WebSphere MQ for zLinux V7.0 -

Performance Evaluations

Version 1.2

December 2009
Peter Toghill , Craig Stirling .

WebSphere MQ Performance
IBM UK Laboratories
Hursley Park

Winchester

Hampshire

SO21 2JN

Property of IBM

WebSphere MQ for zLinux V7.0 — Performance Evaluations

Please take Note!

Before using this report, please be sure to read the paragraphs on “disclaimers”, “warranty
and liability exclusion”, “errors and omissions”, and the other general information paragraphs
in the "Notices" section below.

Third Edition, December 2009.

This edition applies to WebSphere MQ for ZLinux V7 (and to all subsequent releases and
modifications until otherwise indicated in new editions).

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users

Documentation related to restricted rights.

Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
contract with IBM Corp.

Notices

DISCLAIMERS
The performance data contained in this report were measured in a controlled environment.
Results obtained in other environments may vary significantly.

You should not assume that the information contained in this report has been submitted to
any formal testing by IBM.

Any use of this information and implementation of any of the techniques are the responsibility
of the licensed user. Much depends on the ability of the licensed user to evaluate the data
and to project the results into their own operational environment.

WARRANTY AND LIABILITY EXCLUSION
The following paragraph does not apply to the United Kingdom or any other country where
such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions,
therefore this statement may not apply to you.

In Germany and Austria, notwithstanding the above exclusions, IBM's warranty and liability
are governed only by the respective terms applicable for Germany and Austria in the
corresponding IBM program license agreement(s).

ERRORS AND OMISSIONS

The information set forth in this report could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; any such change will be
incorporated in new editions of the information. IBM may make improvements and/or changes
in the product(s) and/or the program(s) described in this information at any time and without
notice.

INTENDED AUDIENCE
This report is intended for architects, systems programmers, analysts and programmers

Page Il

WebSphere MQ for zLinux V7.0 — Performance Evaluations

wanting to understand the performance characteristics of WebSphere MQ for ZLinux V7. The
information is not intended as the specification of any programming interface that is provided
by WebSphere. It is assumed that the reader is familiar with the concepts and operation of
WebSphere MQ V7.

LOCAL AVAILABILITY

References in this report to IBM products or programs do not imply that IBM intends to make
these available in all countries in which IBM operates. Consult your local IBM representative
for information on the products and services currently available in your area.

ALTERNATIVE PRODUCTS AND SERVICES

Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and verify the operation of any
non-IBM product, program, or service.

USE OF INFORMATION PROVIDED BY YOU
IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you.

TRADEMARKS AND SERVICE MARKS
The following terms used in this publication are trademarks of International Business
Machines Corporation in the United States, other countries or both:

- IBM
- WebSphere
- DB2

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

EXPORT REGULATIONS
You agree to comply with all applicable export and import laws and regulations.

Page Il

WebSphere MQ for zLinux V7.0 — Performance Evaluations

Preface

Target audience
This SupportPac is designed for people who:

e Will be designing and implementing solutions using WebSphere MQ for ZLinux.
e Want to understand the performance limits of WebSphere MQ for ZLinux V7.
e Want to understand what actions may be taken to tune WebSphere MQ for ZLinux.

The reader should have a general awareness of the Linux operating system and of MQSeries in order to
make best use of this SupportPac. Readers should read the section ‘How this document is
arranged’—Page VI to familiarise themselves with where specific information can be found for later
reference.

The contents of this SupportPac
This SupportPac includes:

e Release highlights performance charts.

e Performance measurements with figures and tables to present the performance capabilities of
WebSphere MQ local queue manager, client channel, and distributed queuing scenarios.

e Interpretation of the results and implications on designing or sizing of the WebSphere MQ
local queue manager, client channel, and distributed queuing configurations.

Feedback on this SupportPac
We welcome constructive feedback on this report.

e Does it provide the sort of information you want?

¢ Do you feel something important is missing?

e Is there too much technical detail, or not enough?

e Could the material be presented in a more useful manner?
Please direct any comments of this nature to WMQPG @uk.ibm.com.

Specific queries about performance problems on your WebSphere MQ system should be directed to
your local IBM Representative or Support Centre.

Page IV

WebSphere MQ for zLinux V7.0 — Performance Evaluations

Introduction

The three scenarios used in this report to generate the performance data are:

e Local queue manager scenario.
¢ C(Client channel scenario.
e Distributed queuing scenario.

Unless otherwise specified, the standard message sized used for all the measurements in this report is
2K (2,048 bytes).

IBM zSeries 990 2084-331 with 2 CPUs in a VM LPAR and with 2Gb of RAM was used as the Device
under test.

An xSeries 3850 4 cpu 3.33ghz Intel xeon with 4Gb of RAM was used as the Driver

Chapter 10 uses an enhanced system with the IBM zSeries 990 2084-331 having 3 CPUs in a VM
LPAR and 4Gb of RAM.

Page V

WebSphere MQ for zLinux V7.0 — Performance Evaluations

How this document is arranged

Performance Headlines

Pages: 1-13

Section one contains the performance headlines for each of the three scenarios, with MQI applications
connected to:

¢ Alocal queue manager.

e A remote queue manager over MQI-client channels.

® Alocal queue manager, driving throughput between the local and remote queue manager over
server channel pairs.

The headline tests show:

e The maximum message throughput achieved with an increasing number of MQI applications.

¢ The maximum number of MQI-clients connected to a queue manager.

¢ The maximum number of server channel pairs between two queue managers, for a fixed think
time between messages until the response time exceeds one second.

Large Messages
Pages: 18-38

Section two contains performance measurements for large messages. This includes MQI response
times of 50byte to 2Mb messages. It also includes 20K, 200k and 2M messages using the same
scenarios as for the “Performance Headlines”.

Application Bindings

Page: 39-44

Section three contains performance measurements for ‘trusted, normal, and isolated' server
applications, using the same three scenarios as for the “Performance Headlines”.

Tuning Recommendations

Pages: 49-

Measurement Environment
Pages: 55 56

A summary of the way in which the workload is used in each test scenario is given in the “Performance
Headlines” section. This includes a more detailed description of the workload, hardware and software
specifications.

Glossary
Page: 56

A short glossary of the terms used in the tables throughout this document.

Page VI

CONTENTS

1 Overview 1
2 Performance Headlines 2
2.1 Local Queue Manager Test SCENATIO.....c..ccvueeruiriiirierieieeiteteeteeteste ettt 2

2.1.1 Nonpersistent Messages — Local Queue Managerc..co.eeveeeirineneneieeeeneneneneenneeens 3

2.12 Nonpersistent Messages — Non trusted — Local Queue Manager.... 4

2.13 Persistent Messages — Local Queue Manager...........cccoeevvenierienieieneenienieieenieeieseeresieeeens 5
2.2 Client Channels TeSt SCENATIO.ccccuttrriteriiiiiiieriie ettt ettt ettt ettt e s teesbeesaaee s 6
2.2.1 Nonpersistent Messages — Client Channelscocceoeveeveneiniininiieneeneneeneceseeeseeeens 7
222 Nonpersistent Messages — Non Trusted Client Channelsccccocevveevenieneneineniencneennen. 8
223 Persistent Messages — Client Channels
224 CLENE CRANNELS ..c.eeveeiieiieeieetee ettt ettt eb ettt et s bt et s bt enbesseenbesaeenses
2.3 Distributed Queuing Test SCENATIO........evtirierierieiieeie ittt
23.1 Nonpersistent Messages — Server Channelscoccoeeveoieininininenieneiceeencseseseeneene 13
232 Non Persistent non Trusted — Server Channelscoccoeievieriirieniniienenienceese e 14
233 Persistent Messages — Server Channels
234 Server CRANNEIS.cc.ueiiiiiiiierie ettt ettt ettt et s e sbee et esaresbeenaee
3 Large Messages
3.1 MQI Response Times: 50bytes to 100Mb — Local Queue Manager............cocceveevvereenneenne 18
3.1.1 SODYLES £0 32KD ..ttt etttk ettt 18
3.1.2 32Kb to 2Mb............
3.13 2Mb to 100Mb
3.2 20K Messages......c..coeueeverunenne
3.2.1 Local Queue Manager
322 Client Channel...........ccocoiiiiiiiiiiii e
323 Distributed Queuing ...
3.3 200K Messages..........cc.o......
3.3.1 Local Queue Manager
332 Client Channel................
333 Distributed Queuing ...
3.4 2Mb MesSages....cc.ccevveeeerneenne
34.1 Local Queue Manager
342 CLENE CRANNEL.......eiuiiiieiiiieiee ettt ettt et e e st e b sae et s bt enbeestebesneenses
343 Distributed QUETINGc..ecveuieuiiiieierirteteeetet ettt ettt sttt sae s saeneeene
4 Application Bindings
4.1 Local QUEUE MANAZETcc.eeruiiriiiiiiieiieiie ittt ettt ettt sttt e bbbt satesitesaeenbeenaeeneeeas
4.1.1 INONPELSISLENT MESSAZES ...enveuririeniiniieieetietesttete ettt eiee st et st et saresee st ebesenesaeeseennesanenee 39
412 Persistent Messages
4.2 Clent ChanELSc.cooiiiiiiiiiiiieieieeiest ettt s
421 INONPEISISLENE IMESSAZES ...euveeureiieniiriieteeiietesttete et etesate bt et esteeste bt eatessesatenbeessesseensenseensanee
422 Persistent Messages...........
4.3 Distributed Queuing
43.1 Nonpersistent Messages
432 PersiStENt MESSAZES ...c.veuveureueuieiieienienteteeeit ettt et sttt et et ettt s e ettt e bt saesaessesnennenene
5 Short & Long Sessions
6 Performance and Capacity Limits
6.1 Client channels — capacity MEASUTEIMENLTScceecuiriirierieriietierieee e ene e e
6.2 Distributed queuing — capacity measurements
7 Tuning Recommendations
7.1 Tuning the QUEUE MANAZETcovutriiriiriiiniieiieeeeete ettt ettt
7.1.1 Queue Disk, Log Disk, and Message Persistence.......................
7.1.2 Log Buffer Size, Log File Size, and Number of Log Extents.....
7.1.3 Channels: Process or Thread, Standard or Fastpath?..................
7.14 MUIPLEXEA CHENLS ..ottt ettt ettt st sb s sae e sbesane et
7.2 Applications: Design and Configurationcccccecirviirienieniniieiieneneseee e
7.2.1
7.2.2 Parallelism, Batching, and TIiZZEIINgcecerreririruirmrieinieinieireeiereeeereesee e reeenes
7.3 Virtual Memory, Real Memory, & Paging.......c.ccoocevviiiiiniinieniniiiienieneceeeee e
7.3.1 QUEUE MANAZEToveeuviiiiiiniieieeiecereetese e
732 Channels..............
7.3.3 Client Channels

734 Server — Server ChannElScc.ooooiiiiiiiiiie ettt eere e eeaaeeeeanes

10

WebSphere MQ for zLinux V7.0 — Performance Evaluations

7.3.5 REPLY QUEUE ...t e
7.3.6 BUfferLengthc.ooeoiriiiiiiiiecec ettt
7.3.7 MQIBINDTYPE

7.4 Tuning the Operating SYSTEIMc.c.cccuieiiriirieiieieeie ettt et 53
7.4.1 Shared Memory, Max-Threads, Semaphores, File Size & Message Queue Identifiers 53
742 Maximum NUmMbEr ProCESSES........cccouiiiiiiiiiiiiiiiiiieccee e 54

Measurement Environment 55

8.1 Workload deSCIIPHIONcc.eeruiiriiiiiiiiiierteeeete ettt ettt sttt et sbeebeen 55
8.1.1 MOQI reSpOnSe tME T0O]........ceuiiuiriiriirtiieieieitetere ettt ettt sttt sae e s nenene 55

8.1.2 Test scenario workload
8.2 Hardware
8.3 Software

Glossary
Measurements on Upgraded Hardware
10.1.1 Non Persistent Messages — Local QUeUe Manaerc.cceeevverueeriereenueneenieneenreneeneeneennes

10.1.2 Non Persistent Messages — non trusted — Local Queue manager....
10.1.3 Persistent Messages — Local QUEUE MANAZETc.coerveieueeirrinieneniereeereeeiesreseeseeeennenes

10.2 CHENE CRANNELS ...vvveieiiiciieieeee et eeeetae e e e eeesa b e e e e e eeesataareeeeeeenaraareeeeeeans

10.2.1 Non Persistent Messages — Client Channels.......................
10.2.2 Non Persistent Messages — non trusted — Client Channels
10.2.3 Persistent Messages — Client Channels...........c.ccceceeerennenn

10.3 Server ChaNNEIS.c.ceiuiiiiiiiiieeite ettt sttt st b e sbte st e e bt e sbeeenneesane
10.3.1 Non Persistent Messages — Server Channels.............coceoueeieieininenenienienieeeincneseseeenenes
10.3.2 Non Persistent Messages — non Trusted — Server Channels....
10.3.3 Persistent Messages — Server Channels...........ccoeveeverierinieninieninececerccceecee e

10.4 MQ V6.0.8 (L090930) Client MeaSUremMENLtS..........ccvveeererreeersvreensrreesssreeesssseeessseesssseesens

10.5 MQ V7.0.1 DQ Measurements

Page VIII

WebSphere MQ for zLinux V7.0 — Performance Evaluations

TABLES

Table 1 — Performance headline, nonpersistent messages, local queue managercccceeeeveeeennenne 3
Table 2 — Performance headline, persistent messages, local queue managerccccceceeeeerreenueeeennennes 5
Table 3 — Performance headline, nonpersistent messages, client channelsccccceceiveeninninncnncne. 7
Table 4 — Performance headline, persistent messages, client channelsccccoccevveneniienencencnncne. 9
Table 5 — 1 round trip per driving application per second, client channelscccccoceeiiniiniininnnnn. 11
Table 6 — Performance headline, nonpersistent messages, server channelscc.cccccooenieninnnnnn. 13
Table 7 — Performance headline, persistent messages, server channelsc..cccccoceeviniinicneniennn. 15
Table 8 — 1 round trip per driving application per second, client channelsc..cocceverienieniincnnen. 17
Table 9 — 20K nonpersistent messages, local qUeUe MANAZETc..cocueevirierierieneenieeientenee e 21
Table 10 — 20K persistent messages, local qUEUE MANAZETc..coveeruiriirienienieneeieee e 22
Table 11 — 20K nonpersistent messages, client channelscoceveeviniiniinininnceee 23
Table 12 — 20K persistent messages, client Channelsccoceveereeniiiiniiinienieeeee e 24
Table 13 — 20K nonpersistent messages, client channelsc..coocceveeiniiniinincee 25
Table 14 — 20K persistent messages, client channelscoccooeeriiiiiiiiiinieieeee e 26
Table 15 — 200K nonpersistent messages, local qUeUe MANAZETcccueeverierienieerieenierieneeneereeeeens 27
Table 16 — 200K persistent messages, local qUEUE MANAZETcc.eevvieuieierienienieeieee e 28
Table 17 — 200K nonpersistent messages, client channelsc..coceevieiiiiiniiniiiinneeeeeee 29
Table 18 — 200K persistent messages, client channelscoccooeoiiiiiiiniinicee 30
Table 19 — 200K nonpersistent messages, distributed qUEUINGcc.cocvieciiriiiiiiiiieiieiiieneeeeeeee 31
Table 20 — 200K persistent messages, distributed UETINGcc.cerueeriirriirienienieneeieeie e neeieeaees 32
Table 21 — 2M nonpersistent messages, local qUEUE MANAZETcc.eevveerirverierieneenieee et neeeeeaees 33
Table 22 — 2M persistent messages, 10cal QUEUE MANAZET «.......ccueerueeruieiirienienienieenieeie e neenieeseeeaeens 34
Table 23 — 2M nonpersistent messages, client Channels...........ccocceveeviiriiriiiniiniineieececeee 35
Table 24 — 2M persistent messages, client Channelsccoceveeiiiriiiiniiniene e 36
Table 25 — 2M nonpersistent messages, distributed qUEUINGcccecvieiiriiiiiiiiiiiiiiicee 37
Table 26 — 2M persistent messages, distributed qUEUINGcoeeruieriieiiieiiinienieeeie e 38
Table 27 — Application binding, nonpersistent messages, local queue managercocceeceereerueenenne 39
Table 28 — Application binding, persistent messages, local queue manager............c.ccecceeevereenienneenene 40
Table 29 — Application binding, nonpersistent messages, client channelscccccocceevenienieniennnnn. 41
Table 30 — Application binding, persistent messages, client channelscc.coceeieiiniinininnenn. 42
Table 31 — Application binding, nonpersistent messages, distributed queuingccccceceevceenceneenncnne 43
Table 32 — Application binding, persistent messages, distributed qUEUINGcc.ceveevierrierierieneenennienns 44

Page IX

WebSphere MQ for zLinux V7.0 — Performance Evaluations

FIGURES

Figure 1 — Connections into a local qUEUE MANAZETc..coveerieriiriiiiinieeeieeie ettt 2
Figure 2 — Performance headline, nonpersistent messages, local queue manager-............c..cccceeeveecuerncnne. 3
Figure 3 — Performance headline, persistent messages, local queUe MaNager..........cccccevevueerreenueeuennennes 5
Figure 4 — MQI-client channels into a remote qUEUE MANAZETcoverueerrieruieriereereneeneereereeneenenaee 6
Figure 5 — Performance headline, nonpersistent messages, client channels.............ccccceceeeeniencencnnncne 7
Figure 6 — Performance headline, persistent messages, client channels...............ccccoceviiniinnnincnnne 9
Figure 7 — 1 round trip per driving application per second, client channels, nonpersistent messages.... 10
Figure 8 — 1 round trip per driving application per second, client channels, persistent messages.......... 10
Figure 9 — Server channels between tWo qUEUE MANAZETSco.eerueeriieiirienieniienieeieetenteseesieeseeeeeas 12
Figure 10 — Performance headline, nonpersistent messages, server channels.........cc.ccoocceeeneencencnnnen. 13
Figure 11 — Performance headline, persistent messages, server channelscc.ccoeceevenveniiencenennnen. 15
Figure 12 — 1 round trip per driving application per second, server channel, nonpersistent messages .. 16
Figure 13 — 1 round trip per driving application per second, server channel, persistent messages 16
Figure 14 —The effect of nonpersistent message size on MQI response time (50byte - 32K) 18
Figure 15 —The effect of persistent message size on MQI response time (50byte - 32K)cc..c...... 18
Figure 16 —The effect of nonpersistent message size on MQI response time (32K — 2Mb)................... 19
Figure 17 —The effect of persistent message size on MQI response time (32K — 2Mb)..........ccccccueeeeeee 19
Figure 18 —The effect of nonpersistent message size on MQI response time (2Mb — 100Mb) 20
Figure 19 —The effect of persistent message size on MQI response time (2Mb — 100Mb) 20
Figure 20 — 20K nonpersistent messages, local qUeUe Manager...........cocueeverierieneenernenieneeneeneeiens 21
Figure 21 — 20K persistent messages, local qUEUE MANAZETccceerueeiirienienienieenieeieneeneeneeieeeeens 22
Figure 22 — 20K nonpersistent messages, client channels.........c..cooeeveeiirienienieninnenceneenceeeeee 23
Figure 23 — 20K persistent messages, client Channels...........coceveerieriiniiniinienienceeee e 24
Figure 24 — 20K nonpersistent messages, distributed qUEUING.........cooueevvirierienienieeneeieiie e 25
Figure 25 — 20K persistent messages, distributed qUEUING............cccecieciieiiiiiiiiiiiiiiiiiceeeeeeee 26
Figure 26 — 200K nonpersistent messages, local qUEUE MANAZETccueevereeriienieenieenienieneeneereeneene 27
Figure 27 — 200K persistent messages, local qUEUE MANAETcccueecuieiirienienienieee e 28
Figure 28 — 200K nonpersistent messages, client channels...........c..ccccocieviiiiiiiniininninceeee 29
Figure 29 — 200K persistent messages, client channels.............cocooievieiieiiniiniiicceeeee 30
Figure 30 — 200K nonpersistent messages, distributed qUEUING............ccueevierierienieenieeneireneeneereeeeene 31
Figure 31 — 200K persistent messages, distributed qUEUING.........cooeeriirriiriierienienieeeie e 32
Figure 32 — 2M nonpersistent messages, local qUEUE MANAZETcocveeverierienienieenierieneeneeneeieeiees 33
Figure 33 — 2M persistent messages, 1ocal qUEeUE MANAZETcooeevuirriirierienieneeieee et 34
Figure 34 — 2M nonpersistent messages, client channelsc..coceveeiiiiniiniineceee 35
Figure 35 — 2M persistent messages, client Channelsccoceveerieniiiiniinienieeeee e 36
Figure 36 — 2M nonpersistent messages, distributed qUEUINGcc.eevveruirierienieneeneee e 37
Figure 37 — 2M persistent messages, distributed qUEUINGc..coieeiieiiiiiiiniinieieeee e 38
Figure 38 — Application binding, nonpersistent messages, local queue manager-..............c.coccceeeeueenne 39
Figure 39 — Application binding, persistent messages, local queue manager.............cocceevvereenienneenene 40
Figure 40 — Application binding, nonpersistent messages, client channels.............cc.ccoccoviniiniinnnnn. 41
Figure 41 — Application binding, persistent messages, client channels..........c...ccoooeervveiniiiniennienneenne 42
Figure 42 — Application binding, nonpersistent messages, distributed qUEUING.......c.ccevververeereeniennnenns 43
Figure 43 — Application binding, persistent messages, distributed qUEUING.........ccceeververiereeneenennienne 44

Page X

WebSphere MQ for zLinux V7.0 — Performance Evaluations

1 Overview

WebSphere MQ V7 on zLinux has similar performance characteristics to the V6 product.

The comparisons in this report show that throughput has dropped by an average of 4% overall (for Local, Client
and Distributed Queuing) when the Clients are running in V6 compatibility mode (see section 7.1.4). The
default enhanced client support that provides Heartbeating, enhanced reliability, and multiplexing degrades
Client benchmarks by a further 15%.

There are new functions in V7 that provide enhanced performance to applications that are able to use them and
they include Asynchronous Puts, Read-ahead, Properties, and selectors but they are not covered in this

document.

Page 1

WebSphere MQ for zLinux V7.0 — Performance Evaluations

2 Performance Headlines

The measurements for the local queue manager scenario are for processing messages with no think-time. For
the client channel scenario and distributed queuing scenario, there are also measurements for rated messaging.

No think-time is when the driving applications do not wait after getting a reply message before submitting
subsequent request messages—this is also referred to as tight-loop.

The rated messaging tests used one round trip per driving application per second. In the client channel test
scenarios, each driving application using a dedicated MQI-client channel, in the distributed queuing test
scenarios, one or more applications submit messages over a fixed number of server channels.

All tests are automatically stopped after the response time exceeds 1 second.

2.1 Local Queue Manager Test Scenario

Figure 1 — Connections into a local queue manager

1) The Requester application puts a message to the common input queue on the local queue manager, and
holds on to the message identifier returned in the message descriptor. The Requester application then waits
indefinitely for a reply to arrive on the common reply queue.

2) The Responder application gets messages from the common input queue and places a reply to the
common reply queue. The queue manager copies over the message identifier from the request message to the
correlation identifier of the reply message.

3) The Requester application gets a reply from the common reply queue using the message identifier held
from when the request message was put to the common input queue, as the correlation identifier in the message
descriptor.

Nonpersistent and persistent messages were used in the local queue manager tests, with a message size of 2K.
The effect of message throughput with larger messages sizes is investigated in the “Large Messages” section.

Application Bindings of the Responder program are ‘Shared’ and the Requester program is normally ‘Trusted’
except in the ‘non-trusted’ scenario where both programs use ‘shared’ bindings.

Page 2

WebSphere MQ for zLinux V7.0 — Performance Evaluations

2.1.1 Nonpersistent Messages — Local Queue Manager

Figure 2 , Figure 2a and Figure 3 shows the nonpersistent and persistent message throughput achieved using
an increasing number of driving applications in the local queue manager scenario (see Figure 1 on the previous
page), and WebSphere MQ V7 compared to Version 6.

Local Queuing - 2K NonPersistent Messages
Peak Throughput - WMQ V6.0 vs WMQ V7.0 |
8,000 -|
L 220%
=200 %
L 180%
. 6,000 -
2 160 %
.?3’- =
& 4 L1465
=
=l
z » 120%
&
+ 100%
4’000, ’.’.v‘ \-\V""0-_/\-_.A)___’,____A'_~__ r__,A..~_v_,--v»--»-3»»..\/-"v """""" Y 0%
S5
1 60%
—— WMQ v6.0 WMQ v7.0 1 40%
---0--- WMQ v6.0 cpu % WMQ v7.0 cpu %
1 20%
2,000 : : : : : : : : : : : : : : : : : : 0%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Applications

Figure 2 — Performance headline, nonpersistent messages, local queue manager

Figure 2 and Table 1 shows that the throughput of nonpersistent messages has degraded by 12% comparing
Version 6 to Version 7

Test name: Round | Response
A
local_np Pps Trips/sec | time (s) CPU
3 8618 0.0004 | 88%
WebSphere MQ V6.0 10 5183) (0000 (88%)
WebSphere MQ V7.0 | 3 7507 0.0007 | 88%
(10) (4512) (0.0007) (79%)

Table 1 — Performance headline, nonpersistent messages, local queue manager

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6 and Version 7.

Page 3

WebSphere MQ for zLinux V7.0 — Performance Evaluations

2.1.2 Nonpersistent Messages — Non trusted — Local Queue Manager

7,500 Local Queuing - 2K NonPersistent Messages for NonTrusted Bindings
Peak Throughput - WMQ V6.0 vs WMQ V7.0
7,000 -
6,500 -
6’000 messsss/fassss s E NN AN NN NN I NN NN NN NN NN NSNS NN NN NN NN NN NN NN NN NN NN NN NN NN NEENNNENNEEEEEEEEEEEN
5,500 -
¥
25,000 >
=
=
§ 4,500
&
4,000 -
3,500 4
3,000
—— WMQ v6.0 WMQ v7.0
2,500 -0 - - WMQ v6.0 cpu % WMQ v7.0 cpu %
2,000 : ; ; ; ; ; ; ; ; ; ;
1 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20
Applications
Figure 2a
Test name: Round | Response
Apps . . CPU
local_np_nt Trips/sec | time (s)
WebSphere MQ V6.0 4 6927 0.0006 | 94%
(10) (5244) (010024) (92%)
4 6314 0.0008 93%
WebSphere MQ V7.0
p Q (10) 4718) (0.0028) (94%)

shows that the throughput of nonpersistent messages when the Requester and Responder both use Shared
bindings has degraded by 9% comparing Version 6 to Version 7.

Page 4

WebSphere MQ for zLinux V7.0 — Performance Evaluations

2.1.3 Persistent Messages — Local Queue Manager

2,200 |
Local Queuing - 2K Persistent Messages 1
2,000 Peak Throughput - WMQ V6.0 vs WMQ V7.0
1,800
TS ALLLLLLLELE T T I P ITE DT I T S TITTT rTTTT S r ey
1,400
<
2
Z
£1,200
=
=1
=
1,000 - O-0--0-0--
& i e T A A G A YETY 80%
800 /.~
s
> +60%
600 —— WMQ v6.0 WMQ v7.0
---0- - WMQ v6.0 cpu % WMQ V7.0 cpu %\ 40%
400
200 T 20%
0 0%
N N T A A A O ol R I L
Applications

Figure 3 — Performance headline, persistent messages, local queue manager

Figure 3 and Table 2 show that the throughput of persistent messages has degraded by 4% when comparing
Version 6 to Version 7.

Test name: Round | Response
A
local_pm Pps Trips/sec | time (S) CPU
(100) (1765) (0.063) (83%)
WebSphere MQVO.O| 415 | 1861 | 0.075 | 84%
WebSphere MQ V7.0 | 100 1717 0.069 83%
(112) (1690) (0.092) (85%)

Table 2 — Performance headline, persistent messages, local queue manager

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6 and Version 7.

Page 5

WebSphere MQ for zLinux V7.0 — Performance Evaluations

2.2 Client Channels Test Scenario

Responder
application

i Requester
. application
]

Driving machine

Figure 4 — MQI-client channels into a remote queue manager

1,2) The Requester application puts a request message (over a client channel), to the common input queue,
and holds on to the message identifier returned in the message descriptor. The Requester application then waits
indefinitely for a reply to arrive on the common reply queue.

3) The Responder application gets messages from the common input queue and places a reply to the
common reply queue. The queue manager copies over the message identifier from the request message to the
correlation identifier of the reply message.

4,5) The Requester application gets the reply message (over the client channel), from the common reply
queue. The Requester application uses the message identifier held from when the request message was put to
the common input queue, as the correlation identifier in the message descriptor.

Nonpersistent and persistent messages were used in the client channel tests, with a message size of 2K. The
effect of message throughput with larger messages sizes is investigated in the “Large Messages” section.

Application Bindings of the Responder program are ‘Shared’ and the Client Channel is set to ‘MQIBindType =
FASTPATH’ except in the ‘non-trusted’ scenario where ‘MQIBindType =STANDARD?’ is used.

Version 7 will multiplex multiple clients over one TCP socket. The version 6 behavior where each client had its
own TCP socket can be set by specifying Sharecnv(0) on the client channel definition and is shown in the charts
as ‘optimized’. Further information in section 7.1.4

Page 6

WebSphere MQ for zLinux V7.0 — Performance Evaluations

2.2.1 Nonpersistent Messages — Client Channels

Figure 5 JFigure 5a, and Figure 6 shows the nonpersistent and persistent message throughput achieved using
an increasing number of driving applications in the client channel scenario (see Figure 4 on the previous page),
and WebSphere MQ V7 compared to Version 6.

3,750 1| e .
’ Client Channels - 2K NonPersistent Messages 1
3,500 -
T 220 %
3,250 -
3,000 - b 200%
2,750 - ? 180%
2,500 - 160%
2,250 -
& 140 %
£2,000
=
{12
1,750 1 W%
= B
& | 100%
1,500 PR CERE]) SRR IR0 SEES CEEEY GEEE Sk R 3 ‘

5.'’-';257:::6"“"\&”:&”‘@“""*:”

1250 4 pertE 1 80%
1,000 4%
x 1 60%
750] —— WMQ v6.0
WMQ v7.0 | 40%
500 - —e— WMQ v7.0 optimized

<=0 - - WMQ v6.0 cpu %
250 - WMQ v7.0 cpu % P 20%
---X--- WMQ V7.0 cpu % optimized
0 T T T T T T T T T T T T T T T T 0%

2 4 6 8 10 12 14 16 18 20, 22 24 26 28 30 32 34 36 38 40
Applications

Figure 5 — Performance headline, nonpersistent messages, client channels

Figure 5 and Table 3 show that the throughput of nonpersistent messages has degraded by 5% with optimised
setup and degraded by 22% with default setup when comparing Version 6 to Version 7.

Test name: Round | Response
A
clnp Pps Trips/sec | time (s) CPU
WebSphere MQ V6.0 | 22 3237 0.008 94 %
WebSphere MQ V7.0 [@2 (3012) (0.009) (91%)
- 24 3104 0.009 96 %
Optimised

WebSphere MQ V7.0 10 2388 0.006 89%

(22) (2323) (0.012) (93%)
Table 3 — Performance headline, nonpersistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6 and Version 7.

Page 7

WebSphere MQ for zLinux V7.0 — Performance Evaluations

2.2.2 Nonpersistent Messages — Non Trusted Client Channels

3,500 Client Channels - 2K NonPersistent Messages with NonTrusted Bindings
3250 | Peak Throughput - WMQ V6.0 vs WMQ V7.0
3,000 | 1 2409%
b
2,750 12209
2,500 +200%
2,250 1 180%
2,000 - 1 160%
2
k=]
& 1,750 + 140%
2 =]
£1,500 1 1249
-1
1,250 » 25(% P SR % R ST T R o SR e Rl CEEE K-+ - 4% 100 %)
o
1,000 ,,%*’ 1 80%
4 —— WMQ v6.0 T60%
| WMQ v7.0 1
500 —— WMQ V7.0 optimized 40%
---0--- WMQ v6.0 cpu %
250 1 WMQ v7.0 cpu % 120%
<--X- - WMQ V7.0 cpu % optimized
0 ; ; ; ; ; ; ; ; ; : : ; : : ; ; ; 0%
2 4 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Applications
Figure 5a
Test name: Round | Response
Apps . . P CPU
Cinp_nt Trips/sec | time (s)
WebSphere MQ V6.0 | 28 3057 0.013 97 %
WebSphere MQ V7.0 | @8 (2894) (0.011) (97%)
.. 30 2932 0.013 97 %
Optimised
28) (2042) (0.016) (96%)
WebSphere MQ V7.0 |
p Q 36 2343 0.026 97 %
The throughput of nonpersistent messages when the channel has used the default

MQIBINDTYPE=STANDARD has degraded by 2% with optimised setup and degraded by 23% with default

setup when comparing Version 6 to Version 7.

Pag

e8

WebSphere MQ for zLinux V7.0 — Performance Evaluations

2.2.3 Persistent Messages — Client Channels

1,300 Client Channels - 2K Persistent Messages
Peak Throughput - WMQ V6.0 vs WMQ V7.0
1,200
1,100
1,000
900 |
800 |
<
2
2 700 |
St
=]
T 600 -
=
~ KX -
= 500 x 90%
R e e e o I AR R O e L el SLE " SE LR IR RN ¥ 1113
400 ¥ T 70%
+60%
300 | 1 50%
—— WMQ v6.0 1
200 WMQ v7.0 40%
—— WMQ V7.0 optimized T 30%
100 c--0 - - WMQ v6.0 cpu % 120%
WMQ v7.0 cpu % 1 10%
== -X--- WMQ v7.0 cpu % optimized
0 : : : : : : : : : : : : : : : : : ‘ : 0%
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88
Applications

Figure 6 — Performance headline, persistent messages, client channels

Figure 6 and Table 4 show that the throughput of persistent messages is similar when using optimized setup
and degraded by 10% using default setup when comparing Version 6 to Version 7.

Test name: Round | Response
A
Clpm L5 Trips/sec | time (s) CPU
84 1127 0.088 80%
WebSphere MQ V6.0 58) (1106) (0.083) (80%)
WebSphere MQ V7.0 | 88 1193 0.087 93 %
Optimised

(84) (955) (0.102) (84%)
WebSphere MQ V7.0 88 973 0.114 85%

Table 4 — Performance headline, persistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6 and Version 7.

Page 9

WebSphere MQ for zLinux V7.0 — Performance Evaluations

2.2.4 Client Channels

For the following client channel measurements, the messaging rate used is 1 round trip per second per
MQI-client channel, i.e. a request message outbound over the client channel and a reply message per second.

2,250 q q 210%
Client Channels - r3600 NonPersistent Messages 200;
Peak Throughput - WMQ V6.0 vs WMQ V7.0 i
2,000 190%
1+ 180%
+170%
1,750 - 1 160%
1+ 150%
1,500 - + 140%
1+ 130%
>3
$ 1,250 | g 120%
) T
: i
£ 1 1069
£ 1,000 - e
; _ O 90%
g P o ’
& OO 1+ 80%
750 A O +70%
/ Lo ® +60%
o
500 O 1 30%
1+ 40%
250 —— WMQ v6.0 —-o—- WMQ v7.0 T 30%
5
---0--- WMQ v6.0 cpu% —~A— WMQ v7.0 cpu % 20%
+10%
0 : 0%
=3 =3 =3 =3 =3 =3
= =3 > (=3 > wn
— w =) (2] ~ =3
— - N
Applications
Figure 7 — 1 round trip per driving application per second, client channels, nonpersistent messages
Note: Messaging in these tests is 1 round trip per driving application per second.
1,250
Client Channels - r3600 Persistent Messages
1,125 1 Peak Throughput - WMQ V6.0 vs WMQ V7.0]
1,000 - 1 160%
——+— WMQ 6.0 — = WMQ v1.0 >
875 - - 140%
<=0 - - WMQ v6.0 cpu % —— WMQ v7.0 cpu %
o 750 120%
Q
2 2
& 625 - L 100%,
= -
£ R
S
£ 500 - 80%
375 | - 60%
250 | - 40%
125 - 1 20%
0 : — : : : : — : : : — : : : : — : 0%
=3 =3
w > w > w S w =3 wn > w w = w =3 w > 'd S w =) w
— — (o] (o] (i) L] -+ -+ w w o o ~ ~ o o =) (=) = > — —
- - - -
Applications

Figure 8 — 1 round trip per driving application per second, client channels, persistent messages

Figure 7, Figure 8 and Table 5 shows that WebSphere MQ V7 has similar maximum throughput with
WebSphere MQ V 6.0.

Page 10

WebSphere MQ for zLinux V7.0 — Performance Evaluations

Test name: Apps Rate/app/hr R.ound R(-'-,Asponse cPU
Trips/sec time (s)

clnp_r3600 1600 1598 0.084 84 %

1700 3,600 1697 0.242 88%

(WebSphereMQ v6.0) | (1700) (1699) (0.007) (72%)

clpm_r3600 900 907 0.108 85%

(WebSphereMQ v6.0) | (1000) 3,600 (999) (0.014) (83%)

Table 5 - 1 round trip per driving application per second, client channels

Note: The large bold numbers in the table above show the WebSphere MQ V6 number of round trips per second,
and the number of driving applications used to achieve the peak throughput. The numbers in brackets are
included in the table to provide meaningful comparison with Version 7.

Page 11

WebSphere MQ for zLinux V7.0 — Performance Evaluations

2.3 Distributed Queuing Test Scenario

| B L]
\ Transmission queue | -
. per channel o pmmmmmmmmmmmey
L e P , Input queue
. b e
Server channel (
N
il Transmission queue

el per channel
r pPEEhnESmmeRSSSmSSES 0 _____
. Driving machine
L N Y
1
L T Reply queue 1 i==-===-=----mmmm-mmoo-
-4 Local queue manager ! —--—--—-----2 | Remote queue manager

P L e e e e e e e ==

Figure 9 — Server channels between two queue managers

1) The Requester application puts a message to a local definition of a remote queue located on the server
machine, and holds on to the message identifier returned in the message descriptor. The Requester application
then waits indefinitely for a reply to arrive on a local queue.

2) The message channel agent takes messages off the channel and places them on the common input
queue on the server machine.

3) The Responder application gets messages from the common input queue, and places a reply to the
queue name extracted from the messages descriptor (the name of a local definition of a remote queue located on
the driving machine). The queue manager copies over the message identifier from the request message to the
correlation identifier of the reply message.

4) The message channel agent takes messages off the transmission queue and sends them over the
channel to the driving machine.

5) The Requester application gets a reply from a local queue. The Requester application uses the
message identifier held from when the request message was put to the local definition of the remote queue, as
the correlation identifier in the message descriptor

Nonpersistent and persistent messages were used in the distributed queuing tests, with a message size of 2K.
The effect of message throughput with larger messages sizes is investigated in the “Large Messages” section.

Application Bindings of the Responder program are ‘Shared’ , the Requester program is normally ‘Trusted’ ,
and the channels specified as ‘MQIBindType = FASTPATH’ except in the ‘non-trusted’ scenario where both
programs use ‘shared’ bindings and the channels are specified as ‘MQIBindType = STANDARD’.

Page 12

WebSphere MQ for zLinux V7.0 — Performance Evaluations

2.3.1 Nonpersistent Messages — Server Channels

Figure 10 , Figure 10a, and Figure 11 show the nonpersistent and persistent message throughput achieved
using an increasing number of driving applications in the distributed queuing scenario (see Figure 9 on the
previous page), and WebSphere MQ V6 compared to Version 7.

5,500 s . .
<250 Distributed Queuing - 2K NonPersistent Messages
5,000 - 1
4,750 1
4,500
E /0\0
4,250 ~o~ T 200%
4’0007llllllIllllllllllllllllll EEEEEEEEN LA R AR R R R RNRRRR] " RERNENRNRENERNNNNNNNN INNENNERNNELNRNY QNI
3,750 1 180%
3,500 |
A~ 1 160%
§3,250 1 e
=z 3,000 1 140%
E2750 | / og
H 9 D
£ 2,500 | 1120%
& 2,250 -
2,000 = & g 100%
Y gy SR v AR A G A v
1,750 g~ & 1 80%
1,500 1
1,250 4.7 1 60%
1,000 1
750 | —+— WMQ v6.0 WMQ v7.0 T40%
500 - --+0--- WMQ v6.0 cpu % WMQ V7.0 cpu % | 500
250 -
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0%
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Applications

Figure 10 — Performance headline, nonpersistent messages, server channels

Figure 10 and Table 6 show that the throughput of nonpersistent messages has degraded by 6% when

comparing Version 6 to Version 7.

Test name: Round | Response
A
dgnp L Trips/sec | time (s) R
(36) (4180) (0.008) (94%)
WebSphere MQ V6.0 | 38 4483 0.012 949
WebSphere MQ V7.0 | 36 4716 0.010 92%
(38) (3796) (0.013) (94%)

Table 6 — Performance headline, nonpersistent messages, server channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the

table to provide meaningful comparison between WebSphere MQ V6 and Version 7.

Page 13

WebSphere MQ for zLinux V7.0 — Performance Evaluations

2.3.2 Non Persistent non Trusted — Server Channels

5,000

4,000 |

3,000 |

Round Trips/sec

Distributed Queuing - 2K NonPersistent Messages with NonTrusted Bindings
Peak Throughput - WMQ V6.0 vs WMQ V7.0 T

t200%
L 190%
H 180%
L 170%
L 160%
L 150%
L 140%
r 136%
1204
+ 110%]
0---- N R B L 100 %
+90%
+ 80%
+70%
1+ 60%
+50%
1+ 40%
+30%
+20%
+10%
: : : : : : : : 0%

—e— WMQ v6.0
---0--- WMQ v6.0 cpu %

WMQ v7.0
WMQ v7.0 cpu %

8 10 12 14 16

18 20 22 24 26
Applications

28 30 32 34 36 38 40

Figure 10a

Test name: Round | Response
A
Dqnp_nt L Trips/sec | time (S) R
(28) @421) (0.009) (97%)
WebSphere MQ V6.0 | 38 4882 0.009 98 %
WebSphere MQ V7.0 28 4098 0.007 98 %
(38) (4075) (0.016) (98%)

The throughput of nonpersistent messages has degraded by 10% when comparing Version 6 to Version 7.

Page 14

WebSphere MQ for zLinux V7.0 — Performance Evaluations

2.3.3 Persistent Messages — Server Channels

2,400 Distributed Queuing - 2K Persistent Messages
2,200 - /‘___‘/’/MP
2,000 | O
£ A/A/
1 180%
1,800
1 160%
1,600 -
g 1 140%
£ 1,400 |
& =)
= + 12(%
£ 1,200 { a
=
S 1 100%
& 1,000 - ‘
800 1 % RREEE Lo REEEE OO AR AR 80%
600 T 60%
400 —&— WMQ v6.0 WMQ v7.0 | 40%
---0--- WMQ v6.0 cpu % WMQ v7.0 cpu %
200 1209%
0 : : : : : : : : : : : : : 0%
10 20 30 40 50 60 70 80 9 100 110 120 130 140 150
Applications

Figure 11 — Performance headline, persistent messages, server channels

Figure 11 and Table 7 show that the throughput of persistent messages is similar when comparing Version 6 to
Version 7.

Test name: Round | Response
A
dgpm Pps Trips/sec | time (s) CPU
WebSphere MQ V6.0 | 150 2187 0.075 81%
WebSphere MQ V7.0 | 150 2079 0.093 82%

Table 7 — Performance headline, persistent messages, server channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput.

Page 15

WebSphere MQ for zLinux V7.0 — Performance Evaluations

2.3.4 Server Channels

For the following distributed queuing measurements, the messaging rate used is 1 round trip per driving
application per second, i.e. a request message outbound over the sender channel, and a reply message inbound
over the receiver channel per second. Note that there are a fixed number of 4 server channel pairs for the
nonpersistent messaging tests, and 2 pairs for the persistent message tests.

. . . . 200 %
4,000 - Distributed Queuing - r3600 NonPersistent Messages 195%
. . . , . 190 %
3,800 - Peak Throughput - WMQ V6.0 s WMQ V7.0 135:72
¥ 180%
3,600 - 2 i7SZo
70
34007 ®® 1659
+ 160 %)
T 0|
> ot
i
£ 2,400 | 11154
22,200 | [110%
= T ©
i
J + 10
E 2,000 T gg%’
51,800 - -3 R-E= lo
S BB OB + 85%
g | O OOOCYOD + 80%
00 i
4 T 0
1,400 * P DAY 165
] - 16
5500 15
1,000 - KK Tis%
800 - X0 + 40%
X 1359
600 - % 130%
> 125%
400 - K2 1 20%
200 O —— WMQ v6.0 -~ WMQ v7.0 —i(s)gy
- ---0--- WMQ v6.0 cpu % —%— WMQ v7.0 cpu % ggf
T 0
> > > >
(=) > =3 w
— L] w ot
— N e
Applications
Figure 12 — 1 round trip per driving application per second, server channel, nonpersistent messages
Note: Messaging in these tests is 1 round trip per driving application per second.
2,300 180 %
2’200 Distributed Queuing - r3600 Persistent Messages ’
;mo— Peak Throughput - WMQ V6.0 vs WMQ V7.0 T170%
2,000 -
1,900 |
1,800 |
1,700
1,600 -
1,500 -
1,400 |
=1
£1,300
-5-1,200 ,
21,100
51,000 1
900 -
800 -
700 -
600 -
500 -
400 - v
300 - RO —— WMQ v6.0 —8— WMQ v7.0 20%
200 - O - - WMQ v6.0 cpu % —— WMQ v7.0 cpu %
100 - 10%
- 0%
> > > > =4 > =4 > > > > > > > =4 > =3 > =4 > > > >
w w w w w w w) w w w w w w) w w w w w w) w w w w)
- (o] Lag} - wn o ~ -] =) =] v (o] Lz} - w o ~ -] N > v [
- = Rl - - - - - - - N N N
Applications

Figure 13 — 1 round trip per driving application per second, server channel, persistent messages

Page 16

WebSphere MQ for zLinux V7.0 — Performance Evaluations

Figure 12, Figure 13 and Table 8 shows how WebSphere MQ V7 is similar in performance as version 6
although at a higher CPU cost.

Rate/app/h Round

Test name: Apps e ,Oun Re:ﬂsponse CPU

Trips/sec time (s)
dqnp_r3600 3450 3428 0.259 84 %
(WebSphereMQ v6.0) | (3450) 3,600 (3448) (0.239) (87%)
dgpm_r3600 1750 1746 0.095 77 %
1950 1950 0.236 81%
(WebSphereMQ v6.0) (1750) 3,600 (1751) (0..294) (72%)
(2050) (2056) (0.351) (80%)

Table 8 — 1 round trip per driving application per second, client channels

Note: The large bold numbers in the table above show the WebSphere MQ V7 peak number of round trips per

second, and the number of driving applications used to achieve the peak throughput. The numbers in
brackets are included in the table to provide meaningful comparison with Version 6.

Page 17

WebSphere MQ for zLinux V7.0 — Performance Evaluations

3 Large Messages

3.1 MQI Response Times: 50bytes to 100Mb — Local Queue Manager
3.1.1 SObytes to 32Kb

Figure 14 show that the response time for MQPut/MQGet for nonpersistent message sizes between 50bytes and
32Kb.

Nontrusted Nonpersistent MQPUT+MQGET (50bytes to 32K)

0.7 4

0.6

I
IS

Response Time (msec)
(=
N

0.2 4

0.1

—e— WMQ v6.0
WMQ v7.0

0.0

50 500 1024 2048 4096 8192 16384 32768
Message Size (bytes)

Figure 14 —The effect of nonpersistent message size on MQI response time (50byte - 32K)
Figure 15 show that the response for MQPut/MQGet pairs for persistent message sizes between 50bytes and

VS

3.0 Nontrusted Persistent MQPUT+MQGET (50bytes to 32K) /

2.9 1

2.8
2.7 A
2.6
2.5 4
24 4 "

2.3 1 /
222
Eaa1 //
D
Ez.o 1
219 ——

=3
£1.8 -
D
®1.7
1.6 1
1.5 1
1.4 1
1.3

1.2 —&— WMQ v6.0
1.1 4 WMQ v7.0

1.0

50 500 1024 2048 4096 8192 16384 32768
Message Size (bytes)

16Kb.
Figure 15 —The effect of persistent message size on MQI response time (50byte - 32K)

Page 18

WebSphere MQ for zLinux V7.0 — Performance Evaluations

3.1.2 32Kb to 2Mb

Figure 16 show that the response time for MQPut/MQGet pairs has improved for all nonpersistent message
sizes between 32Kb and 2Mb.

40.0 Nontrusted Nonpersistent MQPUT+MQGET (32K to 2MB)

35.0

30.0

25.0

Response Time (msec)

10.0

5.0 -

—o— WMQ v6.0

— WMQ v7.0

0.0 % ‘ ‘ - ‘
32768 65536 131072 262144 524288 1048576 2097152
Message Size (bytes)

Figure 16 —The effect of nonpersistent message size on MQI response time (32K — 2Mb)

Figure 17 show that the response for MQPut/MQGet pairs for persistent message sizes between 32Kb and
2Mb.

70.0 Nontrusted Persistent MQPUT+MQGET (32K to 2MB)

60.0 -

50.0

IS

S

=
.

Response Time (msec)
w0
e
=}
L

20.0 -

10.0 4

—— WMQ v6.0

— WMQ v7.0

0.0 I T T T . .
32768 65536 131072 262144 524288 1048576 2097152
Message Size (bytes)

Figure 17 —The effect of persistent message size on MQI response time (32K - 2Mb)

Page 19

WebSphere MQ for zLinux V7.0 — Performance Evaluations

3.1.3 2Mb to 100Mb
Figure 18 Response time for MQPut/MQGet pairs for NP message between 2Mb and 100Mb.

Response Time (msec)

1,400 T—————|Nontrusted Nonpersistent MQPUT+MQGET (2MB to 100MB)

1,200

1,000 -

800 -

600

400

200 -

—o— WMQ v6.0

WMQ v7.0
05

2097152 8388608 33554432 104857600
Message Size (bytes)

Figure 18 —The effect of nonpersistent message size on MQI response time (2Mb — 100Mb)

Figure 19 The response for MQPut/MQGet pairs for persistent message sizes between 2Mb and 100Mb.

3,500 Nontrusted Persistent MQPUT+MQGET (2MB to 100MB)

3,000 -

2,500 -

2,000 -

Response Time (msec)
-
wm
(=3
=}

1,000 4

500 -

—e— WMQ v6.0

(" WMQ v7.0
0

2097152 8388608 33554432 104857600
Message Size (bytes)

Figure 19 —The effect of persistent message size on MQI response time (2Mb — 100Mb)

Page 20

Note:

WebSphere MQ for zLinux V7.0 — Performance Evaluations

3.2 20K Messages

3.2.1 Local Queue Manager

Figure 20 and Figure 21 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the local queue manager scenario.

Round Trips/sec

Local Queue Manager - 20K NonPersistent Messages

7,000 -

6,000 -

5,000 -

4,000

3,000 -

2,000 |

1,000 7

—— WMQ v6.0 WMQ v7.0
<=0 - - WMQ v6.0 cpu % —*— WMQ V7.0 cpu %

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20
Applications

Figure 20 — 20K nonpersistent messages, local queue manager

Figure 20 and Table 9 show that the throughput of nonpersistent messages has degraded by 11% comparing
Version 7 to Version 6.

Test name: Round | Response
A
local_np_ 20K Pps Trips/sec | time (s) CPU
WebSphere MQ V6.0 3 6694 0.001 87 %
(10) (4520) (0.007) (77%)
WebSphere MQ V7.0 3 5493 0.001 86 %
(10) (3757) (0.003) (79%)

Table 9 — 20K nonpersistent messages, local queue manager

The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6 and Version 7

Page 21

WebSphere MQ for zLinux V7.0 — Performance Evaluations

3.2.1.1 Persistent Messages

1,000 240%
i . 1 230%
950 Local Queue Manager - 20K Persistent Messages | 220,;
900 |)
1 210%
850 1 200%
800 1 190%
70 /\‘\N/‘—M P = Sweraas o = b
700 - / v = : 1170%
1 160%
650
1 150%
, 600 1 1409
% 550 z
=) |
& 500 4
E
£ 450
=]
& 400 -
350
300
250 ¥
200
150 -
100 —— WMQ v6.0 WMQ v7.0 1 20%
50 - ---0--- WMQ v6.0 cpu % —¥— WMQ v7.0 cpu %|+ 10%
-1 0%
4 12 20 28 36 44 52 60 68 76 84 92 100 108 116
Applications

Figure 21 — 20K persistent messages, local queue manager

Figure 21 and Table 10 show that the throughput of persistent messages has degraded by 3% when comparing
Version 6 to Version 7.

Test name: Round | Response
A
local_pm_20K L5 Trips/sec | time (s) CPU
(16) (757) (0.026) (66%)
WebSphere MQ V6.0 | 154 | 759 0192 | 73%
(20) (733) (0.030) (68%)
WebSphere MQ V7.0 1 150 | 740 0.198 | 75%

Table 10 — 20K persistent messages, local queue manager

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6 and Version 7.

Page 22

WebSphere MQ for zLinux V7.0 — Performance Evaluations

3.2.2 C(lient Channel

Figure 22 and Figure 23 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the client channel scenario. Clients use Optimized connections on
MQ V7 in this chapter.

3.2.2.1 Nonpersistent Messages

1,600 Client Channels - 20K NonPersistent Messages
1,500 1

1,400 -
1,300 -
1,200 -
1,100 -
1,000 -

900 -

800 -

700

Round Trips/sec

600

500 ¢

400

300
200 o —— WMQ v6.0 WMQ v7.0 r30%

-0 - WMQ v6.0 cpu % —k— WMQ v7.0 cpu % 20%
100 1 10%

T T T T T T T T 0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Applications

Figure 22 — 20K nonpersistent messages, client channels

Figure 22 and Table 11 show that the throughput of nonpersistent messages has degraded by 7% when
comparing Version 6 to Version 7.

Test name: Round | Response
A
clnp_20K L Trips/sec | time (S) i
WebSphere MQ V6.0 | 18 1449 0.015 89%
(18) (1320) (0.019) (89%)
WebSphere MQ V701 5y | 1344 | 0.019 |91%

Table 11 — 20K nonpersistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6 and Version 7.

Page 23

3.2.2.2 Persistent Messages

WebSphere MQ for zLinux V7.0 — Performance Evaluations

800

700 -

600 -

500 -

Round Trips/sec
£y
S
>
~_

300

200

200.0%

Client Channels - 20K Persistent Messages

100 +

T 190.0%
+ 180.0 %
¥ 170.0%
T 160.0%
Ni 150.0 %
+ 140.0%
+ 130.0%
+ 120.0%
+ 110.0%
+ 100.0 %

—— WMQ v6.0

WMQ v7.0
<20 - - WMQ v6.0 cpu % —¥— WMQ V7.0 cpu %

52 60

68

Applications

84 92

100

108 116

Figure 23 — 20K persistent messages, client channels

Figure 23 and Table 12 show that the throughput of persistent messages has degraded by 4% when comparing
Version 6 to Version 7.

Note:

Test name: Round | Response
A
clpm_20K L Trips/sec | time (s) R
WebSphere MQ V6.0 | 112 593 0.223 77 %
WebSphere MQ V7.0 | 112 688 0.192 94 %

Table 12 — 20K persistent messages, client channels

The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the

table to provide meaningful comparison between WebSphere MQ V6 and Version 7.

Page 24

WebSphere MQ for zLinux V7.0 — Performance Evaluations

3.2.3 Distributed Queuing

Figure 24 and Figure 25 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the distributed queuing scenario

3.2.3.1 Nonpersistent Messages

Distributed Queuing - 20K NonPersistent Messages T 190%

2,000 1

1,500 -

1,000 -

Round Trips/sec

500 1

—o— WMQ v6.0 WMQ v7.0

--0--- WMQ v6.0 cpu % —Kk— WMQ v7.0 cpu % oo
T T T T T T T T T (7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Applications

0 ; ; ; ; ; T T T

Figure 24 — 20K nonpersistent messages, distributed queuing

Figure 24 and Table 13 show that the throughput of nonpersistent messages is similar when comparing Version
6 to Version 7.

Test name: Round | Response
A
dgnp_20K pps Trips/sec | time (s) Gt
WebSphere MQ V6.0 | 15 1784 0.011 88 %
WebSphere MQ V7.0 | 15 1780 0.010 89%

Table 13 — 20K nonpersistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and
the number of driving applications used to achieve the peak throughput.

Page 25

Persistent Messages

WebSphere MQ for zLinux V7.0 — Performance Evaluations

Distributed Queuing - 20K Persistent Messages

A

=4

—— WMQ v6.0

WMQ v7.0

Applications

50 - H
55 | ---0--- WMQ v6.0 cpu % —¥%— WMQ v7.0 cpu %|
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
4 12 20 28 36 44 52 60 68 76 84 92 100 108 116

240 %

t230%
L 220%
»210%
t200%
t190%
L 180%
L 170%
t160%
t150%
L 140%
t130%
L 120%
r116%
L 100,
t90%
t80%
L 70%
L 60%

50%

r 40%

30%
20%
10%
0%

Figure 25 — 20K persistent messages, distributed queuing

Figure 25 and Table 14 show that the throughput of nonpersistent messages has degraded by 2% when

comparing Version 6 to Version 7.

Test name: Round | Response
A
dgpm_20K L Trips/sec | time (s) il
WebSphere MQ V6.0 | 16 551 0.032 | 67%
(120) (528) (0.211) (53%)
(16)) (507) (0.034) (66%)
WebSphere MQ V7.0 [455 | 529 0209 |51%

Table 14 — 20K persistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6 and Version 7.

Page 26

WebSphere MQ for zLinux V7.0 — Performance Evaluations

3.3 200K Messages

3.3.1 Local Queue Manager

Figure 26 and Figure 27 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the local queue manager scenario.

3.3.1.1 Nonpersistent Messages

220%
2,500
Local Queue Manager - 200K NonPersistent Messages 12009
N
1 180%
2,000
1 160%
£ 1,500 4 =)
12
z - 126%
=
-§ 1 100%
& X
1,000 -
L 80%
t60%
500 1 40%
L 20%
—— WMQ v6.0 WMQ v7.0
---0--- WMQ v6.0 cpu % —*— WMQ V7.0 cpu % “
0 : : : : : : : : : : : : : : : : : , 0%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Applications

Figure 26 — 200K nonpersistent messages, local queue manager

Figure 26 and Table 15 show that the throughput of nonpersistent messages has degraded by 7% when
comparing Version 6 to Version 7.

Test name: Round | Response
A
local_np_200K e Trips/sec | time (s) CPU
WebSphere MQ V6.0 | 3 2278 0.002 | 80%
(20) (1597) (0.016) (90%)
WebSphere MQ V7.0 3 2248 0.002 80%
(20) (1373) (0.021) (92%)

Table 15 — 200K nonpersistent messages, local queue manager

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6 and Version 7

Page 27

WebSphere MQ for zLinux V7.0 — Performance Evaluations

3.3.1.2 Persistent Messages

bt"c\%\‘e,»t

R I TR I S S TP DU S N S AR o
PRI IRDP STV PRSP SIS

Applications

160 Local Queue Manager - 200K Persistent Messages 230%
150 1 220%
1 210%
140 - b 200 %
130 1 /‘\‘—‘\ Cand M 190%
W / 1 180%
120 4 1 170%
110] a4 ¥ + 160%
1 150%
100 1 1 140%
é 90 1 130%
-E 80 | :?0%
< 0%
g 70 1 106%
gl 1 90%
1 80%
& 70%
[60%
1 50%
30 1 1 40%
20 + 30%
—— WMQ v6.0 WMQ v7.0 +20%
101 ---0--- WMQ v6.0 cpu % —*— WMQ v7.0 cpu %| | 10%
0 — —— 0%

Figure 27 — 200K persistent messages, local queue manager

Figure 27 and Table 16 show that the throughput of persistent messages has degraded by 3% comparing
Version 6 to Version 7.

Test name: Round | Response
A
local_pm_200K Pps Trips/sec | time (s) CPU
WebSphere MQ V6.0 56 140 0.481 68 %
(80) (137) (0.702) (68%)
(56) (119) (0.528) (64%)
WebSphere MQ V7.0 30 138 0.712 1%

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6 and Version 7.

Table 16 — 200K persistent messages, local queue manager

Page 28

WebSphere MQ for zLinux V7.0 — Performance Evaluations

3.3.2 C(lient Channel

Figure 28 and Figure 29 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the client channel scenario. Clients in Chapter 3 used Optimized

connections on MQ V7.

3.3.2.1 Nonpersistent Messages

Client Channels - 200K NonPersistent Messages

125 -

Round Trips/sec

—— WMQ v6.0
-2 -0 - - WMQ v6.0 cpu %

WMQ v7.0

—¥%— WMQ v7.0 cpu %

10 11 12 13 14 15
Applications

16 17 18 19

20

Figure 28 — 200K nonpersistent messages, client channels

Figure 28 and Table 17 show that the throughput of nonpersistent messages has degraded by 18% when

comparing Version 6 to Version 7 but uses more CPU.

Test name: Round | Response
A
clnp_200K Pps Trips/sec | time (s) CPU
®) (160) (0.057) (82%)
WebSphere MQ V6.0 12 186 0.079 81%
WebSphere MQ V7.0 | 8 144 0.062 | 87%
(12) (120) (0.124) (81%)

Table 17 — 200K nonpersistent messages, client channels

Note:

of driving applications used to achieve the peak throughput.

Page 29

The large bold numbers in the table above show the peak number of round trips per second, and the number

3.3.2.2 Persistent Messages

WebSphere MQ for zLinux V7.0 — Performance Evaluations

150

25 -

Client Channels - 200K Persistent Messages

150 %
+ 140 %)
+ 130%)
+ 120%
+ 110%
+ 100 %
90 %
+ 80%

=)
3 702&
t 60%
+50%

+ 40%

—— WMQ v7.0 — = WMQ v6.0
---0--- WMQ V7.0 cpu % —*%— WMQ v6.0 cpu %

t 30%

+20%

+10%

0%

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116

Applications

Figure 29 — 200K persistent messages, client channels

Figure 29 and Table 18 only show the throughput of persistent messaging has degraded by 8% when
comparing Version 6 with V7 message rates

Test name: Round | Response
A
clpm_200K Pps Trips/sec | time (s) CPU
WebSphere MQ V6.0 | 40 120 0.383 86 %
WebSphere MQ V7.0 | 40 110 0.444 90 %

Table 18 — 200K persistent messages, client channels

Page 30

3.3.3 Dist

WebSphere MQ for zLinux V7.0 — Performance Evaluations

ributed Queuing

Figure 30 and Figure 31 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the distributed queuing scenario

3.3.3.1 Nonpersistent Messages

Round Trips/sec

200 %

200

Distributed Queuing - 200K NonPersistent Messages

180 -

160 - A(/’\’/‘/‘\'/‘/‘___‘/
1o | //

120 /

T 190 %
T 180%)

/\ 4 170%
\$160%

1 1509
1 140%
1 130%
1 1209
L 1109%]
L 100%
90%

o
L 80%
L 70%
L 60%

) e WMQ 6.0 WMQ v7.0
40 & ---0--- WMQ v6.0 cpu % —*— WMQ v7.0 cpu %[40%

r 50%

20 -

T 30%
T 20%
T 10%
0%

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19
Applications

20

Figure 30 — 200K nonpersistent messages, distributed queuing

Figure 30 and Table 19 show that the throughput of nonpersistent messages has improved by 2% when

comparing Ve

rsion 6 to Version 7 but uses more cpu

Test name: Round | Response
A
dgnp_200K L Trips/sec | time (s) R
(18) (166) (0.123) (91%)
WebSphere MQ V6.0 19 174 0.125 929%
WebSphere MQ V7.0 18 178 0.124 89 %
(19) (167) (0.138) (91%)

Table 19 — 200K nonpersistent messages, distributed queuing

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput.

Page 31

WebSphere MQ for zLinux V7.0 — Performance Evaluations

3.3.3.2 Persistent Messages

110 240.0 %
Distributed Queuing - 200K Persistent Messages ‘
105
100 1 220.0%
951 1 200.0%
201 M»
85 \ L 180.0%
80
75 | L 160.0%
g 701 + 140.0%
% 654
£
& 60 + 120.0%
g 55
=
g < + 1006
45 1 80.0%
7 72 S » S - SN . e
35 <>". % 60.0%
0] O OO0 OO
259 1 40.0%
20 —— WMQ v6.0 WMQ v7.0
! c-- 0 - WMQ v6.0 cpu % —%— WMQ V7.0 cpu % 20.0%
5
w1 0.0%
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88
Applications

Figure 31 — 200K persistent messages, distributed queuing

Figure 31 and Table 20 show that the throughput of nonpersistent messages has improved by 24% when
comparing Version 6 to Version 7.

Test name: Round | Response
A
dgpm_200K L Trips/sec | time (s) R
(56) (58) (1.05) (56%)
WebSphere MQ V6.0 76 91 0.992 73%
WebSphere MQ V7.0 | 56 88 0.768 | 68%
(76) (87) (1.12) (13%)

Table 20 — 200K persistent messages, distributed queuing

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6 and Version 7.

Page 32

3.4 2Mb Messages

3.4.1 Local Queue Manager

WebSphere MQ for zLinux V7.0 — Performance Evaluations

Figure 32 and Figure 33 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the local queue manager scenario.

3.4.1.1 Nonpersistent Messages

80

Round Trips/sec
N wn
<> <

w
=]
L

10 -

Local Queue Manager - 2M NonPersistent Messages

240 %

T 230%)

r 220%
r 210%
r200%
r 190 %
r 180%
» 170 %

T 160 %
T 150%)

1 140%
1 130%

-9
T 120%
1 110%
+100%
% 90%

+ 80%

r 70 %
t 60%
r 50%

—e— WMQ v6.0

WMQ v7.0
== -0 -- WMQ v6.0 cpu % —%— WMQ v7.0 cpu %} 309%

- 40 %

T20%
10%

T T

10

T T

11 12

Applications

T T T

13

Figure 32 — 2M nonpersistent messages, local queue manager

Figure 32 and Table 21 show that the throughput of nonpersistent messages has degraded by 4% when
comparing Version 6 to Version 7.

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput. The numbers in brackets are included in the
table to provide meaningful comparison between WebSphere MQ V6 and Version 7

Test name: Round | Response
A
local_np_2M pps Trips/sec | time (s) et
WebSphere MQ V6.0 | 2 71 0.032 | 75%
(20) (58) (0.429) (86%)
WebSphere MQ V7.0 | 2 65 0.033 | 76%
(20) (54) (0.447) (87%)

Table 21 — 2M nonpersistent messages, local queue manager

Page 33

WebSphere MQ for zLinux V7.0 — Performance Evaluations

3.4.1.2 Persistent Messages

15 Local Queue Manager - 2M Persistent Messages zzggz:
L 210.0%
L 200.0%
L 190.0%
1 180.0%
® 170.0%
1 160.0%
10 1 1 150.0%
L9 1 140.0%
2 1 130.0%
% 81 1 120.0%
=
=7 T 110.0%
E + 100.6%
%6 1 1 90.0%
5 1 80.0%
% e 70.0%
4 — T 60.0%
3] 150.0%
1 40.0%
24 130.0%
1] —— WMQ v6.0 WMQ v7.0 T 20.0%
---0--- WMQ v6.0 cpu % —*k— WMQ v7.0 cpu %| 10.0%
0 , , , ; ; 0.0%
4 8 12 16 20 24 28
Applications

Figure 33 — 2M persistent messages, local queue manager

Figure 33 and Table 22 show that the throughput of persistent messages has degraded by 3% when comparing

Version 6 to Version 7.

Test name: Round | Response
A
local_pm_2M L Trips/sec | time (s) R
WebSphere MQ V6.0 | 8 12 0.723 61%
WebSphere MQ V7.0 | 8 12 0.749 68 %

Table 22 — 2M persistent messages, local queue manager

Note:

of driving applications used to achieve the peak throughput.

Page 34

The large bold numbers in the table above show the peak number of round trips per second, and the number

WebSphere MQ for zLinux V7.0 — Performance Evaluations

3.4.2 Client Channel

Figure 34 and Figure 35 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the client channel scenario. Clients in Chapter 3 used Optimized
connections on MQ V7.

3.4.2.1 Nonpersistent Messages

22 . . 200%
Client Channels - 2M NonPersistent Messages ¢
1 190%
20 1 1 180%
1 170%
18 4
1 160%
16 1 1 150%
1 140%
14 1 S/ 1 130%
g A(/' +120%
212
= 1 110%
=
ERUR T 00%
I 1 90%
8 1 80%
1 70%
6 1 60%
1 50%
4
1 40%
) 1 30%
—— WMQ v6.0 WMQ v7.0 0%
(4
<20 - - WMQ v6.0 cpu % —%— WMQ v7.0 cpu %
0 ; ; ; ; ; ; ; ; ; ‘ ‘ : : ‘ ‘ : ‘ 10%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Applications

3.4.2.2

Figure 34 — 2M nonpersistent messages, client channels

Figure 34 and Table 23 show that the throughput of nonpersistent messages has degraded by 11% when

comparing Version 6 to Version 7 but uses more cpu.

Note:

Test name: Round | Response
A
clnp_2M Pps Trips/sec time (s) CPU
WebSphere MQ V6.0 | 9 18 0.592 97 %
WebSphere MQ V7.0 | 9 16 0.667 100%

Table 23 — 2M nonpersistent messages, client channels

The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput.

Page 35

3.4.2.3 Persistent Messages

WebSphere MQ for zLinux V7.0 — Performance Evaluations

Applications

12 200%
c - 1 190%
1 Client Channels - 2M Persistent Messages ?
1 180%]
1 170%]
10 ., —— o -
¢ — $160%
9 ¥ 1509
1 140%]
1 1 130%
o7 1 120%]
Y
é 1116
2 3)
£6 1 100%
E 90%
2 3 R
& Y 80%
4l —&— WMQ v6.0 1 70%
---0--- WMQ v6.0 cpu % —%— WMQ V7.0 cpu %| + 60%
31 150%
1 40%
21 +30%
o 120%
110%
0 ; ; ; ; ; 0%
4 8 12 16 20 24 28

Figure 35 — 2M persistent messages, client channels

Figure 35 and Table 24 show that the throughput of persistent messages degraded by 4% when comparing
Version 6 to Version 7.

Note:

Test name: Round | Response
A
clpm_2M Pps Trips/sec time (s) CPU
WebSphere MQ V6.0 | 8 10 0.894 83%
WebSphere MQ V7.0 | 8 10 0.898 86 %

Table 24 — 2M persistent messages, client channels

The large bold numbers in the table above show the peak number of round trips per second, and the number

of driving applications used to achieve the peak throughput.

Page 36

WebSphere MQ for zLinux V7.0 — Performance Evaluations

3.4.3 Distributed Queuing

Figure 36 and Figure 37 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the distributed queuing scenario.

3.4.3.1 Nonpersistent Messages

200 %
T 190 %

20

Distributed Queuing - 2M NonPersistent Messages

T 180%)
T 170 %)

5 160%

15 | W 150%
/ 1 140%

1 130%

/ 1 120%
' 1165
2 100 %)
L 90%
L 80%
L 70%
L 60%
L 509%
L 20%
30%
1 20%

T 10%

T T T T T T T 0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Applications

Round Trips/sec
—
>

»

—— WMQ v6.0 WMQ v7.0
---0--- WMQ v6.0 cpu % —*— WMQ V7.0 cpu %

Figure 36 — 2M nonpersistent messages, distributed queuing

Figure 36 and Table 25 show that the throughput of nonpersistent messages is similar when comparing Version
6 to Version 7 although the CPU cost per message has increased.

Test name: Round | Response
A
dgnp_2M Pps Trips/sec time (s) CPU
WebSphere MQ V6.0 | 13 16 0.981 100%
WebSphere MQ V7.0 | 13 16 0.958 100%

Table 25 — 2M nonpersistent messages, distributed queuing

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput.

Page 37

3.4.3.2 Persistent Messages

WebSphere MQ for zLinux V7.0 — Performance Evaluations

10 240%

. | Distributed Queuing - 2M Persistent Messages 1 220%

1 200%

s 4
s 1 180%
7 4

1160%

é 6 + 140%

z 4

= 5 +120%
< =)
= B
2 4 1 100
1 80%

60%

—— WMQ v6.0 WMQ v7.0 - 40%

1] ---0 - WMQ v6.0 cpu % —— WMQ V7.0 cpu %
1 20%
0 , , . . 0%
4 8 12 16 20 24 28
Applications

Figure 37 — 2M persistent messages, distributed queuing

Figure 37 and Table 26 show that the throughput of nonpersistent messages has degraded by 5% when

comparing Version 6 to Version 7. The response time with 8 or more applications exceeds one second.

Test name: Round | Response
A
dgpm_2M L5 Trips/sec | time (Ss) e
WebSphere MQ V6.0 | 4 8 0.532 21%
WebSphere MQ V7.0 | 4 5 0.485 27%

Table 26 — 2M persistent messages, distributed queuing

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number

of driving applications used to achieve the peak throughput.

Page 38

WebSphere MQ for zLinux V7.0 — Performance Evaluations

4 Application Bindings

This report analyzes the rate that messages can be exchanged between a Requester (Driver) application and a
Responder (Server) application. This chapter looks at the effect of various combinations of application bindings
for Requester and Responder programs.

Requester Responder
Normal Trusted Non Trusted
Isolated Isolated Isolated
Trusted Trusted Trusted
Non Trusted Shared Shared

4.1 Local Queue Manager

Figure 38 and Figure 39 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the local queue manager scenario.

4.1.1 Nonpersistent Messages

15,000
Local Queue Manager - Application Bindings NonPersistent Messages
12,500 -
10,000 -
<
3
Zz
=)
& 7,500
=
=]
=
S
a AN
5,000 | \‘\ .
< ——p % & o ¢ —0—2——1
2,500
—&— Normal
Isolated
Trusted
NonTrusted

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Applications

Figure 38 — Application binding, nonpersistent messages, local queue manager

Figure 38 and Table 27 show that the peak throughput of nonpersistent messages when comparing Normal,
Isolated, Trusted and Shared bindings.

Round | Response
Trips/sec | time (s)
Normal 3 7507 0.001 88 %
Isolated | 4 6032 0.002 93 %
Trusted | 4 11621 0.001 80%
Shared 4 6314 0.001 93 %

Table 27 — Application binding, nonpersistent messages, local queue manager

Test Apps CPU

Page 39

WebSphere MQ for zLinux V7.0 — Performance Evaluations

4.1.2 Persistent Messages

2200 | Local Queue Manager - Application Bindings Persistent Messages

2,000 -
1,800 -|

1,600 | W’}V—‘#

1,400 -|

=

N

=

S
.

Round Trips/sec
—
)
S
S

800 -

600

400 -

—&— Normal
Isolated
Trusted

200 -

0 T T T T T T T T
4 12 20 28 36 44 52 60 68 76 84 92 100 108 116
Applications

Figure 39 — Application binding, persistent messages, local queue manager

Figure 39 and Table 28 show that the peak throughput of persistent messages when comparing Normal,
Isolated and Trusted bindings.

R
Test | Apps f)lmd Response cPU
Trips/sec time (s)
Normal | 116 1692 0.081 84 %
Isolated | 88 1492 0.082 81%
Trusted | 24 1850 0.015 77 %

Table 28 — Application binding, persistent messages, local queue manager

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput.

The difference in throughput due to using various application bindings is obscured by the /O necessary for
Persistent messages however the smaller CPU requirement needed by Trusted bindings can still be observed.

Page 40

WebSphere MQ for zLinux V7.0 — Performance Evaluations

4.2 Client Channels

Figure 40 and Figure 41 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the client channel scenario. Clients in Chapter 4 used Optimized

connections on MQ V7.

4.2.1 Nonpersistent Messages

3,750

3500 | Client Channels - Application Bindings NonPersistent Messages

3,250 -
3,000 - b
2,750 -
2,500 -

2,250 -

Round Trips/sec
=
wm ~ >
S a S
S = 3
| | !

—

1,250 | /

1,000 -|
750

500

—&— Normal
Isolated
Trusted

250

18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Applications

Figure 40 — Application binding, nonpersistent messages, client channels

Figure 40 and Table 29 show that the peak throughput of nonpersistent messages when comparing Normal,
Isolated and Trusted bindings.

Test Apps R.ound R?Sponse CPU
Trips/sec | time (s)

Normal | 24 3104 0.009 96 %

Isolated | 13 2354 0.005 91 %

Trusted | 10 2356 0.007 81%

Table 29 — Application binding, nonpersistent messages, client channels

The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput.

Note:

Page 41

WebSphere MQ for zLinux V7.0 — Performance Evaluations

4.2.2 Persistent Messages

1,400 Client Channels - Applications Bindings Persistent Messages

1,200 -

1,000 |

1
% 800 -
i=]
=
=
g
S 600 -
o
-
400 -
200 -
—&— Normal
Isolated
Trusted

0 T T T T T T T T T T T
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84
Applications

Figure 41 — Application binding, persistent messages, client channels

Figure 41 and Table 30 show that the peak throughput of nonpersistent messages when comparing Normal,
Isolated and Trusted bindings.

Test | Apps R.Ollnd Response cPU
Trips/sec time (s)

Normal | 88 1194 0.087 93 %

Isolated | 88 1025 0.102 88 %

Trusted | 32 1094 0.033 80%

Table 30 — Application binding, persistent messages, client channels

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput.

The various application bindings for Client Persistent messages are limited by the same factors as the Local
Persistent messages and give similar throughput.

Page 42

WebSphere MQ for zLinux V7.0 — Performance Evaluations

4.3 Distributed Queuing

Figure 41 and Figure 42 show the nonpersistent and persistent message throughput achieved using an
increasing number of driving applications in the distributed queuing scenario.

4.3.1 Nonpersistent Messages

4,750 | Distributed Queuing - Application Bindings NonPersistent Messages
4,500

4,250 ‘

4,000 1
o /‘\’\0/*’_0

3,750
3,500
3,250
3,000
]
g 2,750 -|
£2,500 |
&2

r———

E 2,250 |
z
& 2,000
1,750 -
1,500
1,250
1,000
750

500

—— Normal
Isolated
Trusted

250

0 -+ ; ; ; ; ; ; T T T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Applications

Figure 42 — Application binding, nonpersistent messages, distributed queuing

Figure 42 and Table 31 show that the peak throughput of nonpersistent messages when comparing Normal,
Isolated and Trusted bindings.

Test Apps R.ound R?Sponse CPU
Trips/sec | time (s)

Normal | 36 4715 0.010 92 %

Isolated | 20 4001 0.007 91 %

Trusted | 19 4367 0.005 86 %

Table 31 — Application binding, nonpersistent messages, distributed queuing

Note:

Page 43

The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput.

4.3.2 Persistent Messages

WebSphere MQ for zLinux V7.0 — Performance Evaluations

2,800
2,600 -
2,400 -
2,200 -
2,000 -

1,800 -|

-

1,200 -

Round Trips/sec
=
S =3
S S
S S
| !

1,000 -

800 -

600 -

400

200 -

Distributed Queuing - Application Bindings Persistent Messages

—— Normal
Isolated
Trusted

12 20 28 36

44

52 60

68 76

84

108 116

Applications

Figure 43 — Application binding, persistent messages, distributed queuing

Figure 43 and Table 32 show that the peak throughput of nonpersistent messages when comparing Normal,
Isolated and Trusted bindings. The ‘Normal’ measurement used 300 Requesters to achieve 2747 Round Trips.

Test | Apps R.Ollnd Response cPU
Trips/sec time (s)

Normal | 120 2050 0.020 75 %

Isolated | 108 2326 0.055 86 %

Trusted | 120 2339 0.058 76 %

Table 32 — Application binding, persistent messages, distributed queuing

The large bold numbers in the table above show the peak number of round trips per second, and the number
of driving applications used to achieve the peak throughput.

Note:

Page 44

WebSphere MQ for zLinux V7.0 — Performance Evaluations

S Short & Long Sessions

The previous chapters in this report only reported on steady state messaging that does not include any session
setup and termination function. This chapter specifically bracket groups of five MQPut/MQGet pairs with
MQConn/MQDisc and MQOpen/MQClose calls so a comparison of this overhead can be seen.
A short session is a term used to describe the behaviour of an MQI application as it processes a small number of
messages using one or more queues and a queue manager. The measurements in this document use an MQI-
client application and the following sequence:

e connects to the queue manager

e opens the common input queue, and common reply queue
e puts a request message to the common input queue

e gets the reply message from the common reply queue

e wait one second

¢ closes both queues

e disconnects from the queue manager

“Why measure short sessions?”

For each new connecting application or disconnecting application, the queue manager and Operating System
must start a new process or thread and set up the new connection. As the number of connecting and
disconnecting applications increases, the Operating System and queue manager are subjected to a higher load.
While these requests are being serviced, the queue manager has less time available to process messages, so
fewer driving applications can be reconnected to the queue manager per second before the response time
exceeds one second.

This effect is greater than that of reducing the total messaging throughput of the queue manager by connecting
thousands of MQI applications to the queue manager (refer to Figure 44 for an illustration).

1,500
Client Channel Scenarios - Short Sessions
5 round trips/app/short session
1,000 -
§
z
S
& 1.4
E o "oAeree
§ ,f““ﬁ s
v “‘
500 - M ‘
t’.':' =
,-,'91"' —&o— clpm_SS(SC0) —=— clnp_SS(SCO0)
BN
*,‘7«‘_‘7"
PPy i
P clpm_SS(SC1) clnp_SS(SC1)
A
wz"f'f{-{v'“
S . e L o o e . e e
VN N S N N N
PEPSIST PRI NI ISP LSS PSPPI PSS
Applications R S S ¢

Figure 44 — Short sessions, client channels

Page 45

WebSphere MQ for zLinux V7.0 — Performance Evaluations

T Round | Short Sessions | Response | CPU%
est name | Apps . -

Trips/sec per second Time (s)
cInp_ss (SC1) | 700 786 157 0.86 99 %
clpm_ss(SC1) | 550 546 109 0.84 98 %
clnp_ss(SC0) | 1040 1185 237 0.96 97 %
clpm_ss(SC0) | 610 638 128 0.91 96 %

Table 33 — Short sessions, client channels

Note: Messaging in these tests is 1 round trip per driving application per second, i.e. 1 short session per driving
application every 5 seconds

Note: The figures for non-persistent short sessions were generated with all message processing within sync-point
control. All other non-persistent messages within this report were generated outside sync-point control.

The ‘runmgqlsr’ has a much smaller overhead of connecting to and disconnecting from the queue manager
because it only uses a single thread per connection rather than an entire process. INETD listener has a
significantly smaller capacity because of the need to create a new process for every client.

Page 46

WebSphere MQ for zLinux V7.0 — Performance Evaluations

6 Performance and Capacity Limits

6.1 Client channels — capacity measurements

The measurements in this section are intended to test the maximum number of client channels into a server
queue managers with a messaging rate of 1 round trip per client channel per minute. Measurements are also
made with smaller number of Client channels where the message insertion rate is increased until the system gets
congested. This information is intended to be useful to the reader sizing a system with similar scenarios.

Queue manager configuration for client channels capacity tests:
MaxChannels=50000

Test name: Apps Rate/app/hr R'ound Rt?sponse CPU
Trips/sec time (s)
clnp 10 N/A 2388 0.008 89%
clnp_r3600 1700 3600 1697 0.242 88%
clnp6_c6000 (SCO) 6000 1090 1835 0.02 70%
clnp_cmax (SCO) 16000 | 60 260 0.001 89%
clnp_c6000_nocorrelid(SCO) 6000 850 1401 0.87 84%
clnp_cmax_nocorrelid(SCO) 13200 | 60 219 0.032 82%
clnp6_c6000 (SC1) 6000 790 1347 0.365 81%
clnp_cmax (SC1) 11500 | 60 191 0.013 57%
clnp_c6000_nocorrelid(SC1) 6000 790 1313 0.6 89%
clnp_cmax_nocorrelid(SC1) 12400 | 60 152 0.726 95%
clpm6_c6000 (SCO) 6000 610 638 0.91 96%
clpm6_c6000(SC1) 6000 550 546 0.84 98%
Table 34 — Capacity measurements, client channels
* There was no delay between the response to the previous message and the insertion of the next message

with 5 clients.

The maximum message throughput is achieved when there are a small number of requester applications. The
clnp_3600 measurement peaks when the queue of input messages waiting to be processed by the Server
application builds up because the server application threads can no longer keep up with the demand. Although
this ensures the server threads are always busy, the messages are being spilt from the Queue buffer to the file
system and possibly to the disk. Each client uses a thread in the AMQRRMPA processes and the management
of lots of threads and lots of memory objects results in a larger CPU cost to handle each message.

The (clnp_cmax) test uses a Get by Correlation_Id from a common reply queue for all the clients so there is a
single Server input queue and a single reply to queue. Each additional Client needs a thread in the
AMQRMPPA process and using a separate queue per client needs additional memory per client. These
measurements use MQIBINDTYPE =FASTPATH but the default MQIBINDTYPE =STANDARD need
additional memory mainly due to the additional thread in the AMQZLAAQ process

Test name: Apps Free mem viem per el
500 1633236K 264K
clnp_cmax (SC1) 6000 212376K
500 1386492K 172K
clnp_cmax(SCO0) 8500 10752K
1000 626396K 272K

clnp_c6000(SC1) 3000 83370K

1000 1178452K
6000 204688K

195K
clnp6_c6000(SCO)

Page 47

WebSphere MQ for zLinux V7.0 — Performance Evaluations

clnp_c6000_nocorrelid(SC1) 45&280 égg;g;’(&(327K
clnp6_c6000_nocorrelid(SCO) | 2000 | somsan 243K
clnp6_cmax_nocorrelid(SC1) 228 0 14112 g?é‘;{K 336K
clnp6_cmax_nocorrelid(SCO) 3(3)8 0 ;%2471?(01(251K

These storage calculations are for clients that have a separate IP socket for each MQ connection. Using V6
compatability mode (sharecnv=0) will reduce the cost per client by 84K bytes. Using a separate Queue per
client increases the memory by 64K per client as shown in the nocorrelid measurements.

6.2 Distributed queuing — capacity measurements

The measurements in this section are intended to test the maximum number of server channel pairs between two
queue managers with a messaging rate of 1 round trip per server channel per minute. For the same number of
server channel pairs, a faster message rate gives a higher total message throughput over each channel pair. This
information is intended to be useful to the reader sizing a system with similar scenarios.

Queue manager and log configuration for distributed queuing capacity tests:
MaxChannels=16000, LogPrimaryFiles=3,

Rate/app/hr Round
Test name: Apps L . " RESERLS CPU
Trips/sec time (s)
dqnp 36 n/a* 4716 0.01 92%
dqnp_r3600 3450 3600 3428 0.259 84%
dqnp_q1000 1000 30000 2392 0.511 96%
dqnp_gmax 3000 60 50 0.002 8%
Table 35 — Capacity measurements, server channels
* There was no delay between the response to the previous message and the insertion of the next message with

40 driving applications..

The dqnp and dqnp_r3600 both used a total of 4 pairs of Sender/Receiver pairs of channels between queue
managers while the dqnp_q1000, and dqnp_qmax used a pair of channels per application. The dqnp_q1000
shows the reduced throughput experienced when 1000 queue mangers are connected into a central hub and the
following table shows the storage on the central hub.

Test name: Apps Free mem Per application
100 1356472K 471K
dgnp_q1000 1000 | 932404K
. 100 1198820K 153K
4mp—9 2600 | 60780K

Table 36 — DQ capacity, memory utilisation

Note: The table above show the free memory measured at the given number of driving applications.
The free memory cost is the additional cost per driving application (in this test scenario this
relates to the cost of an MQI-Sender/Receiver pair of channels plus Transmission queue
connected on the server machine).

Page 48

WebSphere MQ for zLinux V7.0 — Performance Evaluations

7 Tuning Recommendations

7.1 Tuning the Queue Manager

This section highlights the tuning activities that are known to give performance benefits for WebSphere MQ
V7; some of these can be applied to Version 6. The reader should note that the following tuning
recommendations may not necessarily need to be applied, especially if the message throughput and/or response
time of the queue manager system already meets the required level. Some tuning recommendations that follow
may degrade the performance of a previously balanced system if applied inappropriately. The reader should
carefully monitor the results of tuning the queue manager to be satisfied that there have been no adverse effects.

Customers should test that any changes have not used excessive real resources in their environment and make
only essential changes. For example, allocating several megabytes for multiple queues reduces the amount of
shared and virtual memory available for other subsystems, as well as over committing real storage.

Note: The ‘TuningParameters’ stanza is not documented external interface and may change or be removed in
future releases.

7.1.1 Queue Disk, Log Disk, and Message Persistence

Nonpersistent messages are held in main memory, spilt to the file system as the queues become deep, and lazily
written to the Queue file. Persistent messages are synchronously written to the log by an MQCmit and also
periodically flushed to the Queue file.

To avoid potential queue and log I/O contention due to the queue manager simultaneously updating a queue file
and log extent on the same disk, it is important that queues and logs are located on separate and dedicated
physical devices. Multiple disks can be redirected to a Storage Area Network (SAN) but multiple high volume
Queue managers can require different Logical Volumes to avoid congestion.

With the queue and log disks configured in this manner, careful consideration must still be given to
message persistence: persistent messages should only be used if the message needs to survive a queue manager
restart (forced by the administrator or as the result of a power failure, communications failure, or hardware
failure). In guaranteeing the recoverability of persistent messages, the pathlength through the queue manager is
three times longer than for a nonpersistent message. This overhead does not include the additional time for the
message to be written to the log, although this can be minimised by using cached disks or SAN.

7.1.1.1 Nonpersistent and Persistent Queue Buffer

The default nonpersistent queue buffer size is 64K per queue and the default persistent is 128K per queue for 32
bit Queue Managers and 128K /256K for 64 bit Queue Managers (AIX, Solaris, HPUX, Linux_64, z_Linux,
and Windows64). They can all be increased to 1Mb using the TuningParameters stanza and the
DefaultQBufferSize and DefaultPQBufferSize parameters. (For more details see SupportPac MP0O1: MQSeries —
Tuning Queue Limits). Increasing the queue buffer provides the capability to absorb peaks in message
throughput at the expense of real storage. Once these queue buffers are full, the additional message data is given
to the file system that will eventually find its way to the disk. Defining queues using large nonpersistent or
persistent queue buffers can degrade performance if the system is short of real memory either because a large
number of queues have already been defined with large buffers, or for other reasons -- e.g. large number of
channels defined.

Note: The queue buffers are allocated in shared storage so consideration must be given to whether the agent
process or application process has the memory addressability for all the required shared memory segments.

Queues can be defined with different values of DefaultQBufferSize and DefaultPQBufferSize. The value is
taken from the TuningParameters stanza in use by the queue manager when the queue was defined. When the
queue manager is restarted existing queues will keep their earlier definitions and new queues will be created
with the current setting. When a queue is opened, resources are allocated according to the definition held on
disk from when the queue was created.

7.1.2 Log Buffer Size, Log File Size, and Number of Log Extents

The Log component is often the bottleneck when processing persistent messages. Sufficient information is
stored on the log to restart the queue manager after failure. Circular logging is sufficient to recover from
application, software, or power failure while linear logging will also recover from media (or disk) failure. Log

Page 49

WebSphere MQ for zLinux V7.0 — Performance Evaluations

records are written at each MQPut, MQGet, and MQCmit into the log buffer. This information is moved onto
the log disk. Periodically the Checkpoint process will decide how many of these logfile extents are in the Active
log and need to be kept online for recovery purposes. Those extents no longer in the active log are available for
achieving when using Linear logging or available for reuse when using circular. There should be sufficient
Primary logs to hold the Active log plus the new log extents used until the next checkpoint otherwise some
Secondary logs are temporarily included in the log set and they have to be instantly formatted which is an
unnecessary delay when using circular logging.

The log buffer is a circular piece of main memory where the log records are concatenated so that multiple log
records can be written to the log file in a single I/O operation. The default values used for LogBufferPages and
LogFilePages have been increased in V7 and are probably suitable for most installations. The default size of the
log buffer is 512 pages (V6 was 128 pages) with a maximum size of 4096 pages. To improve persistent message
throughput of large messages (messages size > 1M bytes) the LogBufferPages could be increased to improve
likelihood of messages only needing one I/O to get to the disk. Environments that process under 100 small (<
10K byte messages) Persistent messages per second can reduce the memory footprint by using smaller values
like 32 pages without impacting throughput. LogFilePages (i.e. crtmgm -1f <LogFilePages>) defines the
size of one physical disk extent (default 4096 pages whereas the V6 default was 128 on Windows and 1024 on
Unix). The larger the disk extent, the longer the elapsed times between changing disk extents. It is better to have
a smaller number of large extents but long running UOW can prevent Checkpointing efficiently freeing the disk
extent for reuse. The largest size (maximum 65536 pages) will reduce the frequency of switching extents. The
number of LogPrimaryFiles (i.e. crtmgm -lp <LogPrimaryFiles>) can be configured to a large number
and the maximum number of Primary plus Secondary extents is 255(Windows) and 511(UNIX) but it is for
functional reasons rather than performance that need more than 20 primary extents for Circular logging.
Circular logging should be satisfied by Primary logs because Secondary logs are formatted each time they are
reused. The Active log set is the number of extents that are identified by the Checkpoint process as being
necessary to be kept online. As additional messages are processed, more space is taken by the active log. As
UOWs complete, they enable the next Checkpoint process to free up extents that now become available for
archiving with Linear logging. Some installation will use Linear logging and not archive the redundant logs
because archieving impacts the run time performance of logging. They will periodically (daily or twice daily)
use ‘rcdmqimg’ on the main queues thus moving the ‘point of recovery’ forward , compacting the queues, and
freeing up log disk extents. The cumulative effect of this tuning will:

e Improve the throughput of persistent messages (enabling by default a possible 2Mb of log records to be
written from the log buffer to the log disk in a single write). Initial target - half to one second of log
datastreaming into the Logbuffer.

e Reduce the frequency of log switching (permitting a greater amount of log data to be written into one
extent). Initial target - LogFile extent hold at least 10 seconds of log datastreaming.

e Allow more time to prepare new linear logs or recycle old circular logs (especially important for long-
running units of work).

Changes to the queue manager LogBufferPages stanza take effect at the next queue manager restart. The
number of pages can be changed for all subsequent queue managers by changing the LogBufferPages parameter
in the product default Log stanza.

It is unlikely that poor persistent message throughput will be attributed to a 2Mb queue manager log but
processing of large messages will be helped by these enhanced limits. It is possible to fill and empty the log
buffer several times each second and reach a CPU limit writing data into the log buffer, before a log disk
bandwidth limit is reached.

7.1.2.1 LogWritelntegrity: SingleWrite or TripleWrite

The default value is TripleWrite. MQ writes log records using the TripleWrite method because it
provides full write integrity where hardware that assures write integrity is not available.
Some hardware guarantees that, if a write operation writes a page and fails for any reason, a
subsequent read of the same page into a buffer results in each byte in the buffer being either:

e The same as before the write, or

e The byte that should have been written in the write operation
On this type of hardware (for example, SSA write cache enabled), it is safe for the logger to write
log records in a single write as the hardware assures full write integrity. This method provides the
highest level of performance.

Queue manager workloads that have multiple streams asynchronously creating high volume log
records will not benefit from ‘SingleWrite’ because the logger will not need to rewite parial pages

Page 50

WebSphere MQ for zLinux V7.0 — Performance Evaluations

of the log file. Workloads that serialize on a small number of threads where the response time
from an MQGet, MQPut, or MQCmit inhibits the system throughput are likely to benefit from
Singlewrite and could enhance throughput by 25%.

7.1.3 Channels: Process or Thread, Standard or Fastpath?

Threaded channels are used for all the measurements in this report (‘runmgqlsr’, and for server channels an
MCATYPE of ‘THREAD’) the threaded listener ‘runmgqlsr’ can now be used in all scenarios with client and
server channels. Additional resource savings are available using the ‘runmgqlsr’ listener rather than ‘inetd’,
including a reduced requirement on: virtual memory, number of processes, file handles, and System V IPC.

Fastpath channels, and/or fastpath applications—see later paragraph for further discussion, can increase
throughput for both nonpersistent and persistent messaging. For persistent messages, the improvement is only
for the path through the queue manager, and does not affect performance writing to the log disk.

Note: The reader should note that since the greater proportion of time for persistent messages is in the queue
manager writing to the log disk, the performance improvement for fastpath channels is less apparent with
persistent messages than with nonpersistent messages.

7.1.4 Multiplexed clients

Version 6 and previous levels used a separate TCP socket for each client. Version 7 will multiplex clients from
the same process over one TCP socket. Chapter 2 show the difference in performance of these variants. Version
6 behaviour can be obtained by using the ‘sharecnv’ keyword with a setting of zero. For example
define channel(csim_channel _TCP) +

chltype(svrconn) +

trptype(tcp) +

sharecnv(0)
Version 6 behaviour will also inhibit new performance features of V7 like ‘ASYNC Put and ‘READ_AHEAD’.
This is to referred to as Compatability mode.

7.2 Applications: Design and Configuration

7.2.1 Standard (Shared or Isolated) or Fastpath?

The reader should be aware of the issues associated with writing and using fastpath applications—described in
the ‘MQSeries Application Programming Guide’. Although it is recommended that customers use fastpath
channels, it is not recommended to use fastpath applications. If the performance gain offered by running
fastpath is not achievable by other means, it is essential that applications are rigorously tested running fastpath,
and never forcibly terminated (i.e. the application should always disconnect from the queue manager). Fastpath
channels are documented in the ‘MQSeries Intercommunication Guide’.

7.2.2 Parallelism, Batching, and Triggering

An application should be designed wherever possible to have the capability to run multiple instances or multiple
threads of execution. Although the capacity of a multi-processor (SMP) system can be fully utilised with a
small number of applications using nonpersistent messages, more applications are typically required if the
workload is mainly using persistent messages. Processing messages inside syncpoint can help reduce the
amount of time the queue managers takes to write a group of persistent messages to the log disk. The
performance profile of a workload will also be subject to variability through cycles of low and heavy message
volumes, therefore a degree of experimentation will be required to determine an optimum configuration.

Queue avoidance is a feature of the queue manager that allows messages to be passed directly from an
‘MQPuter’ to an ‘MQGeter’ without the message being placed on a queue. This feature only applies for
processing messages outside of syncpoint. In addition to improving the performance of a workload with
multiple parallel applications, the design should attempt to ensure that an application or application thread is
always available to process messages on a queue (i.e. an ‘MQGeter’), then messages outside of syncpoint do not
need to ever be physically placed on a queue.

Page 51

WebSphere MQ for zLinux V7.0 — Performance Evaluations

The reader should note that as more applications are processing messages on a single queue there is an
increasing likelihood that queue avoidance will not be maintainable. The reasons for this have a cumulative and
exponential effect, for example, when messages are being placed on a queue quicker than they can be removed.
The first effect is that messages begin to fill the queue buffer—and MQGeters need to retrieve messages from
the buffer rather than being received directly from an MQPuter. A secondary effect is that as messages are
spilled from the buffer to the queue disk, the MQGeters must wait for the queue manager to retrieve the
message from the queue disk rather than being retrieved from the queue buffer. While these problems can be
addressed by configuring for more MQGeters (i.e processing threads in the server application), or using a larger
queue buffer, it may not be possible to avoid a performance degradation.

Processing persistent messages inside syncpoint (i.e. in batches) can be more efficient than outside of syncpoint.
As the number of messages in the batch increases, the average processing cost of each message decreases. For
persistent messages the queue manager can write the entire batch of messages to the log disk in one go while
outside of syncpoint control, the queue manager must wait for each message to be written to the log before
returning control to the application.

Only one log record per queue can be written to the disk per log I/O when processing messages outside of
syncpoint. This is not a bottleneck when there are a lot of different queues being processed. When there are a
small number of queues being processed by a large number of parallel application threads, it is a bottleneck. By
changing all the messages to be processed inside syncpoint, the bottleneck is removed because multiple log
records per queue can share the same log I/O for messages processed within syncpoint.

A typical triggered application follows the performance profile of a short session. The ‘runmgqlsr’ has a much
smaller overhead compared to inetd of connecting to and disconnecting from the queue manager because it does
not have to create a new process. The programmatical implementation of triggering is still worth consideration
with regard to programming a disconnect interval as an input parameter to the application program. This can
provide the flexibility to make tuning adjustments in a production environment, if for instance, it is more
efficient to remain connected to the queue manager between periods of message processing, or disconnect to
free queue manager and Operating System resources.

7.3 Virtual Memory, Real Memory, & Paging

Systems require sufficient real memory to hold the working set otherwise paging will break the response time expectations.

e Virtual memory enables the program to address much larger amount of memory than exists as real memory.

e Real memory is the physical memory (or RAM) currently installed in the machine.

e Paging is the process of managing program access to virtual storage pages not currently resident in main memory. It
locates the required page frame from auxiliary storage (disk), selects a page frame in real memory that will hold this
page, copies the contents of this outgoing page frame to auxiliary storage, and retrieves the requested incoming page
contents from auxiliary storage.

A simple approach is to ensure that the virtual memory of the application system does not exceed the available real memory
since all memory requests will be met from the current free memory.

WebSphere MQ uses a significant amount of memory for each Queue Manager and Channel.

7.3.1 Queue Manager
Creating and Starting a MQ Queue manager generated using default values reduces the FREE by 94M bytes.

7.3.2 Channels

Channels can be started by using the INETD or the RUNMQLSR listener. INETD initiated channels use between 5 and 10
times more memory than RUNMQLSR channels so the rest of this section focuses on RUNMQLSR channels.

7.3.3 Client Channels

Each MQ client channel uses between 170K - 450K bytes for processing 2K byte messages depending on traffic rate
(Chapter 6 of the MQ V7 Performance reports provides an estimate of the storage needed when clients either share a
predefined queue with other clients or have a dynamic queue per client). 100K byte messages will an additional 200K
bytes per client.

Page 52

WebSphere MQ for zLinux V7.0 — Performance Evaluations

7.3.4 Server — Server Channels

Each interconnected queue manager has a pair of uni-directional channels for sending and receiving messages.
The storage consumed is the same as 2 client channels plus a predefined queue (Transmission queue).

Three other aspects of storage consumption depend on type of 'Reply-Queue’, MQIBINDTYPE, and BufferLength.

7.3.5 Reply Queue

The Queue from which the client retrieves the message can be a predefined Queue (350K bytes) probably
shared among multiple clients who get messages by Correlation-id or a model (dynamic) queue (60K bytes)
that is used only by one client. The model queue memory can grow by 128K bytes when more than 128K
bytes of Persistent messages are held in the queue and by 192K bytes when more than 192K bytes of non
persistent messages are held in the queue. This memory is not shrunk back to the underlying 60K bytes for
model queues.

7.3.6 BufferLength

The AMQRMPPA process contains a thread per connected client. The BufferLength parameter of the MQGet
is also used to allocate a long term piece of storage of this size in which the message is held before being
retrieved by the client. If the size of the arriving messages cannot be predicted then the application should
provide a buffer than can deal with 90% of the messages and redrive the MQGet after return code 2080
(X'0820') MQRC_TRUNCATED_MSG_FAILED by providing a larger BUFFER for retrieving this particular
message. There is a mechanism to gradually reduce the size of the storage in AMQRMPPA if the recent
BufferLength size is significantly smaller than previous BufferLength.

7.3.7 MQIBINDTYPE

MQIBINDTYPE=FASTPATH will cause the channel to run ‘Trusted’ mode. Trusted applications do not use
a thread in the Agent (AMQZLLA) process. This means there is no IPC between the Channel and Agent
because the Agent does not exist in this connection. If the channel is run in STANDARD mode then any
messages passed between the channel and agent will use IPCC memory (size = BufferSize with a maximum
size of 1Mb) that is dynamically obtained and only held for the lifetime of the MQGet. Standard channels
each require an additional 80K bytes of memory. As the message rate increases, there will be more IPCC
memory used in parallel.

The power of the machine used to process a workload needs to handle the peaks of troughs. Customers may
specify a daily workload but this number cannot be divided by the number of seconds in a day to find the
necessary system configuration. The peak hourly rate cannot be divided by 3600 because the peak rate per
second will probably be 2-3 times higher. The system must process these peak loads without building up a
backlog of queued work. It is important to prevent the queue depths increasing because they will occupy
memory from the 'fre' pool or be spilled out to disk. Over commitment of real memory is handled by the page
manager but sudden large jumps (storms) possibly due to queues becoming deep can cause the throughput to
break down completely if the page manager chooses too much working set memory to be paged. Gradual over
commitment enables the page manager to shuffle out those pages that are not part of the working set.

7.4 Tuning the Operating System

To obtain the capacity and short sessions numbers the operating systems kernel required tuning.

7.4.1 Shared Memory, Max-Threads, Semaphores, File Size & Message Queue
Identifiers

These can be altered in /proc/sys/kernel but are not permanent. To make permanent then you can change in
letc/sysctl.conf. The values used to obtain the capacity and short session numbers are summarised below.

kernel.shmmax = 266435456
kernel.shmall = 4194304

Page 53

WebSphere MQ for zLinux V7.0 — Performance Evaluations

kernel.threads-max = 48000
kernel.sem = 500 256000 250 1024
kernel.msgmni = 1024
kernel.shmmni = 4096

fs.file-max = 200000

7.4.2 Maximum Number Processes

ulimit -a will show you the maximum number of processes available. To manually change this value
use ulimit -u 32000 or to change permanently modify /etc/security/limits.conf by adding

*

soft nproc 32000
* hard nproc 32000

Page 54

WebSphere MQ for zLinux V7.0 — Performance Evaluations

8 Measurement Environment

8.1 Workload description

8.1.1 MQI response time tool

The MQI tool exercises the local queue manager by measuring elapsed times of the 8 main MQSeries verbs:
MQConn(X), MQDisc, MQOpen, MQClose, MQPut, MQGet, MQCmit, and MQBack. The following MQI
calls are paired together inside a test application:

e MQConn(X) with MQDisc

e MQOpen with MQClose

e MQPut with MQGet

e MQCmit and MQBack with MQPut and MQGet
Note: MQClose elapsed time is only measured for an empty queue.

Note: Performance of MQCmit and MQBack is measured in conjunction with MQPut and MQGet, putting and
getting messages inside a unit of work (i.e. inside syncpoint control). The unit of work is committed at the
end of each batch. The number of messages per batch is a parameter of the test.

Note: This tool is not used to measure the performance of verbs: MOSET, MQIng, or MOBEGIN.

8.1.2 Test scenario workload
The MQI applications use 64 bit libraries for MQ V6 & V7

8.1.2.1 The driving application programs

The test scenario workload simulates many driving applications running on a single driving machine. This is
not typical of a customer environment and is only used to facilitate test coordination. Driving applications were
multi-threaded with each thread performing a sequence of MQI calls. The driving applications (Requesters) for
Local and DQ tests used Trusted bindings. The number of threads in each application was adjusted according
to whether the test was measuring a local queue manager, a client channel, or distributed queuing scenario.
This was done to reduce storage overheads on the driving system. Each driving application thread performed
the sequence of actions as outlined in the test scenario illustrations in the ‘Performance Headlines’ starting on
page 2.

Message rate: in all but the rated and capacity limit tests, message processing was performed in a tight-loop. In
the rated tests a message rate of 1 round trip per driving application per second was used, and in the capacity
limit tests a message rate of 1 round trip per channel per minute was used.

Nonpersistent and persistent messages were used in all but the capacity limit tests.

Note: The driving applications gathered timing information for all MQI calls using a high-resolution timer.

8.1.2.2 The server application program

The server application is written as a multi-threaded program configured to use 20, 6, 6 threads for processing
nonpersistent messages with Local, Client, and DQ applications, and 30, 60, 10 threads to process persistent
messages with Local, Client, and DQ applications. The capacity tests in chapter 5 and 6 use 10 server threads
for processing non persistent messages. Each server thread performed the sequence of actions as outlined in the
test scenario illustrations in the “Performance Headlines” starting on page 2.

Nonpersistent messaging is done outside of syncpoint control. Persistent messaging is done inside of syncpoint
control. The average message throughput expressed as a number of round trips per second was calculated and
reported by the server program.

Page 55

8.2 Hardware
IBM zSeries:990
Model:

Architecture:

Memory (RAM):
Disk:

Network:

IBM x3850:
Model:
Processor:
Architecture:
Memory (RAM):
Disk:

Network:

IBM S80:
Model:
Processor:
Architecture:

Memory (RAM):
Disk:

Network:

8.3 Software
Linux OS :
MQSeries:

Compiler:

WebSphere MQ for zLinux V7.0 — Performance Evaluations

Server system (Device under test). LPAR with VM hypervisor.

2084-331

2 way SMP (VM has 31 processors with 2 dedicated to this VM/Linux LPAR)
2Gb of virtual memory. (VM system has 6Gb of main storage + 1Gb of expanded)
3390-9 DASD on Shark 2105-800

1Gbit Ethernet Adapter

Driver system (not chapters 5 & 6)

x3850 M2

3.3GHz Intel xeon

4 CPU

4Gb

2 Internal 16bit SCSI (9Gb each, 1 O/S, swap)
2 SSA160 disks (72Gb each, 1 queue, 1 log)
1Gbit Ethernet Adapter

Driving application machine (Used for Chapter 5& 6 measurements)
7017-S80

375MHz PowerPC RS64-I11

24-way SMP

IBM SSA 160 SerialRAID Adapter

32Gb

2 Internal 16Bit LVD SCSI (9.1Gb ea. 1 O/S, 1 O/S + swap)

3 SSA Logical disks

(1 Physical SSA160, 9.1Gb, 1 swap, 1 queue, 1 log)

1Gbit Ethernet

SUSE LINUX Enterprise Server 9 (s390x) Kernel 2.6.5-7.311-s390x
Version 7, Version 6

Linux POSIX-conforming C compliler

Page 56

9 Glossary

WebSphere MQ for zLinux V7.0 — Performance Evaluations

Test name

The name of the test.

Note: The test names in some cases are rather long. This is done to provide a
descriptive qualification of the test measurement to relate to the performance
discussion in the sections throughout the document:

local => local queue manager test scenario

cl => client channel test scenario

dq => distributed queuing test scenario

np => nonpersistent messages

pm => persistent messages

r3600 => 1 round trip per driving application per second

runmgqlsr => channels using the ‘runmgqlsr’ listener (client channel test
scenario, in addition to ‘runmqchi’ for distributed queuing test scenarios)

c6000 => 6,000 client driving applications (i.e. 6,000 MQI-client
connections)

q1000 => 1,000 server channel pairs
max => maximum number of channels (or channel pairs)

no_correl_id => correlation identifier not used in the response messages (as
each response is placed on a unique reply-to queue per driving application)

Apps

The number of driving applications connected to the queue manager at the point
where the performance measurement is given.

Rate/App/hr

The target message throughput rate of each driving application.

Round T/s

The average achieved message throughput rate of all the driving applications
together, measured by the server application.

% (Round T/s)

The percentage increase in the total message throughput rate.

Note: The nature of the comparison is noted under each table where percentage
improvements have been given.

CPU As reported by VMSTAT

Resp time (s) The average response time each round trip, as measured and averaged by all the
driving applications.

CURDEPTH The number of messages on the input queue as a snapshot.
Note: runmgsc <gmname>, DISPLAY QLOCAL(<gname>) CURDEPTH

queue disk (kbps) The queue disk kilobytes transferred per second.

Swap The total amount of swap area reservation for all processes in Mb, unless otherwise
specified as swap/app (i.e. swap area reservation per driving applicatn.

shm The amount of allocated shared memory in Mb.

FREE Free memory as reported by IOSTAT

SCo SHARECNV=0 specified on the def channel(x) chltype(svrconn) command.
Version 6 compatibility mode

SC1 SHARECNV=1 specified on the def channel(x) chltype(svrconn) command.

Separate socket per client

Page 57

WebSphere MQ for zLinux V7.0 — Performance Evaluations

10Measurements on Upgraded Hardware

The hardware used in this zLinux report uses 2 CPUs and 2GB of memory managed by VM which is
significantly less than other MQ Performance reports. This chapter will use 3 CPUs and 4GB of memory
managed by VM to show the scalability of larger hardware. Measurements in Chapter 2 use minimum memory
buy often use 100% of CPU hence their change is mainly due in increased CPU power. Measurements in
Chapter 6 explore the maximum number of Channels that can be supported and these measurements are
typically limited by the amount of real memory.

10.1.1 Non Persistent Messages — Local Queue manager
The following 9 benchmarks used MQ V7.0.1 and correspond to Chapter 2 measurements

Local NP

14000 300

12000 - 1 250
2 10000 1 200 —e—msgs_2CPU
~ 8000 , S msgs_3CPU
o + 150 2
S 6000 - & %_2cpu
n? - 100

4000 — ®o@gq -~ — — - - - — —e— %_3cpu
2000 -+ 90

0 rrrrrrrrTr T T T T T T T T O
N AR O L0 L0

Requesters

The throughput increased by 44% when the 3 cpu system was used. (average difference between 2 cpu and 3
cpus over the 20 measurement points.)

10.1.2 Non Persistent Messages — non trusted — Local Queue manager

Local NP non-trusted

4000 [s = it - 100 % 3cpu
2000 1 + 50

N9 A N O e A

12000 300
10000 250
0
£ 8000 200 | —*—Mmsgs 2CPU
[= M EN msgs_3CPU
o 6000 e s e 507 B
S O Y%_2cpu
o
&

Requesters

The througput increased by 40% when the 3 cpu system was used. (average difference between 2 cpu and 3
cpus over the 20 measurement points.)

Page 58

WebSphere MQ for zLinux V7.0 — Performance Evaluations

10.1.3 Persistent Messages — Local Queue manager

Local Persistent

2500 200

2000
2 - 150 —e—msgs_2CPU
E 1500 - 100 %’ msgs_3CPU

i 2 .
§ 1000 17 00800000000 0000000 00000 N 7o_2cpu
“ 500 ?"’“ 1 50 —e—%_3cpu
0 T T T T T T T T T T T T T T T T T O

LRI R R RS

Requesters

The throughput increased by 20% when the 3 cpu system was used. (average difference between 2 cpu and 3
cpus over the 20 measurement points.)

10.2 Client Channels

10.2.1 Non Persistent Messages — Client Channels

Client NP

6000 250

5000 -+ 200
@ 4000 | —e—msgs_2CPU
= 1 150 & msgs_3CPU
g 3000 — 2 -
5 1100 G %_2cpu
e 2000 IV % 0d —e—%_3cpu

1000 - 190

0 T T T T T T T T T 177 T T 177 T T 177 0

LN GO S I G U

Clients

The throughput increased by 57% when the 3 cpu system was used. (average difference between 2 cpu and 3
cpus over the 30 measurement points.)

Page 59

WebSphere MQ for zLinux V7.0 — Performance Evaluations

10.2.2 Non Persistent Messages — non trusted — Client Channels

Clients NP non-trusted

4500 200
4000]
3500 1 150
g 3000 +mSgS_2CPU
= i 2 3CPU
5 2500 1 100 ‘:2 msgs_.
< 2000 - / o %_2cpu
ccc> 1500 4 ,/' | 50 —e— %_3cpu
1000 7
500
0 T O
LA A\ S L I R &

Clients

The throughput increased by 47% when the 3 cpu system was used. (average difference between 2 cpu and 3
cpus over the 30 measurement points.)

10.2.3 Persistent Messages — Client Channels

Clients Persistent

1600 200

1400
g 1200 * o4 seeee 150 —e—msgs_2CPU
= 1000 1 2 msgs_3CPU
° 800 - + 100 2 .
§ 600 | e0 00000 O 7o_2CPU
T 400 {§ L -, —e—%_3cpu

200 -
0 T 0

Lo\ Qib ® F > O P ,\QQ ,\\q/

Clients

The throughput increased by 30% when the 3 cpu system was used. (average difference between 2 cpu and 3
cpus over the 30 measurement points.)

Page 60

WebSphere MQ for zLinux V7.0 — Performance Evaluations

10.3 Server Channels

10.3.1 Non Persistent Messages — Server Channels

DQNP
9000 200
8000
» 7000 -+ 150
2 6000 —0—msgs_20PU
= o
l_; 5000 | M’ 100 % msgs_3CPU
3 bl
o l —e—%_ 3cpu
2000 - -+ 50 =P
1000 -
0 T T T T T T T T T T T T T T T T T T T O
LA A\ S L I R &
Requesters

The throughput increased by 53% when the 3 cpu system was used. (average difference between 2 cpu and 3
cpus over the 30 measurement points.)

10.3.2 Non Persistent Messages — non Trusted — Server Channels

DQ NP non-trusted
7000 200
6000 o
@ 5000 - 150
o —e—msgs_2CPU
= 4000 - R msgs_3CPU
° +100 2
S 3000 - o %_2cpu
&€ 2000 | - —e—%_3cpu
1000 &
0 T T T T T T T T T T T T T T T T T 0
LN GO S I G U
Requesteres

The throughput increased by 33% when the 3 cpu system was used. (average difference between 2 cpu and 3
cpus over the 30 measurement points.)

Page 61

WebSphere MQ for zLinux V7.0 — Performance Evaluations

10.3.3 Persistent Messages — Server Channels

DQ Persistent
3000 200
2500 150
" i
£ 2000 : . —e—msgs_2CPU
= g msgs_3CPU
© 1500 100 g o
s /f o %o_2CpU
g 1000 7 | —e—%_3cpu
50
500 A
0 T T T T T T T T T T T T T T T T T O
N b(Q /\Q \QQ \Q)Q \Q)Q \qQ ({}Q Q:OQ (IS)Q
Requesters

The throughput increased by 17% when the 3 cpu system was used. (average difference between 2 cpu and 3
cpus over the 30 measurement points.)

10.4 MQ V6.0.8 (1.L090930) Client Measurements

The driver system for this subsection was an IBM 7017-S80.

Rate/app/h Round
Test name: Apps ate/app/ar oun Response cPU
Trips/sec time (s)
clnp_cma 37000 | ¢ 617 0.0018 9%
pemax 39000 650 0.04 18%
25000 | 160 1158 0.0019 18%
clnp_c25000 270 1725 005 e

The amount of ‘free’ memory used per client was 115K in the server. The limiting factor for measurements with
large numbers of channels is the memory footprint requirement and this is the main reason for increased number
of clients compared to Chapter 6.

10.5 MQ V7.0.1 DQ Measurements

The driver system for this subsection was an IBM 7017-S80.

Test name: Apps Rate/app/hr R.ound R(—':Asponse cPU
Trips/sec time (s)
5000 390 515 0.0024 14%
dqnp_g5000 720 1000 0.0041 27%
1680 2332 0.314 68%
dqnp_gmax 8000 60 133 0.002 4%

The amount of ‘free’ memory per application is 478K in the server. The limiting factor for measurements with
large numbers of channels is the memory footprint requirement and this is the main reason for increased number
of clients compared to Chapter 6.

Page 62

