WebSphere MQ Linux V7.0 -

Performance Evaluations on xSeries 64 bit

Version 1.3

June 2010
Peter Toghill , Craig Stirling .

WebSphere MQ Performance
IBM UK Laboratories
Hursley Park

Winchester

Hampshire

SO21 2JN

Property of IBM

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

Please take Note!

Before using this report, please be sure to read the paragraphs on “disclaimers”, “warranty
and liability exclusion”, “errors and omissions”, and the other general information paragraphs
in the "Notices" section below.

Forth Edition, June 2010.

This edition applies to WebSphere MQ for Linux V7 (and to all subsequent releases and
modifications until otherwise indicated in new editions).

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users

Documentation related to restricted rights.

Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
contract with IBM Corp.

Notices

DISCLAIMERS
The performance data contained in this report were measured in a controlled environment.
Results obtained in other environments may vary significantly.

You should not assume that the information contained in this report has been submitted to
any formal testing by IBM.

Any use of this information and implementation of any of the techniques are the responsibility
of the licensed user. Much depends on the ability of the licensed user to evaluate the data
and to project the results into their own operational environment.

WARRANTY AND LIABILITY EXCLUSION
The following paragraph does not apply to the United Kingdom or any other country where
such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions,
therefore this statement may not apply to you.

In Germany and Austria, notwithstanding the above exclusions, IBM's warranty and liability
are governed only by the respective terms applicable for Germany and Austria in the
corresponding IBM program license agreement(s).

ERRORS AND OMISSIONS

The information set forth in this report could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; any such change will be
incorporated in new editions of the information. IBM may make improvements and/or changes
in the product(s) and/or the program(s) described in this information at any time and without
notice.

INTENDED AUDIENCE
This report is intended for architects, systems programmers, analysts and programmers

Page Il

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

wanting to understand the performance characteristics of WebSphere MQ for Linux V7. The
information is not intended as the specification of any programming interface that is provided
by WebSphere. It is assumed that the reader is familiar with the concepts and operation of
WebSphere MQ V7.

LOCAL AVAILABILITY

References in this report to IBM products or programs do not imply that IBM intends to make
these available in all countries in which IBM operates. Consult your local IBM representative
for information on the products and services currently available in your area.

ALTERNATIVE PRODUCTS AND SERVICES

Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and verify the operation of any
non-IBM product, program, or service.

USE OF INFORMATION PROVIDED BY YOU
IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you.

TRADEMARKS AND SERVICE MARKS
The following terms used in this publication are trademarks of International Business
Machines Corporation in the United States, other countries or both:

- IBM
- WebSphere
- DB2

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

EXPORT REGULATIONS
You agree to comply with all applicable export and import laws and regulations.

Page I

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

Preface

Target audience
This SupportPac is designed for people who:

e Will be designing and implementing solutions using WebSphere MQ for Linux.
e Want to understand the performance limits of WebSphere MQ for Linux V7.0.
e Want to understand what actions may be taken to tune WebSphere MQ for Linux.

The reader should have a general awareness of the Linux operating system and of MQSeries in order to
make best use of this SupportPac. Readers should read the section ‘How this document is arra’—
Page VI to familiarise themselves with where specific information can be found for later reference.

The contents of this SupportPac
This SupportPac includes:

e Release highlights performance charts.

e Performance measurements with figures and tables to present the performance capabilities of
WebSphere MQ local queue manager, client channel, and distributed queuing scenarios.

e Interpretation of the results and implications on designing or sizing of the WebSphere MQ
local queue manager, client channel, and distributed queuing configurations.

Feedback on this SupportPac

We welcome constructive feedback on this report.
® Does it provide the sort of information you want?
¢ Do you feel something important is missing?

e Is there too much technical detail, or not enough?

Could the material be presented in a more useful manner?
Please direct any comments of this nature to WMQPG @uk.ibm.com.

Specific queries about performance problems on your WebSphere MQ system should be directed to
your local IBM Representative or Support Centre.

Page IV

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

Introduction

The three scenarios used in this report to generate the performance data are:

e Local queue manager scenario.
¢ C(Client channel scenario.
e Distributed queuing scenario.

Unless otherwise specified, the standard message sized used for all the measurements in this report is
2Kb (2,048 bytes).

An xSeries 3850 M2 2 dual core cpu 3.33GHz Intel xeon with 4Gb of RAM was used as the Device
under test.

An xSeries 3850 M2 2 dual core cpu 3.33GHz Intel xeon with 4Gb of RAM was used as the Driver.

Page V

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

How this document is arranged

Pages: 1-13

Section one contains the performance headlines for each of the three scenarios, with MQI applications
connected to:

® Alocal queue manager.

e A remote queue manager over MQI-client channels.

® Alocal queue manager, driving throughput between the local and remote queue manager over
server channel pairs.

The headline tests show:

e The maximum message throughput achieved with an increasing number of MQI applications.

e The maximum number of MQI-clients connected to a queue manager.

¢ The maximum number of server channel pairs between two queue managers, for a fixed think
time between messages until the response time exceeds one second.

Large Messages
Pages: 19-40

Section two contains performance measurements for large messages. This includes MQI response
times of 50byte to 2Mb messages. It also includes 20K, 200k and 2M messages using the same
scenarios as for the “WebSphere MQ V7.0 on Linux has similar performance characteristics to the V6
product. The comparisons in this report show that throughput has dropped by an average of 6% overall
(for Local, Client and Distributed Queuing) when the Clients are running in V6 compatibility mode
(see section 7.1.4). The default enhanced client support that provides Heartbeating, enhanced
reliability, and multiplexing degrades Client benchmarks by a further 13%.

There are new functions in V7 that provide enhanced performance to applications that are able to use
them and they include Asynchronous Puts, Read-ahead, Properties, and selectors but they are not
covered in this document.

Performance Headlines”.

Application Bindings

Page: 49-54

Section three contains performance measurements for 'trusted, normal, and isolated' server
applications, using the same three scenarios as for the “WebSphere MQ V7.0 on Linux has similar
performance characteristics to the V6 product. The comparisons in this report show that throughput has
dropped by an average of 6% overall (for Local, Client and Distributed Queuing) when the Clients are

running in V6 compatibility mode (see section 7.1.4). The default enhanced client support that provides
Heartbeating, enhanced reliability, and multiplexing degrades Client benchmarks by a further 13%.

There are new functions in V7 that provide enhanced performance to applications that are able to use
them and they include Asynchronous Puts, Read-ahead, Properties, and selectors but they are not
covered in this document.

Performance Headlines”.
Tuning Recommendations

Pages: 59-

Measurement Environment

Pages: 64 66

Page VI

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

A summary of the way in which the workload is used in each test scenario is given in the “WebSphere
MQ V7.0 on Linux has similar performance characteristics to the V6 product. The comparisons in this
report show that throughput has dropped by an average of 6% overall (for Local, Client and Distributed
Queuing) when the Clients are running in V6 compatibility mode (see section 7.1.4). The default
enhanced client support that provides Heartbeating, enhanced reliability, and multiplexing degrades
Client benchmarks by a further 13%.

There are new functions in V7 that provide enhanced performance to applications that are able to use
them and they include Asynchronous Puts, Read-ahead, Properties, and selectors but they are not
covered in this document.

Performance Headlines” section. This includes a more detailed description of the workload, hardware
and software specifications.

Glossary
Page: 66

A short glossary of the terms used in the tables throughout this document.

Page VII

CONTENTS

A

Overview 1
Performance Headlines 2
2.1 Local Queue Manager Test SCENATIO.....c..ccvueeruiriiirierieieeiteteeteeteste ettt 2
2.1.1 Nonpersistent Messages — Local Queue Managerc..co.eeveeeirineneneieeeeneneneneenneeens 3
2.12 Nonpersistent Messages — Non trusted — Local Queue Manager.... 4
2.13 Persistent Messages — Local Queue Manager...........cccoeevvenierienieieneenienieieenieeieseeresieeeens 5
2.2 Client Channels TeSt SCENATIO.ccccuttrriteriiiiiiieriie ettt ettt ettt ettt e s teesbeesaaee s 6
2.2.1 Nonpersistent Messages — Client Channelscocceoeveeveneiniininiieneeneneeneceseeeseeeens 7
222 Nonpersistent Messages — Non Trusted Client Channelsccccocevveevenieneneineniencneennen. 8
223 Persistent Messages — Client Channels
224 CLENE CRANNELS ..c.eeveeiieiieeieetee ettt ettt eb ettt et s bt et s bt enbesseenbesaeenses
2.3 Distributed Queuing Test SCENATIO........evtirierierieiieeie ittt
23.1 Nonpersistent Messages — Server Channelscoccoeeveoieininininenieneiceeencseseseeneene 13
232 Non Persistent non Trusted — Server Channelscoccoeievieriirieniniienenienceese e 14
233 Persistent Messages — Server Channels
234 Server CRANNEIS.cc.ueiiiiiiiierie ettt ettt ettt et s e sbee et esaresbeenaee
235 Sttt ekttt
Large Messages
3.1 MQI Response Times: 50bytes to 100Mb — Local Queue Manager............cocceveevuereennnenne. 19
3.1.1 SODYLES £0 32KD ..ttt ettt etttk etttk ettt 19
3.1.2 B2KD £0 2IMID ..otttk ettt ettt 20
3.13 2MDB O TOOMD......ooviiiiiiiciiieiceetetete ettt ettt ettt 22
3.2 20K MESSAZES.....eeuveeurieiieriieitenttett ettt ettt ettt et et sttt ettt e e s e 23
3.2.1 Local QUEUE MANAZETcc.eevuiriiiiiniieiiniietesiteteet ettt ettt st et sb e s e sbe e et 23
322 Client Channel
323 Distributed QUEUINGcoverueeiiriieiiriieieetteterceeetet ettt ettt sb s st sbesane et 27
3.3 200K MESSAZES. ..ccuveeurerureruieiienteettett et sttt ettt et s st e sae et et et ean e e h et e e sane e 29
3.3.1 Local QUEUE MANAZETcc.eeviriiiiiniieiiniieieniteteet ettt ettt st sb s s sbesane e 29
332 Client Channel.............cooiiiiiiiiiiiii e 31
333 Distributed QUETINGc..ecveuieiiiiiriiriirtiteeet ettt ettt sttt sae s e eeae 33
3.4 2D MESSAZES ...eeuveneeriiesiteitenitet et ettt ettt et ettt st she e bt a et ea e et eh e bt e bt e b e bt et saee e 35
34.1 Local QUeue Managercccooiiiiiiiiiiiiiiiiiiiicnictccec et 35
342 Client Channel
343 Distributed QUETINGc..ccveuieiiiiiriirinteteeeiet ettt ettt sae b s eene
3.5 SSL CHENLS ...ttt sttt s ettt s et
3.5.1 Non Persistent 2K Dyte MESSAZEcoveveveureuiririnienienieieteiteeeeseseesteeeseneese s seeneneene

352 Non Persistent 20K byte message
353 Non Persistent 64K byte message

354 Non Persistent 200K DYte MESSAZE.......c.erureriirieriirieriinienienienteeeete ettt seneee 44
355 Persistent 2K Dyte MESSAZEevveeviriiiiiniiiiiriieieeteteeeee ettt 45
356 Persistent 20K byte message
3.5.7 Persistent 64K DYLE MESSAZEcoveruerviieieieiieiirenienestet ettt sttt eeae 47
3.5.8 Persistent 200K DYLe MESSAZEc.evvervireieienieiirienienienter ettt se ettt neeeae 48
Application Bindings 49
4.1 Local QUEUE MANAZETcc.eeruiiriiiiiiieiieiie ittt ettt ettt ettt ebe ettt sbeesbeenbeenaeeneeeas 49
4.1.1 INONPELSISIENT MESSAZES ...enveuririeniiiieienitetesttete ettt eite st e st et e bt st e see st e bt senesaeeseennesanenee 49
412 PersiSteNt MESSAZES ...c.veuveureueuieuieienienteieteit ettt st sttt ettt et s e ettt et s b e nesne s sene 50
4.2 Clent ChannELSc..cooviiiiiiiiiieieeeies ettt s 51
421 INONPETSISIENT MESSAZESveeveviieientiienteirentetesie st st et ettt et s e et et eae et e st saesaessesaenneneene 51
422 PersiSteNt MESSAZES ...c.veuveureuiiieiietinienteieeeit ettt st st st ettt ettt st ettt et sae e s sae s nene 52
4.3 DiStributed QUEUTINGcc.verutiriiiniiiniieieeie ittt ettt ettt sttt e e bt ettt sitesbeenbeenbeenreeas 53
43.1 INONPETSISIENT MESSAZESvveveviieietiienteireiteteete sttt ettt e st see s e easeneetesaesaessesaenneneene 53
432 PersiSteNt MESSAZES ..c.veuveureuiiieiieienienteteteit ettt sttt st ettt et et s e et be bt e b sne s nene 54
Short & Long Sessions 55
Performance and Capacity Limits 57
6.1 Client channels — capacity MEASUTEIMENTScceecuiriirierieriieiiete e e e s 57
6.2 Distributed queuing — capacity MeasuUremMentscceceerueerueenuieueeeenreneeneenneesneenesee e 58
Tuning Recommendations 59
7.1 Tuning the QUEUE MANAZETcovutriiriiriiiniietieieee ettt ettt e 59
7.1.1 Queue Disk, Log Disk, and Message Persistence.........c.cccecueererenenienieieeeeneneneeneneenenes 59

7.1.2 Log Buffer Size, Log File Size, and Number of Log EXtents..........cccccvcevvuenirvenienrcnencnenne 59

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

7.1.3 Channels: Process or Thread, Standard or Fastpath?..........c.ccccccovivininiinninininnencenee 61
7.14
7.2 Applications: Design and Configuration
7.2.1
722
7.3 Tuning the Operating System (Linux RHES)
7.4 Virtual Memory, Real Memory, & Paging

7.4.1 Queue Managercceceevveenieenieeneennne

7.4.2 Channels..................

7.4.3 Client Channels........

7.4.4 Server — Server Channels

7.4.5 Reply Queue..........coevueenenne.

7.4.6 BUfferLengthc..ooeoiiiiiiiieee et

7.4.7 MOQIBINDTYPE ..ottt ettt ettt ettt ettt et eve et easeeveessebeeasesreessenseeasanes
Measurement Environment
8.1 Workload deSCIIPHIONcc.eeruieriiiiiiieiiesiterteeteet ettt ettt sttt et seee e enaees

8.1.1 MQI response time tool

8.1.2 Test scenario WOIKIOAd.............oooviiieiiiii et e
8.2 HAIAWAIEoiiieeiiiiieieee e ettt e e et e e et e e e e eataeeeetaeeeeaseeeeaaraeaeentseeeennns
8.3 SOFIWAIE ...ttt et e et e e e et e e e e tae e e e eataeeeeetbeeeeeateeeenaraeaeetreaeanaes
Glossary

Page IX

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

TABLES

Table 1 — Performance headline, nonpersistent messages, local queue managercccceeeeveeeennenne 3
Table 2 — Performance headline, persistent messages, local queue managerccccceceeeeerreenueeeennennes 5
Table 3 — Performance headline, nonpersistent messages, client channelsccccceceiveeninninncnncne. 7
Table 4 — Performance headline, persistent messages, client channelsccccoccevveneniienencencnncne. 9
Table 5 — 1 round trip per driving application per second, client channelscccccoceeiiniiniininnnnn. 11
Table 6 — Performance headline, nonpersistent messages, server channelscc.cccccooenieninnnnnn. 13
Table 7 — Performance headline, persistent messages, server channelsc..cccccoceeviniinicneniennn. 15
Table 8 — 1 round trip per driving application per second, client channelsc..cocceverienieniincnnen. 17
Table 9 — 20K nonpersistent messages, local qUeUe MANAZETc..cocueevirierierieneenieeientenee e 23
Table 10 — 20K persistent messages, local qUEUE MANAZETc..coveeruiriirienienieneeieee e 24
Table 11 — 20K nonpersistent messages, client channelscoceveeviniiniinininnceee 25
Table 12 — 20K persistent messages, client Channelsccoceveereeniiiiniiinienieeeee e 26
Table 13 — 20K nonpersistent messages, client channelsc..coocceveeiniiniinincee 27
Table 14 — 20K persistent messages, client channelscoccooeeriiiiiiiiiinieieeee e 28
Table 15 — 200K nonpersistent messages, local qUeUe MANAZETcccueeverierienieerieenierieneeneereeeeens 29
Table 16 — 200K persistent messages, local qUEUE MANAZETcc.eevvieuieierienienieeieee e 30
Table 17 — 200K nonpersistent messages, client channelsc..coceevieiiiiiniiniiiinneeeeeee 31
Table 18 — 200K persistent messages, client channelscoccooeoiiiiiiiniinicee 32
Table 19 — 200K nonpersistent messages, distributed qUEUINGcc.cocvieciiriiiiiiiiieiieiiieneeeeeeee 33
Table 20 — 200K persistent messages, distributed UETINGcc.cerueeriirriirienienieneeieeie e neeieeaees 34
Table 21 — 2M nonpersistent messages, local qUEUE MANAZETcc.eevveerirverierieneenieee et neeeeeaees 35
Table 22 — 2M persistent messages, 10cal QUEUE MANAZET «.......ccueerueeruieiirienienienieenieeie e neenieeseeeaeens 36
Table 23 — 2M nonpersistent messages, client Channels...........cocceveeviiiiriiiniinienieceeececeeee 37
Table 24 — 2M persistent messages, client Channelsccoceveeiiiriiiiniiniene e 38
Table 25 — 2M nonpersistent messages, distributed qUEUINGcccecvieiiriiiiiiiiiiiiiiicee 39
Table 26 — 2M persistent messages, distributed qUEUINGcoeeruieriieiiieiiinienieeeie e 40
Table 27 — Application binding, nonpersistent messages, local queue managercocceeceereerueenenne 49
Table 28 — Application binding, persistent messages, local queue manager............c.ccecceeevereenienneenene 50
Table 29 — Application binding, nonpersistent messages, client channelscccccocceevenienieniennnnn. 51
Table 30 — Application binding, persistent messages, client channelscc.coceeieiiniinininnenn. 52
Table 31 — Application binding, nonpersistent messages, distributed queuingccccceceevceeneeneenncnne 53
Table 32 — Application binding, persistent messages, distributed qUEUINGcc.ceveevierrierierieneenennienns 54
Table 33 — Short sessions, CHENt CRANNELIS.........covviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee ettt eeeeee e e e eeeeerererenens 56
Table 34 — Capacity measurements, client Channelsccoceveerieniiiiiniiinienieceeec e 57
Table 35 — Capacity measurements, SErver Channelsccoceveereeriiiiiniiinienieeeeeee e 58
Table 36 — DQ capacity, memory ULIISAIONcc.eeruiiriiriiriiiienieeeeceteeteet ettt e eae 58

Page X

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

FIGURES

Figure 1 — Connections into a local qUEUE MANAZETc..coveerieriiriiiiinieeeieeie ettt 2
Figure 2 — Performance headline, nonpersistent messages, local queue manager.c..cccceeeveevuennenne. 3
Figure 3 NonPersistent NONTIUSLEdcccocceiiiiiiniiiiniiiiecee ettt 4
Figure 4 — Performance headline, persistent messages, local queue manager............cceceeveerueenneenennennes 5
Figure 5 — MQI-client channels into a remote qUEUE MANAZETcoeerueerueeruierierenreneeneereereeneenenaee 6
Figure 6 — Performance headline, nonpersistent messages, client channels.............ccccceceeveerieneencnnene 7
Figure 7 — Performance headline, persistent messages, client channels.............c.ccccoceviniinnniincnne 9
Figure 8 — 1 round trip per driving application per second, client channels, nonpersistent messages.... 10
Figure 9 — 1 round trip per driving application per second, client channels, persistent messages.......... 11
Figure 10 — Server channels between tWo qUEUE MANAZELSc..cerueeruierirrenierienieenieeienreseenieenseenueens 12
Figure 11 — Performance headline, nonpersistent messages, server channelsc.ccooccoeenveniencnnnene 13
Figure 12 — Performance headline, persistent messages, server channelscc.ccooccevervenencenennnen. 15
Figure 13 — 1 round trip per driving application per second, server channel, nonpersistent messages .. 16
Figure 14 — 1 round trip per driving application per second, server channel, persistent messages 16
Figure 15 —The effect of nonpersistent message size on MQI response time (50byte - 32K) 19
Figure 16 —The effect of persistent message size on MQI response time (50byte - 32K)cc...c...... 19
Figure 17 —The effect of nonpersistent message size on MQI response time (32K — 2Mb)................... 20
Figure 18 —The effect of persistent message size on MQI response time (32K — 2Mb)..........ccccccueeueeee 21
Figure 19 —The effect of nonpersistent message size on MQI response time (2Mb — 100Mb) 22
Figure 20 —The effect of persistent message size on MQI response time (2Mb — 100Mb) 22
Figure 21 — 20K nonpersistent messages, local qUeUe Manager...........cocueeverierieneenernenieneeneeneeeens 23
Figure 22 — 20K persistent messages, local qUEUE MANAZETccceerueeiirienienienieeieete e neeneeieeeens 24
Figure 23 — 20K nonpersistent messages, client channels.........c..coocceveeierienienienienenncneneeneeeeiene 25
Figure 24 — 20K persistent messages, client Channels...........cocoveerieririinienienieneeee e 26
Figure 25 — 20K nonpersistent messages, distributed qUEUING..........cceecvieciirieriienieiiereieneneeeeeeee 27
Figure 26 — 20K persistent messages, distributed qUEUING............ccccccieviiiiiiniiiiiiiniiiiieccececeee 28
Figure 27 — 200K nonpersistent messages, local qUEUE MANAZETcceeecverieruieniienieerierieneeneereeneene 29
Figure 28 — 200K persistent messages, local qUEUE MANAZETcccueevieiirienieneenieeie e 30
Figure 29 — 200K nonpersistent messages, client channels.............ccccocieiiiiiniininiiniiceee 31
Figure 30 — 200K persistent messages, client channels.............c.ccoeoviiiiiiiniiniiniieecceee 32
Figure 31 — 200K nonpersistent messages, distributed qUEUING........cc.cevverierienieniienernienie e 33
Figure 32 — 200K persistent messages, distributed qUEUING.........cooeevieriiriinienienieeee e 34
Figure 33 — 2M nonpersistent messages, local qUEUE MANAZETcecveeververienieneenierienteneeneeieeeens 35
Figure 34 — 2M persistent messages, 1ocal qUEUE MANAZETcoceevuieiirienienieneeieee et 36
Figure 35 — 2M nonpersistent messages, client channelsc..cooceveeiniiniininecee 37
Figure 36 — 2M persistent messages, client Channelsccoceveerieniriiinienienieneeee e 38
Figure 37 — 2M nonpersistent messages, distributed qUEUINGc..cccueevieiierierienieeieere e 39
Figure 39 2M persistent messages, distributed qUEUINGcoceerieiiiiiiiiiiniiiiiceeee e 40
Figure 40 2K NON-persiStent MESSAZEcveeverurereerieerieereerereesieerrtertereesesseesseesseeseenesanesaeesaeenseeneens 41
Figure 41 20K non-persiStent MESSAZEccueeueerurerueerieenreerereenieereerteseeeresseesseesseeseenesanesaeesseesseenneens 42
Figure 42 64K NON-persiStent MESSAZEccveeuerurerrierieereerereesieerteereeeeeresseeseesseeseenesanesaeesseesseeseens 43
Figure 43 200k NON-PEISIStENt MESSAZEeeuverurertierteerieeterteritesiterteeteesteeirestaesseenteeteeaesaeesbeesueenseenseens 44
Figure 44 — 2K persiStent MESSAGES............cc.eeervieriiieeiiieeiiieeitieeiteeieeesieeeteeesseesssreesseessssessseessssesssaesnns 45
Figure 45 — 20K persiStent MESSAZES...........c.ccocvieriiiiiiiieeiiieeitieeteeteeieeeireesiteeireesaeessbeeesseesssneessnesnes 46
Figure 46 — 64K persiStent MESSAZES...........c..cocieeiiiriiiieeiiieeiiieeeeeteeieeeieeeieeetreesaeesbaeesseesnseeessnesnes 47
Figure 47 — 200K persiStent MESSAGES..............ceeevuieeriieeiiieeiiieeiiieeieeesteeestreesaeesssreesseessssessseesssseessaesns 48
Figure 48 — Application binding, nonpersistent messages, local queue manager............c..ccoceeveerueenenne 49
Figure 49 — Application binding, persistent messages, local queue manager.............coccceevereeneenneenenne 50
Figure 50 — Application binding, nonpersistent messages, client channels.............ccccocccoviniiniinnnnn. 51
Figure 51 — Application binding, persistent messages, client channels............c..cccceeeeiiniinicneniennnn. 52
Figure 52 — Application binding, nonpersistent messages, distributed qUeUing..........c.cccocceeceereerueenene 53
Figure 53 — Application binding, persistent messages, distributed qUEUINg.........c..cccceeviriierieenieniennnns 54
Figure 54 — Short sessions, client Channelsc..cooioiiiiiiiiiiiiieeeeeece e 55

Page XI

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

1 Overview

WebSphere MQ V7.0 on Linux has similar performance characteristics to the V6 product. The comparisons in
this report show that throughput has dropped by an average of 6% overall (for Local, Client and Distributed
Queuing) when the Clients are running in V6 compatibility mode (see section 7.1.4). The default enhanced
client support that provides Heartbeating, enhanced reliability, and multiplexing degrades Client benchmarks by
a further 13%.

There are new functions in V7 that provide enhanced performance to applications that are able to use them and
they include Asynchronous Puts, Read-ahead, Properties, and selectors but they are not covered in this
document.

Page 1

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

2 Performance Headlines

The measurements for the local queue manager scenario are for processing messages with no think-time. For
the client channel scenario and distributed queuing scenario, there are also measurements for rated messaging.

No think-time is when the driving applications do not wait after getting a reply message before submitting
subsequent request messages—this is also referred to as tight-loop.

The rated messaging tests used one round trip per driving application per second. In the client channel test
scenarios, each driving application using a dedicated MQI-client channel, in the distributed queuing test
scenarios, one or more applications submit messages over a fixed number of server channels.

All tests are stopped automatically after the response time exceeds 1 second.

2.1 Local Queue Manager Test Scenario

Figure 1 — Connections into a local queue manager

1) The Requester application puts a message to the common input queue on the local queue manager, and
holds on to the message identifier returned in the message descriptor. The Requester application then waits
indefinitely for a reply to arrive on the common reply queue.

2) The Responder application gets messages from the common input queue and places a reply to the
common reply queue. The queue manager copies over the message identifier from the request message to the
correlation identifier of the reply message.

3) The Requester application gets a reply from the common reply queue using the message identifier held
from when the request message was put to the common input queue, as the correlation identifier in the message
descriptor.

Nonpersistent and persistent messages were used in the local queue manager tests, with a message size of 2K.
The effect of message throughput with larger messages sizes is investigated in the “Large Messages” section.

Application Bindings of the Responder program are ‘Shared’ and the Requester program is normally ‘Trusted’
except in the ‘non-trusted’ scenario where both programs use ‘shared’ bindings.

Page 2

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

2.1.1 Nonpersistent Messages — Local Queue Manager

Figure 2 , Figure 3 and Figure 4 shows the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the local queue manager scenario (see Figure 1 on the previous
page), and WebSphere MQ V7.0 compared to Version 6.

26,000
25,000 -
24,000 -
23,000 -
22,000 -
21,000 -
20,000 -
19,000 -
18,000 -
17,000 -
16,000 -

£ 15,000

214,000 - -

£ 13,000 - ¥ i

T 12,000 ¢ 2

£ 11,000 5 g
10,000 1

9,000 {

8,000 1 -

7,000 1.

6,000

5,000 -

4,000 -

3000 | —— WMQ v6.0 WMQ v7.0 1 209

2,000 | ---0--- WMQ v6.0 cpu % WMQ v7.0 cpu %

b

1,000

0 ‘ — ‘ ‘ ‘ —

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Applications

Local Queuing - 2K NonPersistent Messages
Peak Throughput - WMQ V6.0 vs WMQ V7.0

r 120%

+ 60%

T 40%

0%

20

Figure 2 — Performance headline, nonpersistent messages, local queue manager.

Figure 2 and Table 1 shows that the throughput of nonpersistent messages has reduced by 16% comparing
Version 6 to Version 7

Test name: Round | Response
A
local_np Pps Trips/sec | time (s) CPU
WebSphere MQ V6.0 4 23421 0.0002 | 90%
WebSphere MQ V7.0 4 20400 0.0003 | 85%

Table 1 — Performance headline, nonpersistent messages, local queue manager

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number

of driving applications used to achieve the peak throughput

Page 3

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

2.1.2 Nonpersistent Messages — Non trusted — Local Queue Manager

18,000

16,000 -

14,000 -

12,000 -

10,000 -

4
8,000

Round Trips/sec

6,000 -

2,000 -

Local Queuing - 2K NonPersistent Messages for NonTrusted Bindings

Peak Throughput - WMQ V6.0 vs WMQ V7.0

4,000 4,

—— WMQ v6.0
-0 - - WMQ v6.0 cpu %

WMQ v7.0
WMQ V7.0 cpu %

+ 60%

+ 40%

T 20%

0%

9 10 11 12 13 14 15
Applications

16 17 18 19

20

Figure 3 NonPersistent nonTrusted

Test name: Round | Response
A
local_np_nt e Trips/sec | time (s) CPU
WebSphere MQ V6.0 | 4 16060 0.0003 | 93%
WebSphere MQ V7.0 | 4 13606 0.0003 | 94%

shows that the throughput of nonpersistent messages when the Requester and Responder both use Shared
bindings has reduced by 17% comparing Version 6 to Version 7

Page 4

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

2.1.3 Persistent Messages — Local Queue Manager

6,000

Local Queuing - 2K Persistent Messages
Peak Throughput - WMQ V6.0 vs WMQ V7.0 1

w120 %)

4,000 -

Round Trips/sec

2,000 -
L 60%

+ 40%

—— WMQ v6.0 WMQ v7.0
---0--- WMQ v6.0 cpu % WMQ v7.0 cpu %

20%

P " —"—¥ ¥ "7 7 7T ——7T 7T

P A S S S AT N SN © o
AR N SR @'x‘lx’?x’?x‘yx&@'x@x@{\ KRR e N
pplications

Figure 4 — Performance headline, persistent messages, local queue manager

Figure 4 and Table 2 show that the throughput of persistent messages has degraded by 20% comparing Version
6 to Version 7.

Test name: Round | Response
A
local_pm Pps Trips/sec | time (S) CPU
WebSphere MQ V6.0 | 104 4180 0.034 71%
WebSphere MQ V7.0 | 144 3403 0.053 70%

Table 2 — Performance headline, persistent messages, local queue manager

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput

Page 5

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

2.2 Client Channels Test Scenario

Responder
application

i Requester
. application
]

Driving machine

Figure 5 — MQI-client channels into a remote queue manager

1,2) The Requester application puts a request message (over a client channel), to the common input queue,
and holds on to the message identifier returned in the message descriptor. The Requester application then waits
indefinitely for a reply to arrive on the common reply queue.

3) The Responder application gets messages from the common input queue and places a reply to the
common reply queue. The queue manager copies over the message identifier from the request message to the
correlation identifier of the reply message.

4,5) The Requester application gets the reply message (over the client channel), from the common reply
queue. The Requester application uses the message identifier held from when the request message was put to
the common input queue, as the correlation identifier in the message descriptor.

Nonpersistent and persistent messages were used in the client channel tests, with a message size of 2K. The
effect of message throughput with larger messages sizes is investigated in the “Large Messages” section.

Application Bindings of the Responder program are ‘Shared’ and the Client Channel is set to ‘MQIBindType =
FASTPATH’ except in the ‘non-trusted’ scenario where ‘MQIBindType =STANDARD?’ is used.

Version 7 will multiplex multiple clients from the same process over one TCP socket. The version 6 behavior
where each client had its own TCP socket can be set by specifying Sharecnv(0) on the client channel definition
and is shown in the charts as ‘optimized’. Further information in section 7.1.4

Page 6

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

2.2.1 Nonpersistent Messages — Client Channels

Figure 6 Figure 6a, and Figure 7 shows the nonpersistent and persistent message throughput achieved using
an increasing number of driving applications in the client channel scenario (see Figure S on the previous page),
and WebSphere MQ V7.0 compared to Version 6.

16,000 . .
Client Channels - 2K NonPersistent Messages
15,000 - 1
14,000 -
13,000 - | 120%
12,000 -
11,000 -
; 100%
10,000 -
g
g 9,000 -
E - - R 80%
= 8,000 -
E 2
g 7,000 3]
& 60%
6,000 -
5,000 -
4,000 gox [40%
R —— WMQ v6.0
3,000 | R WMQ v7.0
¢))K" —— WMQ V7.0 optimized
2000 3 o ---0--- WMQ v6.0 cpu % T20%
Py WMQ v7.0 cpu %
1,000 § ---X--- WMQ v7.0 cpu % optimized
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Applications

Figure 6 — Performance headline, nonpersistent messages, client channels

Figure 6 and Table 3 show that the throughput of nonpersistent messages has reduced by 10% with optimised
setup and by 24% with default setup when comparing Version 6 to Version 7.

Test name: Round | Response
Apps | <L CPU
clnp Trips/sec | time (s)
) (13920) (0.0007) (84%)

WebSphere MQ V6.0 | 109 | 14090 | 0.0008 | 86%

WebSphere MQ V7.0 | 9 12862 0.0008 | 83%
(10) (12821) (0.0008) (86%)

Optimised
WebSphere MQ V7.0

© (10553) (0.0010) (76%)
10 10638 0.0011 | 79%

Table 3 — Performance headline, nonpersistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6.0 and Version 7.

Page 7

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

2.2.2 Nonpersistent Messages — Non Trusted Client Channels

13,000 Client Channels - 2K NonPersistent Messages with NonTrusted Bindings
Peak Throughput - WMQ V6.0 vs WMQ V7.0
12,000 -
11’0007IIIIllIllllllIllllllIIIIIIIIIIIIIIIIIII (AL LR R R RN RN RRRERRNRERREENNRNNNNRNNN]
160%
10,000 -
9,000 - 140 %)
. 8,000 - 120%
&
E 7,000 -
= 100%
E 6000 g BT E g g e R Ry B
S LK @]
& i | 80%
5,000 - 5 80%
4,000 - é-;l—o 1 60%
3,000 ——e— WMQ v6.0
Pt WMQ v7.0 T40%
2,000 4 —=— WMQ v7.0 optimized
¥ ---0--- WMQ v6.0 cpu %
1,000 J WMQ v7.0 cpu % T 20%
--=X--- WMQ v7.0 cpu % optimized
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Applications
Figure 6a
Test name: A Round | Response CPU
S
Cinp_nt PP Trips/sec | time (s)
) (10915) (0.0010) (87%)

WebSphere MQ V6.0 | 11 11129 0.0012 93%

WebSphere MQ V7.0 | 10 9818 0.0012 93%

Optimised (11) 9779) (0.0013) (94%)
9 8356 0.0013 85%
WebSphere MQ V7.0 (10) (8226) (0.0014) 87%)

The throughput of nonpersistent messages when the channel has used the default MQIBINDTYPE=NORMAL
has reduced by 11% with optimised setup and by 22% with default setup when comparing Version 6 to Version
7.

Page 8

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

2.2.3 Persistent Messages — Client Channels

4,000 Client Channels - 2K Persistent Messages
Peak Throughput - WMQ V6.0 vs WMQ V7.0

3,000 -

2,000 -

Round Trips/sec

1,000

<@ —— WMQ v6.0 +50%
K WMQ v7.0
—e— WMQ v7.0 optimized
N ---0--- WMQ v6.0 cpu % 1 40%
WMQ v7.0 cpu %
T s- =X WMQ v7.0 cpu % optimized
- ————————— 30%

LI IR O I R A P PPN R o o
NN R DD PR ”&”ﬁﬁﬁcﬁoﬁt&&”@”@o KA A S

Figure 7 — Performance headline, persistent messages, client channels

Figure 7 and Table 4 show that the throughput of persistent messages has decreased by 17% when using
optimized setup and 29% using default setup when comparing Version 6 to Version 7.

Test name: Round | Response
Apps | .
Clpm Trips/sec | time (s)
WebSphere MQ V6.0 | 96 3520 0.0325 75%
WebSphere MQ V7.0 | 96 2986 0.0386 74 %
Optimised
WebSphere MQ V7.0 | 96 2565 0.0441 96 %

CPU

Table 4 — Performance headline, persistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput

Page 9

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

2.2.4 Client Channels

For the following client channel measurements, the messaging rate used is 1 round trip per second per
MQI-client channel, i.e. a request message outbound over the client channel and a reply message inbound over

the channel per second. The Client channel definition was optimised by using sharecnv=0.
7,000 - c 90%
’ Client Channels - r3600 NonPersistent Messages ’
6,500 | Peak Throughput - WMQ V7.0 T85%
© 1 80%
6,000 .
\I + 75%
5,500 L 70%
@y
5,000 - T65%
+60%
4,500 -
+55%
<
%4,000 E T 50%
£ =)
£ 3,500 - T 45%
E
23,000 1 T 40%
= \ 1359
2,500
’ }; \ +30%
\
2,000 - A +25%
1,500 - T20%
- 15%
1,000 -
—-0—- WMQ V1.0 —A—WMQ vi.0cpu % | 19
\ \
500 - &Aaf 159
I e o 1Y
> > S S > > > =4 > =4 S <D > > S < > > > > =4 > > S < > > >
(=) (=3 S 2D > w w w) w w) w w) w w) w w w w w w w) w) w w w w w
=R S A E S d TS % S AT YRS dITERSATE RS AT
— — (o] (o] N N N e en o o e - - - - w w w w w e e e
Applications

Figure 8 — 1 round trip per driving application per second, client channels, nonpersistent messages

Note: Messaging in these tests is 1 round trip per driving application per second.

Page 10

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3,000

2.750 Client Channels - r3600 Persistent Messages

2,500
2,250 |
2,000 1 S ad

1,750

r 100 %

-
Application

w

2
2 z
=) o
& 1,500 -
'§ L 60%
51,250 |
1,000 - ;
o K ¢ 1 40%
. WO
750 - x0T
>
500 1 +20%
250 1 —o— WMQ v6.0 WMQ v7.0
& e WMQ v6.0 cpu % —K— WMQ v7.0 cpu % .
T 0
> > <> > <> <> > <> > <> > > <> > <> > <> > <> <> > <> > > <>
wn wn w wn w w wn w wn w wn wn w wn w wn w wn w w wn w wn wn w
— [a\] o -+ w b= ~ o =) —} — [o\] o -+ w o ~ -] =) > — o o -+
- - — — - — - — — (S} (o} (o} (o} (o}

Figure 9 — 1 round trip per driving application per second, client channels, persistent messages

Figure 8, Figure 9 and Table 5 shows that WebSphere MQ V7.0 has similar throughput and cpu

characteristics.
R
Test name: Apps ate/app/hr R_Ound Response CPU
Trips/sec time (s)

cInp_r3600 6600 3,600 6588 0.0070 61%
clpm_r3600 | (2150) (2149) (0.0059) (65%)

2250 3,600 2249 0.0070 63 %

WMQ v6.0 2150 2149 0.0138 54%

Table 5 — 1 round trip per driving application per second, client channels
Note:

second, and the number of driving applications used to achieve the peak throughput.
brackets are included in the table to provide meaningful comparison with Version 7.

Page 11

The large bold numbers in the table above show the WebSphere MQ V7.0 peak number of round trips per

The numbers in

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

2.3 Distributed Queuing Test Scenario

| B L]
\ Transmission queue | -
. per channel o pmmmmmmmmmmmey
L e P , Input queue
. b e
Server channel (
N
il Transmission queue

el per channel
r pPEEhnESmmeRSSSmSSES 0 _____
. Driving machine
L N Y
1
L T Reply queue 1 i==-===-=----mmmm-mmoo-
-4 Local queue manager ! —--—--—-----2 | Remote queue manager

P L e e e e e e e ==

Figure 10 — Server channels between two queue managers

1) The Requester application puts a message to a local definition of a remote queue located on the server
machine, and holds on to the message identifier returned in the message descriptor. The Requester application
then waits indefinitely for a reply to arrive on a local queue.

2) The message channel agent takes messages off the channel and places them on the common input
queue on the server machine.

3) The Responder application gets messages from the common input queue, and places a reply to the
queue name extracted from the messages descriptor (the name of a local definition of a remote queue located on
the driving machine). The queue manager copies over the message identifier from the request message to the
correlation identifier of the reply message.

4) The message channel agent takes messages off the transmission queue and sends them over the
channel to the driving machine.

5) The Requester application gets a reply from a local queue. The Requester application uses the
message identifier held from when the request message was put to the local definition of the remote queue, as
the correlation identifier in the message descriptor

Nonpersistent and persistent messages were used in the distributed queuing tests, with a message size of 2K.
The effect of message throughput with larger messages sizes is investigated in the “Large Messages” section.

Application Bindings of the Responder program are ‘Shared’ , the Requester program is normally ‘Trusted’ ,
and the channels specified as ‘MQIBindType = FASTPATH’ except in the ‘non-trusted’ scenario where both
programs use ‘shared’ bindings and the channels are specified as ‘MQIBindType = STANDARD’.

Page 12

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

2.3.1 Nonpersistent Messages — Server Channels

Figure 11 , Figure 11a, and Figure 12 show the nonpersistent and persistent message throughput achieved
using an increasing number of driving applications in the distributed queuing scenario (see Figure 10 on the
previous page), and WebSphere MQ V6.0 compared to Version 7.

21,000
20,000 -
19,000 -
18,000 -
17,000 -
16,000 -
15,000 -
14,000 -

Distributed Queuing - 2K NonPersistent Messages

r 50%

5,000 - ;- 1
’ (92 e+ WMQ 6.0 WMQ v7.0 30%

4,000 / o WMOQ V6.0 cpu % WMQ v7.0 cpu %
AV

2,000 >—— : : : : : : : : : : : : : : : 10%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Applications

Figure 11 — Performance headline, nonpersistent messages, server channels

Figure 11 and Table 6 show that the throughput of nonpersistent messages has reduced by 12% comparing
Version 6 to Version 7.

Test name: Round | Response
A
dqnp o Trips/sec | time (s) cPU
11 17560 0.0008 85 %
WebSphere MQ V6.0 | 1) (17220) (0.0008) (87%)
an | as193) (0.0009) 80%)

WebSphere MQ V7.0

12 15425 0.0009 84 %

Table 6 — Performance headline, nonpersistent messages, server channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6.0 and Version 7.

Page 13

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

2.3.2 Non Persistent non Trusted — Server Channels

14,000 Distributed Queuing - 2K NonPersistent Messages with NonTrusted Bindings
Peak Throughput - WMQ V6.0 vs WMQ V7.0
13,000 -
12,000 -
120%
11,000 -
10,000 - 100%
g 9000
z 80%
£ 8,000 -)
=
=l
Z
£ 17,000 1 60%
6,000 -
>\/’— 4
5,000 - N 40%
N
4,000 -
—— WMQ v6.0 WMQ v7.0 1 2%
3,000 ¢ <=0 - - WMQ v6.0 cpu % WMQ v7.0 cpu %
2,000 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Applications
Figure 11a
Test name: A Round | Response CPU
S
Dqnp_nt L Trips/sec | time (S)

WebSphere MQ V6.0 | 15 | 12533 | 0.0014 | 86%
WebSphere MQ V7.0 | 15 | 11041 | 0.0015 | 83%

The throughput of nonpersistent messages has reduced by 10% comparing Version 6 to Version 7.

Page 14

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

2.3.3 Persistent Messages — Server Channels

5,000
Distributed Queuing - 2K Persistent Messages
4,000 80%
3,000 - L 60%
>
g
Z)
= 3]
=
=l
=
<
& 2,000 - + 40%
1,000 - +20%
—— WMQ v6.0 WMQ v7.0
-=-0r- - WMQ v6.0 cpu % WMQ v7.0 cpu %
S S——S—— 1
4 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320 336 352 368 384 400
Applications

Figure 12 — Performance headline, persistent messages, server channels

Figure 12 and Table 7 show that the throughput of persistent messages has declined by 12% comparing
Version 6 to Version 7.

Test name: Apps Round | Response
dgpm Trips/sec | time (s)
WebSphere MQ V6.0 | 320 4049 0.0892 | 64%
WebSphere MQ V7.0 | 272 3424 0.1030 | 61%

Table 7 — Performance headline, persistent messages, server channels

CPU

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6.0 and Version 7.

Page 15

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

2.3.4 Server Channels

For the following distributed queuing measurements, the messaging rate used is 1 round trip per driving
application per second, i.e. a request message outbound over the sender channel, and a reply message inbound
over the receiver channel per second. Note that there are a fixed number of 4 server channel pairs for the

nonpersistent messaging tests, and 2 pairs for the persistent message tests.

6,000 o 4. . .
’ Distributed Queuing - r3600 NonPersistent Messages
Peak Throughput - WMQ V7.0
5,500 | eak Throughpu Q | 50%
5,000 -
®
4,500 - o®
P A L 40%
o0®
4,000 - °o®
o
o
..
23,500 | °
«» .
Z e® 130%
& 3,000 - °® e g
= ® Q
E o®
52,500 - °®
o
°® 120%
2,000 - o
o
o
Ps o
1,500 - Ps o
..
o T 10%
1,000 - ° L
—%— WMQ v7.0 cpu %
T T+ 0%
> > >
> > wn
L] ~ <t
— (3} o -
Applications
Figure 13 — 1 round trip per driving application per second, server channel, nonpersistent messages
Note: Messaging in these tests is 1 round trip per driving application per second.
o 4 . . 100 %
3250 Distributed Queuing - r3600 Persistent Messages ’
’ Peak Throughput - WMQ V6.0 s WMQ V7.0
3,000 - 90%
2,750 1 80%
2,500 -
T 70%
2,250 -
$2,000 T60%
iz
2z
Z1.750 1 500
<.
= (o3 =
£1,500 - X0 E
=
~ +40%
1,250
1,000 - 1 309%
750 -
T 20%
500 -
=+ 10%
250 - —— WMQ v6.0 —8— WMQ v7.0
0 -0 - - WMQ v6.0 cpu % —%— WMQ v7.0 cpu % 0%
{ S e A N A N 0
O — R — R I R — R — R e - I I R T T — R — I — I — I — R — I N I R I I — I — I — R
w oW oW wn oW NN N N NN N Wy wnonownown NN Ny nonon N NN N W N
e TN NN =AM TN OO0 =AM TN YOS NS = A T
A L B N T B = B = e B B o B o B o) Yo N o JRE o B BN B o RS2 T o TS e I o B o '}
Applications

Figure 14 — 1 round trip per driving application per second, server channel, persistent messages

Page 16

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

Figure 13, Figure 14 and Table 8 shows how WebSphere MQ V7.0 is similar in performance as version 6.

Test name: Apps Rate/app/hr R.ound Response CPU
Trips/sec time (s)

dqnp_r3600 4600 3,600 4598 0.0008 30%

dqpm_r3600 3050 3049 0.187 50%

(WebSphereMQ v6.0) | (3050) 3,600 (3048) (0.041) (48%)

Table 8 — 1 round trip per driving application per second, client channels

Note: The large bold numbers in the table above show the WebSphere MQ V7.0 peak number of round trips per
second, and the number of driving applications used to achieve the peak throughput. The numbers in
brackets are included in the table to provide meaningful comparison with Version 6.

2.3.5 SSL

SSL Linux64

—e— msgs-dgnp

—x— msg-des_sha_export_1024
msgs-des_sha_export

msgs-null_md5

mgs-null_sha
——msgs-rcs_sd5_export

msg-rc4_56_sha_ex1024
—x—msg-rc4_md>5_export

Throughput

——msg-rc4_md>5_us

—a— msg-rc4_sha_us

—x— msg-tls_rsa_witheaes128
msg-tls_rsa_witheaes256

—m—msg-trp_des_sha

LA S S R T

Connections

There was no SSL used in the dgqnp measurement. The use of cipher specifications null_sha and null_md5
(which do not encrypt the messages) degrade throughput by 13% and 18% respectively. The other 10 cipher
specs degrade throughput by up to 50%. The following table shows the throughput, response time and server
cpu% with 40 connections.

cipher spec throughput | Response time Server cpu%
DQNP (no SSL) 12525 0.003 seconds 79%
triple_des_sha_us 6672 0.007 seconds 86%
tls_rsa_with_aes_256_cbc_sha | 8534 0.005 seconds 66%
rc4_sha_us 9508 0.004 seconds 80%
rc4_md5_us 10013 0.004 seconds 79%
rc4_md5_export 9956 0.004 seconds 79%
rc4_56_sha_export1024 9423 0.004 seconds 79%
rc2_md5_export 8169 0.006 seconds 83%
null_sha 10413 0.004 seconds 79%
null_md5 11073 0.004 seconds 79%

Page 17

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

des_sha_export 8314 0.005 seconds 82%
des_sha_export1024 8253 0.005 seconds 82%
tls_rsa_with_aes_128_cbc_sha | 8577 0.005 seconds 82%
The GSKIT level is 7.0.4.20

Page 18

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3 Large Messages

3.1 MQI Response Times: 50bytes to 100Mb — Local Queue Manager

3.1.1 SObytes to 32Kb
Figure 15 show that the response time for MQPut/MQGet for np message sizes between 50bytes and 32Kb.

02 Nontrusted Nonpersistent MQPUT+MQGET (50bytes to 32K)
£ AR
@
Eo1
=]
@
] /0\
QD
& / \/
q
—— WMQ v6.0
WMQ v7.0
0.0 T T T T T T
50 500 1024 2048 4096 8192 16384 32768

Message Size (bytes)

Figure 15 —The effect of nonpersistent message size on MQI response time (50byte - 32K)

Figure 16 show that the response for MQPut/MQGet pairs for pers message sizes between 50bytes and 16Kb.

18 Nontrusted Persistent MQPUT+MQGET (50bytes to 32K)
1.7

1.6 4
1.5 4
1.4
1.3 4 = 4
1.2 4

o119

g

E1.0

@

£0.9

=

Y

20.8 |

2

20.7 1

&

0.6 |
0.5 |
0.4 |
0.3 |

0.2 1 —e— WMQ v6.0

0.1 4 WMQ v7.0

0.0

50 500 1024 2048 4096 8192 16384 32768
Message Size (bytes)

Figure 16 —The effect of persistent message size on MQI response time (50byte - 32K)

Page 19

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.1.2 32Kb to 2Mb

Figure 17 show that the response time for MQPut/MQGet pairs has improved for all nonpersistent message
sizes between 32Kb and 2Mb.

14.0 Nontrusted Nonpersistent MQPUT+MQGET (32K to 2MB)

12.0

10.0

Response Time (msec)

4.0

2.0

—o— WMQ v6.0
e WMQ v7.0
0.0 + ———— ; . . .

32768 65536 131072 262144 524288 1048576 2097152
Message Size (bytes)

Figure 17 —The effect of nonpersistent message size on MQI response time (32K — 2Mb)

Figure 18 show that the response for MQPut/MQGet pairs for persistent message sizes between 32Kb and
2Mb.

60.0 Nontrusted Persistent MQPUT+MQGET (32K to 2MB)

50.0 |

40.0 |
2
2
E
g
£ 300
2
=
=3
(=%
3
o~

20.0 |

10.0 -

—e— WMQ v6.0
L —8 WMQ v7.0
o
0.0 1 : ‘ ‘ ‘ ‘
32768 65536 131072 262144 524288 1048576 2097152
Message Size (bytes)

Page 20

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

Figure 18 —The effect of persistent message size on MQI response time (32K — 2Mb)

Page 21

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.1.3 2Mb to 100Mb
Figure 19 Response time for MQPut/MQGet pairs for NP message between 2Mb and 100Mb.

Response Time (msec)

1,600 Nontrusted Nonpersistent MQPUT+MQGET (2MB to 100MB)

1,400 - >
1,200 4
1,000 -

800 -

400 -

200 - —e— WMQ v6.0
) WMQ v7.0

0 5* . .
2097152 8388608 33554432 104857600
Message Size (bytes)

Figure 19 —-The effect of nonpersistent message size on MQI response time (2Mb — 100Mb)

Figure 20 The response for MQPut/MQGet pairs for persistent message sizes between 2Mb and 100Mb.

4,000 Nontrusted Persistent MQPUT+MQGET (2MB to 100MB)

3,500

3,000

2,500 -

Response Time (msec)
j\)
>
>
=

—
wm
4
<

1,000 -

500 4

—e— WMQ v6.0
WMQ v7.0

0 ‘/ . .
2097152 8388608 33554432 104857600
Message Size (bytes)

Figure 20 —The effect of persistent message size on MQI response time (2Mb — 100Mb)

Page 22

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.2 20K Messages

3.2.1 Local Queue Manager

Figure 21 and Figure 22 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the local queue manager scenario.

150 %)

Local Queue Manager - 20K NonPersistent Messages

1 140%

15,000 1
L 1309

r 120 %)

12,500 -
t 110 %)

r 100 %)
p

10,000 - 1 909

7,500 -

Round Trips/sec

5,000

2,500 &

—— WMQ v6.0 WMQ v7.0 F20%
---0--- WMQ v6.0 cpu % —*— WMQ V7.0 cpu %

0 + T T T T T T T T 10%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Applications

Figure 21 — 20K nonpersistent messages, local queue manager

Figure 21 and Table 9 show that the throughput of nonpersistent messages has degraded by 12% comparing
Version 7 to Version 6.

Test name: Apps Round | Response

local_np_20K Trips/sec | time (s)
WebSphere MQ V6.0 | 4 14830 0.0003 | 84%
WebSphere MQ V7.0 | 4 13419 0.0004 | 85%

Table 9 — 20K nonpersistent messages, local queue manager

CPU

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput.

Page 23

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.2.1.1 Persistent Messages

150%
2,400 - .
Local Queue Manager - 20K Persistent Messages + 140%
2,200 - 1 130%
2,000 - +120%
//\/H/\ /—W\/\M}
1,800 - _ x % 110%
+100%
1,600 |
1 90%
% 1,400 | 5
2 / 1 80%
= 1,200 -
e +70%
= 8O-
=
& 1,000 1 60%
800 % T 50%
1 40%
600
+30%
400 |
1 20%
200 - —— WMQ v6.0 WMQ v7.0 10%
0 ---0--- WMQ v6.0 cpu % —*— WMQ V7.0 cpu % 7
4 12 20 28 36 44 52 60 68 76 84 92 100 108 116
Applications

Figure 22 — 20K persistent messages, local queue manager

Figure 22 and Table 10 show that the throughput of persistent messages has degraded by 7% comparing
Version 6 to Version 7.

Test name: Round | Response
A
local_pm_20K L Trips/sec | time (s) R
WebSphere MQ V6.0 | 108 1986 0.0265 | 65%
WebSphere MQ V7.0 | 100 1844 0.065 67 %

Table 10 — 20K persistent messages, local queue manager

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. .

Page 24

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.2.2 C(lient Channel

Fig 23 and Fig24 show the nonpersistent and persistent message throughput achieved using an increasing

number of driving applications in the client channel scenario.

3.2.2.1 Nonpersistent Messages

6,000
5,750 -
5,500 -
5,250 -
5,000 -
4,750 -
4,500 -
4,250 -

o, 4,000 -

2

% 3,750

k=

& 3,500 -

=1

E 3,250 -

& 3,000 -
2,750 -
2,500 -
2,250 -
2,000 -
1,750
1,500 -

Client Channels - 20K NonPersistent Messages

/ —+— WMQ v6.0
1,250 ¥ Qv

—"—

WMQ V7.0

---0--- WMQ V6.0 cpu%

T

12

T T T T T T T T

9 10 11
Applications

13 14 15

T T

16

17

WMQ v7.0 cpu %

18 19 20

L 80%

+ 70 %

r 40%

r 30%

r 20%

100 %

10%

Figure 23 — 20K nonpersistent messages, client channels

Fig (hyperlink)and Table 11 show that the throughput of nonpersistent messages is similar when comparing

Version 6 to Version 7.

Test name: Round | Response

clnp_20K Apps Trips/sec | time (Ss) et
WebSphere MQ V6.0 | 38 5296 0.04 75%
WebSphere MQ V7.0 | 38 5249 0.04 79 %

Table 11 - 20K nonpersistent messages, client channels

Note:

The large bold numbers in the table above show the peak number of round trips per second, and the number

of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6.0 and Version 7.

Page 25

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.2.2.2 Persistent Messages

2,500 150.0%
2,400 - 0.0%
. . 1 140.0
2,300 - Client Channels - 20K Persistent Messages !
2,200 1 1 130.0%
2,100 -
2,000 - +120.0%
1,900 -
1800 | 1 110.0%
4
1,700 ~ / £ 100.0%
1,600 - v
., 1,500 - ¥ 1 90.0%
£ 1,400 | 50.0%
-E; 1,300 - T 80.0%
g 1,200 % 70.0%
2 1,100
& 1,000 - L 60.0%
900 |
800 +50.0%
700 & 1 40.0%
600 X%
500 - —<— WMQ v6.0 WMQ v7.0 130.0%
400 ---0--- WMQ v6.0 cpu % —— WMQ V7.0 cpu %
300 120.0%
200 1 110.0%
100 -
0 ————————————————— 0.0%
4 12 20 28 36 44 52 60 68 76 84 92 100 108 116

Applications

Figure 24 — 20K persistent messages, client channels

Fig 24 and Table 12 show that the throughput of persistent messages has degraded by 6% comparing Version 6
to Version 7.

Test name: Round | Response
A
clpm_20K Pps Trips/sec | time (s) CPU
112) (1774) (0.074) (12%)
WebSphere MQ V6.0 | 100 | 1784 0.074 | 71%
WebSphere MQ V7.0 112 1665 0.077 45 %
(100) (1664) 0.071) (12%)

Table 12 — 20K persistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6.0 and Version 7.

Page 26

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.2.3 Distributed Queuing

Figure 25 and fig 26 show the nonpersistent and persistent message throughput achieved using an increasing
number of driving applications in the distributed queuing scenario

3.2.3.1 Nonpersistent Messages

7,000 130%
Distributed Queuing - 20K NonPersistent Messages 120%
T 0|
6,000 - 1+ 110%
v v v v v v v — ._A._\I, 100%
5,000 -
+90%
T 80%
24,000 -
Z 70%
St
=]
= 1+ 60%
= A
§3’000 1 &
+50%
+40%
2,000 -
130%
1,000 T20%
—— WMQ v6.0 WMQ v7.0 r10%
o ---0--- WMQ v6.0 cpu % —*— WMQ v7.0 cpu % o
T (4
1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20
Applications

Figure 25 — 20K nonpersistent messages, distributed queuing

Figure 25 and Table 13 show that the throughput of nonpersistent messages is similar when comparing Version
6 to Version 7.

Test name: Round | Response
A
dgnp_20K pps Trips/sec | time (s) cPU
WebSphere MQ V6.0 | 12 5301 0.002 61%

WebSphere MQ V7.0 | 12 5348 0.0027 | 73%

Table 13 — 20K nonpersistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput.

Page 27

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.2.3.2 Persistent Messages

1,300
Distributed Queuing - 20K Persistent Messages
1+ 959%
1,200 /.\
/A
1,100 - - ——w \; 85%
1,000 - o N \/ \/
A/Q\¢v\\/ T75%
900 - 4
o ol 65%
800 - / 1™
g P4
Zz 1
% 700 1 559
=
T 600 4 z
E K 45%
500 -
400 | T35%
300 2
1 25%
200
1 15%
100 —— WMQ v6.0 WMQ v7.0
0 ---0-- WMQ v6.0 cpu % —*— WMQ V7.0 cpu % “
4 12 20 28 36 44 52 60 68 76 84 92 100 108 116
Applications

Figure 26 — 20K persistent messages, distributed queuing

Fig 26 and Table 14 show that the throughput of nonpersistent messages is similar when comparing Version 6

to Version 7.

Note:

Test name: Round | Response
A
dgpm_20K Pps Trips/sec | time (s) CPU
WebSphere MQ V6.0 | 116 1193 0.111 43 %
WebSphere MQ V7.0 112 1182 0.114 48 %
(116) 1117 (0.1247) (49%)

Table 14 — 20K persistent messages, client channels

The large bold numbers in the table above show the peak number of round trips per second, and the number

of driving applications used to achieve the peak throughput. The numbers in brackets are included in the

table to provide meaningful comparison between WebSphere MQ V6.0 and Version 7.

Page 28

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.3 200K Messages

3.3.1 Local Queue Manager

Fig 27 and fig 28 show the nonpersistent and persistent message throughput achieved using an increasing
number of driving applications in the local queue manager scenario.

3.3.1.1 Nonpersistent Messages

4,000 160%
Local Queue Manager - 200K NonPersistent Messages

3,500 - 1 140%

3,000 - 1120%

2,500 {ssnsunndniunnnnnnnnnnnnnnuiigr s n s a s n s s s AR R R s E AR R R s R R nnnnnn R nnnnnnnnnnnnnnnnnnnnnn [0)%

N AP__A,___A—g - o o o o o o E

Round Trips/sec
N
>
>
S

1,500 -

1,000
500 - +20%
—— WMQ v6.0 WMQ v7.0
0 ---0--- WMQ v6.0 cpu % —%— WMQ V7.0 cpu % “
T T T T T T T T T T T T T T : T 0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Applications

Figure 27 — 200K nonpersistent messages, local queue manager

and Table 15 show that the throughput of nonpersistent messages is similar comparing Version 6 to Version 7.

Test name: Round | Response
A
local_np_200K 2 Trips/sec | time (s) et
WebSphere MQ V6.0 | 4 3048 0.002 76 %
WebSphere MQ V7.0 | 4 2968 0.002 76 %

Table 15 — 200K nonpersistent messages, local queue manager

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput

Page 29

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.3.1.2 Persistent Messages

275 . 100%
Local Queue Manager - 200K Persistent Messages ‘
{95%
250 1 90%
1 85%
225 /0\ /—M /\ M /0\‘__‘—‘._4
. b 80%
200 //‘\ \0/ ; * ' |
ol 1 70%
175 T65%
. 1 60%
D
2 150 - +55%
& 1 50%
-§ & 45‘2
2 &)
= L 40%
L 35%
130%
75
125%
50 | 1 20%
{15%
25 1 £10%
—— WMQ v6.0 WMQ v7.0 <o
\ ---0-- WMQ v6.0 cpu % —*k— WMQ 7.0 cpu % 0;
T 0

IR RS R B A i A O JEAE I L S IR IR IR VIR
Applications

Figure 28 — 200K persistent messages, local queue manager

Fig and Table 16 show that the throughput of persistent messages has degraded by 3% comparing Version 6 to
Version 7.

Test name: Round | Response
A
local_pm_200K L Trips/sec | time (s) R
WebSphere MQ V6.0 | 96 225 0.491 46 %
WebSphere MQ V7.0 36 217 0.186 44 %
(96) (212) (0.640) (46%)

Table 16 — 200K persistent messages, local queue manager

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6.0 and Version 7.

Page 30

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.3.2 C(lient Channel

Fig 29 and Fig 30 show the nonpersistent and persistent message throughput achieved using an increasing
number of driving applications in the client channel scenario.

3.3.2.1 Nonpersistent Messages

o0 Client Channels - 200K NonPersistent Messages T :;EZ"
550 | 1 120%

115 %

500 - r 110%
105 %

450 100 %
F 95%

400 - t 90%

+ 85%
+ 80%
+ 75%
+ 70 %
r 65%

w

wmn

>
L

Round Trips/sec
N @
o S
< >

t 55%
t 50%
- 45%
r 40%
t 35%
r 30%
r 25%

200

150

100

50 —— WMQ v6.0 WMQ v7.0 20%
0 <20 - - WMQ v6.0 cpu % —*— WMQ v7.0 cpu % ISZ
t T T T T T T T T T T T T T T T T T 10%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Applications

Figure 29 — 200K nonpersistent messages, client channels

and Table 17 show that the throughput of nonpersistent messages has degraded by 6% when comparing Version
6 to Version 7.

Test name: Round | Response
clnp_200K Apps Trips/sec | time (s) CPU
WebSphere MQ V6.0 | 20 518 0.046 97 %
WebSphere MQ V7.0 | 14 | 485 0.037 | 97%
(20) (482) (0.049) (97%)

Note:

Table 17 — 200K nonpersistent messages, client channels

The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput.

Page 31

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.3.2.2 Persistent Messages

275 . . 100 %
Client Channels - 200K Persistent Messages ‘
250
1 90%
225 |
1 80%
200
\T 70%
175 -
v§_50 1 . X T 60%
E , 2
Bs | o X 150%
=]
= 7
100 1.
; 1 40%
X
75
1 30%
50
1 20%
25 |
WMQ v7.0 —8— WMQ v6.0
(1] T T T T T T T T T T T T T T T WMQ v7.0 cpu % ---X--- WMQ v6.0 cpu % 10%
PPN R D LN R DL FRP LRSI
Applications

Figure 30 — 200K persistent messages, client channels

Fig 30 and Table 18 show t that the throughput of persistent messages has degraded by 2% when comparing
Version 6 to Version 7.

Test name: Round | Response
A
clpm_200K Pps Trips/sec | time (s) CPU
WebSphere MQ V6.0 | 44 206 0.25 64 %
WebSphere MQ V7.0 | 32 200 0.192 65%

Table 18 — 200K persistent messages, client channels

Page 32

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.3.3 Distributed Queuing

Fig 31 and fig 32 show the nonpersistent and persistent message throughput achieved using an increasing
number of driving applications in the distributed queuing scenario

3.3.3.1 Nonpersistent Messages

600 Distributed Queuing - 200K NonPersistent Messages

500

; - A\A
\—A—‘*\A____‘\.__.\‘___i, 110%
400 - >

Round Trips/sec
w
>
>

200 ¢
L 50%

- 40%
r 30%

100 +
r 20%

—— WMQ v6.0 WMQ v7.0 10%
<20 - - WMQ v6.0 cpu % —*— WMQ v7.0 cpu %

0%

0 T T T T T T T T

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20
Applications

T T T T

Figure 31 — 200K nonpersistent messages, distributed queuing

Fig 31 and Table 19 show that the throughput of nonpersistent messages has degraded by 2% when comparing
Version 6 to Version 7.

Test name: Round | Response

dgnp_200K Apps Trips/sec | time (s) CcPU
WebSphere MQ V6.0 | 7 459 0.017 78 %
WebSphere MQ V7.0 | 7 459 0.018 80%

Table 19 — 200K nonpersistent messages, distributed queuing

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput.

Page 33

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.3.3.2 Persistent Messages

160 . . . 100.0 %
Distributed Queuing - 200K Persistent Messages ‘
150
£ 90.0%
140 4 -
A_A/A\.'\‘/"\ A ‘\v/o—ﬂ S
130 - A/.\‘/‘\\‘/ 1 80.0%
120 (
/'/‘\/\ 1 70.0%
110 { W
, 100 i/ 1 60.0%
%
2 90
& +50.0%
E 80 :
g =)
& 70 | 1 40.0%
60
130.0%
50 7
40 +20.0%
30 1
110.0%
20 - —— WMQ 6.0 WMQ v7.0
<20 - - WMQ v6.0 cpu % —*— WMQ V7.0 cpu %
w1 0.0%
I N S i R T O IR AR N A O IO SRR I
Applications

Figure 32 — 200K persistent messages, distributed queuing

Fig 32 and Table 20 show that the throughput of nonpersistent messages is similar when comparing Version 6
to Version 7.

Test name: Round | Response
A
dgpm_200K pps Trips/sec | time (s) CPU
WebSphere MQ V6.0 | 80 139 070 |43%
84) (139) (0.752) (44%)
WebSphere MQ V7.0 | 84 144 0.869 44%
(80) (138) (0.65) (42%)

Table 20 — 200K persistent messages, distributed queuing

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6.0 and Version 7.

Page 34

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.4 2Mb Messages

3.4.1 Local Queue Manager

Fig 33 and Fig 34 show the nonpersistent and persistent message throughput achieved using an increasing

number of driving applications in the local queue manager scenario.

3.4.1.1 Nonpersistent Messages

150

Local Queue Manager - 2M NonPersistent Messages

100 -

Round Trips/sec

—¢— WMQ v6.0

WMQ v7.0

<20 - - WMQ v6.0 cpu % —*— WMQ v7.0 cpu %

0 T T T T T T T T T T T

1 2 3 4 5 6 7 8 9 10 1 12 13
Applications

150 %

r 140%

r 130%

r 120%

r 110%

r 100%

r 90%

t 50%

- 40%

r 30%

20%

10%

Figure 33 — 2M nonpersistent messages, local queue manager

Fig 33 and Table 21 show that the throughput of nonpersistent messages has degraded by 2% comparing

Version 6 to Version 7.

Test name: Round | Response
A
local_np_2M pps Trips/sec | time (s) CPU
WebSphere MQ V6.0 | 3 125 0.029 | 62%
(20) (90) (0.265) (62%)
WebSphere MQ V7.0 | 3 123 0.028 | 63%
(20) 87) (0.273) (62%)

Table 21 — 2M nonpersistent messages, local queue manager

Note:

Page 35

The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6.0 and Version 7

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.4.1.2 Persistent Messages

25

Local Queue Manager - 2M Persistent Messages

100.0 %

—
wm
L

Round Trips/sec

—
e
k

r 90.0%
r 80.0%
r70.0%
+ 60.0%

+ 50.0%

=
¥

&)
T 40.0%
+ 30.0%

+ 20.0%

+ 10.0%

—— WMQ v6.0
-0 -- WMQ v6.0 cpu % —*%— WMQ v7.0 cpu %

WMQ v7.0

0.0 %

20

24

Applications

28 32

36

Figure 34 — 2M persistent messages, local queue manager

Fig 34 and Table 22 show that the throughput of persistent messages has degraded by 5% when comparing

Version 6 to Version 7.

Test name: Round | Response
A
local_pm_2M = Trips/sec | time (s) Gl
WebSphere MQ V6.0 | 8 21 0.412 45 %
WebSphere MQ V7.0 4 20 0.212 41 %
®) (19) (0442) (44%)

Table 22 — 2M persistent messages, local queue manager

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6.0 and Version V7.

Page 36

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.4.2 Client Channel

Figure 35 and fig 36 show the nonpersistent and persistent message throughput achieved using an increasing
number of driving applications in the client channel scenario.

3.4.2.1 Nonpersistent Messages

50 Client Channels - 2M NonPersistent Messages 150%
1 140%
45 -
1 130%]
40 e S | 120%
35 | / 1 110%

W
=3
L

1
2
z
i=]
& 25 80%
E =
S - 70@
& 20
r 60%
151 L 50%
10 - - 40%
- 30%
53
% —— WMQ v6.0 WMQ v7.0 20%
<20 - - WMQ v6.0 cpu % —*— WMQ v7.0 cpu %
0 T T T T T T T T T T T T T T T T T 10%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Applications

Figure 35 — 2M nonpersistent messages, client channels

Figure 35 and Table 23 show that the peak throughput of nonpersistent messages is similar when comparing
Version 6 to Version 7.

Test name: Round | Response
clnp_2M Apps Trips/sec | time (Ss) et
WebSphere MQ V6.0 | 7 39 0.208 89%
WebSphere MQ V7.0 | 7 39 0.209 85%

Table 23 — 2M nonpersistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput.

Page 37

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.4.2.2 Persistent Messages

25 180 %
24 . ; 1 170%
23 Client Channels - 2M Persistent Messages ¢
2 1 160%
21 4 150%
20 140 %
19 T ¢
18 4 130%
17 1 120%
16 R
15 —— 1+ 110%
)
14 | —— 1100
231 909
= |2
511 | 1 80%
10 | 1 70%
9 " A .-
SQ//Q/A ® DA & * ¥ = 1 60%
7 +50%
6 + 40%
5 4
4 + 30%
3] 1 20%
2 1 —— WMQ v6.0 WMQ v7.0 10%
(1)7 ---0--- WMQ v6.0 cpu % —*— WMQ V7.0 cpu % %
: : : : " 2 " " 1 0%
4 8 12 16 20 24 28 32 36
Applications

Figure 36 — 2M persistent messages, client channels

Fig 36 and Table 24 show that the throughput of persistent messages is similar when comparing Version 6 to
Version 7.

Note:

Test name: Round | Response
A
clpm_2M L Trips/sec | time (s) R
WebSphere MQ V6.0 | 4 16.7 0.236 52%
WebSphere MQ V7.0 | 4 15.9 0..249 52%

Table 24 — 2M persistent messages, client channels

The large bold numbers in the table above show the peak number of round trips per second, and the number

of driving applications used to achieve the peak throughput7.

Page 38

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.4.3 Distributed Queuing

Fig 37 and fig 38 show the nonpersistent and persistent message throughput achieved using an increasing
number of driving applications in the distributed queuing scenario.

3.4.3.1 Nonpersistent Messages

w© 200%
. Distributed Queuing - 2M NonPersistent Messages 1 1009

35

30

25

Round Trips/sec
N
>

I
wn
&-

10 -

—— WMQ v6.0 WMQ v7.0

<20 - - WMQ v6.0 cpu % —*— WMQ v7.0 cpu %

T T

T T

0 T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Applications

Figure 37 — 2M nonpersistent messages, distributed queuing

Fig 37 and Table 25 show that the throughput of nonpersistent messages has degraded by 5% when comparing
Version 6 to Version 7 although the CPU cost per message has increased.

Test name: Round | Response
dqnp_2M Apps Trips/sec | time (Ss) CPU
WebSphere MQ V6.0 | 5 37.9 0.152 24%
) (36.9) (0.159) (75%)
WebSphere MQ V7.0 6 377 0.186 85%

Table 25 — 2M nonpersistent messages, distributed queuing

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6.0 and Version 7.

Page 39

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.4.3.2 Persistent Messages

15 100%
14 Distributed Queuing - 2M Persistent Messages

1 90%
13
12 1 80%
11 ——

170%
10 1

Round Trips/sec

1 30%
4
3 1 20%
2 m
1L 10%
1 —— WMQ v6.0 WMQ v7.0
---0--- WMQ v6.0 cpu % —%— WMQ v7.0 cpu %
0 ‘ : : ‘ 2 0%
4 8 12 16 20 24 28 32

Applications

Figure 38 - 2M persistent messages, distributed queuing

and Table 26 show that the throughput of nonpersistent messages has increased by 2% when comparing
Version 6 to Version 7.

Test name: Round | Response

dgpm_2M Apps Trips/sec time (s) CPU
WebSphere MQ V6.0 | 8 12.0 0.737 37%
WebSphere MQ V7.0 | 8 11.7 0.755 40 %

Table 26 — 2M persistent messages, distributed queuing

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput7.

3.5 SSL Clients

This section uses Non-Persistent and Persistent messages of lengths 2K bytes, 20K bytes, 64K bytes and 200K bytes with
no SSL cipher together with three specific ciphers namely null_sha, tls_rsa_with_aes_256_cbc_sha, and triple_des_sha_us.
The ssl cipher names are abbreviated to nullsha, rsa, and 3des respectively in the graphs.

Page 40

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.5.1 Non Persistent 2K byte message

11,000 s
Client Channels - 2K NonPersistent Messages
10,000 - SSL ciphers
9,000 I
8,000 -
7,000 |
© E)
2 6,000 | b
= =
=]
E 5,000 2
E N 1 100
4,000 - A EELT TS S
: RS PES -G e
P A s s P T E T B O ST
3,000 - o~
&
2,000 ’/' —&—np —&——nullsha_np - 50
A)J]’ —¥—rsa_np —+——3des_np
1,000 X/,% ---0-- - np-cpu — —A— —nullsha_np-cpu
‘ ---@--- rsa_np-cpu — —=— —3des_np-cpu
0 - — . SIS -0
A A N T A B O L B R
Clients
Figure 39 2K non-persistent message
Throughput(20 clients) cpu Response time(secs)
CLNP(no ssl) 7932 76 0.003
null-sha 6493 81 0.004
tls_rsa_with_aes_256_cbc_sha | 5313 85 0.005
triple_des_sha_us 4475 87 0.005

The cpu utilisation is similar so the relative throughput shows the cost of ssl processing

Page 41

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.5.2 Non Persistent 20K byte message

4,000
Client Channels - 20K NonPersistent Messages
P e 00 E 6T EETC 0600
= P
-~ o-o® 80
- 3
- 0-®
3,000 - e ®
-
K
kA
) A
3 60
2
=z
5=
£ 2,000 -
=} =}
: 5
[~ + 40
1,000 -
np_20k —<&——nullsha_np_20k L 20
—¥——rsa_np_20k —+——3des_np_20k
np_20k-cpu — —&— —nullsh_np_20k-cpu
---®--- rsanp_20k-cpu — —=——3des_np_20k-cpu
0 +—— — — 0
A T S T S . A O A
Clients
Figure 40 20K non-persistent message
Throughput(20 clients) cpu Response time(secs)
CLNP(no ssl) 2309 33 0.011
null-sha 2053 53 0.011
tls_rsa_with_aes_256_cbc_sha | 1863 82 0.012
triple_des_sha_us 1153 88 0.020

The RSA and 3DES lines are constrained by cpu whereas the no-ssl and null_sha have increased throughput

beyond 80 clients

Page 42

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.5.3 Non Persistent 64K byte message

1,500
Client Channels - 64K NonPersistent Messages| - —— ~———~="_~""""7 ~7
o ® %0000 0-® O
77 o’
- - ’..
7 X 80
e i
Vel X L J
1,000 -
3 + 60
2
Zz
5=
St
=
=] =]
g A
I~ 40
500 - = 4
| /W B
np_64k —&—nullsha_np_64k
—¥——rsa_np_64k —+——3des_np_64k
np_64k-cpu — —&— —nullsha_np_64k-cpu
0 +———F——— ——— ---®--- rsa_np_64k-cpu — —=— —3des_np_64k-cpu -0
A N e R
Clients
Figure 41 64K Non-persistent message
Throughput(20 clients) cpu Response time(secs)
CLNP(no ssl) 761 26 0.034
null-sha 666 43 0.034
tls_rsa_with_aes_256_cbc_sha | 689 80 0.034
triple_des_sha_us 434 96 0.054

The RSA and 3DES lines are constrained by CPU whereas the no-ssl and null_sha are still increasing beyond 80

clients

Page 43

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.5.4 Non Persistent 200K byte message

600
Client Channels - 200K NonPersistent Messages

e e e e ¢ 100

400 -

Round Trips/sec

200 4

W np_200k —<—nullsha_np_200k L 20

/ —%—rsa_np_200k ——+——3des_np_200k
_/ np_200k-cpu — —&— —nullsha_np_200k-cpu
0 ---@--- rsa_np_200k-cpu — —=——3des_np_200k-cpu Lo
1 23 45 6 7 8 91011121314151617 1819 2024 2832 3640 4448 5256 6064 6872 76 80
Clients
Figure 42 200k Non-persistent message
Throughput(20 clients) cpu Response time(secs)
CLNP(no ssl) 287 28 0.081
null-sha 281 52 0.082
tls_rsa_with_aes_256_cbc_sha | 251 84 0.091
triple_des_sha_us 149 100 0.157

The RSA and 3DES lines ar constrained by cpu but the no_ssl and nul_sha are still increasing beyond 80 clients

Page 44

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.5.5 Persistent 2K byte message

2,600 1 Client Channels - 2K Persistent Messages
2,400 - SSL ciphers
LI~
2,200 -
2,000 -
100
1,800 -
1,600 -
8 80
21,400 | e -o. o kO PRSP S
£ oA et et e R LA IATS LT R
: AL
21,200 - o AT 2
Z & o
1,000 - EI, O
800 é’l ’
| AL 40
600 -
—8—0p —<&——nullsha_p
400 g ——+—3des_p 20
200 <--0-- - p-cpu — —&— —nullsha_p-cpu
ol | ---®--- rsa_p-cpu — —= —3des_p-cpu 0
A N T S R A AR A
Clients
Figure 43 — 2K persistent messages
Throughput(20 clients) cpu Response time(secs)
CLPM(no ssl) 2364 70 0.010
null-sha 2191 74 0.011
tls_rsa_with_aes_256_cbc_sha | 1616 68 0.015
triple_des_sha_us 1697 75 0.015

Page 45

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.5.6 Persistent 20K byte message

1,600
Client Channels - 20K Persistent Messages
SSL ciphers |
1,400 -
1,200 - >
<z i
1,000 | Ay
g &]
=
i=)
& 800 - - 100
) =
=
g 3
[+ TR iy v ; 80
600 - Py PSS & ok gal 'E
e A—r"‘/ m} DDDDﬁD
kR oo - 60
400 1 DD-D-D-DD'D'D
— = p 20k —e—nullsha_p_20k - 40
200 —X¥—rsa_p_20k —+—— 3des_p_20k
b ---0--- p_20k-cpu — —&— —nullsha_p_20k-cpu 20
0 ---@---rsa_p_20k-cpu — —=— — 3des_p_20k-cpu 0
AT A RN R SR R G A T R L
Clients

Figure 44 — 20K persistent messages

Throughput(20 clients) cpu Response time(secs)
CLPM(no ssl) 1093 54 0.021
null-sha 1135 67 0.023
tls_rsa_with_aes_256_cbc_sha | 918 73 0.024
triple_des_sha_us 653 73 0.036

Page 46

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.5.7 Persistent 64K byte message

600
Client Channels - 64K Persistent Messages
SSL ciphers
500 -
400 -
]
E]
A=
& 300 - 100
= =}
£ &
g R T kil N &
& e —— T 0.0 00 00 g0 0.5.0-9.9.¢ 380
T T e eeee Ak A4k
2001 °--® .,-0"-0" /‘__‘,‘—t"‘k m]
“~ o .o’ L _‘_r‘/A D_D,D.D.D—D'D' : 60
e P .o -0
A A—K o 0o-0
Ak A AT D o n-oo-0
100 AXT OO HETEE e p 64k — e nullsha_p_64k - 40
—¥—rsa_p_64k —+—— 3des_p_64k
---0--- p_64Kk-cpu — —&— —nullsha_p_64k-cpu 20
5 ---@--- rsa_p_64k-cpu — —=— —3des_p_64k-cpu
1 23 45 6 7 8 91011121314151617 18 1920 2428 32 3640 4448 5256 60 64 68 7276 80
Clients
Figure 45 — 64K persistent messages
Throughput(20 clients) cpu Response time(secs)
CLPM(no ssl) 428 46 0.056
null-sha 413 56 0.057
tls_rsa_with_aes_256_cbc_sha | 398 72 0.059
triple_des_sha_us 287 81 0.083

Page 47

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

3.5.8 Persistent 200K byte message

200
Client Channels - 200K Persistent Messages
SSL ciphers —
I) DS o
160 - 1
s i
LA
’Q»" |
AT
o 120 - .
2
m -
=]
= + 100
R B -
=] — T -
80 - - .9 - 00.g-90-0-0-0-0-4.0 380
= ooooo-o-‘o°'°' d .9
. o ® @ *i§‘4—ki—rt+t1—k1x
A —Kk
A—K . - 60
‘—‘s*—A/‘--‘_r*"“ D_DD-D'D'D'DD-D-DD Oo4a-o
O ’EHH-H-H‘D D’D-
40 oo T e p 200k —e—nullsha-p_200k it 40
—¥—rsa_p_200k —+—— 3des_p_200k
T ---0- - - p_200k-cpu — & —nullsha_p_200k-cpu || 2°
. ---@--- rsa_p_200k-cpu — —=— —3des_p_200k-cpu 0
1 23 456 78 910111213141516 17 1819 2024 28 3236 4044 48 5256 60 64 68 7276 80
Clients
Figure 46 — 200K persistent messages
Throughput(20 clients) cpu Response time(secs)
CLPM(no ssl) 160 46 0.149
null-sha 168 61 0.142
tls_rsa_with_aes_256_cbc_sha | 152 75 0.153
triple_des_sha_us 109 88 0.220

3.5.9 SSL Summary

The Client SSL measurements show that ssl ciphers degrade throughput and increase cpu cost per message.

Throughput | Cpu cost - Persist message Cpu cost -Non-Per message
Normal(no ssl) 1 1 1
null-sha 0.9 1.2 1.7
tls_rsa_with_aes_256_cbc_sha 0.78 1.5 2.7
triple_des_sha_us (non persist) 0.44 4.3
triple_des_sha_us (Persist) 0.63 3.5

Page 48

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

4 Application Bindings

This report analyzes the rate that messages can be exchanged between a Requester (Driver) application and a
Responder (Server) application. This chapter looks at the effect of various combinations of application bindings
for Requester and Responder programs.

Requester Responder
Normal Trusted Non Trusted
Isolated Isolated Isolated
Trusted Trusted Trusted
Non Trusted Shared Shared

4.1 Local Queue Manager

Figure 47 and Figure 48 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the local queue manager scenario.

4.1.1 Nonpersistent Messages

40,000 Local Queue Manager - Application Bindings NonPersistent Messages

35,000 -

30,000 -

25,000 -

Round Trips/sec

20,000 -

15,000 \‘\

10,000 —&— Normal
Isolated
Trusted
NonTrusted
5,000 - . .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Applications

Figure 47 — Application binding, nonpersistent messages, local queue manager

Figure 47 and Table 27 show that the throughput of nonpersistent messages when comparing Normal, Isolated,
Trusted and Shared bindings.

Round | Response
Trips/sec | time (s)
Normal | 4 20400 0.001 85 %
Isolated | 4 17374 0.001 92 %
Trusted | 4 35592 0.001 92 %
Shared | 4 13606 0.001 94 %

Table 27 — Application binding, nonpersistent messages, local queue manager

Test Apps CPU

Page 49

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

4.1.2 Persistent Messages

5000 1 ocal Queue Manager - Application Bindings Persistent Messages

4,500 -
4,000 -

3,500
. /_0/‘_‘\4—4\/\‘/0\‘\%\‘_‘

3,000 -

Round Trips/sec
N
T
S
S

2,000

1,500

1,000
500 —&— Normal
Isolated
Trusted
0 - T T T T T T T T T T T T T T
4 16 32 48 64 80 96 112 128 144 160 176 192 208 224

Applications

Figure 48 — Application binding, persistent messages, local queue manager

Figure 48 and Table 28 show that the throughput of persistent messages when comparing Normal, Isolated and
Trusted bindings.

Round | Response
Trips/sec time (s)
Normal | 144 3403 0.053 70 %

Isolated | 144 | 3197 0.053 | 73%
(144) (4148) (0.043) (66%)
Trusted [158 | 4232 0.035 | 66%

Table 28 — Application binding, persistent messages, local queue manager

Test Apps CPU

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6.0 and Version 7.

Page 50

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

4.2 Client Channels

Figure 49 and Figure 50 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the client channel scenario.

4.2.1 Nonpersistent Messages

17,000

16.000 | Client Channels - Application Bindings NonPersistent Messages

15,000 -
14,000 -
13,000 -

12,000 -

11,000 -
10,000 -

9,000

Round Trips/sec

8,000 -
7,000 -
6,000 -
5,000 -

4,000 /'

—— Normal
Isolated
Trusted

3,000 { /
/

12 13 14 15 16 17 18

2,000 +
1 2 3 4 5 [3 7 8 9

19 20

10 11
Applications

Figure 49 — Application binding, nonpersistent messages, client channels

Figure 49 and Table 29 show that the peak throughput of nonpersistent messages when comparing Normal,
Isolated and Trusted bindings.

R
Test | Apps f)und Response cPU
Trips/sec time (s)
Normal 9 12862 0.001 83%
Isolated 9 12850 0.001 83%
Trusted | 10 12277 0.001 34%

Table 29 — Application binding, nonpersistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number

of driving applications used to achieve the peak throughput7.

Page 51

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

4.2.2 Persistent Messages

3,500 . s - .
Client Channels - Applications Bindings Persistent Messages
3,000 -
’ /’v‘/‘\”_\ I N
o w0\ ~a o
> / '\/ i
. v
N
2,500 -
> \/ }
2
=
=
=l
=
=]
2,000 -
1,500 -
—&— Normal
| Isolated
1,000 ¥ : : : : : : : : : : : : _ Trusted
4 16 32 48 64 80 96 112 128 144 160 176 192 208 224
Applications

Figure 50 — Application binding, persistent messages, client channels

Figure 50 and Table 30 show that the peak throughput of nonpersistent messages when comparing Normal,
Isolated and Trusted bindings.

Round | Response
Trips/sec time (s)
(120) (2821) (0.055) (71%)
Normal | 95 | 7986 0.039 | 74%

136 2964 0.055 74 %
Isolated (120) (5816) (0.0281) (64%)

Trusted | 120 3057 0.046 72 %

Table 30 — Application binding, persistent messages, client channels

Test Apps CPU

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput.

Page 52

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

4.3 Distributed Queuing

Figure 50 and Figure 51 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the distributed queuing scenario.

4.3.1 Nonpersistent Messages

24,000
23,000 -
22,000 -
21,000 -
20,000 -
19,000 |
18,000 |
17,000 |
16,000 |

g 15,000 |

214,000 1

& 13,000 -

'§ 12,000 1

& 11,000 -
10,000 |

9,000 |
8,000 |
7,000 | /
6,000 |
5,000 |
4,000 |
3,000
2,000 + : : : : : : : : : : : : ; '

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Applications

Distributed Queuing - Application Bindings NonPersistent Messages

—— Normal
Isolated
Trusted

Figure 51 — Application binding, nonpersistent messages, distributed queuing

Figure 51 and Table 31 show that the peak throughput of nonpersistent messages when comparing Normal,
Isolated and Trusted bindings.

Test | Apps R.Ollnd Response cPU
Trips/sec time (s)

Normal | 12 15425 0.001 84 %

Isolated | 12 15426 0.001 70 %

Trusted | 16 20569 0.001 65 %

Table 31 — Application binding, nonpersistent messages, distributed queuing

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number

of driving applications used to achieve the peak throughput.

Page 53

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

4.3.2 Persistent Messages

4,500

Distributed Queuing - Application Bindings Persistent Messages

4,000 -

3,500 A »
P e

3,000 h—v
3 /’\\/
wn
Z o
& 2,500 | /'/
=
g
3
=]
w o
2,000 7
/
1,500 - /
1,000 -
—— Normal
Isolated
Truste
500 T

4 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320 336 352 368 384 400
Applications

Figure 52 — Application binding, persistent messages, distributed queuing

Figure 52 and Table 32 show that the peak throughput of nonpersistent messages when comparing Normal,
Isolated and Trusted bindings.

Round | Response
Trips/sec time (s)
Normal | 272 3524 0.103 61%
Isolated | 320 3580 0.098 66 %
Trusted | 320 3889 0.095 66 %

Table 32 — Application binding, persistent messages, distributed queuing

Test Apps CPU

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput.

Page 54

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

S Short & Long Sessions

The previous chapters in this report only reported on steady state messaging that does not include any session
setup and termination function. This chapter specifically bracket groups of five MQPut/MQGet pairs with
MQConn/MQDisc and MQOpen/MQClose calls so a comparison of this overhead can be seen.
A short session is a term used to describe the behaviour of an MQI application as it processes a small number of
messages using one or more queues and a queue manager. The measurements in this document use an MQI-
client application and the following sequence:

e connects to the queue manager

e opens the common input queue, and common reply queue
e puts a request message to the common input queue

e gets the reply message from the common reply queue

e wait one second

¢ closes both queues

e disconnects from the queue manager

“Why measure short sessions?”

For each new connecting application or disconnecting application, the queue manager and Operating System
must start a new process or thread and set up the new connection. As the number of connecting and
disconnecting applications increases, the Operating System and queue manager are subjected to a higher load.
While these requests are being serviced, the queue manager has less time available to process messages, so
fewer driving applications can be reconnected to the queue manager per second before the response time
exceeds one second.

This effect is greater than that of reducing the total messaging throughput of the queue manager by connecting
thousands of MQI applications to the queue manager (refer to Figure 53 for an illustration).

400

Client Channels Scenario 150.00 %

r 140.00 %

4
r 130.00 %

r 120.00%

300 1 t110.00%

T 100.00 %
T 90.00%

1 80.00%
200 | 5
1 70.00%

00900“ 60.00%
O{)O%OOOO
oo
Fopss™®
<>§><> %OO + 30.00%
O

Short Sessions/sec

T 50.00%

100 | 1 40.00%

<

& o

O eSS
OO X

———clnp
---O--- clnp cpu %

clpm

clpm cpu %

<><><> +20.00%

T 10.00%

>
R e o o L L o L 0

NN O 8 O VN DN D & O . AN DO DD
VIR ISP SIS S e"’?@”‘ SEFFITIF L E &
Applications

0.00 %

Figure 53 — Short sessions, client channels

Page 55

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

Round | Short Sessions | Response | CPU%

Test name | Apps X .
Trips/sec | per second Time (s)

cInp_r3600 | 6,600 | 6588 0.007 61%
clnp_ss 1780 1780 0.06 62%
clpm_r3600 | 2,250 | 2249 0.007 63 %
cpm_ss | 1360 1360 0.01 70%

Table 33 — Short sessions, client channels

Note: Messaging in these tests is 1 round trip per driving application per second, i.e. 1 short session per driving
application every 5 seconds

Note: The figures for non-persistent short sessions were generated with all message processing within sync-point
control. All other non-persistent messages within this report were generated outside sync-point control.

The ‘runmgqlsr’ has a much smaller overhead of connecting to and disconnecting from the queue manager
because it only uses a single thread per connection rather than an entire process. INETD listener has a
significantly smaller capacity because of the need to create a new process for every client.

Page 56

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

6 Performance and Capacity Limits

These capacity measurements were made with MQ V7.0.1

6.1 Client channels — capacity measurements

The measurements in this section are intended to test the maximum number of client channels into a server
queue managers with a messaging rate of 1 round trip per client channel per minute. Measurements are also
made with smaller number of Client channels where the message insertion rate is increased until the system gets
congested. This information is intended to be useful to the reader sizing a system with similar scenarios.

Queue manager configuration for client channels capacity tests:
MaxChannels=50000

Test name: Apps Rate/app/hr R'ound F{t?sponse CPU
Trips/sec time (s)

clnp 10 n/a* 10,638 0.001 79%
clnp_r3600 6,600 3,600 6,588 0.007 61%
clnp_cmax 16000 60 263 0.001 4%
clnp_cmax_no_correllid 12800 60 213 0.001 2%

- - - 17500& 290 0.12 71%
clnp_c6000 6000 3110 5525 0.05 77%
cl_persist_c6000 6000 180 267 0.005 15%

Table 34 — Capacity measurements, client channels

e * There was no delay between the response to the previous message and the insertion of the next
message with 5 clients.

® & Some memory overcommitment was necessary to support the 17500 clients

The maximum message throughput is achieved when there are a small number of requester applications. The
clnp_3600 measurement peaks when the queue of input messages waiting to be processed by the Server
application builds up because the server application threads can no longer keep up with the demand. Although
this ensures the server threads are always busy, the messages are being spilt from the Queue buffer to the file
system and possibly to the disk. Each client uses a thread in the AMQRRMPA processes and the management
of lots of threads and lots of memory objects results in a larger CPU cost to handle each message.

The (clnp_cmax) test uses a Get by Correlation_Id from a common reply queue for all the clients so there is a
single Server input queue and a single reply to queue. Each additional Client needs a thread in the
AMQRMPPA process and using a separate queue per client needs additional memory per client. These
measurements use MQIBINDTYPE =FASTPATH but the default MQIBINDTYPE =STANDARD need an
additional 76K mainly due to the additional thread in the AMQZLAAOQ process

Test name: s S Free mem Free per Applic
clnp_cmax 1000 0 328077 217K
16000 |0 28860

500 0 3538252 153K
clnp_cmax(sharecnv=0) | 23500 0 1542
30000 | 348016
Iy emax no comelid | 1000 924 3338204 280K
p_cmax_no_correlid 1 15800 | 26776 32492
18000 | 2571188 18972
1000 0 3592956 269K
clnp_c6000 6000 0 2247420
. 1000 12316 3246156 242K
cl_persist_c6000 6000 12316 2033220

These storage calculations are for clients that have a separate IP socket for each MQ connection (sharecnv=1).
10 MQ connects from the same application process (default) will reduce the cost per client by 90K bytes. Using
V6 compatability mode (sharecnv=0) will reduce the cost per client by 70K bytes.

Page 57

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

6.2 Distributed queuing — capacity measurements

The measurements in this section are intended to test the maximum number of server channel pairs between two
queue managers with a messaging rate of 1 round trip per server channel per minute. For the same number of
server channel pairs, a faster message rate gives a higher total message throughput over each channel pair. This
information is intended to be useful to the reader sizing a system with similar scenarios.

Queue manager and log configuration for distributed queuing capacity tests:
MaxChannels=16000, LogPrimaryFiles=3,

Test name: Apps Rate/app/hr R.ound R(—':Asponse cPU
Trips/sec time (s)

dqnp 40 n/a* 16045 0.003 56%
dqnp_r3600 4600 3600 4598 0.001 30%
dqnp_q1000 1000 20000 5534 0.002 37%
dq_persist_q1000 1000 5080 1349 0.036 52%
dqnp_gmax 6300@ | 60 105 0.01 4%

dq_persist_gmax 6100@ | 60 101 0.05 15%

Table 35 — Capacity measurements, server channels

e * There was no delay between the response to the previous message and the insertion of the next
message with 40 driving applications..

® @ The alternative Driver machine with more than 4GB of memory was used

The dqnp and dqnp_r3600 both used a total of 4 pairs of Sender/Receiver pairs of channels between queue
managers while the dqnp_q1000, and dgqnp_qmax used a pair of channels per application. The dqnp_q1000
shows the reduced throughput experienced when 1000 queue mangers are connected into a central hub and the
following table shows the storage on the central hub.

Test name: A S Free mem Free per Applic
100 2353228 388K
dqnp_q1000 1000 | 176 2011772
100 12396 3567324 604K
dqnp_q1000 1000 12396 3023508
. 100 10512 1730652 522K
dq_persist_q1000 1000 | 10512 1260572
dgqnp_gmax 100 12396 2510316 433K
1800 12396 1774908
dq_persist_gmax 100 10512 1733132 527K
3100 10512 97684

Table 36 — DQ capacity, memory utilisation

Note: The table above show the swap memory measured at the given number of driving applications. The swap
and free memory cost is the additional cost per driving application (in this test scenario this relates to the
cost of an MQI-Sender/Receiver pair of channels plus Transmission queue connected on the server
machine).

Page 58

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

7 Tuning Recommendations

7.1 Tuning the Queue Manager

This section highlights the tuning activities that are known to give performance benefits for WebSphere MQ
V7.0; some of these can be applied to Version 6. The reader should note that the following tuning
recommendations may not necessarily need to be applied, especially if the message throughput and/or response
time of the queue manager system already meets the required level. Some tuning recommendations that follow
may degrade the performance of a previously balanced system if applied inappropriately. The reader should
carefully monitor the results of tuning the queue manager to be satisfied that there have been no adverse effects.

Customers should test that any changes have not used excessive real resources in their environment and make
only essential changes. For example, allocating several megabytes for multiple queues reduces the amount of
shared and virtual memory available for other subsystems, as well as over committing real storage.

Note: The ‘TuningParameters’ stanza is not documented external interface and may change or be removed in
future releases.

7.1.1 Queue Disk, Log Disk, and Message Persistence

Nonpersistent messages are held in main memory, spilt to the file system as the queues become deep, and lazily
written to the Queue file. Persistent messages are synchronously written to the log by an MQCmit and also
periodically flushed to the Queue file.

To avoid potential queue and log I/O contention due to the queue manager simultaneously updating a queue file
and log extent on the same disk, it is important that queues and logs are located on separate and dedicated
physical devices. Multiple disks can be redirected to a Storage Area Network (SAN) but multiple high volume
Queue managers can require different Logical Volumes to avoid congestion.

With the queue and log disks configured in this manner, careful consideration must still be given to
message persistence: persistent messages should only be used if the message needs to survive a queue manager
restart (forced by the administrator or as the result of a power failure, communications failure, or hardware
failure). In guaranteeing the recoverability of persistent messages, the pathlength through the queue manager is
three times longer than for a nonpersistent message. This overhead does not include the additional time for the
message to be written to the log, although this can be minimised by using cached disks or SAN.

7.1.1.1 Nonpersistent and Persistent Queue Buffer

The default nonpersistent queue buffer size is 64K per queue and the default persistent is 128K per queue for 32
bit Queue Managers and 128K /256K for 64 bit Queue Managers (AIX, Solaris, HPUX, Linux_64, z_Linux,
and Windows64). They can all be increased to 1Mb using the TuningParameters stanza and the
DefaultQBufferSize and DefaultPQBufferSize parameters. (For more details see SupportPac MP0O1: MQSeries —
Tuning Queue Limits). Increasing the queue buffer provides the capability to absorb peaks in message
throughput at the expense of real storage. Once these queue buffers are full, the additional message data is given
to the file system that will eventually find its way to the disk. Defining queues using large nonpersistent or
persistent queue buffers can degrade performance if the system is short of real memory either because a large
number of queues have already been defined with large buffers, or for other reasons -- e.g. large number of
channels defined.

Note: The queue buffers are allocated in shared storage so consideration must be given to whether the agent
process or application process has the memory addressability for all the required shared memory segments.

Queues can be defined with different values of DefaultQBufferSize and DefaultPQBufferSize. The value is
taken from the TuningParameters stanza in use by the queue manager when the queue was defined. When the
queue manager is restarted existing queues will keep their earlier definitions and new queues will be created
with the current setting. When a queue is opened, resources are allocated according to the definition held on
disk from when the queue was created.

7.1.2 Log Buffer Size, Log File Size, and Number of Log Extents

The Log component is often the bottleneck when processing persistent messages. Sufficient information is
stored on the log to restart the queue manager after failure. Circular logging is sufficient to recover from
application, software, or power failure while linear logging will also recover from media (or disk) failure. Log

Page 59

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

records are written at each MQPut, MQGet, and MQCmit into the log buffer. This information is moved onto
the log disk. Periodically the Checkpoint process will decide how many of these logfile extents are in the Active
log and need to be kept online for recovery purposes. Those extents no longer in the active log are available for
achieving when using Linear logging or available for reuse when using circular. There should be sufficient
Primary logs to hold the Active log plus the new log extents used until the next checkpoint otherwise some
Secondary logs are temporarily included in the log set and they have to be instantly formatted which is an
unnecessary delay when using circular logging.

The log buffer is a circular piece of main memory where the log records are concatenated so that multiple log
records can be written to the log file in a single I/O operation. The default values used for LogBufferPages and
LogFilePages have been increased in V7 and are probably suitable for most installations. The default size of the
log buffer is 512 pages (V6 was 128 pages) with a maximum size of 4096 pages. To improve persistent message
throughput of large messages (messages size > 1M bytes) the LogBufferPages could be increased to improve
likelihood of messages only needing one I/O to get to the disk. Environments that process under 100 small (<
10K byte messages) Persistent messages per second can reduce the memory footprint by using smaller values
like 32 pages without impacting throughput. LogFilePages (i.e. crtmgm -1f <LogFilePages>) defines the
size of one physical disk extent (default 4096 pages whereas the V6 default was 128 on Windows and 1024 on
Unix). The larger the disk extent, the longer the elapsed times between changing disk extents. It is better to have
a smaller number of large extents but long running UOW can prevent Checkpointing efficiently freeing the disk
extent for reuse. The largest size (maximum 65536 pages) will reduce the frequency of switching extents. The
number of LogPrimaryFiles (i.e. crtmgm -lp <LogPrimaryFiles>) can be configured to a large number
and the maximum number of Primary plus Secondary extents is 255(Windows) and 511(UNIX) but it is for
functional reasons rather than performance that need more than 20 primary extents for Circular logging.
Circular logging should be satisfied by Primary logs because Secondary logs are formatted each time they are
reused. The Active log set is the number of extents that are identified by the Checkpoint process as being
necessary to be kept online. As additional messages are processed, more space is taken by the active log. As
UOWs complete, they enable the next Checkpoint process to free up extents that now become available for
archiving with Linear logging. Some installation will use Linear logging and not archive the redundant logs
because archieving impacts the run time performance of logging. They will periodically (daily or twice daily)
use ‘rcdmqimg’ on the main queues thus moving the ‘point of recovery’ forward , compacting the queues, and
freeing up log disk extents. The cumulative effect of this tuning will:

e Improve the throughput of persistent messages (enabling by default a possible 2Mb of log records to be
written from the log buffer to the log disk in a single write). Initial target - half to one second of log
datastreaming into the Logbuffer.

e Reduce the frequency of log switching (permitting a greater amount of log data to be written into one
extent). Initial target - LogFile extent hold at least 10 seconds of log datastreaming.

e Allow more time to prepare new linear logs or recycle old circular logs (especially important for long-
running units of work).

Changes to the queue manager LogBufferPages stanza take effect at the next queue manager restart. The
number of pages can be changed for all subsequent queue managers by changing the LogBufferPages parameter
in the product default Log stanza.

It is unlikely that poor persistent message throughput will be attributed to a 2Mb queue manager log but
processing of large messages will be helped by these enhanced limits. It is possible to fill and empty the log
buffer several times each second and reach a CPU limit writing data into the log buffer, before a log disk
bandwidth limit is reached.

7.1.2.1 LogWritelntegrity: SingleWrite or TripleWrite

The default value is TripleWrite. MQ writes log records using the TripleWrite method because it
provides full write integrity where hardware that assures write integrity is not available.
Some hardware guarantees that, if a write operation writes a page and fails for any reason, a
subsequent read of the same page into a buffer results in each byte in the buffer being either:

e The same as before the write, or

e The byte that should have been written in the write operation
On this type of hardware (for example, SSA write cache enabled), it is safe for the logger to write
log records in a single write as the hardware assures full write integrity. This method provides the
highest level of performance.

Page 60

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

Queue manager workloads that have multiple streams asynchronously creating high volume log
records will not benefit from 'SingleWrite’ because the logger will not need to rewrite partial pages
of the log file. Workloads that serialize on a small number of threads where the response time
from an MQGet, MQPut, or MQCmit inhibits the system throughput are likely to benefit from
Singlewrite and could enhance throughput by 25%. The Linux measurements in this report used
LogWriteIntegrity=TripleWTrite

7.1.3 Channels: Process or Thread, Standard or Fastpath?

Threaded channels are used for all the measurements in this report (‘runmgqlsr’, and for server channels an
MCATYPE of ‘THREAD’) the threaded listener ‘runmgqlsr’ can now be used in all scenarios with client and
server channels. Additional resource savings are available using the ‘runmgqlsr’ listener rather than ‘inetd’,
including a reduced requirement on: virtual memory, number of processes, file handles, and System V IPC.

Fastpath channels, and/or fastpath applications—see later paragraph for further discussion, can increase
throughput for both nonpersistent and persistent messaging. For persistent messages, the improvement is only
for the path through the queue manager, and does not affect performance writing to the log disk.

Note: The reader should note that since the greater proportion of time for persistent messages is in the queue
manager writing to the log disk, the performance improvement for fastpath channels is less apparent with
persistent messages than with nonpersistent messages.

7.1.4 Multiplexed clients

Version 6 and previous levels used a separate TCP socket for each client. Version 7 will multiplex clients from
the same process over one TCP socket. Chapter 2 show the difference in performance of these variants. Version
6 behaviour can be obtained by using the ‘sharecnv’ keyword with a setting of zero. For example
define channel(csim_channel_TCP) +

chltype(svrconn) +

trptype(tcp) +

sharecnv(0)
Version 6 behaviour will also inhibit new performance features of V7 like ‘ASYNC Put and ‘READ_AHEAD’.
This is to referred to as Compatability mode.

7.2 Applications: Design and Configuration

7.2.1 Standard (Shared or Isolated) or Fastpath?

The reader should be aware of the issues associated with writing and using fastpath applications—described in
the ‘MQSeries Application Programming Guide’. Although it is recommended that customers use fastpath
channels, it is not recommended to use fastpath applications. If the performance gain offered by running
fastpath is not achievable by other means, it is essential that applications are rigorously tested running fastpath,
and never forcibly terminated (i.e. the application should always disconnect from the queue manager). Fastpath
channels are documented in the ‘MQSeries Intercommunication Guide’.

7.2.2 Parallelism, Batching, and Triggering

An application should be designed wherever possible to have the capability to run multiple instances or multiple
threads of execution. Although the capacity of a multi-processor (SMP) system can be fully utilised with a
small number of applications using nonpersistent messages, more applications are typically required if the
workload is mainly using persistent messages. Processing messages inside syncpoint can help reduce the
amount of time the queue managers takes to write a group of persistent messages to the log disk. The
performance profile of a workload will also be subject to variability through cycles of low and heavy message
volumes, therefore a degree of experimentation will be required to determine an optimum configuration.

Queue avoidance is a feature of the queue manager that allows messages to be passed directly from an
‘MQPuter’ to an ‘MQGeter’ without the message being placed on a queue. This feature only applies for
processing messages outside of syncpoint. In addition to improving the performance of a workload with

Page 61

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

multiple parallel applications, the design should attempt to ensure that an application or application thread is
always available to process messages on a queue (i.e. an ‘MQGeter’), then messages outside of syncpoint do not
need to ever be physically placed on a queue.

The reader should note that as more applications are processing messages on a single queue there is an
increasing likelihood that queue avoidance will not be maintainable. The reasons for this have a cumulative and
exponential effect, for example, when messages are being placed on a queue quicker than they can be removed.
The first effect is that messages begin to fill the queue buffer—and MQGeters need to retrieve messages from
the buffer rather than being received directly from an MQPuter. A secondary effect is that as messages are
spilled from the buffer to the queue disk, the MQGeters must wait for the queue manager to retrieve the
message from the queue disk rather than being retrieved from the queue buffer. While these problems can be
addressed by configuring for more MQGeters (i.e processing threads in the server application), or using a larger
queue buffer, it may not be possible to avoid a performance degradation.

Processing persistent messages inside syncpoint (i.e. in batches) can be more efficient than outside of syncpoint.
As the number of messages in the batch increases, the average processing cost of each message decreases. For
persistent messages the queue manager can write the entire batch of messages to the log disk in one go while
outside of syncpoint control, the queue manager must wait for each message to be written to the log before
returning control to the application.

Only one log record per queue can be written to the disk per log I/O when processing messages outside of
syncpoint. This is not a bottleneck when there are a lot of different queues being processed. When there are a
small number of queues being processed by a large number of parallel application threads, it is a bottleneck. By
changing all the messages to be processed inside syncpoint, the bottleneck is removed because multiple log
records per queue can share the same log I/O for messages processed within syncpoint.

A typical triggered application follows the performance profile of a short session. The ‘runmqlsr’ has a much
smaller overhead compared to inetd of connecting to and disconnecting from the queue manager because it does
not have to create a new process. The programmatical implementation of triggering is still worth consideration
with regard to programming a disconnect interval as an input parameter to the application program. This can
provide the flexibility to make tuning adjustments in a production environment, if for instance, it is more
efficient to remain connected to the queue manager between periods of message processing, or disconnect to
free queue manager and Operating System resources.

7.3 Tuning the Operating System (Linux RHES)

/etc/sysctl.conf was updated with
kernel.sem = 500 256000 250 1024
kernel.msgmni = 1024
kernel.shmmni = 4096
kernel.shmall = 2097152
fs.file-max = 200000
kernel.shmmax = 268435456

7.4 Virtual Memory, Real Memory, & Paging

Systems require sufficient real memory to hold the working set otherwise paging will break the response time expectations.

e Virtual memory enables the program to address much larger amount of memory than exists as real memory.

e Real memory is the physical memory (or RAM) currently installed in the machine.

e Paging is the process of managing program access to virtual storage pages not currently resident in main memory. It
locates the required page frame from auxiliary storage (disk), selects a page frame in real memory that will hold this
page, copies the contents of this outgoing page frame to auxiliary storage, and retrieves the requested incoming page
contents from auxiliary storage.

A simple approach is to ensure that the virtual memory of the application system does not exceed the available real memory
since all memory requests will be met from the current free memory. VMSTAT reports on 'in use' and 'free’ memory as seen
by the operating system page manager.

WebSphere MQ uses a significant amount of memory for each Queue Manager and Channel.

7.4.1 Queue Manager
Starting a MQ Queue manager generated using default values reduces the FRE by 90M bytes.

Page 62

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

7.4.2 Channels

Channels can be started by using the INETD or the RUNMQLSR listener. INETD initiated channels use between 5 and 10
times more memory than RUNMQLSR channels so the rest of this section focuses on RUNMQLSR channels.

7.4.3 Client Channels

Each MQ client channel uses between 150K - 400K bytes for processing 2K byte messages depending on traffic rate
(Chapter 6 of the MQ V7 Performance reports provides an estimate of the storage needed when clients either share a
predefined queue with other clients or have a dynamic queue per client). 100K byte messages will use up to 700K bytes
per client.

7.4.4 Server — Server Channels

Each interconnected queue manager has a pair of uni-directional channels for sending and receiving messages.
The storage consumed is the same as 2 client channels plus a predefined queue (Transmission queue).

Three other aspects of storage consumption depend on type of 'Reply-Queue’, MQIBINDTYPE, and BufferLength.

7.4.5 Reply Queue

The Queue from which the client retrieves the message can be a predefined Queue (350K bytes) probably
shared among multiple clients who get messages by Correlation-id or a model (dynamic) queue (60K bytes)
that is used only by one client. The model queue memory can grow by 128K bytes when more than 128K
bytes of Persistent messages are held in the queue and by 192K bytes when more than 192K bytes of non
persistent messages are held in the queue. This memory is not shrunk back to the underlying 60K bytes for
model queues.

7.4.6 BufferLength

The AMQRMPPA process contains a thread per connected client. The BufferLength parameter of the MQGet
is also used to allocate a long term piece of storage of this size in which the message is held before being
retrieved by the client. If the size of the arriving messages cannot be predicted then the application should
provide a buffer than can deal with 90% of the messages and redrive the MQGet after return code 2080
(X'0820') MQRC_TRUNCATED_MSG_FAILED by providing a larger BUFFER for retrieving this particular
message. There is a mechanism to gradually reduce the size of the storage in AMQRMPPA if the recent
BufferLength size is significantly smaller than previous BufferLength.

7.4.7 MQIBINDTYPE

MQIBINDTYPE=FASTPATH will cause the channel to run ‘Trusted’ mode. Trusted applications do not use
a thread in the Agent (AMQZLLA) process. This means there is no IPC between the Channel and Agent
because the Agent does not exist in this connection. If the channel is run in STANDARD mode then any
messages passed between the channel and agent will use IPCC memory (size = BufferSize with a maximum
size of 1Mb) that is dynamically obtained and only held for the lifetime of the MQGet. Standard channels
each require an additional 80K bytes of memory. As the message rate increases, there will be more IPCC
memory used in parallel.

The power of the machine used to process a workload needs to handle the peaks of troughs. Customers may
specify a daily workload but this number cannot be divided by the number of seconds in a day to find the
necessary system configuration. The peak hourly rate cannot be divided by 3600 because the peak rate per
second will probably be 2-3 times higher. The system must process these peak loads without building up a
backlog of queued work. It is important to prevent the queue depths increasing because they will occupy
memory from the 'fre' pool or be spilled out to disk. Over commitment of real memory is handled by the page
manager but sudden large jumps (storms) possibly due to queues becoming deep can cause the throughput to
break down completely if the page manager chooses too much working set memory to be paged. Gradual over
commitment enables the page manager to shuffle out those pages that are not part of the working set.

Page 63

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

8 Measurement Environment

8.1 Workload description

8.1.1 MQI response time tool

The MQI tool exercises the local queue manager by measuring elapsed times of the 8 main MQSeries verbs:
MQConn(x), MQDisc, MQOpen, MQClose, MQPut, MQGet, MQCmit, and MQBack. The following MQI
calls are paired together inside a test application:

e MQConn(X) with MQDisc

e MQOpen with MQClose

e MQPut with MQGet

¢ MQCmit and MQBack with MQPut and MQGet

Note: MQClose elapsed time is only measured for an empty queue.

Note: Performance of MQCmit and MQBack is measured in conjunction with MQPut and MQGet, putting and
getting messages inside a unit of work (i.e. inside syncpoint control). The unit of work is committed at the
end of each batch. The number of messages per batch is a parameter of the test.

Note: This tool is not used to measure the performance of verbs: MQSet, MQIng, or MQBegin.

8.1.2 Test scenario workload
The MQI applications use 64 bit libraries for MQ V6 & V7

8.1.2.1 The driving application programs

The test scenario workload simulates many driving applications running on a single driving machine. This is
not typical of a customer environment and is only used to facilitate test coordination. Driving applications were
multi-threaded with each thread performing a sequence of MQI calls. The driving applications (Requesters) for
Local and DQ tests used Trusted bindings. The number of threads in each application was adjusted according
to whether the test was measuring a local queue manager, a client channel, or distributed queuing scenario.
This was done to reduce storage overheads on the driving system. Each driving application thread performed
the sequence of actions as outlined in the test scenario illustrations in the “WebSphere MQ V7.0 on Linux has
similar performance characteristics to the V6 product. The comparisons in this report show that throughput has
dropped by an average of 6% overall (for Local, Client and Distributed Queuing) when the Clients are running
in V6 compatibility mode (see section 7.1.4). The default enhanced client support that provides Heartbeating,
enhanced reliability, and multiplexing degrades Client benchmarks by a further 13%.

There are new functions in V7 that provide enhanced performance to applications that are able to use them and
they include Asynchronous Puts, Read-ahead, Properties, and selectors but they are not covered in this
document.

Performance Headlines’ starting on page 1.

Message rate: in all but the rated and capacity limit tests, message processing was performed in a tight-loop. In
the rated tests a message rate of 1 round trip per driving application per second was used, and in the capacity
limit tests a message rate of 1 round trip per channel per minute was used.

Nonpersistent and persistent messages were used in all but the capacity limit tests.

Note: The driving applications gathered timing information for all MQI calls using a high-resolution timer.

8.1.2.2 The server application program

The server application is written as a multi-threaded program configured to use 20, 6, 6 threads for processing
nonpersistent messages with Local, Client, and DQ applications, and 30, 60, 10 threads to process persistent
messages with Local, Client, and DQ applications. The capacity tests in chapter 5 and 6 use 10 server threads
for processing non persistent messages. Each server thread performed the sequence of actions as outlined in the
test scenario illustrations in the “WebSphere MQ V7.0 on Linux has similar performance characteristics to the
V6 product. The comparisons in this report show that throughput has dropped by an average of 6% overall (for
Local, Client and Distributed Queuing) when the Clients are running in V6 compatibility mode (see section

Page 64

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

7.1.4). The default enhanced client support that provides Heartbeating, enhanced reliability, and multiplexing
degrades Client benchmarks by a further 13%.

There are new functions in V7 that provide enhanced performance to applications that are able to use them and
they include Asynchronous Puts, Read-ahead, Properties, and selectors but they are not covered in this
document.

Performance Headlines” starting on page 1.

Nonpersistent messaging is done outside of syncpoint control. Persistent messaging is done inside of syncpoint
control. The average message throughput expressed as a number of round trips per second was calculated and
reported by the server program.

Page 65

8.2 Hardware

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

IBM x3850: Server system (Device under test)
Model: x3850 M2 8864 4RG
Processor: 3.3GHz Intel xeon (7140N)
Architecture: 2 dual core CPU (4 way SMP)
Memory (RAM): 4Gb
Disk: 2 Internal 16bit SCSI (9Gb each, 1 O/S, swap)
2 SAN disks on DS6000 (5Gb each, 1 queue, 1 log)
Network: 1Gbit Ethernet Adapter
IBM x3850: Driver system
Model: x3850 M2 8864 4RG
Processor: 3.3GHz Intel xeon
Architecture: 2 dual core CPU (4 way SMP)
Memory (RAM): 4Gb
Disk: 2 Internal 16bit SCSI (9Gb each, 1 O/S, swap)
2 SAN disks on DS6000 (5Gb each, 1 queue, 1 log)
Network: 1Gbit Ethernet Adapter
IBM x3850: Driver system (used for DQ_gmax)
Model: x3850 M2 7141 4RG
Processor: 2.9GHz Intel xeon 7350
Architecture: 2 CPU quad core
Memory (RAM): 32Gb
Disk: 4 Internal SCSI (72Gb each), (O/S, /var/mqm/, var/mqm/log, swap)
Network: 1Gbit Ethernet Adapter

The MQ SAN consists of a pair of 2026 model 432 (McDATA ES-4700) switches running at 4Gb/s
with 32 ports each. They are connected together via two inter-switch links to form a single SAN fabric.

The MQ hosts attach via this SAN to a DS6800 disk array (1750 model 511) with one expansion
drawer.

Each drawer (controller + expansion) contains 16 x 73Gb 15K fibre channel disk drives, so there are
a total of 32 physical drives.

The 32 drives are configured as four RAID-5 arrays, each of which is 6+Parity+Spare (the number of
spares is defined by the configuration of the DS6800).

The controller has an effective cache size of 2.6Gb plus 0.3Gb of NVS

8.3 Software

Linux 64 bit: Red Hat Enterprise Linux AS release 4 (Nahant Update 7)
MQSeries: Version 7, Version 6
Compiler: C for AIX Compiler, Version 6

Page 66

9 Glossary

WebSphere MQ for xSeries Linux V7.0 — Performance Evaluations

Test name

The name of the test.

Note: The test names in some cases are rather long. This is done to provide a

descriptive qualification of the test measurement to relate to the performance
discussion in the sections throughout the document:

local => local queue manager test scenario

cl => client channel test scenario

dq => distributed queuing test scenario

np => nonpersistent messages

pm => persistent messages

r3600 => 1 round trip per driving application per second

runmgqlsr => channels using the ‘runmqlsr’ listener (client channel test
scenario, in addition to ‘runmqchi’ for distributed queuing test scenarios)

¢6000 => 6,000 client driving applications (i.e. 6,000 MQI-client connections)
q1000 => 1,000 server channel pairs
max => maximum number of channels (or channel pairs)

no_correl_id => correlation identifier not used in the response messages (as
each response is placed on a unique reply-to queue per driving application)

Apps

The number of driving applications connected to the queue manager at the point where
the performance measurement is given.

Rate/App/hr

The target message throughput rate of each driving application.

Round T/s

The average achieved message throughput rate of all the driving applications together,
measured by the server application.

% (Round T/s)

The percentage increase in the total message throughput rate.

Note: The nature of the comparison is noted under each table where percentage
improvements have been given.

CPU As reported by VMSTAT

Resp time (s) The average response time each round trip, as measured and averaged by all the
driving applications.

CURDEPTH The number of messages on the input queue as a snapshot.
Note: runmgsc <gmname>, DISPLAY QLOCAL(<gname>) CURDEPTH

queue disk (kbps) The queue disk kilobytes transferred per second.

Swap The total amount of swap area reservation for all processes in Mb, unless otherwise
specified as swap/app (i.e. swap area reservation per driving application).

shm The amount of allocated shared memory in Mb.

FREE Free memory as reported by IOSTAT

SCO SHARECNV=0 specified on the def channel(x) chltype(svrconn) command. Version
6 compatibility mode

SC1 SHARECNV=1 specified on the def channel(x) chltype(svrconn) command. Separate

socket per client

Page 67

