
IBM Message Service Client for .NET

IBM Messaging Service Client (XMS) for
.NET Performance Evaluation
Version 1.0

���

IBM Message Service Client for .NET

IBM Messaging Service Client (XMS) for
.NET Performance Evaluation
Version 1.0

���

ii IBM Message Service Client for.NET

Contents

Tables v

Chapter 1. Preface 1
Target Audience 1
The contents of this SupportPac 1

Chapter 2. Overview 3

Chapter 3. Architecture of Performance
Test scenarios 5
Point-to-Point PutGet four queue Scenario 5
Point-to-Point N:N (multiple producers, consumers,
queues) scenario 6
Publish Subscribe 1:N (single publisher, single topic,
multiple subscribers) scenario. 6
Publish Subscribe N:N (multiple publishers,
subscribers, topics) scenario 7

Chapter 4. Test Scenarios 9
Point-to-Point four queue PutGet scenario 9

Non-Persistent messages 9
Persistent messages 9

Point to Point N:N (multiple producers, consumers,
queues) scenario 11

Non Persistent results 11
Persistent Results 13

Publish Subscribe 1:N (single publisher, single topic,
multiple subscribers) scenario 17

Binding mode results 17
Managed Client mode results 18
Unmanaged client mode results 20

Publish Subscribe N:N (multiple publishers,
subscribers, topics) scenario 21

Non-persistent results 22
Persistent results 24

Chapter 5. Testing with WebSphere MQ
V7 client features 27

Performance comparison by varying ShareCnv . . 27
Performance comparison by using Asynchronous
Put 28
Performance comparison using Read Ahead . . . 28
Performance comparison by varying Read Ahead
buffer Size 30

Chapter 6. Tuning and Programming
guidelines 31
Selecting the Log location 31
Level of log write 31
Type of logging 31
Log file extent size 31
Number of log file extents 32
LogBufferPages 32
Setting the Log parameter values in the registry . . 32
Queue buffer sizes 32
Queue manager channels 33
Enabling Prefetch in the system 33
Enabling Asynchronous Put 33
Enabling Read Ahead 34
Setting the ReadAhead buffer size 34
Disabling multiplexing and shared conversation . . 34
Send and Receive Buffer size for large messages . . 35

Chapter 7. Machine and Test
Configuration 37

Chapter 8. Appendix 39

Notices 41

Trademarks and service marks 43

Index 45

© Copyright IBM Corp. 2011 iii

iv IBM Message Service Client for.NET

Tables

1. Test Parameters 3
2. Point-to-Point 4Q Binding mode maximum

rate 10
3. Point-to-Point 4Q Managed Client mode

maximum rate 10
4. Point-to-Point 4Q Unmanaged client mode

maximum rate 10
5. Point-to-Point N:N Non Persistent maximum

rate 13
6. Point-to-Point N:N Persistent maximum rate 16
7. Publish Subscribe 1:N Binding mode

maximum rate 18
8. Publish Subscribe 1:N Managed Client mode

maximum rate 20

9. Publish Subscribe 1:N Unmanaged client mode
maximum rate 21

10. Publish Subscribe N:N Non Persistent mode
maximum rate 23

11. Publish Subscribe N:N Persistent mode
maximum rate 26

12. Performance Comparison by varying ShareCnv 27
13. Performance comparison by using

Asynchronous Put 28
14. Performance maximum enabling Read Ahead 29
15. Performance comparison by varying Read

Ahead buffer size 30

© Copyright IBM Corp. 2011 v

vi IBM Message Service Client for.NET

Chapter 1. Preface

This report presents a performance evaluation of XMS .NET on a Windows
platform with WebSphere® MQ. The report is intended to assist in capacity
planning, and application design.

Target Audience
This SupportPac is designed to enable users to:
v Design an XMS .NET solution with WebSphere MQ.
v Understand the scalability of XMS .NET applications.
v Leverage the advantages of XMS .NET features for better performance.

The contents of this SupportPac
The contents of this SupportPac cover:
v Charts and Tables providing information about XMS.NET performance

scalability.
v Performance comparison using WebSphere MQ V7 features.
v Advice on programming and tuning.

© Copyright IBM Corp. 2011 1

2 IBM Message Service Client for.NET

Chapter 2. Overview

The purpose of this report is to provide a reference on XMS .NET performance for
various scenarios. Commonly used customer scenarios, including point-to-point,
and publish-subscribe were measured. The following scenarios were tested:
1. Point to Point four queue PutGet.
2. Point to Point N:N multiple producers, consumers.
3. Publish Subscribe 1:N single publisher, multiple subscribers.
4. Publish Subscribe N:N multiple publishers, subscribers.

The XMS .NET Performance Harness tool was used to conduct the tests. See XMS
.NET Performance Harness documentation (available at https://www.ibm.com/
developerworks/mydeveloperworks/files/app/collection/5bd0fa23-4704-44dc-
a5d5-ffe7cd205bf3?lang=en) for information about the XMS .NET Performance
Harness tool.

The XMS .NET Performance Harness tool performs the functions of PutGet,
Sender, Receiver, Publisher, Subscriber applications as needed. These tests were run
in a .NET environment.

The performance test scenarios are adopted from JMS Performance Evaluation
document MP07. The XMS .NET Performance Harness applications and Queue
Manager are hosted on a single system.

In the context of each test, following is applicable:

Table 1. Test Parameters

Message size 2048 bytes

Message type Text message

Delivery mode used Persistent and Non-persistent messages

Mode of test Binding, Managed client (.NET managed client), Unmanaged client
(.NET unmanaged client)

Input Rate for
Scenario 2 and 4

Constant input rate for each application thread

Input Rate scenario 1
and 3

Maximum input rate

Test duration 300 seconds

Discard period The first 10 seconds of data are discarded

ReadAhead Enabled for receiver and subscriber applications

Sharing of TCP/IP
channel instance for
conversation

The number of connections to share is set 1.

AsynchronousPut Enabled for the sender and publisher applications

Transaction property
for sessions.

Non transactional for all tests.

Log and Queue
Buffer tuning

Done

Windows OS tuning Prefetch feature is enabled and set to 3

© Copyright IBM Corp. 2011 3

https://www.ibm.com/developerworks/mydeveloperworks/files/app/collection/5bd0fa23-4704-44dc-a5d5-ffe7cd205bf3?lang=en
https://www.ibm.com/developerworks/mydeveloperworks/files/app/collection/5bd0fa23-4704-44dc-a5d5-ffe7cd205bf3?lang=en
https://www.ibm.com/developerworks/mydeveloperworks/files/app/collection/5bd0fa23-4704-44dc-a5d5-ffe7cd205bf3?lang=en

The test results are presented in charts and tables.

To understand the benefits of WebSphere MQ V7 features, tests were run with
selected features of WebSphere MQ enabled, and then disabled. The results are
presented in charts and tables.

4 IBM Message Service Client for.NET

Chapter 3. Architecture of Performance Test scenarios

Four types of application scenarios were created to conduct performance testing.
Two of these scenarios use Point-to-Point, and two scenarios use Publish-Subscribe.
v The Point to Point four queue, (four queues) PutGet scenario: In this scenario,

applications are allocated to one of the four queues. The performance impact of
several applications interacting with a limited number of queues is measured.

v The Point to Point N:N (multiple producers, consumers, queues) scenario: In this
scenario, the number of triplets (producer, consumer, and queue) are sequentially
increased. This test measures the scalability of the system when the triplets
(producer, consumer, and queue) are increased.

v The Publish-Subscribe 1:N (single publisher, multiple subscribers) scenario: This
scenario measures the system capacity when the number of subscribers is
increased.

v The Publish Subscribe N:N (multiple publishers, subscribers, topics) triplets
scenario: This test measures the system capacity when the number of triplets
(publisher, subscriber, topic) is sequentially increased.

Point-to-Point PutGet four queue Scenario
In this scenario, a PutGet application is used to measure performance. In the
PutGet application, each thread is allocated to one of the four queues. The thread
that puts the message to a particular queue gets the message back from the same
queue.

v The number of applications is increased by increasing the number of application
threads.

v During the test, each thread measures the number of PutGet sequences
completed for each test interval. The total number of completed PutGet
sequences for all the threads shows the impact on performance versus the
number of active application threads.

Figure 1. Point to Point, 4Q Put/Get scenario

© Copyright IBM Corp. 2011 5

Point-to-Point N:N (multiple producers, consumers, queues) scenario
In this scenario, two applications are used. One application is the producer, and
the other is the consumer. Multiple threads are used in the producing and
consuming applications. Each pair of application threads communicate through a
specific single queue.

v Both the applications are on the same system. The message producer sends
messages at constant rate. The number of triplets (producer, consumer, and
queue) is gradually increased. The performance impact is measured as the
number of triplets is increased. The operation of the producing application
putting the messages, and the receiving application retrieving the message is
counted as two messages.

v The sum of the sender rate and receiver rate for all the applications gives the
performance capability of this configuration.

v Non persistent messages: 3200 messages/sec/application thread
v Persistent messages: 400 messages/sec/application thread
v The message size is 2048 bytes.

Publish Subscribe 1:N (single publisher, single topic, multiple
subscribers) scenario

In this scenario, the Publisher publishes messages on a single topic. The number of
subscribers to the topic is gradually increased from 2 to 40.

Figure 2. Point to Point, N:N (Multiple producers, consumers, queues) scenario

6 IBM Message Service Client for.NET

v The publisher produces messages as fast as possible. The number of subscribers
is increased. The impact on performance is measured.

v The sum of messages published, and sum of messages received by the
subscribers, gives the performance statistics for this configuration.

Publish Subscribe N:N (multiple publishers, subscribers, topics)
scenario

In this scenario, a Publisher publishes messages for a particular topic. A single
Subscriber subscribes to that topic to get the messages.

Figure 3. Publish Subscribe 1:N (Single publisher, Single topic, multiple subscribers) scenario

Chapter 3. Architecture of Performance Test scenarios 7

v The triplet (publisher, subscriber, topic) is gradually increased up to 10.
v The sum of all messages published, and sum of all messages received by the

subscribers gives the total performance capacity of this configuration.
v The Publisher publishes messages at a constant rate.
v Non persistent messages: 1600 messages/sec/application thread.
v Persistent messages: 800 messages/sec/application thread.
v The message size is 2048 bytes.

Figure 4. Publish Subscribe N:N (multiple publishers, subscribers, topics) scenario

8 IBM Message Service Client for.NET

Chapter 4. Test Scenarios

The performance results of tests conducted for four scenarios are given below. Test
results are explained using charts and tables.

Point-to-Point four queue PutGet scenario
In the Point-to-Point 4Q Put/Get scenario, the number of application threads that
Put and Get messages, is gradually increased from 2 to 40. Message throughput,
and CPU utilization are measured in each interval. The complete operation of
putting the message, and getting back the message is considered as one message.

Non-Persistent messages
The graph in figure 5 displays the results of Point-to-Point four queue PutGet
Non-Persistent test, conducted in binding mode, managed client mode, and
unmanaged client mode.

During the test, the performance, measured as round trips per second, gradually
increases with number of applications until CPU utilization reaches maximum.
Then the performance remains fairly constant as the number of application thread
increases.

Persistent messages
The graph in Figure 6 displays the results of Point-to-Point PutGet four queue
persistent test conducted in binding mode, managed client mode, and unmanaged
client mode.

Figure 5. 5 Point-to-Point 4Q Non Persistent chart

© Copyright IBM Corp. 2011 9

During the test, the performance gradually increases with number of applications
until CPU utilization reaches maximum. Then the performance remains fairly
constant with increase in application threads.

The maximum performance rate achieved in binding mode is shown in Table 2.
The corresponding CPU utilization is shown.

Table 2. Point-to-Point 4Q Binding mode maximum rate

Binding mode
No of application
threads

Max-rate in
roundtrips/sec CPU%

Non persistent 12 13544 90

Persistent 8 6086 71

The maximum performance rate achieved in managed client mode is shown in
Table 3. The corresponding CPU utilization is provided.

Table 3. Point-to-Point 4Q Managed Client mode maximum rate

Managed Client
mode

No of application
threads

Max-rate in
roundtrips/sec CPU%

Non persistent 16 2894 100

Persistent 16 2018 71

The maximum performance rate achieved in unmanaged client mode is shown in
Table 4. The corresponding CPU utilization is provided.

Table 4. Point-to-Point 4Q Unmanaged client mode maximum rate

Unmanaged Client
mode No of applications

Max-rate in
roundtrips/sec CPU%

Non persistent 12 3343 99.6

Persistent 26 2282 100

Figure 6. Point-to-Point 4Q Persistent chart

10 IBM Message Service Client for.NET

Point to Point N:N (multiple producers, consumers, queues) scenario
In these tests, the producing application generates messages at constant rate. The
number of triplets (producer, consumer, and queue) in the configuration is
increased from 1 to 10.

The performance results, and CPU utilization, is captured for each of the tests.

Non Persistent results
The non-persistent tests are conducted with a constant input message rate of 3200
messages per second for each producer application.

Binding mode

The graph in Figure 7 displays the results of Point-to-Point N:N (multiple
producers, consumers, queues) Non-Persistent test, conducted in binding mode.

During the test, the receiver rate increases linearly with the sender rate until the
CPU utilization reaches maximum. Then, the sender rate and receiver rate remain
almost constant.

Managed Client Mode

The graph in Figure 8 displays the results of Point-to-Point N:N (multiple
producers, consumers, queues) Non-Persistent test, conducted in managed client
mode.

Figure 7. Point-to-Point N:N Non Persistent Binding chart

Chapter 4. Test Scenarios 11

During the test, the receiver rate increases linearly with the sender rate until the
CPU utilization reaches maximum. Then, the sender rate and receiver rate remains
almost constant.

Unmanaged Client mode

The graph in Figure 9 displays the results of Point-to-Point N:N (multiple
producers, consumers, queues) Non-Persistent test, conducted in unmanaged client
mode.

v During the test, the receiver rate increases linearly with the sender rate until the
CPU utilization reaches maximum. Further increases to the sender rate results in
a decrease to the receiver rate.

v When the receiver is not able to keep up with the messages being sent by the
producer, the messages queue.

Figure 8. Point-to-Point N:N Non Persistent, Managed client chart

Figure 9. Point-to-Point N:N Non Persistent Unmanaged client chart

12 IBM Message Service Client for.NET

The best performance statistics achieved using this configuration for non-persistent
messages in binding, client, and unmanaged client modes is given in Table 5.

Table 5. Point-to-Point N:N Non Persistent maximum rate

Non persistent Binding Managed Client Unmanaged Client

Number of triplets 6 4 3

Receiver rate in
messages/sec

17545 8112 9616

Sender rate in
messages/sec

17567 8159 9600

Total rate in
messages/sec

35112 16271 19216

Expected rate in
messages/sec

38400 25600 19200

CPU% 99.2 98 98.43

The total rate is the sum of the sender rate and receiver rate.

The expected rate is calculated as:

Expected rate = 3200 * number of triplets * 2.

Persistent Results
The persistent tests are conducted with constant input message rate of 400
messages per second for each producer application.

Binding mode

The graph displays the results of Point-to-Point N:N (multiple producer, consumer,
queue) Persistent test, conducted in binding mode.

Figure 10. Point-to-Point N:N Persistent, Binding chart

Chapter 4. Test Scenarios 13

During the test, the sender and receiver rate increase linearly up to eight triplets.
After that, there is a sudden drop in performance, and also in CPU utilization. This
drop is attributed to the increase in the number of input/output activities waiting
to be completed.

The Average Disk Queue Length variation chart, corresponding to Point-to-Point
N:N Persistent test in binding mode, is provided in Figure 11. The Average Disk
Queue Length indicates the number of input/output activities waiting to be
completed.

Managed Client mode

The graph in Figure 12 displays the results of Point-to-Point N:N (multiple
producers, consumers, queues) Persistent test, conducted in managed client mode.

The sender and receiver rate increase linearly up to five triplets. After that, there is
a drop in performance, and also in CPU utilization. This drop is attributed to the
increase in the number of input/output activities waiting to be completed.

Figure 11. Point-to-Point N:N Persistent, Binding, Average Disk Queue Length variation

Figure 12. Point-to-Point N:N Persistent, Managed client chart

14 IBM Message Service Client for.NET

The Average Disk Queue Length variation chart, corresponding to Point-to-Point
N:N Persistent test in managed client mode, is provided in Figure 13. The Average
Disk Queue Length gives an indication of the number of input/output activities
waiting to be completed.

Unmanaged Client mode

The graph in Figure 14 displays the results of Point-to-Point N:N (multiple
producers, consumers, queues) Persistent test, conducted in unmanaged client
mode.

v During the test, the sender and receiver rate increase linearly up to six triplets.
After that, there is a drop in performance, and also in CPU utilization. This drop
is attributed to the increase in the number of input/output activities waiting to
be completed.

Figure 13. Point to Point N:N Persistent, Managed Client, Average Disk Queue Length
variation

Figure 14. Point-to-Point N:N Persistent, Unmanaged client chart

Chapter 4. Test Scenarios 15

v The Average Disk Queue Length variation corresponding to Point-to-Point N:N
Persistent, unmanaged client chart is provided. The Average Disk Queue Length
gives an indication of the number of input/output activities waiting to be
completed.

v When the receiver is not able to keep up with the messages being sent by the
producer, the messages queue. Queuing indicates that superior resources are
needed to increase the throughput.

The maximum performance achieved using this configuration for persistent
messages in binding, client, and unmanaged client modes is given in Table 6.

Table 6. Point-to-Point N:N Persistent maximum rate

Persistent Binding Managed Client Unmanaged Client

Number of triplets 8 5 6

Receiver rate in
messages/sec

3192 1972 2359

Sender rate in
messages/sec

3197 1999 2400

Actual rate in
messages/sec

6389 3971 4759

Expected rate in
messages/sec

6400 4000 4800

CPU% 12.5 79.6 83.2

The total rate is the sum of sender rate and receiver rate.

The expected rate is calculated as:

Expected rate = 400 * number of triplets * 2.

Figure 15. Point to Point N:N Persistent, unmanaged client, Average Disk Queue Length
variation

16 IBM Message Service Client for.NET

Publish Subscribe 1:N (single publisher, single topic, multiple
subscribers) scenario

In these tests, the publisher produces messages at a maximum rate. Initially, one
publisher and two subscribers are used. Then the number of subscribers is then
increased to 40.

The performance results, and CPU utilization, are captured for each of the tests.

Binding mode results
The results of Publish Subscribe 1:N (Single publisher, Single topic, multiple
subscribers) Non Persistent test, conducted in Binding mode.

Non Persistent messages

The graph in Figure 16 displays the results of the Publish Subscribe 1:N (single
publisher, single topic, multiple subscribers) Non Persistent test, conducted in
Binding mode.

During the test, as the number of subscribers increase, the publisher gets less CPU
time for publishing messages. Hence, the rate of publishing drops with the increase
in the number of subscribers.

Persistent messages

The graph in Figure 17 displays the results of Publish Subscribe 1:N (single
publisher, single topic, multiple subscribers) Persistent test, conducted in Binding
mode.

Figure 16. Publish Subscribe 1:N Non Persistent, Binding chart

Chapter 4. Test Scenarios 17

During the test, as the number of subscribers increase, the publisher gets less CPU
time for publishing the messages. Hence, the rate of publishing drops with increase
in number of subscribers.

The maximum rate achieved for non-persistent and persistent messages in binding
mode is given in Table 7.

Table 7. Publish Subscribe 1:N Binding mode maximum rate

Binding
mode

No of
subscribers

Publish
rate in
messages/
sec

Subscribe
rate in
messages/
sec

Expected
subscriber
rate in
messages/
sec

Actual
total rate
in
messages/
sec CPU%

Non
persistent

4 3396 13557 4 * 3396 =
13584

16593 83.9

Persistent 8 1669 13305 8 * 1669 =
13352

14974 82.4

The total rate is the sum of the publisher and subscriber rate.

The expected subscriber rate is calculated as:

Expected subscriber rate = publish rate * number of subscribers.

Managed Client mode results
Non Persistent messages

The graph in Figure 18, displays the results of Publish Subscribe 1:N (single
publisher, single topic, multiple subscribers) Non Persistent test, conducted in
Managed Client mode.

Figure 17. Publish Subscribe 1:N Persistent, Binding chart

18 IBM Message Service Client for.NET

During the test, as the number of subscribers increase, the publisher gets less CPU
time for publishing the messages. Hence, the rate of publishing drops as the
number of subscribers increase.

Persistent results

The graph in Figure 19, displays the results of Publish Subscribe 1:N (single
publisher, single topic, multiple subscribers) Persistent test, conducted in Managed
Client mode

During the test, as the number of subscribers increase the publisher gets less CPU
time for publishing the messages. Hence, the rate of publishing drops with an
increase in subscribers.

The maximum rate achieved for non-persistent and persistent messages in
Managed client mode is given in Table 8.

Figure 18. Publish Subscribe 1:N Non Persistent, Managed client chart

Figure 19. Publish Subscribe 1:N Persistent, Managed client chart

Chapter 4. Test Scenarios 19

Table 8. Publish Subscribe 1:N Managed Client mode maximum rate

Managed
Client
mode

No of
subscribers

Publish
rate in
messages/
sec

Subscribe
rate in
messages/
sec

Expected
subscribe
rate

Total rate
in
messages/
sec CPU%

Non
persistent

4 2269 9242 4 * 2269 =
9076

11511 90.7

Persistent 8 618 4999 8 * 618 =
4944

5617 97.6

The total rate is the sum of the publisher and subscriber rate.

The expected subscriber rate is calculated as:

Expected subscriber rate = publish rate * number of subscribers.

Unmanaged client mode results
Non-Persistent messages

The graph in Figure 20, displays the results of Publish Subscribe 1:N (single
publisher, single topic, multiple subscribers) Non-Persistent test, conducted in
unmanaged client mode.

As the number of subscribers increases, the publisher gets less CPU time for
publishing the messages. Hence, the rate of publishing drops with an increase in
the number of subscribers.

Persistent messages

The graph in Figure 21, displays the results of Publish Subscribe 1:N (single
publisher, single topic, multiple subscribers) Persistent test, conducted in
unmanaged client mode.

Figure 20. Publish Subscribe 1:N Non Persistent, Unmanaged client chart

20 IBM Message Service Client for.NET

During the test, as the number of subscribers increase, the publisher gets less CPU
time for publishing the messages. Hence, the rate of publishing drops with an
increase in the number of subscribers.

The maximum rate achieved for non-persistent and persistent messages in
unmanaged client mode is given in Table 9.

Table 9. Publish Subscribe 1:N Unmanaged client mode maximum rate

Unmanaged
client
mode

No of
subscribers

Publish
rate in
messages/
sec

Subscribe
rate in
messages/
sec

Expected
subscribe
rate in
messages/
sec

Total rate
in
messages/
sec CPU%

Non
persistent

4 2675 10731 4* 2675 =
10700

13406 100

Persistent 10 582 6003 10 * 582 =
5820

6585 94.6

The total rate is the sum of publisher rate and subscriber rate.

The expected subscriber rate is calculated as:

Expected subscriber rate = publish rate * number of subscribers.

Publish Subscribe N:N (multiple publishers, subscribers, topics)
scenario

In these tests, the publisher publishes at constant rate. The number of triplets
(publisher, subscriber, topic) is gradually increased to 10. The performance,
measured in messages per second, and CPU utilization, is captured for each of the
tests.

Figure 21. Publish-Subscribe (1: N Persistent), Unmanaged client chart

Chapter 4. Test Scenarios 21

Non-persistent results
For non-persistent tests, each publisher publishes 1600 publications/sec.

Binding mode

The graph displays the results of Publish Subscribe N:N (multiple publishers,
topics, subscribers) Non-Persistent test, conducted in binding mode.

The publisher rate and subscriber rate linearly increase until the CPU utilization
reaches maximum. After that, the performance reduces with an increase in the
number of applications.

Managed Client mode

The graph displays the results of Publish Subscribe N:N (multiple publishers,
topics, subscribers) Non-Persistent test, conducted in managed client mode.

Figure 22. Publish Subscribe N:N Non Persistent, Binding chart

22 IBM Message Service Client for.NET

During the test, the publisher rate and subscriber rate linearly increase until the
CPU utilization reaches maximum. After that, the performance reduces with the
increase in the number of applications.

Unmanaged client mode

The graph displays the results of Publish Subscribe N:N (multiple publishers,
topics, subscribers) Non-Persistent test, conducted in unmanaged client mode.

During the test, the publish rate and subscriber rate linearly increase until the CPU
utilization reaches maximum. After that, the performance reduces with an increase
in the number of applications.

When the subscriber is not able to keep up with the messages being published by
the publisher, the messages queue.

The maximum performance that can be achieved with the existing resource for
non-persistent messages in binding, client, and unmanaged client modes is given
in the table.

Table 10. Publish Subscribe N:N Non Persistent mode maximum rate

Non
persistent

No of
triplets

Publish
rate in
messages/
sec

Subscribe
rate in
messages/
sec

Expected
total rate
in
messages/
sec

Actual
total rate
in
messages/
sec CPU%

Binding 7 11199 11212 22400 22414 91.7

Client 4 6399 6402 12800 12801 95.3

Unmanaged 5 8000 8000 16000 15986 100

The total rate is the sum of publisher rate and subscriber rate.

Figure 23. Publish Subscribe N:N Non Persistent, Managed Client chart

Figure 24. Publish Subscribe N:N Non Persistent, Unmanaged client chart

Chapter 4. Test Scenarios 23

The total expected rate is calculated as

Total expected rate = 1600 * number of triplets * 2.

Persistent results
For persistent tests, the publisher publishes at a rate of 800 publications per second
for each application.

Binding mode

The graph in Figure 25, displays the results of Publish Subscribe N:N (multiple
publishers, topics, subscribers) Persistent test, conducted in binding mode.

During the test, the publisher rate and subscriber rate linearly increase up to 8
triplets. The CPU utilization also increases linearly.

Managed Client mode

The graph in Figure 26, displays the results of Publish Subscribe N:N (multiple
publishers, topics, subscribers) Persistent test, conducted in managed client mode.

Figure 25. Publish Subscribe N:N Persistent, Binding chart

24 IBM Message Service Client for.NET

During the test, the publisher rate and subscriber rate increases linearly until the
CPU utilization reaches maximum. After that, the performance remains constant
with an increase in the number of applications.

Unmanaged Client Mode

The graph in Figure 27, displays the results of Publish Subscribe N:N (multiple
publishers, topics, subscribers) Persistent test, conducted in unmanaged client
mode.

During the test, the publisher rate and subscriber rate increases linearly until the
CPU utilization reaches maximum. After that, the performance remains constant
with an increase in the number of applications.

Figure 26. Publish Subscribe N:N Persistent, Managed Client chart

Figure 27. Publish Subscribe N:N Persistent, Unmanaged client chart

Chapter 4. Test Scenarios 25

When the subscriber is not able to keep up with the messages being published by
the publisher, the messages are queued. Queuing indicates that superior resources
are needed to increase the throughput.

The maximum performance statistics achieved with this configuration for
persistent messages in binding, client, and unmanaged client modes is given in
Table 11.

Table 11. Publish Subscribe N:N Persistent mode maximum rate

Persistent
No of
triplets

Publish
rate in
messages/
sec

Subscribe
rate in
messages/
sec

Expected
total rate
in
messages/
sec

Actual
total rate
in
messages/
sec CPU%

Binding 8 6399 6401 12800 12800 27.7

Managed
Client

4 3200 3036 6400 6236 89.8

Unmanaged
Client

6 4800 4652 9600 9452 99.6

The total rate is the sum of publisher rate and subscriber rate.

The total expected rate is calculated as:

Total expected rate = 800 * number of triplets * 2.

26 IBM Message Service Client for.NET

Chapter 5. Testing with WebSphere MQ V7 client features

This section provides the results of enabling WebSphere MQ V7 client features.
Tests were run after enabling, and again after disabling, selected features of
WebSphere MQ. The results are presented in charts and tables.

Performance comparison by varying ShareCnv
The graph displays the results of the Point to Point N:N (multiple producers,
consumers, queues) Non-Persistent test, conducted in managed client mode by
varying ShareCnv.

The sender sends messages at a constant rate of 3200 messages per second. The
number of senders, and receivers are gradually increased up to 10 triplets.
v The rate obtained is the sum of sender and receiver rate.
v The default ShareCnv value is 10. This means that, if an application opens more

than one connection from a process, up to 10 connections share a single socket.
v The performance is measured in messages per second, after setting the ShareCnv

value to 1, 5, 10, 20.

Table 12 shows the difference in performance by changing ShareCnv value when
the number of triplets is 3.

Table 12. Performance Comparison by varying ShareCnv

Application Point-Point
(N:N) NP, Managed Client
mode ShareCnv(1) ShareCnv(20)

No of triplets 3 3

Rate 16000 messages/sec 11662 messages/sec

Figure 28. Performance comparison varying ShareCnv

© Copyright IBM Corp. 2011 27

Performance comparison by using Asynchronous Put
The graph displays the results of Point-to-Point N:N (multiple producers,
consumers, queues) Non-Persistent test, conducted in managed client mode with,
and without Asynchronous Put enabled.

The sender sends messages at a constant rate of 3200 messages per second. The
number of senders, receivers is gradually increased to 10 triplets.
v The rate obtained is the sum of the sender and receiver rate.
v The performance is measured with, and without Asynchronous Put enabled.
v The performance of sending application is higher when Asynchronous Put is

enabled, as the sending application does not wait for acknowledgment for the
sent messages from the queue manager.

Table 13 provides the resulting statistics when number of triplets is set to 5.

Table 13. Performance comparison by using Asynchronous Put

Application Point-Point
(N:N) NP, Managed Client
mode Read Ahead enabled Without Read Ahead

No of triplets 5 5

Rate 16594 messages/sec 9257 messages/sec

Performance comparison using Read Ahead
The Read Ahead feature is useful for non-persistent messages during receive.

The graph in Figure 30, displays the results of Point-to-Point N:N (multiple
producers, consumers, queues) Non-Persistent test conducted in managed client
mode with, and without Read Ahead enabled.

Figure 29. Performance comparison with Asynchronous Put

28 IBM Message Service Client for.NET

The Read Ahead buffer size is set to the default buffer size of 100k.

The sender sends messages at a constant rate of 3200 messages per second. The
number of senders, receivers is gradually increased to 10 triplets.
v The rate obtained is the sum of the sender and receiver rate.
v The performance is measured with, and without Read Ahead enabled.
v The performance of the receiving application is higher when Read Ahead is

enabled, as the receiving application reads the messages from queue manager
without waiting for client to read the message.

The highest throughput for the application is with Read Ahead enabled. Statistics
generated when the number of triplets set to 5, is shown in Table 14.

Table 14. Performance maximum enabling Read Ahead

Application Point-Point
(N:N) NP, Managed Client
mode Read Ahead enabled Without Read Ahead

No of triplets 5 5

Rate 16594 messages/sec 12558 messages/sec

Figure 30. Performance comparison with Read Ahead

Chapter 5. Testing with WebSphere MQ V7 client features 29

Performance comparison by varying Read Ahead buffer Size
The graph in Figure 31 displays the results of Point-to-Point N:N (multiple
producers, consumers, queues) Non-Persistent test, conducted in managed client
mode with Read Ahead enabled through varying the Read Ahead buffer size.

v The sender sends messages at a constant rate of 3200 messages per second. The
number of senders, receivers is gradually increased to 10 triplets.

v The rate obtained is the sum of sender and receiver rate.
v The performance is measured by varying Read Ahead buffer size.
v The performance of the receiving application is higher if the Read Ahead buffer

size is higher.

The highest throughput is for applications with Read Ahead enabled. Table 15
provides statistics generated when number of triplets is 4.

Table 15. Performance comparison by varying Read Ahead buffer size

Application Point-Point
(N:N) NP, Managed Client
mode

Read Ahead buffer size 10
MB

Read Ahead buffer size 10
KB

No of triplets 4 4

Rate 16887 messages/sec 13422 messages/sec

Figure 31. Performance comparison by varying Read Ahead buffer size

30 IBM Message Service Client for.NET

Chapter 6. Tuning and Programming guidelines

This section describes various tuning, and programming parameters that can be set
to deliver better performance. Each section briefly describes the tuning parameter,
and the settings used in the test environment.

Selecting the Log location
Select the WebSphere MQ log file location before creating the queue manager. It is
preferable to have a fast (low write latency) local disk, or a SAN disk.

Create a directory D:\MQM_LOG

Use –ld option to set the log location. Create the queue manager using crtmqm.
crtmqm [-z] [-q] [-c Text] [-d DefXmitQ] [-h MaxHandles]
[-g ApplicationGroup]
[-t TrigInt] [-u DeadQ] [-x MaxUMsgs] [-lp LogPri] [-ls LogSec]
[-lc | -ll] [-lf LogFilePages] [-ld LogPath] QMgrName

Level of log write
The method to reliably write log records is selected by this variable. The default is
TripleWrite.

For better performance, SingleWrite is preferred. SingleWrite can be selected if the
disk attributes guarantee that all the written data will be written into the disk, in
case of a failure.

Note: For reliability of data, TripleWrite is preferred when using non-cached disk.

Type of logging
WebSphere MQ provides two types of logging; linear and circular. In linear
logging, the log extents are continuously allocated as required. In circular logging,
the extents with inactive log data are reused.

The default is circular logging. For better performance, use circular logging.

To set the logging type, set the -lc option with crtmqm.

Log file extent size
The log data is held in a series of log files. The log file size is specified in units of
4-KB pages.

The default number of log file pages is 4096, giving a log file size of 16 MB on
Windows.

Note: The minimum number of log file pages is 32, and the maximum is 65535.
Allocate the maximum size, providing disk space is available.

To set the log file extent size, set the -lf option used with crtmqm.

© Copyright IBM Corp. 2011 31

Note: For performance testing, the maximum size of 65535 was used.

Number of log file extents
Log file extents can be specified as primary or secondary. Primary extents are
allocated and formatted by the queue manager when it is first started, or when
extra extents are added. Once a primary extent is formatted, it can be reused.
Secondary log file extents are allocated dynamically by the queue manager when
the primary files are exhausted.

The number of extents needed depends upon the amount of data to be logged, and
the size of each extent.

The values used are: LogPrimaryFiles=10 and LogSecondaryFiles=15.

LogBufferPages
The Log Buffer is the amount of main memory used to accumulate log records that
are written out to disk. Log records are appended at the end of the log buffer.
When the end of the buffer is reached, serialization takes place. Serialization
reduces the rate of data transfer to disk. A larger buffer reaches its limit less
frequently than a smaller buffer.

You can specify the size of the buffer in units of 4Â-KB pages. Specify the value
using theLogBufferPages parameter of the Log stanza of the queue manager
(consider the platform on which the queue manager is located).

Note: Performance testing is done with LogBufferPages set to 4096.

Setting the Log parameter values in the registry
The log parameter values are set in the registry as follows.
[HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\IBM\MQSeries\CurrentVersion\
Configuration\QueueManager\<Queue manager name>\Log]
"LogPrimaryFiles"="10"
"LogSecondaryFiles"="15"
"LogFilePages"="65535"
"LogType"="CIRCULAR"
"LogBufferPages"="4096"
"LogPath"="C:\\Program Files (x86)\\IBM\\WebSphere MQ\\log\\QM_xmspamdlnx2\\"
"LogWriteIntegrity"="SingleWrite"

Queue buffer sizes
Each queue in the queue manager is assigned with two buffers to hold messages.
One buffer is for non-persistent messages. The other buffer is for persistent
messages. When the messages exceed the size of the buffer, they are stored in the
operating system file system. By increasing the size of the buffer limit, more
messages can be stored in the buffer where they are readily available to the queue
manager.

Defining queue buffers for queues (using large non-persistent or persistent
messages) can degrade the performance if the system is in short of memory. This
scenario might occur because many queues are defined with large buffers, or many
channels. When increasing the values for the buffer sizes, ensure that increasing
the size improves the message throughput. If throughput is not increased, then do
not increase the buffer sizes.

32 IBM Message Service Client for.NET

When setting the values for buffer size, you must consider the average size and
average number of messages that are on the queue. As with all queue-based
processing in WebSphere MQ, aim to have low queue depths.

The non-persistent queue buffer size is specified using the tuning parameter
DefaultQBufferSize. The persistent queue buffer size is specified using the tuning
parameter DefaultPQBufferSize.

The queue buffer size values are set in registry as values for TuningParameters:
[HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\IBM\MQSeries\
CurrentVersion\Configuration\
QueueManager\<Queue manager name>\TuningParameters]

"DefaultQBufferSize"="1048576"
"DefaultPQBufferSize"="1048576"

Queue manager channels
You can set MQIBindType to FASTPATH on the client channel.

The major benefit of this setting is performance improvement for non-persistent
messages. This setting eliminates the AGENT process and reduces the processor
(CPU) cost.

By specifying MQIBindType=FASTPATH in the registry, and setting the environment
variable MQ_CONNECT_TYPE=FASTPATH this performance optimization is achieved.

Note: This setting is not applicable when using user exits, because the user code is
run as part of the queue manager.

Enabling Prefetch in the system
The Prefetch feature of Windows operating system pre-fetches the data,
anticipating cache misses. This feature improves the performance and is set in the
registry.
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\
Memory Management\PrefetchParameters
EnablePrefetcher=3

Note: Performance can be improved by using different copy names of executable
files for sender and receiver applications (if same executable file is used for
sending and receiving).

Enabling Asynchronous Put
Using asynchronous put, an application can put a message to a queue without
waiting for a response from the queue manager. This feature can be used to
improve messaging performance in client applications.
Async Put is enabled on destination by setting XMSC.WMQ_PUT_ASYNC_ALLOWED
property as XMSC.WMQ_PUT_ASYNC_ALLOWED_ENABLED

Example:-
dest.SetIntProperty(XMSC.WMQ_PUT_ASYNC_ALLOWED, XMSC.WMQ_PUT_ASYNC_ALLOWED_ENABLED);

Note: For performance testing, AsyncPut is enabled.

Chapter 6. Tuning and Programming guidelines 33

Enabling Read Ahead
By enabling Read Ahead on a client receiver or subscriber, non-persistent messages
can be streamed from queue manager to client without the client application
having to request the messages.

When a client requires a message from a server, it sends a request to the server. It
sends a separate request for each of the messages it consumes. To improve the
performance of a client consuming non-persistent messages, a client can be
configured to use Read Ahead. Read Ahead allows messages to be sent from a
queue manager to a client without an application having to request them.

Read ahead is enabled on destination by setting on
XMSC.WMQ_READ_AHEAD_ALLOWED
as XMSC.WMQ_READ_AHEAD_ALLOWED_ENABLED .

Example:
dest.SetIntProperty(XMSC.WMQ_READ_AHEAD_ALLOWED, XMSC.WMQ_READ_AHEAD_ALLOWED_ENABLED);

Note: For performance testing, Read Ahead is enabled.

Setting the ReadAhead buffer size
The ReadAhead buffer size is set by adding the MessageBuffer stanza to the
mqclient.ini file.

For example, to add 1000-KB buffer size, perform the following step:

In the mqclient.ini file, add the MessageBuffer stanza:
MessageBuffer:

MaximumSize=1000
Updatepercentage=-1
PurgeTime=0

Note: For performance testing, the default buffer size of 100-KB is used.

Disabling multiplexing and shared conversation
The SHARECNV channel attribute specifies the maximum number of conversations
that share each TCP/IP channel instance. Sharing conversations has performance
implications, as all the conversations on a socket are received by the same thread.

High SHARECNV limits have the advantage of reducing the queue manager thread
usage. However, if many conversations sharing a socket are all busy, there is a
possibility of delays as the conversations contend with one another to use the
receiving thread. In this situation, a lower SHARECNV value is better.

Note: The default value on a client-connection channel for the SHARECNV channel
attribute is 10.

Shared converstaion and multiplexing is disabled by setting
XMSC.WMQ_SHARE_CONV_ALLOWED on connection factory.

Example:
cf_.SetIntProperty(XMSC.WMQ_SHARE_CONV_ALLOWED, XMSC.WMQ_SHARE_CONV_ALLOWED_NO);

34 IBM Message Service Client for.NET

The number of connections to share is set on the channel by setting SHARECNV
value.

Example:
alter CHANNEL(SYSTEM.DEF.SVRCONN) CHLTYPE(SVRCONN) SHARECNV(1)

Note: For improved performance, shared conversation is disabled in the
performance run configuration.

Send and Receive Buffer size for large messages
To change the buffer size, environment variables MQ_COMMS_IP_RCVBUF, and
MQ_COMMS_IP_SDRBUF have to be configured. The default values are 32 KB.

For potential improved performance, set the send and receive buffer size to a
higher value, the readahead buffer to the maximum value, and the SHARECNV
channel attribute to 1.

Note: For performance testing, the default setting of 32 KB was used for the send
and receive buffer size.

Chapter 6. Tuning and Programming guidelines 35

36 IBM Message Service Client for.NET

Chapter 7. Machine and Test Configuration

The following test configuration is required:
v Hardware

Model: IBM® System x3655, 64-bit
Type: 7985-41A
4 CPU, Dual Core AMD Opteron processor 2216
2.40 GHz, 8-GB RAM

v Disk
Adaptec Array SCSI Disk
Model: MBB2147RC
Rotational Speed: 10K rpm, Buffer size 16 MB
Transfer to Host: 3-GB/sec
Average latency: 2.99 ms

v Operating System
Microsoft Windows Server 2003 Enterprise x64 Edition, Version 5.2.3790, Service
Pack 2
NET Framework 2.0 Configuration, Version 2.0.50727.42

v WebSphere MQ
Name: WebSphere MQ
Version: 7.1.0.0
Level: p000-L110128
Mode: 32-bit

v XMS
XMS (.NET) Version: 2.1.0.0
CMVC Level: nn00-L110118

© Copyright IBM Corp. 2011 37

38 IBM Message Service Client for.NET

Chapter 8. Appendix

CPU Utilization

The percentage of time the processor was busy during the sampling interval. This
counter is equivalent to the Task Manager's CPU Usage counter.

For the total processor utilization systemwide, the Processor(_Total)\% Processor
Time counter is used.

The command used to get the total CPU utilization for the system is
typeperf -sc 1 "\processor(_total)\% processor time"

Average disk queue length

The Average disk queue length tracks the number of requests that are queued and
waiting for a disk during the sample interval, as well as requests in service. As a
result, this might overstate activity.

If more than two requests are continuously waiting on a single-disk system, the
disk might be a bottleneck. To analyze queue length data further, use Avg. Disk
Read Queue Length and Avg. Disk Write Queue Length.

The command used to get the average disk queue length is
typeperf -sc 1 "\PhysicalDisk(_Total)\Avg. Disk Queue Length"

© Copyright IBM Corp. 2011 39

40 IBM Message Service Client for.NET

Notices

The following paragraph does not apply in any country where such provisions are
inconsistent with local law. INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore this statement may
not apply to you. References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in all countries in
which IBM operates. Any references to an IBM licensed program or other IBM
product in this publication is not intended to state or imply that only IBM's
program or other product may be used. Any functionally equivalent program that
does not infringe any of the intellectual property rights may be used instead of the
IBM product. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user's responsibility.
IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood New York 10594,
USA. The information contained in this document has not be submitted to any
formal IBM test and is distributed AS-IS. The use of the information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item has been reviewed by IBM
for accuracy in a specific situation, there is no guarantee that the same or similar
results will be obtained elsewhere. Customers attempting to adapt these techniques
to their own environments do so at their own risk.

© Copyright IBM Corp. 2011 41

42 IBM Message Service Client for.NET

Trademarks and service marks

The following terms, used in this publication, are trademarks of the IBM
Corporation in the United States or other countries or both:
v AIX
v IBM
v WebSphere MQ

The following terms are trademarks of other companies:
v HP-UX Hewlett-Packard Development Company, L.P.
v Solaris Sun Microsystems, Inc.
v Windows Microsoft Corporation

© Copyright IBM Corp. 2011 43

44 IBM Message Service Client for.NET

Index

A
Architecture 5
Async put 33

B
Binding mode 17
Buffer size for large messages 35

H
Hardware 37

L
Log buffer pages 32
Log file Extent Size 31
Log file extents 32
Log location 31
Log Parameter values 32
Log write 31
Logging 31

M
Machine 37
Managed Client mode 18
Multiplexing 34

N
Non persistent results 11, 22
Non-persistent results 9

O
Operating system 37
Overview 3

P
Performance comparison by

ShareCnv 27
Performance comparison by varying Read

Ahead buffer size 30
Performance comparison using

Asynchronous Put 28
Performance Comparison using Read

Ahead 28
Performance enhancements 27
Performance in test scenarios 9
Performance test 5
Persistent results 10, 13, 24
Point to Point N:N (multiple producers,

consumer, queues) scenario 6
Point to Point N:N (multiple producers,

consumer) Scenario 11

Point to Point Put/Get 4Q scenario 5
Point to Point Put/Get 4Q Scenario 9
Prefetch 33
Programming guidelines 31
Publish Subscribe 1:N (one publisher,

multiple subscribers) scenario 17
Publish Subscribe 1:N (Single publisher,

multiple subscribers) scenario 7
Publish Subscribe N:N (multiple

publishers, subscribers, topics)
scenario 8

Publish Subscribe N:N (multiple
publishers, subscribers) scenario 22

Q
Queue buffer sizes 32
Queue Manager channels 33

R
Read ahead 34
Read ahead buffer size 34

S
Shared conversation 34

T
Test configuration 37
Trademarks and service marks 43
Tuning guidelines 31

U
Unmanaged Client mode 20

© Copyright IBM Corp. 2011 45

46 IBM Message Service Client for.NET

����

Printed in USA

	Contents
	Tables
	Chapter 1. Preface
	Target Audience
	The contents of this SupportPac

	Chapter 2. Overview
	Chapter 3. Architecture of Performance Test scenarios
	Point-to-Point PutGet four queue Scenario
	Point-to-Point N:N (multiple producers, consumers, queues) scenario
	Publish Subscribe 1:N (single publisher, single topic, multiple subscribers) scenario
	Publish Subscribe N:N (multiple publishers, subscribers, topics) scenario

	Chapter 4. Test Scenarios
	Point-to-Point four queue PutGet scenario
	Non-Persistent messages
	Persistent messages

	Point to Point N:N (multiple producers, consumers, queues) scenario
	Non Persistent results
	Persistent Results

	Publish Subscribe 1:N (single publisher, single topic, multiple subscribers) scenario
	Binding mode results
	Managed Client mode results
	Unmanaged client mode results

	Publish Subscribe N:N (multiple publishers, subscribers, topics) scenario
	Non-persistent results
	Persistent results

	Chapter 5. Testing with WebSphere MQ V7 client features
	Performance comparison by varying ShareCnv
	Performance comparison by using Asynchronous Put
	Performance comparison using Read Ahead
	Performance comparison by varying Read Ahead buffer Size

	Chapter 6. Tuning and Programming guidelines
	Selecting the Log location
	Level of log write
	Type of logging
	Log file extent size
	Number of log file extents
	LogBufferPages
	Setting the Log parameter values in the registry
	Queue buffer sizes
	Queue manager channels
	Enabling Prefetch in the system
	Enabling Asynchronous Put
	Enabling Read Ahead
	Setting the ReadAhead buffer size
	Disabling multiplexing and shared conversation
	Send and Receive Buffer size for large messages

	Chapter 7. Machine and Test Configuration
	Chapter 8. Appendix
	Notices
	Trademarks and service marks
	Index
	A
	B
	H
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U

