
 
 

 

 

IBM MQ V8.0 for Linux on x86_64  
 
Performance Report 
 

 

 

Version 1.1 – December  2015 

 

 

 

 
Paul Harris, Sam Massey, Rowan Lonsdale, Arundeep Bahra 

 

 
IBM MQ Performance  

IBM UK Laboratories 

Hursley Park 

Winchester  

Hampshire 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page II 

 

Please take Note! 

 

Before using this report, please be sure to read the paragraphs on “disclaimers”, “warranty 

and liability exclusion”, “errors and omissions”, and the other general information paragraphs 

in the "Notices" section below. 

 

Second Edition, December 2015. 

 

This edition applies to IBM MQ V8.0 (and to all subsequent releases and modifications until 

otherwise indicated in new editions). 

 

© Copyright International Business Machines Corporation 2014,2015. All rights reserved. 

 

Note to U.S. Government Users 

Documentation related to restricted rights.  

Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule 

contract with IBM Corp. 

 

Notices 
 

DISCLAIMERS 

The performance data contained in this report was measured in a controlled environment. 

Results obtained in other environments may vary significantly. 

 

You should not assume that the information contained in this report has been submitted to 

any formal testing by IBM. 

 

Any use of this information and implementation of any of the techniques are the responsibility 

of the licensed user. Much depends on the ability of the licensed user to evaluate the data 

and to project the results into their own operational environment. 

 

WARRANTY AND LIABILITY EXCLUSION 

The following paragraph does not apply to the United Kingdom or any other country where 

such provisions are inconsistent with local law: 

 

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS 

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR 

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-

INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. 

 

Some states do not allow disclaimer of express or implied warranties in certain transactions, 

therefore this statement may not apply to you. 

 

In Germany and Austria, notwithstanding the above exclusions, IBM's warranty and liability 

are governed only by the respective terms applicable for Germany and Austria in the 

corresponding IBM program license agreement(s). 

 

ERRORS AND OMISSIONS 

The information set forth in this report could include technical inaccuracies or typographical 

errors. Changes are periodically made to the information herein; any such change will be 

incorporated in new editions of the information. IBM may make improvements and/or changes 

in the product(s) and/or the program(s) described in this information at any time and without 

notice. 

 

INTENDED AUDIENCE 

This report is intended for architects, systems programmers, analysts and programmers 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page III 

wanting to understand the performance characteristics of IBM MQ V8.0. The information is 

not intended as the specification of any programming interface that is provided by IBM MQ. It 

is assumed that the reader is familiar with the concepts and operation of IBM MQ V8.0. 

 

LOCAL AVAILABILITY  

References in this report to IBM products or programs do not imply that IBM intends to make 

these available in all countries in which IBM operates. Consult your local IBM representative 

for information on the products and services currently available in your area.  

 

ALTERNATIVE PRODUCTS AND SERVICES 

Any reference to an IBM product, program, or service is not intended to state or imply that 

only that IBM product, program, or service may be used. Any functionally equivalent product, 

program, or service that does not infringe any IBM intellectual property right may be used 

instead. However, it is the user’s responsibility to evaluate and verify the operation of any 

non-IBM product, program, or service. 

 

USE OF INFORMATION PROVIDED BY YOU 

IBM may use or distribute any of the information you supply in any way it believes appropriate 

without incurring any obligation to you. 

 

TRADEMARKS AND SERVICE MARKS  

The following terms used in this publication are trademarks of their respective companies in 

the United States, other countries or both: 
 

- IBM Corporation: IBM 
- Intel Corporation: Intel, Xeon 
- Red Hat: Red Hat, Red Hat Enterprise Linux 

 

Other company, product, and service names may be trademarks or service marks of others. 

 

EXPORT REGULATIONS 

You agree to comply with all applicable export and import laws and regulations. 

 

 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page IV 

Preface  
Target audience 

The report is designed for people who: 

 Will be designing and implementing solutions using IBM MQ v8.0 for Linux on 
x86_64. 

 Want to understand the performance limits of IBM MQ v8.0 for Linux on x86_64. 

 Want to understand what actions may be taken to tune IBM MQ v8.0 for Linux on 
x86_64. 

 
The reader should have a general awareness of the Linux operating system and of IBM MQ in 
order to make best use of this report.  

The contents of this report 

This report includes: 

 Release highlights with performance charts. 

 Performance measurements with figures and tables to present the performance 
capabilities of IBM MQ local queue manager, client channel, and distributed queuing 
scenarios. 

 Interpretation of the results and implications on designing or sizing of the MQ local 
queue manager, client channel, and distributed queuing configurations. 

Feedback on this report 

We welcome constructive feedback on this report. 

 Does it provide the sort of information you want? 

 Do you feel something important is missing? 

 Is there too much technical detail, or not enough? 

 Could the material be presented in a more useful manner? 
 
Specific queries about performance problems on your IBM MQ system should be directed to 
your local IBM Representative or Support Centre. 

Please direct any comments of this nature to WMQPG@uk.ibm.com. 

Additions and changes to second edition (V1.1) 

 SSL performance data added. (see section 3.7) 

 Improved client connection time in V8.0.0.3 (see section 1.4) 

 

mailto:WMQPG@uk.ibm.com


IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page V 

Introduction 

The three scenarios used in this report to generate the performance data are:  

 Local queue manager scenario. 

 Client channel scenario. 

 Distributed queuing scenario. 

Unless otherwise specified, the standard message sized used for all the measurements in this 
report is 2KB (2,048 bytes). 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page VI 

CONTENTS 
1 Overview......................................................................................................... 10 

1.1 Locking Optimisations ........................................................................................................ 11 
1.1.1 Object catalog lock scope reduction ............................................................................ 11 
1.1.2 Logger optimisations ................................................................................................. 12 

1.2 Improved TCP Buffer Defaults ........................................................................................... 13 
1.3 Improved SHARECNV(1) Client Performance .................................................................. 14 
1.4 Reduced Client Connection Time........................................................................................ 15 

2 Workloads ...................................................................................................... 16 
2.1 Workload Topologies .......................................................................................................... 16 

2.1.1 Requester-responder with local queue manager.  ........................................................... 17 
2.1.2 Requester-responder with remote queue manager  (local responders). ............................. 18 
2.1.3 Requester-responder with remote queue manager  (remote responders). .......................... 19 
2.1.4 Requester-responder with distributed queuing .............................................................. 20 
2.1.5 Requester-responder with distributed queuing across  n queues with multiple channels ..... 20 
2.1.6 One-way messaging with local queue manager.  ........................................................... 22 
2.1.7 One-way messaging with remote queue manager.  ........................................................ 23 

3 Performance Test Results ................................................................................ 25 
3.1 MQI Local Bindings (Non-Persistent) ................................................................................ 25 

3.1.1 Test setup ................................................................................................................. 25 
3.2 MQI Local Bindings (Persistent) ......................................................................................... 26 

3.2.1 Test setup ................................................................................................................. 26 
3.3 MQI Client Bindings (Non-Persistent) ................................................................................ 26 

3.3.1 Test setup ................................................................................................................. 27 
3.4 MQI Distributed Queuing (Non-Persistent) ........................................................................ 27 

3.4.1 Test setup ................................................................................................................. 28 
3.5 JMS (Non-Persistent) .......................................................................................................... 28 

3.5.1 Test setup ................................................................................................................. 29 
3.6 Memory Usage .................................................................................................................... 29 
3.7 MQI Client Bindings (Non-Persistent) - SSL ...................................................................... 31 

3.7.1 Test setup ................................................................................................................. 32 
Scaling Measurements .............................................................................................. 33 

3.8 MQI Rated Scaling .............................................................................................................. 33 
3.8.1 MQI rated scaling test setup ....................................................................................... 33 
3.8.2 MQI client bindings (non-persistent) ........................................................................... 33 
3.8.3 MQI client bindings (non-persistent) with 24 request/reply queues. ................................ 34 
3.8.4 MQI client bindings (persistent) .................................................................................. 35 
3.8.5 MQI client bindings (persistent) with 24 request/reply queues. ....................................... 36 

3.9 JMS Rated Scaling with Dynamic Reply Queues. .............................................................. 36 
3.9.1 JMS rated scaling test setup ........................................................................................ 36 
3.9.2 JMS client bindings (Non-persistent) with 24 request queues. ........................................ 36 
3.9.3 JMS client bindings (persistent) with 24 request queues................................................. 37 
3.9.4 JMS distributed queuing (non-persistent) with 24 request queues. .................................. 38 
3.9.5 JMS distributed queuing (persistent) with 24  request queues. ........................................ 39 

4 How Am I Constrained? .................................................................................. 40 
4.1 Disk Contention ................................................................................................................... 40 
4.2 CPU Saturation .................................................................................................................... 41 
4.3 Queue Lock Contention ....................................................................................................... 41 
4.4 Network Saturation .............................................................................................................. 42 
4.5 Channel Saturation .............................................................................................................. 43 

5 Planning for Performance ................................................................................ 45 
5.1 Persistence, High Availability, & Disaster Recovery .......................................................... 45 

5.1.1 Latency .................................................................................................................... 45 
5.1.2 Bandwidth ................................................................................................................ 46 

5.2 Slow Networks .................................................................................................................... 46 
5.2.1 Many disparate clients communicating infrequently ...................................................... 47 
5.2.2 High message rate to/from a client machine ................................................................. 47 
5.2.3 Communicating between regions ................................................................................ 47 
5.2.4 Optimising QM to QM channel communication............................................................ 47 

5.3 Ultra-High Message Rates ................................................................................................... 48 
5.3.1 Maximising the throughput of a single queue ............................................................... 48 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page VII 

5.3.2 Adding queues to increase throughput ......................................................................... 49 
5.4 Transparent Scalability ........................................................................................................ 49 

5.4.1 Scaling across machines & queue managers ................................................................. 49 
5.4.2 Scaling across queues ................................................................................................ 50 

5.5 Testing for Performance ...................................................................................................... 51 
5.5.1 It’s a dress rehearsal, not an audition ........................................................................... 51 
5.5.2 Know your tools ........................................................................................................ 51 
5.5.3 When it doesn’t work, simplify ................................................................................... 52 
5.5.4 Test your environment ............................................................................................... 52 

5.6 Memory Requirements. ....................................................................................................... 52 
6 Tuning Recommendations ............................................................................... 53 

6.1 Tuning The Queue Manager ................................................................................................ 53 
6.1.1 Queue disk, log disk, and message persistence .............................................................. 53 
6.1.2 Channels: process or thread, standard or fastpath? ......................................................... 56 

6.2 Applications: Design and Configuration ............................................................................. 56 
6.2.1 Standard (shared or isolated) or fastpath? ..................................................................... 56 
6.2.2 Parallelism, batching, and triggering ............................................................................ 56 

6.3 Virtual Memory, Real Memory, & Paging .......................................................................... 57 
6.3.1 BufferLength ............................................................................................................ 57 
6.3.2 MQIBindType .......................................................................................................... 57 
6.3.3 Paging ...................................................................................................................... 58 

Appendix A: Workloads .................................................................................... 59 
A.1 JMSPerfHarness .................................................................................................................. 59 
A.2 C Performance Harness (CPH) ............................................................................................ 59 

Appendix B: Further Resources ......................................................................... 60 
Appendix C: Test Setup ..................................................................................... 61 

C.1 Hardware/Software .............................................................................................................. 61 
C.1.1 Hardware .................................................................................................................. 61 
C.1.2 Software ................................................................................................................... 61 

C.2 Tuning Parameters Set for Measurements in This Report ................................................... 61 
C.2.1 Operating System ...................................................................................................... 62 
C.2.2 IBM MQ .................................................................................................................. 62 

 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page VIII 

TABLES 
Table 1 - Workload types ............................................................................................................ 16 
Table 2 - Peak rates for MQI local bindings (non-persistent) .......................................................... 25 
Table 3 - Peak rates for MQI local bindings (persistent)................................................................. 26 
Table 4 - Peak rates for MQI client bindings (non-persistent) ......................................................... 27 
Table 5 - Peak rates for distributed queuing (non-persistent) .......................................................... 28 
Table 6 - Peak rates for JMS (non-persistent) ................................................................................ 29 
Table 7 - Memory usage ............................................................................................................. 30 
Table 8 - Peak rates for MQI client bindings (2KB non-persistent) - SSL ........................................ 31 
 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page IX 

FIGURES 
Figure 1 - Locking optimisations ................................................................................................. 11 
Figure 2 – Performance of MQI Local Bindings, One-way (2KB Persistent). .................................. 12 
Figure 3 - Large message distributed queuing improvements. ......................................................... 13 
Figure 4 – SHARECNV(1) performance. ..................................................................................... 14 
Figure 5 – MQI Client connect times ........................................................................................... 15 
Figure 6 - Requester-responder with local queue manager.............................................................. 17 
Figure 7 - Requester-responder with remote queue manager (local responders). ............................... 18 
Figure 8 - Requester-responder with remote queue manager (remote responders). ............................ 19 
Figure 9 - Requester-responder with distributed queuing ............................................................... 20 
Figure 10 - Requester-responder with distributed queuing across multiple channels ......................... 21 
Figure 11 - Multi-channel distributed queuing, sample deployment. ............................................... 22 
Figure 12 – One-way messaging with local queue manager ............................................................ 23 
Figure 13 - One-way messaging with remote queue manager ......................................................... 24 
Figure 14 – Performance results for MQI Local Bindings (2KB Non-persistent) .............................. 25 
Figure 15 - Performance results for MQI local bindings (2KB persistent) ........................................ 26 
Figure 16 - Performance results for MQI client bindings (2KB non-persistent) ................................ 27 
Figure 17 - Performance results for distributed queuing (2KB non-persistent) ................................. 28 
Figure 18 - Performance results for JMS local bindings (2KB non-persistent) ................................. 29 
Figure 19 – Performance results for MQI client bindings (2KB non-persistent) - SSL ...................... 31 
Figure 20 - Performance results for MQI client binding, rated scaling (2KB non-persistent)  ............ 33 
Figure 21 - Performance results for MQI client binding, rated scaling across 24 queues  (2KB non-

persistent)  ........................................................................................................................ 34 
Figure 22 - Performance results for MQI client binding, rated scaling (2KB persistent)  ................... 35 
Figure 23 - Performance results for MQI client binding, rated scaling across 24 queues  (2KB 

persistent)  ........................................................................................................................ 36 
Figure 24 - Performance results for JMS client binding, rated scaling across 24 queues   with dynamic 

reply queues (2KB non-persistent) ...................................................................................... 37 
Figure 25 - Performance results for JMS client binding, rated scaling across 24 queues   with dynamic 

reply queues (2KB persistent) ............................................................................................. 37 
Figure 26 - Performance results for JMS local binding, rated scaling across 24 remote queues  with 

dynamic reply queues (2KB non-persistent) ......................................................................... 38 
Figure 27 - Performance results for JMS local binding, rated scaling across 24 remote queues    with 

dynamic reply queues (2KB persistent) ............................................................................... 39 
Figure 28 - Performance results for MQI local bindings (2KB persistent)  ....................................... 40 
Figure 29 - Performance results for MQI local bindings (2KB non-persistent) ................................. 42 
Figure 30 - Performance results for MQI client bindings (20KB non-persistent) .............................. 43 
Figure 31 - Single channel vs multi channel distributed queuing ..................................................... 44 
 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 10 

1 Overview 
 

IBM MQ V8.0 for Linux on x86_64 has improved performance over V7.5 in almost every area.  

 For 2KB non-persistent messages V8.0 is up to 77% better than V7.5. (see section 3.3 ) 

 For 2KB persistent messages V8.0 is up to 10% better than V7.5. (see section 3.2)  

 For 2MB non-persistent messages V8.0 is up to 3% better than V7.5. (see section 3.4) 

 For 2MB persistent messages V8.0 is at parity with V7.5. (see section 3.2) 

 

Specific areas of optimisation in V8 include  

 Improved queue manager scaling through lock optimisations in logging and internal catalog 
code. 

 Improved TCP buffer defaults. 

 Improved client binding performance using SHARECNV(1) 

 Reduced client connection time. 

 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 11 

1.1 Locking Optimisations 

1.1.1 Object catalog lock scope reduction 

 
Every object known to the queue manager is registered with the object catalog. Every time an object 
is referenced by name the object catalog is queried, therefore most MQ operations result in a number 
of queries on the object catalog. 
 
Prior to MQ V8 the object catalog locking was coarse, for example an MQOPEN could not complete 
while other catalog operations were being performed. Some of the operations performing catalog 
queries were also involved in forced I/O and so potentially common operations that should have been 
running at CPU speeds could end up running at I/O speeds. 
 
In V8 we now have implemented fine grained locking of the object catalog, catalog access does need 
to wait for any forced I/O.  
 
Figure 1 below demonstrates how a client/server application using MQPUT1 to send the reply 
messages has improved through these changes (an MQPUT1 effectively implies an 
MQOPEN/MQPUT/MQCLOSE sequence). The test has been designed to highlight the improvements 
in the object catalog locking. 
 
Customers who use MQPUT1 or similar patterns which result in intensive use of the object catalog, 
might see significant gains in their scenarios. 
 

Put1 (2KB Non-Persistent)

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Requester Clients

R
o

u
n

d
 T

ri
p

s
/s

e
c

0

10

20

30

40

50

60

70

80

90

100

C
P

U
%

V7.5GM round trips/sec

V8.0GM round trips/sec

V7.5GM CPU%

V8.0GM CPU%

 
Figure 1 - Locking optimisations 

 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 12 

1.1.2 Logger optimisations  

This is an artificial environment designed to show that the logger is less of a constraint on throughput 
on a relatively wide SMP and uses a single request/reply application cloned across multiple queues. 
 
The changes to the logger include: 

 post offload – reduce cycles on the (single) log writing thread 

 improved locking – eliminate lock contention by using lock free algorithms 

 more efficient buffer usage – use writev() to eliminate extra write at buffer wrap around 
 
In an environment with one (or another small number relative the number of cores) relatively heavily 
loaded queue(s), the throughput limitations caused by the coarse grained queue lock 
are likely to me more of a constraint than the logger ,however an environment with a workload 
distributed across multiple queues should see significant potential benefits. 
 

0

10

20

30

40

50

60

70

80

90

100

0

20,000

40,000

60,000

80,000

100,000

120,000

1 14 27 40 53 66 79 92 105 118 131
C

P
U

%

M
e

s
s

a
g

e
s

/s
e

c

Sender Connections

MQI Local Bindings, One-way (2KB Persistent) : OW-1

V7.5GM round trips/sec

V8.0GM round trips/sec

V7.5GM CPU%

V8.0GM CPU%

 
Figure 2 – Performance of MQI Local Bindings, One-way (2KB Persistent). 

 
 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 13 

1.2 Improved TCP Buffer Defaults 

In MQ V8.0, a newly created queue manager will set TCP socket buffers in the qm.ini file for a queue 
manager to 0. This indicates that the operating system will manage the buffer sizes, as opposed to 
the buffer sizes being fixed by the MQ configuration (the default size for TCP buffers was 32K prior to 
V8). 
 
A migrated queue manager from previous versions of MQ will not have these buffers set to a value in 
the qm.ini by default unless you have previously modified them. This is to ensure that there is no 
unexpected change in performance when migrating to MQ V8 but does mean there can be 
differences in performance throughput for a migrated queue manager when compared with a new 
queue manager in V8.0, depending on the system buffer settings.  
 
 

0

10

20

30

40

50

60

70

80

90

100

0

100

200

300

400

500

600

1 5 9 13 17 21 25 29 33 37 41

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

MQI Distributed Queuing (2MB Non-persistent) : RR-5

V7.5GM round trips/sec

V8.0GM round trips/sec

V7.5GM CPU%

V8.0GM CPU%

 
Figure 3 - Large message distributed queuing improvements. 

In general, leaving the operating system to decide on the TCP socket buffer sizes is preferable. This 
option has been present in MQ from V7.5.0.3 onwards.  
 
Figure 3 shows the relative performance of MQ V7.5 to MQ V8.0 when routing 2MB messages 
through a distributed queuing requester-responder scenario. The two queue managers utilise 10 
server channels to send and receive the messages. For lower number of clients V8 performs much 
better than V7.5 out of the box (remember that from V7.5.0.3 the TCP settings can be configured the 
same way). Both test runs hit a network limit around 2,400 round trips/sec.  
 
Great care should be taken when changing either the qm.ini TCP stanza or the system settings. For 
further information about how this affects performance, refer to the TCP/IP documentation for your 
environment. For more information on qm.ini TCP properties, refer to the MQ V8.0 Knowledge 
Center. 
 
 
 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 14 

1.3 Improved SHARECNV(1) Client Performance  

MQ V7 introduced support for SHARECNV. Multiple client conversations (i.e. MQ connections within 
the same application process) can share the same TCP/IP socket (channel instance) 
 
The extra capabilities reduced the top line performance even with a single conversation on the 
socket. 
 
Prior to V8, SHARECNV(0) enabled the top performance but prevented many V7 features 
E.g. Heart beating and asynchronous consume. 
 
In MQ V8 SHARECNV(1) has been optimized for more comparable performance to SHARECNV(0) 
 

0

10

20

30

40

50

60

70

80

90

100

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

1 5 9 13 17 21 25 29 33 37 41

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

MQI Client Bindings (2KB Non-persistent) : RR-2

V7.5GM SHARECNV=1 round trips/sec

V8.0GM SHARECNV=1 round trips/sec

V7.5GM SHARECNV=0 round trips/sec

V7.5GM SHARECNV=1 CPU%

V8.0GM SHARECNV=1 CPU%

 
Figure 4 – SHARECNV(1) performance. 

Figure 4 shows the relative performance of V7.5 and V8.0 for a MQI requester-responder scenario 
with client bound applications. In V7.5 SHARECNV(1) lagged behind SHARECNV(0) as the number 
of clients increased. Optimisations in V8.0 mean that SHARECNV(1) is now closer to SHARECNV(0) 
as the number of clients increases. 
 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 15 

1.4 Reduced Client Connection Time 

Note: The data for connection time improvements applies to V8.0.0.3 onwards, where improvements 
were made. 
 
Figure 5 reflects the rate at which the queue manager can accept inbound MQI (native) clients. 
Note that the V8.0.0.3 rates are now believed to be constrained by our test infrastructure, rather than 
the rate at which the queue manager can accept new clients. 
 
In the test, 60,000 MQI clients connected to the queue manager and opened a shared queue. The 
time taken to do this reduced from 548 seconds in V7.5 to 60 seconds in V8.0.0.3 
 

V7.5GM, 548 secs

V8.0.0.3GM, 60 secs

0

100

200

300

400

500

600

S
e
c

o
n

d
s

Connection Time For 60,000 MQI Clients

 
Figure 5 – MQI Client connect times 

 
 
 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 16 

2 Workloads 
 

Table 1 (below) lists the common workloads used in the generation of performance data for this 
report.  
 
Each workload has a topology that is detailed in the following sections and is further categorised by 
the type of applications that run against this topology.  
 
Where a measurement uses one of the common workloads, its reference (e.g. RR-1) is given in the 
chart, table or text. 
 
 

Workload Topology Requester (or 
producer) 

Responder (or 
consumer) 

RR-1 Requester-responder with local queue manager. 
(section 2.1.1) 

MQI, local bindings MQI local bindings 

RR-2 Requester-responder with remote queue manager  
(local responders).  
(section 2.1.2) 

MQI, client bindings MQI, local bindings 

RR-2b Requester-responder with remote queue manager  
(local responders) across n Queues.  
(section 2.1.2.1) 

MQI, client bindings MQI, local bindings 

RR-3 Requester-responder with local queue manager. 
(section 2.1.1) 

JMS, local bindings JMS, local bindings 

RR-4 Requester-responder with remote queue manager  
(remote responders).  
(section 2.1.3) 

JMS, client bindings JMS, client bindings 

RR-4b Requester-responder with remote queue manager  
(local responders) across n request queues with  
dynamic reply queues. 
(section 2.1.2.2) 

JMS, client bindings JMS, client bindings 

RR-5 Requester-responder with distributed queuing 
across multiple channels. 
(section 2.1.5) 

MQI, local bindings MQI, local bindings 

RR-5b Requester-responder with distributed queuing 
across  
n queues with dynamic reply queues. 
(section 2.1.4.1) 

JMS, local bindings JMS, local bindings 

OW-1 One-way messaging with local queue manager. 
(section 2.1.6) 

MQI, local bindings MQI, local bindings 

Table 1 - Workload types 

 
 

2.1 Workload Topologies 

Three basic topologies of workload are detailed in the following sections: 
 

 Requester-responder to (local or client bound applications). 

 Requester-responder using distributed queuing. 

 One-way (point to point) with local queue manager. 
 
Most of the results in this report use the requester-responder topology. One-way tests are used in a 
few cases to alleviate queue locking and show the upper limit of a queue manager where the 
bottleneck is CPU or I/O (disk or network). 
 
Requester-responder tests are synchronous in style because the application putting a message on a 
queue will wait for a response on the reply queue before putting the next message. They typically run 
‘unrated’ (no think time between getting a reply and putting the next message on the request queue). 
 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 17 

One-way tests are simple point-to-point tests where one application puts messages on a queue and a 
separate application consumes them with no reply. As such, they need to be rated to avoid filling the 
queue.   
 
You will find pictorial representations that illustrate the topology in use for each test. They use the 
symbols:       
 Symbol  Description    Hardware 
 P  Producer Machine    Client  
 S   Server Machine    Server 
 C  Consumer Machine   Client 
 D  Distributed Server with local clients Client 
 
If the Producer or Client symbol is not illustrated, they will be co-located on the server hardware e.g. 
 

S
 Server with locally bound producers/ consumers 

SP SP
 Client bound producers, locally bound consumers 

SP CSP C
 Client bound producers and consumers 

SD SD
 Distributed Server to Remote Server with locally bound producers and locally 

bound consumers 
 
Note that for any topology there may be more than one of each type of machine, e.g. for the client 
bound producers the test may use 2 physical machines to generate the load. This is made clear in the 
report. 
 
 
 

2.1.1 Requester-responder with local queue manager.  

 

Figure 6 - Requester-responder with local queue manager 

The measurements for the requester-responder with local queue manager topology are generally for 
processing messages with no think-time (scaling tests may have a think time to enable large numbers 
of clients to be connected). 

S



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 18 

Figure 6 shows the topology of this test. All applications and the queue manager run on a single 
machine. The applications use standard local bindings. 

The test simulates multiple ‘requester’ applications which all put messages onto a single request 
queue. Each requester is a thread running in an MQI (CPH) or JMS (JMSPerfHarness) application. 
The number of requesters is dictated by the number of threads per application multiplied by the 
number of application instances started. Additional machines may be used to drive the requester 
applications where necessary. 

Another set of ‘responder’ applications retrieve the message from the request queue and put a reply 
of the same length onto a shared reply queue. Each responder is a thread of CPH or 
JMSPerfHarness and there may be multiple instances of these MQI or JMS applications, similar to 
the responders. The number of responders is set such that there is always a waiting ‘getter’ for the 
request queue. 

The flow of the test is as follows: 

 

1. The requester application puts a message to the common request queue on the local queue 
manager, and holds on to the message identifier returned in the message descriptor. The 
requester application then waits indefinitely for a reply to arrive on the common reply queue. 

2. The responder application gets messages from the common request queue and places a 
reply to the common reply queue. The queue manager copies over the message identifier 
from the request message to the correlation identifier of the reply message. 

3. The requester application gets a reply from the common reply queue using the message 
identifier held from when the request message was put to the common input queue, as the 
correlation identifier in the message descriptor. 

 

2.1.2 Requester-responder with remote queue manager  
(local responders). 

This topology is similar to requester-responder but the requester applications connect through client 
channels. 

 
Figure 7 - Requester-responder with remote queue manager (local responders). 

Figure 7 above shows the topology of the test. The requester applications are now hosted on a 
separate machine to the queue manager and use client connections with FASTPATH enabled (see 

SP SP



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 19 

section 6.1.2). Responders are locally bound. The flow of the test is the same as that detailed in 
section 2.1.1  
 

2.1.2.1 Requester-responder with remote queue manager  
(local responders) across n Queues. 

This topology is a variant of the previous one. Instead of there being a single request queue and a 
single response queue the load is spread across n queues. Each producer may have its own request 
and reply queue or there may be n request queues with n reply queues where the number of 
producers >= n > 1. Each request queue will still have a set of responders associated with it.  
 
Running the test with n request and n reply queues alleviates queue locking. 
 

2.1.2.2 Requester-responder with remote queue manager  
(local responders) across n request queues with  
dynamic reply queues. 

This topology is a variant of the n queue topology described in section 2.1.2.1 but responses are sent 
via dynamic queues instead of using pre-defined reply queues. 
 

2.1.3 Requester-responder with remote queue manager  
(remote responders). 

This topology is similar to requester-responder but both the requester and responder applications 
connect through client channels. 
 

 
Figure 8 - Requester-responder with remote queue manager (remote responders). 

Figure 8 above shows the topology of the test. The requester and responder applications are now 
hosted on separate machines to the queue manager and use client connections with FASTPATH 
enabled (see 6.1.2). The flow of the test is the same as that detailed in section 2.1.1 
 
This topology is typically used for JMS where the multiple JVM based responders are better suited to 
being hosted on a separate machine to the queue manager  where they will not affect the 
performance of the queue manager and enable the test to scale further. 

SP SP

SP SP

SP CSP C



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 20 

2.1.4 Requester-responder with distributed queuing 

This is a distributed queuing version of the requester-responder topology detailed in section 2.1.1. All 
MQPUTs are to remote queues so that messages are now transported across server channels to the 
queue manager where the queue is hosted. 
 
 

 
Figure 9 - Requester-responder with distributed queuing 

Figure 9 above shows the topology of the test. The requester and responder applications are locally 
bound. All MQPUTs are to a remote queue via the local transmission queue. The flow of the test is 
the same as that detailed in section 2.1.1 
 

2.1.4.1 Requester-responder with distributed queuing across  
n queues with dynamic reply queues. 

This topology is a variant of the single server channel distributed queuing topology described in 
section 2.1.4. Instead of a single request queue the requesters put messages onto n request queues 
in a round-robin fashion and receive the reply on a dynamic response queue. 
 

2.1.5 Requester-responder with distributed queuing across  
n queues with multiple channels 

 
This topology is similar to that described in section 2.1.4 except that multiple server channels are 
employed to fully utilise the network bandwidth. This is particularly important for non-persistent 
messaging where the transmit queue may become the bottleneck. Note that the use of multiple server 
channels does not guarantee a performance improvement. If your deployment of MQ utilises a fast 
network but comprises of persistent messages you may find that the disk i/o latency is such that 
adding more server channels will not make any difference to throughput. 
 

SD SD

SD SD

SD SD



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 21 

 
Figure 10 - Requester-responder with distributed queuing across multiple channels 

 
Figure 10 above shows how this topology scales by adding more requesters, transmit queues, 
channels and responders. In practise the requesters do not all send messages to request queue one, 
they actually cycle round the number of request queues specified. The figure above becomes too 
complicated to show this effectively. Each request queue also has its own set of dedicated 
responders which send the response back via the reply queue specified by the requester. 

Taking a simple example, we may have four requesters sending messages to two request queues. 
Each request queue is reached via its own dedicated channel. Requester one will send messages to 
request queue one and wait for a reply on reply queue one, requester 2  will send messages to 
request queue two (waiting for a reply on reply queue 2) and then requester three will cycle back to 
request queue one.  

Figure 11 illustrates this simple deployment of the topology. The test can be scaled by adding more 
producers (e.g. increasing the producers from 4 to 8 will then result in 2 additional connections to 
each request queue). More channels may also be specified at the start if required (10 channels are 
used in most of the multi-channel distributed queuing  tests in this report. 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 22 

 

Figure 11 - Multi-channel distributed queuing, sample deployment. 

2.1.6 One-way messaging with local queue manager.  

One-way tests are simple point-to-point topologies where each ‘producer’ has a unique queue with 
one or more dedicated ‘consumers’ per queue getting the message. 
 
One-way tests start with one set of resources comprising of a producer, a dedicated queue and its 
associated consumer(s). The test is scaled up by adding additional sets (e.g. 5 consumers, 5 
dedicated queues and their consumer(s)). Better performance can be achieved by having n 
consumers per queue (where n is typically small) so a set can be thought of as a producer, a 
dedicated queue and a group of associated consumers. 
 
Each producer is a thread running in an MQI (CPH) or JMS (JMSPerfHarness) application. The 
number of producers is dictated by the number of threads per application * the number of application 
instances started. Additional machines may be used to drive the requester applications where 
necessary. 

Similarly, each consumer is a thread of CPH or JMSPerfHarness and there may be multiple instances 
of these MQI or JMS applications, similar to the producers.  

 
The flow of the test is as follows: 

1. The producer application puts a message onto a queue which is for exclusive use by itself 
and the consumers for that queue. The producer then waits for a specified time before 
looping round and putting the next message on the queue. In this way the test is said to be 
rated. 

2. One of the consumers associated with the queue gets the message and throws it away.  

The rate of message delivery for each producer is determined beforehand so that as the test is scaled 
up by adding more sets of producer/queue/consumer(s), the queues are kept drained by the 
associated consumers (i.e. we don’t deliver at a rate that would cause the queue depth to increase 
and result in non-optimal flows in the product. An adequate number of consumers per queue are 
created so that there is always one waiting to get the next message. This ensures we run in message 
mode as much as possible (i.e. the message is copied from producer to consumer as much as 
possible rather than needing to put on the queue). 

S



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 23 

 

 

 

 
Figure 12 – One-way messaging with local queue manager 

Figure 12 shows the one-way topology. The test is scaled by adding more sets of 
producer/queue/consumer(s).  

As each queue in a one-way test has only one application putting messages on it we relieve queue 
locking which affects the requester-responder tests more due to the shared request/reply queues in 
most of those tests. 

 

2.1.7 One-way messaging with remote queue manager.  
This topology is similar to one-way messaging with a local queue manager except that in this case 
the producer and consumer applications are connecting to MQ from a different host across client 
channels. 
 

SP CSP C



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 24 

 

Figure 13 - One-way messaging with remote queue manager 

 

Figure 13 above shows the topology of the test. The producer and responder applications are hosted 
on separate machines to the queue manager and use client connections with FASTPATH enabled 
(see section 6.1.2). The flow of the test is the same as that detailed in section 2.1.6. 
 
 
 
 
 
 
 
 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 25 

3 Performance Test Results 
Full performance test results are detailed below. The test results are presented by broad categories 
with an illustrative plot in each section followed by the peak throughput achieved for the remaining 
tests in that category (the remaining tests are typically for different message sizes). 
 
For information on the hardware used in these tests please see Appendix C:. The topology used for 
each test is indicated alongside each chart’s caption (see section 2.1) 
 

3.1 MQI Local Bindings (Non-Persistent) 

The workload type for these measurements is RR-1 (see section 2). Requester and responder 
applications are on the same machine. The test is run unrated (i.e. each requester sends a new 
message as soon as it receives the reply to the previous one).  
 

0

10

20

30

40

50

60

70

80

90

100

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

1 7 13 19 25 31 37 43 49
C

P
U

%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

MQI Local Bindings (2KB Non-persistent) : RR-1

V7.5GM round trips/sec

V8.0GM round trips/sec

V7.5GM CPU%

V8.0GM CPU%

 
Figure 14 – Performance results for MQI Local Bindings (2KB Non-persistent) 

 
V8.0 is up to 11% improved over V7.5 in terms of throughput. 
 
Test V8.0GM     V7.5GM     

  Max Rate* CPU% Clients Max Rate* CPU% Clients 

MQI Local Bindings (2KB Non-persistent) : RR-1 125,553 77.92 49 113,059 79.26 49 

MQI Local Bindings (20KB Non-persistent) : RR-1 104,039 81.15 41 93,582 82.5 41 

MQI Local Bindings (200KB Non-persistent) : RR-1 29,770 75.52 22 28,962 76.89 22 

MQI Local Bindings (2MB Non-persistent) : RR-1 1,100 54.9 13 1,074 50.76 12 

*Round trips/sec 
      Table 2 - Peak rates for MQI local bindings (non-persistent) 

 
 

3.1.1 Test setup 
 
Workload type: RR-1 (see section 2). 
Hardware: Server 1 (see Appendix C.1). 

S



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 26 

 

3.2 MQI Local Bindings (Persistent) 

The workload type for these measurements is RR-1 (see section 2). Requester and responder 
applications are on the same machine. The test is run unrated (i.e. each requester sends a new 
message as soon as it receives the reply to the previous one).  
 
This test is sensitive to the way the logger and log files have been setup and the speed of the 
filesystem being written to (see section 4.1). 
 

0

10

20

30

40

50

60

70

80

90

100

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

1 5 9 13 17 21 25 29 33 37 41

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

MQI Local Bindings (2KB Persistent) : RR-1

V7.5GM round trips/sec

V8.0GM round trips/sec

V7.5GM CPU%

V8.0GM CPU%

 
Figure 15 - Performance results for MQI local bindings (2KB persistent) 

 

V8.0 is up to 10% improved over V7.5 in terms of throughput  

 

Test V8.0GM     V7.5GM     

  Max Rate* CPU% Clients Max Rate* CPU% Clients 

MQI Local Bindings (2KB Persistent) : RR-1 18,391 27.98 17 16,695 29.52 21 

MQI Local Bindings (20KB Persistent) : RR-1 8,419 15.45 21 8,574 18 21 

MQI Local Bindings (200KB Persistent) : RR-1 891 3.56 1 881 5.23 2 

MQI Local Bindings (2MB Persistent) : RR-1 87 5.4 2 88 4.16 1 

*Round trips/sec 

      Table 3 - Peak rates for MQI local bindings (persistent) 
 

3.2.1 Test setup 

Workload type: RR-1 (see section 2). 
Hardware: Server 1 (see Appendix C.1). 
 

3.3 MQI Client Bindings (Non-Persistent)  

The workload type for these measurements is RR-2 (see section 2). The requester applications are 
on machines separate from the server machine. The responder applications are located on the server 

S



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 27 

machine. The test is run unrated (i.e. each requester sends a new message as soon as it receives 
the reply to the previous one).  
 
This test is executed using client channels as trusted applications programs by specifying 
“MQIBindType=FASTPATH” in the qm.ini file. This is recommended generally, but not advised if you 
run channel exit programs and do not have a high degree of confidence in their robustness. 
  

0

10

20

30

40

50

60

70

80

90

100

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

1 5 9 13 17 21 25 29 33 37 41

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

MQI Client Bindings (2KB Non-persistent) : RR-2

V7.5GM round trips/sec

V8.0GM round trips/sec

V7.5GM CPU%

V8.0GM CPU%

 
Figure 16 - Performance results for MQI client bindings (2KB non-persistent) 

 

V8.0 is up to 77% improved over V7.5 in terms of throughput. This is mainly due to improvements in 
SHARECNV=1 performance, so isn’t as pronounced in larger message sizes, where data transfer 
rates become the bottle-neck. 

 
Test V8.0GM     V7.5GM     

  Max Rate* CPU% Clients Max Rate* CPU% Clients 

MQI Client Bindings (2KB Non-persistent) : RR-2 67,568 41.52 33 38,239 31.1 21 

MQI Client Bindings (20KB Non-persistent) : RR-2 50,956 41.5 61 29,008 29.07 25 

MQI Client Bindings (200KB Non-persistent) : RR-2 5,641 14.17 45 5,592 17.82 45 

MQI Client Bindings (2MB Non-persistent) : RR-2 498 14 23 497 13.97 23 

*Round trips/sec 

      Table 4 - Peak rates for MQI client bindings (non-persistent) 

3.3.1 Test setup 

Workload type: RR-2 (see section 2). 
Hardware: Server 1, Client 1, Client 2 (see Appendix C.1). 
 
 

3.4 MQI Distributed Queuing (Non-Persistent)  

The distributed queuing scenarios use workload type RR-5 (see section 2) where locally bound 
requesters put messages onto a remote queue. 
 
The throughput will be sensitive to network tuning and server channel setup amongst other things. All 
of the tests in this section utilise multiple send/receive channels (see section 4.5 for a single channel 

SP SP



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 28 

comparison). This particularly helps with smaller, non-persistent messages when the network is 
under-utilised. 
 

0

10

20

30

40

50

60

70

80

90

100

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

1 26 51 76 101 126 151 176 201 226 251

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

MQI Distributed Queuing (2KB Non-persistent) : RR-5

V7.5GM round trips/sec

V8.0GM round trips/sec

V7.5GM CPU%

V8.0GM CPU%

 
Figure 17 - Performance results for distributed queuing (2KB non-persistent) 

 

V8.0 is up to 10% improved over V7.5 in terms of throughput. For larger message sizes there is a 
much greater improvement in performance at lower numbers of client connections or channels due to 
the improved TCP settings (though these can be set for V7.5.0.3 onwards), see section 1.2 for 
details. 

 
Test V8.0GM     V7.5GM     

  Max Rate* CPU% Clients Max Rate* CPU% Clients 

MQI Distributed Queuing (2KB Non-persistent) : RR-5 166,111 79.39 251 149,653 80.66 251 

MQI Distributed Queuing (20KB Non-persistent) : RR-5 55,668 34.5 43 55,455 39.34 49 

MQI Distributed Queuing (200KB Non-persistent) : RR-5 5,671 11.78 21 5,616 14.27 41 

MQI Distributed Queuing (2MB Non-persistent) : RR-5 552 22.34 37 534 18.75 41 

*Round trips/sec 

      Table 5 - Peak rates for distributed queuing (non-persistent) 

3.4.1 Test setup 

Workload type: RR-5 (see section 2). 
Hardware: Server 1, Client 1 (see Appendix C.1). 
 
 
 

3.5 JMS (Non-Persistent)  

The workload type for these measurements is RR-3 (see section 2). Requester and responder 
applications share the same set of machines. The test is run unrated (i.e. each requester sends a 
new message as soon as it receives the reply to the previous one).  
 
 

SD SD



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 29 

0

10

20

30

40

50

60

70

80

90

100

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

1 7 13 19 25 31 37 43 49 55 61 67

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

JMS Local Bindings (2KB Non-persistent) : RR-3

V7.5GM round trips/sec

V8.0GM round trips/sec

V7.5GM CPU%

V8.0GM CPU%

 
Figure 18 - Performance results for JMS local bindings (2KB non-persistent) 

 
V8.0 is up to 29% improved over V7.5 in terms of throughput. 
 
Test V8.0GM     V7.5GM     

  Max Rate* CPU% Clients Max Rate* CPU% Clients 

JMS Local Bindings (2KB Non-persistent) : RR-3 67,404 95.44 49 60,640 96.26 37 

JMS Client Bindings (2KB Non-persistent) : RR-4 56,159 45.13 65 43,435 46.85 49 

JMS Local Bindings (200KB Non-persistent) : RR-3 14,761 77.18 17 14,416 80.49 17 

JMS Client Bindings (200KB Non-persistent) : RR-4 2,752 8.98 37 2,748 11.35 37 

*Round trips/sec 
      Table 6 - Peak rates for JMS (non-persistent) 

 

3.5.1 Test setup 

3.5.1.1 JMS local bindings 

Workload type: RR-3 (see section 2). 
Hardware: Server 1, Client 1, Client 2 (see Appendix C.1). 

3.5.1.2 JMS client bindings 

Workload type: RR-4 (see section 2). 
Hardware: Server 1, Client 1, Client 2 (see Appendix C.1). 
 

3.6 Memory Usage 

To measure the memory usage of MQ, a simple scenario was devised in which clients connect 
remotely (client-bindings) to a queue manager. Each client puts a small message to a queue, then 
gets it back again, and repeats at a rate of 1 per second. By using a custom Linux kernel module, we 
ascertained which pages of real memory were mapped by MQ processes, and which of those had 
been accessed since all clients were connected. This experiment was repeated for varying numbers 
of clients spread across varying numbers of queues, and the following data were obtained: 
 

S



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 30 

 V8.0GM V7.5GM 

Cost of QM & 1 client accessing 1 queue 12,832.00KB 11,892.00KB 

Cost of additional client 97.93KB 132.73KB 

Cost of additional queue 32.85KB 38.73KB 

Table 7 - Memory usage 

A few points to note on these data: 
 

1. The memory costs of additional clients and queues are the average increases in the memory 
usage of MQ seen when new clients or access to queues are added. Depending on the 
configuration of the queue manager, and the number of clients already connected, the 
additional cost of adding one more client or queue may be more or less than this. This is 
because certain processes and data structures within MQ only handle a limited number of 
objects, above which an additional instance will have to be created. 

 
2. The cost of additional queues is not the amount of memory allocated or written to when a 

queue is defined. If a queue is not being accessed by an application, its associated memory 
is not accessed, so it can be paged out by the OS without consequence. The measured 
values indicate the amount of memory that is accessed regularly when one or more 
applications are using the queue. 
 

3. All of these costs were measured during steady-state, light operation. They do not measure 
the memory used during heavy-weight operations such as QM start-up, MQCONNX, and 
MQOPEN. During such operations, memory usage may be higher, but since they usually 
happen infrequently it would be reasonable to rely on a SWAP partition to fulfil these 
additional requirements if necessary. 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 31 

3.7 MQI Client Bindings (Non-Persistent) - SSL 

To illustrate the overhead of enabling SSL, results are provided comparing the performance of 4 MQ 
CipherSpecs with the baseline MQI Client Bindings 2KB test as seen in section 3.3. 
 
The workload type for these measurements is RR-2 (see section 2). 
The Requester applications are on client machines separate from the server machine. The 
Responder applications are located on the server machine. The test is run unrated (i.e. each 
requester sends a new message as soon as it receives the reply to the previous one). 
 
Queue manager authentication is used to setup the SSL conversation.  
 
The ciphers under test are: 

CipherSpec Protocol SuiteB FIPS Encryption bits 

ECDHE_ECDSA_AES_256_GCM_SHA384 TLS1.2 Yes Yes 256 

TLS_RSA_WITH_AES_256_GCM_SHA384 TLS1.2 No Yes 256 

TRIPLE_DES_SHA_US  SSL3.0 No No 168 

NULL_SHA SSL3.0 No No None 

 
 

0

10

20

30

40

50

60

70

80

90

100

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

0 10 20 30 40 50 60 70 80 90 100

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

MQI Client Bindings (2KB Non-persistent) : SSL comparison 

No SSL

TLS round trips/sec

EC round trips/sec

Triple_DES round trips/sec

Null-SHA round trips/sec

Non-SSL CPU%

TLS CPU%

EC CPU%

Triple_DES CPU%

Null-SHA CPU%

 
Figure 19 – Performance results for MQI client bindings (2KB non-persistent) - SSL 

 
The newer FIPS compliant ciphers not only provide stronger encryption than some of the older 
CipherSpecs, but also perform better. 
 
SSL Cipher V8.0GM

Max Rate* CPU% Clients

ECDHE_ECDSA_AES_256_GCM_SHA384 60,317 69 64

TLS_RSA_WITH_AES_256_GCM_SHA384 60,568 69 64

TRIPLE_DES_SHA_US 38,626 99 100

NULL_SHA 61,404 64 55

No SSL 68,116 43 37  
Table 8 - Peak rates for MQI client bindings (2KB non-persistent) - SSL 

 

SP SP



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 32 

3.7.1 Test setup 

Workload type: RR-2 (see section 2). 
Hardware: Server 1, Client 1, Client 2 (see Appendix C.1). 
 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 33 

Scaling Measurements 
The scaling measurements in this section are designed to test a number of scenarios where there are 
a larger number of clients attached. Whereas the previous tests are optimised for throughout, these 
tests define an operational environment or scaling challenge to test from a performance perspective. 
 
For information on the hardware used in these tests please see Appendix C:. The topology used for 
each test is indicated alongside each chart’s caption (see section 2.1) 

3.8 MQI Rated Scaling 

These scenarios test the point at which performance degrades when clients are continuously 
connected, each delivering messages at a low rate. The workload types are RR-2 & RR-2b (see 
section 2). 

3.8.1 MQI rated scaling test setup 

All of the rated scaling tests detailed in sections 3.8.n below used the same hardware and software. 
 
Workload type: (see individual test). 
Hardware: Server 1, Client 1, Client 2 (see Appendix C.1). 

3.8.2 MQI client bindings (non-persistent) 

For this test, clients were rated at 1.5 messages per second in order to achieve constraint before the 
operational limit of 65,536 clients was reached. 
 

0

10

20

30

40

50

60

70

80

90

100

0

10,000

20,000

30,000

40,000

50,000

60,000

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

Rated Scaling - MQI Client Bindings (2KB Non-persistent) : RR-2

V7.5GM round trips/sec

V8.0GM round trips/sec

V7.5GM CPU%

V8.0GM CPU%

 
Figure 20 - Performance results for MQI client binding, rated scaling (2KB non-persistent)  

 
For this test MQ V8.0 maintained the target messaging rate of 1.5 round trips/sec up to 35,000 clients 
before performance dropped off. This is in contrast to V7.5 where the significantly larger cost of 
processing caused the single pair of queues in use to become constrained with respect to processing 
power at 20,000 clients. Both versions scaled well to the point of constraint.  
 
 

SP SP



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 34 

3.8.3 MQI client bindings (non-persistent) with 24 request/reply queues. 

For this test, clients were rated at 2 messages per second in order to achieve constraint before the 
operational limit of 65,536 clients was reached. 

0

10

20

30

40

50

60

70

80

90

100

0

20,000

40,000

60,000

80,000

100,000

120,000

6000 12000 18000 24000 30000 36000 42000 48000 54000 60000

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

Rated Scaling (24 q pairs) - MQI Client Bindings (2KB Non-persistent) :
RR-2b

V7.5GM round trips/sec

V8.0GM round trips/sec

V7.5GM CPU%

V8.0GM CPU%

 
Figure 21 - Performance results for MQI client binding, rated scaling across 24 queues  
(2KB non-persistent)  

 
This test is very similar to that shown in the previous section but with the workload spread out over 24 
request/reply queue pairs locking is alleviated so that both V7.5 and V8 were able to saturate the 
processing power of the machine. V8 performance tailed off at 48,000 clients while V7.5 reached 
saturation at just below 36,000 clients. 
 

 
 

SP SP



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 35 

3.8.4 MQI client bindings (persistent) 

For this test, clients were rated at 1 message per second. 

0

10

20

30

40

50

60

70

80

90

100

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

2500 5000 7500 10000 12500 15000 17500 20000 22500 25000

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

Rated Scaling - MQI Client Bindings (2KB Persistent) : RR-2

V7.5GM round trips/sec

V8.0GM round trips/sec

V7.5GM CPU%

V8.0GM CPU%

 
Figure 22 - Performance results for MQI client binding, rated scaling (2KB persistent)  

For the persistent message variation on the single queue pair scaling test shown in section 3.8.2, V8 
again out-performed V7.5 with 15,000 clients being connected before a drop-off in performance 
becomes apparent, compared to 10,000 clients in V7.5. 

SP SP



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 36 

3.8.5 MQI client bindings (persistent) with 24 request/reply queues. 

0

10

20

30

40

50

60

70

80

90

100

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

Rated Scaling (24 q pairs) - MQI Client Bindings (2KB Persistent) : RR-2b

V7.5GM round trips/sec

V8.0GM round trips/sec

V7.5GM CPU%

V8.0GM CPU%

 
Figure 23 - Performance results for MQI client binding, rated scaling across 24 queues  
(2KB persistent)  

With queue lock contention reduced, the improvements in the MQ logger become even more 
apparent, with V8 achieving over double the rate of V7.5, and nearly saturating the CPU on the 
machine. 

3.9 JMS Rated Scaling with Dynamic Reply Queues. 

3.9.1 JMS rated scaling test setup 
All of the rated scaling tests detailed in section 3.9 (including distributed queuing scenarios) used the 
same hardware and software. 
 
Workload type: (see individual test). 
Hardware: Server 1, Client 1, Client 2 (see Appendix C.1). 

3.9.2 JMS client bindings (Non-persistent) with 24 request queues. 
All of the results up until this point in the report use pre-defined queues to send a response message 
to the requester. The tests in this section utilise dynamic reply queues, which are widely used in the 
field (test type RR-4b, see section 2). 
 
Once again, each requester is rated, putting 1 message a second onto one of 24 request queues and 
specifying a dynamic response queue on which to receive its response. 
 
  

SP SP



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 37 

0

10

20

30

40

50

60

70

80

90

100

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

Rated Scaling (24 qs with dynamic reply qs)
JMS Client Bindings (2KB Non-persistent) : RR-4b

V7.5GM round trips/sec

V8.0GM round trips/sec

V7.5GM CPU%

V8.0GM CPU%

 
Figure 24 - Performance results for JMS client binding, rated scaling across 24 queues   
with dynamic reply queues (2KB non-persistent) 

As with all of the scaling tests, V8 shows a significant improvement over V7.5. Both versions saturate 
the CPU with V8 scaling up to almost 35,000 clients before the performance drop-off compared to 
15,000 for V7.5. 

3.9.3 JMS client bindings (persistent) with 24 request queues. 

0

10

20

30

40

50

60

70

80

90

100

0

5,000

10,000

15,000

20,000

25,000

4000 8000 12000 16000 20000 24000 28000 32000 36000 40000

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

Rated Scaling (24 qs with dynamic reply qs)
JMS Client Bindings (2KB Persistent) : RR-4b

V7.5GM round trips/sec

V8.0GM round trips/sec

V7.5GM CPU%

V8.0GM CPU%

 
Figure 25 - Performance results for JMS client binding, rated scaling across 24 queues   
with dynamic reply queues (2KB persistent) 

This is the persistent message version of the test shown in the previous section. V8.0 scales to 
24,000 clients, double the 12,000 for V7.5. 

SP CSP C

SP CSP C



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 38 

3.9.4 JMS distributed queuing (non-persistent) with 24 request queues. 

The following two tests are similar to those in sections 3.9.2 & 3.9.3 above but the reply queues are 
remote so distributed queuing is used. The test type is RR-5b (see section 2) 

0

10

20

30

40

50

60

70

80

90

100

0

5,000

10,000

15,000

20,000

25,000

30,000

3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

Rated Scaling (24 remote qs with dynamic reply qs)
JMS Client Bindings (2KB Non-persistent) : RR-5b

V7.5GM round trips/sec

V8.0GM round trips/sec

V7.5GM CPU%

V8.0GM CPU%

 
Figure 26 - Performance results for JMS local binding, rated scaling across 24 remote queues  
with dynamic reply queues (2KB non-persistent) 

V8.0 scales significantly better than V7.5 and the CPU consumption is also much less than V7.5 

 

S



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 39 

3.9.5 JMS distributed queuing (persistent) with 24  request queues. 

0

10

20

30

40

50

60

70

80

90

100

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

3000 6000 9000 12000 15000 18000 21000

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

Rated Scaling (24 remote qs with dynamic reply qs)
JMS Client Bindings (2KB Persistent) : RR-5b

V7.5GM round trips/sec

V8.0GM round trips/sec

V7.5GM CPU%

V8.0GM CPU%

 
Figure 27 - Performance results for JMS local binding, rated scaling across 24 remote queues    
with dynamic reply queues (2KB persistent) 

This is the persistent messaging variation of the test in the previous section. Once again V8 out-
performs V7.5 with better throughout at lower cost. 

 

S



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 40 

4 How Am I Constrained? 
A common question that is often asked of the MQ Performance team is: 

 “What is limiting my messaging rate?” 
 

Understanding what might be restricting your messaging rate can help to improve your messaging 
performance (by eliminating or reducing the constriction) or provide information to assist in planning 
future migration/expansion of your messaging infrastructure. 
 

4.1 Disk Contention 

For persistent messaging the likely reason that you are limited is due to the performance of the disk 
subsystem. This could be due to the raw speed (or lack of it) of the disk system, disk configuration, 
configuration of MQ logging or other system usage of the disk subsystem. 
 
Use this checklist to assist in checking your disk contention: 

 Increase the number of producers/consumers to increase concurrent messaging workload 

 Use disk tools (iostat/TaskManager) to determine disk utilisation and increase 
speed/capacity/cache size as required to provide increased disk capacity 

 Check other processes are not utilising the same disk systems 

 Check log configuration 
(http://www.ibm.com/developerworks/websphere/library/techarticles/0712_dunn/0712_dunn.h
tml) 

 
It can often be useful to run a simple scenario (put/get across single queue) to understand the typical 
maximum persistent throughput through your disk system before deploying a more complex 
production scenario. 
 
This test from a locally bound request/responder scenario, illustrates the maximum throughput across 
a pair of request/reply queues on the server hardware under test. 
 

0

10

20

30

40

50

60

70

80

90

100

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

1 5 9 13 17 21 25 29 33 37 41

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

MQI Local Bindings (2KB Persistent) : RR-1

V8.0GM round trips/sec

V8.0GM CPU%

 
Figure 28 - Performance results for MQI local bindings (2KB persistent)  

 
Here are some suggestions to consider when looking to improve persistent performance: 

S



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 41 

 Use fast disk sub-systems 

 Locate log file on its own filesystem/disk 

 Use battery-backed write back cache where possible 

 Use circular logs unless linear logs are required for auditing/recovery 

 Send/receive messages within syncpoint 

 Use separate queues for persistent and non-persistent workloads 

 Use separate channels for persistent and non-persistent workloads 

 Use separate queues for out-of-band message sizes 
 

4.2 CPU Saturation 

For any type of messaging, if you have saturated the CPU, there is often little you can do to increase 
performance without changing hardware (or allocating more Cores in an LPAR/VM environment). 
Most operating systems provide a simple way of monitoring CPU usage (vmstat/top/TaskManager). If 
MQ processes are shown as the highest CPU consumers, it is likely that you have encountered the 
messaging limit on this piece of hardware.  
 
It is possible that a badly performing application can utilise large amounts of CPU whilst 
interoperating with MQ (i.e. constantly polling the QM, or simply performing extensive business logic), 
and you would likely see non-MQ applications high on the list of CPU consumers. These processes 
should be investigated to determine if their behaviour is expected. 
 
There are also a number of strategies to help reduce CPU when developing your MQ applications: 

 Don’t poll the QM and use sensible timeouts when receiving messages from MQ 

 MQ performs optimally when the queue depth is 0 and there are consumers waiting to 
consume messages that are delivered to that queue 

 Use FASTPATH channels/applications where there is no (or low) risk of QM corruption 
  
  

4.3 Queue Lock Contention 

There can be scenarios where you cannot use all of the CPU available and increasing the numbers of 
producers/consumers has no affect. If the scenario is only using a single or small number of queues, 
you may find that you are encountering queue lock. This can occur in scenarios where extremely high 
messaging throughput is distributed across a small set of queues You can see how this scenario is 
encountered in the non-persistent version of the request/responder scenario (peaking at just over 
120,000 messages/sec across a pair of request/reply queues): 
 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 42 

0

10

20

30

40

50

60

70

80

90

100

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

1 7 13 19 25 31 37 43 49

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

MQI Local Bindings (2KB Non-persistent) : RR-1

V8.0GM round trips/sec

V8.0GM CPU%

 
Figure 29 - Performance results for MQI local bindings (2KB non-persistent)  

 
Queue lock contention is more likely to manifest itself on machines with more cores due to the single-
threaded nature of the bottleneck.  
 
To confirm that you are encountering queue lock and not an effect of your client applications or QM 
configuration, the ‘MQ Local Queue Manager Debug Utility’ (amqldmpa)  tool can identify this 
behaviour: 

amqldmpa -m <QM Name> -q <Q Name> -s <interval secs> -n <interval count> -f 

<output file> -c A -d 3 

i.e. amqldmpa –M QMTEST –q INPUTQ –s 10 –n 6 –f C:\ldmpa.out –c A –d 3 

 
From the ldmpa output, check the following values during the period of collection: 
    hmtx.RequestCount        102954894 

    hmtx.WaitCount           22227930 

 
The WaitCount, as its name suggests, is the number of times that access to the queue was initially 
denied and a thread had to wait before processing its work. As soon as this value reaches 10% (or 
higher) of the RequestCount, application performance will start to suffer. Distributing this work over a 
set of queues would alleviate this contention. 
 
 

4.4 Network Saturation 

Network saturation can be diagnosed by the use of monitoring tools such as dstat/TaskManager. If 
these tools show that you are encroaching on the bandwidth limits of the network, you may need to 
increase your networking capacity to 1Gb/10Gb/40Gb as appropriate or add additional network cards. 
 
If you do not have access to these tools or direct access to the hardware, you can calculate 
approximate messaging limits for a requester/responder scenario with local responders given your 

S



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 43 

networking environment. We can estimate how many 20KB messages we can flow through a 
scenario per second in a 10Gb environment with a remote producer and local consumer1: 
 

 
  
 

0

10

20

30

40

50

60

70

80

90

100

0

10,000

20,000

30,000

40,000

50,000

60,000

1 7 13 19 25 31 37 43 49 55 61 67

C
P

U
%

R
o

u
n

d
 T

ri
p

s
/s

e
c

Requester Connections

MQI Client Bindings (20KB Non-persistent) : RR-2

V8.0GM round trips/sec

V8.0GM CPU%

 
Figure 30 - Performance results for MQI client bindings (20KB non-persistent) 

 
Note that most switches support full duplex mode so the stated switch capacity is for each direction at 
the network level; if the consumers were located remotely, then the maximum theoretical throughput 
as calculated above would need to be halved since network traffic has been doubled. 
 

4.5 Channel Saturation 

Channel saturation can occur when high throughput messaging takes place between two Queue 
Managers connected by a single (or small) number of channels. To determine if you are approaching 
channel saturation, use the technique in section 4.3 to evaluate the wait for the queue lock of the 
transmission queue. 
 
Some things to try before adding additional channels: 

 Increase batch size to reduce the ratio of acknowledgement flows to transmitted messages. 

 Use channel attribute NPMSPEED=FAST for non-persistent messaging to transfer messages 
without the use of transactions.  

 
If you are sending a mix of message sizes, you might consider sending very large messages on their 
own channel to avoid incurring any delays in the transmission of the smaller size messages. 

                                                      
1 This calculation assumes an operational limit of 80% of the nominal bandwidth of the network 
adapter. The achievable throughput is limited by additional transport layer overheads and will vary by 
platform and network adapter. 

10 Gigabit network  = 10 x 1024 * 1024 * 1024 
    = 10,737,418,240 bits  
   / 8 = 1,342,177,280 bytes 
   * 80% = ~ 1,073,741,824 bytes (approx maximum switch throughput) 

/ 20680 = ~ 51,922 msg            (each message approx 20480 + 200 byte hdr) 
 

SP SP



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 44 

 
If you find that you are encountering channel saturation, adding more channels can provide increased 
performance. Figure 31 below shows the 2KB distributed queuing non-persistent test reported on in 
section 3.4 when using a single and 10 channel configuration. It can be seen that in this case the use 
of multiple server channels enabled MQ to process significantly more messages and more fully utilise 
the server CPU. 
 

1 Channel, 43,767/sec

10 Channels, 166,111/sec

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

P
e
a

k
 T

h
ro

u
g

h
p

u
t 

(r
o

u
n

d
 t

ri
p

s
/s

e
c
)

Single Vs Multiple Channel Distributed Queueing

 
Figure 31 - Single channel vs multi channel distributed queuing 

 
Multiple server channels are not a panacea in distributed queuing however. In our test environment 
they did not provide a significant benefit for persistent messaging as the i/o subsystem was already 
the bottleneck in that case. Larger message sizes did not gain as significantly either (another reason 
to consider the separation of messages across different channels based on message size)  

SD SD



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 45 

 

5 Planning for Performance 
 
There are many things that need to be taken into account when planning an MQ infrastructure. Often, 
performance considerations end up being given a lower priority than those of security, integrity, and 
even application transparency. While this is often correct (particularly in the cases of security and 
integrity), it’s important to bear in mind that many techniques used to mitigate these concerns, if not 
implemented carefully, can have a negative impact on the performance of the system. In some cases, 
we have even seen situations where the performance of a system becomes severely degraded, 
rendering it unusable for the task it was designed to perform. However, with careful planning in 
advance, it should be possible to design a system that performs sufficiently, while being secure, 
scalable, transparent, and highly available. 
 
This section illustrates some common pitfalls and best practices that should be adhered to when 
designing and testing an MQ infrastructure for performance. 
 

5.1 Persistence, High Availability, & Disaster Recovery 

Using persistent messaging will slow a system down. Because of this, implementations using 
persistent messages and high availability are some of the most common scenarios where 
performance issues arise. Avoiding these issues involves careful planning in advance, but can be 
achieved. 
 
The first step that should always be taken is to establish whether and where persistence is actually 
needed. Some things to consider: 

 MQ logging protects the integrity of data in transit, so that it can be recovered in the event of 
a failure. It is not designed to act as a historical database for audit or any other purposes. 

 Since recovery often takes some time to complete in the event of a failure, it’s probably not 
worth logging information that expires (loses its relevance) quickly. 

 In a well-designed system, failures should be rare. If the in-flight information could be 
reconstructed and re-sent with relative ease, then this may be a preferable to logging all 
messages, the vast majority of which will arrive at their destination without incident. In 
particular, if client applications already have disaster-recovery logic built-in, then it may be 
possible to switch off persistence with no loss of integrity, and no additional work required. 

 
If persistence is definitely required, then in addition to the basic recommendations given in section 
4.1, there are a number of things to consider when designing an MQ architecture. 
 
Persistence can impact performance in two ways: 

1. High latency - how long it takes for a filesystem write operation to return 
2. Low bandwidth - the maximum data-rate that can be achieved on the file-system 

5.1.1 Latency 

 
The latency of a filesystem will depend on the level of integrity it has, with the most robust set-ups 
generally suffering the most. 

 For local persistent messaging, latency occurs due to the time taken to write logs to the disk, 
or its battery-backed cache. SAN systems may be able to ensure integrity before the data is 
synced to disk, but will instead have latency caused by the time taken to communicate with 
the SAN host. 

 For highly-available persistent infrastructures (multi-instance), the requirement for networked 
file-systems introduces an additional latency in communicating with the filesystem host. 

 Finally, in full disaster-recovery situations, file-systems may be synchronously replicated to a 
second data-centre, often geographically distant from the first. This additional network 
communication and disk write must be waited for before the write operation completes. 

 
In all cases, there are 2 techniques that can be used to overcome latency: 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 46 

1. Concurrency – running multiple application threads in parallel. 
2. Batching – reducing the number of write operations each application thread performs. 

 

5.1.1.1 Concurrency 

All persistent messaging operations should be done inside syncpoint, this delays forcing messages to 
disk until MQCMIT is called by the application. If multiple applications are accessing a queue 
manager concurrently, this may allow the disk writes of several applications to be grouped together 
into a single operation, thus reducing the number of writes required. 
 
From a client perspective, having multiple applications also means that one application can be 
making use of other resources (such as CPU) while another is waiting on a disk write. 
 

5.1.1.2 Batching 

As well as doing all persistent messaging inside syncpoint, it may be possible for applications to 
perform several messaging operations before each call to MQCMIT, thus reducing the number of 
write operations each thread requires. 

 Responder type applications may be able to get their request and put their response inside 
the same syncpoint. This is how the MQI responders used to gather the results in this report 
are designed to work. 

 Batch processing applications may be able to process multiple records before each MQCMIT. 
The time taken to reprocess a batch in the event of a failure should be weighed up against 
the likelihood of failure. 

 
In more complex infrastructures, involving queue manager to queue manager communication 
(distributed queueing and clustering), one can also increase the batch size on sender/receiver 
channels to the same effect, using the BATCHSZ configuration parameter. 
 
It’s worth noting that if a disk system (particularly a networked filesystem) is unreliable, then batching 
may have the opposite effect. Increasing the size of write packets may make the write more likely to 
fail, requiring the operation to be repeated, and thus increasing the total number of writes. 

5.1.2 Bandwidth 

A bottleneck in I/O bandwidth can only be mitigated by increasing hardware capacity. It’s important to 
first establish which aspect of the I/O subsystem might be constrained. It could be the disks 
themselves, in which case adding more disks in a RAID5 array may help. Where possible, upgrading 
the constrained component to a higher-capacity alternative should help. 
 
When it’s not feasible to upgrade a component further, it’s likely that the logs will need to be split, 
which will require using multiple queue managers (see section 5.4.1). How this split is implemented 
will depend on which aspect of the I/O system is constrained. Some possibilities: 

 The local file-system on the file-system host – put the logs for each QM in a directory on a 
separate disk or RAID device. 

 For networked filesystems, other physical constraints (CPU, RAM, network) on the file-
system host – put the logs for each QM in a different remote file-system, hosted on different 
machines. 

 For networked filesystems, network bandwidth on the queue manager host – put each QM on 
a separate machine. 

 Synchronous data replication – any of the above, synchronising each QMs log directory with 
a different destination. 

 

5.2 Slow Networks 

When using MQ over slow or unreliable networks, such as satellite links and the Internet, some 
additional design considerations may be beneficial in achieving optimal performance. If network 
bandwidth is contended, and there are spare CPU cycles available on the source and destination 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 47 

machines, then it may be possible to obtain higher throughput by utilising header compression 
(COMPHDR)2 and data compression (COMPMSG)3. 
 
Aside from this, it may be possible to adjust the architecture of an MQ infrastructure to make most 
efficient use of the network. We’ll consider a number of scenarios, and some possible techniques to 
increase throughput. 

5.2.1 Many disparate clients communicating infrequently 

In this scenario, a large number of clients, all from different places on the network, connect to a 
queue manager, and send or receive messages at a relatively low rate. As such, there’s no constraint 
on the network path between the queue manager and any one of these clients, but together these 
clients put a strain on the network interface of the QM host. 
 
If messages are small, it could be that, although the total data flowing to and from the host is within 
the supposed bandwidth of the network interface, the sheer number of networking operations cannot 
be processed fast enough. If this is the case, one possible solution is to introduce a number of 
“satellite” queue managers in different locations. Clients connect to the satellite that is “closest” to it 
(in terms of network topology), which then forwards communication to the main QM. Following the 
advice in section 5.2.4 then allows us to optimise the connections between the satellites and the main 
host, reducing the number of networking operations performed. 
 
If raw data bandwidth is constrained, there’s often very little that can be done here from a design 
perspective; ensuring that host’s network interface has enough capacity for the desired message rate 
is probably the simplest solution (see section 4.4). You should also ensure that the IP layer is tuned 
optimally. If this is not feasible, then the workload will need to be split across multiple machines. See 
section 5.4.1 for tips on how this can be achieved. 

5.2.2 High message rate to/from a client machine 

It may be that certain machines in the infrastructure will have large volumes of communication with 
one or more QMs elsewhere on the network. This could either be one application messaging at a high 
rate, or a number of applications all on the same machine. Examples could include application or web 
servers, databases, or mainframes. 
 
In this situation, it may be advantageous to host an additional QM on such machines, and connect it 
to target QMs by making it part of a cluster, or adding distributed queuing channels. Applications then 
connect to this QM using local bindings, and communication can be optimised by tuning the 
sender/receiver channels to the target QMs (see section 5.2.4 - Optimising QM to QM channel 
communication). This solution has the added advantage that the MQ messaging operations 
performed by the applications will complete as soon as the message is queued on the local QM; they 
are then free to continue working without having to wait for a slow network communication to 
complete. 

5.2.3 Communicating between regions 
Often it may be the case that an MQ infrastructure spans multiple regions or geographic locations. 
The network within each of these regions may be fast and reliable, while communication between 
regions is less so, possibly travelling over the Internet. It may help for MQ inter-region messaging to 
be amalgamated by one or more “gateway” QMs in each region. Applications connect to their local 
gateway, which then handles sending messages to other regions using distributed queueing or 
clustering. These channels of communication are then open to optimisation by the techniques 
mentioned in section 5.2.4. 

5.2.4 Optimising QM to QM channel communication 

For communication between queue managers, there are a number of things that can be done 
administratively to improve performance: 

                                                      
2 http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.ref.con.doc/q081880_.htm 
3 http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.ref.con.doc/q081840_.htm 

http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.ref.con.doc/q081880_.htm
http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.ref.con.doc/q081840_.htm


IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 48 

 Adjusting the BATCHSZ, BATCHINT, and NPMSPEED parameters of the channel definitions 
– see www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.ref.con.doc/q081660_.htm 

 Setting PipeLineLength=2 in the CHANNELS stanza of the QM’s qm.ini file 
– see www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.ref.con.doc/q080700_.htm 

 Using multiple channels – see section 4.5 
 
Please note, however, that the  finaloption may result in messages arriving on their destination 
queues in a different order than they were originally put. If message ordering must be maintained, 
then while multiple channels may still be used, each subset of messages that must keep their order 
(e.g. all those from the same client application) must be configured to use the same channel for 
communication. 
 

5.3 Ultra-High Message Rates 

If other hardware factors (such as network and I/O) are not the constraint, but message rates are very 
high, then eventually the maximum rate at which messaging operations can be performed on a single 
queue will be reached. Section 3.1 gives an indication of the sort of message rates obtainable 
through a single queue, but the exact rate achievable in a set-up will depend on several factors, 
including the pattern in which messages are put/got, the type of message selection, if any, and the 
size of messages. This limitation occurs because certain parts of most messaging operations require 
exclusive access to certain data about the queue. We call this “queue lock” (see section 4.3). 
 
Queue lock can be mitigated in certain ways by upgrading hardware capacity and altering the 
configuration of the queue manager: 

 Faster processor cores (or more exclusive access to them by MQ) may often help, but more 
cores often won’t, unless there is other work being done by the machine that can be 
offloaded onto these additional engines. 

 If queue buffers are already occupying all the available physical memory on the machine (see 
section 6.1.1.1), then adding more RAM may help. However, it would be advisable to 
reconsider the design of the infrastructure, as MQ performs best with short queues: it is not 
intended to be used as a message store, except for brief periods in exceptional 
circumstances. 

 

5.3.1 Maximising the throughput of a single queue 
There are several measures that can be taken to ensure that a queue operates as efficiently as 
possible. 

5.3.1.1 Ensure there are “waiting getters” 

If an application requesting to get a message off of a queue makes this request before a suitable 
message arrives, then when one does arrive, it is passed straight to the waiting application without 
being written to the queue. As well as reducing the total path length required in handling the 
message, this has the added advantage that the getting application doesn’t have to take the queue 
lock; all required data are updated by the application that puts the message on the queue, so less 
expensive lock negotiation is required. This only applies to messages outside of syncpoint control. 
 
Unless it is necessary to process all messages from a queue in a single thread (for order integrity 
reasons), it is therefore advantageous to have a number of application threads receiving messages 
from a queue. It is far better to have “too many” (applications waiting in MQGET and not ever doing 
anything) than too few (messages waiting on a queue for getters to become available). 

5.3.1.2 Be selective about message selection 

Sometimes, receiving applications may only be interested in a subset of the messages that might 
appear on a queue. MQ caters for this with message selection. However, message selection can 
dramatically increase the amount of time a receiving application spends browsing a queue, holding 
the queue lock, and thus preventing other applications from accessing it. 
 

http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.ref.con.doc/q081660_.htm
http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.ref.con.doc/q080700_.htm


IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 49 

If message selection can instead be replaced by putting different categories of message to different 
queues, such that receiving applications can get messages from a queue in an indifferent manner, 
then this should be preferred. It is often easier to make this design decision in the first place, rather 
than trying to retro-fit it to an infrastructure that’s become overloaded, especially since the 
performance impact of having additional queues is minimal. 
 
If message selection must be used, try to rely mainly on MQ’s built in Correlation ID field. Selection by 
Correlation ID has been optimised within the queue manager, so that getters spend far less time than 
usual finding a suitable message. It also allows for the advantages afforded to “waiting getters”, as 
described in section 5.3.1.1. 

5.3.2 Adding queues to increase throughput 

The current trend for hardware, or cloud-based systems, to get wider (more cores) rather than taller 
(faster cores) means can you cannot rely on hardware upgrades to satisfy future increases in demand 
on your MQ infrastructure. Once the throughput limit of a queue has been reached, there is little that 
can be done to increase capacity further. It is therefore important to design systems and applications 
where high demand is anticipated to be able to use multiple queues if necessary. Splitting messages 
by their purpose, as described in 5.3.1.2, is probably the first option that should be considered. 
 
If the purpose (or “topic”) of messages that an application will produce or consume is not known in 
advance, or if the distinction between message purposes is complex, then using publish-subscribe 
messaging, rather than simple queueing, may be advantageous. Then, messages of different topics 
can be optimised administratively in MQ, and consuming applications can still share the workload of a 
particular topic by attaching them to the subscriber queue of a single administrative subscription 
object. Furthermore, it may be possible to reorganise the topic space to handle increased demand 
without requiring a change to the applications. 
 
Beyond these options, scaling a system across multiple queues transparently (without the need to 
manually assign queues to applications) is difficult, but can be achieved in certain ways (see section 
5.4.2).  
 

5.4 Transparent Scalability 

Designing an MQ infrastructure that scales to accommodate future (or present) demand is something 
that needs careful planning from the beginning. The hardware factors that normally constrain MQ 
infrastructures (disks and network) are often infeasible to upgrade further (make faster), and adding 
more of them to split workload presents administrative challenges. Traditional methods of load-
balancing networked communication by using intermediaries is often not feasible when the assured 
delivery guarantees that MQ makes are required: the contention just shifts from the original servers to 
the load-balancer. 
 
When increasing demand requires additional instances of the objects involved in an infrastructure 
(machines, queue managers, queues), as discussed in the previous sections of this chapter, it is 
often desirable to do this in the most transparent way possible. Briefly, we’ll discuss some of the 
available techniques to do this, requiring the smallest possible change to the peripheral parts of a 
network, and instead focusing alterations on the core, so that changes can be administered in as few 
places as possible. 

5.4.1 Scaling across machines & queue managers 

From the perspective of an MQ client, there is little distinction between a queue manager and the 
machine it’s hosted on. Hence, this section will cover options for scaling across either as of they were 
the same thing. 

5.4.1.1 Clustering 

One technique that’s often attempted to achieve transparent scalability is to put the relevant queues 
and queue managers into an MQ cluster. The hope is that then the demands on networking or I/O will 
be spread across all the machines and log file-systems involved in the cluster, and allow additional 
capacity to be added simply by adding more queue managers to the cluster. 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 50 

 
This can certainly help with relieving queue lock (see 5.4.2.1 below), or CPU contention caused by 
heavy processing of messages by locally-bound receiving applications. It can also relieve the load 
placed on systems by MQ itself, but only if application connections are spread across the queue 
managers in the cluster. Having all input applications connect to a single “gateway” queue manager, 
as is often desired to simplify the configuration of applications across an organisation, simply shifts 
contention to this gateway. The gateway queue manager will have the same requirements on its 
network and I/O interfaces as would a single server handling all messages itself. 
 
It’s also worth noting that using clusters increases the latency of messages, and often results in a 
higher overall use of hardware resources than pushing the same number of messages through a 
single QM (if possible). Network bandwidth is consumed for each QM that a message passes 
through, and persistent messages will need to be written to the logs of each QM they touch as well. 

5.4.1.2 CCDTs and application logic 

An alternative (or complement) to using a cluster is to have applications connect using a Client 
Channel Definition Table4. This allows applications to select a QM to connect to from a defined group 
at connection time. Thus, application connections will be spread across all queue managers in that 
group, which could be a cluster, or could just be a set of queue managers, each having the required 
queues defined individually. 
 
CCDTs are not suitable when XA distributed transactions will be involved, and may not always result 
in the best balancing of workloads. For this, a small amount of application logic, which can be 
redistributed across an organisation as part of a library, is probably preferable. The 3-part IBM 
developerWorks article found at the following URLs discusses these options in detail, and provides 
some example code: 

1. www.ibm.com/developerworks/websphere/library/techarticles/1303_broadhurst/1303_broadhurst.html 
2. www.ibm.com/developerworks/websphere/library/techarticles/1308_broadhurst/1308_broadhurst.html 
3. www.ibm.com/developerworks/websphere/library/techarticles/1403_broadhurst/1403_broadhurst.html 

5.4.2 Scaling across queues 
If splitting a workload across multiple queues is sufficient to relieve contention (normally because 
queue lock is the contending factor), then in addition to the techniques mentioned in section 5.4.1 
(which will work for queues by defining an instance of the queue on multiple queue managers), a few 
additional options are available. 

5.4.2.1 Clustering 

Clustering can more easily be used to relieve queue contention than other constraints (see section 
5.4.1.1). Although the use of multiple queue managers is still required (possibly all on the same 
machine), a single gateway queue manager can be used to simplify application connection, provided 
this gateway is at MQ v7.5 or later: using multiple cluster transmission queues5 on the gateway (i.e. 
one per destination QM) allows workload to be split across multiple queues as soon as it enters the 
cluster. 

5.4.2.2 API exits 

An alternative to using a cluster to spread workload across queues is to write a small custom MQ API 
Exit program. This is a piece of code attached to the queue manager that can intercept MQI calls. For 
example, to could listen for calls to MQOPEN a particular queue. When such a call is intercepted, the 
queue being requested is silently swapped for an alternative from a pre-defined pool. As such, 
applications can all make identical requests to open the queue, while being transparently balanced 
across a number of them. 
 
Although this requires more work to implement than setting up a cluster, it has the advantage that 
everything is done with a single queue manager, making maintenance simpler. It also requires less 
hardware resource to run, will have slightly lower latency, and since the logic of how the load 

                                                      
4 www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.dev.doc/q027490_.htm 
5 www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.pro.doc/q118645_.htm 

http://www.ibm.com/developerworks/websphere/library/techarticles/1303_broadhurst/1303_broadhurst.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1308_broadhurst/1308_broadhurst.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1403_broadhurst/1403_broadhurst.html
http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.dev.doc/q027490_.htm
http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.pro.doc/q118645_.htm


IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 51 

balancing occurs is up to the code in the API exit, it can be made as simple or as complex as 
necessary. 
 
The details of writing API exists are beyond the scope of this document, but as a place to start, one 
can study the API exit sample program, amqsaxe, and read the associated documentation at 
www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.dev.doc/q027920_.htm. 
 

5.5 Testing for Performance 

It is important to thoroughly test any new MQ infrastructure prototype for performance before going 
into production. This section mentions a few best practices and common pitfalls to avoid to make your 
testing more effective. 

5.5.1 It’s a dress rehearsal, not an audition 

Performance testing should be done in an environment as close to that of production as possible. 
This means the same – or very similar – hardware, operating systems, storage systems, network 
topology, bandwidth, congestion, message size, message rate, protocol, MQ configuration, 
application messaging profile, etc. 
 
It is easy to underestimate the impact small changes to configuration can have, or think that one can 
“compensate” for the lack of a feature in the test environment by requiring better-than-actual 
performance without it. This is usually not the case, and if an infrastructure can perform as well as 
required in a test environment with a constraining feature missing, then any further improvements 
may have no impact on the complete environment. Obviously, if a cut-down environment doesn’t 
perform as required, then adding a constraining factor is unlikely to improve performance, so there 
may be some merit in investigating and attempting to widen the bottlenecks that already exist. 
 
However, in some cases, apparently simpler configurations actually degrade performance, leading to 
unnecessary investigations of an issue that would never have occurred in production. Two of the 
most common examples of this are: 

1. Persistent messaging outside of syncpoint (when it would be inside in production) (see 
section 5.1.1.1). 

2. Putting a batch of messages all at once, then getting them, or relying on message expiry to 
remove them from the queue (in production, putting and getting would happen concurrently). 
This prevents optimisations for “waiting getters” from being used (see section 5.3.1.1) and 
could also lead to slower operation due to having to access disks instead of memory (see 
section 6.1.1.1). 

5.5.2 Know your tools 

When testing a messaging infrastructure, production applications are often swapped out for 
performance-oriented simulators or “harnesses”. This is fine, but it’s important to know how the 
application you’ve decided to use works. Where possible, use one of the following: 

 An IBM-produced tool, such as the freely available JMSPerfHarness6 

 An application developed in-house, designed to behave similarly to the applications it’s 
simulating. 

 An open-source project 
 
With all of these, the key factor is the ability to know exactly how the application is behaving 
internally. This is important, as we have discovered that many such applications use MQ in a sub-
optimal way. For instance, some tools cannot make proper use of syncpoint transactions, which 
seriously impacts the performance of persistent messaging scenarios. 

                                                      
6 
www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=1c02
0fe8-4efb-4d70-afb7-0f561120c2aa 

http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.dev.doc/q027920_.htm
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=1c020fe8-4efb-4d70-afb7-0f561120c2aa
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=1c020fe8-4efb-4d70-afb7-0f561120c2aa


IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 52 

5.5.3 When it doesn’t work, simplify 

Despite what was said in section 5.5.1, when an infrastructure doesn’t perform as required, your first 
question should not be: 
 
 “What can I change to try to make things better?” 
 
Instead, you should ask: 
 
 “How can I determine what’s constraining my system?” 
 
Often, the easiest way to do this is to start removing features of your system to see which is acting as 
a bottleneck to performance. Even if those features are necessary for functional reasons, knowing 
where the problem lies will help to tackle the first question more efficiently. 
 
For instance: 

 If using persistent messaging, try non-persistent. If things don’t improve, then the issue is not 
with the logging or disks, so there’s no need to investigate those. 

 If using networked file-systems, switch to local disks. If an improvement is seen, then the 
problem likely lies in the latency or bandwidth of the networked file-system. 

 If using a cluster, drop back to a single QM. If performance divided by the number of QMs 
improves dramatically, then something about the cluster configuration is holding the system 
back. 

 
Keeping detailed, comparable records of how your system performs in various configurations can 
often help lead to a swifter resolution in the event that IBM assistance is needed. 

5.5.4 Test your environment 

When trying to establish the cause of a problem, it often helps to know how the performance of MQ 
compares to the theoretical limits of the system on which it’s running. Stress and latency testing tools 
exist for CPU, I/O, and networking on most operating systems. These should be used to test all 
aspects of an infrastructure before you waste time trying to “tune” your way out of a hardware 
limitation. 
 

5.6 Memory Requirements. 

The memory requirements of MQ are heavily dependent on the nature of the workload and the 
objects defined to the queue manager. Modern server class machines should not encounter memory 
constraints but injudicious setting of very large queue buffers across multiple heavily used queues 
might cause a problem, for instance. 
 
Monitor your system to ensure that you are not paging. Paging out of memory is not necessarily a 
problem, but does indicate that the system is nearing memory exhaustion. Once the ‘working set’ of 
the system (i.e. the pages of allocated memory that are frequently accessed) exceeds the physical 
memory available then performance will be significantly impacted.  
 
Factors affecting memory use of MQ: 
 

 Number of objects in use on the queue manager 

 Number of client channels attached to the queue manager 

 Queue depth, up to the buffer size for each queue 
 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 53 

6 Tuning Recommendations 
 

6.1 Tuning The Queue Manager 

This section highlights the tuning activities that are known to give performance benefits for MQ 
V8.0. Note that the following tuning recommendations may not necessarily need to be applied, 
especially if the message throughput and/or response time of the queue manager system already 
meets the required level.  
 
Some tuning recommendations that follow may degrade the performance of a previously 
balanced system if applied inappropriately. Carefully monitor the results of tuning the queue manager 
to be satisfied that there have been no adverse effects. 
 
Customers should test that any changes have not used excessive real resources in their environment 
and make only essential changes. For example, allocating several megabytes for multiple queues 
reduces the amount of shared and virtual memory available for other subsystems, as well as over 
committing real storage. 
 
If several changes are to be made, it would be prudent to test the impact of each change individually. 
This allows one to establish exactly which changes are providing a benefit (some may even degrade 
performance), which may also in turn provide useful information about how the system is constrained, 
and so how it may be improved further. 
 

Note: The ‘TuningParameters’ stanza in the queue manager’s qm.ini, or the MQ installation’s 
mq.ini, is not a documented external interface and may be changed or be removed in future 
releases. 

 

6.1.1 Queue disk, log disk, and message persistence 
Non-persistent messages are held in main memory, spilt to the file system as the queues become 
deep and lazily written to the Queue file. Persistent messages are synchronously written to the log 
and are also periodically flushed to the Queue file. 
 
To avoid potential queue and log I/O contention due to the queue manager simultaneously updating a 
queue file and log extent on the same disk, it can help if queue files and logs are located on separate 
and dedicated physical devices. Storage requirements may be fulfilled by the use of a Storage Area 
Network (SAN), but multiple high volume queue managers can require different logical volumes, and 
potentially individual interface pathways to avoid congestion. 
 
With the queue and log disks configured in this manner, careful consideration must still be given to 
message persistence: persistent messages should only be used if the message needs to survive a 
queue manager restart (forced by the administrator or as the result of a power failure, 
communications failure, or hardware failure). In guaranteeing the recoverability of persistent 
messages, the path length through the queue manager is significantly longer than for a non-persistent 
message. This overhead does not include the additional time for the message to be written to the log 
which will depend on the write speed of the i/o device (including any caching at the hardware level).. 
 

6.1.1.1 Non-persistent and persistent queue buffer 

The default non-persistent queue buffer size is 128K per queue and the default persistent is 256K per 
queue for MQ on a 64-bit operating system. These can be increased up to 100MB using the 
DefaultQBufferSize and DefaultPQBufferSize parameters in the TuningParameters stanza of the 
qm.ini file. (For more details see SupportPac MP01: MQSeries – Tuning Queue Limits). Increasing 
the queue buffer provides the capability to absorb spikes in message throughput at the expense of 
real memory. Once these queue buffers are full, the additional message data is written to the file 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 54 

system that will eventually find its way to the disk (operating system buffers will be utilised for queue 
files).  
 
Defining large queue buffers is not a solution to avoiding disk I/O when the input message rate to MQ 
exceeds the output rate, for whatever reason, for sustained periods. The buffer will fill and spilling will 
occur.  
 
Defining queues using large non-persistent or persistent queue buffers can degrade performance if 
the system is short of real memory either because a large number of queues have already been 
defined with large buffers, or for other reasons - e.g. large number of channels defined. 
 
Note:  The queue buffers are allocated in shared storage so consideration must be given to whether 

the agent process or application process has the memory addressability for all the required 
shared memory segments. 

 
Queues can be defined with different values of DefaultQBufferSize and DefaultPQBufferSize. The 
value is taken from the TuningParameters stanza in use when the queue manager was last started.  
 
  
 

6.1.1.2 Logging  

6.1.1.2.1 Log type 

 
The log component is often the bottleneck when processing persistent messages. Sufficient 
information is stored in the log to restart the queue manager after failure.  
 
Both circular and linear logging are sufficient to recover from application, software, or power failure 
whilst linear logging can also recover from media failure resulting in the loss of a queue file (assuming 
some historical copy of the queue file exists along with the linear logs to perform a forward recovery 
from that point). 
 
Circular logging is preferable for a performance perspective as no time is required to allocate and 
format new log extents or to delete or archive them. The choice of logging type will not be based on 
performance alone however. A useful article comparing logging types is available on 
developerWorks: 
 
http://www.ibm.com/developerworks/websphere/techjournal/0904_mismes/0904_mismes.html 
 

6.1.1.2.2 Log buffer 

 
Log records are written to the log buffer at each MQPUT and MQGET of messages outside of 
syncpoint, and each MQCMIT. This information is synced onto the log disk. Periodically the 
checkpoint process will decide how many of these log-file extents are in the active log and need to be 
kept online for recovery purposes. Those extents no longer in the active log are available for archiving 
when using linear logging or available for reuse when using circular logging. There should be 
sufficient primary logs to hold the active log plus the new log extents used until the next checkpoint, 
otherwise some secondary logs are temporarily included in the log set and they have to be instantly 
formatted which is an unnecessary delay when using circular logging. 
 
The log buffer is a circular piece of main memory where the log records are concatenated so that 
multiple log records can be written to the log file in a single I/O operation. The default values used for 
LogBufferPages are probably suitable for most installations. The default size of the log buffer is 512 
pages with a maximum size of 4096 pages.  
 
To optimise the throughput of large persistent messages (> 1MB) LogBufferPages could be increased 
to improve the likelihood of messages only needing one I/O to get to the disk. Environments that 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 55 

process under 100 small (< 10KB) persistent messages per second can reduce the memory footprint 
by using smaller values like 32 pages without impacting throughput. 
 
Changes to the queue manager LogBufferPages stanza take effect at the next queue manager 
restart. The number of pages can be changed for all subsequent queue managers by changing the 
LogBufferPages parameter in the product default Log stanza. 

6.1.1.2.3 Log files 

 
 
LogFilePages (or crtmqm –lf <LogFilePages>) defines the size of one physical disk extent (default 
4096 pages). The larger the disk extent, the longer the elapsed times between changing disk extents. 
It is better to have a smaller number of large extents but a long running transaction can prevent 
checkpointing from efficiently freeing the disk extent for reuse. 
 
Larger extents reduce the frequency of log switching (permitting a greater amount of log data to be 
written into one extent) and allow more time to prepare new linear logs or recycle old circular logs 
(especially important for long running units of work). As an initial target, one log extent should hold at 
least 10 seconds of log data streaming. 

 
The number of LogPrimaryFiles (or. crtmqm -lp <LogPrimaryFiles>) can be configured to a large 
number (the maximum number of Primary plus Secondary extents is 255 for Windows and 511 for 
UNIX). For circular logging you should configure enough primary logs to cope with expected peak 
load as secondary logs are formatted each time they are used, so incur a performance penalty, 
 
The active log set is the number of extents that are identified by the checkpoint process as being 
necessary to be kept online. As additional messages are processed, more space is taken by the 
active log.  
 
As transactions complete, they enable the next checkpoint process to free up extents that now 
become available for archiving with linear logging or re-use with circular logging. 
 
Some installation will use linear logging and not archive the redundant logs because archiving 
impacts the run time performance of logging. Instead, they will periodically (daily or twice daily) use 
‘rcdmqimg’ on the main queues thus moving the ‘point of recovery’ forward , compacting the queues, 
and freeing up log disk extents. This approach prevents the continuous build-up of log extents 
(assuming the old ones are deleted). 
 

6.1.1.2.4 LogWriteIntegrity: SingleWrite or TripleWrite 
The default value is TripleWrite. MQ writes log records using the TripleWrite method because it 
provides full write integrity where hardware that assures write integrity is not available. 
 
Some hardware guarantees that, if a write operation writes a page and fails for any reason, a 
subsequent read of the same page into a buffer results in each byte in the buffer being either: 
 

 The same as before the write, or 

 The byte that should have been written in the write operation 
 
On this type of hardware (for example, SSA write cache enabled), it is safe for the logger to write log 
records in a single write as the hardware assures full write integrity. This method provides the highest 
level of performance. 
 
Queue manager workloads that have multiple streams asynchronously creating high volume log 
records will not benefit from SingleWrite because the logger will not need to rewrite partial pages of 
the log file.  
 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 56 

Workloads that serialize on a small number of threads where the response time from an MQGET, 
MQPUT, or MQCMIT inhibits the system throughput are likely to benefit from SingleWrite and could 
enhance throughput by 25% but in practice, we see very few customer deployments that have gained 
significantly from changing this parameter. 
 
Measurements in this report used LogWriteIntegrity=TripleWrite 
 

6.1.2 Channels: process or thread, standard or fastpath? 
Threaded channels are used for all the measurements in this report (‘runmqlsr’, and for server 
channels an MCATYPE of ‘THREAD’) the threaded listener ‘runmqlsr’ can now be used in all 
scenarios with client and server channels. Additional resource savings are available using the 
‘runmqlsr’ listener rather than ‘inetd’, including a reduced requirement on: virtual memory, number of 
processes, file handles, and System V IPC. 
 
Fastpath channels can increase throughput for both non-persistent and persistent messaging. For 
persistent messages, the improvement is only for the path through the queue manager, and does not 
affect performance writing to the log disk. 
 
It is not recommended to use fastpath channels when channel exits are being used as any problem 
with the exit code has the potential to bring the queue manager down. 
 
Note:  Since the greater proportion of time for persistent messages is in the queue manager writing 

to the log disk, the performance improvement for fastpath channels is less apparent with 
persistent messages than with non-persistent messages. 

 

6.2 Applications: Design and Configuration 

6.2.1 Standard (shared or isolated) or fastpath? 
There are issues associated with writing and using fastpath applications—described in the ‘MQSeries 
Application Programming Guide’.  Although it is generally recommended that customers use fastpath 
channels, it is not recommended to use fastpath applications. If the performance gain offered by 
running fastpath is not achievable by other means, it is essential that applications are rigorously 
tested running fastpath, and never forcibly terminated (i.e. the application should always disconnect 
from the queue manager). 

6.2.2 Parallelism, batching, and triggering 
An application should be designed wherever possible to have the capability to run multiple instances 
or multiple threads of execution. Although the capacity of a multi-processor (SMP) system can be fully 
utilised with a small number of applications using non-persistent messages, more applications are 
typically required if the workload is mainly using persistent messages. Processing messages inside 
syncpoint can help reduce the amount of time the queue managers takes to write a group of 
persistent messages to the log disk. The performance profile of a workload will also be subject to 
variability through cycles of low and heavy message volumes, therefore a degree of experimentation 
will be required to determine an optimum configuration. 
 
Queue avoidance is a feature of the queue manager that allows messages to be passed directly from 
an MQ putter to an MQ getter without the message being placed on a queue. This feature only 
applies for processing messages outside of syncpoint. In addition to improving the performance of a 
workload with multiple parallel applications, the design should attempt to ensure that an application or 
application thread is always available to process messages on a queue (i.e. an MQ getter), then 
messages outside of syncpoint do not need to ever be physically placed on a queue. 
 
Note that as more applications are processing messages on a single queue there is an increasing 
likelihood that queue avoidance will not be maintainable. The reasons for this have a cumulative and 
exponential effect, for example, when messages are being placed on a queue quicker than they can 
be removed. The first effect is that messages begin to fill the queue buffer—and MQ getters need to 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 57 

retrieve messages from the buffer rather than being received directly from an MQ putter. A secondary 
effect is that as messages are spilled from the buffer to the queue disk, the MQ getters must wait for 
the queue manager to retrieve the message from the queue disk rather than being retrieved from the 
queue buffer. While these problems can be addressed by configuring more MQ getters (i.e. 
processing threads in the server application), or using a larger queue buffer, it may not be possible to 
avoid a performance degradation. 
 
Processing persistent messages inside syncpoint (i.e. in batches) can be more efficient than outside 
of syncpoint. As the number of messages in the batch increases, the average processing cost of each 
message decreases. For persistent messages the queue manager can write the entire batch of 
messages to the log disk in one go whilst outside of syncpoint control, the queue manager must wait 
for each message to be written to the log before returning control to the application. 
 
Only one log record per queue can be written to the disk per log I/O when processing messages 
outside of syncpoint. This is not a bottleneck when there are a lot of different queues being 
processed. When there are a small number of queues being processed by a large number of parallel 
application threads, it is a bottleneck. By changing all the messages to be processed inside 
syncpoint, the bottleneck is removed because multiple log records per queue can share the same log 
I/O for messages processed within syncpoint.  
 
A typical triggered application performs in the same way as a ‘short session’ program. The ‘runmqlsr’ 
program has a much smaller overhead compared to inetd of connecting to and disconnecting from 
the queue manager because it does not have to create a new process so is more suitable to triggered 
applications. 
 
When programming a triggered application it may be worth exposing a disconnect interval as an input 
parameter to the application program. This can provide the flexibility to make tuning adjustments in a 
production environment to establish the best balance between reducing connection costs or freeing 
up queue manager and operating system resources. 

6.3 Virtual Memory, Real Memory, & Paging 

6.3.1 BufferLength 
The amqrmppa process contains a thread per connected client. The BufferLength parameter of the 
MQGET on the client application is also used to allocate a long-term piece of storage of this size in 
the amqrmppa process, in which the message is held before being retrieved by the client. If the size 
of the arriving messages cannot be predicted then the application should provide a buffer than can 
deal with 90% of the messages and re-drive the MQGET after return code “2080 (X'0820') 
MQRC_TRUNCATED_MSG_FAILED” by providing a larger buffer for retrieving this particular 
message. There is a mechanism to gradually reduce the size of the storage in amqrmppa if the recent 
BufferLength size is significantly smaller than previous BufferLength. 
 
For messages encrypted with AMS it is advisable to set a buffer larger than the plaintext version of 
the largest expected message as the encrypted form will be longer. 
 
 

6.3.2 MQIBindType 
MQIBindType=FASTPATH will cause the channel to run ‘trusted’ mode. Trusted applications do not 
use a thread in the agent (amqzlaa) process. This means there is no IPC between the channel and 
agent because the agent does not exist in this connection. If the channel is run in STANDARD mode 
then any messages passed between the channel and agent will use IPC memory (size = BufferSize 
with a maximum size of 1MB) that is dynamically obtained and only held for the lifetime of the 
MQGET. Standard channels each require an additional 80KB of memory. As the message rate 
increases, there will be more IPC memory used in parallel. 

 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 58 

6.3.3 Paging 

The memory available on a machine needs to handle the peaks in throughput. It is important to 
prevent the queue depths increasing if possible, especially if large queue buffers have been set as 
these will occupy memory and can cause paging in the worst circumstances. 
 
Queue buffers will grow up to the maximum specified but do not shrink back until the queue manager 
is restarted. 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 59 

 

Appendix A: Workloads 
All of the workloads in this report use the JMS Performance Harness (JMS) or C Performance 
Harness (MQI) to put and/or get messages from queues. These drivers are described briefly in this 
appendix. 
 
Both of these performance tools are run inside an in-house performance management framework 
(Perf) which sets up the machines required in a test including any necessary tuning of the queue 
managers etc. 

A.1 JMSPerfHarness 

The JMS Performance Harness (JMSPerfHarness) is an IBM internal version of the tool available 
publicly via Developer Works (see Appendix B:). 
 
“Performance Harness for Java Message Service is a flexible and modular Java package for 
performance testing of JMS scenarios and providers. It provides a complete set of JMS functionality, 
as well as many other features such as throttled operation (a fixed rate and/or number of messages), 
multiple destinations, live performance reporting, JNDI, and multiple vendor plug-ins. It is one of the 
many tools used by performance teams for IBM MQ and IBM Integration Bus in order to conduct tests 
ranging from a single client to more than 10,000 clients.” 
 
Multiple clients are simulated in a single process and the number of clients can be further scaled up 
by adding further processes and deploying across multiple driver machines within a suitable 
performance management framework. 

A.2 C Performance Harness (CPH) 

The C Performance Harness (CPH) is an IBM internal only, multi-threaded MQI messaging client 
supporting most of the options available to MQ. Functionally, it is similar to JMSPerfHarness on which 
it has been based so the configuration files are almost identical to the JMSPerHarness ones (see the 
public site for JMSPerfHarness for details). 
 
CPH can be scaled in exactly the same way as JMSPerfHarness using a performance management 
framework to deploy multiple clients and utilise multiple machines as necessary. 
 
 
 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 60 

Appendix B:  Further Resources 
 
Performance Harness for Java Message Service: 
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUui
d=1c020fe8-4efb-4d70-afb7-0f561120c2aa 
 
MQ Documentation Library: 
http://www-01.ibm.com/software/integration/wmq/library/ 
 
Configuring and tuning MQ for performance on Windows and UNIX (Developer Works article): 
http://www.ibm.com/developerworks/websphere/library/techarticles/0712_dunn/0712_dunn.html 
 
 

https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=1c020fe8-4efb-4d70-afb7-0f561120c2aa
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=1c020fe8-4efb-4d70-afb7-0f561120c2aa
http://www-01.ibm.com/software/integration/wmq/library/
http://www.ibm.com/developerworks/websphere/library/techarticles/0712_dunn/0712_dunn.html


IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 61 

Appendix C: Test Setup 
C.1 Hardware/Software 

All of the testing in this document (apart from when testing results are shown from a different platform 
and are clearly identified as such) was performed on the following hardware and software 
configuration:  
 

C.1.1 Hardware 

Server 1:  IBM System x3550 M4 
24 x Intel® Xeon® E5-2697 v2 CPU cores @ 2.70GHz  
112GB RAM 

 
Client 1:  IBM System x3550 M4 

24 x Intel® Xeon® E5-2697 v2 CPU cores @ 2.70GHz  
96GB RAM 
 

Client 2:  IBM System x3850  
 40 x Intel® Xeon® E7-8850 CPU cores @ 2.40GHz 

64GB RAM 
Dedicated links to SAN Storage DS8800 for log and queue files. 

 
10Gb Ethernet link to isolated performance LAN 

 

C.1.2 Software 

Red Hat Enterprise Linux, version 6 (x86_64) 
JMSPerfHarness test driver (see section A.1)  
CPH MQI test driver (see section Appendix A) 
IBM MQ V7.5 & IBM MQ V8.0 
 

C.2 Tuning Parameters Set for Measurements in This Report 

The tuning detailed below was set specifically for the tests being run for this performance report but in 
general follow the best practises outlines in section 6. Some scaling tests in particular require larger 
buffers/limits to be set.  
 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 62 

C.2.1 Operating System 

The following Linux parameters were set for measurements in this report 
 
/etc/sysctl.conf 

fs.file-max = 1048576 

net.ipv4.ip_local_port_range = 1024 65535 

vm.max_map_count = 1966080 

kernel.pid_max = 655360 

kernel.sem = 1000 1024000 500 8192 

kernel.msgmnb = 131072 

kernel.msgmax = 131072 

kernel.msgmni = 2048 

kernel.shmmni = 8192 

kernel.shmall = 536870912 

kernel.shmmax = 137438953472 

kernel.sched_latency_ns = 2000000 

kernel.sched_min_granularity_ns = 1000000 

kernel.sched_wakeup_granularity_ns = 400000 

net.core.somaxconn = 16384 

 
/etc/security/limits.d/mqm.conf 

@mqm soft nofile 1048576 

@mqm hard nofile 1048576 

@mqm soft nproc  1048576 

@mqm hard nproc  1048576 

C.2.2 IBM MQ  
The following parameters are added or modified in the qm.ini files for the tests run in section 3 of this 
report: 
 

Channels: 

   MQIBindType=FASTPATH 

   MaxActiveChannels=5000 

   MaxChannels=5000 

 

Log: 

   LogBufferPages=512 

   LogFilePages=16384 

   LogPrimaryFiles=16 

   LogWriteIntegrity=TripleWrite 

 

TuningParameters: 

   DefaultPQBufferSize=104857600 

   DefaultQBufferSize=104857600 

 



IBM MQ V8.0 – Linux on x86_64 Performance Report  

   

Page 63 

For the tests in section 0, the following parameters were used: 
 

Channels: 

   MQIBindType=FASTPATH 

   MaxActiveChannels=65536 

   MaxChannels=65536 

 

Log: 

   LogBufferPages=512 

   LogFilePages=16384 

   LogPrimaryFiles=16 

   LogWriteIntegrity=TripleWrite 

 

TuningParameters: 

   DefaultPQBufferSize=52428800 

   DefaultQBufferSize=52428800 

 

QMErrorLog: 

   ErrorLogSize=262144 

 

TCP: 

   ListenerBacklog=16384 

 


