeds one second.

Large Messages

Pages: 21-42
Section two contains performance measurements for large messages. This includes MQI response
times of 50byte to 2MB messages. It also includes 20K, 200k and 2M messages using the same
scenarios as for the ”Performance Headlines”.

Application Bindings

Page: 43-48
Section three contains performance measurements for 'trusted, normal, and isolated' server
applications, using the same three scenarios as for the “Performance Headlines”.

Short Sessions

Page: 49

This section was introduced in Version 1.1.

Section four contains performance measurements for short sessions. That is, an MQI application
connecting to the queue manager, processing a few messages between connecting to and disconnecting
from the queue manager.

Performance and Capacity Limits

Pages: 51

This section was introduced in Version V1.1.

Section five of this document shows:

The number of MQI-client channels that were connected into a single queue manager, with a
server application processing one nonpersistent round trip per MQI-client per minute.
• The number of server channel pairs that were connected between two queue managers on

separate server machines, with a server application processing one nonpersistent round trip per
server channel pair per minute.

Tuning Recommendations

Pages: 55-57

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page VII

Measurement Environment

Pages: 59–60
A summary of the way in which the workload is used in each test scenario is given in the “Performance
Headlines” section. This includes a more detailed description of the workload, hardware and software
specifications.

Glossary

Page: 61
A short glossary of the terms used in the tables throughout this document.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 1

CONTENTS
1 Overview ..5
2 Performance Headlines ..6

2.1 Local Queue Manager Test Scenario...6
2.1.1 Nonpersistent Messages – Local Queue Manager .. 7
2.1.2 Persistent Messages – Local Queue Manager... 8

2.2 Client Channels Test Scenario...9
2.2.1 Nonpersistent Messages – Client Channels .. 10
2.2.2 Persistent Messages – Client Channels... 11
2.2.3 Client Channels .. 12

2.3 Distributed Queuing Test Scenario..16
2.3.1 Nonpersistent Messages – Server Channels ... 17
2.3.2 Persistent Messages – Server Channels.. 18
2.3.3 Server Channels.. 19

3 Large Messages ...21
3.1 MQI Response Times: 50bytes to 100MB – Local Queue Manager...................................21

3.1.1 50bytes to 32KB... 21
3.1.2 32KB to 2MB... 23
3.1.3 2MB to 100MB .. 24

3.2 20K Messages ...25
3.2.1 Local Queue Manager .. 25
3.2.2 Client Channel.. 27
3.2.3 Distributed Queuing ... 29

3.3 200K Messages..31
3.3.1 Local Queue Manager .. 31
3.3.2 Client Channel.. 33
3.3.3 Distributed Queuing ... 35

3.4 2MB Messages ..37
3.4.1 Local Queue Manager .. 37
3.4.2 Client Channel.. 39
3.4.3 Distributed Queuing ... 41

4 Application Bindings ..43
4.1 Local Queue Manager ...43

4.1.1 Nonpersistent Messages ... 43
4.1.2 Persistent Messages.. 44

4.2 Client Channels ...45
4.2.1 Nonpersistent Messages ... 45
4.2.2 Persistent Messages.. 46

4.3 Distributed Queuing ..47
4.3.1 Nonpersistent Messages ... 47
4.3.2 Persistent Messages.. 48

5 Short Sessions ..49
6 Performance and Capacity Limits ..51

6.1 Client channels – capacity measurements ...51
6.2 Distributed queuing – capacity measurements ..52

7 Tuning Recommendations ...55
7.1 Tuning the Queue Manager ...55

7.1.1 Queue Disk, Log Disk, and Message Persistence... 55
7.1.2 Log Buffer Size, Log File Size, and Number of Log Extents... 55
7.1.3 Channels: Process or Thread, Standard or Fastpath? ... 56

7.2 Applications: Design and Configuration ...56
7.2.1 Standard (Shared or Isolated) or Fastpath?.. 56
7.2.2 Parallelism, Batching, and Triggering .. 56

7.3 Virtual Memory, Real Memory, & Paging..57
7.3.1 Queue Manager .. 57
7.3.2 Channels... 57
7.3.3 Client Channels .. 58
7.3.4 Server – Server Channels ... 58
7.3.5 Reply Queue... 58
7.3.6 BufferLength .. 58
7.3.7 MQIBINDTYPE .. 58

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 2

8 Measurement Environment ...59
8.1 Workload description ..59

8.1.1 MQI response time tool .. 59
8.1.2 Test scenario workload... 59

8.2 Hardware ...60
8.3 Software ..60

9 Glossary ...61

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 3

TABLES
Table 1 – Performance headline, nonpersistent messages, local queue manager7
Table 2 – Performance headline, persistent messages, local queue manager ...8
Table 3 – Performance headline, nonpersistent messages, client channels ..10
Table 4 – Performance headline, persistent messages, client channels ..11
Table 5 – 1 round trip per driving application per second, client channels ..13
Table 6 – Free memory, client channels...15
Table 7 – Performance headline, nonpersistent messages, server channels ...17
Table 8 – Performance headline, persistent messages, server channels ...18
Table 9 – 1 round trip per driving application per second, client channels ..20
Table 10 – 20K nonpersistent messages, local queue manager ..25
Table 11 – 20K persistent messages, local queue manager ..26
Table 12 – 20K nonpersistent messages, client channels ...27
Table 13 – 20K persistent messages, client channels ...28
Table 14 – 20K nonpersistent messages, client channels ...29
Table 15 – 20K persistent messages, client channels ...30
Table 16 – 200K nonpersistent messages, local queue manager ..31
Table 17 – 200K persistent messages, local queue manager ..32
Table 18 – 200K nonpersistent messages, client channels ...33
Table 19 – 200K persistent messages, client channels ...34
Table 20 – 200K nonpersistent messages, distributed queuing ..35
Table 21 – 200K persistent messages, distributed queuing ..36
Table 22 – 2M nonpersistent messages, local queue manager ...37
Table 23 – 2M persistent messages, local queue manager ...38
Table 24 – 2M nonpersistent messages, client channels...39
Table 25 – 2M persistent messages, client channels ..40
Table 26 – 2M nonpersistent messages, distributed queuing ...41
Table 27 – 2M persistent messages, distributed queuing ...42
Table 28 – Application binding, nonpersistent messages, local queue manager43
Table 29 – Application binding, persistent messages, local queue manager ..44
Table 30 – Application binding, nonpersistent messages, client channels ...45
Table 31 – Application binding, persistent messages, client channels ...46
Table 32 – Application binding, nonpersistent messages, distributed queuing47
Table 33 – Application binding, persistent messages, distributed queuing ..48
Table 34 – Short sessions, client channels...50
Table 35 – Capacity measurements, client channels ..51
Table 36 – Client capacity, memory utilisation..52
Table 37 – Capacity measurements, server channels ...53
Table 38 – DQ capacity, memory utilisation..53

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 4

FIGURES
Figure 1 – Connections into a local queue manager...6
Figure 2 – Performance headline, nonpersistent messages, local queue manager....................................7
Figure 3 – Performance headline, persistent messages, local queue manager..8
Figure 4 – MQI-client channels into a remote queue manager...9
Figure 5 – Performance headline, nonpersistent messages, client channels ...10
Figure 6 – Performance headline, persistent messages, client channels ...11
Figure 7 – 1 round trip per driving application per second, client channels, nonpersistent messages....12
Figure 8 – 1 round trip per driving application per second, client channels, persistent messages..........12
Figure 9 – Free memory, client channels, nonpersistent messages ..14
Figure 10 – Free memory, client channels, persistent messages ..14
Figure 11 – Server channels between two queue managers ...16
Figure 12 – Performance headline, nonpersistent messages, server channels ..17
Figure 13 – Performance headline, persistent messages, server channels ..18
Figure 14 – 1 round trip per driving application per second, server channel, nonpersistent messages ..19
Figure 15 – 1 round trip per driving application per second, server channel, persistent messages19
Figure 16 –The effect of nonpersistent message size on MQI response time (50byte - 32K)21
Figure 17 –The effect of persistent message size on MQI response time (50byte - 32K)22
Figure 18 –The effect of nonpersistent message size on MQI response time (32K – 2MB)23
Figure 19 –The effect of persistent message size on MQI response time (32K – 2MB)23
Figure 20 –The effect of nonpersistent message size on MQI response time (2MB – 100MB).............24
Figure 21 –The effect of persistent message size on MQI response time (2MB – 100MB)...................24
Figure 22 – 20K nonpersistent messages, local queue manager...25
Figure 23 – 20K persistent messages, local queue manager...26
Figure 24 – 20K nonpersistent messages, client channels..27
Figure 25 – 20K persistent messages, client channels..28
Figure 26 – 20K nonpersistent messages, distributed queuing...29
Figure 27 – 20K persistent messages, distributed queuing...30
Figure 28 – 200K nonpersistent messages, local queue manager...31
Figure 29 – 200K persistent messages, local queue manager...32
Figure 30 – 200K nonpersistent messages, client channels ..33
Figure 31 – 200K persistent messages, client channels..34
Figure 32 – 200K nonpersistent messages, distributed queuing...35
Figure 33 – 200K persistent messages, distributed queuing...36
Figure 34 – 2M nonpersistent messages, local queue manager ..37
Figure 35 – 2M persistent messages, local queue manager ..38
Figure 36 – 2M nonpersistent messages, client channels ...39
Figure 37 – 2M persistent messages, client channels ...40
Figure 38 – 2M nonpersistent messages, distributed queuing ..41
Figure 39 – 2M persistent messages, distributed queuing ..42
Figure 40 – Application binding, nonpersistent messages, local queue manager...................................43
Figure 41 – Application binding, persistent messages, local queue manager...44
Figure 42 – Application binding, nonpersistent messages, client channels..45
Figure 43 – Application binding, persistent messages, client channels..46
Figure 44 – Application binding, nonpersistent messages, distributed queuing.....................................47
Figure 45 – Application binding, persistent messages, distributed queuing...48
Figure 46 – Short sessions, client channels ..49
Figure 47 – Effect of number of client channels on round trips ...51
Figure 48 – Effect of number of server channels on round trips ..53

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 5

1 Overview
WebSphere MQ V6.0 on Solaris has very similar performance characteristics to the V5.3 product.
There are several graphs contained in this report that show specific tests have improved or degraded by
up to 15% but the majority of comparable measurements are within 5%.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 6

2 Performance Headlines
The measurements for the local queue manager scenario are for processing messages with no think-
time. For the client channel scenario and distributed queuing scenario, there are also measurements for
rated messaging.

No think-time is when the driving applications do not wait after getting a reply message before
submitting subsequent request messages—this is also referred to as tight-loop.

The rated messaging tests used one round trip per driving application per second. In the client channel
test scenarios, each driving application using a dedicated MQI-client channel, in the distributed
queuing test scenarios, one or more applications submit messages over a fixed number of server
channels.

All tests are automatically stopped after the response time exceeds 1 second.

2.1 Local Queue Manager Test Scenario

Figure 1 – Connections into a local queue manager

1) The driving application puts a message to the common input queue on the local queue
manager, and holds on to the message identifier returned in the message descriptor. The driving
application then waits indefinitely for a reply to arrive on the common reply queue.

2) The server application gets messages from the common input queue and places a reply to the
common reply queue. The queue manager copies over the message identifier from the request message
to the correlation identifier of the reply message.

3) The driving application gets a reply from the common reply queue using the message
identifier held from when the request message was put to the common input queue, as the correlation
identifier in the message descriptor.

Nonpersistent and persistent messages were used in the local queue manager tests, with a message size
of 2K. The effect of message throughput with larger messages sizes is investigated in the “Large
Messages” section.

Server application Driving applications

Input queue

Reply queue Local queue manager

��������
����������������

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 7

2.1.1 Nonpersistent Messages – Local Queue Manager
Figure 2 and Figure 3 shows the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the local queue manager scenario (see Figure 1 on the
previous page), and WebSphere MQ V6.0 compared to Version 5.3.

Figure 2 – Performance headline, nonpersistent messages, local queue manager

Note: Messaging in these tests is with no think-time.

Figure 2 and Table 1 shows that the peak throughput of nonpersistent messages is similar between
Version 5.3 and Version 6.0 (3,837 RT/s – 3,816 RT/s).

Test name:
local_np

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3
(4)

5
(20)

(3,816)

3,837
(3,603)

(0.0014)

0.0017
(0.0074)

100%
(100%)
(98%)

WebSphere MQ V6.0
4
(5)

(20)

3,816
(3802)
(3396)

0.0013
(0.0017)
(0.0079)

100%
(100%)
(97%)

Table 1 – Performance headline, nonpersistent messages, local queue manager

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 8

2.1.2 Persistent Messages – Local Queue Manager
Queue manager log configuration:

LogPrimaryFiles=4, LogFilePages=16384, LogBufferPages=512

Figure 3 – Performance headline, persistent messages, local queue manager

Note: Messaging in these tests is with no think-time.

Figure 3 and Table 2 show that the peak throughput of persistent messages is similar (1,021 RT/s. -
1,025 RT/s) comparing Version 5.3 to Version 6.0. Version 6.0 peaks with fewer applications (20
apps) compared to the number of applications required to peak with Version 5.3 (48 apps).

Test name:
local_pm

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3
(20)

48
(120)

(952)

1021
(944)

(0.0252)

0.0577
(0.1502)

(84%)

91%
(90%)

WebSphere MQ V6.0
20
(48)
(120)

1025
(952)
(977)

0.0233
(0.0578)
(0.1481)

92%
(93%)
(93%)

Table 2 – Performance headline, persistent messages, local queue manager

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 9

2.2 Client Channels Test Scenario

Figure 4 – MQI-client channels into a remote queue manager

1, 2) The driving application puts a request message (over a client channel), to the common input
queue, and holds on to the message identifier returned in the message descriptor. The driving
application then waits indefinitely for a reply to arrive on the common reply queue.

3) The server application gets messages from the common input queue and places a reply to the
common reply queue. The queue manager copies over the message identifier from the request message
to the correlation identifier of the reply message.

4, 5) The driving application gets the reply message (over the client channel), from the common
reply queue. The driving application uses the message identifier held from when the request message
was put to the common input queue, as the correlation identifier in the message descriptor.

Nonpersistent and persistent messages were used in the client channel tests, with a message size of 2K.
The effect of message throughput with larger messages sizes is investigated in the “Large Messages”
section.

Driving machine

Driving
application

Server
application

Input queue

Reply queue

Client channel

Server machine

Remote queue manager

��������
��������

��������

��������

��������

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 10

2.2.1 Nonpersistent Messages – Client Channels
Figure 5 and Figure 6 shows the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the client channel scenario (see Figure 4 on the previous
page), and WebSphere MQ V6.0 compared to Version 5.3.

Figure 5 – Performance headline, nonpersistent messages, client channels

Note: Messaging in these tests is with no think-time

Figure 5 and Table 3 show that the peak throughput of nonpersistent messages is similar (2,436 RT/s –
2,467 RT/s) comparing Version 5.3 to Version 6.0.

Test name:
clnp

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3
(7)

8
(20)

(2,431)

2,436
(2,355)

(0.0033)

0.0038
(0.0099)

(99%)

100%
(99%)

WebSphere MQ V6.0
7
(8)

(20)

2,467
(2,464)
(2,291)

0.0033
(0.0038)
(0.0102)

100%
(100%)
(100%)

Table 3 – Performance headline, nonpersistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 11

2.2.2 Persistent Messages – Client Channels
Queue manager log configuration:

LogPrimaryFiles=4, LogFilePages=16384, LogBufferPages=512

Figure 6 – Performance headline, persistent messages, client channels

Note: Messaging in these tests is with no think-time.

Figure 6 and Table 4 show that the peak throughput of persistent messages is similar (773 RT/s - 782
RT/s) comparing Version 5.3 to Version 6.0. Version 6.0 peaks with fewer applications (20 apps)
compared to the number of applications required to peak with Version 5.3 (48 apps).

Test name:
clpm

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3
(20)

48
(120)

(751)

773
(727)

(0.0305)

0.0728
(0.1946)

(89%)

97%
(96%)

WebSphere MQ V6.0
20
(48)
(120)

782
(748)
(722)

0.0301
(0.0773)
(0.2009)

96%
(97%)
(97%)

Table 4 – Performance headline, persistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 12

2.2.3 Client Channels
For the following client channel measurements, the messaging rate used is 1 round trip per second per
MQI-client channel, i.e. a request message outbound over the client channel and a reply message
inbound over the channel per second.

Figure 7 – 1 round trip per driving application per second, client channels, nonpersistent messages

Note: Messaging in these tests is 1 round trip per driving application per second.

Figure 8 – 1 round trip per driving application per second, client channels, persistent messages

Figure 7, Figure 8 and Table 5 (next page) shows how WebSphere MQ V6.0 has an 11% reduction in
the number of highly active MQI-client connections processing non-persistent messages into a single
queue manager whereas persistent messages have similar performance.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 13

Test name: Apps
Rate/app/hr Round

Trips/sec
Response

time (s)
CPU

clnp_r3600
(WebSphereMQ v5.3)

1,500
(1,700) 3,600

1,499
(1,699)

0.3229
(0.1002)

85%
(89%)

clpm_r3600
(WebSphereMQ v5.3)

650
(650) 3,600

649
(650)

0.2654
(0.5271)

89%
(89%)

Table 5 – 1 round trip per driving application per second, client channels

Note: The large bold numbers in the table above show the WebSphere MQ V6.0 peak number of round
trips per second, and the number of driving applications used to achieve the peak throughput. The
numbers in brackets are included in the table to provide meaningful comparison with Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 14

Figure 9 and Figure 10 shows the increased memory requirement of an MQI-client connection using
the runmqlsr listener in WebSphere MQ V6.0.

Figure 9 – Free memory, client channels, nonpersistent messages

Note: Messaging in these tests is 1 round trip per driving application per second

Figure 10 – Free memory, client channels, persistent messages

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 15

Test name: Apps Free (MB)
clnp_r3600

(WebSphereMQ v5.3)
100 / 1,500

(100 / 1,500)
3,100 / 2,924

(3,129 / 2,994)

clpm_r3600
(WebSphereMQ v5.3)

150 / 650
(150 / 650)

3,061 / 2,994
(3,107 / 3,055)

Table 6 – Free memory, client channels

Note: The large bold numbers in the table above show the WebSphere MQ V6.0 peak number of round
trips per second, and the number of driving applications used to achieve the peak throughput. The
numbers in brackets are included in the table to provide meaningful comparison with Version 5.3.

Note: The free memory shown in Table 6 represents the available real memory, not swap memory.

The amount of free memory consumed per channel has increased by 30Kbytes. Clients processing non
persistent messages need 126K and clients processing persistent messages require 166K. This increase
does effect the size of the swap file but the page manager will eliminate those pages that are not
referenced send them out to secondary storage.

For further calculations on the swap reservation and shared memory utilisation, refer to ‘Performance
and Capacity Limits’. This will be covered in the next version of this document.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 16

2.3 Distributed Queuing Test Scenario

Figure 11 – Server channels between two queue managers

1) The driving application puts a message to a local definition of a remote queue located on the
server machine, and holds on to the message identifier returned in the message descriptor. The driving
application then waits indefinitely for a reply to arrive on a local queue.

2) The message channel agent takes messages off the channel and places them on the common
input queue on the server machine.

3) The server application gets messages from the common input queue, and places a reply to the
queue name extracted from the messages descriptor (the name of a local definition of a remote queue
located on the driving machine). The queue manager copies over the message identifier from the
request message to the correlation identifier of the reply message.

4) The message channel agent takes messages off the transmission queue and sends them over
the channel to the driving machine.

5) The driving application gets a reply from a local queue. The driving application uses the
message identifier held from when the request message was put to the local definition of the remote
queue, as the correlation identifier in the message descriptor

Nonpersistent and persistent messages were used in the distributed queuing tests, with a message size
of 2K. The effect of message throughput with larger messages sizes is investigated in the “Large
Messages” section.

Server channel

Driving machine Server machine

Transmission queue
per channel

Input queue

Reply queue

Transmission queue
per channel

Remote queue manager Local queue manager

�������� ��������

������������������������

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 17

2.3.1 Nonpersistent Messages – Server Channels
Figure 12 and Figure 13 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the distributed queuing scenario (see Figure 11 on the
previous page), and WebSphere MQ V6.0 compared to Version 5.3.

Figure 12 – Performance headline, nonpersistent messages, server channels

Note: Messaging in these tests is with no think-time.

Figure 12 and Table 7 show that the peak throughput of nonpersistent messages has decreased by
4.7% (2,984 RT/s – 2,844 RT/s) comparing Version 5.3 to Version 6.0.

Test name:
dqnp

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3
(10)

18
(20)

(2,951)

2,984
(2,978)

(0.0039)

0.0071
(0.0078)

(100%)

100%
(100%)

WebSphere MQ V6.0
10
(18)
(20)

2,844
(2,796)
(2,788)

0.0041
(0.0077)
(0.0085)

100%
(99%)
(100%)

Table 7 – Performance headline, nonpersistent messages, server channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 18

2.3.2 Persistent Messages – Server Channels
Queue manager log configuration:

LogPrimaryFiles=4, LogFilePages=16384, LogBufferPages=512

Figure 13 – Performance headline, persistent messages, server channels

Note: Messaging in these tests is with no think-time

Figure 13 and Table 8 show that the peak throughput of persistent messages has increased by 7.8%
(1,232 RT/s – 1,328 RT/s) comparing Version 5.3 to Version 6.0.

Test name:
dqpm

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3 (270)

300
(1,211)

1232
(0.2249)

0.2878
(91%)

92%

WebSphere MQ V6.0 270
(300)

1,328
(1,317)

0.2223
(0.2588)

93%
(94%)

Table 8 – Performance headline, persistent messages, server channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 19

2.3.3 Server Channels
For the following distributed queuing measurements, the messaging rate used is 1 round trip per
driving application per second, i.e. a request message outbound over the sender channel, and a reply
message inbound over the receiver channel per second. Note that there are a fixed number of 4 server
channel pairs for the nonpersistent messaging tests, and 2 pairs for the persistent message tests.

Figure 14 – 1 round trip per driving application per second, server channel, nonpersistent messages

Note: Messaging in these tests is 1 round trip per driving application per second.

Figure 15 – 1 round trip per driving application per second, server channel, persistent messages

Figure 14, Figure 15 and Table 9 (next page) shows how WebSphere MQ V6.0 has an 5.7% reduction
in performance as version 5.3 and persistent messages is similar.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 20

Test name: Apps
Rate/app/hr Round

Trips/sec
Response

time (s)
CPU

dqnp_r3600
(WebSphereMQ v5.3)

2,700
(3,100) 3,600

2,700
(2,866)

0.1178
(1.3033)

97%
(98%)

dqpm_r3600
(WebSphereMQ v5.3)

1,050
(1,050) 3,600

1,050
(1,051)

0.4310
(0.6133)

81%
(76%)

Table 9 – 1 round trip per driving application per second, client channels

Note: The large bold numbers in the table above show the WebSphere MQ V6.0 peak number of round trips
per second, and the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison with Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 21

3 Large Messages

3.1 MQI Response Times: 50bytes to 100MB – Local Queue
Manager

Queue manager log configuration:
LogPrimaryFiles=3, LogFilePages=2048

3.1.1 50bytes to 32KB
Figure 16 show that the response time for MQPUT/GET pairs is slightly slower for all nonpersistent
message sizes between 50bytes and 32KB.

Figure 16 –The effect of nonpersistent message size on MQI response time (50byte - 32K)

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 22

Figure 17 show that the response for MQPUT/GET pairs is slightly slower for all persistent message
sizes between 50bytes and 16KB.

Figure 17 –The effect of persistent message size on MQI response time (50byte - 32K)

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 23

3.1.2 32KB to 2MB
Figure 18 show that the response time for MQPUT/GET pairs is slightly quicker for all nonpersistent
message sizes between 64KB and 2MB.

Figure 18 –The effect of nonpersistent message size on MQI response time (32K – 2MB)

Figure 19 show that the response for MQPUT/GET pairs is improved for all persistent message sizes
between 32KB and 2MB.

Figure 19 –The effect of persistent message size on MQI response time (32K – 2MB)

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 24

3.1.3 2MB to 100MB
Figure 20 show that the response time for MQPUT/GET pairs is slightly quicker for all nonpersistent
message sizes between 2MB and 100Mb.

Figure 20 –The effect of nonpersistent message size on MQI response time (2MB – 100MB)

Figure 21 show that the response for MQPUT/GET pairs is improved for all persistent message sizes
between 2MB and 100MB.

Figure 21 –The effect of persistent message size on MQI response time (2MB – 100MB)

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 25

3.2 20K Messages

3.2.1 Local Queue Manager
Figure 22 and Figure 23 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the local queue manager scenario.

3.2.1.1 Nonpersistent Messages

Figure 22 – 20K nonpersistent messages, local queue manager

Figure 22 and Table 10 show that the peak throughput of nonpersistent messages has decreased by
4.7% (2,235 RT/s – 2,129 RT/s) comparing Version 5.3 to Version 6.0.

Test name:
local_np_20K

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3 4
(20)

2,235
(1,622)

0.0022
(0.0151)

100%
(85%)

WebSphere MQ V6.0 4
(20)

2,129
(1,811)

0.0024
(0.0147)

100%
(93%)

Table 10 – 20K nonpersistent messages, local queue manager

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 26

3.2.1.2 Persistent Messages

Queue manager log configuration:
LogPrimaryFiles=4, LogFilePages=16384, LogBufferPages=512

Figure 23 – 20K persistent messages, local queue manager

Figure 23 and Table 11 show that the peak throughput of persistent messages has increased by 19.4%
(306 RT/s – 369 RT/s) comparing Version 5.3 to Version 6.0.

Test name:
local_pm_20K

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3
8

(16)
(120)

306
(295)
(265)

0.0284
(0.0615)
(0.5378)

37%
(37%)
(37%

WebSphere MQ V6.0
(8)

16
(120)

(338)

369
(284)

(0.0500)

0.0261
(0.5036)

(40%)

47%
(42%)

Table 11 – 20K persistent messages, local queue manager

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 27

3.2.2 Client Channel
Figure 24 and Figure 25 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the client channel scenario.

3.2.2.1 Nonpersistent Messages

Figure 24 – 20K nonpersistent messages, client channels

Figure 24 and Table 12 show that the peak throughput of nonpersistent messages is similar (1,154
RT/s – 1,141 RT/s) comparing Version 5.3 to Version 6.0.

Test name:
clnp_20K

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3
(7)

8
(20)

(1,152)

1,154
(1,042)

(0.0070)

0.0080
(0.0231)

(100%)

100%
(97%)

WebSphere MQ V6.0
7
(8)

(20)

1,141
(1,141)
(1,068)

0.0070
(0.0081)
(0.0221)

100%
(99%)
(99%)

Table 12 – 20K nonpersistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 28

3.2.2.2 Persistent Messages

Queue manager log configuration:
LogPrimaryFiles=4, LogFilePages=16384, LogBufferPages=512

Figure 25 – 20K persistent messages, client channels

Figure 25 and Table 13 show that the peak throughput of persistent messages has increased by 21.1%
(279 RT/s – 338 RT/s) comparing Version 5.3 to Version 6.0.

Test name:
clpm_20K

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3
8

(16)
(120)

279
(267)
(250)

0.0313
(0.0689)
(0.5710)

48%
(51%)
(54%)

WebSphere MQ V6.0
(8)

16
(120)

(309)

338
(276)

(0.0288)

0.0541
(0.5151)

(55%)

64%
(61%)

Table 13 – 20K persistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 29

3.2.3 Distributed Queuing
Figure 26 and Figure 27 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the distributed queuing scenario

3.2.3.1 Nonpersistent Messages

Figure 26 – 20K nonpersistent messages, distributed queuing

Figure 26 and Table 14 show that the peak throughput of nonpersistent messages has decreased by
2.9% (1,216 RT/s – 1,181 RT/s) comparing Version 5.3 to Version 6.0.

Test name:
dqnp_20K

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3 10
(20)

1,216
(1,170)

0.0096
(0.0202)

100%
(100%)

WebSphere MQ V6.0 10
(20)

1,181
(1,138)

0.0099
(0.0208)

100%
(100%)

Table 14 – 20K nonpersistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 30

3.2.3.2 Persistent Messages

Queue manager log configuration:
LogPrimaryFiles=4, LogFilePages=16384, LogBufferPages=512

Figure 27 – 20K persistent messages, distributed queuing

Figure 27 and Table 15 show that the peak throughput of nonpersistent messages has increased by
4.2% (262 RT/s – 273RT/s) comparing Version 5.3 to Version 6.0.

Test name:
dqpm_20K

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3 16
(120)

262
(253)

0.0703
(0.5645)

44%
(37%)

WebSphere MQ V6.0 (16)

120
(271)

273
(0.0687)

0.5240
(43%)

39%
Table 15 – 20K persistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 31

3.3 200K Messages

3.3.1 Local Queue Manager
Figure 28 and Figure 29 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the local queue manager scenario.

3.3.1.1 Nonpersistent Messages

Queue manager log configuration:
DefaultQBufferSize =4000000

Figure 28 – 200K nonpersistent messages, local queue manager

Figure 28 and Table 16 show that the peak throughput of nonpersistent messages has increased by
13.0% (293 RT/s – 331 RT/s) comparing Version 5.3 to Version 6.0.

Test name:
local_np_200K

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3
3
(4)

(20)

293
(285)
(133)

0.0116
(0.0162)
(0.1791)

77%
(78%)
(26%)

WebSphere MQ V6.0
(3)

4
(20)

(320)

331
(142)

(0.0116)

0.0139
(0.1669)

(80%)

100%
(26%)

Table 16 – 200K nonpersistent messages, local queue manager

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 32

3.3.1.2 Persistent Messages

Queue manager log configuration:
LogPrimaryFiles=4, LogFilePages=16384, LogBufferPages=512

Figure 29 – 200K persistent messages, local queue manager

Figure 29 and Table 17 show that the peak throughput of persistent messages has increased by 6.3%
(31 RT/s – 33 RT/s) comparing Version 5.3 to Version 6.0.

Test name:
local_pm_200K

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3
(4)

16
(48)

(30)

31
(31)

(0.1322)

0.5890
(1.84656)

(13%)

15%
(15%)

WebSphere MQ V6.0
4

(16)
(48)

33
(32)
(32)

0.1219
(0.5619)
(1.7831)

15%
(16%)
(16%)

Table 17 – 200K persistent messages, local queue manager

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 33

3.3.2 Client Channel
Figure 30 and Figure 31 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the client channel scenario.

3.3.2.1 Nonpersistent Messages

Queue manager log configuration:
DefaultQBufferSize =4000000

Figure 30 – 200K nonpersistent messages, client channels

Figure 30 and Table 18 show that the peak throughput of nonpersistent messages has increased by
5.7% (133 RT/s – 140 RT/s) comparing Version 5.3 to Version 6.0.

Test name:
clnp_200K

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3
8

(13)
(20)

133
(121)
(112)

0.0703
(0.1259)
(0.2095)

98%
(90%)
(84%)

WebSphere MQ V6.0
(8)

13
(20)

(134)

140
(134)

(0.0696)

0.1096
(0.1713)

(91%)

96%
(97%)

Table 18 – 200K nonpersistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 34

3.3.2.2 Persistent Messages

Queue manager log configuration:
LogPrimaryFiles=4, LogFilePages=16384, LogBufferPages=512

Figure 31 – 200K persistent messages, client channels

Figure 31 and Table 19 show that the peak throughput of persistent messages has increased by 4.8%
(30 RT/s – 31 RT/s) comparing Version 5.3 to Version 6.0.

Test name:
clpm_200K

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3
(40)

44
(48)

(30)

30
(30)

(1.5748)

1.7352
(1.8770)

(29%)

30%
(30%)

WebSphere MQ V6.0
40
(44)
(48)

31
(31)
(31)

1.5196
(1.6666)
(1.8039)

31%
(31%)
(31%)

Table 19 – 200K persistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 35

3.3.3 Distributed Queuing
Figure 32 and Figure 33 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the distributed queuing scenario

3.3.3.1 Nonpersistent Messages

Queue manager log configuration:
DefaultQBufferSize =4000000

Figure 32 – 200K nonpersistent messages, distributed queuing

Figure 32 and Table 20 show that the peak throughput of nonpersistent messages has increased by
3.1% (137 RT/s – 141 RT/s) comparing Version 5.3 to Version 6.0.

Test name:
dqnp_200K

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3
(12)

14
(20)

(137)

137
(133)

(0.1026)

0.1234
(0.1767)

(100%)

100%
(97%)

WebSphere MQ V6.0
12
(14)
(20)

141
(140)
(138)

0.0996
(0.1182)
(0.1694)

99%
(98%)
(98%)

Table 20 – 200K nonpersistent messages, distributed queuing

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 36

3.3.3.2 Persistent Messages

Queue manager log configuration:
LogPrimaryFiles=4, LogFilePages=16384, LogBufferPages=512

Figure 33 – 200K persistent messages, distributed queuing

Figure 33 and Table 21 show that the peak throughput of nonpersistent messages is similar when
comparing Version 5.3 to Version 6.0.

Test name:
dqpm_200K

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3
(8)

28
(44)

(24)

25
(24)

(0.3636)

1.3406
(2.1666)

(21%)

21%
(19%)

WebSphere MQ V6.0
8

(28)
(40)

25
(24)
(25)

0.3584
(1.3823)
(1.8696)

21%
(21%)
(21%)

Table 21 – 200K persistent messages, distributed queuing

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 37

3.4 2MB Messages

3.4.1 Local Queue Manager
Figure 34 and Figure 35 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the local queue manager scenario.

3.4.1.1 Nonpersistent Messages

Queue manager log configuration:
DefaultQBufferSize = 25000000

Figure 34 – 2M nonpersistent messages, local queue manager

Figure 34 and Table 22 show that the peak throughput of nonpersistent messages is similar (10 RT/s –
11 RT/s) comparing Version 5.3 to Version 6.0.

Test name:
local_np_2M

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3
(1)

2
(13)

(10)

10
(9)

(0.1050)

0.2274
(1.7423)

(18%)

19%
(19%)

WebSphere MQ V6.0
1
(2)

(13)

11
(9)
(9)

0.0938
(0.2452)
(1.7412)

20%
(21%)
(19%)

Table 22 – 2M nonpersistent messages, local queue manager

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 38

3.4.1.2 Persistent Messages

Queue manager log configuration:
LogPrimaryFiles=4, LogFilePages=16384, LogBufferPages=512

Figure 35 – 2M persistent messages, local queue manager

Figure 35 and Table 23 show that the peak throughput of persistent messages is similar (3 RT/s – 3
RT/s) comparing Version 5.3 to Version 6.0.

Test name:
local_pm_2M

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3 (16)

24
(3)

3
(6.1842)

9.4782
(13%)

13%
WebSphere MQ V6.0 16

(24)
3
(3)

5.8641
(9.0213)

15%
(15%)

Table 23 – 2M persistent messages, local queue manager

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 39

3.4.2 Client Channel
Figure 36 and Figure 37 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the client channel scenario.

3.4.2.1 Nonpersistent Messages

Queue manager log configuration:
DefaultQBufferSize = 25000000

Figure 36 – 2M nonpersistent messages, client channels

Figure 36 and Table 24 show that the peak throughput of nonpersistent messages is similar (9 RT/s –
10 RT/s) comparing Version 5.3 to Version 6.0.

Test name:
clnp_2M

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3 2
(13)

9
(9)

0.2422
(1.7748)

51%
(59%)

WebSphere MQ V6.0 2
(13)

10
(9)

0.2354
(1.7075)

(52%)

64%
Table 24 – 2M nonpersistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 40

3.4.2.2 Persistent Messages

Queue manager log configuration:
LogPrimaryFiles=4, LogFilePages=16384, LogBufferPages=512

Figure 37 – 2M persistent messages, client channels

Figure 37 and Table 25 show that the peak throughput of persistent messages is similar when
comparing Version 5.3 to Version 6.0.

Test name:
clpm_2M

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3
(8)

12
(24)

(3)

3
(2)

(3.4123)

5.2645
(10.9770)

(23%)

23%
(24%)

WebSphere MQ V6.0
8

(12)
(20)

3
(3)
(3)

3.0953
(4.8228)
(10.0768)

24%
(25%)
(27%)

Table 25 – 2M persistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 41

3.4.3 Distributed Queuing
Figure 38 and Figure 39 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the distributed queuing scenario.

3.4.3.1 Nonpersistent Messages

Queue manager log configuration:
DefaultQBufferSize = 25000000

Figure 38 – 2M nonpersistent messages, distributed queuing

Figure 38 and Table 26 show that the peak throughput of nonpersistent messages is similar (7 RT/s – 8
RT/s) comparing Version 5.3 to Version 6.0.

Test name:
dqnp_2M

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3
9

(10)
(11)

7
(7)
(7)

1.5476
(1.7818)
(1.9553)

39%
(40%)
(40%)

WebSphere MQ V6.0
(9)

10
(12)

(7)

8
(8)

(1.4433)

1.5631
(1.8814)

(44%)

44%
(44%)

Table 26 – 2M nonpersistent messages, distributed queuing

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 42

3.4.3.2 Persistent Messages

Queue manager log configuration:
LogPrimaryFiles=4, LogFilePages=16384, LogBufferPages=512

Figure 39 – 2M persistent messages, distributed queuing

Figure 39 and Table 27 show that the peak throughput of nonpersistent messages is similar when
comparing Version 5.3 to Version 6.0.

Test name:
dqpm_2M

Apps
Round

Trips/sec
Response

time (s)
CPU

WebSphere MQ V5.3
12
(20)
(24)

2
(2)
(2)

6.8394
(12.3247)
(17.0313)

17%
(15%)
(13%)

WebSphere MQ V6.0
(12)

20
(24)

(2)

2
(2)

(6.3885)

9.8794
(12.7133)

(18%)

19%
(19%)

Table 27 – 2M persistent messages, distributed queuing

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 43

4 Application Bindings
This report analyzes the rate that messages can be exchanged between a Requester (Driver) application
and a Responder (Server) application. The other chapters use a ‘Trusted’ Requester and a ‘Shared’
Responder but this chapter looks at the effect of various combinations of application bindings for
Requester and Responder programs.

 Requester Responder

Normal Trusted Shared
Isolated Isolated Isolated
Trusted Trusted Trusted

NonTrusted Shared Shared

4.1 Local Queue Manager

Figure 40 and Figure 41 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the local queue manager scenario.

4.1.1 Nonpersistent Messages

Figure 40 – Application binding, nonpersistent messages, local queue manager

Figure 40 and Table 28 show that the peak throughput of nonpersistent messages when comparing
Normal, Isolated, Trusted and NonTrusted bindings

Test Apps
Round

Trips/sec
Response

time (s)
CPU

Normal 4
(20)

3,816
(3,396)

0.0013
(0.0079)

100%
(97%)

Isolated 8
(20)

2,651
(2,513)

0.0036
(0.0098)

100%
(99%)

Trusted 5
(20)

6,286
(4,510)

0.0010
(0.0055)

99%
(89%)

NonTrusted 7
(20)

2,850
(2,732)

0.0030
(0.0090)

100%
(100%)

Table 28 – Application binding, nonpersistent messages, local queue manager

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 44

4.1.2 Persistent Messages
Queue manager log configuration:

LogPrimaryFiles=4, LogFilePages=16384, LogBufferPages=512

Figure 41 – Application binding, persistent messages, local queue manager

Figure 41 and Table 29 show that the peak throughput of persistent messages when comparing
Normal, Isolated and Trusted bindings.

Test Apps
Round

Trips/sec
Response

time (s)
CPU

Normal 20
(120)

1,025
(977)

0.0233
(0.1481)

92%
(93%)

Isolated 24
(120)

877
(844)

0.0331
(0.1732)

98%
(98%)

Trusted 20
(120)

1,154
(1,098)

0.0212
(0.1318)

83%
(85%)

Table 29 – Application binding, persistent messages, local queue manager

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 45

4.2 Client Channels
Figure 42 and Figure 43 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the client channel scenario.

4.2.1 Nonpersistent Messages

Figure 42 – Application binding, nonpersistent messages, client channels

Figure 42 and Table 30 show that the peak throughput of nonpersistent messages when comparing
Normal, Isolated and Trusted bindings.

Test Apps
Round

Trips/sec
Response

time (s)
CPU

Normal 7
(20)

2,467
(2,291)

0.0033
(0.0102)

100%
(100%)

Isolated 8
(20)

2,433
(2,260)

0.0038
(0.0101)

100%
(99%)

Trusted 9
(20)

3,164
(2,844)

0.0033
(0.0082)

100%
(98%)

Table 30 – Application binding, nonpersistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 46

4.2.2 Persistent Messages
Queue manager log configuration:

LogPrimaryFiles=4, LogFilePages=16384, LogBufferPages=512

Figure 43 – Application binding, persistent messages, client channels

Figure 43 and Table 31 show that the peak throughput of nonpersistent messages when comparing
Normal, Isolated and Trusted bindings.

Test Apps
Round

Trips/sec
Response

time (s)
CPU

Normal 20
(120)

782
(722)

0.0301
(0.2009)

96%
(97%)

Isolated 20
(120)

777
(717)

0.0292
(0.2036)

96%
(96%)

Trusted 16
(120)

844
(791)

0.0216
(0.1834)

90%
(94%)

Table 31 – Application binding, persistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 47

4.3 Distributed Queuing
Figure 43 and Figure 44 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the distributed queuing scenario.

4.3.1 Nonpersistent Messages

Figure 44 – Application binding, nonpersistent messages, distributed queuing

Figure 44 and Table 32 show that the peak throughput of nonpersistent messages when comparing
Normal, Isolated and Trusted bindings.

Test Apps
Round

Trips/sec
Response

time (s)
CPU

Normal 10
(20)

2,844
(2,788)

0.0041
(0.0085)

100%
(100%)

Isolated 12
(20)

2,843
(2,790)

0.0050
(0.0086)

100%
(100%)

Trusted 11
(20)

4,153
(3,910)

0.0033
(0.0061)

100%
(99%)

Table 32 – Application binding, nonpersistent messages, distributed queuing

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 48

4.3.2 Persistent Messages
Queue manager log configuration:

LogPrimaryFiles=4, LogFilePages=16384, LogBufferPages=512

Figure 45 – Application binding, persistent messages, distributed queuing

Figure 45 and Table 33 show that the peak throughput of nonpersistent messages when comparing
Normal, Isolated and Trusted bindings.

Test Apps
Round

Trips/sec
Response

time (s)
CPU

Normal 270
(300)

1,328
(1,317)

0.2223
(0.2588)

93%
(94%)

Isolated 120
(300)

1,262
(1,140)

0.1113
(0.3130)

92%
(89%)

Trusted 200
(300)

1,344
(1,271)

0.1782
(0.2763)

95%
(93%)

Table 33 – Application binding, persistent messages, distributed queuing

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput. The numbers in brackets
are included in the table to provide meaningful comparison between WebSphere MQ V6.0 and
Version 5.3.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 49

5 Short Sessions
The previous chapters in this report only reported on steady state messaging that does not include any
session setup and termination function. This chapter specifically bracket groups of five
MQPUT/MQGET pairs with MQCON/MQDISC and MQOPEN/MQCLOSE calls so a comparison of
this overhead can be seen.

A short session is a term used to describe the behaviour of an MQI application as it processes a small
number of messages using one or more queues and a queue manager. The measurements in this
document use an MQI-client application and the following sequence:

• connects to the queue manager
• opens the common input queue, and common reply queue
• puts a request message to the common input queue
• gets the reply message from the common reply queue
• wait one second
• closes both queues
• disconnects from the queue manager

“Why measure short sessions?”
For each new connecting application or disconnecting application, the queue manager and Operating
System must start a new process or thread and set up the new connection. As the number of connecting
and disconnecting applications increases, the Operating System and queue manager are subjected to a
higher load. While these requests are being serviced the queue manager has less time available to
process messages, so fewer driving applications can be reconnected to the queue manager per second
before the response time exceeds one second.

This effect is greater than that of reducing the total messaging throughput of the queue manager by
connecting thousands of MQI applications to the queue manager (refer to Figure 46 for an illustration).

Figure 46 – Short sessions, client channels

���������

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 50

Test name Apps
Round

Trips/sec
Short Sessions

 per second
Response
Time (s)

clnp_r3600 1500 1499 0.3229

clnp_ss 750
(800)

813
(837)

162
(167)

0.6848
(1.2031)

clpm_r3600 650 649 0.2654

clpm_ss 420
(470)

453
(457)

90
(91)

0.6135
(1.2286)

Table 34 – Short sessions, client channels

Note: Messaging in these tests is 1 round trip per driving application per second, i.e. 1 short session per
driving application every 5 seconds

Note: The large figures in are for WebSphere MQ V6.0 with a round trip response time of less than one
second. The smaller figures in brackets show maximum throughput regardless of response time.
Since there are 5 round trips per short session, when the round trip response time approaches a
second, the short session elapsed time will be approaching 5 seconds.

The ‘runmqlsr’ has a much smaller overhead of connecting to and disconnecting from the queue
manager because it only uses a single thread per connection rather than an entire process. INETD
listener has a significantly smaller capacity because of the need to create a new process for every client.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 51

6 Performance and Capacity Limits

6.1 Client channels – capacity measurements
The measurements in this section are intended to test the maximum number of client channels into a
server queue managers with a messaging rate of 1 round trip per client channel per minute.
Measurements are also made with smaller number of Client channels where the message insertion rate
is increased until the system gets congested. This information is intended to be useful to the reader
sizing a system with similar scenarios.

Queue manager configuration for client channels capacity tests:
MaxChannels=50000

Test name: Apps
Rate/app/hr Round

Trips/sec
Response

time (s)
CPU

clnp 7 n/a* 2,467 0.0033 100%
clnp_r3600 1,500 3600 1,499 0.3229 85%
clnp_c6000 6,000 870 1,452 0.5709 77%

clnp_c6000_no_correllid 6,000 710 1,183 0.3562 91%
clnp_cmax 32,700 60 545 0.1189 6%

clnp_cmax_no_correllid 23,300
(17000) 60 387

(283)
0.3136
(0.1209)

69%
(15%)

Table 35 – Capacity measurements, client channels

* There was no delay between the response to the previous message and the insertion of the next
message with 7 clients.

The clnp_cmax_no_correllid results are shown when there is no paging (@ 17000) and again when the
response time has not been significantly degraded due to paging because there is spare CPU available.
The effect of the number of client channels on maximum message throughput is shown in Figure 47
below.

Figure 47 – Effect of number of client channels on round trips

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 52

Client Channels Capacity
Driving Applications vs Round Trips/Sec

0

250

500

750

1,000

1,250

1,500

1,750

2,000

2,250

2,500

7 clnp 1,500 clnp r3600 6,000 (c6000) 6,000 (c6000 no
correlid)

32,700 (cmax) 23,300 (cmax no
correlid)

Driving Applications

R
ou

nd
 T

ri
ps

/se
c

Test name: Apps Swap Free

clnp_cmax 32,700
(1,000)

4926MB (139K/App)
(434MB)

120 KB/App

clnp_cmax_no_correllid 23,300
(500)

4854MB (202K/App)
(376MB)

179KB/App

Table 36 – Client capacity, memory utilisation

Note: The table above show the swop memory measured at the given number of driving applications.
The swop and free memory cost is the additional cost per driving application (in this test scenario
this relates to the cost of an MQI-client connection on the server machine).

The difference between this pair of measurements is the clnp_cmax uses a Get by Correlation_Id from
a common reply queue for all the clients whereas the other case has a separate reply queue per client.
Each additional Client needs a thread in the AMQRMPPA process and this accounts for most of the
120K bytes. Using a separate queue per client needs additional shared memory per client as well as
some more pages from the Free pool. The Operating System page manager will need about 75% of this
in real memory to ensure that system response time is not degraded

6.2 Distributed queuing – capacity measurements
The measurements in this section are intended to test the maximum number of server channel pairs
between two queue managers with a messaging rate of 1 round trip per server channel per minute. For
the same number of server channel pairs, a faster message rate gives a higher total message throughput
over each channel pair. This information is intended to be useful to the reader sizing a system with
similar scenarios.

Queue manager and log configuration for distributed queuing capacity tests:
MaxChannels=20000, LogPrimaryFiles=12, LogFilePages=16384, LogBufferPages=512

Note: The large log capacity for this test is for writing the object definitions to the log disk
(the transmission queue definitions for both sides of the server channel pair, and reply queue per
receiver channel on the driving machine).

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 53

Test name: Apps
Rate/app/hr Round

Trips/sec
Response

time (s)
CPU

dqnp 10 n/a* 2,844 0.0041 100%
dqnp_r3600 2,700 3600 2,700 0.1178 97%
dqnp_q1000 1,000 6,430 1,785 0.0698 87%
dqnp_qmax 10,000 60 167 0.1185 4%

Table 37 – Capacity measurements, server channels

* There was no delay between the response to the previous message and the insertion of the next
message with 10 driving applications.

The effect of the number of server channel pairs on maximum message throughput can be seen in
Figure 48 below.

Distributed Queuing Capacity
Driving Applications vs Round Trips/Sec

0

250

500

750

1,000

1,250

1,500

1,750

2,000

2,250

2,500

2,750

3,000

3,250

10 dqnp 2,900 dqnp r3600 1,000 (q1000) 10,000 (qmax)
Driving Applications

R
ou

nd
 T

ri
ps

/se
c

Figure 48 – Effect of number of server channels on round trips

The dqnp and dqnp_r3600 both used a total of 2 pairs of Sender/Receiver pairs of channels between
queue managers while the dqnp_q1000 and dqnp_qmax used a pair of channels per application. The
dqnp_q1000 shows the reduced throughput experienced when 1000 queue mangers are connected into
a central hub and the following table shows the storage on the central hub.

Test name: Apps Swap Free

dqnp_qmax 10,000
(500)

4779MB (383K/App)
(954MB)

340 KB/App

Table 38 – DQ capacity, memory utilisation

Note: The table above show the swap memory measured at the given number of driving applications.
The swap and free memory cost is the additional cost per driving application (in this test scenario
this relates to the cost of an MQI-Sender/Receiver pair of channels connected on the server
machine).

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 54

It can be observed that the amount of memory needed to support a DQ channel is approximately double
that needed to support a client channel. Each DQ application needs both a Sender and Receiver channel
as well as a Transmit queue whereas a Client connection just needs one channel.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 55

7 Tuning Recommendations

7.1 Tuning the Queue Manager
This section highlights the tuning activities that are known to give performance benefits for WebSphere
MQ V6.0; some of these can be applied to Version 5.3. The reader should note that the following
tuning recommendations may not necessarily need to be applied, especially if the message throughput
and/or response time of the queue manager system already meets the required level. Some tuning
recommendations that follow may degrade the performance of a previously balanced system if applied
inappropriately. The reader should carefully monitor the results of tuning the queue manager to be
satisfied that there have been no adverse effects.

Customers should test that any changes have not used excessive real resources in their environment and
make only essential changes. For example, allocating several megabytes for multiple queues reduces
the amount of shared and virtual memory available for other subsystems, as well as over committing
real storage.

Note: The ‘TuningParameters’ stanza is not documented external interface and may change or be
removed in future releases.

7.1.1 Queue Disk, Log Disk, and Message Persistence
To avoid potential queue and log I/O contention due to the queue manager simultaneously updating a
queue file and log extent on the same disk, it is important that queues and logs are located on separate
and dedicated physical devices. With the queue and log disks configured in this manner, careful
consideration must still be given to message persistence: persistent messages should only be used if the
message needs to survive a queue manager restart (forced by the administrator or as the result of a
power failure, communications failure, or hardware failure). In guaranteeing the recoverability of
persistent messages, the pathlength through the queue manager is three times longer than for a
nonpersistent message. This overhead does not include the additional time for the message to be
written to the log, although this can be minimised by using cached disks.

7.1.1.1 Nonpersistent and Persistent Queue Buffer
The default nonpersistent queue buffer size is 64K per queue and the default persistent is 128K per
queue. These can be increased to 1MB using the TuningParameters stanza and the DefaultQBufferSize
and DefaultPQBufferSize parameters. (For more details see SupportPac MP01: MQSeries – Tuning
Queue Limits). Increasing the queue buffer provides the capability to absorb peaks in message
throughput at the expense of real storage. Once these queue buffers are full, the additional message
data is given to the file system that will eventually find its way to the disk. Defining queues using large
nonpersistent or persistent queue buffers can degrade performance if the system is short of real memory
either because a large number of queues have already been defined with large buffers, or for other
reasons -- e.g. large number of channels defined.

Note: The queue buffers are allocated in shared storage so consideration must be given to whether the
agent process or application process has the memory addressability for all the required shared
memory segments.

Queues can be defined with different values of DefaultQBufferSize and DefaultPQBufferSize. The
value is taken from the TuningParameters stanza in use by the queue manager when the queue was
defined. When the queue manager is restarted existing queues will keep their earlier definitions and
new queues will be created with the desired parameters. When a queue is opened, resources are
allocated according to the definition held on disk from when the queue was created.

7.1.2 Log Buffer Size, Log File Size, and Number of Log Extents
The log buffer is a piece of main memory where the log records are appended so that multiple log
records can be written to disks together. The default size of the log buffer is 128 pages with a
maximum size of 4096 pages. To improve persistent message throughput the LogBufferPages should
be increased to 512 x 4K pages = 2MB, or larger. LogFilePages (i.e. crtmqm –lf

<LogFilePages>) defines the size of one physical disk extent and should be configured to a large
size, for example: 16384 x 4K pages = 64MB, with the maximum size being 65535 pages. The number

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 56

of LogPrimaryFiles (i.e. crtmqm -lp <LogPrimaryFiles>) should be configured to a large number
and the maximum number of Primary plus Secondary extents is 255(Windows) and 511(UNIX). The
cumulative effect of this tuning will:

• Improve the throughput of persistent messages (permitting a possible 2MB of log records to
be written from the log buffer to the log disk in a single write).

• Reduce the frequency of log switching (permitting a greater amount of log data to be written
into one extent).

• Allow more time to prepare new linear logs or recycle old circular logs (especially important
for long-running units of work).

Changes to the queue manager LogBufferPages stanza take effect at the next queue manager restart.
The number of pages can be changed for all subsequent queue managers by changing the
LogBufferPages parameter in the product default Log stanza.

It is unlikely that poor persistent message throughput will be attributed to a 2MB queue manager log
but processing of large messages will be helped by these enhanced limits. It is possible to fill and
empty the log buffer several times each second and reach a CPU limit writing data into the log buffer,
before a log disk bandwidth limit is reached.

7.1.3 Channels: Process or Thread, Standard or Fastpath?
Threaded channels are used for all the measurements in this report (‘runmqlsr’, and for server channels
an MCATYPE of ‘THREAD’) the threaded listener ‘runmqlsr’ can now be used in all scenarios with
client and server channels. Additional resource savings are available using the ‘runmqlsr’ listener
rather than ‘inetd’, including a reduced requirement on: virtual memory, number of processes, file
handles, and System V IPC.

Fastpath channels, and/or fastpath applications—see later paragraph for further discussion, can increase
throughput for both nonpersistent and persistent messaging. For persistent messages, the improvement
is only for the path through the queue manager, and does not affect performance writing to the log disk.

Note: The reader should note that since the greater proportion of time for persistent messages is in the
queue manager writing to the log disk, the performance improvement for fastpath channels is less
apparent with persistent messages than with nonpersistent messages.

7.2 Applications: Design and Configuration

7.2.1 Standard (Shared or Isolated) or Fastpath?
The reader should be aware of the issues associated with writing and using fastpath applications—
described in the ‘MQSeries Application Programming Guide’. Although it is recommended that
customers use fastpath channels, it is not recommended to use fastpath applications. If the performance
gain offered by running fastpath is not achievable by other means, it is essential that applications are
rigorously tested running fastpath, and never forcibly terminated (i.e. the application should always
disconnect from the queue manager). Fastpath channels are documented in the ‘MQSeries
Intercommunication Guide’.

7.2.2 Parallelism, Batching, and Triggering
An application should be designed wherever possible to have the capability to run multiple instances or
multiple threads of execution. Although the capacity of a multi-processor (SMP) system can be fully
utilised with a small number of applications using nonpersistent messages, more applications are
typically required if the workload is mainly using persistent messages. Processing messages inside
syncpoint can help reduce the amount of time the queue managers takes to write a group of persistent
messages to the log disk. The performance profile of a workload will also be subject to variability
through cycles of low and heavy message volumes, therefore a degree of experimentation will be
required to determine an optimum configuration.

Queue avoidance is a feature of the queue manager that allows messages to be passed directly from an
‘MQPUTer’ to an ‘MQGETer’ without the message being placed on a queue. This feature only applies
for processing messages outside of syncpoint. In addition to improving the performance of a workload
with multiple parallel applications, the design should attempt to ensure that an application or

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 57

application thread is always available to process messages on a queue (i.e. an ‘MQGETer’), then
messages outside of syncpoint do not need to ever be physically placed on a queue.

The reader should note that as more applications are processing messages on a single queue there is an
increasing likelihood that queue avoidance will not be maintainable. The reasons for this have a
cumulative and exponential effect, for example, when messages are being placed on a queue quicker
than they can be removed. The first effect is that messages begin to fill the queue buffer—and
MQGETers need to retrieve messages from the buffer rather than being received directly from an
MQPUTer. A secondary effect is that as messages are spilled from the buffer to the queue disk, the
MQGETers must wait for the queue manager to retrieve the message from the queue disk rather than
being retrieved from the queue buffer. While these problems can be addressed by configuring for more
MQGETers (i.e processing threads in the server application), or using a larger queue buffer, it may not
be possible to avoid a performance degradation.

Processing persistent messages inside syncpoint (i.e. in batches) can be more efficient than outside of
syncpoint. As the number of messages in the batch increases, the average processing cost of each
message decreases. For persistent messages the queue manager can write the entire batch of messages
to the log disk in one go while outside of syncpoint control, the queue manager must wait for each
message to be written to the log before returning control to the application.

Only one log record per queue can be written to the disk per log I/O when processing messages outside
of syncpoint. This is not a bottleneck when there are a lot of different queues being processed. When
there are a small number of queues being processed by a large number of parallel application threads, it
is a bottleneck. By changing all the messages to be processed inside syncpoint, the bottleneck is
removed because multiple log records per queue can share the same log I/O for messages processed
within syncpoint.

A typical triggered application follows the performance profile of a short session . The ‘runmqlsr’ has
a much smaller overhead of connecting to and disconnecting from the queue manager because it does
not have to create a new process. The programmatical implementation of triggering is still worth
consideration with regard to programming a disconnect interval as an input parameter to the application
program. This can provide the flexibility to make tuning adjustments in a production environment, if
for instance, it is more efficient to remain connected to the queue manager between periods of message
processing, or disconnect to free queue manager and Operating System resources.

7.3 Virtual Memory, Real Memory, & Paging

Systems require sufficient real memory to hold the working set otherwise paging will break the response time
expectations.

• Virtual memory enables the program to address much larger amount of memory than exists as real memory.
• Real memory is the physical memory (or RAM) currently installed in the machine.
• Paging is the process of managing program access to virtual storage pages not currently resident in main

memory. It locates the required page frame from auxiliary storage (disk), selects a page frame in real
memory that will hold this page, copies the contents of this outgoing page frame to auxiliary storage, and
retrieves the requested incoming page contents from auxiliary storage.

A simple approach is to ensure that the virtual memory of the application system does not exceed the available real
memory since all memory requests will be met from the current free memory. VMSTAT reports on 'in use' and 'free'
memory as seen by the operating system page manager.

WebSphere MQ uses a significant amount of memory for each Queue Manager and Channel.

7.3.1 Queue Manager
Starting a MQ Queue manager generated using default values increases the AVM and reduces the FRE by 32M
bytes.

7.3.2 Channels
Channels can be started by using the INETD or the RUNMQLSR listener. INETD initiated channels use between
5 and 10 times more memory than RUNMQLSR channels so the rest of this section focuses on RUNMQLSR
channels.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 58

7.3.3 Client Channels
Each MQ client channel uses between 264K - 410K bytes for processing 2K byte messages depending on traffic
rate (Chapter 6 of the MQ V6 Performance reports provides an estimate of the storage needed when clients either
share a predefined queue with other clients or have a dynamic queue per client). 100K byte messages will use up
to 700K bytes per client.

7.3.4 Server – Server Channels
Each interconnected queue manager has a pair of uni-directional channels for sending and receiving
messages. The storage consumed is the same as 2 client channels plus a predefined queue
(Transmission queue).

Three other aspects of storage consumption depend on type of 'Reply-Queue', MQIBINDTYPE, and
BufferLength.

7.3.5 Reply Queue
The Queue from which the client retrieves the message can be a predefined Queue (350K bytes)
probably shared among multiple clients who get messages by Correlation-id or a model (dynamic)
queue (60K bytes) that is used only by one client. The model queue memory can grow by 128K
bytes when more than 128K bytes of Persistent messages are held in the queue and by 192K bytes
when more than 192K bytes of non persistent messages are held in the queue. This memory is not
shrunk back to the underlying 60K bytes for model queues.

7.3.6 BufferLength
The AMQRMPPA process contains a thread per connected client. The BufferLength parameter of
the MQGet is also used to allocate a long term piece of storage of this size in which the message is
held before being retrieved by the client. If the size of the arriving messages cannot be predicted then
the application should provide a buffer than can deal with 90% of the messages and redrive the
MQGET after return code 2080 (X'0820') MQRC_TRUNCATED_MSG_FAILED by providing a larger
BUFFER for retrieving this particular message. There is a mechanism to gradually reduce the size
of the storage in AMQRMPPA if the recent BufferLength size is significantly smaller than previous
BufferLength.

7.3.7 MQIBINDTYPE
MQIBINDTYPE=FASTPATH will cause the channel to run ‘Trusted’ mode. Trusted applications
do not use a thread in the Agent (AMQZLLA) process. This means there is no IPC between the
Channel and Agent because the Agent does not exist in this connection. If the channel is run in
STANDARD mode then any messages passed between the channel and agent will use IPCC memory
(size = BufferSize with a maximum size of 1MB) that is dynamically obtained and only held for the
lifetime of the MQGet. Standard channels each require an additional 80K bytes of memory. As the
message rate increases, there will be more IPCC memory used in parallel.

The power of the machine used to process a workload needs to handle the peaks of troughs. Customers may specify
a daily workload but this number cannot be divided by the number of seconds in a day to find the necessary system
configuration. The peak hourly rate cannot be divided by 3600 because the peak rate per second will probably be 2-3
times higher. The system must process these peak loads without building up a backlog of queued work. It is
important to prevent the queue depths increasing because they will occupy memory from the 'fre' pool or be spilled
out to disk. Over commitment of real memory is handled by the page manager but sudden large jumps (storms)
possibly due to queues becoming deep can cause the throughput to break down completely if the page manager
chooses too much working set memory to be paged. Gradual over commitment enables the page manager to shuffle
out those pages that are not part of the working set.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 59

8 Measurement Environment

8.1 Workload description

8.1.1 MQI response time tool
The MQI tool exercises the local queue manager by measuring elapsed times of the 8 main MQSeries
verbs: MQCONN(X), MQDISC, MQOPEN, MQCLOSE, MQPUT, MQGET, MQCMIT, and
MQBACK. The following MQI calls are paired together inside a test application:

• MQCONN(X) with MQDISC
• MQOPEN with MQCLOSE
• MQPUT with MQGET
• MQCMIT and MQBACK with MQPUT and MQGET

Note: MQCLOSE elapsed time is only measured for an empty queue.

Note: Performance of MQCMIT and MQBACK is measured in conjunction with MQPUT and MQGET,
putting and getting messages inside a unit of work (i.e. inside syncpoint control). The unit of work
is committed at the end of each batch. The number of messages per batch is a parameter of the
test.

Note: This tool is not used to measure the performance of verbs: MQSET, MQINQ, or MQBEGIN.

8.1.2 Test scenario workload
The MQI applications use 32 bit libraries for MQ V53 and 64 bit libraries for MQ V6.

8.1.2.1 The driving application programs
The test scenario workload simulates many driving applications running on a single driving machine.
This is not typical of a customer environment and is only used to facilitate test coordination. Driving
applications were multi-threaded with each thread performing a sequence of MQI calls. The driving
applications (Requesters) for Local and DQ tests used Trusted bindings. The number of threads in each
application was adjusted according to whether the test was measuring a local queue manager, a client
channel, or distributed queuing scenario. This was done to reduce storage overheads on the driving
system. Each driving application thread performed the sequence of actions as outlined in the test
scenario illustrations in the ‘Performance Headlines’ starting on page 6.

Message rate: in all but the rated and capacity limit tests, message processing was performed in a tight-
loop. In the rated tests a message rate of 1 round trip per driving application per second was used, and
in the capacity limit tests a message rate of 1 round trip per channel per minute was used.

Nonpersistent and persistent messages were used in all but the capacity limit tests.

Note: The driving applications gathered timing information for all MQI calls using a high-resolution
timer.

8.1.2.2 The server application program
The server application is written as a multi-threaded program configured to use 20, 6, 6 threads for
processing nonpersistent messages with Local, Client, and DQ applications, and 30, 60, 10 threads to
process persistent messages with Local, Client, and DQ applications. Each server thread performed the
sequence of actions as outlined in the test scenario illustrations in the ‘Performance Headlines’
starting on page 6.

Nonpersistent messaging is done outside of syncpoint control. Persistent messaging is done inside of
syncpoint control. The average message throughput expressed as a number of round trips per second
was calculated and reported by the server program.

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 60

8.2 Hardware
Sun Ultra-80 420R: Server system (device under test)

Model: Z801 0000022003

Processor: 450MHz UltraSparc-II

Architecture: 4-way SMP

Memory (RAM): 4GB

Disk: 2 Internal Ultra2 SCSI (18.2GB ea. 1 O/S, 1 swap)

 2 External Ultra2 SCSI (18.2GB ea. 1 queue, 1 log)

Network: 1GBit Ethernet

IBM S80: Driving applications machine

Model: 7017-S80

Processor: 375MHz PowerPC RS64-III

Architecture: 24-way SMP

 IBM SSA 160 SerialRAID Adapter

Memory (RAM): 32GB

Disk: 2 Internal 16Bit LVD SCSI (9.1GB ea. 1 O/S, 1 O/S + swap)

 3 SSA Logical disks

 (1 Physical SSA160, 9.1GB, 1 swap, 1 queue, 1 log)

Network: 1GBit Ethernet

Sun Sun-Fire 3800: Driving applications machine (not used)

Model: Z801 0000024977

Processor: 750MHz UltraSparc-III

Architecture: 4-way SMP

Memory (RAM): 4GB

Disk: 2 Internal Ultra2 SCSI (36GB ea. 1 O/S, 1 swap)

2 External Ultra2 SCSI (36GB ea. 1 queue, 1 log)

Network: 1GBit Ethernet

8.3 Software
Solaris O/S: SunOS Version 5.8

MQSeries: Version 6.0 (B.11.600.???), Version 5.3 (B.11.530.???)

Compiler: C for AIX Compiler, Version 6

WebSphere MQ for Solaris V6.0 – Performance Evaluations

Page 61

9 Glossary
Test name The name of the test.

Note: The test names in some cases are rather long. This is done to provide a
descriptive qualification of the test measurement to relate to the
performance discussion in the sections throughout the document:

local => local queue manager test scenario

cl => client channel test scenario

dq => distributed queuing test scenario

np => nonpersistent messages

pm => persistent messages

r3600 => 1 round trip per driving application per second

runmqlsr => channels using the ‘runmqlsr’ listener (client channel test
scenario, in addition to ‘runmqchi’ for distributed queuing test scenarios)

c6000 => 6,000 client driving applications (i.e. 6,000 MQI-client
connections)

q1000 => 1,000 server channel pairs

max => maximum number of channels (or channel pairs)

no_correl_id => correlation identifier not used in the response messages
(as each response is placed on a unique reply-to queue per driving
application)

Apps The number of driving applications connected to the queue manager at the point
where the performance measurement is given.

Rate/App/hr The target message throughput rate of each driving application.

Round T/s The average achieved message throughput rate of all the driving applications
together, measured by the server application.

% (Round T/s) The percentage increase in the total message throughput rate.
Note: The nature of the comparison is noted under each table where percentage

improvements have been given.

Resp time (s) The average response time each round trip, as measured and averaged by all the
driving applications.

CURDEPTH The number of messages on the input queue as a snapshot.
Note: runmqsc <qmname>, DISPLAY QLOCAL(<qname>) CURDEPTH

queue disk (kbps) The queue disk kilobytes transferred per second.

Swap The total amount of swap area reservation for all processes in MB, unless
otherwise specified as swap/app (i.e. swap area reservation per driving
application).

shm The amount of allocated shared memory in MB.

