
February 2012

Fred Preston, Craig Stirling, Ivans Ribakovs, Peter Toghill.

WebSphere MQ Performance

IBM UK Laboratories

Hursley Park

Winchester

Hampshire

SO21 2JN

Property of IBM

WebSphere MQ Linux v7.1

Performance Evaluations

 Version 1.2

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page II

Please take Note!

Before using this report, please be sure to read the paragraphs on “disclaimers”, “warranty

and liability exclusion”, “errors and omissions”, and the other general information paragraphs

in the "Notices" section below.

First Edition, December 2011.

This edition applies to WebSphere MQ for Linux v7.1 (and to all subsequent releases and

modifications until otherwise indicated in new editions).

© Copyright International Business Machines Corporation 2011. All rights reserved.

Note to U.S. Government Users

Documentation related to restricted rights.

Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule

contract with IBM Corp.

Notices

DISCLAIMERS

The performance data contained in this report were measured in a controlled environment.

Results obtained in other environments may vary significantly.

You should not assume that the information contained in this report has been submitted to

any formal testing by IBM.

Any use of this information and implementation of any of the techniques are the responsibility

of the licensed user. Much depends on the ability of the licensed user to evaluate the data

and to project the results into their own operational environment.

WARRANTY AND LIABILITY EXCLUSION

The following paragraph does not apply to the United Kingdom or any other country where

such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-

INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions,

therefore this statement may not apply to you.

In Germany and Austria, notwithstanding the above exclusions, IBM's warranty and liability

are governed only by the respective terms applicable for Germany and Austria in the

corresponding IBM program license agreement(s).

ERRORS AND OMISSIONS

The information set forth in this report could include technical inaccuracies or typographical

errors. Changes are periodically made to the information herein; any such change will be

incorporated in new editions of the information. IBM may make improvements and/or changes

in the product(s) and/or the program(s) described in this information at any time and without

notice.

INTENDED AUDIENCE

This report is intended for architects, systems programmers, analysts and programmers

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page III

wanting to understand the performance characteristics of WebSphere MQ for Linux v7.1. The

information is not intended as the specification of any programming interface that is provided

by WebSphere. It is assumed that the reader is familiar with the concepts and operation of

WebSphere MQ v7.1.

LOCAL AVAILABILITY

References in this report to IBM products or programs do not imply that IBM intends to make

these available in all countries in which IBM operates. Consult your local IBM representative

for information on the products and services currently available in your area.

ALTERNATIVE PRODUCTS AND SERVICES

Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be used

instead. However, it is the user’s responsibility to evaluate and verify the operation of any

non-IBM product, program, or service.

USE OF INFORMATION PROVIDED BY YOU

IBM may use or distribute any of the information you supply in any way it believes appropriate

without incurring any obligation to you.

TRADEMARKS AND SERVICE MARKS

The following terms used in this publication are trademarks of International Business

Machines Corporation in the United States, other countries or both:

- IBM

- WebSphere

- DB2

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

EXPORT REGULATIONS

You agree to comply with all applicable export and import laws and regulations.

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page IV

Preface

Target audience

The SupportPac was designed for people who:

• Will be designing and implementing solutions using WebSphere MQ for Linux v7.1.

• Want to understand the performance limits of WebSphere MQ for Linux v7.1.

• Want to understand what actions may be taken to tune WebSphere MQ for Linux v7.1.

The reader should have a general awareness of the Linux operating system and of MQSeries in order to

make best use of this SupportPac. Readers should read the section ‘How this document is

arranged’—Page VI to familiarise themselves with where specific information can be found for later

reference.

The contents of this SupportPac

This SupportPac includes:

• Release highlights performance charts.

• Performance measurements with figures and tables to present the performance capabilities of

WebSphere MQ local queue manager, client channel, and distributed queuing scenarios.

• Interpretation of the results and implications on designing or sizing of the WebSphere MQ

local queue manager, client channel, and distributed queuing configurations.

Feedback on this SupportPac

We welcome constructive feedback on this report.

• Does it provide the sort of information you want?

• Do you feel something important is missing?

• Is there too much technical detail, or not enough?

• Could the material be presented in a more useful manner?

Specific queries about performance problems on your WebSphere MQ system should be directed to

your local IBM Representative or Support Centre.

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page V

Introduction
The three scenarios used in this report to generate the performance data are:

• Local queue manager scenario.

• Client channel scenario.

• Distributed queuing scenario.

Unless otherwise specified, the standard message sized used for all the measurements in this report is

2KB (2,048 bytes).

A xSeries 3650M3 box containing two 6 core 2.80GHz Intel Xeon CPUs and 32GB of RAM was used

as the Device under test.

A xSeries 3850 box containing 4 quad-core 2.93GHz Intel Xeon CPUs and 32GB of RAM was used as

the Driver.

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page VI

How this document is arranged

Pages: 1-15

The first section contains the performance headlines for each of the three scenarios, with MQI

applications connected to:

• A local queue manager.

• A remote queue manager over MQI-client channels.

• A local queue manager, driving throughput between the local and remote queue manager over

server channel pairs.

The headline tests show:

• The maximum message throughput achieved with an increasing number of MQI applications.

• The maximum number of MQI-clients connected to a queue manager.

• The maximum number of server channel pairs between two queue managers, for a fixed think

time between messages until the response time exceeds one second.

Large Messages

Pages: 21-42

The second section contains performance measurements for large messages. This includes MQI

response times of 50 byte to 2MB messages. It also includes 20K, 200K and 2M byte messages using

the same scenarios as for the 2KB messages”.

Application Bindings

Page: 43-48

The third section contains performance measurements for 'trusted, shared, and isolated' server

applications, using the same three scenarios as for the 2KB messages.

Performance and Capacity Limits

Pages: 51 - 53

Tuning Recommendations

Pages: 53- 58

Tuning guidance specific to v7.1 on Linux

Measurement Environment

Pages: 58 59

A summary of the way in which the workload is used in each test scenario is given in the “headlines”

section. This includes a more detailed description of the workload, hardware and software

specifications.

Glossary

Page: 60

A short glossary of the terms used in the tables throughout this document.

CONTENTS
1 Overview... 1
2 Performance Headlines ... 2

2.1 Local Queue Manager Test Scenario...2
2.1.1 Non-persistent Messages – Local Queue Manager... 3
2.1.2 Non-persistent Messages – Non-trusted – Local Queue Manager.. 4
2.1.3 Persistent Messages – Local Queue Manager... 5
2.1.4 Scalability – Local non Persistent .. 6

2.2 Client Channels Test Scenario...7
2.2.1 Non-persistent Messages – Client Channels... 8
2.2.2 Non-persistent Messages – Non-Trusted Client Channels.. 9
2.2.3 Persistent Messages – Client Channels... 10
2.2.4 Client Channels .. 11
2.2.5 SSL... 12

2.3 Distributed Queuing Test Scenario..14
2.3.1 Non-persistent Messages – Server Channels .. 15
2.3.2 Non-Persistent non-Trusted – Server Channels.. 16
2.3.3 Persistent Messages – Server Channels.. 17
2.3.4 Server Channels.. 18
2.3.5 SSL... 19

3 Large Messages .. 21
3.1 MQI Response Times: 50bytes to 100MB – Local Queue Manager21

3.1.1 50bytes to 32KB... 21
3.1.2 32KB to 2MB... 22
3.1.3 2MB to 100MB .. 23

3.2 20KB Messages...24
3.2.1 Local Queue Manager .. 24
3.2.2 Client Channel.. 27
3.2.3 Distributed Queuing ... 29

3.3 200K Messages..31
3.3.1 Local Queue Manager .. 31
3.3.2 Client Channel.. 33
3.3.3 Distributed Queuing ... 35

3.4 2MB Messages ..37
3.4.1 Local Queue Manager .. 37
3.4.2 Client Channel.. 39
3.4.3 Distributed Queuing ... 41

4 Application Bindings ... 43
4.1 Local Queue Manager ...43

4.1.1 Non-persistent Messages .. 43
4.1.2 Persistent Messages.. 44

4.2 Client Channels ...45
4.2.1 Non-persistent Messages .. 45
4.2.2 Persistent Messages.. 46

4.3 Distributed Queuing ..47
4.3.1 Non-persistent Messages .. 47
4.3.2 Persistent Messages.. 48

5 Short & Long Sessions .. 49
6 Performance and Capacity Limits ... 51

6.1 Client channels – capacity measurements ...51
6.1.1 Client Channels – Memory... 51

6.2 Distributed queuing – capacity measurements ..52
7 Tuning Recommendations .. 53

7.1 Tuning the Queue Manager ...53
7.1.1 Queue Disk, Log Disk, and Message Persistence... 53
7.1.2 Log Buffer Size, Log File Size, and Number of Log Extents... 53
7.1.3 Channels: Process or Thread, Standard or Fastpath?.. 55

7.2 Applications: Design and Configuration ...55
7.2.1 Standard (Shared or Isolated) or Fastpath?... 55
7.2.2 Parallelism, Batching, and Triggering .. 55

7.3 Tuning the Operating System..56
7.4 Virtual Memory, Real Memory, & Paging..56

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page VIII

7.4.1 BufferLength .. 56
7.4.2 MQIBINDTYPE .. 56

8 Measurement Environment .. 58
8.1 Workload description ..58

8.1.1 MQI response time tool .. 58
8.1.2 Test scenario workload... 58

8.2 Hardware specification...59
8.3 Software ..59

9 Glossary .. 60
10 Multicast ... 61

10.1 Single Publisher, Single Subscriber...61
10.2 Single Publisher, Multiple Subscribers ...61
10.3 Machine configuration...62

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page IX

TABLES
Table 1 – Performance headline, non-persistent messages and local queue manager3
Table 2 – Performance headline, non-persistent, non-trusted messages and local queue manager4
Table 3 – Performance headline, persistent messages and local queue manager5
Table 4 – Scalability, Local Queue manager, non-persistent messages ...6
Table 5 – Performance headline, non-persistent messages and client channels8
Table 6 – Performance headline, non-persistent messages and client channels9
Table 7 – Performance headline, persistent messages and client channels...10
Table 8 – 1 round trip per driving application per second, client channels ..12
Table 9 – Performance headline, non-persistent messages and server channels15
Table 10 – Performance headline, non-persistent, non trusted messages and server channels...............16
Table 11 – Performance headline, persistent messages and server channels..17
Table 12 – 1 round trip per driving application per second, client channels ..19
Table 13 – 20KB non-persistent messages, local queue manager ..24
Table 14 – 20KB persistent messages, local queue manager ...25
Table 15 – Scalability, Local Queue manager, non-persistent messages ...26
Table 16 – 20KB non-persistent messages, client channels ...27
Table 17 – 20KB persistent messages, client channels...28
Table 18 – 20KB non-persistent messages, client channels ...29
Table 19 – 20KB persistent messages, client channels...30
Table 20 – 200KB non-persistent messages, local queue manager ..31
Table 21 – 200KB persistent messages, local queue manager ...32
Table 22 – 200KB non-persistent messages, client channels ...33
Table 23 – 200KB persistent messages, client channels...34
Table 24 – 200KB non-persistent messages, distributed queuing ..35
Table 25 – 200KB persistent messages, distributed queuing ...36
Table 26 – 2MB non-persistent messages, local queue manager ...37
Table 27 – 2MB persistent messages, local queue manager...38
Table 28 – 2MB non-persistent messages, client channels...39
Table 29 – 2MB persistent messages, client channels..40
Table 30 – 2MB non-persistent messages, distributed queuing ...41
Table 31 – 2MB persistent messages, distributed queuing...42
Table 32 – Application binding, non-persistent messages, local queue manager...................................43
Table 33 – Application binding, persistent messages, local queue manager ..44
Table 34 – Application binding, non-persistent messages, client channels..45
Table 35 – Application binding, persistent messages, client channels ...46
Table 36 – Application binding, non-persistent messages, distributed queuing.....................................47
Table 37 – Application binding, persistent messages, distributed queuing ..48
Table 38 – Short sessions, client channels..50
Table 34 – Capacity measurements, client channels ..51
Table 36 – Capacity measurements, server channels ...52
Table 39 - Single Publisher Multiple Subscribers 256 byte message ..62
Table 40 - Single Publisher Multiple Subscribers 2048 byte = 2K message ..62

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page X

FIGURES
Figure 1 – Connections into a local queue manager ...2
Figure 2 – Performance headline, non-persistent messages and local queue manager.3
Figure 3 - Performance headline, non-persistent, non-trusted messages and local queue manager.4
Figure 4 – Performance headline, persistent messages and local queue manager5
Figure 5 – Scalability, Local Queue manager, non-persistent messages ..6
Figure 6 – MQI-client channels into a remote queue manager...7
Figure 7 – Performance headline, non-persistent messages and client channels8
Figure 8 – Performance headline, non-persistent messages with non-trusted client channels..................9
Figure 9 – Performance headline, persistent messages and client channels ...10
Figure 10 – 1 round trip per driving application per second, client channels and non-persistent

messages ...11
Figure 11 – 1 round trip per driving application per second, client channels, persistent messages........11
Figure 12 – Server channels between two queue managers ...14
Figure 13 – Performance headline, non-persistent messages and server channels15
Figure 14 – Performance headline, non-persistent, not trusted messages and server channels16
Figure 15 – Performance headline, persistent messages and server channels ..17
Figure 16 – 1 round trip per driving application per second, server channel, non-persistent messages .18
Figure 17 – 1 round trip per driving application per second, server channel, persistent messages18
Figure 18 –The effect of non-persistent message size on MQI response time (50byte - 32KB)21
Figure 19 –The effect of persistent message size on MQI response time (50byte - 32KB)21
Figure 20 –The effect of non-persistent message size on MQI response time (32KB – 2MB)22
Figure 21 –The effect of persistent message size on MQI response time (32KB – 2MB)22
Figure 22 –The effect of non-persistent message size on MQI response time (2MB – 100MB)23
Figure 23 –The effect of persistent message size on MQI response time (2MB – 32MB).....................23
Figure 24 – 20KB non-persistent messages, local queue manager...24
Figure 25 – 20KB persistent messages, local queue manager ..25
Figure 26 – Scalability, Local Queue manager, non-persistent messages ..26
Figure 27 – 20KB non-persistent messages, client channels ..27
Figure 28 – 20KB persistent messages, client channels ...28
Figure 29 – 20KB non-persistent messages, distributed queuing...29
Figure 30 – 20KB persistent messages, distributed queuing ..30
Figure 31 – 200KB non-persistent messages, local queue manager...31
Figure 32 – 200KB persistent messages, local queue manager ..32
Figure 33 – 200KB non-persistent messages, client channels ..33
Figure 34 – 200KB persistent messages, client channels ...34
Figure 35 – 200KB non-persistent messages, distributed queuing...35
Figure 36 – 200KB persistent messages, distributed queuing ..36
Figure 37 – 2MB non-persistent messages, local queue manager ..37
Figure 38 – 2MB persistent messages, local queue manager ...38
Figure 39 – 2MB non-persistent messages, client channels ...39
Figure 40 – 2MB persistent messages, client channels...40
Figure 41 – 2MB non-persistent messages, distributed queuing ..41
Figure 42 - 2MB persistent messages, distributed queuing ..42
Figure 43 – Application binding, non-persistent messages, local queue manager43
Figure 44 – Application binding, persistent messages, local queue manager...44
Figure 45 – Application binding, non-persistent messages, client channels...45
Figure 46 – Application binding, persistent messages, client channels..46
Figure 47 – Application binding, non-persistent messages, distributed queuing47
Figure 48 – Application binding, persistent messages, distributed queuing...48
Figure 49 – Short sessions, client channels ..50

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 1

1 Overview
WebSphere MQ v7.1 on Linux has improved performance in almost every area. For 2KB messages, almost

every test shows improvements over earlier versions of WMQ.

Using area under the graph performance analysis techniques v7.1 compares to previous releases as follows:-

• For 2K non-persistent messages v7.1 is 93% better than v6.0.2.11

• For 2K persistent messages v7.1 is 48% better than v6.0.2.11

• For 2K non-persistent messages v7.1 is 148% better than v7.0

• For 2K persistent messages v7.1 is 82% better than v7.0

• For 2K non-persistent messages v7.1 is 124% better than v7.0.1.6

• For 2K persistent messages v7.1 is 88% better than v7.0.1.6

IBM WebSphere MQ V7.1 can utilise more cpu cores than previous releases. With the Requester/Responder

model using a single queue, higher throughput could be achieved on an 8 core machine than a 12 core machine.

Measuresments are documented in 2.1.4 and 3.2.1.2 that show 12 cores provide higher throughput than 8 cores.

IBM WebSphere MQ V7.1 adds multicast as a new alternative for publish/subscribe configurations, ideal for

rapidly distributing messages to large numbers of subscribers. Compared to publish/subscribe in the previous

release, WebSphere MQ V7.1 offers performance improvements of 500% or more for distributing 256 byte

messages to multiple subscribers. These results are discussed in chapter 10.

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 2

2 Performance Headlines
The measurements for the local queue manager scenario are for processing messages with no think-time. For

the client channel scenario and distributed queuing scenario, there are also measurements for rated messaging.

No ‘think-time’ is when the driving applications do not wait after getting a reply message before submitting

subsequent request messages—this is also referred to as ‘tight-loop’.

The rated messaging tests used one round trip per driving application per second. In the client channel test

scenarios, each driving application using a dedicated MQI-client channel, in the distributed queuing test

scenarios, one or more applications submit messages over a fixed number of server channels.

All tests stop automatically after the response time exceeds 1 second.

2.1 Local Queue Manager Test Scenario

Figure 1 – Connections into a local queue manager

1) The Requester application puts a message to the common input queue on the local queue manager, and

holds on to the message identifier returned in the message descriptor. The Requester application then waits

indefinitely for a reply to arrive on the common reply queue.

2) The Responder application gets messages from the common input queue and places a reply to the

common reply queue. The queue manager copies over the message identifier from the request message to the

correlation identifier of the reply message.

3) The Requester application gets a reply from the common reply queue using the message identifier held

from when the request message was put to the common input queue, as the correlation identifier in the message

descriptor.

Non-persistent and persistent messages were used in the local queue manager tests, with a message size of 2KB.

The effect of message throughput with larger messages sizes is investigated in the “Large Messages” section.

Application Bindings of the Responder program are ‘Shared’ and the Requester program is normally ‘Trusted’

except in the ‘non-trusted’ scenario where both programs use ‘Shared’ bindings.

Responder application Requester applications

Input queue

Reply queue Local queue manager

1111
2222 3333

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 3

2.1.1 Non-persistent Messages – Local Queue Manager

Figure 2, Figure 3 and Figure 4 shows the non-persistent, non-persistent non-trusted and persistent message

throughput achieved using an increasing number of driving applications in the local queue manager scenario

(see Figure 1 on the previous page) for different production levels of WebSphere MQ (versions 7.1, 7.0.1.6, 7.0

and 6.0.2.11).

Local Queuing - 2KB Non-Persistent Messages

Linux64 - Peak throughput

0

20000

40000

60000

80000

100000

120000

140000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 2 – Performance headline, non-persistent messages and local queue manager.

Figure 2 and Table 1 show that the throughput of non-persistent messages has increased by 228% when

comparing version 7.1 to 7.0.1.6 and 129% when comparing version 7.1 to 6.0.2.11.

Test Name: Local Queuing - 2KB Non-
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 8 52392 0.00018 69%

WMQv7.0 4 39627 0.00012 48%

WMQv7.0.1.6 4 36630 0.00013 47%

WMQv7.1 34 120090 0.0003 91%

Table 1 – Performance headline, non-persistent messages and local queue manager

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 4

2.1.2 Non-persistent Messages – Non-trusted – Local Queue Manager

Local Queuing - 2KB Non-Persistent Messages with Non-Trusted Bindings

Linux64 - Peak throughput

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 3 - Performance headline, non-persistent, non-trusted messages and local queue manager.

Figure 3 and Table 2 shows that the throughput of non-persistent, non-trusted messages (shared bindings -

MQIBINDTYPE=NORMAL) has increased by 223% when comparing version 7.1 to 7.0.1.6 and 233% when

comparing version 7.1 to 6.0.2.11.

Test Name: Local Queuing - 2KB Non-Persistent
Messages with Non-Trusted Bindings

Apps Round
Trips/Sec

Response
time (s)

CPU

WMQv6.0.2.11 15 30985 0.00021 66%

WMQv7.0 14 28230 0.00053 69%

WMQv7.0.1.6 13 31957 0.00029 65%

WMQv7.1 6 103322 0.00008 75%

Table 2 – Performance headline, non-persistent, non-trusted messages and local queue manager

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 5

2.1.3 Persistent Messages – Local Queue Manager

Local Queuing - 2KB Persistent Messages

Linux64 - Peak throughput

0

2000

4000

6000

8000

10000

12000

4 8

1
6

2
4

3
2

4
0

4
8

5
6

6
4

7
2

8
0

8
8

9
6

1
0

4

1
1

2

1
2

0

1
2

8

1
3

6

1
4

4

1
5

2

1
6

0

1
6

8

1
7

6

1
8

4

1
9

2

2
0

0

2
0

8

2
1

6

2
2

4

2
3

2

2
4

0

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

100%

120%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 4 – Performance headline, persistent messages and local queue manager

Figure 4 and Table 3 shows that the throughput of persistent messages has increased by 124% when comparing

version 7.1 to 7.0.1.6 and 80% when comparing version 7.1 to 6.0.2.11.

Test Name: Local Queuing - 2KB Persistent
Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 104 6361 0.019 33%

WMQv7.0 104 5263 0.023 32%

WMQv7.0.1.6 112 5089 0.025 32%

WMQv7.1 104 11418 0.01 41%

Table 3 – Performance headline, persistent messages and local queue manager

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 6

2.1.4 Scalability – Local non Persistent

Local_NP_Scalability

Linux64 - Peak throughput

0

20000

40000

60000

80000

100000

120000

140000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

R
o
u
n
d
 T

ri
p
s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

175%

200%

8_core V6 12_core V6

8_core V71 12_core V71

8_core V6 cpu % 12_core V6 cpu %

8_core V71 cpu % 12_core V71 cpu %

Figure 5 – Scalability, Local Queue manager, non-persistent messages

Test Name: Local_NP_Scalability Apps Round Trips/Sec Response time (s) CPU

8_core V6 8 51276 0.00017 79%

12_core V6 8 53408 0.00017 68%

8_core V71 32 92208 0.00041 99%

12_core V71 34 121098 0.0003 91%

Table 4 – Scalability, Local Queue manager, non-persistent messages

The throughput comparison of 8 core and 12 cores for MQ V 6.0.2.10 messages is not significantly different.

The throughput comparison for MQ V7.1 with 12 cores is 27% larger with the peak difference being 31%

larger. The significant improvement over previous levels is maximised in scenarios where messages all go

through a single queue

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 7

2.2 Client Channels Test Scenario

Figure 6 – MQI-client channels into a remote queue manager

1, 2) The Requester application puts a request message (over a client channel), to the common input queue,

and holds on to the message identifier returned in the message descriptor. The Requester application then waits

indefinitely for a reply to arrive on the common reply queue.

3) The Responder application gets messages from the common input queue and places a reply to the

common reply queue. The queue manager copies over the message identifier from the request message to the

correlation identifier of the reply message.

4, 5) The Requester application gets the reply message (over the client channel), from the common reply

queue. The Requester application uses the message identifier held from when the request message was put to

the common input queue, as the correlation identifier in the message descriptor.

Non-persistent and persistent messages were used in the client channel tests, with a message size of 2KB. The

effect of message throughput with larger messages sizes is investigated in the “Large Messages” section.

Application Bindings of the Responder program are ‘Shared’ and the Client Channel is set to ‘MQIBindType =

FASTPATH’ except in the ‘non-trusted’ scenario where ‘MQIBindType =STANDARD’ is used.

Version 7 onwards will multiplex multiple clients from the same process over one TCP socket. We have

standardized all client measurements to use SHARECNV(1) since we have various tests that have between 1

and 100 clients per process and we are interested in results when all the clients come from different computers.

Further information in section 7.1.4

Driving machine

Requester
application

Responder

application

Input queue

Reply queue

Client channel

Server machine

Remote queue manager

1111
2222

3333

4444

5555

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 8

2.2.1 Non-persistent Messages – Client Channels

Figure 7, Figure 8 and Figure 9 shows the non-persistent, non-persistent non-trusted and persistent message

throughput achieved using an increasing number of driving applications in the client channel scenario (see

Figure 6 on the previous page) for different production levels of WebSphere MQ (versions 7.1, 7.0.1.6, 7.0 and

6.0.2.11).

Client Channels - 2KB Non-Persistent Messages

Linux64 - Peak throughput

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 7 – Performance headline, non-persistent messages and client channels

Figure 7 and Table 5 show that the throughput of non-persistent messages has increased by 96% when

comparing version 7.1 to 7.0.1.6.

Test Name: Client Channels - 2KB Non-
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 10 29882 0.00038 47%

WMQv7.0 7 16293 0.0005 37%

WMQv7.0.1.6 7 16644 0.0005 37%

WMQv7.1 20 32569 0.00072 61%

Table 5 – Performance headline, non-persistent messages and client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 9

2.2.2 Non-persistent Messages – Non-Trusted Client Channels

Client Channels - 2KB Non-Persistent Messages with Non-Trusted Bindings

Linux64 - Peak throughput

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 8 – Performance headline, non-persistent messages with non-trusted client channels

Figure 8 and Table 6 shows that the throughput of non-persistent, non-trusted messages (shared bindings -

MQIBINDTYPE=NORMAL) has increased by 130% when comparing version 7.1 to 7.0.1.6 and by 30% when

comparing version 7.1 to 6.0.2.11.

Test Name: Client Channels - 2KB Non-
Persistent Messages with Non-Trusted Bindings

Apps Round
Trips/Sec

Response
time (s)

CPU

WMQv6.0.2.11 15 22000 0.00078 68%

WMQv7.0 6 12270 0.00058 37%

WMQv7.0.1.6 6 12417 0.00056 36%

WMQv7.1 20 28516 0.00085 61%

Table 6 – Performance headline, non-persistent messages and client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 10

2.2.3 Persistent Messages – Client Channels

Client Channels - 2KB Persistent Messages

Linux64 - Peak throughput

0

2000

4000

6000

8000

10000

12000
4 8

1
6

2
4

3
2

4
0

4
8

5
6

6
4

7
2

8
0

8
8

9
6

1
0

4

1
1

2

1
2

0

1
2

8

1
3

6

1
4

4

1
5

2

1
6

0

1
6

8

1
7

6

1
8

4

1
9

2

2
0

0

2
0

8

2
1

6

2
2

4

2
3

2

2
4

0

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

100%

120%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 9 – Performance headline, persistent messages and client channels

Figure 9 and Table 7 shows that the throughput of persistent messages has increased by 143% when comparing

version 7.1 to 7.0.1.6 and by 63% when comparing version 7.1 to 6.0.2.11

Test Name: Client Channels - 2KB Persistent
Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 104 6089 0.02 38%

WMQv7.0 104 4219 0.029 35%

WMQv7.0.1.6 104 4092 0.03 35%

WMQv7.1 152 9943 0.018 53%

Table 7 – Performance headline, persistent messages and client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 11

2.2.4 Client Channels

For the following client channel measurements, the messaging rate used is 1 round trip per second per

MQI-client channel, i.e. a request message outbound over the client channel and a reply message inbound over

the channel per second.

Client Channels - R3600 Non-Persistent Messages

Linux64 - Peak throughput

0

2000

4000

6000

8000

10000

12000

10
0

50
0

90
0

13
00

17
00

21
00

25
00

29
00

33
00

37
00

41
00

45
00

49
00

53
00

57
00

61
00

65
00

69
00

73
00

77
00

81
00

85
00

89
00

93
00

97
00

10
10

0

10
50

0

10
90

0

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 10 – 1 round trip per driving application per second, client channels and non-persistent messages

Note: Messaging in these tests is 1 round trip per driving application per second.

Client Channels - R3600 Persistent Messages

Linux64 - Peak throughput

0

1000

2000

3000

4000

5000

6000

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

21
00

23
00

25
00

27
00

29
00

31
00

33
00

35
00

37
00

39
00

41
00

43
00

45
00

47
00

49
00

51
00

53
00

55
00

57
00

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

WMQv7.1 WMQv6.0.2.11

WMQv7.0 WMQv7.0.1.6

WMQv7.1 cpu % WMQv6.0.2.11 cpu %

WMQv7.0 cpu % WMQv7.0.1.6 cpu %

Figure 11 – 1 round trip per driving application per second, client channels, persistent messages

Figure 10, Figure 11 and Table 8 show that the throughput of non-persistent messages has not changed when

comparing version 7.1 to 7.0.1.6 and to 6.0.2.11. It also shows that the throughput of persistent messages has

increased by 56% when comparing version 7.1 to 7.0.1.6 and by 9% when comparing version 7.1 to 6.0.2.11

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 12

Test Name: Client Channels - R3600 Non-
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 10000 9998 0.00056 17%

WMQv7.0 7000 6998 0.00096 12%

WMQv7.0.1.6 10400 9997 0.0059 36%

WMQv7.1 10300 9996 0.00098 32%

Test Name: Client Channels - R3600
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 4600 4598 0.0082 35%

WMQv7.0 2700 2699 0.098 15%

WMQv7.0.1.6 3200 3198 0.95 34%

WMQv7.1 5000 4998 0.0053 35%

Table 8 – 1 round trip per driving application per second, client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

2.2.5 SSL

The following diagram shows how throughput varies depending on the cipher selected. The top line (using the

standard 2KB message CLNP test) in not encrypted. The other lines show a selection of the available ciphers.

Linux64 Client NonPersistent Cipher Comparisons - GSKit v8.0

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Applications

M
e
s
s
a
g

e
 R

a
te

No Cipher

DES_SHA_EXPORT1024

DES_SHA_EXPORT

NULL_MD5

NULL_SHA

RC2_MD5_EXPORT

RC4_56_SHA_EXPORT1024

RC4_MD5_EXPORT

RC4_SHA_US

TLS_RSA_WITH_AES_256_CBC_SHA256

TLS_RSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_AES_256_GCM_SHA384

TLS_RSA_WITH_AES_128_CBC_SHA256

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_128_GCM_SHA256

TLS_RSA_WITH_NULL_NULL

TRIPLE_DES_SHA_US

RC4_MD5_US

Figure 12 – Client non-persistent message rates with various SSL ciphers

The area under the curve values for each cipher are used to compile an ordered table of these ciphers and can be

used as a guide to expected performance degradations that can be expected when these ciphers are used. The

unencrypted value is used to rate the other values as a percentage. Thus for the SSL cipher NULL_SHA, the

expected message rate would be approximately 59% of the unencrypted rate.

Linux64 Cipher Comparisons CLNP

No Cipher 100%

NULL_SHA 59%

NULL_MD5 58%

RC4_56_SHA_EXPORT1024 53%

RC4_MD5_US 53%

RC4_MD5_EXPORT 53%

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 13

Linux64 Cipher Comparisons CLNP

RC4_SHA_US 52%

TLS_RSA_WITH_AES_128_CBC_SHA 49%

TLS_RSA_WITH_AES_256_GCM_SHA384 48%

TLS_RSA_WITH_NULL_NULL 48%

TLS_RSA_WITH_AES_128_CBC_SHA256 48%

TLS_RSA_WITH_AES_128_GCM_SHA256 48%

DES_SHA_EXPORT1024 47%

RC2_MD5_EXPORT 47%

TLS_RSA_WITH_AES_256_CBC_SHA256 47%

DES_SHA_EXPORT 47%

TLS_RSA_WITH_AES_256_CBC_SHA 47%

TRIPLE_DES_SHA_US 41%

Table 9 – Ordered relative SSL Client cipher performance

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 14

2.3 Distributed Queuing Test Scenario

Figure 13 – Server channels between two queue managers

1) The Requester application puts a message to a local definition of a remote queue located on the server

machine, and holds on to the message identifier returned in the message descriptor. The Requester application

then waits indefinitely for a reply to arrive on a local queue.

2) The message channel agent takes messages off the channel and places them on the common input

queue on the server machine.

3) The Responder application gets messages from the common input queue, and places a reply to the

queue name extracted from the messages descriptor (the name of a local definition of a remote queue located on

the driving machine). The queue manager copies over the message identifier from the request message to the

correlation identifier of the reply message.

4) The message channel agent takes messages off the transmission queue and sends them over the

channel to the driving machine.

5) The Requester application gets a reply from a local queue. The Requester application uses the

message identifier held from when the request message was put to the local definition of the remote queue, as

the correlation identifier in the message descriptor

Non-persistent and persistent messages were used in the distributed queuing tests, with a message size of 2KB.

The effect of message throughput with larger messages sizes is investigated in the “Large Messages” section.

Application Bindings of the Responder program are ‘Shared’ , the Requester program is normally ‘Trusted’ ,

and the channels specified as ‘MQIBindType = FASTPATH’ except in the ‘non-trusted’ scenario where both

programs use ‘shared’ bindings and the channels are specified as ‘MQIBindType = STANDARD’.

Server channel

Driving machine Server machine

Transmission queue
per channel

Input queue

Reply queue

Transmission queue
per channel

Remote queue manager Local queue manager

1111 2222

3333 4444 5555

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 15

2.3.1 Non-persistent Messages – Server Channels

Figure 14, Figure 14 and Figure 16 show the non-persistent, non-persistent non-trusted and persistent message

throughput achieved using an increasing number of driving applications in the distributed queuing scenario (see

Figure 13 on the previous page) and WebSphere MQ (versions 7.1, 7.0.1.6, 7.0 and 6.0.2.11).

Distributed Queuing - 2KB Non-Persistent Messages

Linux64 - Peak throughput

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 14 – Performance headline, non-persistent messages and server channels

Figure 14 and Table 10 shows that the throughput of non-persistent messages has increased by 16% when

comparing version 7.1 to 7.0.1.6 and by 40% when comparing version 7.1 to 6.0.2.11

Test Name: Distributed Queuing - 2KB Non-
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 20 33855 0.00091 46%

WMQv7.0 19 29587 0.00088 48%

WMQv7.0.1.6 19 40875 0.00057 60%

WMQv7.1 20 47414 0.00051 48%

Table 10 – Performance headline, non-persistent messages and server channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 16

2.3.2 Non-Persistent non-Trusted – Server Channels

Distributed Queuing - 2KB Non-Persistent Messages with Non-Trusted Bindings

Linux64 - Peak throughput

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 15 – Performance headline, non-persistent, not trusted messages and server channels

Figure 14 and Table 10 shows that the throughput Table 10 of non-persistent, non-trusted messages has

increased by 58% when comparing version 7.1 to 7.0.1.6 and by 188% when comparing version 7.1 to 6.0.2.11.

Test Name: Distributed Queuing - 2KB Non-
Persistent Messages with Non-Trusted Bindings

Apps Round
Trips/Sec

Response
time (s)

CPU

WMQv6.0.2.11 7 12693 0.00064 25%

WMQv7.0 7 12026 0.00067 29%

WMQv7.0.1.6 17 23122 0.00088 59%

WMQv7.1 20 36515 0.00069 48%

Table 11 – Performance headline, non-persistent, non trusted messages and server channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 17

2.3.3 Persistent Messages – Server Channels

Distributed Queuing - 2KB Persistent Messages

Linux64 - Peak throughput

0

500

1000

1500

2000

2500

3000

3500

4000

4500

4 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320 336 352 368 384 400

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

10%

20%

30%

40%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 16 – Performance headline, persistent messages and server channels

Figure 16 and Table 12 shows that the throughput of persistent messages has increased by 24% when

comparing version 7.1 to 7.0.1.6 and by 23% when comparing version 7.1 to 6.0.2.11.

Test Name: Distributed Queuing - 2KB
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 368 3407 0.12 14%

WMQv7.0 368 3440 0.12 16%

WMQv7.0.1.6 384 3375 0.14 16%

WMQv7.1 400 4180 0.11 13%

Table 12 – Performance headline, persistent messages and server channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 18

2.3.4 Server Channels

For the following distributed queuing measurements, the messaging rate used is 1 round trip per driving

application per second, i.e. a request message outbound over the sender channel, and a reply message inbound

over the receiver channel per second. Note that there are a fixed number of 4 server channel pairs for the non-

persistent messaging tests, and 2 pairs for the persistent message tests.

Distributed Queuing - R3600 Non-Persistent Messages

Linux64 - Peak throughput

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1
0

0

8
0

0

1
5

0
0

2
2

0
0

2
9

0
0

3
6

0
0

4
3

0
0

5
0

0
0

5
7

0
0

6
4

0
0

7
1

0
0

7
8

0
0

8
5

0
0

9
2

0
0

9
9

0
0

1
0

6
0

0

1
1

3
0

0

1
2

0
0

0

1
2

3
5

0

1
2

7
0

0

1
3

0
5

0

1
3

4
0

0

1
3

7
5

0

1
4

1
0

0

1
4

4
5

0

1
4

8
0

0

1
5

1
5

0

1
5

5
0

0

1
5

8
5

0

1
6

2
0

0

1
6

5
5

0

1
6

9
0

0

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

WMQv7.0.1.6 WMQv6.0.2.11

WMQv7.0 WMQv7.1

WMQv7.0.1.6 cpu % WMQv6.0.2.11 cpu %

WMQv7.0 cpu % WMQv7.1 cpu %

Figure 17 – 1 round trip per driving application per second, server channel, non-persistent messages

Note: Messaging in these tests is 1 round trip per driving application per second.

Distributed Queuing - R3600 Persistent Messages

Linux64 - Peak throughput

0

500

1000

1500

2000

2500

3000

3500

4000

50 20
0

35
0

50
0

65
0

80
0

95
0

11
00

12
50

14
00

15
50

17
00

18
50

20
00

21
50

23
00

24
50

26
00

27
50

29
00

30
50

32
00

33
50

35
00

36
50

38
00

39
50

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

10%

20%

30%

40%

CPU%

WMQv7.1 WMQv6.0.2.11

WMQv7.0 WMQv7.0.1.6

WMQv7.1 cpu % WMQv6.0.2.11 cpu %

WMQv7.0 cpu % WMQv7.0.1.6 cpu %

Figure 18 – 1 round trip per driving application per second, server channel, persistent messages

Figure 17, Figure 18 and Table 12 shows that the throughput of non-persistent messages is unchanged when

comparing version 7.1 to 7.0.1.6 but has increased by 11% when comparing version 7.1 to 6.0.2.11 and for

persistent messages has increased by 18% when comparing version 7.1 to 7.0.1.6 and by 10% when comparing

version 7.1 to 6.0.2.11.

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 19

Test Name: Distributed Queuing - R3600 Non-
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 14400 14395 0.22 18%

WMQv7.0 12800 12797 0.026 11%

WMQv7.0.1.6 16850 15995 0.00084 23%

WMQv7.1 16750 15995 0.00055 20%

Test Name: Distributed Queuing - R3600
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 3350 3349 0.22 12%

WMQv7.0 2900 2834 0.49 13%

WMQv7.0.1.6 3150 3147 0.085 13%

WMQv7.1 3700 3699 0.1 13%

Table 13 – 1 round trip per driving application per second, client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

2.3.5 SSL

The following diagram shows how throughput varies depending on the cipher selected. The top line (using the

standard 2KB message DQNP test) in not encrypted. The other lines show a selection of the available ciphers.

Linux64 DQ NonPersistent Cipher Comparisons - GSKit v8.0

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Applications

M
e
s
s
a
g

e
 R

a
te

No Cipher

DES_SHA_EXPORT1024

DES_SHA_EXPORT

NULL_MD5

NULL_SHA

RC2_MD5_EXPORT

RC4_56_SHA_EXPORT1024

RC4_MD5_EXPORT

RC4_SHA_US

TLS_RSA_WITH_AES_128_CBC_SHA256

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_128_GCM_SHA256

TLS_RSA_WITH_AES_256_CBC_SHA256

TLS_RSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_AES_256_GCM_SHA384

TLS_RSA_WITH_NULL_NULL

TRIPLE_DES_SHA_US

RC4_MD5_US

Figure 19 – DQ non-persistent message rates with various SSL ciphers

The area under the curve values for each cipher are used to compile an ordered table of these ciphers and can be

used as a guide to expected performance degradations that can be expected when these ciphers are used. The

unencrypted value is used to rate the other values as a percentage. Thus for the SSL cipher

TLS_RSA_WITH_NULL_NULL, the expected message rate would be approximately 85% of the unencrypted

rate.

Linux64 Cipher Comparisons DQNP

No Cipher 100%

TLS_RSA_WITH_NULL_NULL 85%

NULL_MD5 76%

NULL_SHA 74%

RC4_MD5_US 67%

RC4_MD5_EXPORT 67%

RC4_56_SHA_EXPORT1024 66%

RC4_SHA_US 66%

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 20

Linux64 Cipher Comparisons DQNP

TLS_RSA_WITH_AES_128_CBC_SHA 57%

DES_SHA_EXPORT 56%

DES_SHA_EXPORT1024 56%

TLS_RSA_WITH_AES_256_CBC_SHA 54%

RC2_MD5_EXPORT 53%

TLS_RSA_WITH_AES_128_CBC_SHA256 51%

TLS_RSA_WITH_AES_256_CBC_SHA256 48%

TRIPLE_DES_SHA_US 43%

TLS_RSA_WITH_AES_128_GCM_SHA256 43%

TLS_RSA_WITH_AES_256_GCM_SHA384 41%

Table 14 – Ordered relative SSL DQ cipher performance

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 21

3 Large Messages

3.1 MQI Response Times: 50bytes to 100MB – Local Queue Manager

3.1.1 50bytes to 32KB

Figure 20 show the response time for MQPut/MQGet for non-persistent message sizes between 50bytes and

32KB.

NonTrusted NonPersistent MQPUT + MQGET (5KB to 32KB)

Linux64 - WMQv7.0 vs WMQv7.1

0

0.02

0.04

0.06

0.08

0.1

0.12

50 500 1024 2048 4096 8192 16384 32768

R
e
s
p
o
n
s
e
 T

im
e
 (

m
ill

is
e
c
s
)

 .

WMQv7.1 WMQv7.0

Figure 20 –The effect of non-persistent message size on MQI response time (50byte - 32KB)

Figure 21 show the response for MQPut/MQGet pairs for persistent message sizes between 50bytes and 32KB.

NonTrusted Persistent MQPUT + MQGET (5KB to 32KB)

Linux64 - WMQv7.0 vs WMQv7.1

0

0.2

0.4

0.6

0.8

1

1.2

50 500 1024 2048 4096 8192 16384 32768

R
e
s
p
o
n
s
e
 T

im
e
 (

m
ill

is
e
c
s
)

 .

WMQv7.1 WMQv7.0

Figure 21 –The effect of persistent message size on MQI response time (50byte - 32KB)

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 22

3.1.2 32KB to 2MB

Figure 22 show the response time for MQPut/MQGet pairs has improved for all non-persistent message sizes

between 32KB and 2MB.

NonTrusted NonPersistent MQPUT + MQGET (32KB to 2MB)

Linux64 - WMQv7.0 vs WMQv7.1

0

0.5

1

1.5

2

2.5

3

3.5

4

32768 65536 131072 262144 524288 1048576 2097152

R
e
s
p
o
n
s
e
 T

im
e
 (

m
ill

is
e
c
s
)

 .

WMQv7.1 WMQv7.0

Figure 22 –The effect of non-persistent message size on MQI response time (32KB – 2MB)

Figure 23 show the response for MQPut/MQGet pairs for persistent message sizes between 32KB and 2MB.

NonTrusted Persistent MQPUT + MQGET (32KB to 2MB)

Linux64 - WMQv7.0 vs WMQv7.1

0

2

4

6

8

10

12

14

16

32768 65536 131072 262144 524288 1048576 2097152

R
e
s
p
o
n
s
e
 T

im
e
 (

m
ill

is
e
c
s
)

 .

WMQv7.1 WMQv7.0

Figure 23 –The effect of persistent message size on MQI response time (32KB – 2MB)

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 23

3.1.3 2MB to 100MB

Figure 22 Response time for MQPut/MQGet pairs for NP message between 2MB and 100MB.

NonTrusted NonPersistent MQPUT + MQGET (2MB to 100MB)

Linux64 - WMQv7.0 vs WMQv7.1

0

50

100

150

200

250

300

350

2097152 8388608 33554432 104857600

R
e
s
p
o
n
s
e
 T

im
e
 (

m
ill

is
e
c
s
)

 .

WMQv7.1 WMQv7.0

Figure 24 –The effect of non-persistent message size on MQI response time (2MB – 100MB)

Figure 25 The response for MQPut/MQGet pairs for persistent message sizes between 2MB and 32MB.

NonTrusted Persistent MQPUT + MQGET (2MB to 32MB)

Linux64 - WMQv7.0 vs WMQv7.1

0

50

100

150

200

250

300

2097152 8388608 33554432

R
e
s
p
o
n
s
e
 T

im
e
 (

m
ill

is
e
c
s
)

 .

WMQv7.1 WMQv7.0

Figure 25 –The effect of persistent message size on MQI response time (2MB – 32MB)

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 24

3.2 20KB Messages

3.2.1 Local Queue Manager

Figure 26 and Figure 27 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the local queue manager scenario.

Local Queuing - 20KB Non-Persistent Messages

Linux64 - Peak throughput

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 26 – 20KB non-persistent messages, local queue manager

Figure 26 and Table 15 shows that the throughput of non-persistent messages has increased by 168% when

comparing version 7.1 to 7.0.1.6 and by 89% when comparing version 7.1 to 6.0.2.11.

Test Name: Local Queuing - 20KB Non-
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 10 47330 0.00024 73%

WMQv7.0 6 33651 0.0002 57%

WMQv7.0.1.6 6 33513 0.00018 57%

WMQv7.1 32 89670 0.0004 94%

Table 15 – 20KB non-persistent messages, local queue manager

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 25

3.2.1.1 Persistent Messages

Local Queuing - 20KB Persistent Messages

Linux64 - Peak throughput

0

500

1000

1500

2000

2500

3000

3500

4000

4500

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 27 – 20KB persistent messages, local queue manager

Figure 27 and Table 16 shows that the throughput of persistent messages has increased by 22% when

comparing version 7.1 to 7.0.1.6 and by 10% when comparing version 7.1 to 6.0.2.11.

Test Name: Local Queuing - 20KB Persistent
Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 104 3507 0.034 27%

WMQv7.0 112 3180 0.041 29%

WMQv7.0.1.6 112 3161 0.042 29%

WMQv7.1 116 3853 0.035 24%

Table 16 – 20KB persistent messages, local queue manager

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 26

3.2.1.2 Scalability Local 20K non Persistent

Local_NP_20K_Scalability

Linux64 - Buckets

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o
u
n
d
 T

ri
p
s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

175%

200%

8_core V6 12_core V6

8_core V71 12_core V71

8_core V6 cpu % 12_core V6 cpu %

8_core V71 cpu % 12_core V71 cpu %

Figure 28 – Scalability, Local Queue manager, non-persistent messages

Test Name: Local_NP_20K_Scalability Apps Round Trips/Sec Response time (s) CPU

8_core V6 9 52930 0.0002 80%

12_core V6 8 45362 0.00023 63%

8_core V71 14 71718 0.00022 92%

12_core V71 15 90254 0.0002 82%

Table 17 – Scalability, Local Queue manager, non-persistent messages

The throughput comparison of 8 core and 12 cores for MQ V 6.0.2.10 messages shows better throughput can be

achieved with 8 cores. The throughput comparison for MQ V7.1 with 12 cores is 19% larger with the peak

difference being 25% larger. The significant improvement over previous levels is maximised in scenarios where

messages all go through a single queue.

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 27

3.2.2 Client Channel

Figure 27 and Figure 28 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the client channel scenario.

3.2.2.1 Non-persistent Messages

Client Channels - 20KB Non-Persistent Messages

Linux64 - Peak throughput

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

100%

120%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 29 – 20KB non-persistent messages, client channels

Figure 27 and Table 18 shows that the throughput of non-persistent messages has increased by 46% when

comparing version 7.1 to 7.0.1.6 and by 5% when comparing version 7.1 to 6.0.2.11.

Test Name: Client Channels - 20KB Non-
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 20 17645 0.0013 37%

WMQv7.0 11 12713 0.001 34%

WMQv7.0.1.6 20 12704 0.0017 40%

WMQv7.1 20 18534 0.0012 46%

Table 18 – 20KB non-persistent messages, client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 28

3.2.2.2 Persistent Messages

Client Channels - 20KB Persistent Messages

Linux64 - Peak throughput

0

500

1000

1500

2000

2500

3000

3500

4000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 30 – 20KB persistent messages, client channels

Figure 28 and Table 19 shows that the throughput of persistent messages has increased by 29% when

comparing version 7.1 to 7.0.1.6 and by 10% when comparing version 7.1 to 6.0.2.11.

Test Name: Client Channels - 20KB
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 108 3306 0.037 27%

WMQv7.0 116 2886 0.047 31%

WMQv7.0.1.6 104 2824 0.044 31%

WMQv7.1 120 3652 0.037 29%

Table 19 – 20KB persistent messages, client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 29

3.2.3 Distributed Queuing

Figure 31 and Figure 30 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the distributed queuing scenario.

3.2.3.1 Non-persistent Messages

Distributed Queuing - 20KB Non Persistent Messages

Linux64 - Peak throughput

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 31 – 20KB non-persistent messages, distributed queuing

Figure 31 and Table 20 shows that the throughput of non-persistent messages has increased by 11% when

comparing version 7.1 to 7.0.1.6 and to 6.0.2.11.

Test Name: Distributed Queuing - 20KB Non
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 20 17419 0.0013 27%

WMQv7.0 20 17014 0.0013 31%

WMQv7.0.1.6 20 17395 0.0013 31%

WMQv7.1 20 19257 0.0012 30%

Table 20 – 20KB non-persistent messages, client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 30

3.2.3.2 Persistent Messages

Distributed Queuing - 20KB Persistent Messages

Linux64 - Peak throughput

0

100

200

300

400

500

600

700

800

900

1000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

4%

8%

12%

16%

20%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 32 – 20KB persistent messages, distributed queuing

Figure 30 and Table 21 shows that the throughput of persistent messages has not changed when comparing

version 7.1 to 7.0.1.6 and to 6.0.2.11.

Test Name: Distributed Queuing - 20KB
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 120 879 0.16 6%

WMQv7.0 120 870 0.15 7%

WMQv7.0.1.6 120 868 0.16 7%

WMQv7.1 116 905 0.14 6%

Table 21 – 20KB persistent messages, client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 31

3.3 200K Messages

3.3.1 Local Queue Manager

Figure 31 and Figure 32 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the local queue manager scenario.

3.3.1.1 Non-persistent Messages

Local Queuing - 200KB Non-Persistent Messages

Linux64 - Peak throughput

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 33 – 200KB non-persistent messages, local queue manager

Figure 31 and Table 22 shows that the throughput of non-persistent messages has increased by 47% when

comparing version 7.1 to 7.0.1.6 and by 46% when comparing version 7.1 to 6.0.2.11.

Test Name: Local Queuing - 200KB Non-
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 10 12850 0.00085 68%

WMQv7.0 10 12699 0.0009 68%

WMQv7.0.1.6 10 12806 0.00091 68%

WMQv7.1 12 18802 0.0007 71%

Table 22 – 200KB non-persistent messages, local queue manager

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 32

3.3.1.2 Persistent Messages

Local Queuing - 200KB Persistent Messages

Linux64 - Peak throughput

0

100

200

300

400

500

600

700

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

10%

20%

30%

40%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 34 – 200KB persistent messages, local queue manager

Figure 32 and Table 23 shows that the throughput of persistent messages has increased by 10% when

comparing version 7.1 to 7.0.1.6 and by 12% when comparing version 7.1 to 6.0.2.11.

Test Name: Local Queuing - 200KB
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 88 542 0.19 15%

WMQv7.0 120 556 0.25 16%

WMQv7.0.1.6 116 553 0.24 16%

WMQv7.1 112 607 0.22 15%

Table 23 – 200KB persistent messages, local queue manager

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 33

3.3.2 Client Channel

Figure 33 and Figure 34 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the client channel scenario.

3.3.2.1 Non-persistent Messages

Client Channels - 200KB Non-Persistent Messages

Linux64 - Peak throughput

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

10%

20%

30%

40%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 35 – 200KB non-persistent messages, client channels

Figure 33 and Table 24 shows that the throughput of non-persistent messages has increased by 24% when

comparing version 7.1 to 7.0.1.6 and by 67% when comparing version 7.1 to 6.0.2.11.

Test Name: Client Channels - 200KB Non-
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 20 1194 0.018 8%

WMQv7.0 19 1604 0.014 13%

WMQv7.0.1.6 20 1609 0.016 13%

WMQv7.1 18 1993 0.01 16%

Table 24 – 200KB non-persistent messages, client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 34

3.3.2.2 Persistent Messages

Client Channels - 200KB Persistent Messages

Linux64 - Peak throughput

0

100

200

300

400

500

600

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

10%

20%

30%

40%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 36 – 200KB persistent messages, client channels

Figure 34 and Table 25 shows that the throughput of persistent messages has increased by 9% when comparing

version 7.1 to 7.0.1.6 and by 15% when comparing version 7.1 to 6.0.2.11.

Test Name: Client Channels - 200KB
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 76 488 0.19 16%

WMQv7.0 120 519 0.27 17%

WMQv7.0.1.6 120 517 0.27 17%

WMQv7.1 120 562 0.25 17%

Table 25 – 200KB persistent messages, client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 35

3.3.3 Distributed Queuing

Figure 35 and Figure 36 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the distributed queuing scenario

3.3.3.1 Non-persistent Messages

Distributed Queuing - 200KB Non Persistent Messages

Linux64 - Peak throughput

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

10%

20%

30%

40%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 37 – 200KB non-persistent messages, distributed queuing

Figure 35 and Table 26 shows that the throughput of non-persistent messages has increased by 11% when

comparing version 7.1 to 7.0.1.6 and by 10% when comparing version 7.1 to 6.0.2.11.

Test Name: Distributed Queuing - 200KB Non
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 18 1664 0.012 12%

WMQv7.0 19 1628 0.013 13%

WMQv7.0.1.6 20 1635 0.013 13%

WMQv7.1 14 1822 0.0088 13%

Table 26 – 200KB non-persistent messages, distributed queuing

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 36

3.3.3.2 Persistent Messages

Distributed Queuing - 200KB Persistent Messages

Linux64 - Peak throughput

0

20

40

60

80

100

120

140

160

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

4%

8%

12%

16%

20%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 38 – 200KB persistent messages, distributed queuing

Figure 36 and Table 27 shows that the throughput of persistent messages has increased by 10% when

comparing version 7.1 to 7.0.1.6 and to 6.0.2.11.

Test Name: Distributed Queuing - 200KB
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 88 120 0.88 4%

WMQv7.0 60 120 0.61 4%

WMQv7.0.1.6 64 121 0.64 4%

WMQv7.1 80 133 0.67 4%

Table 27 – 200KB persistent messages, distributed queuing

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 37

3.4 2MB Messages

3.4.1 Local Queue Manager

Figure 37 and Figure 38 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the local queue manager scenario.

3.4.1.1 Non-persistent Messages

Local Queuing - 2MB Non-Persistent Messages

Linux64 - Peak throughput

0

200

400

600

800

1000

1200

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

175%

200%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 39 – 2MB non-persistent messages, local queue manager

Figure 37 and Table 28 shows that the throughput of non-persistent messages has increased by 124% when

comparing version 7.1 to 7.0.1.6 and version 7.1 to 6.0.2.11.

Test Name: Local Queuing - 2MB Non-
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 6 445 0.014 34%

WMQv7.0 6 447 0.014 34%

WMQv7.0.1.6 6 446 0.014 34%

WMQv7.1 20 999 0.022 94%

Table 28 – 2MB non-persistent messages, local queue manager

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 38

3.4.1.2 Persistent Messages

Local Queuing - 2MB Persistent Messages

Linux64 - Peak throughput

0

10

20

30

40

50

60

70

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

10%

20%

30%

40%

CPU%

WMQv7.1 WMQv6.0.2.11

WMQv7.0 WMQv7.0.1.6

WMQv7.1 cpu % WMQv6.0.2.11 cpu %

WMQv7.0 cpu % WMQv7.0.1.6 cpu %

Figure 40 – 2MB persistent messages, local queue manager

Figure 38 and Table 29 shows that the throughput of persistent messages has increased by 10% when

comparing version 7.1 to 7.0.1.6 and by 14% when comparing version 7.1 to 6.0.2.11.

Test Name: Local Queuing - 2MB Persistent
Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 12 54 0.25 14%

WMQv7.0 16 56 0.32 14%

WMQv7.0.1.6 16 56 0.32 14%

WMQv7.1 16 62 0.3 14%

Table 29 – 2MB persistent messages, local queue manager

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 39

3.4.2 Client Channel

Figure 41 and Figure 40 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the client channel scenario.

3.4.2.1 Non-persistent Messages

Client Channels - 2MB Non-Persistent Messages

Linux64 - Peak throughput

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

20%

40%

60%

80%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 41 – 2MB non-persistent messages, client channels

Figure 41 and Table 30 shows that the throughput of non-persistent messages has increased by 9% when

comparing version 7.1 to 7.0.1.6 and by 46% when comparing version 7.1 to 6.0.2.11.

Test Name: Client Channels - 2MB Non-
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 20 135 0.16 12%

WMQv7.0 20 184 0.11 20%

WMQv7.0.1.6 20 180 0.13 20%

WMQv7.1 20 196 0.11 14%

Table 30 – 2MB non-persistent messages, client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 40

3.4.2.2 Persistent Messages

Client Channels - 2MB Persistent Messages

Linux64 - Peak throughput

0

10

20

30

40

50

60

70

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

10%

20%

30%

40%

CPU%

WMQv7.1 WMQv6.0.2.11

WMQv7.0 WMQv7.0.1.6

WMQv7.1 cpu % WMQv6.0.2.11 cpu %

WMQv7.0 cpu % WMQv7.0.1.6 cpu %

Figure 42 – 2MB persistent messages, client channels

Figure 40 and Table 31 shows that the throughput of persistent messages has increased by 23% when

comparing version 7.1 to 7.0.1.6 and by 24% when comparing version 7.1 to 6.0.2.11.

Test Name: Client Channels - 2MB Persistent
Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 20 47 0.41 14%

WMQv7.0 12 52 0.24 15%

WMQv7.0.1.6 24 48 0.47 14%

WMQv7.1 20 59 0.39 16%

Table 31 – 2MB persistent messages, client channels

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 41

3.4.3 Distributed Queuing

Figure 41 and Figure 42 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the distributed queuing scenario.

3.4.3.1 Non-persistent Messages

Distributed Queuing - 2MB Non Persistent Messages

Linux64 - Peak throughput

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

10%

20%

30%

40%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 43 – 2MB non-persistent messages, distributed queuing

Figure 41 and Table 32 shows that the throughput of non-persistent messages is unchanged when comparing

version 7.1 to 7.0.1.6 and version 7.1 to 6.0.2.11.

Test Name: Distributed Queuing - 2MB Non
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 18 164 0.12 17%

WMQv7.0 16 163 0.1 17%

WMQv7.0.1.6 17 162 0.11 17%

WMQv7.1 18 166 0.12 13%

Table 32 – 2MB non-persistent messages, distributed queuing

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 42

3.4.3.2 Persistent Messages

Distributed Queuing - 2MB Persistent Messages

Linux64 - Peak throughput

0

2

4

6

8

10

12

14

4 8 12 16 20 24 28 32

R
o

u
n

d
 T

ri
p

s
/s

e
c

 .

0%

4%

8%

12%

16%

20%

CPU%

WMQv6.0.2.11 WMQv7.0

WMQv7.0.1.6 WMQv7.1

WMQv6.0.2.11 cpu % WMQv7.0 cpu %

WMQv7.0.1.6 cpu % WMQv7.1 cpu %

Figure 44 - 2MB persistent messages, distributed queuing

Figure 42 and Table 33 shows that the throughput of persistent messages has increased by 19% when

comparing version 7.1 to 7.0.1.6 and by 18% when comparing version 7.1 to 6.0.2.11.

Test Name: Distributed Queuing - 2MB
Persistent Messages

Apps Round
Trips/Sec

Response time
(s)

CPU

WMQv6.0.2.11 8 11 0.78 3%

WMQv7.0 8 11 0.75 4%

WMQv7.0.1.6 8 11 0.78 3%

WMQv7.1 8 13 0.66 4%

Table 33 – 2MB persistent messages, distributed queuing

Note: The numbers in the table above show the peak number of round trips per second, the number of driving

applications used, the response time and the server CPU at that time

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 43

4 Application Bindings
This report analyzes the message rate between a Requester (Driver) application and a Responder (Server)

application. This chapter looks at the effect of various combinations of application bindings for Requester and

Responder programs.

 Requester Responder

Normal Trusted Shared

Isolated Isolated Isolated

Trusted Trusted Trusted

Non Trusted Shared Shared

4.1 Local Queue Manager

Figure 45 and Figure 46 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the local queue manager scenario.

4.1.1 Non-persistent Messages

WMQv7.1 - Local Queuing - Application Bindings with Non-Persistent Messages

Linux64 - Peak throughput

0

20000

40000

60000

80000

100000

120000

140000

160000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

R
o
u
n
d
 T

ri
p
s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

175%

200%

Normal Isolated

Trusted Non-Trusted

Normal cpu % Isolated cpu %

Trusted cpu % Non-Trusted cpu %

Figure 45 – Application binding, non-persistent messages, local queue manager

Figure 43 and Table 32 show the throughput of non-persistent messages when comparing Normal, Isolated,

Trusted and Shared bindings.

Test Name: WMQv7.1 - Local Queuing -
Application Bindings with Non-Persistent

Messages

Apps Round
Trips/Sec

Response
time (s)

CPU

Normal 34 120090 0.0003 91%

Isolated 6 90964 0.00008 78%

Trusted 40 150388 0.00028 81%

Non-Trusted 6 103250 0.00008 76%

Table 34 – Application binding, non-persistent messages, local queue manager

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 44

4.1.2 Persistent Messages

WMQv7.1 - Local Queuing - Application Bindings with Persistent Messages

Linux64 - Peak throughput

0

2000

4000

6000

8000

10000

12000

14000

4 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240

R
o
u
n
d
 T

ri
p
s
/s

e
c

 .

0%

20%

40%

60%

80%

100%

120%

Normal Isolated

Trusted Normal cpu %

Isolated cpu % Trusted cpu %

Figure 46 – Application binding, persistent messages, local queue manager

Figure 44 and Table 33 show the throughput of persistent messages when comparing Normal, Isolated and

Trusted bindings.

Test Name: WMQv7.1 - Local Queuing -
Application Bindings with Persistent Messages

Apps Round
Trips/Sec

Response
time (s)

CPU

Normal 104 11418 0.01 41%

Isolated 88 9788 0.011 45%

Trusted 112 11933 0.011 37%

Table 35 – Application binding, persistent messages, local queue manager

.

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 45

4.2 Client Channels

Figure 47 and Figure 48 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the client channel scenario.

4.2.1 Non-persistent Messages

WMQv7.1 - Client Channels - Application Bindings with Non-Persistent Messages

Linux64 - Peak throughput

0

5000

10000

15000

20000

25000

30000

35000

40000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

R
o
u
n
d
 T

ri
p
s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

Normal Isolated

Trusted Non-Trusted

Normal cpu % Isolated cpu %

Trusted cpu % Non-Trusted cpu %

Figure 47 – Application binding, non-persistent messages, client channels

Figure 45 and Table 34 show the peak throughput of non-persistent messages when comparing Normal, Isolated

and Trusted bindings.

Test Name: WMQv7.1 - Client Channels -
Application Bindings with Non-Persistent

Messages

Apps Round
Trips/Sec

Response
time (s)

CPU

Normal 36 31502 0.0013 62%

Isolated 40 34365 0.0013 65%

Trusted 28 31654 0.001 57%

Non-Trusted 26 26677 0.0011 64%

Table 36 – Application binding, non-persistent messages, client channels

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 46

4.2.2 Persistent Messages

WMQv7.1 - Client Channels - Application Bindings with Persistent Messages

Linux64 - Peak throughput

0

2000

4000

6000

8000

10000

12000

4 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240

R
o
u
n
d
 T

ri
p
s
/s

e
c

 .

0%

20%

40%

60%

80%

100%

120%

Normal Isolated

Trusted Normal cpu %

Isolated cpu % Trusted cpu %

Figure 48 – Application binding, persistent messages, client channels

Figure 46 and Table 35 show the peak throughput of non-persistent messages when comparing Normal, Isolated

and Trusted bindings.

Test Name: WMQv7.1 - Client Channels -
Application Bindings with Persistent Messages

Apps Round
Trips/Sec

Response
time (s)

CPU

Normal 152 9943 0.018 53%

Isolated 176 9708 0.02 54%

Trusted 112 10791 0.012 50%

Table 37 – Application binding, persistent messages, client channels

.

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 47

4.3 Distributed Queuing

Figure 48 and Figure 49 show the non-persistent and persistent message throughput achieved using an

increasing number of driving applications in the distributed queuing scenario.

4.3.1 Non-persistent Messages

WMQv7.1 - Distributed Queuing - Application Bindings with Non-Persistent Messages

Linux64 - Peak throughput

0

10000

20000

30000

40000

50000

60000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

R
o
u
n
d
 T

ri
p
s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

Normal Isolated

Trusted Non-Trusted

Normal cpu % Isolated cpu %

Trusted cpu % Non-Trusted cpu %

Figure 49 – Application binding, non-persistent messages, distributed queuing

Figure 47 and Table 36 show the peak throughput of non-persistent messages when comparing Normal, Isolated

and Trusted bindings.

Test Name: WMQv7.1 - Distributed Queuing -
Application Bindings with Non-Persistent

Messages

Apps Round
Trips/Sec

Response
time (s)

CPU

Normal 40 56211 0.00088 62%

Isolated 26 48757 0.00062 55%

Trusted 40 48871 0.001 45%

Non-Trusted 38 42634 0.0012 59%

Table 38 – Application binding, non-persistent messages, distributed queuing

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number

of driving applications used to achieve the peak throughput.

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 48

4.3.2 Persistent Messages

WMQv7.1 - Distributed Queuing - Application Bindings with Persistent Messages

Linux64 - Peak throughput

0

500

1000

1500

2000

2500

3000

3500

4000

4500

4 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320 336 352 368 384 400

R
o
u
n
d
 T

ri
p
s
/s

e
c

 .

0%

10%

20%

30%

40%

Normal Isolated

Trusted Normal cpu %

Isolated cpu % Trusted cpu %

Figure 50 – Application binding, persistent messages, distributed queuing

Figure 48 and Table 37 show the peak throughput of non-persistent messages when comparing Normal, Isolated

and Trusted bindings.

Test Name: WMQv7.1 - Distributed Queuing -
Application Bindings with Persistent Messages

Apps Round
Trips/Sec

Response
time (s)

CPU

Normal 400 4180 0.11 13%

Isolated 272 3814 0.081 13%

Trusted 384 4182 0.1 11%

Table 39 – Application binding, persistent messages, distributed queuing

Note: The large bold numbers in the table above show the peak number of round trips per second, and the number

of driving applications used to achieve the peak throughput.

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 49

5 Short & Long Sessions
The previous chapters in this report only reported on steady state messaging that does not include any session

setup and termination function. This chapter specifically bracket groups of five MQPut/MQGet pairs with

MQConn/MQDisc and MQOpen/MQClose calls so a comparison of this overhead can be seen.

A short session is a term used to describe the behaviour of an MQI application as it processes a small number of

messages using one or more queues and a queue manager. The measurements in this document use an MQI-

client application and the following sequence:

• connects to the queue manager

• opens the common input queue, and common reply queue

• puts a request message to the common input queue

• gets the reply message from the common reply queue

• wait one second

• closes both queues

• disconnects from the queue manager

“Why measure short sessions?”

For each new connecting application or disconnecting application, the queue manager and Operating System

must start a new process or thread and set up the new connection. As the number of connecting and

disconnecting applications increases, the Operating System and queue manager are subjected to a higher load.

While these requests are being serviced, the queue manager has less time available to process messages, so

fewer driving applications can be reconnected to the queue manager per second before the response time

exceeds one second.

This effect is greater than that of reducing the total messaging throughput of the queue manager by connecting

thousands of MQI applications to the queue manager (refer to Figure 51 for an illustration).

CLIENT_NP_SS_R3600

Linux64 - Capacity

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1
0
0

9
0
0

1
7
0
0

2
5
0
0

3
0
4
0

3
2
0
0

3
3
6
0

3
5
2
0

3
6
8
0

3
8
4
0

4
0
0
0

4
1
6
0

4
3
2
0

4
4
8
0

4
6
4
0

4
8
0
0

4
9
6
0

5
0
5
0

5
1
3
0

5
2
1
0

5
2
9
0

5
3
7
0

5
4
5
0

5
5
3
0

5
6
1
0

5
6
9
0

5
7
7
0

5
8
5
0

5
9
3
0

6
0
1
0

6
0
9
0

6
1
7
0

R
o
u
n
d
 T

ri
p
s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

WMQv7.1 WMQv7.1 cpu %

5555x

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 50

CLIENT_PM_SS_R3600

Linux64 - Capacity

0

1000

2000

3000

4000

5000

6000

7000

1
0
0

1
2
0
0

2
0
4
0

2
2
6
0

2
4
8
0

2
7
0
0

2
9
2
0

3
0
6
0

3
1
7
0

3
2
8
0

3
3
9
0

3
5
0
0

3
6
1
0

3
7
2
0

3
8
3
0

3
9
4
0

4
0
5
0

4
1
6
0

4
2
7
0

4
3
8
0

4
4
9
0

4
6
0
0

4
7
1
0

4
8
2
0

4
9
3
0

5
0
4
0

5
1
5
0

5
2
6
0

5
3
7
0

5
4
8
0

5
5
9
0

5
7
0
0

5
8
1
0

5
9
2
0

R
o
u
n
d
 T

ri
p
s
/s

e
c

 .

0%

25%

50%

75%

100%

125%

150%

WMQv7.1 WMQv7.1 cpu %

Figure 51 – Short sessions, client channels

Test Name: CLIENT_NP_SS_R3600 Apps Round Trips/Sec Response time (s) CPU

WMQv7.1 6070 7443 0.97 75%

Test Name: CLIENT_PM_SS_R3600 Apps Round Trips/Sec Response time (s) CPU

WMQv7.1 5750 5941 0.98 71%

Table 40 – Short sessions, client channels

Note: Messaging in these tests is 1 round trip per driving application per second, i.e. 1 short session per driving

application every 5 seconds

Note: The figures for non-persistent short sessions were generated with all message processing within sync-point

control. All other non-persistent messages within this report were generated outside sync-point control.

The ‘runmqlsr’ has a much smaller overhead of connecting to and disconnecting from the queue manager

because it only uses a single thread per connection rather than an entire process. INETD listener has a

significantly smaller capacity because of the need to create a new process for every client.

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 51

6 Performance and Capacity Limits

6.1 Client channels – capacity measurements

The measurements in this section are intended to test the maximum number of client channels into a server

queue managers with a messaging rate of 1 round trip per client channel per minute while additional

connections are made. The maximum number of connected applications is likely to be determined by other

criteria such as recovery time or manageability. Measurements are also made with smaller number of Client

channels where the message insertion rate is increased until the system gets congested. This information is

intended to be useful to the reader sizing a system with similar scenarios. These client measurements of V7.1

allocate a separate socket for each client (sharecnv=1 on svrcon channel).

Queue manager configuration for client channels capacity tests:

MaxChannels=50000 (100,000 for clnp_cmax). MQIBINDTYPE=FASTPATH

Test name: Apps
Rate/app/hr Round

Trips/sec

Response

time (s)
CPU

clnp 20 n/a* 32569 0.00072 61%

clnp_r3600 10300 3600 9996 0.00098 32%

clnp_c6000 6000 13500 22388 0.147 59%

clnp max 60000 800 11052 0.0007 61%

cl_persist_c6000 6000 4000 6541 0.582 44%

clnp_cmax_no_correllid
31000 400

500

3523

4342

0.0018

0.1059

43%

70%

cl_persist_cmax_no_correllid 31000 200 1596 0.01 32%

Table 41 – Capacity measurements, client channels

* There was no delay between the response to the previous message and the insertion of the next message

with 38 clients.

The maximum message throughput is achieved when there are a small number of requester applications. The

clnp_3600 measurement peaks when the queue of input messages waiting to be processed by the Server

application builds up because the server application threads can no longer keep up with the demand. Although

this ensures the server threads are always busy, the messages are being spilt from the Queue buffer to the file

system and possibly to the disk. Each client uses a thread in the AMQRRMPA processes and the management

of lots of threads and lots memory objects results in a larger CPU cost to handle each message.

Measurements normally use a Get by Correlation_Id from a common reply queue for all clients whereas the

tests labelled ‘no_correlid’ have a separate reply queue per client. Each additional Client needs a thread in the

AMQRMPPA process. Using a separate queue per client needs additional shared memory per client.

6.1.1 Client Channels – Memory

The clnp-cmax test was run a machine where memory could be stolen by a page-fix program. Each Client

inserts one 2K byte message a minute and the number of clients increases until the average response time

exceeds a second. The table records the maximum number of clients that the Queue manager could process

messages with a response time of under a second

memory V6.0.2.11 V7.0.1.6 V7.1

1GB 9000 4500 4500

2GB 22500 11500 11500

3GB 18500 18500

4GB 45000 25000 25000

6GB >64000 38000 38500

Linear approximations of these points enable the amount of storage per client and the cost of the first client

(including operating system and Queue manger) to be calculated

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 52

 V6.0.2.11 V7.0.1.6 V7.1

Op_Sys + QM + first client 189MB 284MB 310MB

Additional clients 84KB 149KB 147KB

6.2 Distributed queuing – capacity measurements

The measurements in this section are intended to test the maximum number of server channel pairs between two

queue managers with a messaging rate of 1 round trip per server channel per minute while applications are

being attached. For the same number of server channel pairs, a faster message rate gives a higher total message

throughput over each channel pair. This information is intended to be useful to the reader sizing a system with

similar scenarios.

Queue manager and log configuration for distributed queuing capacity tests:

MaxChannels=20000, LogPrimaryFiles=12, LogFilePages=16384, LogBufferPages=512

Note: The large log capacity for this test is for writing the object definitions to the log disk (the transmission queue

definitions for both sides of the server channel pair, and reply queue per receiver channel on the driving

machine).

Test name: Apps
Rate/app/hr Round

Trips/sec

Response

time (s)
CPU

dqnp 20 n/a* 47414 0.00051 48%

dqnp_r3600 16750 3600 15995 0.00055 20%

dqnp_q1000 1000 60000 16486 0.00066 30%

dqnp_qmax 10000 12000 24935 0.00618 82%

dq-persist-qmax 10000 3360 1148 0.0628 31%

dq-persist_q1000 1000 13280 3670 0.237 23%

Table 42 – Capacity measurements, server channels

* There was no delay between the response to the previous message and the insertion of the next message with

40 driving applications..

The dqnp and dqnp_r3600 both used a total of 4 pairs of Sender/Receiver pairs of channels between queue

managers while the dqnp_qmax and dq_persist_q4000 used a pair of channels per application. The dqnp_q1000

shows the reduced throughput experienced when 1000 queue mangers are connected into a central hub.

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 53

7 Tuning Recommendations

7.1 Tuning the Queue Manager

This section highlights the tuning activities that are known to give performance benefits for WebSphere MQ

V7.1; The reader should note that the following tuning recommendations may not necessarily need to be

applied, especially if the message throughput and/or response time of the queue manager system already meets

the required level. Some tuning recommendations that follow may degrade the performance of a previously

balanced system if applied inappropriately. The reader should carefully monitor the results of tuning the queue

manager to be satisfied that there have been no adverse effects.

Customers should test that any changes have not used excessive real resources in their environment and make

only essential changes. For example, allocating several megabytes for multiple queues reduces the amount of

shared and virtual memory available for other subsystems, as well as over committing real storage.

Note: The ‘TuningParameters’ stanza is not a documented external interface and maybe changed or be removed in

future releases.

7.1.1 Queue Disk, Log Disk, and Message Persistence

Non-persistent messages are held in main memory, spilt to the file system as the queues become deep and lazily

written to the Queue file. Persistent messages are synchronously written to the log by an MQCmit that are also

periodically flushed to the Queue file.

To avoid potential queue and log I/O contention due to the queue manager simultaneously updating a queue file

and log extent on the same disk, it is important that queues and logs are located on separate and dedicated

physical devices. Multiple disks can be redirected to a Storage Area Network (SAN) but multiple high volume

Queue managers can require different Logical Volumes to avoid congestion.

With the queue and log disks configured in this manner, careful consideration must still be given to

message persistence: persistent messages should only be used if the message needs to survive a queue manager

restart (forced by the administrator or as the result of a power failure, communications failure, or hardware

failure). In guaranteeing the recoverability of persistent messages, the pathlength through the queue manager is

three times longer than for a non-persistent message. This overhead does not include the additional time for the

message to be written to the log, although this can be minimised by using cached disks or SAN.

7.1.1.1 Non-persistent and Persistent Queue Buffer

The default non-persistent queue buffer size is 64K per queue and the default persistent is 128K per queue for

32 bit Queue Managers and 128K /256K for 64 bit Queue Managers (AIX, Solaris, HPUX, Linux_64, z_Linux,

and Windows64). They can all be increased to 1MB using the TuningParameters stanza and the

DefaultQBufferSize and DefaultPQBufferSize parameters. (For more details see SupportPac MP01: MQSeries –

Tuning Queue Limits). Increasing the queue buffer provides the capability to absorb peaks in message

throughput at the expense of real storage. Once these queue buffers are full, the additional message data is given

to the file system that will eventually find its way to the disk. Defining queues using large non-persistent or

persistent queue buffers can degrade performance if the system is short of real memory either because a large

number of queues have already been defined with large buffers, or for other reasons - e.g. large number of

channels defined.

Note: The queue buffers are allocated in shared storage so consideration must be given to whether the agent

process or application process has the memory addressability for all the required shared memory segments.

Queues can be defined with different values of DefaultQBufferSize and DefaultPQBufferSize. The value is

taken from the TuningParameters stanza in use by the queue manager when the queue was defined. When the

queue manager is restarted existing queues will keep their earlier definitions and new queues will be created

with the current setting. When a queue is opened, resources are allocated according to the definition held on

disk from when the queue was created.

7.1.2 Log Buffer Size, Log File Size, and Number of Log Extents

The Log component is often the bottleneck when processing persistent messages. Sufficient information is

stored on the log to restart the queue manager after failure. Circular logging is sufficient to recover from

application, software, or power failure while linear logging will also recover from media (or disk) failure. Log

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 54

records are written at each MQPut, MQGet, and MQCmit into the log buffer. This information is moved onto

the log disk. Periodically the Checkpoint process will decide how many of these logfile extents are in the Active

log and need to be kept online for recovery purposes. Those extents no longer in the active log are available for

achieving when using Linear logging or available for reuse when using circular. There should be sufficient

Primary logs to hold the Active log plus the new log extents used until the next checkpoint otherwise some

Secondary logs are temporarily included in the log set and they have to be instantly formatted which is an

unnecessary delay when using circular logging.

The log buffer is a circular piece of main memory where the log records are concatenated so that multiple log

records can be written to the log file in a single I/O operation. The default values used for LogBufferPages and

LogFilePages have been increased in V7 and are probably suitable for most installations. The default size of the

log buffer is 512 pages with a maximum size of 4096 pages. To improve persistent message throughput of large

messages (messages size > 1M bytes) the LogBufferPages could be increased to improve likelihood of

messages only needing one I/O to get to the disk. Environments that process under 100 small (< 10K byte

messages) Persistent messages per second can reduce the memory footprint by using smaller values like 32

pages without impacting throughput. LogFilePages (i.e. crtmqm –lf <LogFilePages>) defines the size of

one physical disk extent (default 4096 pages). The larger the disk extent, the longer the elapsed times between

changing disk extents. It is better to have a smaller number of large extents but long running UOW can prevent

Checkpointing efficiently freeing the disk extent for reuse. The largest size (maximum 65536 pages) will reduce

the frequency of switching extents. The number of LogPrimaryFiles (i.e. crtmqm -lp <LogPrimaryFiles>)

can be configured to a large number and the maximum number of Primary plus Secondary extents is

255(Windows) and 511(UNIX) but it is for functional reasons rather than performance that need more than 20

primary extents for Circular logging. Circular logging should be satisfied by Primary logs because Secondary

logs are formatted each time they are reused. The Active log set is the number of extents that are identified by

the Checkpoint process as being necessary to be kept online. As additional messages are processed, more space

is taken by the active log. As UOWs complete, they enable the next Checkpoint process to free up extents that

now become available for archiving with Linear logging. Some installation will use Linear logging and not

archive the redundant logs because archieving impacts the run time performance of logging. They will

periodically (daily or twice daily) use ‘rcdmqimg’ on the main queues thus moving the ‘point of recovery’

forward , compacting the queues, and freeing up log disk extents. The cumulative effect of this tuning will:

• Improve the throughput of persistent messages (enabling by default a possible 2MB of log records to

be written from the log buffer to the log disk in a single write). Initial target - half to one second of log

datastreaming into the Logbuffer.

• Reduce the frequency of log switching (permitting a greater amount of log data to be written into one

extent). Initial target - LogFile extent hold at least 10 seconds of log datastreaming.

• Allow more time to prepare new linear logs or recycle old circular logs (especially important for long-

running units of work).

Changes to the queue manager LogBufferPages stanza take effect at the next queue manager restart. The

number of pages can be changed for all subsequent queue managers by changing the LogBufferPages parameter

in the product default Log stanza.

It is unlikely that poor persistent message throughput will be attributed to a 2MB queue manager log but

processing of large messages will be helped by these enhanced limits. It is possible to fill and empty the log

buffer several times each second and reach a CPU limit writing data into the log buffer, before a log disk

bandwidth limit is reached.

7.1.2.1 LogWriteIntegrity: SingleWrite or TripleWrite

The default value is TripleWrite. MQ writes log records using the TripleWrite method because it provides full

write integrity where hardware that assures write integrity is not available.

Some hardware guarantees that, if a write operation writes a page and fails for any reason, a subsequent read of

the same page into a buffer results in each byte in the buffer being either:

• The same as before the write, or

• The byte that should have been written in the write operation

On this type of hardware (for example, SSA write cache enabled), it is safe for the logger to write log records in

a single write as the hardware assures full write integrity. This method provides the highest level of

performance.

Queue manager workloads that have multiple streams asynchronously creating high volume log records will not

benefit from ‘SingleWrite’ because the logger will not need to rewrite partial pages of the log file. Workloads

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 55

that serialize on a small number of threads where the response time from an MQGet, MQPut, or MQCmit

inhibits the system throughput are likely to benefit from Singlewrite and could enhance throughput by 25%.

Measurements in this report used LogWriteIntegrity=TripleWrite

7.1.3 Channels: Process or Thread, Standard or Fastpath?

Threaded channels are used for all the measurements in this report (‘runmqlsr’, and for server channels an

MCATYPE of ‘THREAD’) the threaded listener ‘runmqlsr’ can now be used in all scenarios with client and

server channels. Additional resource savings are available using the ‘runmqlsr’ listener rather than ‘inetd’,

including a reduced requirement on: virtual memory, number of processes, file handles, and System V IPC.

Fastpath channels, and/or fastpath applications—see later paragraph for further discussion, can increase

throughput for both non-persistent and persistent messaging. For persistent messages, the improvement is only

for the path through the queue manager, and does not affect performance writing to the log disk.

Note: The reader should note that since the greater proportion of time for persistent messages is in the queue

manager writing to the log disk, the performance improvement for fastpath channels is less apparent with

persistent messages than with non-persistent messages.

7.2 Applications: Design and Configuration

7.2.1 Standard (Shared or Isolated) or Fastpath?

The reader should be aware of the issues associated with writing and using fastpath applications—described in

the ‘MQSeries Application Programming Guide’. Although it is recommended that customers use fastpath

channels, it is not recommended to use fastpath applications. If the performance gain offered by running

fastpath is not achievable by other means, it is essential that applications are rigorously tested running fastpath,

and never forcibly terminated (i.e. the application should always disconnect from the queue manager). Fastpath

channels are documented in the ‘MQSeries Intercommunication Guide’.

7.2.2 Parallelism, Batching, and Triggering

An application should be designed wherever possible to have the capability to run multiple instances or multiple

threads of execution. Although the capacity of a multi-processor (SMP) system can be fully utilised with a

small number of applications using non-persistent messages, more applications are typically required if the

workload is mainly using persistent messages. Processing messages inside syncpoint can help reduce the

amount of time the queue managers takes to write a group of persistent messages to the log disk. The

performance profile of a workload will also be subject to variability through cycles of low and heavy message

volumes, therefore a degree of experimentation will be required to determine an optimum configuration.

Queue avoidance is a feature of the queue manager that allows messages to be passed directly from an

‘MQPuter’ to an ‘MQGeter’ without the message being placed on a queue. This feature only applies for

processing messages outside of syncpoint. In addition to improving the performance of a workload with

multiple parallel applications, the design should attempt to ensure that an application or application thread is

always available to process messages on a queue (i.e. an ‘MQGeter’), then messages outside of syncpoint do not

need to ever be physically placed on a queue.

The reader should note that as more applications are processing messages on a single queue there is an

increasing likelihood that queue avoidance will not be maintainable. The reasons for this have a cumulative and

exponential effect, for example, when messages are being placed on a queue quicker than they can be removed.

The first effect is that messages begin to fill the queue buffer—and MQGeters need to retrieve messages from

the buffer rather than being received directly from an MQPuter. A secondary effect is that as messages are

spilled from the buffer to the queue disk, the MQGeters must wait for the queue manager to retrieve the

message from the queue disk rather than being retrieved from the queue buffer. While these problems can be

addressed by configuring for more MQGeters (i.e processing threads in the server application), or using a larger

queue buffer, it may not be possible to avoid a performance degradation.

Processing persistent messages inside syncpoint (i.e. in batches) can be more efficient than outside of syncpoint.

As the number of messages in the batch increases, the average processing cost of each message decreases. For

persistent messages the queue manager can write the entire batch of messages to the log disk in one go while

outside of syncpoint control, the queue manager must wait for each message to be written to the log before

returning control to the application.

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 56

Only one log record per queue can be written to the disk per log I/O when processing messages outside of

syncpoint. This is not a bottleneck when there are a lot of different queues being processed. When there are a

small number of queues being processed by a large number of parallel application threads, it is a bottleneck. By

changing all the messages to be processed inside syncpoint, the bottleneck is removed because multiple log

records per queue can share the same log I/O for messages processed within syncpoint.

A typical triggered application follows the performance profile of a short session. The ‘runmqlsr’ has a much

smaller overhead compared to inetd of connecting to and disconnecting from the queue manager because it does

not have to create a new process. The programmatical implementation of triggering is still worth consideration

with regard to programming a disconnect interval as an input parameter to the application program. This can

provide the flexibility to make tuning adjustments in a production environment, if for instance, it is more

efficient to remain connected to the queue manager between periods of message processing, or disconnect to

free queue manager and Operating System resources.

7.3 Tuning the Operating System

Please follow Linux specific tuning guidelines to apply these values.

/etc/sysctl.conf
net.ipv4.ip_forward = 0
net.ipv4.conf.default.rp_filter = 1
net.ipv4.conf.default.accept_source_route = 0
kernel.sysrq = 0
kernel.core_uses_pid = 1
net.ipv4.tcp_syncookies = 1
kernel.msgmnb = 65536
kernel.msgmax = 65536
net.ipv4.conf.all.accept_redirects = 0
kernel.sem = 500 512000 250 4096
kernel.msgmni = 1024
kernel.shmmni = 4096
kernel.shmall = 2097152
kernel.shmmax = 268435456
fs.file-max = 400000
kernel.pid_max = 120000
net.ipv4.ip_local_port_range = 8192 65535
vm.max_map_count=1966080

7.4 Virtual Memory, Real Memory, & Paging

7.4.1 BufferLength

The AMQRMPPA process contains a thread per connected client. The BufferLength parameter of the MQGet is also

used to allocate a long term piece of storage of this size in which the message is held before being retrieved by the

client. If the size of the arriving messages cannot be predicted then the application should provide a buffer than can

deal with 90% of the messages and redrive the MQGet after return code 2080 (X'0820')

MQRC_TRUNCATED_MSG_FAILED by providing a larger BUFFER for retrieving this particular message. There is a

mechanism to gradually reduce the size of the storage in AMQRMPPA if the recent BufferLength size is significantly

smaller than previous BufferLength.

7.4.2 MQIBINDTYPE

MQIBINDTYPE=FASTPATH will cause the channel to run ‘Trusted’ mode. Trusted applications do not use a thread

in the Agent (AMQZLLA) process. This means there is no IPC between the Channel and Agent because the Agent

does not exist in this connection. If the channel is run in STANDARD mode then any messages passed between the

channel and agent will use IPCC memory (size = BufferSize with a maximum size of 1MB) that is dynamically

obtained and only held for the lifetime of the MQGet. Standard channels each require an additional 80K bytes of

memory. As the message rate increases, there will be more IPCC memory used in parallel.

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 57

The power of the machine used to process a workload needs to handle the peaks of troughs. Customers may

specify a daily workload but this number cannot be divided by the number of seconds in a day to find the

necessary system configuration. The peak hourly rate cannot be divided by 3600 because the peak rate per

second will probably be 2-3 times higher. The system must process these peak loads without building up a

backlog of queued work. It is important to prevent the queue depths increasing because they will occupy

memory from the 'fre' pool or be spilled out to disk. Over commitment of real memory is handled by the page

manager but sudden large jumps (storms) possibly due to queues becoming deep can cause the throughput to

break down completely if the page manager chooses too much working set memory to be paged. Gradual over

commitment enables the page manager to shuffle out those pages that are not part of the working set.

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 58

8 Measurement Environment

8.1 Workload description

8.1.1 MQI response time tool

The MQI tool exercises the local queue manager by measuring elapsed times of the 8 main MQSeries verbs:

MQConn(x), MQDisc, MQOpen, MQClose, MQPut, MQGet, MQCmit, and MQBack. The following MQI

calls are paired together inside a test application:

• MQConn(X) with MQDisc

• MQOpen with MQClose

• MQPut with MQGet

• MQCmit and MQBack with MQPut and MQGet

Note: MQClose elapsed time is only measured for an empty queue.

Note: Performance of MQCmit and MQBack is measured in conjunction with MQPut and MQGet, putting and

getting messages inside a unit of work (i.e. inside syncpoint control). The unit of work is committed at the

end of each batch. The number of messages per batch is a parameter of the test.

Note: This tool is not used to measure the performance of verbs: MQSet, MQInq, or MQBegin.

8.1.2 Test scenario workload

The MQI applications use 64 bit libraries for MQ

8.1.2.1 The driving application programs

The test scenario workload simulates many driving applications running on a single driving machine. This is

not typical of a customer environment and is only used to facilitate test coordination. Driving applications were

multi-threaded with each thread performing a sequence of MQI calls. The driving applications (Requesters) for

Local and DQ tests used Trusted bindings. The number of threads in each application was adjusted according

to whether the test was measuring a local queue manager, a client channel, or distributed queuing scenario.

This was done to reduce storage overheads on the driving system.

Message rate: in all but the rated and capacity limit tests, message processing was performed in a tight-loop. In

the rated tests a message rate of 1 round trip per driving application per second was used, and in the capacity

limit tests a message rate of 1 round trip per channel per minute was used.

Non-persistent and persistent messages were used in all but the capacity limit tests.

Note: The driving applications gathered timing information for all MQI calls using a high-resolution timer.

8.1.2.2 The server application program

The server application is written as a multi-threaded program configured to use various threads for processing

non-persistent messages and persistent messages. Each server thread performed the sequence of actions as

outlined in the test scenario illustrations.

Non-persistent messaging is done outside of syncpoint control. Persistent messaging is done inside of syncpoint

control. The average message throughput expressed as a number of round trips per second was calculated and

reported by the server program.

8.1.2.3 Analysis techniques

In the overview section, the percentage throughput comparison used the area under the graph as an alternative

method of interpreting the performance data. Elsewhere, the percentage throughput comparison used the peak

throughputs found in the tables associated with the graphs. The area under the curve is favoured in this instance

as it gives a much more general performance indicator.

NB: Locking improvements in WMQv7.1 have improved the right hand side of the graphs but came with

path length costs that may affect the rate of growth on left hand side of the graph when there is only a

small number of parallel applications.

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 59

8.2 Hardware specification

IBM x3650: Server system (Device under test)

Model: x3650 M3 8864 4RG

Processor: 2.8GHz Intel Xeon x5660

Architecture: 2 x 6 core CPU

Memory (RAM): 32GB

Disk: 2 SAN disks on DS8700 (5GB each, 1 queue, 1 log)

Network: 10Gbit Ethernet Adapter

IBM x3850: Driver system

Model: x3850 M2 8864 4RG

Processor: 2.93GHz Intel Xeon x7350

Architecture: 4 x quad core CPU

Memory (RAM): 32GB

Disk: 2 SAN disks on DS8700 (5GB each, 1 queue, 1 log)

Network: 10Gbit Ethernet Adapter

The machines under test are connected to a SAN via a dedicated SVC. The SVC provides a transparent buffer

between the server and SAN that will smooth any fluctuations in the response of the SAN due to external

workloads. The server machines are connected via a fibre channel trunk to a 8Gb Brocade DCX director. The

speed of each server is dictated by the server's HBA (typically 2Gb). 5GB generic LUNs are provisioned via

SVC. The SVC is a 2145-8G4 which connects to the DCX at 4Gb. The SAN storage is provided by an IBM

DS8700 which is connected to the DCX at 4Gb.

8.3 Software

Linux 64 bit: Red Hat Enterprise Linux AS release 5.5 (Tikanga)

MQSeries: Version 6.0.2.11, Version 7.0, Version 7.0.1.6, Version 7.1

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 60

9 Glossary

Test name The name of the test.

Note: The test names in some cases are rather long. This is done to provide a

descriptive qualification of the test measurement to relate to the performance

discussion in the sections throughout the document:

local => local queue manager test scenario

cl => client channel test scenario

dq => distributed queuing test scenario

np => non-persistent messages

pm => persistent messages

r3600 => 1 round trip per driving application per second

runmqlsr => channels using the ‘runmqlsr’ listener (client channel test

scenario, in addition to ‘runmqchi’ for distributed queuing test scenarios)

c6000 => 6,000 client driving applications (i.e. 6,000 MQI-client connections)

q1000 => 1,000 server channel pairs

max => maximum number of channels (or channel pairs)

no_correl_id => correlation identifier not used in the response messages (as

each response is placed on a unique reply-to queue per driving application)

Apps The number of driving applications connected to the queue manager at the point where

the performance measurement is given.

Rate/App/hr The target message throughput rate of each driving application.

Round T/s The average achieved message throughput rate of all the driving applications together,

measured by the server application.

% (Round T/s) The percentage increase in the total message throughput rate.

Note: The nature of the comparison is noted under each table where percentage

improvements have been given.

CPU As reported by VMSTAT

Resp time (s) The average response time each round trip, as measured and averaged by all the

driving applications.

Swap The total amount of swap area reservation for all processes in MB, unless otherwise

specified as swap/app (i.e. swap area reservation per driving application).

FREE Free memory as reported by IOSTAT

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 61

10 Multicast
A number of Publish/Subscribe scenarios were run to compare the performance of MQ v7.1 using MQ Pub/Sub

and Multicast. The MQ C client was used to drive the tests. All the scenarios use Client bindings.

10.1 Single Publisher, Single Subscriber

The Publisher and Subscriber were run on separate client machines. The test measures the maximum

publication rate that can be achieved. The message size used for this test was 2KB.

 Msgs/sec CPU QManager CPU Publisher CPU Subscriber

MQ Pub/Sub 3020 9.2% 5% 4%

Multicast 8550 0.2% 26% 12%

The limiting factor in the MQ Pub/Sub case is the speed at which the MQ QManager can publish the message to

the registered subscriber together with the latency between Publisher and QManager.

The limiting factor in the Multicast case is the Publisher CPU. The multicast Publisher is single threaded and

can only use one CPU of the four available on the client machine, hence when the CPU reaches 25% the test is

CPU limited.

10.2 Single Publisher, Multiple Subscribers

This scenario measures the effect of adding Subscribers when there is a single Publisher.

Single Publisher Mulitple Subscribers

0

50000

100000

150000

200000

250000

300000

350000

0 6 12 18 24 30 36

Number of Subscribers

M
e
s
s
a
g

e
s
/s

e
c

Multicast 2K

MQ Pub/Sub 2K

Multicast 256 bytes

MQ Pub/Sub 256 bytes

The message rate shown is the number of messages per second published by the Publisher plus the number of

messages per second received by all the subscribers. For example, if the publisher were publishing at 100

msgs/sec to 6 subscribers the throughput shown would be 700 msgs/sec.

The graph shows that adding subscribers has very little effect in the multicast case, but for MQ Pub/Sub the

publication rate drops as subscribers are added.

WebSphere MQ for Linux v7.1 – Performance Evaluations

Page 62

The tables below show the effect of adding subscribers on publication rate.

Number of

Subscribers

MQ Pub/Sub

Publications/sec

Multicast

Publications/sec
Improvement

6 2807 8810 3.1x

12 2222 8848 4.0x

18 1731 8860 5.1x

24 1418 8737 6.2x

30 1194 8872 7.4x

36 1023 8939 8.7x
Table 43 - Single Publisher Multiple Subscribers 256 byte message

Number of

Subscribers

MQ Pub/Sub

Publications/sec

Multicast

Publications/sec
Improvement

6 2197 8367 3.8x

12 1701 8361 4.9x

18 1272 8360 6.6x

24 1006 8370 8.3x

30 827 8816 10.7x

36 687 7863 11.5x
Table 44 - Single Publisher Multiple Subscribers 2048 byte = 2K message

10.3 Machine configuration

MQ QManager machine

An xSeries 350 4 x 2.8GHz Intel Xeon CPUs with 8GB of RAM.

Linux Redhat 3.4.6

Publisher machine

An xSeries 3850 4 x 3169 MHz Intel Xeon CPUs with 4GB of RAM.

Linux Redhat 4.1.2

Subscriber machines

Subscribers were hosted on up to 6 driver machines of varying powers.

All machines were connected over a 1Gb Ethernet LAN which was sufficient to handle the data rates without

introducing a bottleneck.

