
IBM MQ

Internet Pass-Thru
Version 2 Release 1

SC34-2920-00

IBM





IBM MQ

Internet Pass-Thru
Version 2 Release 1

SC34-2920-00

IBM



Note
Before using this information and the product it supports, read the information in “Notices” on page 177.

Edition Notice

This edition applies to version 2.1.0.3 of IBM MQ Internet Pass-Thru and to all subsequent releases and
modifications until otherwise indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2000, 2017.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

Figures . . . . . . . . . . . . . . . v

Chapter 1. Introduction to IBM MQ
Internet Pass-Thru . . . . . . . . . . 1
Edition Notice . . . . . . . . . . . . . . 4

Who this book is for . . . . . . . . . . . 4
What you need to know to understand this
document . . . . . . . . . . . . . . 4
Prerequisites . . . . . . . . . . . . . 4
Accessibility information . . . . . . . . . 5
Privacy . . . . . . . . . . . . . . . 5

Chapter 2. What's new in MQIPT Version
2.1 . . . . . . . . . . . . . . . . . 7

Chapter 3. How MQIPT works . . . . . 11
Starting and stopping MQIPT . . . . . . . . 11
Possible configurations of MQIPT . . . . . . . 13
Compatible configurations . . . . . . . . . 16
Supported channel configurations . . . . . . . 17
Channel termination and failure conditions . . . . 18
Safety of messages . . . . . . . . . . . . 18
Multi-instance queue managers and high availability 18

Chapter 4. Using MQIPT features . . . 21
HTTP support . . . . . . . . . . . . . 21

HTTPS . . . . . . . . . . . . . . . 22
SOCKS support . . . . . . . . . . . . . 22

Clustering . . . . . . . . . . . . . . 23
SSL/TLS support . . . . . . . . . . . . 24

SSL/TLS handshake . . . . . . . . . . 31
MQIPT implementation of SSL/TLS . . . . . 32
Encrypting a keyring password. . . . . . . 32
Selecting certificates from a key-ring file . . . . 33
Trust settings . . . . . . . . . . . . . 33
Testing SSL/TLS. . . . . . . . . . . . 34
SSL/TLS error messages . . . . . . . . . 35
iKeyman . . . . . . . . . . . . . . 37
Certificate exit . . . . . . . . . . . . 40
LDAP and CRLs. . . . . . . . . . . . 45
Multi-valued certificate Distinguished Name OU
properties . . . . . . . . . . . . . . 46

Network Dispatcher support . . . . . . . . 47
Java Security Manager . . . . . . . . . . . 49
Security exits . . . . . . . . . . . . . . 52

The com.ibm.mq.ipt.exit.SecurityExit class . . . 53
The com.ibm.mq.ipt.exit.SecurityExitResponse
class . . . . . . . . . . . . . . . . 55
Security exit return codes. . . . . . . . . 56
Tracing . . . . . . . . . . . . . . . 56

Port number control . . . . . . . . . . . 57
Other security considerations . . . . . . . . 57
Connection logs . . . . . . . . . . . . . 58

Chapter 5. Installing, uninstalling, and
migrating MQIPT . . . . . . . . . . 59
Installing MQIPT . . . . . . . . . . . . 59
Uninstalling MQIPT version 2.0 . . . . . . . 61
Uninstalling MQIPT version 2.1 . . . . . . . 62
Migrating from MQIPT Version 2.0 to Version 2.1. . 62
Upgrading your MQIPT Version 2.1 installation . . 66

Chapter 6. Scenarios: Getting started
with MQIPT . . . . . . . . . . . . . 69
Scenario: Verifying that MQIPT is working correctly 70
Scenario: Creating a key-ring file . . . . . . . 72
Scenario: Creating test certificates . . . . . . . 75
Scenario: Authenticating an SSL/TLS server . . . 76
Scenario: Authenticating an SSL/TLS client . . . . 79
Scenario: Configuring HTTP tunneling . . . . . 81
Scenario: Configuring an HTTP proxy . . . . . 83
Scenario: Configuring access control . . . . . . 85
Scenario: Configuring a SOCKS proxy . . . . . 87
Scenario: Configuring a SOCKS client . . . . . 88
Scenario: Configuring MQIPT clustering support . . 90
Scenario: Allocating port numbers . . . . . . . 93
Scenario: retrieving CRLs by using an LDAP server 94
Scenario: running MQIPT in SSL/TLS proxy mode 97
Scenario: running MQIPT in SSL/TLS proxy mode
with a security manager . . . . . . . . . . 99
Scenario: Apache rewrite . . . . . . . . . 101
Scenario: Using a security exit . . . . . . . . 103
Scenario: Routing client connection requests to IBM
MQ queue manager servers by using security exits . 105
Scenario: Dynamically routing client connection
requests . . . . . . . . . . . . . . . 108
Scenario: Using a certificate exit to authenticate an
SSL/TLS server . . . . . . . . . . . . . 111

Chapter 7. Administering and
configuring MQIPT . . . . . . . . . 115
Using the MQIPT Administration Client . . . . 115

Starting the Administration Client . . . . . 115
Administering an instance of MQIPT . . . . 116
Setting MQIPT properties . . . . . . . . 116
Administration Client menu options . . . . . 117

Administering MQIPT by using the command line 118
Configuration reference information . . . . . . 119

Summary of properties . . . . . . . . . 120
Global properties . . . . . . . . . . . 124
Route properties . . . . . . . . . . . 125

Making backups . . . . . . . . . . . . 142
Performance tuning . . . . . . . . . . . 143

Chapter 8. Troubleshooting and
support . . . . . . . . . . . . . . 145
Automatically starting MQIPT. . . . . . . . 145

Using a Windows service control program. . . 147

© Copyright IBM Corp. 2000, 2017 iii



Using a UNIX or Linux init.d system service 148
Checking for end-to-end connectivity . . . . . 148
Using JRE diagnostic options . . . . . . . . 149
Tracing errors in MQIPT. . . . . . . . . . 149
Tracing errors in iKeyman and iKeycmd . . . . 150
Reporting problems . . . . . . . . . . . 150

Chapter 9. Messages . . . . . . . . 153
List of MQIPT MQC messages . . . . . . . 153

Index . . . . . . . . . . . . . . . 173

Notices . . . . . . . . . . . . . . 177
Programming interface information . . . . . . 179
Trademarks . . . . . . . . . . . . . . 179

Sending your comments to IBM . . . 181

iv IBM MQ: Internet Pass-Thru



Figures

1. Example of MQIPT as a channel concentrator 2
2. Example of MQIPT in a DMZ firewall . . . . 3
3. Example of MQIPT and HTTP tunneling . . . 3
4. Example of MQIPT and SSL/TLS . . . . . 4
5. Using the Network Dispatcher with MQIPT 48
6. Installation verification test network diagram 71
7. SSL/TLS server network diagram . . . . . 77
8. SSL/TLS client network diagram . . . . . 79
9. HTTP proxy network diagram . . . . . . 81

10. HTTP proxy network diagram . . . . . . 83
11. Access control network diagram . . . . . 85
12. SOCKS proxy network diagram . . . . . . 87

13. SOCKS client network diagram . . . . . . 89
14. Clustering network diagram . . . . . . . 90
15. Port allocation network diagram . . . . . 93
16. LDAP server network diagram . . . . . . 95
17. SSL/TLS proxy mode network diagram 98
18. SSL/TLS proxy mode network diagram 99
19. Apache rewrite network diagram . . . . . 102
20. Security exit network diagram . . . . . . 104
21. Routing security exit network diagram 106
22. Dynamic one route exit network diagram 109
23. SSL/TLS server network diagram . . . . . 111

© Copyright IBM Corp. 2000, 2017 v



vi IBM MQ: Internet Pass-Thru



Chapter 1. Introduction to IBM MQ Internet Pass-Thru

IBM® MQ Internet Pass-Thru (MQIPT) is an extension to the base IBM IBM MQ
product. MQIPT (category 3 SupportPac MS81) can be downloaded from the IBM
MQ SupportPac website (http://www.ibm.com/software/integration/wmq/
supportpacs).

MQIPT runs as a stand-alone service that can receive and forward IBM MQ
message flows, either between two IBM MQ queue managers or between a IBM
MQ client and a IBM MQ queue manager.

MQIPT enables this connection when the client and server are not on the same
physical network.

One or more instances of MQIPT can be placed in the communication path
between two IBM MQ queue managers, or between a IBM MQ client and a IBM
MQ queue manager. The instances of MQIPT allow the two IBM MQ systems to
exchange messages without needing a direct TCP/IP connection between the two
systems. This is useful if the firewall configuration prohibits a direct TCP/IP
connection between the two systems.

MQIPT listens on one or more TCP/IP ports for incoming connections, which can
carry either normal IBM MQ messages, IBM MQ messages tunneled inside HTTP,
or messages encrypted using Transport Layer Security (TLS) or Secure Sockets
Layer (SSL). MQIPT can handle multiple concurrent connections.

The IBM MQ channel that makes the initial TCP/IP connection request is referred
to as the caller, the channel to which it is attempting to connect as the responder,
and the queue manager that it is ultimately trying to contact as the destination
queue manager.

MQIPT holds data in memory as it forwards it from its source to its destination.
No data is saved on disk (except for memory paged to disk by the operating
system). The only time MQIPT accesses the disk explicitly is to read its
configuration file and to write connection log and trace records.

The full range of IBM MQ channel types can be made through one or more
instances of MQIPT. The presence of MQIPT in a communication path has no effect
on the functional characteristics of the connected IBM MQ components, but there
might be some effect on the performance of message transfer.

MQIPT can be used in conjunction with IBM MQ and IBM Integration Bus, as
described in “Possible configurations of MQIPT” on page 13.

There are a number of potential uses for MQIPT:

MQIPT can be used as a channel concentrator

By using MQIPT in this way, channels to or from multiple separate hosts can
appear to a firewall as if they are all to or from the MQIPT host. This makes it
easier to define and manage firewall filtering rules.

© Copyright IBM Corp. 2000, 2017 1

http://www.ibm.com/software/integration/wmq/supportpacs
http://www.ibm.com/software/integration/wmq/supportpacs
http://www.ibm.com/software/integration/wmq/supportpacs


MQIPT can be placed in a DMZ to provide a single point of
access

If MQIPT is placed within a DMZ firewall (a firewall configuration for securing
local area networks), on a computer with a known and trusted internet protocol
(IP) address, MQIPT can be used to listen for incoming IBM MQ channel
connections which it can then forward to the trusted intranet; the inner firewall
must allow this trusted computer to make inbound connections. In this
configuration, MQIPT prevents external requests for access from receiving the true
IP addresses of the computers in the trusted intranet. In this way, MQIPT provides
a single point of access.

Figure 1. Example of MQIPT as a channel concentrator

2 IBM MQ: Internet Pass-Thru



MQIPT can communicate by means of HTTP tunneling

If two instances of MQIPT are deployed in line, they can communicate by using
HTTP. The HTTP tunneling feature enables requests to be transmitted through
firewalls, by the use of existing HTTP proxies. The first MQIPT inserts the IBM
MQ protocol into HTTP and the second extracts the IBM MQ protocol from its
HTTP wrapper and forwards it to the destination queue manager.

MQIPT can encrypt messages

If MQIPT is configured as in the previous example, requests can be encrypted
before transmission through firewalls. The first MQIPT encrypts the data and the
second decrypts it using SSL/TLS before sending it to the destination queue
manager.

Figure 2. Example of MQIPT in a DMZ firewall

Figure 3. Example of MQIPT and HTTP tunneling

Chapter 1. Introduction to IBM MQ Internet Pass-Thru 3



Edition Notice
This edition applies to version 2.1.0.3 of IBM MQ Internet Pass-Thru and to all
subsequent releases and modifications until otherwise indicated in new editions.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

Who this book is for

This book is for systems designers, technical IBM MQ administrators, and firewall
and network administrators.

What you need to know to understand this document

You need a good understanding of the following concepts:
v The administration of IBM MQ queue managers and message channels, as

described in the IBM MQ product documentation.
v The way that firewalls are implemented.
v Internet protocol routing/networking.
v The IBM Network Dispatcher for load balancing and enhanced availability.

Prerequisites
The readme file supplied with MQIPT specifies the exact operating system versions
that are supported.

The J2SE Development Kit (JDK) 6.0 or later is required to create an MQIPT exit.

The only supported network protocol is TCP/IP.

Figure 4. Example of MQIPT and SSL/TLS

4 IBM MQ: Internet Pass-Thru



Accessibility information

The Administration Client graphical user interface (GUI) has been built with
accessibility in mind. It is straightforward to perform all of the available functions
without using a mouse, by using keyboard equivalents. You can navigate round
the screen by using Tab, Shift+Tab, Ctrl+Tab, and the Up Arrow, Down Arrow, Left
Arrow, and Right Arrow keys in the standard manner. You can achieve the
equivalent to clicking buttons first selecting the button and then pressing Enter.

You can reach menu options either by combinations of Tab and Arrow keys or by
using the accelerator keys, which are available for all the options. For example, you
can close the GUI by selecting first Alt+f, then Alt+q (File->Quit). When you reach
a menu item, you can activate it by using Enter.

You can use the Arrow keys to navigate around the tree. In particular, you can use
the Right and Left arrow keys to open or close an MQIPT node, allowing you to
show or hide the routes.

You can use the Spacebar key to change the state of selected checkboxes. You can
use the Enter key to select fields for editing.

Look and feel

Ideally the GUI should adopt the look and feel of the environment. As this is not
always possible, you can provide a configuration file to tailor the look and feel of
the GUI to suit your needs. The configuration file is called custom.properties and
should be placed in the bin subdirectory.

Use this configuration file to configure the following GUI elements:
v The foreground color (the color of the text)
v The background color
v The font of the text
v The style of the text (plain, bold, italic, or bold and italic)

A sample configuration file customSample.properties is provided, which contains
comments showing how it can be changed. You are encouraged to copy this file to
bin/custom.properties and to make any required changes.

Privacy
IBM Software products, including software as a service solutions, ("Software
Offerings") might use cookies or other technologies to collect product usage
information, to help improve the user experience, to tailor interactions with the
user, or for other purposes. In many cases no personally identifiable information is
collected by the Software Offerings. Some of our Software Offerings can help you
to collect personally identifiable information. The information that follows is
specific to this Software Offering.

The IBM MQ protocol requires full duplex data flows over HTTP. To satisfy this
requirement, the HTTP features of IBM MQ Internet Pass-Thru use cookies to
coordinate pairs of related network connections. These cookies record the following
information:
v An anonymous session identifier
v The MQIPT route destination IP address or DNS host name
v The MQIPT route destination TCP/IP port number

Chapter 1. Introduction to IBM MQ Internet Pass-Thru 5



Use of HTTP is disabled by default. If HTTP is enabled, cookies are required for
correct MQIPT operation.

MQIPT can optionally record connection log files of network connections. These
files might include the following information:
v IP addresses and DNS host names
v TCP/IP port numbers
v Digital certificate identity information (but not private keys)
v Additional information logged by security exits or certificate exits, if they are

used. IBM supplies some sample exits with MQIPT which record IP addresses,
DNS host names, TCP/IP port numbers and IBM MQ channel names. You can
also use other exits which might record other details. By default, no exits are
enabled.

The connection log is an optional feature of MQIPT. It is disabled by default,
although it is enabled in the supplied sample configuration file mqiptSample.conf.
Any configuration based upon the sample is therefore likely to use a connection
log. The connection log can be disabled by setting the ConnectionLog property to
false in the [global] section of mqipt.conf. Connection log files are never
automatically transferred outside the system where MQIPT is running; they are
only written to the local disk.

MQIPT can also optionally record trace files for problem diagnosis. These files
might include the following information:
v IP addresses and DNS host names
v TCP/IP port numbers
v Digital certificate identity information (but not private keys)
v IBM MQ object names, such as queue manager names, channel names, and

queue names
v The content of any IBM MQ messages that flow through MQIPT (except in

SSLProxyMode routes when the connections are encrypted)

The trace facility is an optional feature of MQIPT that is disabled by default. Trace
can also be disabled in mqipt.conf by removing all Trace lines or changing all
Trace lines to Trace=0 (where zero indicates that trace is disabled). Trace files are
never automatically transferred outside of the system where MQIPT is running;
they are only written to the local disk.

6 IBM MQ: Internet Pass-Thru



Chapter 2. What's new in MQIPT Version 2.1

Provision of a Java™ Runtime Environment

MQIPT Version 2.1 includes a Java Runtime Environment (JRE). This means that
you no longer have to provide a JRE on the PATH in order to run MQIPT. The
MQIPT command scripts automatically uses the JRE provided. Only a JRE
supplied by IBM for use with MQIPT should be installed. Using an alternative JRE
is not supported.

The SSL and TLS support for MQIPT is provided by using the JSSE library from
the supplied JRE.

SSL/TLS features

MQIPT now supports several new SSL/TLS features:
v TLS 1.1 and TLS 1.2 protocol support.
v SHA-2 hash algorithms for digital signatures and CipherSuite message integrity.

SHA-224, SHA-256, SHA-384 and SHA-512 are all supported.
v Elliptic Curve encryption.
v Support for many new CipherSuites including those that use Galois/Counter

Mode (GCM).

See “SSL/TLS support” on page 24 for more information.

Certificate and key management

MQIPT version 2.1 provides the same iKeyman and iKeycmd tools used to
administer digital certificates in IBM MQ. These can be run using the new
mqiptKeyman and mqiptKeycmd commands. For more information about MQIPT
digital certificate considerations, see “Digital certificate considerations for MQIPT”
on page 38.

Multiple installations

From version 2.1 of MQIPT, you can install the product wherever you want on
your computer, and can have several installations at the same time. Each
installation can be used and maintained separately, so for example you can have
different fix pack levels of MQIPT installed in different locations if you choose. See
“Installing MQIPT” on page 59 for more details.

Certificate DN attributes

The following additional certificate DN attributes are now supported for use in
selecting site certificates and matching remote peer certificates:
v Domain Component (DC)
v Domain Name Qualifier (DNQ)
v Postal Code (PC)
v Street address (STREET)
v Title (T)
v User ID (UID)

© Copyright IBM Corp. 2000, 2017 7



Note: The iKeyman and iKeycmd tools refer to the postal code attribute as
POSTALCODE, not PC. In particular, always specify POSTALCODE in the -dn parameter
when you use the mqiptKeycmd command-line certificate management tool to
request or create certificates with a postal code.

New route properties

The following new route properties can be used:
v SSLClientDN_DC
v SSLClientDN_DNQ
v SSLClientDN_PC
v SSLClientDN_Street
v SSLClientDN_T
v SSLClientDN_UID
v SSLClientSiteDN_DC
v SSLClientSiteDN_DNQ
v SSLClientSiteDN_PC
v SSLClientSiteDN_Street
v SSLClientSiteDN_T
v SSLClientSiteDN_UID
v SSLServerDN_DC
v SSLServerDN_DNQ
v SSLServerDN_PC
v SSLServerDN_Street
v SSLServerDN_T
v SSLServerDN_UID
v SSLServerSiteDN_DC
v SSLServerSiteDN_DNQ
v SSLServerSiteDN_PC
v SSLServerSiteDN_Street
v SSLServerSiteDN_T
v SSLServerSiteDN_UID

See “Route properties” on page 125 for a full list of route properties with
descriptions.

The SSLClientDN_DC, SSLClientSiteDN_DC, SSLServerDN_DC and SSLServerSiteDN_DC
route properties can match multiple domain component (DC) values in certificate
Distinguished Names. To match multiple DC values, use a comma as a separator
in the route property value.

Tracing

In version 2.0, tracing was global to the entire MQIPT process. The trace level was
calculated as the maximum value of the Trace property from all sections in the
mqipt.conf file: trace was then enabled or disabled for all threads in the process
based on this value. It was not possible to trace a subset of routes, resulting in
potentially large trace files.

8 IBM MQ: Internet Pass-Thru



In version 2.1, the Trace setting is route-specific. Enabling trace for one route by
adding a Trace property to its [route] section in mqipt.conf does not cause other
routes to be traced.

Routes without a Trace property in their [route] section inherit the trace setting
from the [global] section. Therefore you can use the [global] section Trace
property to enable trace for multiple routes, although any route that explicitly sets
Trace=0 is not traced because the [route] section trace setting overrides the
[global] section setting. For more information about the global and route Trace
property settings, see “Global properties” on page 124 and “Route properties” on
page 125.

Error messages

There are some new and amended error messages in Version 2.1. For a complete
list of messages see, “List of MQIPT MQC messages” on page 153.

The SSL and TLS error messages have changed due to the use of JSSE. See
“SSL/TLS error messages” on page 35 for details.

Removal of the MQIPT servlet

The MQIPT servlet has been removed. The servlet supplied with MQIPT Version
2.0 can be downloaded separately and can still be used if necessary. Note that the
servlet does not support the sharing conversations feature of IBM MQ, so any
SVRCONN channels that connect through MQIPT must have SHARECNV(0).

Chapter 2. What's new in MQIPT Version 2.1 9



10 IBM MQ: Internet Pass-Thru



Chapter 3. How MQIPT works

In its simplest configuration, MQIPT acts as a IBM MQ protocol forwarder. It
listens on a TCP/IP port and accepts connection requests from IBM MQ channels.

If a well-formed request is received, MQIPT establishes a further TCP/IP
connection between itself and the destination IBM MQ queue manager. It then
passes all protocol packets it receives from its incoming connection on to the
destination queue manager, and it returns protocol packets from the destination
queue manager back to the original incoming connection.

No change to the IBM MQ protocol (client/server or queue manager to queue
manager) is involved because neither end is directly aware of the presence of the
intermediary. New versions of the IBM MQ client or server code are not required.

To use MQIPT, the caller channel must be configured to use the MQIPT host name
and port, not the host name and port of the destination queue manager. This is
defined with the CONNAME property of the IBM MQ channel. MQIPT reads the
incoming data and simply passes it through to the destination queue manager.
Other configuration fields, such as the user ID and password in a client/server
channel, are similarly passed to the destination queue manager.

Multiple queue managers

MQIPT can be used to allow access to more than one destination queue manager.
For this to work, there must be a mechanism to tell MQIPT which queue manager
to connect to, so MQIPT uses the incoming TCP/IP port number to determine
which queue manager to connect to.

You can therefore configure MQIPT to listen on multiple TCP/IP ports. Each
listening port is mapped to a destination queue manager through an MQIPT route.
You can define up to 100 such routes, which associate a listening TCP/IP port with
the host name and port of the destination queue manager. This means that the host
name (IP address) of the destination queue manager is never visible to the
originating channel. Each route can handle multiple connections between its
listening port and destination, each connection acting independently.

MQIPT configuration file

MQIPT uses a configuration file called mqipt.conf. This file contains definitions of
all routes and their associated properties. See Chapter 7, “Administering and
configuring MQIPT,” on page 115 for more information about mqipt.conf.

When MQIPT is launched, it starts each route that is listed in the configuration file.
Messages are written to the system console showing the status of each route. When
message MQCPI078 is shown for a route, that route is ready to accept connection
requests.

Starting and stopping MQIPT
You can start MQIPT either from the command line, or make it start automatically
when the system is started. You can stop MQIPT by using either the
Administration Client or the command line.

© Copyright IBM Corp. 2000, 2017 11



Starting MQIPT from the command line

MQIPT is installed into an installation directory, such as:
v /opt/mqipt, with executable scripts in /opt/mqipt/bin
v C:\MQIPT, with executable scripts in C:\MQIPT\bin

MQIPT also uses a home directory, which contains the configuration file
mqipt.conf and any files that are output by MQIPT when it is running. The
following subdirectories of the MQIPT home directory are created automatically
when MQIPT is invoked for the first time:
v An errors directory in which any First Failure Support Technology™ (FFST™)

and trace files are written
v A logs directory in which the connection log is kept

The user ID under which MQIPT runs must have permission to create these
directories, or alternatively the directories must already exist and the user ID must
have permission to create, read, and write files in them. Also, if you are using a
Security Manager policy then the security policy must grant the required
permissions for these directories. For more information about Security Manager
policy settings refer to “Java Security Manager” on page 49.

You can use the installation directory as a home directory. If you use this directory,
you must ensure that the user ID under which MQIPT runs has the appropriate
permissions, and that any Security Manager policy is configured correctly.

To start MQIPT, enter the following command:
v On Windows systems:

MQIPT_INSTALLATION_PATH\bin\mqipt MQIPT_HOME_DIR

v On UNIX and Linux systems:
MQIPT_INSTALLATION_PATH/bin/mqipt MQIPT_HOME_DIR

Note that the MQIPT home directory can be specified as either an absolute path or
relative to the current working directory of the command shell.

Console messages show the status of MQIPT. If an error occurs, see Chapter 8,
“Troubleshooting and support,” on page 145. The following messages are an
example of the output when MQIPT starts successfully:
5639-L92 (C) Copyright IBM Corp. 2000, 2013 All Rights Reserved
MQCPI001 IBM WebSphere MQ Internet Pass-Thru V2.1.0.0 starting
MQCPI004 Reading configuration information from mqipt.conf
MQCPI021 Password checking has been enabled on the command port
MQCPI008 Listening for control commands on port 1881
MQCPI011 The path C:\MQIPT\logs will be used to store the log files
MQCPI006 Route 1414 is starting and will forward messages to :
MQCPI034 ....examplehost(1414)
MQCPI035 ....using MQ protocols
MQCPI057 ....trace level 5 enabled
MQCPI078 Route 1414 ready for connection requests

Starting MQIPT automatically

To start MQIPT automatically when the system is started, use the mqiptService
command to install the MQIPT service.
v On Windows systems, see “Using a Windows service control program” on page

147.

12 IBM MQ: Internet Pass-Thru



v On other platforms, see “Using a UNIX or Linux init.d system service” on page
148.

Stopping MQIPT

You can stop MQIPT by using either the Administration Client or the command
line.
v To use the Administration Client, mqiptGui, see “Using the MQIPT

Administration Client” on page 115.
v To use the command line administration tool, mqiptAdmin, see “Administering

MQIPT by using the command line” on page 118.

Possible configurations of MQIPT
MQIPT can be used in conjunction with IBM MQ and IBM Integration Bus.

The following multi-part figure shows many of the possible configurations for
MQIPT in a IBM MQ topology. It illustrates different ways in which MQIPT can
send messages. It shows clients and servers on an intranet, inside a firewall, and
on the Internet outside the firewall, passing messages to MQIPT, HTTP proxy, or
SOCKS proxy, which forwards them.

The messages are received by an MQIPT proxy or an HTTP proxy in a DMZ before
passing the message through the inbound firewall to a server.

Note that the HTTP proxy, SOCKS proxy, and MQIPT computers on the intranet
side of the firewall represent the possibility of multiple computers chained together
on the internet. For example, an MQIPT computer could communicate through one
or more SOCKS or HTTP proxy computers, or further MQIPT computers, before
reaching its target.

Chapter 3. How MQIPT works 13



14 IBM MQ: Internet Pass-Thru



Chapter 3. How MQIPT works 15



Compatible configurations
Compatible connection scenarios where a IBM MQ client or queue manager
communicates with MQIPT. The same or a second MQIPT route is used to
communicate with a destination queue manager.

Compatible configurations with a single MQIPT route

You can use a single MQIPT route to communicate with IBM MQ.

The columns in Table 1 contain the following information:
1. The protocol used between IBM MQ and the MQIPT route. The connection can

be created by either a IBM MQ client or queue manager, and can use either
IBM MQ Formats and Protocols (FAP) or a SSL/TLS protocol.

2. The mode in which the MQIPT route operates. The format of the
communication across the Internet between MQIPT and IBM MQ, is
determined by the configuration of the MQIPT route. Note that where the table
mentions SSL, you can also use TLS.

3. The protocol used between the MQIPT route and the destination queue
manager.

Table 1. Valid configurations with a single instance of MQIPT

1. IBM MQ source protocol 2. Mode of the MQIPT route 3. IBM MQ destination
protocol

FAP
FAP-proxy (default) FAP

FAP-server and SSL-client SSL/TLS

SSL/TLS

SSL-proxy SSL/TLS

SSL-server and FAP-client FAP

SSL-server and SSL-client SSL/TLS

Compatible configurations with more than one MQIPT route

You might choose to use more than one route, on one or more instances of MQIPT,
to communicate with IBM MQ.

The columns in Table 2 on page 17 contain the following information:
1. The protocol used between IBM MQ and the first MQIPT route. The connection

can be created by either a IBM MQ client or queue manager, and can use either
IBM MQ Formats and Protocols (FAP) or a SSL/TLS protocol.

2. The mode in which the first MQIPT route operates. The format of the
communication across the Internet between MQIPT and IBM MQ, is
determined by the configuration of the MQIPT route. Note that where the table
mentions SSL, you can also use TLS.

3. The mode in which the second MQIPT route operates.
4. The protocol used between the second MQIPT route and the destination queue

manager.

16 IBM MQ: Internet Pass-Thru



Table 2. Valid configurations with multiple instances of MQIPT

1. IBM MQ source
protocol

2. Mode of the first
MQIPT route

3. Mode of the
second MQIPT route

4. IBM MQ
destination protocol

FAP (default)

FAP-proxy (default) FAP-proxy (default) FAP

FAP-server and
SSL-client

SSL-proxy SSL/TLS

SSL-server and
FAP-client

FAP

SSL-server and
SSL-client

SSL/TLS

HTTP-client
HTTP-server and
SSL-client

SSL/TLS

HTTPS-client
HTTPS-server and
SSL-client

SSL/TLS

HTTP-client HTTP-server FAP

HTTPS-client HTTPS-server FAP

SSL/TLS

SSL-proxy

SSL-proxy SSL/TLS

SSL-server and
FAP-client

FAP

SSL-server and
SSL-client

SSL/TLS

HTTP-client HTTP-server FAP

HTTPS-client HTTPS-server SSL/TLS

HTTP-client
HTTP-server and
SSL-client

FAP

HTTPS-client
HTTPS-server and
SSL-client

SSL/TLS

Supported channel configurations
All IBM MQ channel types are supported, but configuration is restricted to TCP/IP
connections. To a IBM MQ client or queue manager, MQIPT appears as if it is the
destination queue manager. Where channel configuration requires a destination
host and port number, the MQIPT host name and listener port number are
specified.

Client/server channels 
MQIPT listens for incoming client connection requests, and then forwards them
by using either HTTP tunneling, SSL/TLS, or as standard IBM MQ protocol
packets. If MQIPT is using HTTP tunneling or SSL/TLS it forwards them on a
connection to a second MQIPT. If it is not using HTTP tunneling, it forwards
them on a connection to what it sees as the destination queue manager
(although this could in turn be a further MQIPT). When the destination queue
manager has accepted the client connection, packets are relayed between client
and server.

Cluster sender/receiver channels
If MQIPT receives an incoming request from a cluster-sender channel, it
assumes the queue manager has been SOCKS-enabled and the true destination
address will be obtained during the SOCKS handshaking process. It forwards

Chapter 3. How MQIPT works 17



the request to the next MQIPT or destination queue manager in exactly the
same way as for client connection channels. This also includes auto-defined
cluster-sender channels.

Sender/receiver 
If MQIPT receives an incoming request from a sender channel, it forwards it to
the next MQIPT or destination queue manager in exactly the same way as for
client connection channels. The destination queue manager validates the
incoming request and starts the receiver channel if appropriate. All
communications between sender and receiver channel (including security
flows) are relayed.

Requester/server 
This combination is handled in the same manner as the preceding
configurations. Validation of the connection request is performed by the server
channel at the destination queue manager.

Requester/sender 
The "callback" configuration could be of use if the two queue managers are not
allowed to establish direct connections to each other, but are both allowed to
connect to MQIPT and to accept connections from it.

Server/requester and server/receiver 
These are handled by MQIPT in the same way that it handles the
Sender/Receiver configuration.

Channel termination and failure conditions

When MQIPT detects closure (either normal or abnormal) of a IBM MQ channel, it
propagates the channel closure. If you close a route by using MQIPT, all channels
going through that route are closed.

MQIPT provides an optional idle-timeout facility. If MQIPT detects that a channel
has been idle for a period of time exceeding the timeout, it performs an immediate
shutdown on the two connections in question.

The IBM MQ systems at either end of the channel observe these abnormal
shutdown conditions either as network failures or as termination of the channel by
their partner. The channel is then able to restart and recover (if the failure happens
during a protocol in-doubt period) as if MQIPT was not being used.

Safety of messages

When using fast, non-persistent IBM MQ messages, if the MQIPT route fails or is
restarted when a IBM MQ message is in transit, the message might be lost. Before
restarting the route, make sure that all IBM MQ channels using the MQIPT route
are inactive.

See the IBM MQ product documentation for more information about IBM MQ
messages and channels.

Multi-instance queue managers and high availability
MQIPT can be used with multi-instance queue managers in high availability
environments.

18 IBM MQ: Internet Pass-Thru



MQIPT has no persistent state and so there is no benefit in failing over MQIPT to
another system. Instead, have multiple instances of MQIPT with identical
mqipt.conf configuration files running on different systems. Monitor each instance
of MQIPT for availability and restart it (on the same system) if necessary. This
provides a set of identical MQIPT instances that can be used to route connections.
You must then ensure that IBM MQ can route connections to MQIPT and that
MQIPT can forward those connections to the destination queue manager.

Outbound IBM MQ channels can be directed to an available MQIPT instance in
various ways, for example:
v Use a load balancer or high availability router, such as the IBM Network

Dispatcher from the WebSphere® Edge Components product.
v Specify multiple connection names in the IBM MQ channel definition using a

comma-separated list. IBM MQ then tries to connect to each MQIPT address in
turn until it finds an available MQIPT instance.

You must also direct connections from MQIPT to the destination queue manager. If
the high-availability configuration ensures that the IP address fails over with the
destination queue manager, then no special MQIPT configuration is required:
specify the destination IP address in the Destination route property and allow the
failover operation to move the IP address with the queue manager.

However, if the IP address of the queue manager changes after a failover then you
must arrange for MQIPT to forward the connection to the correct destination. This
could be done in one of several ways:
v Write a routing exit that checks which IP address and port number are

accessible, and then override the route destination for each connection. Some
sample routing exits are provided with MQIPT; they can be adapted for this
purpose.

v Use a high availability load balancer to redirect the connection.
v Define multiple MQIPT routes, one for each IP address and port where the

queue manager might be running. Then direct the IBM MQ connections to the
various MQIPT routes, for example by listing all of the route IP addresses and
port numbers in a comma-separated list in the connection name of the outbound
channel.

It is also important to tune all of the end-to-end components on the network path:
1. Connection attempts to unavailable systems must fail promptly so that

reconnect attempts can move on to the first available destination.
For MQIPT SSL routes, tune the SSLClientConnectTimeout route property to
ensure prompt connection failure for unavailable destinations. Refer to the IBM
MQ documentation for details of IBM MQ tuning parameters. Also, consult
your operating system documentation for details of TCP/IP tuning for the
operating system. In all cases, failed connection attempts should quickly return
a network failure (for example, a TCP reset packet), or should time out without
undue delay.

2. Active connections to a failed system must be severed promptly so that new
connections can be established.
You should also consider the impact of a failover at a time when connections
are actively using MQIPT. It is likely that network connections will be severed
during a failover. For client applications, you can use the IBM MQ automatic
client reconnection feature to re-establish severed connections. For message
channels, you can specify a short retry interval so that the channel reconnects

Chapter 3. How MQIPT works 19



promptly. Consult the IBM MQ documentation for more information about
automatic client reconnection and message channel retry configuration.

20 IBM MQ: Internet Pass-Thru



Chapter 4. Using MQIPT features

MQIPT supports various features, which are described in this section.
v “HTTP support”
v “SOCKS support” on page 22
v “SSL/TLS support” on page 24
v “Network Dispatcher support” on page 47
v “Java Security Manager” on page 49
v “Security exits” on page 52
v “Port number control” on page 57
v “Other security considerations” on page 57
v “Connection logs” on page 58

HTTP support
MQIPT supports HTTP tunneling. MQIPT can be configured so that the data
packets it forwards are encoded as HTTP requests.

IBM MQ channels do not accept HTTP requests. Therefore a second MQIPT is
required to receive the HTTP requests and convert them back into normal IBM MQ
protocol packets. The second MQIPT strips off the HTTP header to convert the
incoming packet back into a standard IBM MQ protocol packet, before passing it
on to the destination queue manager.

When HTTP is being used between two instances of MQIPT, the TCP/IP
connection on which the HTTP requests and replies flow is persistent and is kept
open for the lifetime of the message channel. MQIPT does not close the TCP/IP
connection between request/reply pairs.

If two instances of MQIPT are communicating through HTTP, it is possible that an
HTTP request might stay outstanding for an extended period. An example is in a
requester/server channel, when the server side is waiting for new messages to
arrive on its transmission queue. The IBM MQ channel protocol provides a
"heartbeat" mechanism, which requires the waiting end periodically to send
heartbeat messages to its partner. The default channel heartbeat period is 5
minutes. MQIPT uses this heartbeat as the HTTP reply. Do not disable this channel
heartbeat, or set it to an excessively high value, to avoid causing problems with
timeouts in some firewalls.

MQIPT accepts HTTP traffic in chunked format, generated by an HTTP proxy or
server.

Some HTTP proxies have their own properties for controlling persistent
connections, for example, the number of requests that can be made on a persistent
connection. The HTTP proxy must also support HTTP 1.1 protocol. When using the
IBM WebSphere Caching Proxy, the following properties should be set:
v MaxPersistenceRequest set to a high value (for example, 5000)
v PersistentTimeout set to a high value (for example, 12 hours)
v ProxyPersistence set to on

© Copyright IBM Corp. 2000, 2017 21



To maintain the one-to-one mapping of persistent connections across the Caching
Proxy you must specify the UseSession field on the Proxy directive. For example,
when using a default UriName on MQIPT1 and where MQIPT2 is listening on port
address 1415:
MQIPT1 --> Caching Proxy --> MQIPT2

update the ibmproxy.conf file with either:
Proxy http://mqipt2:1415/mqipt http://mqipt2:1415/mqipt UseSession

or
Proxy http://mqipt2:*/mqipt http://mqipt2:*/mqipt UseSession

See “Scenario: Configuring an HTTP proxy” on page 83 for an example of using
HTTP.

HTTPS

HTTPS can be used on an HTTP connection by enabling the HTTPS and SSLClient
route properties on the MQIPT issuing the client connection. MQIPT must have
access to the trusted CA certificate that will be used to authenticate the target
HTTP proxy/server. The SSLClientCAKeyring property can be used to define the
key-ring file containing the trusted CA certificate.

A common setup for HTTPS will use a local HTTP proxy to tunnel out through a
firewall and connect to a remote HTTP server (or another proxy), which will in
turn connect to the remote MQIPT. This MQIPT on the server side of the
connection does not need any specific configuration, as the connection request is
treated as any normal HTTP connection.

MQIPT uses the HTTPProxy and HTTPServer properties to distinguish the local
and remote proxies. HTTPProxy is seen to be the local HTTP proxy and
HTTPServer the remote server (or proxy).

HTTPS connections are normally made to listener port address 443 on the HTTP
proxy/server, but the HTTPProxyPort and HTTPServerPort can be used to
override this default.

SOCKS support

A SOCKS proxy is a network service used as a controlled point of exit through a
firewall. A SOCKS enabled application, running inside the firewall, can use the
SOCKS proxy to connect to a remote application.

MQIPT can act as a SOCKS proxy by enabling the SocksServer property, thereby
allowing a SOCKS-enabled IBM MQ application to connect through MQIPT to a
remote IBM MQ queue manager. When using this feature, the target destination
and destination port address are obtained during the SOCKS handshaking process
and therefore the Destination and DestinationPort route properties are overridden.
This is a key feature for supporting IBM MQ clustering.

MQIPT can also act as a SOCKS client, on behalf of a local IBM MQ application
which has not been SOCKS enabled. This is useful when using a firewall that
allows outbound connections only via a SOCKS proxy. Each MQIPT route can be
configured to communicate with a different SOCKS proxy.

22 IBM MQ: Internet Pass-Thru



See “Scenario: Configuring a SOCKS proxy” on page 87 for an example of how to
use SOCKS.

Clustering

IBM MQ clusters can be used with MQIPT by SOCKS-enabling each queue
manager in the cluster that spans the internet and by enabling MQIPT to act as
SOCKS proxy. In the following diagram, NEWYORK and CHICAGO are in a
cluster called HOME and both hold full repositories. NEWYORK, LONDON and
PARIS are in another cluster called INVENTORY. Note that CHICAGO does not
need to be SOCKS-enabled as it is in a cluster that does not need an MQIPT.

Each queue manager in the INVENTORY cluster is effectively "hidden" behind an
MQIPT. As the queue manager has been SOCKS-enabled, when a cluster-sender
channel is started, the request is sent out to its destination, using MQIPT acting as
a SOCKS proxy. Normally, the CONNAME on a cluster-receiver channel is used to
identify the local queue manager, but when used with MQIPT, the CONNAME
must identify the local MQIPT and its incoming listener port. In the following
diagram, all incoming listener port addresses are 1414 and the outgoing listener
port addresses are 1415.

There are two ways to run a SOCKS-enabled queue manager. The first is to
SOCKS-enable the whole computer where the queue manager is running. The
second is to SOCKS-enable just the queue manager. Using either method, you must
configure the SOCKS client so it only makes remote connections using MQIPT as
the SOCKS proxy and disable user authentication. There are a number of products
on the market to achieve SOCKS support. You must choose one that supports
SOCKS V5 protocol.

See “Scenario: Configuring MQIPT clustering support” on page 90 for an example
of how to configure a cluster network.

Chapter 4. Using MQIPT features 23



SSL/TLS support
Secure sockets can be used to ensure communication privacy, communication
integrity, and authentication.

Communication privacy
The connection can be made private. The data to be exchanged between
the client and the server can be encrypted and only the sender and receiver
can make sense of the data. This means that private information, such as
credit card numbers, can be transferred securely.

24 IBM MQ: Internet Pass-Thru



Communication integrity
The connection is reliable. The message transport includes a message
integrity check based on a secure hash function.

Authentication
The client can authenticate the server and an authenticated server can
authenticate the client. This means that the information is guaranteed to be
exchanged only between the intended parties. The authentication
mechanism is based on the exchange of digital certificates (X.509v3
certificates).

Secure sockets protocols

In MQIPT, secure sockets are provided by using the Secure Sockets Layer (SSL)
and the newer Transport Layer Security (TLS) protocols. The two secure sockets
protocols are similar but do not interoperate. Both SSL and TLS provide similar
security features and in this documentation the terms are used interchangeably
unless a specific difference is noted. MQIPT supports SSL version 3.0, TLS 1.0, TLS
1.1, and TLS 1.2 provided by the supplied Java Runtime Environment (JRE). The
IBM MQ CipherSpec of the remote channel determines which protocol MQIPT
uses. SSL version 3.0 is insecure and so is disabled by default from version 2.1.0.2
of MQIPT. If you need to use SSL, it can be reenabled by specifying SSLv3 in the
SSLServerProtocols and SSLClientProtocols route properties.

The SSL/TLS protocols can use different digital signature algorithms for
authentication of communication parties. The cryptographic operations that are
used in SSL/TLS, encryption for data confidentiality, and secure hashing for
message integrity, rely on the sharing of secret keys between the client and the
server. SSL/TLS provides various key exchange mechanisms that allow for the
sharing of secret keys. SSL/TLS can make use of various algorithms for encryption
and hashing.

JRE cryptographic component

The SSL/TLS cryptographic component of the JRE contains the IBMJSSEFIPS and
IBMJCEFIPS security providers, which are certified compliant with FIPS 140-2 at
level 1. These security providers have the highest priority in the JRE so that
FIPS-certified implementations are used wherever available. Various cryptographic
algorithms are supported; specify them by using SSL/TLS CipherSuites. Not all
CipherSuites are FIPS 140-2 certified.

SSL/TLS Proxy Mode

As an alternative to using SSL/TLS secure sockets directly, an MQIPT route can be
configured to operate in SSL/TLS Proxy Mode. In this mode, the route only
forwards SSL/TLS data between the two IBM MQ end-points; it does not
participate in the SSL/TLS handshake and does not require any digital certificates.

You can use SSL/TLS Proxy Mode in cases where the IBM MQ channels that
communicate through MQIPT are already configured for SSL/TLS communication
and you want to use MQIPT for another purpose, such as routing connections
through firewalls or restricting the set of allowable connections via a security exit.
When running in SSL/TLS Proxy Mode, MQIPT checks that the initial SSL/TLS
packets are valid before passing on a new connection to the destination.

Chapter 4. Using MQIPT features 25



IBM MQ version 8.0 supports the use of multiple certificates on the same queue
manager, using a per-channel certificate label attribute. Inbound channels to the
queue manager (for example, server connection or receiver) rely on detecting the
channel name using TLS Server Name Indication, in order to present the correct
certificate from the queue manager.

If you use MQIPT with a route that has both SSLServer and SSLClient set, there are
two separate TLS sessions between the endpoints, and the SNI data will not flow
across the session break.

You can use separate MQIPT routes to get multiple certificate support by selecting
the appropriate certificate, for example through the SSLServerSiteLabel and
SSLClientSiteLabel route properties. Alternatively, use MQIPT SSLProxyMode which
forwards all SSL or TLS control flows intact, including the SNI name.

Note that multiple certificates for inbound channels with a certificate label across
MQIPT work only if you are using SSL/TLS proxy mode.

CipherSuites supported by MQIPT

The following table shows which CipherSuites are supported by MQIPT and which
are enabled by default.

By default, only a subset of CipherSuites are enabled. Use the
SSLClientCipherSuites and SSLServerCipherSuites route properties if you want to
override the default set of enabled CipherSuites.

The following CipherSuite algorithms are reported as insecure: RC4, DHE, and
DH. CipherSuites based on these algorithms are no longer supported from MQIPT
version 2.1.0.2. 3DES ciphers are no longer considered secure and are disabled by
default from MQIPT version 2.1.0.3. If you are aware of the potential hazards but
still need to use one of these CipherSuites, you can add support for it to MQIPT.
See Note 5 after the table.

CipherSuite Enabled by
default (Note
4)

V2.1.0.3
support (Note
5)

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

SSL_DH_anon_WITH_AES_128_CBC_SHA

SSL_DH_anon_WITH_AES_128_CBC_SHA256

SSL_DH_anon_WITH_AES_256_CBC_SHA

SSL_DH_anon_WITH_AES_256_CBC_SHA256

SSL_DH_anon_WITH_DES_CBC_SHA

SSL_DH_anon_WITH_RC4_128_MD5

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA Yes (Note 2)

SSL_DHE_DSS_WITH_AES_128_CBC_SHA Yes (Note 2)

SSL_DHE_DSS_WITH_AES_128_CBC_SHA256 Yes (Note 2)

SSL_DHE_DSS_WITH_AES_128_GCM_SHA256

26 IBM MQ: Internet Pass-Thru



CipherSuite Enabled by
default (Note
4)

V2.1.0.3
support (Note
5)

SSL_DHE_DSS_WITH_AES_256_CBC_SHA Yes (Note 2)

SSL_DHE_DSS_WITH_AES_256_CBC_SHA256 Yes (Note 2)

SSL_DHE_DSS_WITH_DES_CBC_SHA

SSL_DHE_DSS_WITH_RC4_128_SHA

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA Yes (Note 2)

SSL_DHE_RSA_WITH_AES_128_CBC_SHA Yes (Note 2)

SSL_DHE_RSA_WITH_AES_128_CBC_SHA256 Yes (Note 2)

SSL_DHE_RSA_WITH_AES_128_GCM_SHA256

SSL_DHE_RSA_WITH_AES_256_CBC_SHA Yes (Note 2)

SSL_DHE_RSA_WITH_AES_256_CBC_SHA256 Yes (Note 2)

SSL_DHE_RSA_WITH_DES_CBC_SHA

SSL_ECDH_anon_WITH_3DES_EDE_CBC_SHA

SSL_ECDH_anon_WITH_AES_128_CBC_SHA Yes

SSL_ECDH_anon_WITH_AES_256_CBC_SHA Yes

SSL_ECDH_anon_WITH_NULL_SHA Yes

SSL_ECDH_anon_WITH_RC4_128_SHA

SSL_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA Yes (Note 6)

SSL_ECDH_ECDSA_WITH_AES_128_CBC_SHA Yes Yes

SSL_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 Yes Yes

SSL_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 Yes

SSL_ECDH_ECDSA_WITH_AES_256_CBC_SHA Yes Yes

SSL_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 Yes Yes

SSL_ECDH_ECDSA_WITH_NULL_SHA Yes

SSL_ECDH_ECDSA_WITH_RC4_128_SHA Yes (Note 3)

SSL_ECDH_RSA_WITH_3DES_EDE_CBC_SHA Yes (Note 6)

SSL_ECDH_RSA_WITH_AES_128_CBC_SHA Yes Yes

SSL_ECDH_RSA_WITH_AES_128_CBC_SHA256 Yes Yes

SSL_ECDH_RSA_WITH_AES_128_GCM_SHA256 Yes

SSL_ECDH_RSA_WITH_AES_256_CBC_SHA Yes Yes

SSL_ECDH_RSA_WITH_AES_256_CBC_SHA384 Yes Yes

SSL_ECDH_RSA_WITH_NULL_SHA Yes

SSL_ECDH_RSA_WITH_RC4_128_SHA Yes (Note 3)

SSL_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA Yes (Note 6)

SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA Yes Yes

SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 Yes Yes

SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 Yes

SSL_ECDHE_ECDSA_WITH_AES_256_CBC_SHA Yes Yes

SSL_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 Yes Yes

Chapter 4. Using MQIPT features 27



CipherSuite Enabled by
default (Note
4)

V2.1.0.3
support (Note
5)

SSL_ECDHE_ECDSA_WITH_NULL_SHA Yes

SSL_ECDHE_ECDSA_WITH_RC4_128_SHA Yes (Note 3)

SSL_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA Yes (Note 6)

SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA Yes Yes

SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA256 Yes Yes

SSL_ECDHE_RSA_WITH_AES_128_GCM_SHA256 Yes

SSL_ECDHE_RSA_WITH_AES_256_CBC_SHA Yes Yes

SSL_ECDHE_RSA_WITH_AES_256_CBC_SHA384 Yes Yes

SSL_ECDHE_RSA_WITH_NULL_SHA Yes

SSL_ECDHE_RSA_WITH_RC4_128_SHA Yes (Note 3)

SSL_KRB5_EXPORT_WITH_DES_CBC_40_MD5 Yes

SSL_KRB5_EXPORT_WITH_DES_CBC_40_SHA Yes

SSL_KRB5_EXPORT_WITH_RC4_40_MD5

SSL_KRB5_EXPORT_WITH_RC4_40_SHA

SSL_KRB5_WITH_3DES_EDE_CBC_MD5

SSL_KRB5_WITH_3DES_EDE_CBC_SHA

SSL_KRB5_WITH_DES_CBC_MD5 Yes

SSL_KRB5_WITH_DES_CBC_SHA Yes

SSL_KRB5_WITH_RC4_128_MD5

SSL_KRB5_WITH_RC4_128_SHA

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA Yes

SSL_RSA_EXPORT_WITH_RC4_40_MD5

SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA (Note 1)

SSL_RSA_FIPS_WITH_DES_CBC_SHA (Note 1) Yes

SSL_RSA_WITH_3DES_EDE_CBC_SHA Yes (Note 6)

SSL_RSA_WITH_AES_128_CBC_SHA Yes Yes

SSL_RSA_WITH_AES_128_CBC_SHA256 Yes Yes

SSL_RSA_WITH_AES_128_GCM_SHA256 Yes

SSL_RSA_WITH_AES_256_CBC_SHA Yes Yes

SSL_RSA_WITH_AES_256_CBC_SHA256 Yes Yes

SSL_RSA_WITH_DES_CBC_SHA Yes

SSL_RSA_WITH_NULL_MD5 Yes

SSL_RSA_WITH_NULL_SHA Yes

SSL_RSA_WITH_NULL_SHA256 Yes

SSL_RSA_WITH_RC4_128_MD5 Yes (Note 3)

SSL_RSA_WITH_RC4_128_SHA Yes (Note 3)

Notes:

1. Although this CipherSuite is supported for compatibility with previous
versions, it is no longer FIPS-compliant and its use should be avoided.

28 IBM MQ: Internet Pass-Thru



2. From version 2.1.0.2, if you want these CipherSuites to be enabled as defaults,
remove DHE from the jdk.tls.disabledAlgorithms list as described in Note 5.

3. From version 2.1.0.2, if you want these CipherSuites to be enabled as defaults,
remove RC4 from the jdk.tls.disabledAlgorithms list as described in Note 5.

4. The second column shows which CipherSuites are enabled as defaults.
However, they will only be used if the corresponding algorithm is supported,
as indicated in the third column.

5. The third column shows which CipherSuites are supported in version 2.1.0.3
and later. You can add support for CipherSuites that are not normally
supported by removing the corresponding algorithm (RC4, DHE, DH, 3DES, or
DES) from the list of disabled algorithms (jdk.tls.disabledAlgorithms) in the
java.security file, found in mqipt_path/java/jre/lib/security/, where
mqipt_path is the location where MQIPT is installed.

6. From version 2.1.0.3, if you want these CipherSuites to be enabled as defaults,
remove 3DES and DESede from the jdk.tls.disabledAlgorithms list as
described in Note 5.

IBM MQ CipherSpecs and MQIPT CipherSuites

The following table shows the relationship between the CipherSpecs supported by
IBM MQ and the CipherSuites supported by MQIPT.

The table also shows the protocol version that IBM MQ expects each CipherSpec to
use.

An IBM MQ CipherSpec uniquely determines both the encryption algorithm and
also the secure socket protocol version to be used. Some IBM MQ CipherSpecs
differ only by protocol version, so it is not sufficient to configure the CipherSuite
alone. The SSL/TLS handshake negotiates the highest secure sockets protocol
version supported by both sides, and then selects a CipherSuite from the set of
mutually enabled ciphers.

For example, an SSLClient route with
SSLClientCipherSuites=SSL_RSA_WITH_3DES_EDE_CBC_SHA could negotiate either
TLS_RSA_WITH_3DES_EDE_CBC_SHA (TLS 1.0) or TRIPLE_DES_SHA_US (SSL
3.0) with the remote queue manager. In fact it is possible to negotiate this
CipherSuite over TLS 1.2, but IBM MQ does not support this CipherSuite over TLS
1.2. For this reason, SSLClient routes are particularly likely to cause AMQ9616 or
AMQ9631 errors at the queue manager.

To avoid such errors on SSLClient routes, set the SSLClientProtocols route
property to the appropriate value for the intended CipherSpec. In some cases it
might also be necessary to restrict the server-side protocol set by using the
SSLServerProtocols route property. Use the protocol version shown in the table to
determine the correct setting for these route properties.

This issue particularly affects the following CipherSuites and CipherSpecs for
SSLClient routes:
v SSL_RSA_WITH_3DES_EDE_CBC_SHA, which corresponds to:

– SSL 3.0: MQ CipherSpec TRIPLE_DES_SHA_US
– TLS 1.0: MQ CipherSpec TLS_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_RSA_WITH_DES_CBC_SHA, which corresponds to:
– SSL 3.0: MQ CipherSpec DES_SHA_EXPORT

Chapter 4. Using MQIPT features 29



– TLS 1.0: MQ CipherSpec TLS_RSA_WITH_DES_CBC_SHA
v SSL_RSA_WITH_RC4_128_SHA, which corresponds to:

– SSL 3.0: MQ CipherSpec RC4_SHA_US
– TLS 1.0: MQ CipherSpec TLS_RSA_WITH_RC4_128_SHA256

If you want to use a single MQIPT SSLClient route to tunnel multiple IBM MQ
channels that use different CipherSpecs, ensure that all channels have CipherSpecs
that use the same secure sockets protocol version as each other and that you set
SSLClientProtocols to use this single protocol version.

For more information about IBM MQ CipherSpecs, see Enabling CipherSpecs in the
IBM MQ Version 9.0 Knowledge Center.

IBM MQ CipherSpec MQIPT CipherSuite Protocol
version

DES_SHA_EXPORT SSL_RSA_WITH_DES_CBC_SHA SSLv3

DES_SHA_EXPORT1024 N/A N/A

ECDHE_ECDSA_3DES_EDE_CBC_SHA256 SSL_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA TLSv1.2

ECDHE_ECDSA_AES_128_CBC_SHA256 SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 TLSv1.2

ECDHE_ECDSA_AES_128_GCM_SHA256 SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 TLSv1.2

ECDHE_ECDSA_AES_256_CBC_SHA384 SSL_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 TLSv1.2

ECDHE_ECDSA_AES_256_GCM_SHA384 N/A N/A

ECDHE_ECDSA_NULL_SHA256 SSL_ECDHE_ECDSA_WITH_NULL_SHA TLSv1.2

ECDHE_ECDSA_RC4_128_SHA256 SSL_ECDHE_ECDSA_WITH_RC4_128_SHA TLSv1.2

ECDHE_RSA_3DES_EDE_CBC_SHA256 SSL_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA TLSv1.2

ECDHE_RSA_AES_128_CBC_SHA256 SSL_ECDHE_RSA_WITH_AES_128_CBC_SHA256 TLSv1.2

ECDHE_RSA_AES_128_GCM_SHA256 SSL_ECDHE_RSA_WITH_AES_128_GCM_SHA256 TLSv1.2

ECDHE_RSA_AES_256_CBC_SHA384 SSL_ECDHE_RSA_WITH_AES_256_CBC_SHA384 TLSv1.2

ECDHE_RSA_AES_256_GCM_SHA384 N/A N/A

ECDHE_RSA_NULL_SHA256 SSL_ECDHE_RSA_WITH_NULL_SHA TLSv1.2

ECDHE_RSA_RC4_128_SHA256 SSL_ECDHE_RSA_WITH_RC4_128_SHA TLSv1.2

FIPS_WITH_3DES_EDE_CBC_SHA (Note 1) SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA SSLv3

FIPS_WITH_DES_CBC_SHA (Note 1) SSL_RSA_FIPS_WITH_DES_CBC_SHA SSLv3

NULL_MD5 SSL_RSA_WITH_NULL_MD5 SSLv3

NULL_SHA SSL_RSA_WITH_NULL_SHA SSLv3

RC2_MD5_EXPORT N/A N/A

RC4_56_SHA_EXPORT1024 N/A N/A

RC4_MD5_EXPORT SSL_RSA_EXPORT_WITH_RC4_40_MD5 SSLv3

RC4_MD5_US SSL_RSA_WITH_RC4_128_MD5 SSLv3

RC4_SHA_US SSL_RSA_WITH_RC4_128_SHA SSLv3

TLS_RSA_WITH_3DES_EDE_CBC_SHA SSL_RSA_WITH_3DES_EDE_CBC_SHA TLSv1

TLS_RSA_WITH_AES_128_CBC_SHA SSL_RSA_WITH_AES_128_CBC_SHA TLSv1

TLS_RSA_WITH_AES_128_CBC_SHA256 SSL_RSA_WITH_AES_128_CBC_SHA256 TLSv1.2

TLS_RSA_WITH_AES_128_GCM_SHA256 SSL_RSA_WITH_AES_128_GCM_SHA256 TLSv1.2

TLS_RSA_WITH_AES_256_CBC_SHA SSL_RSA_WITH_AES_256_CBC_SHA TLSv1

30 IBM MQ: Internet Pass-Thru



IBM MQ CipherSpec MQIPT CipherSuite Protocol
version

TLS_RSA_WITH_AES_256_CBC_SHA256 SSL_RSA_WITH_AES_256_CBC_SHA256 TLSv1.2

TLS_RSA_WITH_AES_256_GCM_SHA384 N/A N/A

TLS_RSA_WITH_DES_CBC_SHA SSL_RSA_WITH_DES_CBC_SHA TLSv1

TLS_RSA_WITH_NULL_NULL N/A N/A

TLS_RSA_WITH_NULL_SHA256 SSL_RSA_WITH_NULL_SHA256 TLSv1.2

TLS_RSA_WITH_RC4_128_SHA256 SSL_RSA_WITH_RC4_128_SHA TLSv1.2

TRIPLE_DES_SHA_US SSL_RSA_WITH_3DES_EDE_CBC_SHA SSLv3

Note:

1. Although this CipherSuite is supported for compatibility with previous
versions, it is no longer FIPS-compliant and its use should be avoided.

SSL/TLS handshake
The SSL/TLS handshaking process occurs during the initial connection request
between the SSL/TLS client and server, when authentication and negotiation of
CipherSuites is performed.

All the supported SSL/TLS CipherSuites (see “SSL/TLS support” on page 24),
with the exception of the anonymous CipherSuites, require server authentication
and allow client authentication; the server can be configured to request client
authentication. You should avoid using anonymous CipherSuites because they
provide no guarantees about the identity of the remote peer. It is possible for a
man-in-the-middle attack to intercept anonymous SSL/TLS connections without
your knowledge. Use anonymous CipherSuites only on trustworthy internal
networks and only if you are prepared to accept the risk of data interception.

The communication peer authentication in SSL/TLS is based on public key
cryptography and X.509v3 digital certificates. A site that should be authenticated in
the SSL/TLS protocol requires a private key and a digital certificate (which
contains the corresponding public key together with the information about the
site's identity), validity time of the certificate. The certificates are signed by a
Certification Authority, the certificates of such authorities are called signer
certificates. A certificate followed by one or more signer certificates constitute a
certificate chain. A certificate chain is characterized by the fact that, starting from
the first certificate (site certificate), the signature of each certificate in the chain can
be verified using the public key contained in the next signer certificate.

When a secure connection requiring server authentication is being established the
server sends to the client a certificate chain to prove its identity. The SSL/TLS
client will pursue the connection establishment to the server only if it can
authenticate the server, for example, verify the signature of the server's site
certificate. In order to verify that signature the SSL/TLS client needs to trust the
server site itself or at least one of the signers in the certificate chain provided by
the server. The certificates of the trusted sites and signers must be maintained on
the client side to perform this verification.

The SSL/TLS client inspects the server's certificate chain, starting with the site
certificate. The client considers the signature of the site certificate to be valid in the
following circumstances:
v The site certificate is in the repository of the trusted site or signer certificates

Chapter 4. Using MQIPT features 31



v A signer certificate in the chain can be validated based on its repository of
trusted signer certificates

In the latter case, the SSL/TLS client checks that the certificate chain is indeed
correctly signed, from the trusted signer certificate down to the server's site
certificate. Each certificate involved in this process is also examined for correctness
of format and dates of validity. If any of these checks fail, the connection to the
server is refused. After verifying the server certificate the client uses the public key
embedded in that certificate in the next steps of the SSL/TLS protocol. The
SSL/TLS connection can only be established if the server really has the
corresponding private key.

The client authentication follows the same procedure: if a SSL/TLS server requires
client authentication the client sends to the server a certificate chain to prove its
identity. The server verifies the chain based on its repository of trusted site and
signer certificates. After verifying the client's certificate the server uses the public
key embedded in that certificate in the next steps of the SSL/TLS protocol. The
SSL/TLS connection can only be established if the client really has the
corresponding private key.

The SSL and TLS protocols provide high security communications (although TLS is
considered to be more secure than SSL). However, the protocol operates based on
the information provided by the application. Only if that information base is also
maintained securely the overall goal of secure communication can be achieved. For
example, if your repository of trusted site and signer certificates is compromised,
you might establish a secure connection to a very insecure communication partner.

MQIPT implementation of SSL/TLS
SSL version 3.0 and TLS versions 1.0, 1.1, and 1.2 are implemented with Public Key
Cryptography Standards (PKCS) #12 tokens stored in key-ring files (with file types
of .p12 or .pfx), containing X509.V3 certificates.

A key-ring file can also contain Certificate Revocation Lists (CRLs) and Authority
Revocation Lists (ARLs).

MQIPT uses the IBM Java Secure Sockets Extension (JSSE) package.

MQIPT can act as an SSL/TLS client or an SSL/TLS server depending on which
end initiates the connection. The client starts a connection and the server accepts
the connection request. It is possible for an MQIPT route to act both as a client and
a server, In this case, using the SSL/TLS Proxy Mode feature typically gives better
performance.

When MQIPT is configured for SSL/TLS Proxy Mode, it only forwards SSL/TLS
data between the two end-points; it does not participate in the SSL/TLS handshake
and does not require any digital certificates.

Each MQIPT route can be independently configured with its own set of SSL/TLS
properties. See “Route properties” on page 125 for more details.

Encrypting a keyring password
The password used to open a keyring file can be encrypted with the mqiptPW
script. The encrypted password is stored in a file, which can be used by any of the
following properties: SSLClientKeyRingPW, SSLClientCAKeyRingPW,

32 IBM MQ: Internet Pass-Thru



SSLServerKeyRingPW, and SSLServerCAKeyRingPW. This topic describes the correct
way to store a key-ring password for use by MQIPT.

The iKeyman stash file facility is not supported by MQIPT. Instead of using a stash
file, you must use the mqiptPW command to store the encrypted password.

Command format:
mqiptPW password filename -replace

where

password
is the clear text password needed to open the given keyring file

filename
is the name of the password file to be created

The -replace option overwrites an existing password file with the same name.

Passwords can include the space character, but the whole password string must be
enclosed in quotes for this to be acceptable. There is no limit to the length or
format of a password.

Note: if you have migrated from a previous level of MQIPT, you must replace the
current password files containing the clear-text password with a copy of the
encrypted password file.

You must use the password mqiptSample to open either of the sample keyring files
by using a key management utility.

Selecting certificates from a key-ring file

It is possible to have more than one personal certificate stored in the same key-ring
file, so the SSLClientSite* properties can be used on the client side to select the
certificate to be sent to the server for authentication and the SSLServerSite*
properties can be used on the server side to select the certificate to be sent to the
client for authentication.

Using these properties, a certificate can be selected based on its Distinguished
Name (DN). Alternatively, the certificate label can be used to select a certificate
using the SSLServerSiteLabel and SSLClientSiteLabel properties.

Trust settings
A key-ring file contains a personal certificate that includes the signer certificate or
chain of signer certificates.

There are two types of key-ring file:

Certificate Authority (CA) key-ring file
This file contains trusted CA certificates that are used to validate certificates
belonging to a remote peer. These CA certificates help to determine whether
the remote peer is trustworthy. The MQIPT CA key-ring files are identified by
the SSLClientCAKeyRing and SSLServerCAKeyRing route properties.

Personal certificate key-ring file
This file contains personal certificates that MQIPT uses to identify itself to a
remote peer. When you generate a self-signed certificate or request a

Chapter 4. Using MQIPT features 33



CA-signed certificate, you should do so by using the personal certificate
key-ring file. In MQIPT, personal certificate key-ring files are identified by the
SSLClientKeyRing and SSLServerKeyRing route properties.

The key-ring file on the SSL/TLS server side, identified by the SSLServerKeyRing
property, should contain its personal certificate.

The key-ring file on the SSL/TLS client side, identified by the SSLClientCAKeyRing
property should contain a list of trusted CA certificates that will be used to
authenticate the certificate sent from the server.

If you also need client authentication, you must enable the
SSLServerAskClientAuth property on the server side. The key-ring file on the client
side, identified by the SSLClientKeyRing property, should contain its personal
certificate. The key-ring file on the server side, identified by the
SSLServerCAKeyRing property, should contain a list of trusted CA certificates that
will be used to authenticate the client. You should also enable the
SSLServerAskClientAuth property on all SSLServer routes.

As an alternative to using certificates signed by a trusted CA, you can use
self-signed certificates. Examples of these can be found in the sample key-ring files
provided with MQIPT in the ssl subdirectory: sslSample.pfx and
sslCAdefault.pfx. To open either of these PKCS#12 key-ring files, you must use
the password: mqiptSample.

Self-signed certificates can be useful in test scenarios where you must ensure
SSL/TLS connectivity without paying a CA for a certificate. However, you should
not use self-signed certificates in production environments. To create a CA-signed
certificate, see “Scenario: Creating a key-ring file” on page 72.

You can use a utility called iKeyman, which is provided with MQIPT, to manage
digital certificates and key-ring files. See “iKeyman” on page 37 for installation
instructions and further information.

You must protect any key-ring files and password files by using the security
features of the operating system to prevent unauthorized access to them.

Testing SSL/TLS
You can test an SSL/TLS connection by using the examples provided in this
documentation.

See Chapter 6, “Scenarios: Getting started with MQIPT,” on page 69 for a
description of various scenarios. In particular, see the following tasks:
v “Scenario: Authenticating an SSL/TLS server” on page 76
v “Scenario: Authenticating an SSL/TLS client” on page 79
v “Scenario: running MQIPT in SSL/TLS proxy mode” on page 97
v “Scenario: running MQIPT in SSL/TLS proxy mode with a security manager” on

page 99

To test that your SSL/TLS configuration works correctly, you can use self-signed
certificates. Self-signed certificates are useful in test scenarios so that you can
ensure SSL/TLS connectivity without paying a Certificate Authority (CA) for a
certificate. See “Scenario: Creating test certificates” on page 75 for details.

34 IBM MQ: Internet Pass-Thru



You can find examples of self-signed certificates in the sample key-ring files,
named sslSample.pfx and sslCAdefault.pfx, provided with MQIPT in the ssl
subdirectory. To open either of these PKCS#12 key-ring files, you must use the
password mqiptSample. These sample certificates are provided for your
convenience during testing. However, the private keys of the sample certificates are
known to all MQIPT users. This means that they are insecure and should be used
only in a test environment.

You should not use any self-signed certificates in production environments,
whether they are sample certificates or not. Instead, obtain a CA-signed certificate
from a trusted CA. To create a CA-signed certificate, see “Scenario: Creating a
key-ring file” on page 72.

When creating or requesting a certificate, you should consider which key type, key
size and digital signature algorithm are appropriate for your security needs. See
“Digital certificate considerations for MQIPT” on page 38 for further information.

Certificates and certificate management technologies are available from a number
of third-party suppliers.

SSL/TLS error messages

Handshake failures are logged in the MQIPT connection log in the form of JSSE
exceptions. See “Connection logs” on page 58. The following table describes the
different exceptions, the likely cause and the corresponding action to resolve the
failure.

Certificate exceptions usually relate to the certificates at the remote end of the
connection.

Where the error relates to the certificate of a IBM MQ client or queue manager, the
term keyring file includes the IBM MQ key repository of the remote partner.

In MQIPT, CA certificates are stored in the CA keyring file, which is identified by
the SSLClientCAKeyRing and SSLServerCAKeyRing route properties. If the CA
keyring route properties are not set, the corresponding personal keyring file
(SSLClientKeyRing or SSLServerKeyRing) is searched for CA certificates instead.

Exception Cause Action

CertificateException The certificate is not trusted because it is
signed by a CA that is not in the CA
keyring.

Check that all of the necessary CA
certificates are present in the CA keyring
file. Use the IBM Key Management tool
supplied with MQIPT to add any
missing CA certificates, taking care to
obtain a copy of each CA certificate
from a trustworthy source.

CertificateExpiredException 1. The certificate has expired: its
notAfter date has passed.

2. The system clock is set incorrectly.

1. Obtain a new certificate and insert it
into the keyring file. If the certificate
belongs to a Certificate Authority,
place the new certificate into the CA
keyring file.

2. Check that the UTC system clock is
set to the correct time.

Chapter 4. Using MQIPT features 35



Exception Cause Action

CertificateNotYetValidException 1. The certificate is being used
prematurely: its notBefore date has
not yet arrived.

2. The system clock is set incorrectly.

1. Check that the certificate has been
generated and signed correctly. If
your organization operates its own
CA, the UTC system clock for the
CA might be incorrect.

2. Check that the UTC system clock is
set to the correct time.

CertificateParsingException 1. The certificate contains invalid DER
data.

2. The certificate uses unsupported
DER features.

Ensure the certificate has been correctly
generated and can be viewed in the IBM
Key Management tool supplied with
MQIPT. Consider obtaining a new
certificate with fewer certificate
extensions.

CertificateRevokedException Certificate revocation checking is
enabled and the certificate was found to
be revoked.

The certificate in question should not be
trusted. Obtain a replacement certificate
and ensure the new certificate and its
private key are present in the keyring
file.

CertPathBuilderException The certificate chain was not signed by a
recognised Certificate Authority.

1. If you are using CA-signed
certificates, check that all root CA
and intermediate CA certificates are
present in the CA keyring file.

2. If you are using self-signed
certificates, ensure that you have
extracted a copy of the public part of
the remote certificate and added it to
the CA keyring file. Avoid using
self-signed certificates in production
environments.

CertStoreException
KeyStoreException

An error occurred reading a certificate
from a keyring for one of the following
reasons:

1. The keyring file is damaged.

2. The keyring file is missing.

3. The stored password does not match
the keyring file password.

1. Ensure that the keyring file can be
read and that all certificates can be
viewed with the IBM Key
Management tool.

2. Check that all keyring route
properties refer to the correct file
name.

3. Check that the stored keyring file
password is correct. Use the
mqiptPW tool to store the correct
password.

SSLException: No available
certificate or key corresponds
to the SSL cipher suites which
are enabled.

You must have a personal certificate
with the correct type of key for the
CipherSuites you are using. For
example, CipherSuites whose names
begin with SSL_ECDH_ECDSA_ require a
certificate with an Elliptic Curve public
key. The most commonly used
CipherSuites require a certificate with an
RSA public key.

Open the keyring file with the IBM Key
Management tool. Under the Personal
Certificates view, select each certificate
in turn and view it. Click View Details
and navigate to the Subject Public Key
section to see the public key type. Then
check the MQIPT
SSLClientCipherSuites and
SSLServerCipherSuites route properties
to ensure that the appropriate
CipherSuites are enabled.

36 IBM MQ: Internet Pass-Thru



Exception Cause Action

SSLException: No cipher suites
in common.

The handshake has failed to agree a
CipherSuite because there is no overlap
between the sets of enabled CipherSuites
at both ends of the connection. In
particular, an outbound IBM MQ
connection only enables a single cipher
so SSLServer MQIPT routes are
particularly likely to experience this
error.

Check the list of enabled CipherSuites in
the MQIPT SSLClientCipherSuites and
SSLServerCipherSuites route properties.
Consider enabling additional
CipherSuites. Consult the table provided
to determine the correct CipherSuites to
enable for each IBM MQ channel
CipherSpec value.

iKeyman
iKeyman is a certificate and key management application that is already familiar to
IBM MQ users. iKeyman can be used to manage symmetric and asymmetric keys,
digital certificates, and certificate requests in various different types of key-ring
file. It can also be used to manage the key-ring files themselves.

iKeyman uses the term key database to refer to a key-ring file; these terms are
synonymous.

iKeyman can be run in two modes, graphical user interface (GUI) and
command-line interface (CLI). Use the mqiptKeyman command to start the iKeyman
GUI and the mqiptKeycmd command to run the iKeyman CLI.

Required key-ring file format for MQIPT

When using iKeyman to create key-ring files for use in MQIPT, you must use the
PKCS#12 file format:
v In the iKeyman GUI, select PKCS#12 in the Key database type field when

creating the key-ring file.
v In the iKeyman CLI, include the -type pkcs12 parameter on the mqiptKeycmd

-keydb -create command.

Encrypting the key-ring password for MQIPT

After creating the key-ring file, you must store the key-ring password in an
encrypted file which MQIPT can use to access the file. See “Encrypting a keyring
password” on page 32 for information about this.

Note that the iKeyman stash file facility is not supported by MQIPT. You must use
the mqiptPW command to store the encrypted password instead of using a stash
file.

Command line examples

The iKeyman CLI uses the same syntax as the IBM MQ runmqckm command.
Append the required parameters to mqiptKeycmd, as illustrated in the following
examples:
v To create a PKCS#12 file:

mqiptKeycmd -keydb -create -db key.p12 -pw password -type pkcs12

v To create a self-signed personal certificate for testing purposes:
mqiptKeycmd -cert -create -db key.p12 -pw password -type pkcs12

-label mqipt -dn "CN=Test Certificate,OU=Sales,O=Example,C=US"
-sig_alg SHA256WithRSA -size 2048

Chapter 4. Using MQIPT features 37



The command creates a digital certificate with a 2048-bit RSA public key and a
digital signature that uses RSA with the SHA-256 hash algorithm. When you
create a certificate, take care to choose a public key encryption algorithm, key
size, and digital signature algorithm that are appropriate for your organization's
security needs. See “Digital certificate considerations for MQIPT” for more
information.
This example uses a self-signed certificate that is suitable for test purposes.
However, in a production environment you should use a Certificate Authority
signed certificate instead.
Note that MQIPT v2.0 and older versions do not support SHA-2 digital
signatures, so this certificate is not suitable for establishing secure socket
connections to previous MQIPT releases; an older signature algorithm, such as
SHA1WithRSA, would be required.

v To create a certificate request for a CA signed certificate for production purposes:
mqiptKeycmd -certreq -create -db key.p12 -pw password -type pkcs12 -file cert.req

-label mqipt -dn "CN=Test Certificate,OU=Sales,O=Example,C=US"
-sig_alg SHA256WithRSA -size 2048

The command creates a digital certificate request with a 2048-bit RSA public key
and a digital signature that uses RSA with the SHA-256 hash algorithm. When
you create a certificate, take care to choose a public key encryption algorithm,
key size, and digital signature algorithm that are appropriate for your
organization's security needs. See “Digital certificate considerations for MQIPT”
for more information.
Note that MQIPT 2.0 and older versions do not support SHA-2 digital signatures
so this certificate is not suitable for establishing secure sockets connections to
previous MQIPT releases: an older signature algorithm such as SHA1WithRSA
would be required. The resulting certificate request is stored in a file named
cert.req: this file should be sent to the CA to be signed.

v To receive the CA signed personal certificate file cert.crt into the key-ring file:
mqiptKeycmd -cert -receive -db key.p12 -pw password -type pkcs12 -file cert.crt

You must ensure that the CA certificate of the CA which signed the personal
certificate is present in the CA key-ring file, for example:
mqiptKeycmd -cert -add -db key.p12 -pw password -type pkcs12 -file ca.crt -label rootCA

Many other examples of using the iKeyman CLI can be found in the IBM MQ
documentation and also in Appendix B of the iKeyman documentation provided
with MQIPT.
For detailed information about using the iKeyman application, refer to the
iKeyman User's Guide supplied with MQIPT. This is supplied as a PDF file in the
doc directory of the MQIPT installation.
– Wherever the command examples refer to the ikeycmd command, run

mqiptKeycmd instead.
– Wherever the command examples refer to the ikeyman command, run

mqiptKeyman instead.

Digital certificate considerations for MQIPT

Certificate key size considerations for MQIPT

The public key size depends upon your organisation's security policy and depends
on the encryption algorithm used. In general, larger key sizes are more secure. The
following table lists the minimum key sizes that you should use:

38 IBM MQ: Internet Pass-Thru



Algorithm Minimum key size (bits)

Elliptic Curve 256

RSA 2048

Specify the key size of your certificate when you create a certificate or certificate
request.
v When using the mqiptKeycmd CLI command, the -size parameter specifies the

key size.
v When using the mqiptKeyman GUI, the Key Size field in the Certificate

Creation window specifies the key size.

Selecting an appropriate certificate digital signature algorithm

To prevent forgery of digital certificates, it is important to use a strong digital
signature algorithm. When you create or request a certificate, take care to select a
good algorithm.

You should avoid using old digital signature algorithms based on MD5 or SHA-1
as these algorithms are no longer sufficiently secure for modern usage. If possible,
use one of the newer SHA-2 based digital signature algorithms such as SHA-256
with RSA (SHA256WithRSA).

However, versions of MQIPT earlier than Version 2.1 do not support SHA-2 digital
signatures, so for interoperability with previous MQIPT releases, use the
SHA1WithRSA digital signature algorithm. However, you should plan to upgrade
older versions of MQIPT and phase out use of MD5 and SHA-1 digital signatures.
v When using the mqiptKeycmd CLI command, the -sig_alg parameter specifies

the digital signature algorithm.
v When using mqiptKeyman GUI, the Signature Algorithm field of the Certificate

Creation window specifies the digital signature algorithm.

Digital certificate and CipherSuite compatibility in MQIPT

Not all CipherSuites can be used with all digital certificates. There are various
types of CipherSuite, grouped by their CipherSuite name prefix. Each type of
CipherSuite imposes different restrictions on the type of digital certificate that can
be used. These restrictions apply to all MQIPT SSL/TLS connections, but are
particularly relevant to users of Elliptic Curve cryptography. When performing the
secure socket handshake, MQIPT automatically selects a personal certificate to
identify itself that is appropriate for the negotiated CipherSuite. In most cases
MQIPT automatically interoperates with the remote peer. However, in certain
scenarios you might need to use a specific MQIPT CipherSuite to interoperate with
a remote IBM MQ system. The iKeyman application supplied with MQIPT is
capable of creating certificates and certificate requests only with DSA and RSA
public keys. Additionally, the IBM MQ runmqakm utility can create certificates and
certificate requests with Elliptic Curve public keys. Consult your Certificate
Authority for advice on creating other types of certificate.

The type of digital certificate to use depends upon the type of CipherSuite you are
using:
v CipherSuites with names that begin SSL_ECDH_ECDSA_ and

SSL_ECDHE_ECDSA_ require a digital certificate with an Elliptic Curve public
key.

Chapter 4. Using MQIPT features 39



v CipherSuites with names that contain anon are anonymous; they do not require a
digital certificate to identify the remote peer. Such CipherSuites can avoid the
overheads of certificate lifecycle management in networks where an alternative
means of authentication is used, but in general, avoid their use due to the lack
of authentication.

v Other CipherSuites require a digital certificate with an RSA public key.

Note: The mqiptKeyman and mqiptKeycmd tools are unable to create certificates or
certificate requests with an Elliptic Curve public key. You can use the runmqakm
command provided with IBM MQ for this purpose, as documented in the IBM MQ
product documentation.

Certificate exit

The purpose of a certificate exit is to validate an SSL/TLS peer certificate that is
received by MQIPT. You can configure an MQIPT route to act as an SSL/TLS client
when it makes a new connection and to act as an SSL/TLS server when it receives
a connection request. During the SSL/TLS handshaking process, an SSL/TLS client
receives a peer certificate from the server, and the certificate can be used to
authenticate the server. An SSL/TLS server can also receive a peer certificate from
the client, and the certificate can be used to authenticate the client.

The certificate exit is called when MQIPT receives a peer certificate, allowing you
to perform further validation. Any exceptions that are caught by the exit are
caught by MQIPT and the connection request terminated. It is, therefore, good
practice for the exit to catch all exceptions and to pass back an appropriate return
code to MQIPT.

A sample is provided to show a certificate exit can be implemented for more
information see “Scenario: Using a certificate exit to authenticate an SSL/TLS
server” on page 111.

Note: MQIPT runs in a single JVM so a user-defined certificate exit might
jeopardize the normal operation of MQIPT in one of these ways:
v Affect system resources
v Generate bottlenecks
v Degrade performance

You should test the effects of your certificate exit extensively before implementing
it in a production environment.

The com.ibm.mq.ipt.exit.CertificateExit class

An abstract class that must be implemented by the class that is defined with the
SSLExitName property.

The class contains default implementations for running the exit and some public
methods that you can optionally override, according to your requirements. The
complete list of supported methods is as follows:

Methods

public int init(IPTTrace)

40 IBM MQ: Internet Pass-Thru



The init method is called by MQIPT when the exit is loaded by MQIPT
and can be implemented to perform any initialization of the exit; for
example, loading of data that is used during the validation process. The
default implementation does nothing.

public int refresh(IPTTrace)

The refresh method is implemented to perform a refresh of any data; for
example, reloading of any data for disk that is used during the validation
process. This method is called when the MQIPT administrator has issued a
refresh command. The default implementation does nothing.

public void close(IPTTrace)

The close method is implemented to perform any housekeeping when the
route is about to be stopped or MQIPT is closing down. The default
implementation does nothing.

public CertificateExitResponse validate(IPTTrace)

The validate method is called to perform validation of the peer certificate.
The return object can be used to pass information back to MQIPT; for
example, a return code and some text that can be added to the connection
log. The default implementation returns a CertificateExitResponse with
CertificateExitResponse.OK.

Supported methods for obtaining properties:

public int getListenerPort()
retrieves the route listener port - as defined by the ListenerPort property

public String getDestination()
retrieves the destination address - as defined by the Destination property

public int getDestinationPort()
retrieves the destination listener port address - as defined by the
DestinationPort property

public String getClientIPAddress()
retrieves the IP address of the client making the connection request

public int getClientPortAddress()
retrieves the port address used by the client making the connection request

public boolean isSSLClient()
used to determine if the exit is being called as an SSL/TLS client or
SSL/TLS server. If this returns true, the exit is on the client side of the
connection, validating the certificate obtained from the server. If this
returns false, the exit is on the server side of the connection, validating the
certificate sent by the client. It is valid for a route to act as both an
SSL/TLS server and an SSL/TLS client, decrypting and re-encrypting
traffic. In this situation, although there is a single exit class, some instances
of the class will be called as clients and some as servers. You can use
isSSLClient to determine the situation for a given instance.

public int getConnThreadID()
used to retrieve the ID of the worker thread that is handling the connection
request, which can be useful for debugging.

public String getChannelName()
retrieves the IBM MQ channel name that is used in the connection request.
This is available only when the incoming request is not using SSL/TLS and
MQIPT is acting as an SSL/TLS client.

Chapter 4. Using MQIPT features 41



public String getQMName()
retrieves the name of the IBM MQ queue manager used in the connection
request. This is available only when the client request is not using
SSL/TLS and MQIPT is acting as an SSL/TLS client.

public boolean getTimedout()
used by the exit to determine if the timeout has expired.

public IPTCertificate getCertificate()
retrieves the SSL/TLS certificate that needs to be validated.

public String getExitData()
retrieves the exit data, as defined by the SSLExitData property.

public String getExitName()
retrieves the exit name, as defined by the SSLExitName property.

The com.ibm.mq.ipt.exit.CertificateExitResponse class

This class is used to pass information back to MQIPT after a certificate has been
validated.

Constructors

public CertificateExitResponse(int rc, string message)

This constructor can be used to pass back a return code, and some message
text. Possible reason codes are
v ExitRc.OK
v ExitRc.VALIDATE_ERROR
v ExitRc.VALIDATE_REJECTED

public CertificateExitResponse(int rc)

This constructor can be used to pass back a return code, with no message
text. Possible reason codes are
v ExitRc.OK
v ExitRc.VALIDATE_ERROR
v ExitRc.VALIDATE_REJECTED

public CertificateExitResponse()

This constructor can be used to pass back return code ExitRc.OK, with no
message text.

Methods

public String getVersion()

This method returns the version of this class.

public String toString

This method will return a string representation of the response, for
example, "Reason code: 4, Message: Failed CRL check.

The com.ibm.mq.ipt.exit.IPTCertificate class

This class contains the SSL/TLS certificate to be validated.

42 IBM MQ: Internet Pass-Thru



Methods

public int getVersion()

This method returns the version of this class.

public byte [] getDerEncoding()

This method returns the ASN.1/DER encoding of the X.509 certificate, or
NULL if there is an error.

public byte [] getPemEncoding()

This method returns the PEM (BASE64) encoding of the X.509 certificate, or
NULL if there is an error.

public String getLabel()

This method returns the certificate label, or NULL if there is an error.

public String getName()

This method returns the Distinguished Name of the certificate, or NULL if
not available. For example:
CN=Test Queue Manager,OU=Sales,O=Example,L=London,C=GB

public String getIssuerName()

This method returns the issuer's Distinguished Name of the certificate, or
NULL if not available. For example:
CN=Certificate Authority,OU=Security,O=Example,L=New York,C=US

public IPTCertificate getSigner()

This method returns the signer certificate, or NULL if not available. For a
self-signed certificate it will return a reference to itself.

public String toString()

This method returns a string representation of the certificate.

The com.ibm.mq.ipt.exit.IPTTrace class

Methods

public void entry(String fid)

Where fid is used to identify where the call was made, for example the
class and method name.

This method writes an entry to the trace output file with the appropriate
level of indentation to record the point at which the flow of control enters
a method. This call is optional, but if it is used, a matching call to
"exit(String)" must also be used within the same method.

public void exit(String fid)

Where fid is used to identify where the call was made, for example the
class and method name.

This method writes an exit to the trace output file with the appropriate
level of indentation to record the point at which the flow of control leaves
a method. This method is used only when a call to "entry(String)" has
previously been used within the same method.

public void exit(String fid, int rc)

Chapter 4. Using MQIPT features 43



Where fid is used to identify where the call was made, for example the
class and method name, and rc is the numeric return code from the
method. This trace method should be used to record the exit from methods
that return an integer.

This method writes an exit to the trace output file with the appropriate
level of indentation to record the point at which the flow of control leaves
a method and the numeric return code from that method. This method is
used only when a call to "entry(String)" has previously been used within
the same method.

public void exit(String fid, boolean rc)

Where fid is used to identify where the call was made, for example the
class and method name, and rc is the Boolean return code from the
method. This trace method should be used to record the exit from methods
that return a Boolean.

This method writes an exit to the trace output file with the appropriate
level of indentation to record the point at which the flow of control leaves
a method and the Boolean return code from that method. This method is
used only when a call to "entry(String)" has previously been used within
the same method.

public void data(String fid, String data)

Where fid is used to identify where the call was made, for example the
class and method name.

This method writes some string data to the trace output file.

public void data(String fid, int data)

Where fid is used to identify where the call was made, for example the
class and method name.

This method writes some integer data to the trace output file.

public void data(String fid, byte[])

Where fid is used to identify where the call was made, for example the
class and method name.

This method writes some binary data to the trace output file.

Sample trace

To help diagnose problems in an exit, you can use the same tracing facility as
MQIPT, alternatively you can implement your own tracing functions. If you decide
to use the MQIPT trace functions there are entry and exit calls, that can be used on
entry to and exit from a method. There are also various data calls to trace useful
information as shown in the following example.
/**

* This method is called to initialize the exit (for example, for
* loading validation information) and place itself in a ready
* state to validate connection requests.
*/
public int init(IPTTrace t) {
final String fid = "MyExit.init";

// Trace entry into this method
t.entry(fid);

// Trace useful information

44 IBM MQ: Internet Pass-Thru



t.data(fid, "Starting exit - MQIPT version " + getVersion());

// Perform initialization and load any data
t.data(fid, "Ready for work");

// Trace exit from this method
t.exit(fid);

return ExitRc.OK;
}

This method produces trace in the format shown in the following example:
16:36:48.625 14 5000-1s ------{ ConnectionThread.setCertificateExit()
16:36:48.625 14 5000-1s Creating instance of certificate exit
16:36:48.625 14 5000-1s Calling init() of certificate exit
16:36:48.625 14 5000-1s -------{ MyExit.init()
16:36:48.625 14 5000-1s Starting exit - MQIPT version 2.1.0.0
16:36:48.625 14 5000-1s Ready for work
16:36:48.625 14 5000-1s -------} MyExit.init() rc=0
16:36:48.625 14 5000-1s ------} ConnectionThread.setCertificateExit() rc=0

Certificate exit return codes

The following return codes are recognized by MQIPT when calling a certificate exit
in the following situations:

Return code Description init validate refresh

ExitRc.OK Request completed successfully. yes yes yes

ExitRc.INIT_ERROR Init request failed, route will be disabled. yes

ExitRc.REFRESH_ERROR Refresh request failed, route will be disabled. yes

ExitRc.VALIDATE_ERROR Validation process failed, connection request
rejected.

yes

ExitRc.VALIDATE_REJECTED Validation request rejected, connection
request rejected.

yes

LDAP and CRLs

MQIPT supports use of a Lightweight Directory Access Protocol (LDAP) server to
perform Certificate Revocation List (CRL) authentication on a digital certificate.
LDAP support has been implemented in a similar way to that in IBM MQ, as the
same LDAP server can be used for both IBM MQ and MQIPT.

During the SSL/TLS handshake, the communicating partners authenticate each
other with digital certificates. Authentication can include a check that the certificate
received can still be trusted. Certification Authorities (CAs) revoke certificates for
various reasons, including the following:
v The owner has moved to a different organization.
v The private key is no longer secret.

CAs publish revoked personal certificates in a Certificate Revocation List (CRL).
CA certificates that have been revoked are published in an Authority Revocation
List (ARL). Note that subsequent references to CRLs also apply to ARLs.

For further information about the use of LDAP servers with IBM MQ and about
the management of CRLs and ARLs, see the Security section in the IBM MQ
product documentation.

Chapter 4. Using MQIPT features 45



MQIPT can support up to two LDAP servers on each route. The first LDAP server
is treated as the main server with the second LDAP server kept as a backup. The
second server is only used if the main server cannot be reached. The backup server
should be a mirror image of the main server.

Access to information stored on an LDAP server can be protected with a user ID
and password by using the LDAP user ID and password properties

When MQIPT loads a PKCS#12 token from a key-ring file, any CA certificates are
checked for CRL validity. If the CA certificate has an attached CRL, it is checked to
see if it has expired and, if so, a newer CRL is retrieved from the LDAP server.
Any CRL retrieved is loaded into the current token and attached to its CA
certificate. The updated token can be saved into the key-ring file. See the
LDAPSaveCRL property in “Route properties” on page 125.

If there are no entries that match the given CA when a query is sent to the main
LDAP server, it is assumed there are no CRLs for that CA and the backup server is
not used. However, if the main LDAP server cannot be reached or does not return
within a given time frame, the backup server is used. Any errors from the backup
server cause the client connection to be ended. This action can be overridden by
setting the LDAPIgnoreErrors property to true.

Any CRLs retrieved by MQIPT are kept in a cache and shared by all connections
on that route. If a cached CRL has expired, the CRL is removed from the cache and
a new one is retrieved from the LDAP server. If a new CRL is not available the
connection is still refused.

A CRL retrieved from the LDAP server is also checked for expiry and a warning
message is displayed (MQCPW001). The expired CRL is still loaded into the
system and any connection requests referencing that CRL are refused. You should
replace the expired CRL in the LDAP server with a current one.

The LDAPCacheTimeout property can be used to control how often the CRL cache is
cleared. The default value is 1 day. Setting this value to 0 means the cache entries
are not cleared until the route is restarted.

An expired CRL can be stored in a key-ring file or on an LDAP server. If a new
CRL has not been issued, further connection requests are refused. You can ignore
expired CRLs by enabling the IgnoreExpiredCRLs property.

Note: If you enable either the LDAPIgnoreErrors property or the
IgnoreExpiredCRLs property, a revoked certificate might be used to make an
SSL/TLS connection.

Multi-valued certificate Distinguished Name OU properties
You can match multiple organizational unit (OU) values in certificate Distinguished
Names.

The following route properties now support the matching of multiple OU values:
v SSLClientDN_OU

v SSLClientSiteDN_OU

v SSLServerDN_OU

v SSLServerSiteDN_OU

46 IBM MQ: Internet Pass-Thru



To match multiple OU values, use a comma as a separator in the route property
value. For example:
SSLClientDN_OU=Sales, Europe

This matches certificates with both OU=Sales and OU=Europe. The OU values are
matched in the same sequence as multiple OU values in IBM MQ SSLPEER filters.

Do not specify the same route property more than once in the [route] section. The
correct way to match multiple OU values is to specify the property once, as shown
in the preceding example. If you enter the same attribute more than once in the
same mqipt.conf section, the last value takes effect. For example, the following
entries would result in only matching Europe because the second line overrides the
first:
SSLClientDN_OU=Sales
SSLClientDN_OU=Europe

If you must match a literal comma inside an OU value, insert a backslash (\) as an
escape character immediately before the comma. For example:
SSLClientDN_OU=Sales\, Europe

This matches a single value: OU=Sales, Europe. A backslash that is not immediately
followed by a comma matches a literal backslash.

If you are upgrading from a previous release of MQIPT and rely on the ability to
match commas in OU values, you must insert backslash escape characters into the
OU route properties in order to preserve the previous behavior.

Network Dispatcher support
MQIPT can be used with IBM Network Dispatcher to provide enhanced
availability and load balancing across many servers by the use of custom advisors.

This section assumes that you are familiar with Network Dispatcher and custom
advisors.

Two custom advisors are supplied with MQIPT; they can be found in the lib
subdirectory. Follow the instructions in the Network Dispatcher User's Guide for
installing custom advisors. Figure 5 on page 48 shows an example of the use of the
Network Dispatcher for monitoring port address 1414 for MQIPT. Note that each
instance of MQIPT must have the same configuration file.

Chapter 4. Using MQIPT features 47



Follow the instructions in the Network Dispatcher User's Guide for configuring the
dispatcher component to define port 1414 and the load-balanced server. You can
use either the menu options of the Administration Client or the ndcontrol line
mode command. For example:
ndcontrol port add 10.99.1.2 : 1414
ndcontrol server add 10.99.1.2 : 1414 : 10.99.1.10
ndcontrol server add 10.99.1.2 : 1414 : 10.99.1.11
ndcontrol server add 10.99.1.2 : 1414 : 10.99.1.12

The route definition in the MQIPT configuration file would look like this:
[route]
ListenerPort=1414
Destination=10.99.1.20
DestinationPort=1414
NDAdvisor=true

You can start (and stop) a custom advisor only from the command line. For
example:
ndcontrol advisor start mqipt_normal 1414

This command starts the MQIPT advisor in normal mode, in which the base
advisor performs its own timings to calculate the weighting factors of each MQIPT.
To use the MQIPT advisor in replace mode, add the following line to the MQIPT
route definition:
NDAdvisorReplaceMode=true

Figure 5. Using the Network Dispatcher with MQIPT

48 IBM MQ: Internet Pass-Thru



You must also start the mqipt_replace custom advisor instead of mqipt_normal. For
example:
ndcontrol advisor start mqipt_replace 1414

When using an advisor to monitor an SSL/TLS listener port (that is, it has
SSLServer=true in the mqipt.conf configuration file), you must place a "trigger" file
in the working directory of the Network Dispatcher. This "trigger" file has a
specific name, relating to the route being monitored. For example, if route 1414 has
SSLServer=true, a file called mqipt1414.ssl must be placed in the
C:\windows\system32 directory (on Windows systems). See the
mqipt1414Sample.ssl file for more information.

Java Security Manager
The Java Security Manager can be used with any MQIPT feature to provide a
further level of security.

MQIPT uses the default Java Security Manager as defined in the
java.lang.SecurityManager class. The Java Security Manager feature in MQIPT can
be enabled or disabled using the global property SecurityManager. See “Global
properties” on page 124 for more information.

The Java Security Manager uses two default policy files:
v A global system policy file named $MQIPT_PATH/java/jre/lib/security/

java.policy (where $MQIPT_PATH is the directory where MQIPT is installed) is
used by all instances of a virtual machine on a host.

v A user-specific policy file called .java.policy, which can exist in the user's
home directory.

An additional MQIPT policy file can also be used. You should use the MQIPT
policy file instead of the default policy files described earlier. See
SecurityManagerPolicy in “Global properties” on page 124 for more information.

The syntax of the policy file is quite complex and although it can be changed using
a text editor, it is usually easier to use the Policy Tool utility provided with Java
for making any changes. The Policy Tool utility can be found in the
$MQIPT_PATH/java/jre/bin directory and is fully documented within the Java
documentation.

A sample policy file (mqiptSample.policy) has been provided with MQIPT to show
you what permissions must be set for running MQIPT.

You must edit the sample policy file to match your configuration. In particular,
note that the MQIPT home directory (the location of mqipt.conf) might not be the
same as the MQIPT installation directory, so take care to specify the correct
directories when configuring FilePermission entries in the security policy.

You must change the following entries:
v The java.io.FilePermission entry which grants read and write access to the

errors directory. The file path in this entry must refer to the MQIPT home
directory, because this is where the errors directory is located. MQIPT creates
FFST Failure Data Capture files (AMQ*.FDC) and trace files (AMQ*.TRC*) in the
errors directory. You must ensure that MQIPT has permission to create trace and
FFST files in the errors directory, so that troubleshooting is possible.

Chapter 4. Using MQIPT features 49



v The java.io.FilePermission entry which grants read and write access to the
logs directory. The file path in this entry must refer to the MQIPT home
directory, because this is where the logs directory is located. MQIPT creates
connection log files (mqipt*.log) in the logs directory if the ConnectionLog
global property is enabled.

v The java.io.FilePermission entries which grant read and execute access to any
directories in the MQIPT installation directory, such as the bin, exits, lib, and
ssl directories. The file paths in these entries must be changed to refer to the
MQIPT installation directory. Some of these entries may be omitted if they are
not required.

v The java.net.SocketPermission entries must be modified to control connections
into each listening MQIPT route. The listen and accept permissions are required
for the listener port and listener address for each MQIPT route.

v The java.net.SocketPermission entries must be modified to control connections
out of each MQIPT route. The connect permission is required for any route
destinations, proxy servers or LDAP servers that the MQIPT route connects to.
The resolve permission is required when specifying addresses using a host
name.

Depending on your configuration, you might also need to add the following
entries:
v A java.io.FilePermission entry to grant read access to mqipt.conf, or the

MQIPT home directory containing mqipt.conf. If you need to configure MQIPT
remotely using the Administration Client then MQIPT will also need write
access to mqipt.conf so that it can save configuration changes.

v A java.io.FilePermission entry to grant read access to the security policy file
itself. This is useful if an MQIPT refresh causes the security policy file to be
re-read.

v Some java.io.FilePermission entries to grant read access to any SSL/TLS
keyring files and password stash files. This is only required when using a route
which has the SSLClient or SSLServer properties enabled.

v Some java.io.FilePermission entries to grant read or execute access to any
MQIPT exit classes. This is only required when an MQIPT exit is enabled. You
might need to grant additional permissions if required by the exit.

Note: Windows java.io.FilePermission entries must use two backslash characters
(\\) for every backslash in the path. This is because a single backslash is used as
an escape character.

The sample file assumes that MQIPT has been installed on a Windows system in
C:\Program Files\IBM\MQ Internet Pass-Thru. It also assumes that the MQIPT
home directory (the location of the mqipt.conf file) is the same as the MQIPT
installation directory.

If you have installed MQIPT in another location, you must change the directory in
the codeBase definition to refer to your MQIPT installation directory. Take care to
include the correct prefix (file:/) and the correct file suffix (/lib/
com.ibm.mq.ipt.jar). On UNIX and Linux systems, a typical codeBase URL might
be file:/opt/mqipt/lib/com.ibm.mq.ipt.jar, assuming that MQIPT is installed in
/opt/mqipt.

Permissions are usually defined with three attributes. To control socket
connections, their values are:

50 IBM MQ: Internet Pass-Thru



class permission
java.net.SocketPermission

name to control
This is made up with the format hostname:port, where each component of
the name can be specified by a wildcard. The hostname can be a domain
name or an IP address. The leftmost position of the host name can be
specified by an asterisk (*). For example, harry.company1.com would be
matched by each of these strings:
v harry

v harry.company1.com

v *.company1.com

v *

v 198.51.100.123 (assuming this is the IP address of harry.company1.com)

The port component of the name can be specified as a single port address
or a range of port addresses, for example:

1414 only port 1414

1414- all port addresses greater than or equal to 1414

-1414 all port addresses less than or equal to 1414

1-1414 all port addresses between 1 and 1414, inclusive

allowed action
The actions used by java.net.SocketPermission are:
v accept, this allows permission to accept connections from the specified

target
v connect, this allows permission to connect to the specified target
v listen, this allows permission to listen on the specified port or ports for

connection requests
v resolve, this allows permission to use the DNS name service to resolve

domain names into IP addresses

Control of the Java Security Manager can also be made through the
java.security.manager and java.security.policy Java system properties, but it is
recommended you use the SecurityManager and SecurityManagerPolicy properties
for controlling MQIPT.

To include diagnostic information in trace and FFST records, MQIPT must access
certain MQIPT system properties and environment variables. You must always
include the following properties in the Java security policy:
permission java.util.PropertyPermission "java.home", "read";
permission java.util.PropertyPermission "java.version", "read";
permission java.util.PropertyPermission "java.runtime.version", "read";
permission java.util.PropertyPermission "java.vm.info", "read";
permission java.util.PropertyPermission "java.vm.vendor", "read";
permission java.util.PropertyPermission "os.arch", "read";
permission java.util.PropertyPermission "os.name", "read";
permission java.util.PropertyPermission "os.version", "read";
permission java.lang.RuntimePermission "getenv.MQIPT_PATH";

If you do not include all of these properties, MQIPT will not operate correctly, and
problem diagnosis will be impaired.

Chapter 4. Using MQIPT features 51



Security exits
Use a security exit to control access to a target destination, as defined by the
Destination route property. The security exit is called at the point when MQIPT
receives a connection request from a client, but before it makes the connection to
the target destination.

Based on the initial connection properties, the security exit decides whether the
connection is allowed to complete.

When a route is started, the security exit is called in order to initialize and to make
itself ready to process a connection request. The initialization process should be
used to load any user data and prepare this data for quick and easy access, thereby
minimizing the time taken to process a connection request.

Each route can have its own security exit.
v The SecurityExit property is used to enable/disable the user-defined security

exit.
v The SecurityExitName property is used to define the class name of the

user-defined security exit.
v The SecurityExitPath property is used to define the directory name containing

the class file. If this property is not set, then it is assumed the class file will be
found in the exits subdirectory. The SecurityExitPath can also define the name
of a JAR file containing the user-defined security exit.

v The SecurityExitTimeout property is used by MQIPT to determine how long it
should wait for a response from the security exit when validating a connection
request.

See “Route properties” on page 125 for details of the security exit properties.

MQIPT uses the SecurityExit class to call a user-defined security exit. This class
must be extended by the user-defined security exit and most of its methods
overridden to provide the functionality required. A SecurityExitResponse object is
used to pass back data to MQIPT and this data is used by MQIPT to decide if the
connection request should be accepted or rejected. The SecurityExitResponse object
can also contain a new destination and destination port address, used to override
the route defined by the the security exit properties.

Three sample security exits are provided to show you how a security exit can be
implemented.
v SampleSecurityExit shows how to control access to a IBM MQ queue manager,

based on the name of the IBM MQ channel. It allows only a connection with a
channel name starting with the string "MQIPT." See “Scenario: Using a security
exit” on page 103 for more information.

v SampleRoutingExit allows dynamic routing of client connection requests to a
pool of defined IBM MQ servers, each server hosting a queue manager of the
same name and same attributes. The sample includes a configuration file that
contains a list of server names. See “Scenario: Routing client connection requests
to IBM MQ queue manager servers by using security exits” on page 105 for
more information.

v SampleOneRouteExit allows dynamic routing to a IBM MQ queue manager that
is derived from the IBM MQ channel name used in the connection request. The
sample includes a configuration file that contains a map of queue manager
names to server names. See “Scenario: Dynamically routing client connection
requests” on page 108 for more information.

52 IBM MQ: Internet Pass-Thru



Note: MQIPT runs in a single JVM so a user-defined security exit might jeopardize
the normal operation of MQIPT in one of these ways:
v Affect system resources
v Generate bottlenecks
v Degrade performance

You should test the effects of your security exit extensively before implementing it
in a production environment.

The com.ibm.mq.ipt.exit.SecurityExit class

This class and its public methods must be extended by the user-defined security
exit to get access to some common data and allow some MQIPT initialization to
take place. Before each method is called by MQIPT, some properties will be made
available for the method to use. Their values can be retrieved by using the
appropriate get methods defined in this class.

Methods

public int init(IPTTrace) 
The following properties are available:
v listener port
v destination
v destination port
v version

The init method will be called by MQIPT when a route is started. On
return from this method the security exit must be ready to validate a
connection request. Valid possible return codes are ExitRc.OK or
ExitRc.INIT_ERROR.

public int refresh(IPTTrace)
The following properties are available:
v listener port
v destination
v destination port

The refresh method will be called by MQIPT when it has been asked to
refresh itself by the MQIPT Administration Client. This action will usually
be called when a property has been changed in the configuration file.
MQIPT will load all the properties from the configuration file and
determine which ones have been changed and whether a route needs to be
restarted immediately, or whether it can wait until the next time MQIPT is
restarted.

This method should perform a reload of any external data it uses (that is,
data loaded during the init method). Valid possible return codes are
ExitRc.OK or ExitRc.REFRESH_ERROR.

public void close(IPTTrace)
The following properties are available:
v listener port
v destination
v destination port

Chapter 4. Using MQIPT features 53



The close() method will be called by MQIPT when it has been asked to
stop by the MQIPT Administration Client. It should free up any system
resource it has acquired during its operation. MQIPT will wait for this
method to complete before shutting down.

This method will also be called if a security exit was enabled, but has now
been disabled in the configuration file.

public SecurityExitResponse validate(IPTTrace)
The following properties are available:
v listener port
v destination
v destination port
v timeout
v client IP address
v client port address
v channel name
v queue manager name

The validate method will be called by MQIPT when it receives a
connection request to validate. The channel name and queue manager
name will not be available if the SSLProxyMode property has been
enabled, as this feature is only used to tunnel SSL/TLS data and therefore
the data usually obtained from the initial data flow will be unreadable.

The security exit must return a SecurityExitResponse object, containing the
following information:
v reason code (must be set)
v new destination address (optional)
v new destination listener port address (optional)
v message (optional)

The reason code will determine if the connection will be accepted or rejected by
MQIPT. The newDestination and newDestinationPort fields can optionally be set to
define a new target queue manager. If you do not set these properties, the route
Destination and DestinationPort properties defined in the configuration file will be
used. Any message will be appended to the connection log file entry.

Supported methods for obtaining properties:

public int getListenerPort()
retrieves the route listener port - as defined by the ListenerPort property

public String getDestination()
retrieves the destination address - as defined by the Destination property

public int getDestinationPort()
retrieves the destination listener port address - as defined by the
DestinationPort property

public String getClientIPAddress()
retrieves the IP address of the client making the connection request

public int getClientPortAddress()
retrieves the port address used by the client making the connection request

54 IBM MQ: Internet Pass-Thru



public int getTimeout()
retrieves the timeout value. MQIPT will wait for the security exit to
validate a request - as defined by the SecurityExitTimeout property

public int getConnThreadID()
retrieves the connection thread ID handling the connection request, which
is useful for debugging purposes

public String getChannelName()
retrieves the IBM MQ channel name used in the connection request

public String getQMName()
retrieves the IBM MQ queue manager name used in the connection request

public boolean getTimedout()
can be used by the security exit to determine if the timeout has expired

The com.ibm.mq.ipt.exit.SecurityExitResponse class

This class is used to pass a response back to MQIPT from a user-defined security
exit and is used to determine if the connection request should be accepted or
rejected. Objects of this type are only created in the validate method (see “The
com.ibm.mq.ipt.exit.SecurityExit class” on page 53). There are convenience
constructors for creating these objects and there are methods for each property. See
the sample security exits for more information.

Creating a default SecurityExitResponse object rejects the connection request.

Constructors
v public SecurityExitResponse (String dest, int destPort, int rc, String msg)

where:
– dest is the new target destination
– destPort is the new destination port address
– rc is the reason code
– msg is a message that will be added to the connection log entry

v public SecurityExitResponse (String dest, int destPort, int rc)

v public SecurityExitResponse (int rc, String msg)

v public SecurityExitResponse (int rc)

Methods

public void setDestination(String dest)
sets a new destination address for the connection request

public void setDestinationPort(int port) throws IPTException
sets a new destination listener port address for the connection request -
throw an IPTException for an invalid port address

public void setMessage(String msg)
adds a message to the connection log record

public void setReasonCode(int rc)
sets the reason code for the connection request.

Chapter 4. Using MQIPT features 55



Security exit return codes

The following return codes are recognized by MQIPT when calling a security exit
in the following situations:

Return code Description init validate refresh

ExitRc.OK Request completed successfully. yes yes yes

ExitRc.INIT_ERROR Init request failed, route will be disabled. yes

ExitRc.REFRESH_ERROR Refresh request failed. yes

ExitRc.NOT_AUTHORIZED Validation process failed, connection request
rejected.

yes

ExitRc.DISABLE_SSL Validation request successful, connection to
target will not use SSL or TLS.

yes

Tracing
To help diagnose problems in a user-defined security exit, you can enable a trace
facility, similar to that used by MQIPT.

Enable tracing by setting the route Trace property to a value in the range 1 - 5. See
the entry for Trace in “Route properties” on page 125.

There will probably be more than one instance of the security exit running at the
same time so individual entries in the trace file can be identified by using the
thread identifier.

The tracing functions are initialized by MQIPT when the security exit is started; all
you have to do is choose what information you want to trace. There are many
tracing examples in the sample user exits. See “Security exits” on page 52.

The minimum requirements for tracing are an entry call, an exit call, and the data
that you want to trace. For example:
/**

* This method is called to initialize the exit (for example, for
* loading validation information) and place itself in a ready
* state to validate connection requests.
*/

public int init(IPTTrace t) {
final String strMethod = "CustomExit.init";

// Trace entry into this method
t.entry(strMethod);

// Trace useful information
t.data(strMethod, "Starting exit - MQIPT version " + getVersion());

// Perform initialization and load any data
t.data(strMethod, "Ready for work");

// Trace exit from this method
t.exit(strMethod);

return 0;
}

56 IBM MQ: Internet Pass-Thru



Port number control
When using MQIPT, it is possible to restrict the range of local port number that are
used when making an outgoing connection.

Set the OutgoingPort property on the route to specify the initial local port number,
and set MaxConnectionThreads to specify the number of ports to be used. For
example, if you set OutgoingPort to 1600 and MaxConnectionThreads to 20, then the
range of local port numbers for that route is 1600 - 1619.

It is the responsibility of the MQIPT administrator to make sure that there are no
conflicts of port numbers between routes.

If OutgoingPort is not defined, a default value of 0 means a system-allocated port
number is used for each connection.

When using HTTP, the number of outgoing ports is twice as many as when not
using HTTP. In the previous example, if the route used HTTP, the range of
numbers would be 1600 - 1639.

See “Scenario: Allocating port numbers” on page 93 for more information.

Multihomed systems

When using a multihomed system, you can specify which IP address an outgoing
connection will bind to by using the LocalAddress property. Host names are not
supported on this property.

Other security considerations
MQIPT has several additional functions that help a designer build a secure
solution.
v If there are many clients in an internal network all trying to make outgoing

connections, they can all go through an MQIPT located inside the firewall. The
firewall administrator then has to grant external access only to the MQIPT
computer.

v MQIPT can connect only to queue managers for which it has been explicitly
configured in its configuration file, unless MQIPT is acting as a SOCKS proxy or
is using a security exit.

v MQIPT verifies that the messages it receives and transmits are valid, and
conform to the IBM MQ protocol. This helps prevent MQIPT being used for
security attacks outside the IBM MQ protocol. If MQIPT is acting as an SSL/TLS
proxy, when all IBM MQ data and protocols have been encrypted, MQIPT can
only guarantee the initial SSL/TLS handshake. In this situation, use the Java
Security Manager.

v MQIPT allows channel exits to run their own end-to-end security protocols.
v You can restrict the total number of incoming connections by setting the

MaxConnectionThreads property. This helps protect a vulnerable internal queue
manager from denial of service attacks.

You must protect the MQIPT configuration file, mqipt.conf, from being read by
unauthorized users because it might contain sensitive information, such as the
AccessPW password that controls remote administrative access to MQIPT. Also,
ensure that mqipt.conf is protected against unauthorized modification. Set the

Chapter 4. Using MQIPT features 57



operating system file permissions for mqipt.conf such that only the user account
that runs MQIPT can read or update the file.

If the MQIPT command port is enabled, you must also prevent unauthorized
access to it. In particular, if the RemoteShutdown property is enabled then a remote
user could shut down MQIPT. You should use a firewall to restrict the set of
computers that can connect to the MQIPT command port. You must assess the
risks of allowing remote MQIPT shutdown and consider disabling the
RemoteShutdown property.

Connection logs
MQIPT provides a connection log facility that contains lists of all successful and
unsuccessful connection attempts. It is controlled by using the ConnectionLog and
MaxLogFileSize properties. See “Global properties” on page 124 for more
information.

Each time MQIPT is started, a new connection log is created. For identification, the
filename includes the current time stamp, for example:
mqiptYYYYMMDDHHmmSS.log

where
YYYY is the year
MM is the month
DD is the day
HH is the hours
mm is the minutes
SS is the seconds

When a connection log reaches the maximum size as determined by the
MaxLogFileSize property, a backup file, mqipt001.log, is created. A maximum of
two backup files are maintained (mqipt001.log and mqipt002.log).

An entry in the connection log represents each part of a connection request. A
connection request that is received by MQIPT and the resulting new connection
that MQIPT makes to the destination address appears as two log entries, and
subsequently two further entries when each connection is ended.

Here is the connection log for a successful connection request:
Wed May 15 13:13:51 BST 2013 conn accept 127.0.0.1(3842) 127.0.0.1(5000) OK 5000-0
Wed May 15 13:13:51 BST 2013 conn conn 127.0.0.1(3843) localhost(3500) OK 5000-0
Wed May 15 13:13:52 BST 2013 conn close 127.0.0.1(3842) 127.0.0.1(5000) OK 5000-0
Wed May 15 13:13:52 BST 2013 conn close 127.0.0.1(3843) localhost(3500) OK 5000-0

Here is a connection log for a failed connection request:
Wed May 15 14:56:40 BST 2013 conn accept 127.0.0.1(4138) 127.0.0.1(7000) OK 7000-0
Wed May 15 14:56:40 BST 2013 conn close 127.0.0.1(4138) 127.0.0.1(7000) ERROR 7000-0

Unrecognized SSL handshake request ’54’

58 IBM MQ: Internet Pass-Thru



Chapter 5. Installing, uninstalling, and migrating MQIPT

You can install, uninstall, or migrate MQIPT by completing one of the following
tasks:
v “Installing MQIPT”
v “Uninstalling MQIPT version 2.0” on page 61
v “Uninstalling MQIPT version 2.1” on page 62
v “Migrating from MQIPT Version 2.0 to Version 2.1” on page 62
v “Upgrading your MQIPT Version 2.1 installation” on page 66

Installing MQIPT
From version 2.1 of MQIPT, you can install the product wherever you want on
your computer, and can have several installations at the same time.

About this task

Each installation can be used and maintained separately, so for example you can
have different fix pack levels of MQIPT installed in different locations if you
choose.

The installation location is not fixed: MQIPT version 2.1 can be installed anywhere
on the system. It is no longer necessary to set the system PATH or CLASSPATH
environment variables to refer to MQIPT.

The MQIPT commands can be invoked from any location and MQIPT
automatically detects its own location. You might choose to add the MQIPT bin
directory to the PATH environment variable for convenience, but it is not mandatory
to do so.

You can also install MQIPT version 2.1 alongside version 2.0. You can have only
one installation of MQIPT version 2.0 on the same system because of the
installation method used by version 2.0.

If you run MQIPT as a system service, you can install only one such service on
each system. You cannot install more than one MQIPT service on the same system,
either from the same MQIPT installation or from different installations. Also, only
the installation of MQIPT that installed the service can be used to remove it. For
example, if you have two MQIPT installations, one in C:\MQIPT1 and one in
C:\mqipt2, and you run the command C:\MQIPT1\bin\mqiptService -install
C:\mqipt1, then only the mqiptService command from the C:\MQIPT1 installation
can subsequently be used to remove the service. Attempting to remove the service
using a different installation causes error MQCPE083.

Procedure

To install MQIPT version 2.1, complete the following steps:
1. Create a new directory where you want MQIPT to be installed.

For example, on a UNIX platform, you might use the following command:
mkdir /opt/mqipt

© Copyright IBM Corp. 2000, 2017 59



2. Unpack the installation archive file into the MQIPT directory by using an
appropriate tool for your platform.
Note that the tar command on UNIX and Linux systems must be run as the
root user. Choose the correct installation archive file for your platform. The
readme file supplied with MQIPT specifies the exact operating system versions
that are supported.

Platform Archive file

AIX® ms81_rios_aix_4.tar

HP-UX ms81_ia64_hpux_11.tar

Linux x86 (32 bit) ms81_x86_linux_2.tar

Linux x86 (64 bit) ms81_amd64_linux_2.tar

Linux zSeries ms81_s390x_linux_2.tar

Solaris SPARC ms81_sparc_solaris_2.tar

Solaris x86 (64 bit) ms81_amd64_solaris_2.tar

Windows (32 bit) ms81_x86_nt_4.zip

For example, on an AIX platform, you might use the following commands, if
the archive file was downloaded to the /tmp directory:
cd /opt/mqipt
su root
tar xvf /tmp/ms81_rios_aix_4.tar

3. To increase security, set the file permissions for your installed files so that they
are read-only.
On Linux or UNIX systems, you can use the chmod command. For example:
chmod -R /opt/mqipt a-w

On Windows platforms, right-click the installation directory and select
Properties. You can change the file permissions on the Security tab.

4. If you subsequently receive error MQCPE080 Unable to determine MQIPT
installation directory, set the MQIPT_PATH environment variable to the
absolute path of the MQIPT installation directory.
You do not normally have to set PATH or CLASSPATH variables for MQIPT
because the installation includes a Java Runtime Environment (JRE). However,
under some circumstances (for example, if you use symbolic links), MQIPT
commands are unable to determine the installation directory. This can be
corrected by setting the MQIPT_PATH environment variable.
For example, if your installation directory is /opt/mqipt, you might use the
following commands:
MQIPT_PATH=/opt/mqipt
export MQIPT_PATH

5. On Windows platforms, create MQIPT icons on the Start menu. Run the
following command from a command line:
C:\mqipt_path\bin\mqiptIcons -install installation_name

where
mqipt_path is the directory where MQIPT is installed.
installation_name is a name that you choose to distinguish this installation from any other. The name is appended to the name of the MQIPT icons.

60 IBM MQ: Internet Pass-Thru



Uninstalling MQIPT version 2.0
The procedure for uninstalling MQIPT depends on the platform on which it was
installed, and the way it was installed.

Note: If you run MQIPT as a system service, only the installation of MQIPT that
installed the service can be used to remove it. For example, if you have two
MQIPT installations, one in C:\MQIPT1 and one in C:\mqipt2, and you run the
command C:\MQIPT1\bin\mqiptService -install C:\mqipt1, then only the
mqiptService command from the C:\MQIPT1 installation can subsequently be used
to remove the service. Attempting to remove the service using a different
installation causes error MQCPE083.

All of the following sections, except the last, assume that you installed MQIPT by
using a system installable image.

Uninstalling from AIX systems
1. Make appropriate backups in case you later have to restore any data. See

“Making backups” on page 142 for details.
2. Make sure that you are logged in as root.
3. Prevent the system from trying to start MQIPT automatically by removing the

entry for MQIPT from the inittab file:
cd /usr/opt/mqipt/bin
./mqiptService -remove

4. Run the installp command:
installp -u mqipt-RT

Uninstalling from HP-UX systems
1. Make appropriate backups in case you later have to restore any data. See

“Making backups” on page 142 for details.
2. Make sure that you are logged in as root.
3. Prevent the system from trying to start MQIPT automatically:

cd /opt/mqipt/bin
./mqiptService -remove

4. Run the swremove command:
swremove MQIPT

Uninstalling from Linux systems
1. Make appropriate backups in case you later have to restore any data. See

“Making backups” on page 142 for details.
2. Make sure that you are logged in as root.
3. Prevent the system from trying to start MQIPT automatically:

cd /opt/mqipt/bin
./mqiptService -remove

4. Run the rpm command:
rpm -e WebSphereMQ-IPT-2.0.0-1

Uninstalling on Solaris systems
1. Make appropriate backups in case you later have to restore any data. See

“Making backups” on page 142 for details.
2. Make sure that you are logged in as root.
3. Prevent the system from trying to start MQIPT automatically:

Chapter 5. Installing, uninstalling, and migrating MQIPT 61



cd /opt/mqipt/bin
./mqiptService -remove

4. Run the pkgrm command:
pkgrm mqipt

Uninstalling from Windows systems
1. Make appropriate backups in case you later have to restore any data. See

“Making backups” on page 142 for details.
2. Prevent the system from trying to start MQIPT as a service:

a. Stop MQIPT from the Windows services panel.
b. Open an administration command prompt, go to the MQIPT bin

subdirectory, and enter:
mqiptService -remove

3. Run the uninstallation process from the Windows Start menu.

Uninstalling following a generic UNIX installation

Make appropriate backups in case you later have to restore any data. See “Making
backups” on page 142 for details.

If MQIPT was not installed using a system installable image, you can uninstall it
by deleting the directory structure into which it was installed.

If MQIPT was configured to run as a system service, remove the service before
uninstalling the code.

Uninstalling MQIPT version 2.1

Procedure

To uninstall MQIPT version 2.1, complete the following steps:
1. Make appropriate backups in case you later have to restore any data. See

“Making backups” on page 142 for details.
2. Prevent the system from trying to start MQIPT automatically. You can see

examples of appropriate commands for various platforms in “Uninstalling
MQIPT version 2.0” on page 61

3. On Windows platforms, remove the MQIPT icons from the Start menu by
clicking the MQIPT icon, Remove these icons on the Start menu.

4. Delete the directory where MQIPT is currently installed.

Migrating from MQIPT Version 2.0 to Version 2.1
You can migrate your MQIPT Version 2.0 installation to Version 2.1.

To perform the migration, complete the following steps:
1. Make appropriate backups in case you later have to restore any data. See

“Making backups” on page 142 for details.
2. Stop MQIPT by running the command:

mqiptAdmin -stop

3. If you have installed MQIPT as a service, you must remove it before
uninstalling MQIPT. Note that only the installation of MQIPT that installed the
service can be used to remove it. For example, if you have two MQIPT

62 IBM MQ: Internet Pass-Thru



installations, one in C:\MQIPT1 and one in C:\mqipt2, and you run the
command C:\MQIPT1\bin\mqiptService -install C:\mqipt1, then only the
mqiptService command from the C:\MQIPT1 installation can subsequently be
used to remove the service. Attempting to remove the service using a different
installation causes error MQCPE083.
mqiptService -remove

4. Run the uninstallation program for MQIPT Version 2.0.
5. After you have installed MQIPT Version 2.1, copy the saved configuration files

back to their original locations.
6. You are advised to use the MQIPT Administration Client to manage changes to

MQIPT. The configuration file from version 2.0 is compatible with the GUI.

Some implementations require a local MQIPT service under the control of your
own organization and a remote MQIPT service which could be under the control
of your client organization. In this situation, it is very difficult to migrate both
MQIPT services at the same time but this is not a problem for MQIPT. Unless
otherwise stated, older versions of MQIPT are compatible with the latest version.
This makes the MQIPT migration process much easier.

CipherSuites

The following CipherSuites are no longer supported:
v SSL_DH_anon_WITH_RC4_40_MD5
v SSL_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA
v SSL_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA
v SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5
v SSL_RSA_EXPORT1024_WITH_DES_CBC_SHA
v SSL_RSA_EXPORT1024_WITH_RC4_56_SHA

If you include one of these CipherSuites in the SSLClientCipherSuites or
SSLServerCipherSuites properties, the route will fail to start with error
MQCPE076. No IBM MQ CipherSpecs correspond to these CipherSuites, so this
only affects interoperability between a pair of MQIPT instances that use SSL/TLS.

The following CipherSuites are not enabled by default in JSSE, whereas they were
enabled by default in SSLite. This is because these CipherSuites are no longer
considered sufficiently secure and you should avoid using them. This change
affects SSLClient routes without the SSLClientCipherSuites property and
SSLServer routes without the SSLServerCipherSuites property, as these routes rely
on the CipherSuites that are enabled by default. If you require any of these
CipherSuites, you must specify the SSLClientCipherSuites or
SSLServerCipherSuites route properties and include them in the property value.
v SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA
v SSL_DH_anon_EXPORT_WITH_RC4_40_MD5
v SSL_DH_anon_WITH_3DES_EDE_CBC_SHA
v SSL_DH_anon_WITH_AES_128_CBC_SHA
v SSL_DH_anon_WITH_AES_256_CBC_SHA
v SSL_DH_anon_WITH_DES_CBC_SHA
v SSL_DH_anon_WITH_RC4_128_MD5
v SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
v SSL_DHE_DSS_WITH_DES_CBC_SHA
v SSL_DHE_DSS_WITH_RC4_128_SHA

Chapter 5. Installing, uninstalling, and migrating MQIPT 63



v SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
v SSL_DHE_RSA_WITH_DES_CBC_SHA
v SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
v SSL_RSA_EXPORT_WITH_RC4_40_MD5 (Note 1)
v SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA (Note 1,2)
v SSL_RSA_FIPS_WITH_DES_CBC_SHA (Note 1,2)
v SSL_RSA_WITH_DES_CBC_SHA (Note 1)
v SSL_RSA_WITH_NULL_MD5 (Note 1)
v SSL_RSA_WITH_NULL_SHA (Note 1)

Notes:

1. These CipherSpecs correspond to IBM MQ CipherSpecs as described in
“SSL/TLS support” on page 24.

2. These names are historical; they are no longer FIPS-compliant and you should
avoid using them.

If you require the same IBM MQ CipherSpecs enabled in MQIPT 2.1 as the
previous MQIPT release, set the following properties in the [global] section of
mqipt.conf. Enter each of these parameters on a single line in mqipt.conf,
separating each CipherSuite value with a space:

SSLServerCipherSuites=SSL_RSA_WITH_DES_CBC_SHA SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA
SSL_RSA_FIPS_WITH_DES_CBC_SHA SSL_RSA_WITH_NULL_MD5 SSL_RSA_WITH_NULL_SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5 SSL_RSA_WITH_RC4_128_MD5 SSL_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA SSL_RSA_WITH_AES_128_CBC_SHA SSL_RSA_WITH_AES_256_CBC_SHA
SSL_RSA_WITH_DES_CBC_SHA SSL_RSA_WITH_RC4_128_SHA SSL_RSA_WITH_3DES_EDE_CBC_SHA
SSLClientCipherSuites=SSL_RSA_WITH_DES_CBC_SHA SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA
SSL_RSA_FIPS_WITH_DES_CBC_SHA SSL_RSA_WITH_NULL_MD5 SSL_RSA_WITH_NULL_SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5 SSL_RSA_WITH_RC4_128_MD5 SSL_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA SSL_RSA_WITH_AES_128_CBC_SHA SSL_RSA_WITH_AES_256_CBC_SHA
SSL_RSA_WITH_DES_CBC_SHA SSL_RSA_WITH_RC4_128_SHA SSL_RSA_WITH_3DES_EDE_CBC_SHA

Adding these properties to the [global] section ensures that all SSL/TLS routes
that do not explicitly define a list of enabled CipherSuites inherit these settings.
The presence of these properties only affects routes with SSLServer or SSLClient
set to true; other routes are unaffected.

With this set of CipherSuites, you can use all of the IBM MQ CipherSpecs
supported by MQIPT 2.0 after migration to version 2.1.

Changes to organizational unit (OU) matching

The following [route] properties now support the matching of multiple OU values
by using commas as separators:
v SSLClientDN_OU

v SSLClientSiteDN_OU

v SSLServerDN_OU

v SSLServerSiteDN_OU

If you previously used any of these OU [route] properties and included commas,
you must insert backslash (\) escape characters before any commas to preserve the
previous behavior and avoid them being interpretted as separators. See
“Multi-valued certificate Distinguished Name OU properties” on page 46 for more
information.

64 IBM MQ: Internet Pass-Thru



Changes to SecurityManager security policy

MQIPT Version 2.1 includes additional problem diagnosis information in its trace
and FFST records. If you use a Java SecurityManager security policy, you must
always include the following properties in the policy:

permission java.util.PropertyPermission "java.home", "read";
permission java.util.PropertyPermission "java.version", "read";
permission java.util.PropertyPermission "java.runtime.version", "read";
permission java.util.PropertyPermission "java.vm.info", "read";
permission java.util.PropertyPermission "java.vm.vendor", "read";
permission java.util.PropertyPermission "os.arch", "read";
permission java.util.PropertyPermission "os.name", "read";
permission java.util.PropertyPermission "os.version", "read";
permission java.lang.RuntimePermission "getenv.MQIPT_PATH";
permission java.lang.RuntimePermission "getStackTrace";
permission java.security.SecurityPermission "getPolicy";

If you do not include all of these properties, MQIPT will not operate correctly, and
problem diagnosis will be impaired.

When you migrate from a previous version, ensure that all of these properties are
included in any security policy file identified by the SecurityManagerPolicy
property in the [global] section of the mqipt.conf file. If do you not have a
SecurityManagerPolicy property, it is not necessary to create one.

IBM MQ AMQ9616 or AMQ9631 errors with SSL/TLS routes

MQIPT Version 2.1 supports more TLS secure socket protocol versions than the
previous releases. As a result, it is possible that existing IBM MQ channels might
fail to connect through MQIPT after MQIPT has been upgraded to version 2.1.

This issue is most likely to affect SSLClient routes, because the listener on the
destination queue manager has all protocol versions enabled so that it can perform
handshakes for multiple channels with different CipherSpecs. The MQIPT Version
2.1 default is also to enable all protocol versions for security reasons. The secure
sockets protocols are designed to negotiate the highest enabled protocol version
supported by both sides. If you are using older SSL 3.0 and TLS 1.0 CipherSpecs
with IBM MQ Version 7.1 or later, this might result in TLS 1.2 being used instead
of the expected protocol. This protocol version mismatch causes the channel to
report an error.

If IBM MQ channels that worked with the previous MQIPT release fail to start and
produce AMQ9616 or AMQ9631 errors after migration, set the protocol versions
that are to be used: set the SSLClientProtocols route property to restrict the
protocol versions for an SSLClient route and the SSLServerProtocols route
property to restrict the protocol versions for an SSLServer route. In most cases,
setting SSLClientProtocols=SSLv3 will resolve the problem. If you have MQIPT
V2.0 and an interim fix for APAR IV25345 installed, you might need to add TLSv1
to the SSLClientProtocols list.

To assist with migration, add the following settings to the [global] section of
mqipt.conf so that they are inherited by all SSL/TLS routes:

SSLClientProtocols=SSLv3,TLSv1
SSLServerProtocols=SSLv3,TLSv1

Chapter 5. Installing, uninstalling, and migrating MQIPT 65



These settings only affect routes with SSLServer or SSLClient set to true; other
routes are unaffected.

Refer to the table of CipherSpecs and CipherSuites in “SSL/TLS support” on page
24 for more information about the protocol versions used by IBM MQ CipherSpecs
and how best to configure the protocol versions.

Connection errors when using 512-bit RSA keys after migration

If you have a digital certificate with a 512-bit RSA public key, you might see one of
the following connection errors in the MQIPT connection log, after you migrate to
version 2.1:
v SSLException: Error generating ECDH server key exchange

v Unsupported SignatureAndHashAlgorithm in ServerKeyExchange message

The failure arises because MQIPT V2.1 supports TLS 1.2 CipherSuites, which are
enabled by default unless you have specifically set the SSLClientCipherSuites or
SSLServerCipherSuites route properties. The IBM JSSE implementation of the TLS
1.2 CipherSuites does not support 512-bit RSA keys because 512 bits is an insecure
key size; it provides only a weak strength of encryption and should be avoided.

Larger RSA key sizes such as 768 bits and 1024 bits are not affected and are
supported, although for security reasons, it is preferable to use a minimum RSA
key size of 2048 bits.

To check the key size for your existing certificates, you can use the supplied
mqiptKeycmd tool:
1. Run the certificate list command to obtain a list of the certificate labels in the

key-ring file. For example:
mqiptKeycmd -cert -list -db key.p12 -pw password

2. For each certificate label (for example, mqipt), display the certificate details:
mqiptKeycmd -cert -details -db key.p12 -pw password -label mqipt

The Key Size field displays the certificate public key size. If the size shown is
512 then this issue is likely to occur.

The preferred solution is to replace the old RSA digital certificate with a new
certificate using an RSA key size of at least 2048 bits. This offers a much better
strength of encryption and also ensures compatibility with the TLS 1.2 protocol.

However, if necessary, you can work around the error by configuring the set of
enabled protocol versions to exclude TLS 1.2, for example:
SSLClientProtocols=SSLv3,TLSv1,TLSv1.1
SSLServerProtocols=SSLv3,TLSv1,TLSv1.1

Upgrading your MQIPT Version 2.1 installation
Shortdesc

Procedure

To apply fix pack maintenance to your MQIPT Version 2.1 installation, complete
the following steps:
1. Make backups of your data. See “Making backups” on page 142 for details.

66 IBM MQ: Internet Pass-Thru



2. Uninstall the old version of MQIPT. See “Uninstalling MQIPT version 2.1” on
page 62 for details.

3. Install the new version of MQIPT. See “Installing MQIPT” on page 59 for
details.

4. Copy your backed-up data files to their original locations, overwriting any
newly installed copies of these files.

Chapter 5. Installing, uninstalling, and migrating MQIPT 67



68 IBM MQ: Internet Pass-Thru



Chapter 6. Scenarios: Getting started with MQIPT

The scenarios in this section show you how to set up some simple IBM MQ
Internet Pass-Thru configurations. You can also use these tasks to confirm that the
product has been installed successfully.

Before you begin

Before you start to use the scenarios in this section, make sure that the following
prerequisites have been completed:
v You are familiar with defining queue managers, queues, and channels on IBM

MQ
v You have already installed a IBM MQ client and server.
v MQIPT is installed in a directory called C:\mqipt on Windows systems. (The

examples are written for Windows systems but will run on any of the supported
platforms.)

v The client, server, and each instance of MQIPT are installed on separate
computers.

v You are familiar with putting messages on a queue by using the amqsputc
command.

v You are familiar with getting messages from a queue using the amqsgetc
command.

v You are familiar with setting client authorities in IBM MQ.

On the IBM MQ server, complete the following tasks:
v Define a queue manager called MQIPT.QM1.
v Define a server connection channel called MQIPT.CONN.CHANNEL.
v Define a local queue called MQIPT.LOCAL.QUEUE.
v Start a TCP/IP listener for MQIPT.QM1 on port 1414. If port 1414 is already in use

by another application choose a free port address and substitute it in the
following examples.

v Ensure that connection authentication and channel authentication is configured
to allow client connections from the client machine with your user ID. If
connection authentication is set to require a user ID and password for client
connections, you will need to set the MQSAMP_USER_ID environment variable
to the user ID to be used for connection authentication before running the
amqsputc and amqsgetc commands.

After you have done this, you can test the route from the IBM MQ client to the
queue manager by putting a message on the local queue of the queue manager, by
using the amqsputc command, and then retrieving it, by using the amqsgetc
command.

Edit the mqipt.conf file as follows:
v Copy mqiptSample.conf, which you can find in the MQIPT installation directory,

to mqipt.conf in your chosen MQIPT home directory. The following scenarios
use C:\mqiptHome as the MQIPT home directory.

© Copyright IBM Corp. 2000, 2017 69



v Create two directories alongside mqipt.conf named errors and logs. Set the file
permissions on these directories so that they are writeable by the user ID that
will run MQIPT.

v Delete all routes from the mqipt.conf file.
v In the remaining [global] section, check that the following entries exist, adding

them if necessary, and set them to the following values:
– ClientAccess is set to true.
– Destination is set to the network address of your queue manager. You can

specify either a host name or an IP address.
– DestinationPort is set to the port number used by your queue manager.

The following scenarios are described in this section:
v “Scenario: Verifying that MQIPT is working correctly”
v “Scenario: Creating a key-ring file” on page 72
v “Scenario: Creating test certificates” on page 75
v “Scenario: Authenticating an SSL/TLS server” on page 76
v “Scenario: Authenticating an SSL/TLS client” on page 79
v “Scenario: Configuring an HTTP proxy” on page 83
v “Scenario: Configuring access control” on page 85
v “Scenario: Configuring a SOCKS proxy” on page 87
v “Scenario: Configuring a SOCKS client” on page 88
v “Scenario: Configuring MQIPT clustering support” on page 90
v “Scenario: Allocating port numbers” on page 93
v “Scenario: retrieving CRLs by using an LDAP server” on page 94
v “Scenario: running MQIPT in SSL/TLS proxy mode” on page 97
v “Scenario: running MQIPT in SSL/TLS proxy mode with a security manager” on

page 99
v “Scenario: Apache rewrite” on page 101
v “Scenario: Using a security exit” on page 103
v “Scenario: Routing client connection requests to IBM MQ queue manager servers

by using security exits” on page 105
v “Scenario: Dynamically routing client connection requests” on page 108
v “Scenario: Using a certificate exit to authenticate an SSL/TLS server” on page

111

Scenario: Verifying that MQIPT is working correctly
Use this simple configuration setup to ensure that MQIPT was installed correctly.

Before you begin
v Before you start to use this scenario, make sure that you have completed the

prerequisite tasks listed in Chapter 6, “Scenarios: Getting started with MQIPT,”
on page 69.

70 IBM MQ: Internet Pass-Thru



About this task

This diagram shows the connection from the IBM MQ client (called
client1.company1.com on port 1415) through MQIPT to the IBM MQ server (called
server1.company2.com on port 1414).

Procedure

To verify that MQIPT is working correctly, complete the following steps:
1. Set up MQIPT. On the MQIPT computer, edit mqipt.conf and add a route

definition:
[route]
ListenerPort=1415
Destination=server1.company2.com
DestinationPort=1414

2. Start MQIPT. Open a command prompt and enter the following command:
C:\mqipt\bin\mqipt C\mqiptHome

where C\mqiptHome indicates the location of the MQIPT configuration file,
mqipt.conf.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.3 starting
MQCPI004 Reading configuration information from C:\mqiptHome\mqipt.conf
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 1415 has started and will forward messages to:
MQCPI034 ....server1.company2.com(1414)
MQCPI035 ....using MQ protocols
MQCPI078 Route 1415 ready for connection requests

3. At a command prompt on the IBM MQ client, enter the following commands:
a. Set the MQSERVER environment variable:

SET MQSERVER=MQIPT.CONN.CHANNEL/tcp/10.9.1.2(1415)

b. Put a message:
amqsputc MQIPT.LOCAL.QUEUE MQIPT.QM1
Hello world

Figure 6. Installation verification test network diagram

Chapter 6. Scenarios: Getting started with MQIPT 71



Press the Enter key twice after typing the message string.
c. Get the message:

amqsgetc MQIPT.LOCAL.QUEUE MQIPT.QM1

The message, "Hello world" is returned.

Scenario: Creating a key-ring file
In this scenario, you can request a certificate and create a key-ring file.

Before you begin
v Before you start to use this scenario, make sure that you have completed the

prerequisite tasks listed in Chapter 6, “Scenarios: Getting started with MQIPT,”
on page 69.

This task assumes you request a new certificate from a trusted Certificate
Authority (CA) by using iKeyman, and that your personal certificate is returned to
you in a file (for example, server.cer). This is sufficient to perform server
authentication. If you require client authentication you must request a second
certificate (for example, client.cer) and perform the following steps twice, to
create two key-ring files.

About this task

You can use either the iKeyman command-line interface (CLI) or the iKeyman GUI
to request the certificate.

Procedure

Use one of the following methods to create a key-ring file:
v Use the iKeyman command-line interface (CLI)

1. Create a new PKCS#12 file:
mqiptKeycmd -keydb -create -db server_name.pfx -pw key_password -type key_type

where:
– -db specifies the file (server_name.pfx) that corresponds to the key-ring

property of the MQIPT route. For example, use SSLClientKeyRing for an
SSLClient route and SSLServerKeyRing for an SSLServer route.

– -pw specifies the password (key_password) that you must use later with the
mqiptPW utility to store the encrypted key-ring password.

– -type specifies the format of the key database; for example, pkcs12.
2. Generate a new certificate request:

mqiptKeycmd -certreq -create -db server_name.pfx -pw key_password -type key_type
-file cert_file_name.req -label label -dn DN_identity
-sig_alg signature_algorithm -size key_size

where:
– -type specifies the format of the key database; for example, pkcs12.
– -file specifies a file name for the requested certificate.
– -label specifies a unique name of your choice; it is preferable not to

include space characters.
– -dn specifies the appropriate Distinguished Name identity for the MQIPT

route; for example, "CN=Test Certificate,OU=Sales,O=Example,C=US".

72 IBM MQ: Internet Pass-Thru



– -sig_alg specifies the hash algorithm; for example, SHA256WithRSA.
– -size specifies the size of the public key; for example, 2048.

If you use the example values given, this command creates a digital
certificate with a 2048-bit RSA public key and a digital signature that uses
RSA with the SHA-256 hash algorithm.
When creating a certificate, take care to choose an appropriate public key
encryption algorithm, key size, and digital signature algorithm for your
organization's security needs. See “Digital certificate considerations for
MQIPT” on page 38 for more information.
Send the certificate request file (cert_file_name.req) created by the
command to your CA to be signed.

3. When you receive the signed personal certificate from the CA, add it into the
server key ring:
mqiptKeycmd -cert -receive -db server_name.pfx -pw key_password

-type key_type -file cert_file_name.crt

v Use the iKeyman GUI

1. Open the iKeyman GUI by running the following command:
mqiptKeyman

2. Click Key database file > New.
3. Select the type of the key database; for example, PKCS12.
4. Enter the file name and location for the new key-ring file. This must

correspond to the key-ring property of the MQIPT route; for example, use
SSLClientKeyRing for an SSLClient route and SSLServerKeyRing for an
SSLServer route. Click OK.

5. Enter, and confirm, a password for the new key-ring file. This is the
password that you must use later with the mqiptPW utility to store the
encrypted key-ring password. Click OK to create the new
personal-certificate key-ring file.

6. Create the certificate request by clicking Create > New Certificate Request.
7. Enter a label for the new certificate in the Key Label field. The label can be

any unique name you choose; it is preferable not to include space
characters.

8. Select the key size and digital signature algorithm as appropriate for your
organization's security needs. See “Digital certificate considerations for
MQIPT” on page 38 for more information.

9. Enter the appropriate Distinguished Name identity for the MQIPT route in
the optional DN fields.

10. Enter the file name for the certificate request to create, and click OK. The
certificate request is generated and saved with the name you specify. Send
this file to your CA to be signed.

11. When you receive the signed personal certificate from the CA, you must
receive it in the key-ring file. In the "Key database content" panel select
Personal Certificates from the drop-down list. Then click Receive.

12. Enter the name of the file where the signed certificate is stored, then click
OK.

What to do next

You must also ensure that the CA certificate of the CA that signed the personal
certificate is present in the CA key-ring file. Depending on your MQIPT
configuration, the CA key-ring file might be a different file from the personal

Chapter 6. Scenarios: Getting started with MQIPT 73



certificate key-ring file. Check the contents of the sample CA key-ring file,
sslCAdefault.pfx, by using iKeyman, to see if your personal certificates were
signed by one of the listed CAs.
v If your personal certificates were signed by a listed CA, then you can use the

sample CA key-ring file.
v If your personal certificates were signed by a different CA, you must create a

key-ring file containing the public CA certificate of the CA that signed your
personal certificates. This may have been returned with your personal certificate.
If not, then you must request the CA certificate from the same CA that supplied
your personal certificates and then add it to sslCAdefault.pfx.

If you need to add a CA certificate, you can use either the iKeyman CLI or the
iKeyman GUI.

To add a CA certificate by using the iKeyman CLI:
mqiptKeycmd -cert -add -db sslCAdefault.pfx -pw key_password -type key_type

-file ca_file_name.crt -label label

where:
v -db specifies the CA key-ring file, in this case sslCAdefault.pfx.
v -pw specifies the key-ring password.
v -type specifies the format of the key database; for example, pkcs12.
v -file specifies the name of the file returned by the CA.
v -label specifies a unique name of your choice; it is preferable not to use space

characters.

To add a CA certificate by using the iKeyman GUI:
v In the Key Database Content panel, select Signer Certificates from the

drop-down list
v Click Add.
v Enter the name of the file containing the CA certificate, then click OK.
v Enter a label for the CA certificate. The label can be any unique name you

choose; it is preferable not to use space characters. Click OK.

To use these new key-ring files for server authentication, see the scenario
Authenticating an SSL/TLS server, and set the following route properties:
SSLClientCAKeyRing=C:\\mqipt\\ssl\\sslCAdefault.pfx
SSLClientCAKeyRingPW=C:\\mqipt\\ssl\\sslCAdefault.pwd
SSLServerKeyRing=C:\\mqipt\\ssl\\myServer.pfx
SSLServerKeyRingPW=C:\\mqipt\\ssl\\myServer.pwd
SSLServerCAKeyRing=C:\\mqipt\\ssl\\sslCAdefault.pfx
SSLServerCAKeyRingPW=C:\\mqipt\\ssl\\sslCAdefault.pwd

To use these new key-ring files for client and server authentication, see the
scenario SSL/TLS client authentication, and set the following route properties:
SSLClientKeyRing=C:\\mqipt\\ssl\\myClient.pfx
SSLClientKeyRingPW=C:\\mqipt\\ssl\\myClient.pwd
SSLClientCAKeyRing=C:\\mqipt\\ssl\\sslCAdefault.pfx
SSLClientCAKeyRingPW=C:\\mqipt\\ssl\\sslCAdefault.pwd
SSLServerKeyRing=C:\\mqipt\\ssl\\myServer.pfx
SSLServerKeyRingPW=C:\\mqipt\\ssl\\myServer.pwd
SSLServerCAKeyRing=C:\\mqipt\\ssl\\sslCAdefault.pfx
SSLServerCAKeyRingPW=C:\\mqipt\\ssl\\sslCAdefault.pwd

74 IBM MQ: Internet Pass-Thru



Scenario: Creating test certificates
In this scenario, you can create a self-signed certificate which you can use for
testing MQIPT routes. This certificate can be used by an MQIPT route to identify
itself to a remote peer.

Self-signed certificates can be useful in test scenarios where you must ensure
SSL/TLS connectivity without paying a Certificate Authority (CA) for a certificate.
However, you should not use self-signed certificates in production environments. If
you need certificates for production usage, see “Scenario: Creating a key-ring file”
on page 72.

Before you begin
v Before you start to use this scenario, make sure that you have completed the

prerequisite tasks listed in Chapter 6, “Scenarios: Getting started with MQIPT,”
on page 69.

About this task

You can either use the iKeyman command-line interface (CLI) or the iKeyman GUI
to request the certificate. You should then include the resulting key-ring file in the
SSLServerKeyRing or SSLClientKeyRing MQIPT route property, depending on
whether the certificate is for use by inbound or outbound connections.

Procedure

Use one of the following methods to create test certificates:
v Use the iKeyman command-line interface (CLI)

1. Create a new PKCS#12 file:
mqiptKeycmd -keydb -create -db server_name.pfx -pw key_password -type key_type

where:
– -db specifies the file (server_name.pfx) that corresponds to the key-ring

property of the MQIPT route. For example, use SSLClientKeyRing for an
SSLClient route and SSLServerKeyRing for an SSLServer route.

– -pw specifies the password (key_password) that you must use later with the
mqiptPW utility to store the encrypted key-ring password.

– -type specifies the format of the key database; for example, pkcs12.
2. Create a self-signed personal certificate for testing purposes:

mqiptKeycmd -cert -create -db server_name.pfx -pw password -type key_type
-label label -dn DN_identity
-sig_alg signature_algorithm -size key_size

where:
– -type specifies the format of the key database; for example, pkcs12.
– -label specifies a unique name of your choice; it is preferable not to

include space characters.
– -dn specifies the appropriate Distinguished Name identity for the MQIPT

route; for example, "CN=Test Certificate,OU=Sales,O=Example,C=US".
– -sig_alg specifies the hash algorithm; for example, SHA256WithRSA.
– -size specifies the size of the public key; for example, 2048.

Chapter 6. Scenarios: Getting started with MQIPT 75



If you use the example values given, this command creates a digital
certificate with a 2048-bit RSA public key and a digital signature that uses
RSA with the SHA-256 hash algorithm.
When creating a certificate, take care to choose an appropriate public key
encryption algorithm, key size, and digital signature algorithm for your
organization's security needs. See “Digital certificate considerations for
MQIPT” on page 38 for more information.

v Use the iKeyman GUI
1. Open the iKeyman GUI by running the following command:

mqiptKeyman

2. Click Key database file > New.
3. Select the type of the key database; for example, PKCS12.
4. Enter the file name and location for the new key-ring file. This must

correspond to the key-ring property of the MQIPT route; for example, use
SSLClientKeyRing for an SSLClient route and SSLServerKeyRing for an
SSLServer route. Click OK.

5. Enter a password for the new key-ring file. Enter the password a second
time to confirm. This is the password that you must use later with the
mqiptPW utility to store the encrypted key-ring password. Click OK to create
the new personal-certificate key-ring file.

6. Create the new self-signed personal certificate by clicking Create > New
Self-Signed Certificate.

7. Enter a label for the new certificate in the Key Label field. The label can be
any unique name you choose; it is preferable not to include space characters.

8. Select the key size and digital signature algorithm as appropriate for your
organization's security needs. See “Digital certificate considerations for
MQIPT” on page 38 for more information.

9. Enter the appropriate Distinguished Name identity for the MQIPT route in
the optional DN fields, then click OK.

What to do next

After you have finished configuring the key-ring file, store an encrypted copy of
the password in a file so that MQIPT can access the key-ring file:
mqiptPW key_password password_file_name.pwd

where:
v key_password is the key-ring password.
v password_file_name.pwd is the name of the file to store the password in.

Ensure that this file is named by the appropriate MQIPT route property; for
example, SSLServerKeyRingPW for the SSLServer personal certificate key-ring file or
SSLClientKeyRingPW for the SSLClient personal certificate key-ring file.

Scenario: Authenticating an SSL/TLS server
In this scenario, you can test an SSL/TLS connection by using the sample test
certificate (sslSample.pfx) key-ring file, provided with MQIPT in the ssl
subdirectory.

76 IBM MQ: Internet Pass-Thru



Before you begin
v Before you start to use this scenario, make sure that you have completed the

prerequisite tasks listed in Chapter 6, “Scenarios: Getting started with MQIPT,”
on page 69.

About this task

The connection is made between a IBM MQ client and a IBM MQ server through
two instances of MQIPT. During the SSL/TLS handshake, the server sends its test
certificate to the client and the client uses its copy of the certificate with the
trust-as-peer flag set to authenticate the server. The CipherSuite
SSL_RSA_WITH_AES_256_CBC_SHA256 is used. (Based on mqipt.conf created
from “Scenario: Verifying that MQIPT is working correctly” on page 70). For
details on how to create a test certificate to use in this example, see “Scenario:
Creating test certificates” on page 75.

This diagram shows the connection from the IBM MQ client (called
client1.company1.com on port 1415) through two instances of MQIPT to the IBM
MQ server (called server1.company2.com on port 1414).

Procedure

To authenticate an SSL/TLS server, complete the following steps:
1. On MQIPT1:

a. Edit mqipt.conf and add a route definition:
[route]
ListenerPort=1415
Destination=10.100.6.7
DestinationPort=1416
SSLClient=true
SSLClientKeyRing=C:\mqipt\ssl\sslSample.pfx
SSLClientKeyRingPW=C:\mqipt\ssl\sslSample.pwd
SSLClientCipherSuites=SSL_RSA_WITH_AES_256_CBC_SHA256

b. Open a command prompt and start MQIPT:
C:\mqipt\bin\mqipt C:\mqiptHome

where C:\mqiptHome indicates the location of the MQIPT configuration file,
mqipt.conf.
The following message indicates successful completion:

Figure 7. SSL/TLS server network diagram

Chapter 6. Scenarios: Getting started with MQIPT 77



5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.3 starting
MQCPI004 Reading configuration information from mqipt.conf
MQCPI021 Password checking has been enabled on the command port
MQCPI008 Listening for control commands on port 1881
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 1415 is starting and will forward messages to :
MQCPI034 ....10.100.6.7(1416)
MQCPI035 ....using MQ protocols
MQCPI036 ....SSL Client side enabled with properties :
MQCPI139 ......secure socket protocols <NULL>
MQCPI031 ......cipher suites SSL_RSA_WITH_AES_256_CBC_SHA256
MQCPI032 ......keyring file C:\mqipt\ssl\sslSample.pfx
MQCPI047 ......CA keyring file <NULL>
MQCPI071 ......site certificate uses UID=*,CN=*,T=*,OU=*,DC=*,O=*,STREET=*,L=*,S
T=*,PC=*,C=*,DNQ=*
MQCPI038 ......peer certificate uses UID=*,CN=*,T=*,OU=*,DC=*,O=*,STREET=*,L=*,S
T=*,PC=*,C=*,DNQ=*
MQCPI078 Route 1415 ready for connection requests

2. On MQIPT2:
a. Edit mqipt.conf and add a route definition:

[route]
ListenerPort=1416
Destination=Server1.company2.com
DestinationPort=1414
SSLServer=true
SSLServerKeyRing=C:\mqipt\ssl\sslSample.pfx
SSLServerKeyRingPW=C:\mqipt\ssl\sslSample.pwd
SSLServerCipherSuites=SSL_RSA_WITH_AES_256_CBC_SHA256

b. Open a command prompt and start MQIPT:
C:\mqipt\bin\mqipt C:\mqiptHome

where C:\mqiptHome indicates the location of the MQIPT configuration file,
mqipt.conf.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.3 starting
MQCPI004 Reading configuration information from mqipt.conf
MQCPI021 Password checking has been enabled on the command port
MQCPI008 Listening for control commands on port 1882
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 1416 is starting and will forward messages to :
MQCPI034 ....Server1.company2.com(1414)
MQCPI035 ....using MQ protocols
MQCPI037 ....SSL Server side enabled with properties :
MQCPI139 ......secure socket protocols <NULL>
MQCPI031 ......cipher suites SSL_RSA_WITH_AES_256_CBC_SHA256
MQCPI032 ......keyring file C:\mqipt\ssl\sslSample.pfx
MQCPI047 ......CA keyring file <NULL>
MQCPI071 ......site certificate uses UID=*,CN=*,T=*,OU=*,DC=*,O=*,STREET=*,L=*,S
T=*,PC=*,C=*,DNQ=*
MQCPI038 ......peer certificate uses UID=*,CN=*,T=*,OU=*,DC=*,O=*,STREET=*,L=*,S
T=*,PC=*,C=*,DNQ=*
MQCPI033 ......client authentication set to false
MQCPI078 Route 1416 ready for connection requests

3. At a command prompt on the IBM MQ client, enter the following commands:
a. Set the MQSERVER environment variable:

SET MQSERVER=MQIPT.CONN.CHANNEL/tcp/10.9.1.2(1415)

b. Put a message:

78 IBM MQ: Internet Pass-Thru



amqsputc MQIPT.LOCAL.QUEUE MQIPT.QM1
Hello world

Press Enter twice after typing the message string.
c. Get the message:

amqsgetc MQIPT.LOCAL.QUEUE MQIPT.QM1

The message, "Hello world" is returned.

Scenario: Authenticating an SSL/TLS client
In this scenario, you can test an SSL/TLS connection by using the sample test
certificate to perform server and client authentication.

Before you begin
v Before you start to use this scenario, make sure that you have completed the

prerequisite tasks listed in Chapter 6, “Scenarios: Getting started with MQIPT,”
on page 69.

About this task

During the SSL/TLS handshake, the server sends its test certificate to the client.
The client uses its copy of the certificate, with the trust-as-peer flag, to authenticate
the server. The client then sends its test certificate to the server. The server uses its
copy of the certificate, with the trust-as-peer flag, to authenticate the client. The
CipherSuite SSL_RSA_WITH_AES_256_CBC_SHA256 is used. (Based on
mqipt.conf created from “Scenario: Verifying that MQIPT is working correctly” on
page 70).

This diagram shows the connection from the IBM MQ client (called
client1.company1.com on port 1415) through two instances of MQIPT to the IBM
MQ server (called server1.company2.com on port 1414).

Procedure

To authenticating an SSL/TLS client, complete the following steps:
1. On MQIPT1:

a. Edit mqipt.conf and add a route definition:

Figure 8. SSL/TLS client network diagram

Chapter 6. Scenarios: Getting started with MQIPT 79



[route]
ListenerPort=1415
Destination=10.100.6.7
DestinationPort=1416
SSLClient=true
SSLClientKeyRing=C:\mqipt\ssl\sslSample.pfx
SSLClientKeyRingPW=C:\mqipt\ssl\sslSample.pwd
SSLClientCipherSuites=SSL_RSA_WITH_AES_256_CBC_SHA256

b. Open a command prompt and start MQIPT :
C:\mqipt\bin\mqipt C:\mqiptHome

where C:\mqiptHome indicates the location of the MQIPT configuration file,
mqipt.conf.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.3 starting
MQCPI004 Reading configuration information from mqipt.conf
MQCPI021 Password checking has been enabled on the command port
MQCPI008 Listening for control commands on port 1881
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 1415 is starting and will forward messages to :
MQCPI034 ....10.100.6.7(1416)
MQCPI035 ....using MQ protocols
MQCPI036 ....SSL Client side enabled with properties :
MQCPI139 ......secure socket protocols <NULL>
MQCPI031 ......cipher suites SSL_RSA_WITH_AES_256_CBC_SHA256
MQCPI032 ......keyring file C:\mqipt\ssl\sslSample.pfx
MQCPI047 ......CA keyring file <NULL>
MQCPI071 ......site certificate uses UID=*,CN=*,T=*,OU=*,DC=*,O=*,STREET=*,L=*,S
T=*,PC=*,C=*,DNQ=*
MQCPI038 ......peer certificate uses UID=*,CN=*,T=*,OU=*,DC=*,O=*,STREET=*,L=*,S
T=*,PC=*,C=*,DNQ=*
MQCPI078 Route 1415 ready for connection requests

2. On MQIPT2:
a. Edit mqipt.conf and add a route definition:

[route]
ListenerPort=1416
Destination=Server1.company2.com
DestinationPort=1414
SSLServer=true
SSLServerAskClientAuth=true
SSLServerKeyRing=C:\mqipt\ssl\sslSample.pfx
SSLServerKeyRingPW=C:\mqipt\ssl\sslSample.pwd
SSLServerCipherSuites=SSL_RSA_WITH_AES_256_CBC_SHA256

b. Open a command prompt and start MQIPT:
C:\mqipt\bin\mqipt C:\mqiptHome

where C:\mqiptHome indicates the location of the MQIPT configuration file,
mqipt.conf.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.3 starting
MQCPI004 Reading configuration information from mqipt.conf
MQCPI021 Password checking has been enabled on the command port
MQCPI008 Listening for control commands on port 1882
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 1416 is starting and will forward messages to :
MQCPI034 ....Server1.company2.com(1414)
MQCPI035 ....using MQ protocols

80 IBM MQ: Internet Pass-Thru



MQCPI037 ....SSL Server side enabled with properties :
MQCPI139 ......secure socket protocols <NULL>
MQCPI031 ......cipher suites SSL_RSA_WITH_AES_256_CBC_SHA256
MQCPI032 ......keyring file C:\mqipt\ssl\sslSample.pfx
MQCPI047 ......CA keyring file <NULL>
MQCPI071 ......site certificate uses UID=*,CN=*,T=*,OU=*,DC=*,O=*,STREET=*,L=*,S
T=*,PC=*,C=*,DNQ=*
MQCPI038 ......peer certificate uses UID=*,CN=*,T=*,OU=*,DC=*,O=*,STREET=*,L=*,S
T=*,PC=*,C=*,DNQ=*
MQCPI033 ......client authentication set to true
MQCPI078 Route 1416 ready for connection requests

3. At a command prompt on the IBM MQ client, enter the following commands:
a. Set the MQSERVER environment variable:

SET MQSERVER=MQIPT.CONN.CHANNEL/tcp/10.9.1.2(1415)

b. Put a message:
amqsputc MQIPT.LOCAL.QUEUE MQIPT.QM1
Hello world

Press Enter twice after typing the message string.
c. Get the message:

amqsgetc MQIPT.LOCAL.QUEUE MQIPT.QM1

The message, "Hello world" is returned.

Scenario: Configuring HTTP tunneling
In this scenario, you can test a simple connection between two instances of MQIPT
over HTTP.

Before you begin

Before you start to use this scenario, make sure that you have completed the
prerequisite tasks listed in Chapter 6, “Scenarios: Getting started with MQIPT,” on
page 69.

About this task

This diagram shows the connection from the IBM MQ client (called
client1.company1.com on port 1415) through two instances of MQIPT, tunnelling
the connection over HTTP, and finally to the IBM MQ server (called
server1.company2.com on port 1414).

client1.company1.com 10.9.1.2 10.100.6.7 server1.company2.com

IBM MQ client MQIPT 1 MQIPT 2 IBM MQ server

1415 14148080

Figure 9. HTTP proxy network diagram

Chapter 6. Scenarios: Getting started with MQIPT 81



Procedure

To configure an HTTP proxy, complete the following steps:
1. On MQIPT1:

a. Edit mqipt.conf and add a route definition:
[route]
ListenerPort=1415
Destination=10.100.6.7
DestinationPort=8080
HTTP=true
HTTPServer=10.100.6.7
HTTPServerPort=8080

b. Open a command prompt and start MQIPT:
C:\mqipt\bin\mqipt C:\mqiptHome

where C:\mqiptHome indicates the location of the MQIPT configuration file,
mqipt.conf.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.4 starting
MQCPI004 Reading configuration information from mqipt.conf
MQCPI021 Password checking has been enabled on the command port
MQCPI008 Listening for control commands on port 1881
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 1415 is starting and will forward messages to :
MQCPI034 ....10.100.6.7(8080)
MQCPI035 ....using HTTP
MQCPI066 ....and HTTP server at 10.100.6.7(8080)
MQCPI078 Route 1415 ready for connection requests

2. On MQIPT2:
a. Edit mqipt.conf and add a route definition:

[route]
ListenerPort=8080
Destination=Server1.company2.com
DestinationPort=1414

b. Open a command prompt and start MQIPT:
C:\mqipt\bin\mqipt C:\mqiptHome

where C:\mqiptHome indicates the location of the MQIPT configuration file,
mqipt.conf.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.4 starting
MQCPI004 Reading configuration information from mqipt.conf
MQCPI021 Password checking has been enabled on the command port
MQCPI008 Listening for control commands on port 1881
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 8080 is starting and will forward messages to :
MQCPI034 ....Server1.company2.com(1414)
MQCPI035 ....using MQ protocols
MQCPI078 Route 8080 ready for connection requests

3. At a command prompt on the IBM MQ client, enter the following commands:
a. Set the MQSERVER environment variable:

SET MQSERVER=MQIPT.CONN.CHANNEL/tcp/10.9.1.2(1415)

b. Put a message:

82 IBM MQ: Internet Pass-Thru



amqsputc MQIPT.LOCAL.QUEUE MQIPT.QM1
Hello world

Press Enter twice after typing the message string.
c. Get the message:

amqsgetc MQIPT.LOCAL.QUEUE MQIPT.QM1

The message, "Hello world" is returned.

Scenario: Configuring an HTTP proxy
In this scenario, you can test the connection using an HTTP proxy (IBM Caching
Proxy).

Before you begin
v Before you start to use this scenario, make sure that you have completed the

prerequisite tasks listed in Chapter 6, “Scenarios: Getting started with MQIPT,”
on page 69.

v Check the following properties in the ibmproxy.conf file:
– ProxyPersistence must be set to true to permit persistent connections.
– MaxPersistRequest must be set to 5000, the number of requests allowed on a

single connection before the connection is broken.
– PersistTimeout must be set to 12, the time (in hours) allowed for the

connection to exist.
– Proxy entries must include the USESESSION parameter.

About this task

This diagram shows the connection from the IBM MQ client (called
client1.company1.com on port 1415) through MQIPT1, through the HTTP proxy
computer (on port 1080), through MQIPT2, and finally to the IBM MQ server
(called server1.company2.com on port 1414).

Procedure

To configure an HTTP proxy, complete the following steps:
1. On MQIPT1:

a. Edit mqipt.conf and add a route definition:

Figure 10. HTTP proxy network diagram

Chapter 6. Scenarios: Getting started with MQIPT 83



[route]
ListenerPort=1415
Destination=10.100.6.7
DestinationPort=1416
HTTP=true
HTTPProxyPort=8080
HTTPProxy=10.9.6.7

b. Open a command prompt and start MQIPT:
C:\mqipt\bin\mqipt C:\mqiptHome

where C:\mqiptHome indicates the location of the MQIPT configuration file,
mqipt.conf.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.3 starting
MQCPI004 Reading configuration information from C:\mqiptHome\mqipt\mqipt.conf
MQCPI011 The path C:\mqiptHome\mqipt\logs will be used to store the log files
MQCPI006 Route 1415 has started and will forward messages to :
MQCPI034 ....9.100.6.7(1416)
MQCPI035 ....using HTTP
MQCPI024 ....and HTTP proxy at 10.9.6.7(8080)
MQCPI078 Route 1415 ready for connection requests

2. On MQIPT2:
a. Edit mqipt.conf and add a route definition:

[route]
ListenerPort=1416
Destination=Server1.company2.com
DestinationPort=1414

b. Open a command prompt and start MQIPT:
C:
cd \mqipt\bin
mqipt ..

where .. indicates that the MQIPT configuration file, mqipt.conf, is in the
parent directory.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.3 starting
MQCPI004 Reading configuration information from C:\mqiptHome\mqipt.conf
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 1416 has started and will forward messages to :
MQCPI034 ....server1.company2.com(1414)
MQCPI035 ....using MQ protocols
MQCPI078 Route 1416 ready for connection requests

3. At a command prompt on the IBM MQ client, enter the following commands:
a. Set the MQSERVER environment variable:

SET MQSERVER=MQIPT.CONN.CHANNEL/tcp/10.9.1.2(1415)

b. Put a message:
amqsputc MQIPT.LOCAL.QUEUE MQIPT.QM1
Hello world

Press Enter twice after typing the message string.
c. Get the message:

amqsgetc MQIPT.LOCAL.QUEUE MQIPT.QM1

84 IBM MQ: Internet Pass-Thru



The message, "Hello world" is returned.

Scenario: Configuring access control
In this scenario, you can set up your MQIPT to only accept connections from
specific clients by using the Java Security Manager to add security checks on the
MQIPT listener port.

Before you begin
v Before you start to use this scenario, make sure that you have completed the

prerequisite tasks listed in Chapter 6, “Scenarios: Getting started with MQIPT,”
on page 69.

About this task

This diagram shows the connection from the IBM MQ client (called
client1.company1.com on port 1415) through MQIPT to the IBM MQ server (called
server1.company2.com on port 1414).

Procedure

To configure access control, complete the following steps:
1. Set up MQIPT:

a. Copy the sample Java Security Manager policy to the MQIPT home
directory by entering the following command at a command prompt:
copy C:\mqipt\ssl\mqiptSample.policy C:\mqiptHome\mqipt.policy

b. Add a policy definition by using the following command:
C:\mqipt\java\jre\bin\policytool

c. Click File > Open then select C:\mqiptHome\mqipt.policy..
d. Click Edit Policy Entry then change CodeBase from:

file:/C:/Program Files/IBM/IBM MQ Internet Pass-Thru/lib/com.ibm.mq.ipt.jar

to:
file:/C:/mqipt/lib/com.ibm.mq.ipt.jar

Figure 11. Access control network diagram

Chapter 6. Scenarios: Getting started with MQIPT 85



e. Change the file permissions for the “IBM MQ Internet Pass-Thru”, errors
and logs directories from:
C:\Program Files\IBM\IBM MQ Internet Pass-Thru

to:
C:\mqiptHome

f. Change the other file permissions from:
C:\Program Files\IBM\IBM MQ Internet Pass-Thru

to:
C:\mqipt

g. Click Add Permission Complete the fields as follows:

Permission: SocketPermission
Target: client1.company1.com:1024-
Actions: accept, listen, resolve

h. Click File > Save to save the changes to the policy file.
i. Edit mqipt.conf. Add two properties to the [global] section:

SecurityManager=true
SecurityManagerPolicy=C:\mqiptHome\mqipt.policy

Add a route definition:
[route]
ListenerPort=1415
Destination=server1.company2.com
DestinationPort=1414

2. Start MQIPT: Open a command prompt and enter the following:
C:\mqipt\bin\mqipt C:\mqiptHome

where C:\mqiptHome indicates the location of the MQIPT configuration file,
mqipt.conf.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.3 starting
MQCPI004 Reading configuration information from C:\mqiptHome\mqipt.conf
MQCPI055 Setting the java.security.policy to C:\mqiptHome\mqipt.policy
MQCPI053 Starting the Java Security Manager
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 1415 has started and will forward messages to :
MQCPI034 ....server1.company2.com(1414)
MQCPI035 ....using MQ protocols
MQCPI078 Route 1415 ready for connection requests

3. At a command prompt on the IBM MQ client, enter the following commands:
a. Set the MQSERVER environment variable:

SET MQSERVER=MQIPT.CONN.CHANNEL/tcp/10.9.1.2(1415)

b. Put a message:
amqsputc MQIPT.LOCAL.QUEUE MQIPT.QM1
Hello world

Press Enter twice after typing the message string.
c. Get the message:

amqsgetc MQIPT.LOCAL.QUEUE MQIPT.QM1

86 IBM MQ: Internet Pass-Thru



The message, "Hello world" is returned.

Scenario: Configuring a SOCKS proxy
In this scenario, you can make MQIPT act as a SOCKS proxy.

Before you begin
v Before you start to use this scenario, make sure that you have completed the

prerequisite tasks listed in Chapter 6, “Scenarios: Getting started with MQIPT,”
on page 69.

v Enable SOCKS on either the whole IBM MQ computer or just the IBM MQ client
application (amqsputc/amqsgetc).

v Configure the SOCKS client as follows:
1. Use MQIPT as the SOCKS proxy.
2. Enable SOCKS Version 5 support.
3. Disable user authentication.
4. Restrict connections to the MQIPT network address.

(The values of the MQIPT Destination and DestinationPort properties can be
anything, as the true destination is obtained from the IBM MQ client during the
SOCKS handshaking process.)

About this task

This diagram shows the connection flow from the IBM MQ client (called
client1.company1.com on port 1415) through MQIPT to the IBM MQ server (called
server1.company2.com on port 1414).

Procedure

To configure a SOCKS proxy, complete the following steps:
1. On MQIPT1:

a. Edit mqipt.conf and add a route definition:

Figure 12. SOCKS proxy network diagram

Chapter 6. Scenarios: Getting started with MQIPT 87



[route]
ListenerPort=1080
Destination=server1.company2.com
DestinationPort=1414
SocksServer=true

b. Open a command prompt and start MQIPT:
C:\mqipt\bin\mqipt C:\mqiptHome

where C:\mqiptHome indicates the location of the MQIPT configuration file,
mqipt.conf.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.3 starting
MQCPI004 Reading configuration information from C:\mqiptHome\mqipt.conf
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 1080 has started and will forward messages to :
MQCPI034 ....server1.company2.com(1414)
MQCPI035 ....using MQ protocols
MQCPI052 ....Socks server side enabled
MQCPI078 Route 1080 ready for connection requests

2. At a command prompt on the IBM MQ client, enter the following commands:
a. Set the MQSERVER environment variable:

SET MQSERVER=MQIPT.CONN.CHANNEL/tcp/10.20.5.6(1414)

b. Put a message:
amqsputc MQIPT.LOCAL.QUEUE MQIPT.QM1
Hello world

Press Enter twice after typing the message string.
c. Get the message:

amqsgetc MQIPT.LOCAL.QUEUE MQIPT.QM1

The message, "Hello world" is returned.

Scenario: Configuring a SOCKS client
In this scenario, you can run MQIPT as though it was SOCKS-enabled, using an
existing SOCKS proxy.

This is similar to the scenario Configuring a SOCKS proxy, except that MQIPT
makes a SOCKS-enabled connection instead of the IBM MQ client.

Before you begin
v Before you start to use this scenario, make sure that you have completed the

prerequisite tasks listed in Chapter 6, “Scenarios: Getting started with MQIPT,”
on page 69.

v

88 IBM MQ: Internet Pass-Thru



About this task

This diagram shows the network connection from the IBM MQ client (called
client1.company1.com on port 1415) through MQIPT, then through the SOCKS
proxy (on port 1080) to the IBM MQ server (called server1.company2.com on port
1414).

Procedure

To configure a SOCKS client, complete the following steps:
1. Set up MQIPT. On the MQIPT computer, edit mqipt.conf and add a route

definition:
[route]
ListenerPort=1415
Destination=server1.company2.com
DestinationPort=1414
SocksClient=true
SocksProxyHost=10.9.6.7
SocksProxyPort=1080

2. Start MQIPT. Open a command prompt and enter:
C:\mqipt\bin\mqipt C:\mqiptHome

where C:\mqiptHome indicates the location of the MQIPT configuration file,
mqipt.conf.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.3 starting
MQCPI004 Reading configuration information from C:\mqiptHome\mqipt.conf
MQCPI022 Password checking has been disabled on the command port
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 1415 has started and will forward messages to :
MQCPI034 ....server1.company2.com(1414)
MQCPI035 ....using MQ protocols
MQCPI039 ....and Socks proxy at 10.9.6.7(1080)
MQCPI078 Route 1415 ready for connection requests

3. At a command prompt on the IBM MQ client, enter the following commands:
a. Set the MQSERVER environment variable:

SET MQSERVER=MQIPT.CONN.CHANNEL/tcp/10.9.1.2(1415)

b. Put a message:

Figure 13. SOCKS client network diagram

Chapter 6. Scenarios: Getting started with MQIPT 89



amqsputc MQIPT.LOCAL.QUEUE MQIPT.QM1
Hello world

Press Enter twice after typing the message string.
c. Get the message:

amqsgetc MQIPT.LOCAL.QUEUE MQIPT.QM1

The message, "Hello world" is returned.

Scenario: Configuring MQIPT clustering support
In this scenario, you can set up a clustering environment.

Before you begin
v Before you start to use this scenario, make sure that you have completed the

prerequisite tasks listed in Chapter 6, “Scenarios: Getting started with MQIPT,”
on page 69.

v On the IBM MQ server LONDON:
– Defined a queue manager called LONDON.
– Defined a server connection channel called MQIPT.CONN.CHANNEL.
– Started a TCP/IP listener for LONDON on port 1414.
– SOCKS-enabled the queue manager.

v On the IBM MQ server NEWYORK:
– Defined a queue manager called NEWYORK.
– Defined a server connection channel called MQIPT.CONN.CHANNEL.
– Started a TCP/IP listener for NEWYORK on port 1414.
– SOCKS-enabled the queue manager.

Note: To SOCKS-enable a queue manager, enable either the whole computer or
just the IBM MQ server application. Configure the SOCKS client as follows:
v Point the client to MQIPT as the SOCKS proxy.
v Enable SOCKS V5 support.
v Disable user authentication.
v Only make remote connections to the MQIPT.

About this task

Figure 14. Clustering network diagram

90 IBM MQ: Internet Pass-Thru



This diagram shows the connections from the IBM MQ clients through MQIPT to
the IBM MQ servers.

Only one application can listen on a given port on the same computer. If port 1414
is already in use, choose a free port and substitute it in the examples.

You can then test the routes between the queue managers by putting a message on
the local queue on the LONDON server and retrieving it from the NEWYORK
server.

Procedure

To configure MQIPT clustering support, complete the following steps:
1. Set up the LONDON server. Open a command prompt and enter the following

commands:
runmqsc
DEFINE CHANNEL(TO.LONDON) +

CHLTYPE(CLUSRCVR) TRPTYPE(TCP) +
CLUSTER(INVENTORY) +
CONNAME(’10.10.6.7(1414)’)

DEFINE CHANNEL(TO.NEWYORK) +
CHLTYPE(CLUSSDR) TRPTYPE(TCP) +
CLUSTER(INVENTORY) +
CONNAME(’10.9.20.5(1414)’)

2. Set up the NEWYORK server Open a command prompt and enter the
following commands:
runmqsc
ALTER QMGR REPOS(INVENTORY)
DEFINE QLOCAL(MQIPT.LOCAL.QUEUE) +

CLUSTER(INVENTORY)
DEFINE CHANNEL(TO.NEWYORK) +

CHLTYPE(CLUSRCVR) TRPTYPE(TCP) +
CLUSTER(INVENTORY) +
CONNAME(’10.9.20.5(1414)’)

DEFINE CHANNEL(TO.LONDON) +
CHLTYPE(CLUSSDR) TRPTYPE(TCP) +
CLUSTER(INVENTORY) +
CONNAME(’10.10.6.7(1414)’)

3. Set up MQIPT1. Edit mqipt.conf and add two route definitions:
[route]
Name=LONDON to NEWYORK
ListenerPort=1415
Destination=10.9.20.5
DestinationPort=1414
SocksServer=true

[route]
Name=MQIPT1 to LONDON
ListenerPort=1414
Destination=10.7.20.2
DestinationPort=1414

4. Start MQIPT1. Open a command prompt and enter:
C:\mqipt\bin\mqipt C:\mqiptHome

where C:\mqiptHome indicates the location of the MQIPT configuration file,
mqipt.conf.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.0 starting

Chapter 6. Scenarios: Getting started with MQIPT 91



MQCPI004 Reading configuration information from C:\mqiptHome\mqipt.conf
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 1415 has started and will forward messages to :
MQCPI034 ....11.9.20.5(1414)
MQCPI035 ....using MQ protocols
MQCPI052 ....Socks server side enabled
MQCPI078 Route 1415 ready for connection requests
MQCPI006 Route 1414 has started and will forward messages to :
MQCPI034 ....8.7.20.2(1414)
MQCPI035 ....using MQ protocols
MQCPI078 Route 1414 ready for connection requests

5. Set up MQIPT2. Edit mqipt.conf and add two route definitions:
[route]
Name=NEWYORK to LONDON
ListenerPort=1415
Destination=10.10.6.7
DestinationPort=1414
SocksServer=true

[route]
Name=MQIPT2 to NEWYORK
ListenerPort=1414
Destination=10.9.1.2
DestinationPort=1414

6. Start MQIPT2. Open a command prompt and enter the following commands:
C:
cd \mqipt\bin
mqipt ..

where .. indicates that the MQIPT configuration file, mqipt.conf, is in the
parent directory.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.0 starting
MQCPI004 Reading configuration information from C:\mqipt\mqipt.conf
MQCPI011 The path C:\mqipt\logs will be used to store the log files
MQCPI006 Route 1415 has started and will forward messages to :
MQCPI034 ....10.10.6.7(1414)
MQCPI035 ....using MQ protocols
MQCPI052 ....Socks server side enabled
MQCPI078 Route 1415 ready for connection requests
MQCPI006 Route 1414 has started and will forward messages to :
MQCPI034 ....10.9.1.2(1414)
MQCPI035 ....using MQ protocols
MQCPI078 Route 1414 ready for connection requests

7. At a command prompt on the LONDON IBM MQ client (10.7.20.1), enter the
following commands:
a. Set the MQSERVER environment variable:

SET MQSERVER=MQIPT.CONN.CHANNEL/tcp/10.7.20.2(1414)

b. Put a message:
amqsputc MQIPT.LOCAL.QUEUE LONDON
Hello world

Press Enter twice after typing the message string.

This causes the LONDON queue manager to send messages to the queue on
the NEW YORK queue manager.

8. At a command prompt on the NEW YORK IBM MQ client (10.9.1.3), enter the
following commands:

92 IBM MQ: Internet Pass-Thru



a. Set the MQSERVER environment variable:
SET MQSERVER=MQIPT.CONN.CHANNEL/TCP/10.9.1.2(1414)

b. Get the message:
amqsgetc MQIPT.LOCAL.QUEUE NEWYORK

The message, "Hello world" is returned.

Scenario: Allocating port numbers
You can control the local port addresses used when making outgoing connections.
For example, if your firewall allows only certain ranges of port numbers, you can
use MQIPT to ensure that output originates from a valid port.

Before you begin
v Before you start to use this scenario, make sure that you have completed the

prerequisite tasks listed in Chapter 6, “Scenarios: Getting started with MQIPT,”
on page 69.

v Install MQIPT on a multihomed computer.

About this task

This diagram shows the connection from a IBM MQ client (client1.company1.com
on port 1415) through MQIPT to a IBM MQ server (server1.company2.com on port
1414).

Procedure

To allocate port numbers, complete the following steps:
1. Set up MQIPT. Edit mqipt.conf and add a route definition:

[route]
ListenerPort=1415
Destination=server1.company2.com
DestinationPort=1414
LocalAddress=10.10.6.7
OutgoingPort=2000
MaxConnectionThreads=20

Figure 15. Port allocation network diagram

Chapter 6. Scenarios: Getting started with MQIPT 93



2. Start MQIPT. Open a command prompt on the IBM MQ client, and enter the
following command:
C:\mqipt\bin\mqipt C:\mqiptHome

where C:\mqiptHome indicates the location of the MQIPT configuration file,
mqipt.conf.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.3 starting
MQCPI004 Reading configuration information from mqipt.conf
MQCPI021 Password checking has been enabled on the command port
MQCPI008 Listening for control commands on port 1881
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 1415 is starting and will forward messages to :
MQCPI034 ....server1.company2.com(1414)
MQCPI035 ....using MQ protocols
MQCPI069 ....binding to local address 10.10.6.7 when making new connections
MQCPI070 ....using local port address range 2000-2019 when making new connections
MQCPI078 Route 1415 ready for connection requests

3. At a command prompt on the IBM MQ client, enter the following commands:
a. Set the MQSERVER environment variable:

SET MQSERVER=MQIPT.CONN.CHANNEL/tcp/10.7.20.5(1415)

b. Put a message:
amqsputc MQIPT.LOCAL.QUEUE MQIPT.QM1
Hello world

Press Enter twice after typing the message string.
c. Get the message:

amqsgetc MQIPT.LOCAL.QUEUE MQIPT.QM1

The message, "Hello world" is returned.

Scenario: retrieving CRLs by using an LDAP server
You can configure MQIPT to use an LDAP server to retrieve certificate revocation
lists (CRLs).

Before you begin
v Before you start to use this scenario, make sure that you have completed the

prerequisite tasks listed in Chapter 6, “Scenarios: Getting started with MQIPT,”
on page 69.

v Ensure that MQIPT2 has a personal certificate, issued by the trusted Certificate
Authority (CA), stored in a key-ring file called myCert.pfx and the encrypted
password used to open the key-ring file is stored in the file myCert.pwd.

v Ensure that MQIPT1 has a copy of the trusted CA certificate that will be used to
authenticate the certificate sent by IPT2. This certificate is stored in a key-ring
file called caCerts.pfx and the encrypted password used to open the key-ring
file is stored in the file caCerts.pwd.

v The encrypted password files have been created by using the mqiptPW script.

94 IBM MQ: Internet Pass-Thru



About this task

In this scenario, you can connect the IBM MQ client to a queue manager (QM) and
place a IBM MQ message on the target queue. Running an MQIPT trace on
MQIPT1 will show the LDAP server being used.

To demonstrate how CRLs work, make sure that the personal certificate used by
MQIPT2 is revoked by the trusted CA. Then the IBM MQ client is not allowed to
connect to the QM, as the connection from MQIPT1 to MQIPT2 is rejected.

It is not the intention of this scenario to explain how to install and set up an LDAP
server nor how to create a key-ring file containing personal or trusted certificates.
It assumes that the LDAP server is available from a known and trusted CA. A
backup LDAP server is not used, but could be implemented by adding the
appropriate Route properties.

This diagram shows the connection from the IBM MQ client (client1.company1.com
on port 1415) through two instances of MQIPT to the IBM MQ server
(server1.company2.com on port 1414). The first MQIPT has a connection to an
LDAP server (crl.ca_company.com on port 389).

Procedure

To retrieve CRLs by using an LDAP server, complete the following steps:
1. On MQIPT1:

a. Edit mqipt.conf and add a route definition:

Figure 16. LDAP server network diagram

Chapter 6. Scenarios: Getting started with MQIPT 95



[route]
ListenerPort=1415
Destination=10.100.6.7
DestinationPort=1416
SSLClient=true
SSLClientCAKeyRing=C:\mqipt\ssl\caCerts.pfx
SSLClientCAKeyRingPW=C:\mqipt\ssl\caCerts.pwd
LDAP=true
LDAPServer1=crl.ca_company.com
LDAPServer1Timeout=4

b. Open a command prompt and start MQIPT:
C:\mqipt\bin\mqipt C:\mqiptHome

where C:\mqiptHome indicates the location of the MQIPT configuration file,
mqipt.conf.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.3 starting
MQCPI004 Reading configuration information from C:\mqiptHome\mqipt.conf
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 1415 has started and will forward messages to :
MQCPI034 ....10.100.6.7(1416)
MQCPI035 ....using MQ protocols
MQCPI036 ....SSL Client side enabled with properties :
MQCPI031 ......CipherSuites <NULL>
MQCPI032 ......keyring file <NULL>
MQCPI047 ......CA keyring file C:\mqipt\ssl\caCerts.pfx
MQCPI071 ......site certificate uses UID=*,CN=*,T=*,OU=*,DC=*,O=*,

STREET=*,L=*,ST=*,PC=*,C=*,DNQ=*
MQCPI038 ......peer certificate uses UID=*,CN=*,T=*,OU=*,DC=*,O=*,

STREET=*,L=*,ST=*,PC=*,C=*,DNQ=*
MQCPI075 ....LDAP main server at crl.ca_company.com(389)
MQCPI086 ......timeout of 4 second(s)
MQCPI084 ....CRL cache expiry timeout is 1 hour(s)
MQCPI085 ....CRLs will be saved in the key-ring file(s)
MQCPI078 Route 1415 ready for connection requests

2. On MQIPT2:
a. Edit mqipt.conf and add a route definition:

[route]
ListenerPort=1416
Destination=server1.company2.com
DestinationPort=1414
SSLServer=true
SSLServerKeyRing=C:\mqipt\ssl\myCert.pfx
SSLServerKeyRingPW=C:\mqipt\ssl\myCert.pwd

b. Open a command prompt and start MQIPT:
C:
cd \mqipt\bin
mqipt ..

where .. indicates that the MQIPT configuration file, mqipt.conf, is in the
parent directory.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM IBM MQ Internet
Pass-Thru Version 2.1.0.3 starting
MQCPI004 Reading configuration information from C:\mqipt\mqipt.conf
MQCPI011 The path C:\mqipt\logs will be used to store the log files
MQCPI006 Route 1416 is starting and will forward messages to :
MQCPI034 ....server1.company2.com(1414)

96 IBM MQ: Internet Pass-Thru



MQCPI035 ....using MQ protocols
MQCPI037 ....SSL Server side enabled with properties :
MQCPI031 ......CipherSuites <NULL>
MQCPI032 ......keyring file C:\mqipt\ssl\myCert.pfx
MQCPI047 ......CA keyring file <NULL>
MQCPI071 ......site certificate uses UID=*,CN=*,T=*,OU=*,DC=*,O=*,

STREET=*,L=*,ST=*,PC=*,C=*,DNQ=*
MQCPI038 ......peer certificate uses UID=*,CN=*,T=*,OU=*,DC=*,O=*,

STREET=*,L=*,ST=*,PC=*,C=*,DNQ=*
MQCPI033 ......client authentication set to false
MQCPI078 Route 1416 ready for connection requests

3. At a command prompt on the IBM MQ client, enter the following commands:
a. Set the MQSERVER environment variable:

SET MQSERVER=MQIPT.CONN.CHANNEL/tcp/10.9.1.2(1415)

b. Put a message:
amqsputc MQIPT.LOCAL.QUEUE MQIPT.QM1
Hello world

Press Enter twice after typing the message string.
c. Get the message:

amqsgetc MQIPT.LOCAL.QUEUE MQIPT.QM1

The message, "Hello world" is returned.

Scenario: running MQIPT in SSL/TLS proxy mode
You can run MQIPT in SSL/TLS proxy mode, so that it accepts an SSL/TLS
connection request from an IBM MQ SSL/TLS client and tunnels it to a IBM MQ
SSL/TLS server.

Before you begin
v Before you start to use this scenario, make sure that you have completed the

prerequisite tasks listed in Chapter 6, “Scenarios: Getting started with MQIPT,”
on page 69.

v Set up the IBM MQ client and queue manager to use an SSL/TLS channel.
v Configure the IBM MQ client and server to use an SSL/TLS connection.

Chapter 6. Scenarios: Getting started with MQIPT 97



About this task

This diagram shows the connection flow from the IBM MQ client
(client1.company1.com on port 1415) through MQIPT to the IBM MQ server
(server1.company2.com on port 1414).

For further information on setting up SSL/TLS for IBM MQ, refer to the Security
section of the IBM MQ product documentation.

Procedure

To run MQIPT in SSL/TLS proxy mode, complete the following steps:
1. Edit mqipt.conf and add a new route definition:

[route]
ListenerPort=1415
Destination=server1.company2.com
DestinationPort=1414
SSLProxyMode=true

2. Start MQIPT. Open a command prompt and enter the following command:
C:\mqipt\bin\mqipt C:\mqiptHome

where C:\mqiptHome indicates the location of the MQIPT configuration file,
mqipt.conf.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.3 starting
MQCPI004 Reading configuration information from C:\mqiptHome\mqipt.conf
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 1415 has started and will forward messages to :
MQCPI034 ....server1.company2.com(1414)
MQCPI035 ....using SSLProxyMode
MQCPI078 Route 1415 ready for connection requests

3. At a command prompt on the IBM MQ client, enter the following commands:
a. Set the MQSERVER environment variable:

SET MQSERVER=MQIPT.CONN.CHANNEL/tcp/10.9.1.2(1415)

b. Put a message:

Figure 17. SSL/TLS proxy mode network diagram

98 IBM MQ: Internet Pass-Thru



amqsputc MQIPT.LOCAL.QUEUE MQIPT.QM1
Hello world

Press Enter twice after typing the message string.
c. Get the message:

amqsgetc MQIPT.LOCAL.QUEUE MQIPT.QM1

The message, "Hello world" is returned.

Scenario: running MQIPT in SSL/TLS proxy mode with a security
manager

You can run MQIPT in SSL/TLS proxy mode, so that it accepts an SSL/TLS
connection request from an IBM MQ SSL/TLS client and tunnels it to a IBM MQ
SSL/TLS server. By using a security manager with MQIPT, you can restrict the
addresses to which messages can be sent.

Before you begin
v Before you start to use this scenario, make sure that you have completed the

prerequisite tasks listed in Chapter 6, “Scenarios: Getting started with MQIPT,”
on page 69.

v Set up the IBM MQ client and queue manager to use an SSL/TLS channel.
v Configure the IBM MQ client and server to use an SSL/TLS connection.

About this task

This diagram shows the connection flow from the IBM MQ client
(client1.company1.com on port 1415) through MQIPT to the IBM MQ server
(server1.company2.com on port 1414).

For further information on setting up SSL/TLS for IBM MQ, refer to the Security
section of the IBM MQ product documentation.

Figure 18. SSL/TLS proxy mode network diagram

Chapter 6. Scenarios: Getting started with MQIPT 99



Procedure

To run MQIPT in SSL/TLS proxy mode with a security manager, complete the
following steps:
1. On the MQIPT computer (see the diagram), copy the sample Java Security

Manager policy to the MQIPT home directory, by entering the following
command at a command prompt:
copy C:\mqipt\ssl\mqiptSample.policy C:\mqiptHome\mqipt.policy

2. Add a policy definition by using the following command:
C:\mqipt\java\jre\bin\policytool

In the policy tool:
a. Click File > Open > C:\mqiptHome\mqipt.policy.
b. Select:

file:/C:/Program Files/IBM/IBM MQ Internet Pass-Thru/lib/com.ibm.mq.ipt.jar

then click Edit Policy Entry

c. Change CodeBase from:
file:/C:/Program Files/IBM/IBM MQ Internet Pass-Thru/lib/com.ibm.mq.ipt.jar

to:
file:/C:/mqipt/lib/com.ibm.mq.ipt.jar

d. Change the file permissions for the “IBM MQ Internet Pass-Thru”, errors
and logs directories from:
C:\Program Files\IBM\IBM MQ Internet Pass-Thru

to:
C:\mqiptHome

e. Change the other file permissions from:
C:\Program Files\IBM\IBM MQ Internet Pass-Thru

to:
C:\mqipt

f. Click Add Permission Complete the fields as follows:

Permission: SocketPermission
Target: client1.company1.com:1024-
Actions: accept, listen, resolve

g. Click File > Save to save the changes to the policy file.
3. Edit mqipt.conf and add the following properties to the [global] section and

add a new route definition:
[global]

SecurityManager=true
SecurityManagerPolicy=C:\mqiptHome\mqipt.policy

[route]
ListenerPort=1415
Destination=server1.company2.com
DestinationPort=1414
SSLProxyMode=true

4. Start MQIPT. Open a command prompt, and enter the following command:
C:\mqipt\bin\mqipt C:\mqiptHome

100 IBM MQ: Internet Pass-Thru



where C:\mqiptHome indicates the location of the MQIPT configuration file,
mqipt.conf.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.3 starting
MQCPI004 Reading configuration information from C:\mqiptHome\mqipt\mqipt.conf
MQCPI055 Setting the java.security.policy to C:\mqiptHome\mqipt.policy
MQCPI053 Starting the Java Security Manager
MQCPI011 The path C:\mqiptHome\mqipt\logs will be used to store the log files
MQCPI006 Route 1415 has started and will forward messages to :
MQCPI034 ....server1.company2.com(1414)
MQCPI035 ....using SSLProxyMode
MQCPI078 Route 1415 ready for connection requests

5. At a command prompt on the IBM MQ client, enter the following commands:
a. Set the MQSERVER environment variable:

SET MQSERVER=MQIPT.CONN.CHANNEL/tcp/10.9.1.2(1415)

b. Put a message:
amqsputc MQIPT.LOCAL.QUEUE MQIPT.QM1
Hello world

Press Enter twice after typing the message string.
c. Get the message:

amqsgetc MQIPT.LOCAL.QUEUE MQIPT.QM1

The message, "Hello world" is returned.

Scenario: Apache rewrite
In this scenario, you can use the rewrite directive to convert an HTTP request into
an internal Apache proxy redirect.

The proxy and rewrite modules must be loaded, but as Apache is not really
working in proxy mode, all proxy directives can remain commented out.

Before you begin
v Before you start to use this scenario, make sure that you have completed the

prerequisite tasks listed in Chapter 6, “Scenarios: Getting started with MQIPT,”
on page 69.

v Install an Apache HTTP server in C:\apache. (If it is installed elsewhere, adjust
the paths in the following steps accordingly.)

v Install IBM Caching Proxy in C:\cp\etc\en_US. (If it is installed elsewhere, adjust
the paths in the following steps accordingly.)

Chapter 6. Scenarios: Getting started with MQIPT 101



About this task

This diagram shows the connection from the IBM MQ client (called
client1.company1.com on port 1415) through MQIPT, Caching Proxy, Apache,
MQIPT, and finally to the IBM MQ server (called server1.company2.com on port
1414).

Procedure

To use the rewrite directive, complete the following steps:
1. On On WTE: Edit C:\cp\etc\en_US\ibmproxy.conf and change the following

properties:
ProxyPersistence ON
MaxPersistRequest 5000

2. On Apache: Edit C:\apache\conf\httpd.conf:
RewriteEngine on
RewriteLog logs/rewrite.log
RewriteLogLevel 9
RewriteRule ^/mqipt http://%{HTTP:Host}/mqipt [P]

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_connect_module modules/mod_proxy_connect.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule negotiation_module modules/mod_negotiation.so
LoadModule rewrite_module modules/mod_rewrite.so

start Apache

3. On MQIPT1:
a. Edit mqipt.conf and add a route definition:

[route]
ListenerPort=1415
Destination=server1.company2.com
DestinationPort=1414
HTTP=true
HTTPProxy=10.9.1.3
HTTPProxyPort=80
HTTPServer=10.100.6.7
HTTPServerPort=8080

b. Open a command prompt and start MQIPT:
C:\mqipt\bin\mqipt C:\mqiptHome

where C:\mqiptHome indicates the location of the MQIPT configuration file,
mqipt.conf.

Figure 19. Apache rewrite network diagram

102 IBM MQ: Internet Pass-Thru



The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.0 starting
MQCPI004 Reading configuration information from C:\mqiptHome\mqipt.conf
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 1415 has started and will forward messages to :
MQCPI034 ....server1.company2.com(1414)
MQCPI035 ....using HTTP
MQCPI024 ....and HTTP proxy at 10.9.1.3(80)
MQCPI066 ....and HTTP server at 10.100.6.7(8080)
MQCPI078 Route 1415 ready for connection requests

4. On MQIPT2:
a. Edit mqipt.conf and add a route definition:

[route]
ListenerPort=1415
Destination=server1.company2.com
DestinationPort=1414

b. Open a command prompt and start MQIPT:
C:
cd \mqipt\bin
mqipt ..

(.. indicates that the MQIPT configuration file, mqipt.conf, is in the parent
directory.)
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.0 starting
MQCPI004 Reading configuration information from C:\mqipt\mqipt.conf
MQCPI011 The path C:\mqipt\logs will be used to store the log files
MQCPI006 Route 1415 has started and will forward messages to :
MQCPI034 ....server1.company2.com(1414)
MQCPI035 ....using MQ protocols
MQCPI078 Route 1415 ready for connection requests

5. At a command prompt on the IBM MQ client, enter the following commands:
a. Set the MQSERVER environment variable:

SET MQSERVER=MQIPT.CONN.CHANNEL/tcp/10.9.1.2(1415)

b. Put a message:
amqsputc MQIPT.LOCAL.QUEUE MQIPT.QM1
Hello world

Press Enter twice after typing the message string.
c. Get the message:

amqsgetc MQIPT.LOCAL.QUEUE MQIPT.QM1

The message, "Hello world" is returned.

Scenario: Using a security exit
In this scenario, you can use a supplied sample security exit, called
SampleSecurityExit, so that only client connections that use a channel name
starting with the characters MQIPT. are allowed.

Chapter 6. Scenarios: Getting started with MQIPT 103



Before you begin
v Before you start to use this scenario, make sure that you have completed the

prerequisite tasks listed in Chapter 6, “Scenarios: Getting started with MQIPT,”
on page 69.

v Install Java 8.0 JDK.
v Add the Java bin subdirectory to the PATH environment variable.

About this task

If you use the suggested srvconn channel name of MQIPT.CONN.CHANNEL (as used in
most of these scenarios), the client connection will be allowed to complete and a
IBM MQ message can be placed on the queue.

To demonstrate that the security exit is working as expected, define another
srvconn channel with any name that does not start with the characters MQIPT. (for
example, TEST.CONN.CHANNEL) and try the amqsputc command again, but having
changed the MQSERVER environment variable to use the new channel name. This
time the connection will be refused and a 2059 error will be given.

This diagram shows the connection flow from the IBM MQ client (called
client1.company1.com on port 1415) through MQIPT to the IBM MQ server (called
server1.company2.com on port 1414).

Procedure

To use a security exit, complete the following steps:
1. On MQIPT1:

a. Open a command prompt and enter the following commands:
C:
cd \mqipt\exits
javac -classpath C:\mqipt\lib\com.ibm.mq.ipt.jar;. SampleSecurityExit.java

b. Edit mqipt.conf and add a route definition:

Figure 20. Security exit network diagram

104 IBM MQ: Internet Pass-Thru



[route]
ListenerPort=1415
Destination=server1.company2.com
DestinationPort=1414
SecurityExit=true
SecurityExitName=SampleSecurityExit

c. Open a command prompt and start MQIPT:
C:\mqipt\bin\mqipt C:\mqiptHome

where C:\mqiptHome indicates the location of the MQIPT configuration file,
mqipt.conf.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.3 starting
MQCPI004 Reading configuration information from C:\mqiptHome\mqipt.conf
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 1415 has started and will forward messages to :
MQCPI034 ....server1.company2.com(1414)
MQCPI035 ....using MQ protocols
MQCPI079 ....using security exit C:\mqipt\exits\SampleSecurityExit
MQCPI080 ......and timeout of 5 seconds
MQCPI078 Route 1415 ready for connection requests

2. At a command prompt on the IBM MQ client, enter the following commands:
a. Set the MQSERVER environment variable:

SET MQSERVER=MQIPT.CONN.CHANNEL/tcp/10.9.1.2(1415)

b. Put a message:
amqsputc MQIPT.LOCAL.QUEUE MQIPT.QM1
Hello world

Press Enter twice after typing the message string.
c. Get the message:

amqsgetc MQIPT.LOCAL.QUEUE MQIPT.QM1

The message, "Hello world" is returned.

Scenario: Routing client connection requests to IBM MQ queue
manager servers by using security exits

In this scenario, you can dynamically route client connection requests, in a
round-robin fashion, to a group of three IBM MQ queue manager servers. The
queue manager on each server in the group must be identical.

Before you begin
v Before you start to use this scenario, make sure that you have completed the

prerequisite tasks listed in Chapter 6, “Scenarios: Getting started with MQIPT,”
on page 69.

v Install Java 8.0 JDK.
v Add the Java bin subdirectory to the PATH environment variable.

About this task

The list of server names to be used is read from a configuration file. The name and
location of the configuration file, called SampleRoutingExit.conf, is defined with
the MQIPT SecurityExitName and SecurityExitPath properties.

Chapter 6. Scenarios: Getting started with MQIPT 105



The first time the amqsputc command is run, the IBM MQ message is placed on the
MQIPT.LOCAL.QUEUE queue on the first server. The second time it is run, the
message is placed on the queue on the second server, and so on. Using this setup,
it is not possible for the amqsgetc command to retrieve the message just placed on
the queue, because the client connection request used by the amqsgetc command is
passed to the next queue in the list. But running the amqsputc command three
times, followed by three amqsgetc commands, ensures that each message is
retrieved in the same order.

Of course, by using another IBM MQ client, connecting directly to a queue
manager (that is, not using the MQIPT in this sample), you can selectively retrieve
messages from any of the queue managers.

This diagram shows the connection flow from the IBM MQ client (called
client1.company1.com on port 1415) through MQIPT to three IBM MQ servers
(called server1.company2.com, server2.company2.com, and server3.company2.com).

Procedure

To route client connection requests sequentially to three different IBM MQ queue
manager servers by using security exits, complete the following steps:
1. Create three identical queue managers named MQIPT.QM1 on three separate

servers. Each queue manager has a SVRCONN channel named
MQIPT.CONN.CHANNEL and an empty local queue named
MQIPT.LOCAL.QUEUE.

2. On MQIPT:

Figure 21. Routing security exit network diagram

106 IBM MQ: Internet Pass-Thru



a. In the C\mqiptHome\exits subdirectory (where C:\mqiptHome is the directory
where the mqipt.conf file is located), create a sample configuration file,
called SampleRoutingExit.conf that contains the names of your three queue
managers:
where
server1.company2.com:1414
server2.company2.com:1415
server3.company2.com:1416

Ensure that there are no blank lines before the first entry in the file and that
each entry is a valid server name. If you have used different server names,
change these names to match your environment.

b. Open a command prompt and enter the following command to copy the
sample exit SampleRoutingExit.java to your MQIPT home directory:
copy C:\mqipt\exits\SampleRoutingExit.java C:\mqiptHome\exits\SampleRoutingExit.java

c. Enter the following commands to compile the sample exit:
C:
cd \mqiptHome\exits
javac -classpath C:\mqipt\lib\com.ibm.mq.ipt.jar;. SampleRoutingExit.java

d. Edit mqipt.conf and add a route definition:
[route]
ListenerPort=1415
Destination=server1.company2.com
DestinationPort=1414
SecurityExit=true
SecurityExitPath=C:\mqiptHome\exits
SecurityExitName=SampleRoutingExit

Note: You do not necessarily have to set SecurityExitPath if you put
SampleRoutingExit.conf in the default exits subdirectory as described in
step 2b.

e. Start MQIPT. Open a command prompt and enter the following command:
C:\mqipt\bin\mqipt C:\mqiptHome

where C:\mqiptHome indicates the location of the MQIPT configuration file,
mqipt.conf.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.0 starting
MQCPI004 Reading configuration information from C:\mqiptHome\mqipt.conf
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 1415 has started and will forward messages to :
MQCPI034 ....server1.company2.com(1414)
MQCPI035 ....using MQ protocols
MQCPI079 ....using security exit C:\mqiptHome\exits\SampleRoutingExit
MQCPI080 ......and timeout of 5 seconds
MQCPI078 Route 1415 ready for connection requests

3. At a command prompt on the IBM MQ client, enter the following commands:
a. Set the MQSERVER environment variable:

SET MQSERVER=MQIPT.CONN.CHANNEL/TCP/10.9.1.2(1415)

b. Put three messages:

Chapter 6. Scenarios: Getting started with MQIPT 107



amqsputc MQIPT.LOCAL.QUEUE MQIPT.QM1
Hello world 1
amqsputc MQIPT.LOCAL.QUEUE MQIPT.QM1
Hello world 2
amqsputc MQIPT.LOCAL.QUEUE MQIPT.QM1
Hello world 3

Press Enter twice after typing each message string.
c. Get the messages:

amqsgetc MQIPT.LOCAL.QUEUE MQIPT.QM1
amqsgetc MQIPT.LOCAL.QUEUE MQIPT.QM1
amqsgetc MQIPT.LOCAL.QUEUE MQIPT.QM1

The messages, Hello world 1, Hello world 2, and Hello world 3 are
returned.

Scenario: Dynamically routing client connection requests
In this scenario, you can dynamically route client connection requests to a target
server, based on the name of the channel being used.

Before you begin
v Before you start to use this scenario, make sure that you have completed the

prerequisite tasks listed in Chapter 6, “Scenarios: Getting started with MQIPT,”
on page 69.

v Install Java 8.0 JDK.
v Add the Java bin subdirectory to the PATH environment variable.

About this task

If you use the name of the queue manager as the first part of the channel name,
MQIPT need use only one route to service all connection requests. For example, to
connect to QM1, the name of a SVRCONN channel might be
QM1.MQIPT.CHANNEL.

The list of queue manager and server names to be used is read from a
configuration file. The name and location of the configuration file, called
SampleOneRouteExit.conf, is defined with the MQIPT SecurityExitName and
SecurityExitPath properties.

108 IBM MQ: Internet Pass-Thru



This diagram shows the connection flow from the IBM MQ client (called
client1.company1.com on port 1415) through MQIPT to three IBM MQ servers
(called server1.company2.com, server2.company2.com, and server3.company2.com).

Procedure

To dynamically route client connection requests, complete the following steps:
1. Create three different queue managers on three separate servers. Each queue

manager has a SVRCONN channel named after itself, for example,
QM1.MQIPT.CHANNEL on queue manager QM1, and an empty local queue
named MQIPT.LOCAL.QUEUE.

2. On MQIPT1:
a. In the mqipt_path\exits subdirectory (where mqipt_path is the location

where MQIPT is installed), create a sample configuration file, called
SampleRoutingExit.conf that contains the names of your three queue
managers:
QM1 server1.company2.com:1414
QM2 server2.company2.com:1415
QM3 server3.company2.com:1416

Ensure that there are no blank lines before the first entry in the file and that
each entry is a valid server name. If you have used different server names,
change these names to match your environment.
You must change these server names to match your environment. Note that
all queue manager names in the list must be unique. If you list the same

Figure 22. Dynamic one route exit network diagram

Chapter 6. Scenarios: Getting started with MQIPT 109



name more than once, even if the queue managers are on different servers,
only the last entry for that name is registered.

b. Open a command prompt and enter the following commands:
C:
cd \mqipt\exits
javac -classpath C:\mqipt\lib\com.ibm.mq.ipt.jar;. SampleOneRouteExit.java

c. Edit mqipt.conf and add a route definition:
[route]
ListenerPort=1415
Destination=server1.company2.com
DestinationPort=1414
SecurityExit=true
SecurityExitName=SampleOneRouteExit

d. Open a command prompt and start MQIPT:
C:\mqipt\bin\mqipt C:\mqiptHome

where C:\mqiptHome indicates the location of the MQIPT configuration file,
mqipt.conf.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.0 starting
MQCPI004 Reading configuration information from C:\mqiptHome\mqipt.conf
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 1415 has started and will forward messages to :
MQCPI034 ....server1.company2.com(1414)
MQCPI035 ....using MQ protocols
MQCPI079 ....using security exit C:\mqipt\exits\SampleOneRouteExit
MQCPI080 ......and timeout of 5 seconds
MQCPI078 Route 1415 ready for connection requests

3. At a command prompt on the IBM MQ client, enter the following commands:
a. Set the MQSERVER environment variable:

SET MQSERVER=QM1.MQIPT.CHANNEL/TCP/10.9.1.2(1415)

b. Put a message:
amqsputc MQIPT.LOCAL.QUEUE QM1
Hello world 1

Press Enter twice after typing the message string.
c. Get the message:

amqsgetc MQIPT.LOCAL.QUEUE QM1

The message, Hello world 1 is returned.
d. Reset the MQSERVER environment variable:

SET MQSERVER=QM2.MQIPT.CHANNEL/TCP/10.9.1.2(1415)

e. Put a message:
amqsputc MQIPT.LOCAL.QUEUE QM2
Hello world 2

Press Enter twice after typing the message string.
f. Get the message:

amqsgetc MQIPT.LOCAL.QUEUE QM2

The message, Hello world 2 is returned.
g. Reset the MQSERVER environment variable again:

110 IBM MQ: Internet Pass-Thru



SET MQSERVER=QM3.MQIPT.CHANNEL/TCP/10.9.1.2(1415)

h. Put a message:
amqsputc MQIPT.LOCAL.QUEUE QM3
Hello world 3

Press Enter twice after typing the message string.
i. Get the message:

amqsgetc MQIPT.LOCAL.QUEUE QM3

The message, Hello world 3 is returned.

Scenario: Using a certificate exit to authenticate an SSL/TLS server
In this scenario, you can authenticate an SSL/TLS connection by using a certificate
exit.

Before you begin
v Before you start to use this scenario, make sure that you have completed the

prerequisite tasks listed in Chapter 6, “Scenarios: Getting started with MQIPT,”
on page 69.

v Install Java 8.0 JDK.
v Add the Java bin subdirectory to the PATH environment variable.

About this task

This scenario performs the same function as the Authenticating an SSL/TLS server
scenario, with the addition of a certificate exit.

By changing the value of the SSLExitData property, the SSL/TLS connection
between the two MQIPT servers can be allowed or rejected.

This diagram shows the connection from the IBM MQ client (called
client1.company1.com on port 1415) through two instances of MQIPT to the IBM
MQ server (called server1.company2.com on port 1414).

Figure 23. SSL/TLS server network diagram

Chapter 6. Scenarios: Getting started with MQIPT 111



Procedure

To use a certificate exit to authenticate an SSL/TLS server, complete the following
steps:
1. On MQIPT1:

a. Open a command prompt and enter the following commands:
C:
cd \mqipt\exits
javac -classpath C:\mqipt\lib\com.ibm.mq.ipt.jar;. SampleCertificateExit.java

b. Edit mqipt.conf and add a route definition:
[route]
ListenerPort=1415
Destination=9.100.6.7
DestinationPort=1416
SSLClient=true
SSLClientKeyRing=C:\mqipt\ssl\sslSample.pfx
SSLClientKeyRingPW=C:\mqipt\ssl\sslSample.pwd
SSLClientExit=true
SSLExitName=SampleCertificateExit
SSLExitPath=C:\mqipt\exits
SSLExitData=allow

c. Open a command prompt and start MQIPT:
C:\mqipt\bin\mqipt C:\mqiptHome

where C:\mqiptHome indicates the location of the MQIPT configuration file,
mqipt.conf.
The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.3 starting
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 1415 has started and will forward messages to :
MQCPI034 ....9.100.6.7(1416)
MQCPI035 ....using MQ protocols
MQCPI036 ....SSL Client side enabled with properties :
MQCPI031 ......CipherSuites <null>
MQCPI032 ......keyring file C:\ssl\mqipt\sslSample.pfx
MQCPI047 ......CA keyring file <null>
MQCPI038 ......peer certificate uses UID=*,CN=*,T=*,OU=*,DC=*,O=*,

STREET=*,L=*,ST=*,PC=*,C=*,DNQ=*
MQCPI129 ......using certificate exit C:\mqipt\exits\SampleCertificateExit
MQCPI131 ......and certificate exit data ’allow’
MQCPI078 Route 1415 ready for connection requests

2. On MQIPT2:
a. Edit mqipt.conf and add a route definition:

[route]
ListenerPort=1416
Destination=Server1.company2.com
DestinationPort=1414
SSLServer=true
SSLServerKeyRing=C:\mqipt\ssl\sslSample.pfx
SSLServerKeyRingPW=C:\mqipt\ssl\sslSample.pwd

b. Open a command prompt and start MQIPT:
C:
cd \mqipt\bin
mqipt ..

(.. indicates that the MQIPT configuration file, mqipt.conf, is in the parent
directory.)

112 IBM MQ: Internet Pass-Thru



The following message indicates successful completion:
5639-L92 (C) Copyright IBM Corp. 2000, 2017 All Rights Reserved
MQCPI001 IBM MQ Internet
Pass-Thru Version 2.1.0.3 starting
MQCPI011 The path C:\mqiptHome\logs will be used to store the log files
MQCPI006 Route 1416 has started and will forward messages to :
MQCPI034 ....server1.company2.com(1414)
MQCPI035 ....using MQ protocols
MQCPI037 ....SSL Server side enabled with properties :
MQCPI031 ......CipherSuites <null>
MQCPI032 ......keyring file C:\mqipt\ssl\sslSample.pfx
MQCPI047 ......CA keyring file <null>
MQCPI038 ......peer certificate uses UID=*,CN=*,T=*,OU=*,DC=*,O=*,

STREET=*,L=*,ST=*,PC=*,C=*,DNQ=*
MQCPI033 ......client authentication set to false
MQCPI078 Route 1416 ready for connection requests

3. At a command prompt on the IBM MQ client, enter the following commands:
a. Set the MQSERVER environment variable:

SET MQSERVER=MQIPT.CONN.CHANNEL/tcp/10.9.1.2(1415)

b. Put a message:
amqsputc MQIPT.LOCAL.QUEUE MQIPT.QM1
Hello world

Press Enter twice after typing the message string.
c. Get the message:

amqsgetc MQIPT.LOCAL.QUEUE MQIPT.QM1

The message, "Hello world" is returned.

Chapter 6. Scenarios: Getting started with MQIPT 113



114 IBM MQ: Internet Pass-Thru



Chapter 7. Administering and configuring MQIPT

Configure MQIPT by making changes to the configuration file mqipt.conf.

Note: You should set secure file permissions on the directory where mqipt.conf is
located to prevent unauthorized users seeing the MQIPT password or changing its
configuration.

You can edit the mqipt.conf configuration file either by using the Administration
Client or by using a text editor of your choice and command line commands. Both
techniques are described here, with reference information relevant to both:
v “Using the MQIPT Administration Client”
v “Administering MQIPT by using the command line” on page 118
v “Configuration reference information” on page 119
v “Making backups” on page 142
v “Performance tuning” on page 143

Using the MQIPT Administration Client
You can use the Administration Client to configure and update one or more
instances of MQIPT.

The Administration Client displays global properties and route-specific properties
for each instance of MQIPT.

The only data stored locally by the Administration Client is the list of instances of
MQIPT, in a file called client.conf. Global and route properties are always
retrieved from MQIPT before they are displayed in the Administration Client. You
therefore always see the current state of each instance of MQIPT.

Starting the Administration Client
Start the Administration Client by using the mqiptGui script found in the MQIPT
bin subdirectory.

The first time that the Administration Client is started, you are prompted for
connection information to an instance of MQIPT. You must enter the following
information:

MQIPT Name
A name of your choice that will be used to describe this instance of
MQIPT.

Network Address
The address of the system where this instance of MQIPT is installed. The
address can be a name recognized by the name server, a dotted decimal
address, or localhost (if this instance is on the same computer as the
Administration Client).

Command Port
The number of the port on which this instance of MQIPT is listening.

© Copyright IBM Corp. 2000, 2017 115



Timeout (sec)
The number of seconds that the Administration Client waits for a
connection to this instance of MQIPT. Keep this value as low as possible to
reduce the refresh time.

Access Password
The password used when communicating with this instance of MQIPT.
Complete this field only if password checking is in force. (Password
checking is in force if AccessPW is set in the global properties section of the
mqipt.conf configuration file and it has a value of anything other than a
null string.)

Save Password
Select the Save Password checkbox to save the password locally for future
sessions. If Save Password is cleared, the password is saved only for the
duration of the current session, or until this instance of MQIPT is removed
from the Administration Client).

Administering an instance of MQIPT
You can view and update the global and route properties of instances of MQIPT by
using the Administration Client.

See “Starting the Administration Client” on page 115 to learn how to start the
Administration Client.

Select an instance of MQIPT from the list to retrieve the global and route
properties from this instance of MQIPT. If this instance of MQIPT is not running,
or the correct value of CommandPort has not been specified in the global properties
section of the mqipt.conf configuration file, an error message is issued. To change
the host name and command port, click MQIPT > Connection.

Double-click an instance of MQIPT in the list to show a list of available routes.
Select a route to change its properties.

You can add a route by clicking MQIPT > Add Route. The default property values
for the new route, as defined by the global properties set for this instance of
MQIPT, are shown.

Click MQIPT > Apply to apply the changes you have made. The changes are
saved in the mqipt.conf configuration file of this instance of MQIPT and take effect
immediately.

Note: Any comment lines that have been added in the mqipt.conf file are lost
when it is updated.

Setting MQIPT properties
The value used for each MQIPT property is determined by where it is set.
1. If you set the value of a parameter in the [route] section of the mqipt.conf

configuration file, that value is used for the route and overides any value set in
the [global] section. Route values are specific to a single route; they do not
affect any other route.

2. If you set the value of a parameter in the [global] section of the mqipt.conf
configuration file, that value is used for all routes unless explicitly overridden
for a particular route.

116 IBM MQ: Internet Pass-Thru



3. All MQIPT properties have default values that are used if they are not
explicitly set in either the [global] or [route] section of the mqipt.conf
configuration file. See “Summary of properties” on page 120 for a list of these
default values.

Example

The following example shows how the values used for the two parameters
LDAPCacheTimeout and MinConnectionThreads are affected by the place where
parameters are set.

Settings in the mqipt.conf configuration file:
[global]
LDAPCacheTimeout = 120

[route]
name = route1
MinConnectionThreads = 10

[route]
name = route2
LDAPCacheTimeout = 60

Values used by MQIPT:
route1

LDAPCacheTimeout: 120 (not set in route1 [route] section; set in [global] section)
MinConnectionThreads: 10 (set in [route] section)

route2
LDAPCacheTimeout: 60 (set in [route] section; [global] section ignored)
MinConnectionThreads: 5 (not set in mqipt.conf for route2; uses the default value)

Administration Client menu options

File menu

You can manage the list of MQIPT instances by using the following options that
are available on the File menu:

Add MQIPT
Adds a new instance of MQIPT to the list in Administration Client. See
“Starting the Administration Client” on page 115 for details of the
information that you must enter.

Remove MQIPT
Removes the currently highlighted instance of MQIPT from the list in
Administration Client. This option does not stop or affect the running of
this instance of MQIPT.

Save Configuration
Saves the list of MQIPT instances to the local Administration Client
configuration file so that they can be restored the next time that
Administration Client starts. Only this MQIPT is saved locally; [global]
and [route] properties are always retrieved from each instance of MQIPT.

Quit Stops Administration Client running. You are given the option to save
outstanding changes before Administration Client closes.

Chapter 7. Administering and configuring MQIPT 117



MQIPT menu

You can manage the selected instance of MQIPT by using the following options
that are available on the MQIPT menu:

Connection
Changes the access properties of an instance MQIPT. See “Starting the
Administration Client” on page 115 for details of the information that you
can update.

Password
Changes the password required to access an instance of MQIPT. Leave the
Current Password field blank if there is no password currently set. Do not
enter a new password if you want to stop using a password. Select the
Save Password check box if you want to save the password locally. If you
do not save the password, you must enter it evey time you want to access
this instance of MQIPT.

Add Route
Adds a route to a selected instance of MQIPT. Each route must have a
unique listener port for an instance of MQIPT.

Delete Route
Deletes the selected route from the instance of MQIPT. The deletion does
not take effect until it is applied, by clicking MQIPT > Apply.

Apply Updates the configuration file of an instance of MQIPT. The new settings
are made effective immediately.

Refresh
Reads the current configuration file from the selected instance of MQIPT
and refreshes the display.

Stop Stops an instance of MQIPT from running. After this command, you lose
contact with the MQIPT. This command is ignored unless the global
property RemoteShutdown is turned on.

Route properties can be updated in the same way as MQIPT global properties.
When you change any properties of a route, you must apply the changes to make
them take effect. You can do this either by selecting the MQIPT > Apply menu
option or replying Yes when you are prompted to save the configuration.

Administering MQIPT by using the command line
If you choose not to use the Administration Client, you can use the command line
to administer and configure MQIPT.

Using an editor of choice, change the configuration file, mqipt.conf, to meet your
requirements. See “Configuration reference information” on page 119 for a list of
the properties you can change.

If the [global] section of mqipt.conf specifies a value for CommandPort, MQIPT
listens on this port for commands from the mqiptAdmin script:

mqiptAdmin -refresh {hostname {port} } sends the refresh command
mqiptAdmin -stop {hostname {port} } sends the stop command

The mqiptAdmin script is in the bin subdirectory.

118 IBM MQ: Internet Pass-Thru



If you do not provided values for hostname and port, hostname defaults to localhost
and port defaults to 1881.

refresh
MQIPT rereads mqipt.conf and takes the following actions:
v If any of the routes currently active are marked as inactive (or are no longer

specified), MQIPT closes those routes and stops listening for incoming
connections on them.

v Any routes marked active in the configuration file that it does not currently
have running, it starts them up.

v if the configuration parameters of a currently running route have changed,
MQIPT applies the changed values to those routes. Where possible (for
example, a change to the setting of trace) it does this without disruption to
running connections. For some parameter changes (for example, a change to
a destination), MQIPT has to close all connections before effecting the
change and restarting the route.

Using the MQIPT Apply menu option of the Administration Client has the
same effect, provided that the Administration Client has not changed any of
the MQIPT settings.

stop

MQIPT closes all connections, stops listening for incoming connections, and
then exits.

This command is ignored unless the mqipt.conf file specifies
RemoteShutDown=true.

Using the MQIPT Stop menu option of the Administration Client has the same
effect.

Note: On Windows systems, these administrative functions are also available from
the Start > Programs menu.

Configuration reference information
MQIPT uses a configuration file called mqipt.conf to define routes and to control
the actions of the MQIPT server.

The configuration file comprises a number of sections. There is one [global]
section, and an additional [route] section for each route that has been defined
through MQIPT.

Each section contains name/value property pairs. Some properties can appear only
in the [global] section, some can appear only in the [route] sections, and some
can appear both in [route] and [global] sections. If a property appears in both
route and [global] sections, the value of the property in the [route] section
overrides the global value, but only for the route in question. In this way, the
[global] section can be used to establish the default values to be used for those
properties not set in the individual [route] sections.

The [global] section starts with a line containing the characters [global] and ends
when the first [route] section starts. The [global] section must precede all
[route] sections in the file.

Chapter 7. Administering and configuring MQIPT 119



Each [route] section starts with a line containing the characters [route] and ends
when the next [route] section starts, or when the end of the configuration file is
reached.

Any unrecognized property name is ignored. If a property in a [route] section has
a recognized name but has an invalid value (for example MinConnectionThreads=x
or HTTP=unsure), that route is disabled (that is, it does not listen for any incoming
connections). If a property in the [global] section has a recognized name but has
an invalid value, all routes are disabled and MQIPT does not start. Where a
property is listed as taking the values true or false, any mixture of uppercase and
lowercase can be used.

You can change the value of a property by either editing the mqipt.conf file or by
using the Administration Client GUI. To apply any changes, refresh MQIPT, either
from the Administration Client GUI or by using the mqiptAdmin -refresh
command.

Changes to certain properties cause a route to be restarted only if other properties
are already enabled. For example, any changes to the HTTP properties have an
effect only if the HTTP property is also enabled.

When a route is restarted, existing connections are terminated. To override this
behavior, set the RouteRestart property to false. This prevents the route from
restarting, allowing existing connections to remain active until the RouteRestart
property is reenabled.

For information about how to set up some simple configurations, see Chapter 6,
“Scenarios: Getting started with MQIPT,” on page 69. For a sample configuration,
see the mqiptSample.conf file in the MQIPT installation directory.

Summary of properties

This table shows a summary of MQIPT configuration properties and includes the
following information:
v An alphabetical list of MQIPT properties with links to further information in the

[route] section, or the [global] section if the [route] section does not apply.
v The property that must be set to true for a value to have an effect.
v Whether the property applies to the [global] section, the [route] section, or

both.
v Default values that are used if a property is missing from both the [route]

section and the [global] section. When specifying the values true and false,
any mixture of uppercase and lowercase characters can be used.

Name of property Property to set
true

Global Route Default

AccessPW yes no null

Active yes yes true

ClientAccess yes yes false

CommandPort yes no null

ConnectionLog yes no true

Destination no yes null

DestinationPort no yes 1414

120 IBM MQ: Internet Pass-Thru



Name of property Property to set
true

Global Route Default

HTTP yes yes false

HTTPProxy HTTP yes yes null

HTTPProxyPort HTTP yes yes 8080

HTTPS HTTP yes yes false

HTTPServer HTTP yes yes null

HTTPServerPort HTTP yes yes null

IdleTimeout yes yes 0

IgnoreExpiredCRLs yes yes false

LDAP yes yes false

LDAPIgnoreErrors LDAP yes yes false

LDAPCacheTimeout LDAP yes yes 24

LDAPSaveCRLs (Note 3) LDAP yes yes false

LDAPServer1 LDAP yes yes null

LDAPServer1Port LDAP yes yes 389

LDAPServer1Userid LDAP yes yes null

LDAPServer1Password LDAP yes yes null

LDAPServer1Timeout LDAP yes yes 0

LDAPServer2 LDAP yes yes null

LDAPServer2Port LDAP yes yes 389

LDAPServer2Userid LDAP yes yes null

LDAPServer2Password LDAP yes yes null

LDAPServer2Timeout LDAP yes yes 0

ListenerAddress yes yes null

ListenerPort no yes null

LocalAddress yes yes null

MaxConnectionThreads yes yes 100

MaxLogFileSize yes no 50

MinConnectionThreads yes yes 5

Name no yes null

NDAdvisor yes yes false

NDAdvisorReplaceMode NDAdvisor yes yes false

OutgoingPort no yes 0

QMgrAccess yes yes true

RemoteShutdown yes no false

RouteRestart yes yes true

SecurityExit yes yes false

SecurityExitName SecurityExit yes yes null

SecurityExitPath SecurityExit yes yes mqipt_home\
exits

SecurityExitTimeout SecurityExit yes yes 30

Chapter 7. Administering and configuring MQIPT 121



Name of property Property to set
true

Global Route Default

SecurityManager yes no false

SecurityManagerPolicy yes no null

SocksClient yes yes false

SocksProxyHost SocksClient yes yes null

SocksProxyPort SocksClient yes yes 1080

SocksServer yes yes false

SSLClient yes yes false

SSLClientCAKeyRing SSLClient yes yes null

SSLClientCAKeyRingPW SSLClient yes yes null

SSLClientCipherSuites SSLClient yes yes null

SSLClientConnectTimeout SSLClient yes yes 30

SSLClientDN_C SSLClient yes yes * (Note 1)

SSLClientDN_CN SSLClient yes yes * (Note 1)

SSLClientDN_DC SSLClient yes yes * (Note 1)

SSLClientDN_DNQ SSLClient yes yes * (Note 1)

SSLClientDN_L SSLClient yes yes * (Note 1)

SSLClientDN_O SSLClient yes yes * (Note 1)

SSLClientDN_OU SSLClient yes yes * (Note 1)

SSLClientDN_PC SSLClient yes yes * (Note 1)

SSLClientDN_ST SSLClient yes yes * (Note 1)

SSLClientDN_Street SSLClient yes yes * (Note 1)

SSLClientDN_T SSLClient yes yes * (Note 1)

SSLClientDN_UID SSLClient yes yes * (Note 1)

SSLClientExit yes yes false

SSLClientKeyRing SSLClient yes yes null

SSLClientKeyRingPW SSLClient yes yes null

SSLClientProtocols SSLClient yes yes SSLv3,
TLSv1,
TLSv1.1,
TLSv1.2

SSLClientSiteDN_C SSLClient yes yes * (Note 1)

SSLClientSiteDN_CN SSLClient yes yes * (Note 1)

SSLClientSiteDN_DC SSLClient yes yes * (Note 1)

SSLClientSiteDN_DNQ SSLClient yes yes * (Note 1)

SSLClientSiteDN_L SSLClient yes yes * (Note 1)

SSLClientSiteDN_O SSLClient yes yes * (Note 1)

SSLClientSiteDN_OU SSLClient yes yes * (Note 1)

SSLClientSiteDN_PC SSLClient yes yes * (Note 1)

SSLClientSiteDN_ST SSLClient yes yes * (Note 1)

SSLClientSiteDN_Street SSLClient yes yes * (Note 1)

SSLClientSiteDN_T SSLClient yes yes * (Note 1)

122 IBM MQ: Internet Pass-Thru



Name of property Property to set
true

Global Route Default

SSLClientSiteDN_UID SSLClient yes yes * (Note 1)

SSLClientSiteLabel SSLClient yes yes null

SSLExitData SSLServerExit yes yes null

SSLExitName SSLServerExit yes yes null

SSLExitPath SSLServerExit yes yes mqipt_home\
exits

SSLExitTimeout SSLServerExit yes yes 30

SSLProxyMode yes yes false

SSLPlainConnections either SSLServer
or
SSLProxyMode

yes yes false

SSLServer yes yes false

SSLServerAskClientAuh SSLServer yes yes false

SSLServerCAKeyRing SSLServer yes yes null

SSLServerCAKeyRingPW SSLServer yes yes null

SSLServerCipherSuites SSLServer yes yes null

SSLServerDN_C SSLServer yes yes * (Note 1)

SSLServerDN_CN SSLServer yes yes * (Note 1)

SSLServerDN_DC SSLServer yes yes * (Note 1)

SSLServerDN_DNQ SSLServer yes yes * (Note 1)

SSLServerDN_L SSLServer yes yes * (Note 1)

SSLServerDN_O SSLServer yes yes * (Note 1)

SSLServerDN_OU SSLServer yes yes * (Note 1)

SSLServerDN_PC SSLServer yes yes * (Note 1)

SSLServerDN_ST SSLServer yes yes * (Note 1)

SSLServerDN_Street SSLServer yes yes * (Note 1)

SSLServerDN_T SSLServer yes yes * (Note 1)

SSLServerDN_UID SSLServer yes yes * (Note 1)

SSLServerExit yes yes false

SSLServerKeyRing SSLServer yes yes null

SSLServerKeyRingPW SSLServer yes yes null

SSLServerProtocols SSLServer yes yes SSLv3,
TLSv1,
TLSv1.1,
TLSv1.2

SSLServerSiteDN_C SSLServer yes yes * (Note 1)

SSLServerSiteDN_CN SSLServer yes yes * (Note 1)

SSLServerSiteDN_DC SSLServer yes yes * (Note 1)

SSLServerSiteDN_DNQ SSLServer yes yes * (Note 1)

SSLServerSiteDN_L SSLServer yes yes * (Note 1)

SSLServerSiteDN_O SSLServer yes yes * (Note 1)

SSLServerSiteDN_OU SSLServer yes yes * (Note 1)

Chapter 7. Administering and configuring MQIPT 123



Name of property Property to set
true

Global Route Default

SSLServerSiteDN_PC SSLServer yes yes * (Note 1)

SSLServerSiteDN_ST SSLServer yes yes * (Note 1)

SSLServerSiteDN_Street SSLServer yes yes * (Note 1)

SSLServerSiteDN_T SSLServer yes yes * (Note 1)

SSLServerSiteDN_UID SSLServer yes yes * (Note 1)

SSLServerSiteLabel SSLServer yes yes null

TCPKeepAlive yes yes false

Trace yes yes 0

UriName HTTP yes yes (Note 2)

Notes:

1. The asterisk (*) represents a wildcard.
2. See UriName in “Route properties” on page 125 for details about the default

settings.
3. LDAPSaveCRLs is deprecated in version 2.1 of MQIPT. The parameter is included

for compatibility with earlier versions, but has no effect.
Related information:
“Configuration reference information” on page 119
MQIPT uses a configuration file called mqipt.conf to define routes and to control
the actions of the MQIPT server.
“Global properties”
The mqipt.conf configuration file can contain a number of global properties.
“Route properties” on page 125
The mqipt.conf configuration file can contain properties for individual routes.

Global properties
The mqipt.conf configuration file can contain a number of global properties.

The following properties can appear only in the [global] section of mqipt.conf.
All the route properties except ListenerPort, Destination, DestinationPort, Name,
and OutgoingPort can also appear in the [global] section. If a property appears in
both route and [global] sections, the value of the property in the [route] section
overrides the global value, but only for the route in question. In this way, the
[global] section can be used to establish the default values to be used for those
properties not set in the individual [route] sections.

AccessPW
The password used when an Administration Client sends commands to the
MQIPT. If this property is not present or is set to blank, no checking takes
place.

CommandPort
The TCP/IP port on which MQIPT listens for configuration commands from
the mqiptAdmin utility or the Administration Client. You can change the
command port from the Administration Client in the same way as any other
property. Note that you do not change the connection properties. When you
apply the new setup to the MQIPT, the Administration Client changes the
connection properties automatically.

124 IBM MQ: Internet Pass-Thru



If the CommandPort property is not present, MQIPT does not listen for
configuration commands. To use the default port number, 1881, used by
default by both the Administration Client and by the mqiptAdmin script from
the command line, set CommandPort to 1881. This value is set for you if you use
the mqiptSample.conf configuration file.

ConnectionLog
Either true or false. When true, MQIPT logs all connection attempts
(successful or otherwise) in the logs subdirectory and disconnection events to
the file mqiptYYYYMMDDHHmmSS.log (where YYYYMMDDHHmmSS are characters
representing the current date and time). The default value of ConnectionLog is
true. When this property is changed from true to false, MQIPT closes the
existing connection log and creates a new one. The new log is used when the
property is reset to true.

MaxLogFileSize
The maximum size (specified in KB) of the connection log file. When the file
size increases above this maximum a backup copy (mqipt001.log) is made, and
a new file is started. Only two backup files are kept (mqipt001.log and
mqipt002.log); each time the main log file fills up, any earlier backups are
erased. The default value of MaxLogFileSize is 50; the minimum allowed value
is 5.

RemoteShutDown
Either true or false. When true (and when there is a command port) MQIPT
shuts down whenever a stop command is received on the command port. The
default value is false.

SecurityManager
Set this property to true to enable the Java Security Manager for this instance
of MQIPT. You must ensure that the correct permissions are granted. See “Java
Security Manager” on page 49 for more information. The default value for this
property is false.

SecurityManagerPolicy
The fully-qualified file name of a policy file. If this property is not set then
only the default system and user policy files are used. If the Java Security
Manager is already enabled, then changes to this property have no effect until
the Java Security Manager has been disabled and reenabled.

Trace

The level of trace for global MQIPT threads that are not associated with a
route, and for routes that have no Trace property set. For example, the main
MQIPT control thread and the command port listener thread are not associated
with a route and are only traced if trace is enabled in the [global] section. The
value of the Trace property in a [route] section overrides the global Trace
property, for that route. For information about tracing threads associated with
a route, see Trace in the [route] section.

This property should be an integer in the range 0 - 5, where 0 indicates that
trace is disabled, and any other value indicates that trace is enabled. The
default value is 0.

Route properties
The mqipt.conf configuration file can contain properties for individual routes.

The [route] section of the mqipt.conf configuration file can contain the following
properties:

Chapter 7. Administering and configuring MQIPT 125



Active
The route accepts incoming connections only if the value of Active is set to
true. This means that you can temporarily shut off access to the destination, by
setting this value to false, without having to delete the [route] section from
the configuration file. If you change this property to false, the route is
stopped when a refresh command is issued. All connections to the route are
stopped.

ClientAccess
The route allows incoming client channel connections only if the value of
ClientAccess is set to true. Note that potentially you can configure MQIPT to
accept client requests only, queue manager requests only, or both types of
request. Use this property in conjunction with the QMgrAccess property. If you
change this property to false, the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

Destination
The host name (or dotted decimal IP address) of the queue manager (or
subsequent MQIPT object) to which this route is to connect. Each [route]
section must contain an explicit Destination value, but several [route]
sections can refer to the same destination. If a change to this property affects a
route, the route is stopped, and restarted when a refresh command is issued.
All connections to the route are stopped. When using the SocksProxyHost
property the Destination property must use the dotted decimal format.

DestinationPort
The port on the destination host to which this route is to connect. Each [route]
section must contain an explicit DestinationPort value, but several routes can
refer to the same combination of Destination and DestinationPortvalues. If a
change to this property affects a route, the route is stopped, and restarted
when a refresh command is issued. All connections to the route are stopped.

HTTP
Set HTTP to true for routes responsible for making outbound HTTP tunneling
requests. The Destination property for the route must be the host name of
another MQIPT when HTTP it set to true. Set HTTP to false for routes
connected to IBM MQ queue managers. If you change this property, the route
is stopped. At least one of the HTTPProxy or HTTPServer properties must also be
specified when HTTP is set to true. This property cannot be used in
conjunction with the SocksClient property.

HTTPProxy
The host name (or dotted decimal IP address) of the HTTP proxy used by all
connections for this route. If HTTPServer is also defined, then a CONNECT request
is issued to the HTTP proxy, instead of a normal POST request. If you change
this property (and HTTP is set to true), the route is stopped, and restarted when
a refresh command is issued. All connections to the route are stopped.

HTTPProxyPort
The port address to use on the HTTP proxy. The default value is 8080 unless
HTTPS has been set to true and HTTPServer is not set, in which case the default
is 443. If you change this property (and HTTP is set to true), the route is
stopped, and restarted when a refresh command is issued. All connections to
the route are stopped.

HTTPServer
The host name (or dotted decimal IP address) of the HTTP server used by all
connections for this route. This can be either the host name of another MQIPT,
or a HTTP proxy.

126 IBM MQ: Internet Pass-Thru



If HTTPProxy is not specified, MQIPT connects to the host specified in
HTTPServer, and issues HTTP POST requests to the host specified in the route
Destination property. If HTTPProxy is specified, MQIPT connects to the host
specified in HTTPProxy instead.

If you change this property (and HTTP is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are
stopped.

HTTPS
Set HTTPS to true to make HTTPS requests. The HTTP and SSLClient properties
must also be enabled, and the SSLClientKeyRing and SSLClientKeyRingPW
properties set as for SSL/TLS operation. If you change the HTTPS property (and
HTTP is set to true), the route is stopped, and restarted when a refresh
command is issued. All connections to the route are stopped.

HTTPServerPort
The port address to use on the HTTP server. The default value is 8080, unless
HTTPS has been set to true, in which case the default is 443. If you change this
property (and HTTP is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

IdleTimeout
The time, in minutes, after which an idle connection is closed. Note that queue
manager to queue manager channels also have the DISCINT property. If you set
the IdleTimeout parameter, take note of DISCINT. If IdleTimeout is set to 0,
there is no idle timeout. Changes to this property take effect only when the
route is restarted.

IgnoreExpiredCRLs
Set IgnoreExpiredCRLs to true to ignore an expired CRL. The default value is
false. Note that if you set IgnoreExpiredCRLs to true, a revoked certificate
could be used to make an SSL/TLS connection.

LDAP
Set LDAP to true to enable use of an LDAP server when using SSL/TLS
connections. MQIPT will use the LDAP server to retrieve CRLs and ARLs. The
SSLClient property or SSLServer property must also be set to true for this
property to take effect.

LDAPCacheTimeout
The expiry time, in hours, of the temporary cache in which a CRL retrieved
from an LDAP server, is stored. After this time, the entire CRL cache is
emptied. For example, specifying a value of 1 hour means that the cache is
emptied once per hour. The default value is 24. If you specify a timeout value
of 0, entries in the cache will not expire until the route is restarted. If you
change this property (and LDAP is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are
stopped.

LDAPIgnoreErrors
Set LDAPIgnoreErrors to true to ignore any connection or timeout errors when
performing an LDAP search. If MQIPT cannot perform a successful search, it
will not allow the client connection to complete, unless this property has been
enabled. A successful search means that a CRL has been retrieved or there are
no CRLs available for the specified CA. If you change this property (and LDAP
is set to true), the route is stopped, and restarted when a refresh command is
issued. All connections to the route are stopped.

Chapter 7. Administering and configuring MQIPT 127



Note: If you enable this property, a revoked certificate could be used to make
an SSL/TLS connection.

LDAPSaveCRLs
LDAPSaveCRLs is deprecated in version 2.1 of MQIPT. The parameter is included
for compatibility with earlier versions, but has no effect. LDAP CRLs are
therefore no longer cached on disk in the key-ring file, but are retrieved after
each restart.

LDAPServer1
The host name or IP address of the main LDAP server. This property must be
set if LDAP has been set to true. If you change this property (and LDAP is set
to true), the route is stopped, and restarted when a refresh command is issued.
All connections to the route are stopped.

LDAPServer1Port
The listening port number of the main LDAP server. The default value is 389.
If you change this property (and LDAP is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are
stopped.

LDAPServer1Userid
The user ID needed to access the main LDAP server. This property must be set
if authorization to access the main LDAP server is required. If you change this
property (and LDAP is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

LDAPServer1Password
The password needed to access the main LDAP server. This property must be
set if LDAPServer1Userid has been set to true. If you change this property (and
LDAP is set to true), the route is stopped, and restarted when a refresh
command is issued. All connections to the route are stopped.

LDAPServer1Timeout
The time, in seconds, that MQIPT waits for a response from the main LDAP
server. The default value is 0, which means the connection will not time out. If
you change this property (and LDAP is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are
stopped.

LDAPServer2
The host name or IP address of the backup LDAP server. This property is
optional. If you change this property (and LDAP is set to true), the route is
stopped, and restarted when a refresh command is issued. All connections to
the route are stopped.

LDAPServer2Port
The listening port number of the backup LDAP server. The default value is
389. If you change this property (and LDAP is set to true), the route is stopped,
and restarted when a refresh command is issued. All connections to the route
are stopped.

LDAPServer2Userid
The userid needed to access the backup LDAP server. This property must be
set if authorization to access the backup LDAP server is required. If you
change this property (and LDAP is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are
stopped.

LDAPServer2Password
The password needed to access the backup LDAP server. This property must

128 IBM MQ: Internet Pass-Thru



be set if LDAPServer2 has been set to true. If you change this property (and
LDAP is set to true), the route is stopped, and restarted when a refresh
command is issued. All connections to this route are stopped.

LDAPServer2Timeout
The time, in seconds, that MQIPT will wait for a response from the backup
LDAP server. The default value is 0, which means the connection will not time
out. If you change this property (and LDAP is set to true), the route is stopped,
and restarted when a refresh command is issued. All connections to the route
are stopped.

ListenerAddress
Use this property if the MQIPT system has multiple IP addresses and you need
to bind the route listener port to a specific address. This is useful for restricting
inbound connections to those from a particular network interface. The value of
this property should be an IP address belonging to one of the network
interfaces on the system where MQIPT is running. The default is to accept
connections from all network interfaces.

ListenerPort
The port number on which the route should listen for incoming requests. Each
[route] section must contain an explicit ListenerPort value The ListenerPort
values set in each section must be distinct. Any valid port number can be used,
including ports 80 and 443, provided that the ports chosen are not already in
use by any other TCP/IP listener running on the same host.

LocalAddress
The IP address to bind all connections to for this route on this computer. The
chosen address must be an IP address that is associated with one of the
network interfaces on the computer on which MQIPT is running. If you change
this property, the route is stopped, and restarted when a refresh command is
issued. All connections to the route are stopped.

MaxConnectionThreads
The maximum number of connection threads, and thus the maximum number
of concurrent connections, that can be handled by this route. If this limit is
reached, the MaxConnectionThreads value also indicates the number of
connections that are queued when all the threads are in use. Beyond that
number, subsequent connection requests are refused. The minimum allowed
value is the greater of 1 and the value of MinConnectionThreads. If a change to
this property affects a route, the new value is used when the refresh command
is issued. All connections use the new value immediately. The route is not
stopped.

MinConnectionThreads
The number of connection threads allocated to handle incoming connections on
a route when the route is started. The number of threads allocated does not
drop below this value during the time the route is active. The minimum
allowed value is the lesser of 0 and the value of MaxConnectionThreads.
Changes to this property take effect only when the route is restarted.

Name
A name to help identify the route. This property is optional. The value is
shown in console messages and tracing information. Changes to this property
take effect only when the route is restarted.

NDAdvisor
Set NDAdvisor to true for routes managed by the Network Dispatcher to allow
the route to respond to requests from the custom advisor. If you change this

Chapter 7. Administering and configuring MQIPT 129



property to false, the route is stopped when a refresh command is issued. All
connections to the route are stopped. To use the NDAdvisorReplaceMode
property, set NDAdvisor to true.

NDAdvisorReplaceMode
Set NDAdvisorReplaceMode to true to use the replace mode of the Network
Dispatcher custom advisor. You must have started the mqipt_replace custom
advisor for the port number specified in ListenerPort. Set this property to
false to use normal mode. You must set the NDAdvisor property to true to use
this property.

OutgoingPort
The starting port number used by outgoing connections. The range of port
numbers match the MaxConnectionThread value for this route. The default
value of 0 uses a system-defined port number. If you change this property, the
route is stopped and restarted when a refresh command is issued. All
connections to this route are stopped. When HTTP is used, each channel
connection requires two outgoing ports. See “Port number control” on page 57.

QMgrAccess
Set QMgrAccess to true to allow incoming queue manager channel connections
(for example sender channels). If you change this property to false, the route
is stopped when a refresh command is issued. All connections to this route are
stopped.

RouteRestart
Set RouteRestart to false to stop the route from restarting when other route
properties have been changed and a refresh command has been issued. The
default value for this property is true.

SecurityExit
Set SecurityExit to true to enable a user-defined security exit. The default
value for this property is false.

SecurityExitName
The class name of the user-defined security exit. This property must be set if
SecurityExit has been set to true. If you change this property (and
SecurityExit is set to true), the route is stopped, and restarted when a refresh
command is issued. All connections to this route are stopped.

SecurityExitPath
The fully-qualified path name containing the user-defined security exit. If this
property has not been set, then it will default to the exits subdirectory. This
property can also define the name of a Java archive (JAR) file containing the
user-defined security exit. If you change this property (and SecurityExit is set
to true), the route is stopped and restarted when a refresh command is issued.
All connections to this route are stopped.

SecurityExitTimeout
The timeout value (in seconds) used by MQIPT to determine how long to wait
for a response when validating a connection request. The default value is 30. If
you change this property (and SecurityExit is set to true), the route is
stopped, and restarted when a refresh command is issued. All connections to
the route are stopped.

SocksClient
Set SocksClient to true to make the route act as a SOCKS client and define all
connections through the SOCKS proxy with the SocksProxyHost and
SocksProxyPort properties. If you change this property, the route is stopped,

130 IBM MQ: Internet Pass-Thru



and restarted when a refresh command is issued. All connections to the route
are stopped. This property cannot be used with:
v HTTP

v SocksServer

v SSLClient

v SSLProxyMode

SocksProxyHost
The host name (or dotted decimal IP address) of the SOCKS proxy that all
connections for this route use. If you change this property (and SocksClient is
set to true), the route is stopped, and restarted when a refresh command is
issued. All connections to this route are stopped. When using the
SocksProxyHost property the Destination property must use the dotted
decimal format.

SocksProxyPort
The port number to use on a SOCKS proxy. The default value is 1080. If you
change this property (and SocksClient is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are
stopped.

SocksServer
Set SocksServer to true to make the route act as a SOCKS proxy and accept
SOCKS client connections. If you change this property, the route is stopped,
and restarted when a refresh command is issued. All connections to the route
are stopped. This property cannot be used with the following properties:
v SocksClient

v SSLProxyMode

v SSLServer

SSLClient
Set SSLClient to true to make the route act as an SSL/TLS client and make
outgoing SSL/TLS connections. Setting SSLClient to true implies that the
destination is either another instance of MQIPT acting as an SSL/TLS server, or
an HTTP proxy/server. You must specify the name of a key-ring file either
with the SSLClientKeyRing property or theSSLClientCAKeyRing property. If you
change SSLClient, the route is stopped, and restarted when a refresh command
is issued. All connections to this route are stopped. This property cannot be
used in conjunction with the following property:
v SSLProxyMode

SSLClientCAKeyRing
The fully-qualified file name of the key-ring file containing CA certificates,
used to authenticate certificates from the SSL/TLS server. On Windows
platforms, you must use a double backslash (\\) as the file separator. If you
change this property (and SSLClient is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are
stopped.

SSLClientCAKeyRingPW
The fully-qualified file name of the file containing the password to open the
client CA key-ring file. On Windows platforms, you must use a double
backslash (\\) as the file separator. If you change this property (and SSLClient
is set to true), the route is stopped, and restarted when a refresh command is
issued. All connections to this route are stopped.

Chapter 7. Administering and configuring MQIPT 131



SSLClientCipherSuites
The name of the SSL/TLS CipherSuite to use on the SSL/TLS client side. This
can be one or more of the supported CipherSuites. If you leave this property
blank, the SSL/TLS client uses the supported CipherSuites from the
SSLClientKeyRing. If you change this property (and SSLClient is set to true),
the route is stopped, and restarted when a refresh command is issued. All
connections to this route are stopped.

SSLClientConnectTimeout
The time (in seconds) that an SSL/TLS client waits for an SSL/TLS connection
to be accepted. If you change this property (and SSLClient is set to true), the
route is stopped, and restarted when a refresh command is issued. All
connections to the route are stopped.

SSLClientDN_C
Use this property to accept certificates received from the SSL/TLS server that
match this country name. The name can be prefixed or suffixed with an
asterisk (*) to extend its scope. Certificate matching is not case sensitive. If you
do not specify this property, all country names are accepted. If you change this
property (and SSLClient is set to true), the route is stopped, and restarted
when a refresh command is issued. All connections to the route are stopped.

SSLClientDN_CN
Use this property to accept certificates received from the SSL/TLS server that
match this common name. The name can be prefixed or suffixed with an
asterisk (*) to extend its scope. Certificate matching is not case sensitive. If you
do not specify this property, all common names are accepted. If you change
this property (and SSLClient is set to true), the route is stopped, and restarted
when a refresh command is issued. All connections to the route are stopped.

SSLClientDN_DC
Use this property to accept certificates received from the SSL/TLS server that
match this domain component. The name can be prefixed or suffixed with an
asterisk (*) to extend its scope. Certificate matching is not case sensitive. You
can specify multiple DCs by separating them with commas. Each DC
represents an element in a domain name, for example the domain name
example.ibm.com is represented as example,ibm,com using commas to separate
the multiple values. If you do not specify this property, all domain components
are accepted. If you change this property (and SSLClient is set to true), the
route is stopped, and restarted when a refresh command is issued. All
connections to the route are stopped.

SSLClientDN_DNQ
Use this property to accept certificates received from the SSL/TLS server that
match this domain qualifier. The name can be prefixed or suffixed with an
asterisk (*) to extend its scope. Certificate matching is not case sensitive. If you
do not specify this property, all domain qualifiers are accepted. If you change
this property (and SSLClient is set to true), the route is stopped, and restarted
when a refresh command is issued. All connections to the route are stopped.

SSLClientDN_L
Use this property to accept certificates received from the SSL/TLS server that
match this location. The name can be prefixed or suffixed with an asterisk (*)
to extend its scope. Certificate matching is not case sensitive. If you do not
specify this property, you imply "all locations". If you change this property
(and SSLClient is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

132 IBM MQ: Internet Pass-Thru



SSLClientDN_O
Use this property to accept certificates received from the SSL/TLS server that
match this organization. The name can be prefixed or suffixed with an asterisk
(*) to extend its scope. Certificate matching is not case sensitive. If you do not
specify this property, certificates are accepted from all organizations. If you
change this property (and SSLClient is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are
stopped.

SSLClientDN_OU
Use this property to accept certificates received from the SSL/TLS server that
match this Organizational Unit (OU). The name can be prefixed or suffixed
with an asterisk (*) to extend its scope. You can specify multiple OUs by
separating them with commas. (Match a literal comma by prefixing it with a
backslash (\) character.) Certificate matching is not case sensitive. If you do not
specify this property, certificates are accepted with any OU name. If you
change this property (and SSLClient is set to true), the route is stopped and
restarted when a refresh command is issued. All connections to this route are
stopped.

SSLClientDN_PC
Use this property to accept certificates received from the SSL/TLS server that
match this postal code. The name can be prefixed or suffixed with an asterisk
(*) to extend its scope. Certificate matching is not case sensitive. If you do not
specify this property, all postal codes are accepted. If you change this property
(and SSLClient is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

SSLClientDN_ST
Use this property to accept certificates received from the SSL/TLS server that
match this state. The name can be prefixed or suffixed with an asterisk (*) to
extend its scope. Certificate matching is not case sensitive. If you do not
specify this property, certificates are accepted from servers in all states. If you
change this property (and SSLClient is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are
stopped.

SSLClientDN_Street
Use this property to accept certificates received from the SSL/TLS server that
match this street name. The name can be prefixed or suffixed with an asterisk
(*) to extend its scope. Certificate matching is not case sensitive. If you do not
specify this property, all street names are accepted. If you change this property
(and SSLClient is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

SSLClientDN_T
Use this property to accept certificates received from the SSL/TLS server that
match this title. The name can be prefixed or suffixed with an asterisk (*) to
extend its scope. Certificate matching is not case sensitive. If you do not
specify this property, all titles are accepted. If you change this property (and
SSLClient is set to true), the route is stopped, and restarted when a refresh
command is issued. All connections to the route are stopped.

SSLClientDN_UID
Use this property to accept certificates received from the SSL/TLS server that
match this user ID. The name can be prefixed or suffixed with an asterisk (*) to
extend its scope. Certificate matching is not case sensitive. If you do not
specify this property, all user IDs are accepted. If you change this property

Chapter 7. Administering and configuring MQIPT 133



(and SSLClient is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

SSLClientExit
Use this property to enable or disable the use of an exit when the route is
acting as an SSL/TLS client. This allows you to define exit details in the
configuration file without them actually being used.

SSLClientKeyRing
The fully-qualified file name of the key-ring file containing the client certificate;
on Windows platforms, you must use a double backslash (\\) as the file
separator. You must specify SSLClientKeyRing if you set SSLClient to true. If
you change SSLClientKeyRing (and SSLClient is set to true), the route is
stopped, and restarted when a refresh command is issued. All connections to
the route are stopped.

SSLClientKeyRingPW
The fully-qualified file name containing the password to open the client
key-ring file; on Windows platforms, you must use a double backslash (\\) as
the file separator. You must specify SSLClientKeyRingPW if you set SSLClient to
true. If you change SSLClientKeyRingPW (and SSLClient is set to true), the
route is stopped, and restarted when a refresh command is issued. All
connections to the route are stopped.

SSLClientProtocols
Used to restrict the set of enabled secure socket protocols that are used to
make outbound connections to the destination for a route when SSLClient is
set to true.

You can specify multiple values by separating them with commas. If you do
not specify this property, all supported JSSE protocols are enabled by default
with the exception of SSL 3.0. From version 2.1.0.2 of MQIPT, you must
explicitly set SSLv3 on this property for SSL 3.0 to be enabled.

Table 3. Permitted values for SSL/TLS protocols

Value Protocol

SSLv3 SSL 3.0

TLSv1 TLS 1.0

TLSv1.1 TLS 1.1

TLSv1.2 TLS 1.2

Use the entry listed in the Value column in the route property. The
corresponding entry in the Protocol column is for information only.

SSLClientSiteDN_C
Use this property to specify a country name to select a certificate to send to the
SSL/TLS server. Certificate matching is not case sensitive. If you do not specify
this property, certificates are accepted with any country name. If you change
this property (and SSLClient is set to true), the route is stopped, and restarted
when a refresh command is issued. All connections to the route are stopped.

SSLClientSiteDN_CN
Use this property to specify a common name to select a certificate to send to
the SSL/TLS server. Certificate matching is not case sensitive. If you do not
specify this property, certificates are accepted with any common name. If you
change this property (and SSLClient is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are
stopped.

134 IBM MQ: Internet Pass-Thru



SSLClientSiteDN_DC
Use this property to specify a domain component name to select a certificate to
send to the SSL/TLS server. Certificate matching is not case sensitive. You can
specify multiple DCs by separating them with commas. Each DC represents an
element in a domain name, for example the domain name example.ibm.com is
represented as example,ibm,com using commas to separate the multiple values.
If you do not specify this property, certificates are accepted with any domain
component name. If you change this property (and SSLClient is set to true),
the route is stopped, and restarted when a refresh command is issued. All
connections to the route are stopped.

SSLClientSiteDN_DNQ
Use this property to specify a domain qualifier to select a certificate to send to
the SSL/TLS server. Certificate matching is not case sensitive. If you do not
specify this property, certificates are accepted with any domain qualifier. If you
change this property (and SSLClient is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are
stopped.

SSLClientSiteDN_L
Use this property to specify a Location name to select a certificate to send to
the SSL/TLS server. Certificate matching is not case sensitive. If you do not
specify this property, certificates are accepted with any location name. If you
change this property (and SSLClient is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are
stopped.

SSLClientSiteDN_O
Use this property to specify an Organization name to select a certificate to send
to the SSL/TLS server. Certificate matching is not case sensitive. If you do not
specify this property, certificates are accepted with any organization name. If
you change this property (and SSLClient is set to true), the route is stopped,
and restarted when a refresh command is issued. All connections to the route
are stopped.

SSLClientSiteDN_OU
Use this property to specify an Organizational Unit (OU) name to select a
certificate to send to the SSL/TLS server. You can specify multiple OUs by
separating them with commas. (Match a literal comma by prefixing it with a
backslash (\) character.) Certificate matching is not case sensitive. If you do not
specify this property, certificates are accepted with any OU name. If you
change this property (and SSLClient is set to true), the route is stopped and
restarted when a refresh command is issued. All connections to this route are
stopped.

SSLClientSiteDN_PC
Use this property to specify a postal code to select a certificate to send to the
SSL/TLS server. Certificate matching is not case sensitive. If you do not specify
this property, certificates are accepted with any postal code. If you change this
property (and SSLClient is set to true), the route is stopped, and restarted
when a refresh command is issued. All connections to the route are stopped.

SSLClientSiteDN_ST
Use this property to specify a State name to select a certificate to send to the
SSL/TLS server. Certificate matching is not case sensitive. If you do not specify
this property, certificates are accepted with any state name. If you change this
property (and SSLClient is set to true), the route is stopped, and restarted
when a refresh command is issued. All connections to the route are stopped.

Chapter 7. Administering and configuring MQIPT 135



SSLClientSiteDN_Street
Use this property to specify a street name to select a certificate to send to the
SSL/TLS server. Certificate matching is not case sensitive. If you do not specify
this property, certificates are accepted with any street name. If you change this
property (and SSLClient is set to true), the route is stopped, and restarted
when a refresh command is issued. All connections to the route are stopped.

SSLClientSiteDN_T
Use this property to specify a title to select a certificate to send to the SSL/TLS
server. Certificate matching is not case sensitive. If you do not specify this
property, certificates are accepted with any title. If you change this property
(and SSLClient is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

SSLClientSiteDN_UID
Use this property to specify a user ID to select a certificate to send to the
SSL/TLS server. Certificate matching is not case sensitive. If you do not specify
this property, certificates are accepted with any user ID. If you change this
property (and SSLClient is set to true), the route is stopped, and restarted
when a refresh command is issued. All connections to the route are stopped.

SSLClientSiteLabel
Use this property to specify a label name to select a certificate to send to the
SSL/TLS server. If you do not specify this property, certificates are accepted
with any label name. If you change this property (and SSLClient is set to
true), the route is stopped, and restarted when a refresh command is issued.
All connections to the route are stopped.

SSLExitData
Use this property to provide a user-defined string to be passed to the exit.

SSLExitName
Use this property to define the class name for the exit that will be called when
the route is acting as an SSL/TLS client or an SSL/TLS server. The name must
include any package name; for example, com.ibm.mq.ipt.exit.TestExit.

SSLExitPath
Use this property to define the location of the exit to be used to load a copy of
the exit. The name must be a fully qualified name to be used to locate the class
file or the name of a .jar file that contains the class file; for example,
C:\mqipt\exits or C:\mqipt\exits\exits.jar.

SSLExitTimeout
Use this property to define how long MQIPT waits for the exit to complete
before terminating the connection request. A value of 0 means that MQIPT
waits indefinitely.

SSLPlainConnections
Use this property to specify whether SSL/TLS is mandatory for connections to
the MQIPT listener port of a route configured to accept inbound SSL/TLS
connections. This property is applicable to routes that have either the
SSLServer or SSLProxyMode property set to true. If enabled, this property allows
unencrypted connections to connect to the route listener port, which means
that MQIPT can forward all IBM MQ connections to the queue manager's
listener port regardless of whether the connection is encrypted. If you do not
set this parameter, or set it to false, only inbound SSL/TLS connections are
allowed. If you change this property, the route is stopped, and restarted when
a refresh command is issued. All connections to the route are stopped.

136 IBM MQ: Internet Pass-Thru



SSLProxyMode
Set this property to true to make the route accept only SSL/TLS client
connection requests and to tunnel the request directly to the destination. If you
change this property, the route is stopped and restarted when a refresh
command is issued. All connections to this route are stopped. This property
cannot be used in conjunction with the following properties:
v SocksClient

v SSLClient

v SSLServer

SSLServer
Set this property to true to make the route act as an SSL/TLS server and
accept incoming SSL/TLS connections. Setting SSLServer to true implies that
the caller is another MQIPT acting as an SSL/TLS client, or is a IBM MQ client
or queue manager with SSL/TLS enabled. If you change this property, the
route is stopped, and restarted when a refresh command is issued. All
connections to the route are stopped. This property cannot be used in
conjunction with the following properties:
v SocksServer

v SSLProxyMode

SSLServerCAKeyRing
The fully-qualified file name of the key-ring file containing CA certificates,
used to authenticate certificates from the SSL/TLS client. On Windows
platforms, you must use a double backslash (\\) as the file separator. If you
change this property (and SSLServer is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to this route are
stopped.

SSLServerCAKeyRingPW
The fully-qualified file name containing the password to open the server CA
key-ring file. On Windows platforms, you must use a double backslash (\\) as
the file separator. If you change this property (and SSLServer is set to true),
the route is stopped, and restarted when a refresh command is issued. All
connections to this route are stopped.

SSLServerAskClientAuth
Use this property to request SSL/TLS client authentication by the SSL/TLS
server. The SSL/TLS client must have its own certificate to send to the
SSL/TLS server. The certificate is retrieved from the key-ring file. If you
change this property (and SSLServer is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to this route are
stopped.

SSLServerCipherSuites
The name of the SSL/TLS CipherSuite to use on the SSL/TLS server side. This
can be one or more of the supported CipherSuites. If you leave this blank, the
SSL/TLS server uses the supported CipherSuites from the SSLServerKeyRing
property. If you change this property (and SSLServer is set to true), the route
is stopped, and restarted when a refresh command is issued. All connections to
this route are stopped.

SSLServerDN_C
Use this property to accept certificates received from the SSL/TLS client of this
country name. The name can be prefixed or suffixed with an asterisk (*) to
extend its scope. Certificate matching is not case sensitive. If you do not
specify this property, certificates are accepted with any company name. If you

Chapter 7. Administering and configuring MQIPT 137



change this property (and SSLServer is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are
stopped.

SSLServerDN_CN
Use this property to accept certificates received from the SSL/TLS client of this
common name. The name can be prefixed or suffixed with an asterisk (*) to
extend its scope. Certificate matching is not case sensitive. If you do not
specify this property, certificates are accepted with any common name. If you
change this property (and SSLServer is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are
stopped.

SSLServerDN_DC
Use this property to accept certificates received from the SSL/TLS client of this
domain component name. The name can be prefixed or suffixed with an
asterisk (*) to extend its scope. Certificate matching is not case sensitive. You
can specify multiple DCs by separating them with commas. Each DC
represents an element in a domain name, for example the domain name
example.ibm.com is represented as example,ibm,com using commas to separate
the multiple values. If you do not specify this property, certificates are accepted
with any domain component name. If you change this property (and SSLServer
is set to true), the route is stopped, and restarted when a refresh command is
issued. All connections to the route are stopped.

SSLServerDN_DNQ
Use this property to accept certificates received from the SSL/TLS client of this
domain qualifier. The name can be prefixed or suffixed with an asterisk (*) to
extend its scope. Certificate matching is not case sensitive. If you do not
specify this property, certificates are accepted with any domain qualifier. If you
change this property (and SSLServer is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are
stopped.

SSLServerDN_L
Use this property to accept certificates received from the SSL/TLS client of this
location. The name can be prefixed or suffixed with an asterisk (*) to extend its
scope. Certificate matching is not case sensitive. If you do not specify this
property, certificates are accepted with any location. If you change this
property (and SSLServer is set to true), the route is stopped, and restarted
when a refresh command is issued. All connections to the route are stopped.

SSLServerDN_O
Use this property to accept certificates received from the SSL/TLS client of this
organization. The name can be prefixed or suffixed with an asterisk (*) to
extend its scope. Certificate matching is not case sensitive. If you do not
specify this property, certificates are accepted with any organization. If you
change this property (and SSLServer is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are
stopped.

SSLServerDN_OU
Use this property to accept certificates received from the SSL/TLS client of this
Organizational Unit (OU). The name can be prefixed or suffixed with an
asterisk (*) to extend its scope. You can specify multiple OUs by separating
them with commas. (Match a literal comma by prefixing it with a backslash (\)
character.) Certificate matching is not case sensitive. If you do not specify this
property, certificates are accepted with any OU name. If you change this

138 IBM MQ: Internet Pass-Thru



property (and SSLServer is set to true), the route is stopped and restarted
when a refresh command is issued. All connections to this route are stopped.

SSLServerDN_PC
Use this property to accept certificates received from the SSL/TLS client of this
postal code. The name can be prefixed or suffixed with an asterisk (*) to extend
its scope. Certificate matching is not case sensitive. If you do not specify this
property, certificates are accepted with any postal code. If you change this
property (and SSLServer is set to true), the route is stopped, and restarted
when a refresh command is issued. All connections to the route are stopped.

SSLServerDN_ST
Use this property to accept certificates received from the SSL/TLS client of this
state. The name can be prefixed or suffixed with an asterisk (*) to extend its
scope. Certificate matching is not case sensitive. If you do not specify this
property, certificates are accepted with any state. If you change this property
(and SSLServer is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

SSLServerDN_Street
Use this property to accept certificates received from the SSL/TLS client of this
street name. The name can be prefixed or suffixed with an asterisk (*) to
extend its scope. Certificate matching is not case sensitive. If you do not
specify this property, certificates are accepted with any street name. If you
change this property (and SSLServer is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are
stopped.

SSLServerDN_T
Use this property to accept certificates received from the SSL/TLS client of this
title. The name can be prefixed or suffixed with an asterisk (*) to extend its
scope. Certificate matching is not case sensitive. If you do not specify this
property, certificates are accepted with any title. If you change this property
(and SSLServer is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

SSLServerDN_UID
Use this property to accept certificates received from the SSL/TLS client of this
user ID. The name can be prefixed or suffixed with an asterisk (*) to extend its
scope. Certificate matching is not case sensitive. If you do not specify this
property, certificates are accepted with any user ID. If you change this property
(and SSLServer is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

SSLServerExit
Use this property to enable or disable the use of an exit when the route is
acting as an SSL/TLS server. This allows you to define exit details in the
configuration file without them actually being used.

SSLServerKeyRing
The fully-qualified file name of the key-ring file containing the server
certificate; on Windows platforms, you must use a double backslash (\\) as the
file separator. You must specify SSLServerKeyRing if you set SSLServer to true.
If you change this SSLServerKeyRing property (and SSLServer is set to true),
the route is stopped, and restarted when a refresh command is issued. All
connections to the route are stopped.

SSLServerKeyRingPW
The fully-qualified file name containing the password to open the server
key-ring file; on Windows platforms, you must use a double backslash (\\) as

Chapter 7. Administering and configuring MQIPT 139



the file separator. You must specify SSLServerKeyRingPW if you set SSLServer to
true. If you change this SSLServerKeyRingPW property (and SSLServer is set to
true), the route is stopped, and restarted when a refresh command is issued.
All connections to the route are stopped.

SSLServerProtocols
Used to restrict the set of enabled secure socket protocols that are used to
accept inbound connections to the route listener port for a route when
SSLClient is set to true).

You can specify multiple values by separating them with commas. If you do
not specify this property, all supported JSSE protocols are enabled by default
with the exception of SSL 3.0. From version 2.1.0.2 of MQIPT, you must
explicitly set SSLv3 on this property for SSL 3.0 to be enabled.

Table 4. Permitted values for SSL/TLS protocols

Value Protocol

SSLv3 SSL 3.0

TLSv1 TLS 1.0

TLSv1.1 TLS 1.1

TLSv1.2 TLS 1.2

Use the entry listed in the Value column in the route property. The
corresponding entry in the Protocol column is for information only.

SSLServerSiteDN_C
Use this property to specify a country name to select a certificate to send to the
SSL/TLS client. Certificate matching is not case sensitive. If you do not specify
this property, certificates are accepted with any country name. If you change
this property (and SSLServer is set to true), the route is stopped, and restarted
when a refresh command is issued. All connections to the route are stopped.

SSLServerSiteDN_CN
Use this property to specify a Common Name to select a certificate to send to
the SSL/TLS client. Certificate matching is not case sensitive. If you do not
specify this property, certificates are accepted with any common name. If you
change this property (and SSLServer is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are
stopped.

SSLServerSiteDN_DC
Use this property to specify a domain component name to select a certificate to
send to the SSL/TLS client. Certificate matching is not case sensitive. You can
specify multiple DCs by separating them with commas. Each DC represents an
element in a domain name, for example the domain name example.ibm.com is
represented as example,ibm,com using commas to separate the multiple values.
If you do not specify this property, certificates are accepted with any domain
component name. If you change this property (and SSLServer is set to true),
the route is stopped, and restarted when a refresh command is issued. All
connections to the route are stopped.

SSLServerSiteDN_DNQ
Use this property to specify a domain qualifier to select a certificate to send to
the SSL/TLS client. Certificate matching is not case sensitive. If you do not
specify this property, certificates are accepted with any domain qualifier. If you
change this property (and SSLServer is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are
stopped.

140 IBM MQ: Internet Pass-Thru



SSLServerSiteDN_L
Use this property to specify a Location name to select a certificate to send to
the SSL/TLS client. Certificate matching is not case sensitive. If you do not
specify this property, certificates are accepted with any location name. If you
change this property (and SSLServer is set to true), the route is stopped, and
restarted when a refresh command is issued. All connections to the route are
stopped.

SSLServerSiteDN_O
Use this property to specify an organization name to select a certificate to send
to the SSL/TLS client. Certificate matching is not case sensitive. If you do not
specify this property, certificates are accepted with any organization name. If
you change this property (and SSLServer is set to true), the route is stopped,
and restarted when a refresh command is issued. All connections to the route
are stopped.

SSLServerSiteDN_OU
Use this property to specify an Organizational Unit (OU) name to select a
certificate to send to the SSL/TLS client. You can specify multiple OUs by
separating them with commas. (Match a literal comma by prefixing it with a
backslash (\) character.) Certificate matching is not case sensitive. If you do not
specify this property, certificates are accepted with any OU name. If you
change this property (and SSLServer is set to true), the route is stopped and
restarted when a refresh command is issued. All connections to this route are
stopped.

SSLServerSiteDN_PC
Use this property to specify a postal code to select a certificate to send to the
SSL/TLS client. Certificate matching is not case sensitive. If you do not specify
this property, certificates are accepted with any postal code. If you change this
property (and SSLServer is set to true), the route is stopped, and restarted
when a refresh command is issued. All connections to the route are stopped.

SSLServerSiteDN_ST
Use this property to specify a State name to select a certificate to send to the
SSL/TLS client. Certificate matching is not case sensitive. If you do not specify
this property, certificates are accepted with any state name. If you change this
property (and SSLServer is set to true), the route is stopped, and restarted
when a refresh command is issued. All connections to the route are stopped.

SSLServerSiteDN_Street
Use this property to specify a street name to select a certificate to send to the
SSL/TLS client. Certificate matching is not case sensitive. If you do not specify
this property, certificates are accepted with any street name. If you change this
property (and SSLServer is set to true), the route is stopped, and restarted
when a refresh command is issued. All connections to the route are stopped.

SSLServerSiteDN_T
Use this property to specify a title to select a certificate to send to the SSL/TLS
client. Certificate matching is not case sensitive. If you do not specify this
property, certificates are accepted with any title. If you change this property
(and SSLServer is set to true), the route is stopped, and restarted when a
refresh command is issued. All connections to the route are stopped.

SSLServerSiteDN_UID
Use this property to specify a user ID to select a certificate to send to the
SSL/TLS client. Certificate matching is not case sensitive. If you do not specify
this property, certificates are accepted with any user ID. If you change this

Chapter 7. Administering and configuring MQIPT 141



property (and SSLServer is set to true), the route is stopped, and restarted
when a refresh command is issued. All connections to the route are stopped.

SSLServerSiteLabel
Use this property to specify a label name to select a certificate to send to the
SSL/TLS client. If you do not specify this property, certificates are accepted
with any label name. If you change this property (and SSLServer is set to
true), the route is stopped, and restarted when a refresh command is issued.
All connections to the route are stopped.

TCPKeepAlive
Set this property to true to enable the sending of TCP/IP keep-alive packets
periodically to prevent the connections on this route becoming idle. This
reduces the chances of the MQIPT connections being severed by a firewall or
router. The sending of TCP/IP keep-alive packets is controlled by operating
system tuning parameters; consult your operating system documentation for
further details on how to tune keep-alive. If you do not set this parameter, or
set it to false, keep-alive packets are not sent.

Trace
The level of tracing required for this route. Enabling trace for one route does
not enable trace for any other routes. If you need to trace more than one route,
you must add the Trace property to the [route] section of each route to be
traced. This property should be an integer in the range 0 - 5, where 0 indicates
that trace is disabled, and any other value indicates that trace is enabled. The
default value is 0. If the [route] section does not include a Trace property, the
Trace property from the [global] section is used. For information about
tracing threads that are not associated with a route, see Trace in the [global]
section. If a change to this property affects a route, the new value is used when
the refresh command is issued. All connections use the new value immediately.
The route is not stopped.

UriName

This property can be used to change the name of the Uniform Resource
Identifier of the resource when using an HTTP proxy, although the default
value will suffice for most configurations:
HTTP://destination:destination_port/mqipt

If you change this property (and HTTP is set to true), the route is stopped, and
restarted when a refresh command is issued.

Making backups
There are a number of MQIPT files that you should back up as part of your
regular backup procedures.

Back up the following files on a regular basis:
v The configuration file, mqipt.conf
v The SSL/TLS key-ring files in mqipt.conf as defined by the following properties:

– SSLClientKeyRing

– SSLClientCAKeyRing

– SSLServerKeyRing

– SSLServerCAKeyRing

v The SSL/TLS key-ring password files in mqipt.conf as defined by the following
properties:

142 IBM MQ: Internet Pass-Thru



– SSLClientKeyRingPW

– SSLClientCAKeyRingPW

– SSLServerKeyRingPW

– SSLServerCAKeyRingPW

v The Administration Client configuration file, client.conf, which contains
connection information about all the instances of MQIPT known to the
Administration Client.

v The policy file specified by the SecurityManagerPolicy, if that parameter has
been set.

v The security exit files and certificate exit files as defined by the following
properties:
– SecurityExitName

– SSLExitName

Performance tuning
You can tune the relative performance of each route by using a combination of a
thread pool and an idle timeout specification.

Connection threads

ach MQIPT route is assigned a working pool of concurrently running threads that
handle incoming communication requests. At initialization, a pool of threads is
created (of the size specified in the route's MinConnectionThreads attribute), and a
thread is assigned to handle the first incoming request. When this request arrives,
another thread is assigned, ready for the next incoming request. When all threads
are assigned for work, a new thread is created, added to the working pool, and
assigned for work.

In this way, the pool grows until the maximum number of threads (specified in
MaxConnectionThreads) is reached. Threads are released back to the pool when a
conversation ends, or the specified idle timeout period has elapsed. When the
maximum number of working threads is reached, the next incoming request waits
until a thread is released back to the working pool.

You can reduce the time that requests might have to wait by increasing the number
of available threads. However, you must balance this increase with the system
resources that are available.

Idle timeout

By default, working threads are not terminated because of inactivity. When a
thread has been assigned to a conversation, it remains assigned to that
conversation until it is closed normally, the route is deactivated, or MQIPT is shut
down. Optionally, you can specify an idle timeout interval (in minutes) in the
IdleTimeout property so that threads that have been inactive for the specified
period of time are recycled. Threads are recycled for use by placing them back into
the working pool.

If IBM MQ activity is intermittent, set its heartbeat interval to a value less than
that of the MQIPT timeout so that threads are not constantly recycled.

Chapter 7. Administering and configuring MQIPT 143



144 IBM MQ: Internet Pass-Thru



Chapter 8. Troubleshooting and support

There are a number of steps you can follow to help determine the nature of any
problems you might encounter.
1. Check for the following common errors:
v The HTTP property is set to true on a route directly connected to a queue

manager.
v The SSLClient property is set to true on a route directly connected to a

queue manager that is not configured to use SSL/TLS.
v The passwords stored for the key-ring files are case-sensitive.

2. If you find any FFST reports in the errors subdirectory, MQIPT was correctly
installed but there might have been a problem with the configuration.
Each FFST reports a problem that causes MQIPT or a route to terminate its
startup process. Fix the problem that caused each FFST. Then delete the old
FFST and restart or refresh MQIPT.

3. If there is not an FFST and there is no trace output, MQIPT has not been
installed correctly. Check that all the files have been put in the correct place. To
check this, try to start MQIPT manually:
a. Open a command prompt. Go to the bin subdirectory and type:

mqipt xxx

where xxx is the MQIPT home directory; in this case, it is ...
b. When MQIPT starts, look for the configuration in the home directory. Look

for any error messages and FFST instances in the errors subdirectory.
c. Look at the text output from MQIPT for any error messages. Check for

instances of FFST. Correct any errors.

Note: MQIPT will not start if there is a problem in the [global] section of
the configuration file. A route will not start if there is a problem in the
[route] section of the configuration file.

4. If there is not an FFST but you do have trace output, configure the MQIPT
connections (ConnectionLog=true) and make the sender attempt a connection.
Then check that a connection from the host has been logged.
v If a connection from the host has been logged, the sender has not been

configured correctly.
v If a connection has not been logged, check that MQIPT is configured to

forward the message to the correct host and port. Then treat as a normal
channel problem.

Automatically starting MQIPT
If you install MQIPT as a Windows Service, or as a UNIX or Linux init.d system
service, it starts when the system is started.

On Windows systems

Always try starting MQIPT manually before installing it as a Windows Service, to
confirm correct installation. See “Using a Windows service control program” on
page 147 for more details.

© Copyright IBM Corp. 2000, 2017 145



If the MQIPT service does not start correctly, complete the following steps:
1. Open the Windows Registry Editor and navigate to the HKEY_LOCAL_MACHINE\

SYSTEM\CurrentControlSet\services\MQInternetPassThru key. Check that the
ConfigFilePath setting contains the correct path to the mqipt.conf
configuration file. Also, check that the ImagePath setting contains the correct
path to mqiptService.exe.

2. Run the mqiptService -debugevents command from an Administrator
Command Prompt to write service startup information in the Windows
application event log. Additional information is also displayed in the
Command Prompt console window. Examine the diagnostic information to
determine the cause of the failure.

3. If the cause of the failure is still not clear, use Windows Explorer to navigate to
the directory specified in ConfigFilePath where mqipt.conf is located. Examine
the contents of the errors subdirectory to look for FDC files containing FFST
records.

4. If the cause of the failure is still not clear, enable trace by setting the Trace
property to 5 in the [global] section of mqipt.conf. Restart the MQIPT service.
A trace file is be written in the MQIPT errors directory. If necessary, contact
IBM Software Support and supply the trace file along with any FDC files and
the diagnostic output from the mqiptService -debugevents command.

On UNIX and Linux systems

Always try starting MQIPT manually before installing it as a service, to confirm
correct installation. See “Using a UNIX or Linux init.d system service” on page 148
for more details.

If the MQIPT service does not start correctly, complete the following steps as the
root user:
1. Check that the MQIPT service is installed. You might need to uninstall and

reinstall the service. To check that the service is installed:
a. On AIX, run lsitab mqipt and check that the output shows the correct

installation directory. Here is an example of the output for an MQIPT
service running from the /usr/opt/mqipt installation:
mqipt:2:once:/usr/opt/mqipt/bin/mqipt /usr/opt/mqipt > /dev/console 2>&1

Check that the MQIPT executable named exists and is executable by the
root user.

b. On HP-UX, Linux and Solaris, check for the existence of the MQIPT init.d
script. This is named /sbin/init.d/mqipt on HP-UX and /etc/init.d/mqipt
on Linux and Solaris. The script must exist and must be executable by the
root user.

2. Ensure that the installation directory contains the mqipt.conf file, which must
be readable by the root user.

3. Check the output from the MQIPT startup.
v On AIX, the MQIPT output is sent to /dev/console.
v On HP-UX, Linux and Solaris platforms, the output is sent to a file named

console.log in the logs directory of the MQIPT installation.

Look for any MQIPT errors and address the cause. If no console output is
present then MQIPT was not started by the operating system. Consult your
operating system documentation for details of how to diagnose service startup
failures.

146 IBM MQ: Internet Pass-Thru



4. If the cause of the failure is still not clear, navigate to the MQIPT installation
directory where mqipt.conf is located. Examine the contents of the errors
subdirectory to look for FDC files containing FFST records.

5. If the cause of the failure is still not clear, enable trace by setting the Trace
property to 5 in the [global] section of mqipt.conf. Restart the MQIPT service.
A trace file is written in the MQIPT errors directory. If necessary, contact IBM
Software Support and supply the trace file along with any FDC files and the
diagnostic output from /dev/console (AIX) or console.log (HP-UX, Linux and
Solaris).

Using a Windows service control program
A separate service control program, mqiptService.exe, is provided so that you can
manage and start MQIPT as a Windows service.

If you want to run MQIPT as a system service, you can install only one such
service on each system. You cannot install more than one MQIPT service on the
same system, either from the same MQIPT installation or from different
installations.

You must run the mqiptService command from an administrator command prompt
in order to ensure you have the authority required to configure Windows services.
Typically:
1. start > Programs > Accessories > Command Prompt

2. Right-click Command Prompt and select Run as administrator. At the
command prompt, change directory to the MQIPT installation directory, for
example:
cd /D C:\mqipt\bin

3. Run mqiptService.exe from this command prompt.

mqiptService.exe takes the following command line arguments:

mqiptService -install mqipt_location

Installs and registers the service, so that it appears on the Windows services
panel as an automatic service.

You must reboot Windows after installing this service.

The path parameter, which must be supplied, is the fully-qualified path to the
directory containing the mqipt.conf configuration file. Enclose the path in
double quotation marks (") if it contains spaces.

mqiptService -remove
Removes the service so that it no longer appears on the Windows services
panel.

Note: Only the installation of MQIPT that installed the service can be used to
remove it. For example, if you have two MQIPT installations, one in C:\MQIPT1
and one in C:\mqipt2, and you run the command C:\MQIPT1\bin\mqiptService
-install C:\mqipt1, then only the mqiptService command from the C:\MQIPT1
installation can subsequently be used to remove the service. Attempting to
remove the service using a different installation causes error MQCPE083.

mqiptService ?
Displays help messages listing the valid arguments.

Specifying both -install and -remove on the same command causes an error.

Chapter 8. Troubleshooting and support 147



If you call the mqiptService.exe program from the command line with no
arguments, the program times out and returns with an error.

When the MQIPT service is started, all active MQIPT routes start. When the service
is stopped, all routes are subjected to immediate shutdown.

Using a UNIX or Linux init.d system service
A separate service control program, mqiptService, is provided so that you can
manage and start MQIPT as a UNIX or Linux init.d system service that starts
when the system boots.

If you want to run MQIPT as a system service, you can install only one such
service on each system. You cannot install more than one MQIPT service on the
same system, either from the same MQIPT installation or from different
installations.

You must run the mqiptService command as root in order to ensure you have the
authority required to configure services.

mqiptService takes the following command line arguments:

mqiptService -install

Installs and registers the service.

The mqipt.conf file for the service must be located in the top-level MQIPT
installation directory of the installation from which you ran mqiptService.

Installing the service does not automatically start it. The service starts the next
time the system is restarted. Consult your operating system service
documentation if you need to start the MQIPT service immediately, without
restarting.

mqiptService -remove
Removes the service so that it no longer starts at system boot time.

Note: Only the installation of MQIPT that installed the service can be used to
remove it. For example, if you have two MQIPT installations, one in
/opt/mqipt and one in /usr/local/mqipt, and you run the command
/opt/mqipt/bin/mqiptService -install, then only the mqiptService command
from the /opt/mqipt installation can subsequently be used to remove the
service. Attempting to remove the service using a different installation causes
error MQCPE083.

mqiptService ?
Displays help messages listing the valid arguments.

Specifying both -install and -remove on the same command causes an error.

When the MQIPT service is started, all active MQIPT routes start. When the service
is stopped, all routes are subjected to immediate shutdown.

Checking for end-to-end connectivity
If you cannot make a connection, check the connection log to see if the routes are
set up correctly.

148 IBM MQ: Internet Pass-Thru



Create the connection log: In the mqipt.conf configuration file, set the
ConnectionLog property to true. Start or refresh MQIPT, and attempt a connection.
See “Connection logs” on page 58 for details.
1. If the connection log is not created in the logs directory below the home

directory, MQIPT has not been installed correctly.
2. If no connection attempts are recorded, the sender has not been set up correctly.
3. If attempts are recorded, check that MQIPT is forwarding the messages to the

correct address.

Using JRE diagnostic options
In some cases you might need to use diagnostic functions that are built into the
Java Runtime Environment (JRE). You should usually only do this under the
direction of your IBM Software Support representative, as some diagnostic settings
might impair normal MQIPT operation.

The MQIPT_JVM_OPTIONS environment variable can be used to pass diagnostic
options to the underlying MQIPT JRE via the command line. All command
parameters that are valid for the IBM JRE supplied with MQIPT can be used.

There are two common diagnostic options that can be used are:

-Djavax.net.debug=all
This option enables diagnostics for SSL/TLS and network throughput.
Setting this option causes a detailed log of internal network operations to
be written to the console where MQIPT was started. This is particularly
useful for debugging SSL/TLS handshake errors on routes with SSLClient
or SSLServer set to true.

-Djava.security.debug=access,failure
This option enables diagnostics for the Java Security Manager policy, for
MQIPT instances with SecurityManager set to true. Setting this option
causes a detailed log of security activities and their required permissions to
be written to the console where MQIPT was started. It can be used to
identify missing permissions in the policy file.

Here is an example of enabling both of these settings on Windows platforms:
set MQIPT_JVM_OPTIONS=-Djavax.net.debug=all -Djava.security.debug=access,failure

Here is an example of enabling both of these settings on UNIX and Linux
platforms:
MQIPT_JVM_OPTIONS="-Djavax.net.debug=all -Djava.security.debug=access,failure"
export MQIPT_JVM_OPTIONS

For these settings to take effect, you must restart MQIPT from the command
prompt where the environment variable is set.

For another use of MQIPT_JVM_OPTIONS when diagnosing problems, see “Tracing
errors in iKeyman and iKeycmd” on page 150.

Tracing errors in MQIPT
MQIPT provides a detailed execution trace facility, which is controlled by the Trace
property.

Chapter 8. Troubleshooting and support 149



Trace files are written to the mqipt_home\errors directory (where mqipt_home is the
MQIPT home directory, which contains mqipt.conf). Each trace file produced has a
name with the following format:
AMQyyyymmddnnnnnnnnn.n.TRC

Unexpected fatal errors are written as FFST records in an error log file located in
the mqipt_home\errors directory. The FFST files have the following format:
AMQyyyymmddnnnnnnnnn.n.FDC

To enable trace, add the Trace configuration property to the appropriate section in
the mqipt.conf file. From MQIPT V2.1, the Trace property is route-specific. This
means that if you want to trace more than one route, you must add the Trace
property to the [route] section of each route that you want to trace. Alternatively,
if you add the Trace property to the [global] section, it is inherited by all routes
that do not specify a Trace property.

Tracing errors in iKeyman and iKeycmd
The mqiptKeycmd and mqiptKeyman commands have an execution trace facility
which can diagnose errors in the certificate management tools.

To enable trace for these commands, set the following environment variable before
running the mqiptKeycmd or mqiptKeyman command:
v On Windows systems:

set MQIPT_JVM_OPTIONS=-Dkeyman.debug=true -Dkeyman.logging=true

v On UNIX and Linux systems:
MQIPT_JVM_OPTIONS="-Dkeyman.debug=true -Dkeyman.logging=true"
export MQIPT_JVM_OPTIONS

A trace file is created in the current working directory. The trace file name has the
following format:
debugTrace.n

where n is an incrementing number starting at 0.

The user running the certificate management tool must have permission to create
files in the current working directory, otherwise the command fails with an error.

After you have finished recording trace logs, unset the environment variable.

Reporting problems
If you need to report a problem to the IBM® Service Center, send relevant
information that will help to resolve the problem more quickly.

Complete the following steps to obtain the required information:
1. Synchronize the system clock on each computer involved, including all those

running IBM MQ and MQIPT. This operation helps to match trace entries in
different trace files.

2. Move old trace files to a backup directory so that new trace files contain
information related only to this problem.

3. Run the client to reproduce the problem and create new trace files.
4. Send a copy of all MQIPT .TRC, .FDC, and .log files. Also send a simple

network diagram of all the computers used between the IBM MQ endpoints,

150 IBM MQ: Internet Pass-Thru



including firewalls, routers, load balancers, and servers. For each computer,
include its name, IP address, and relevant port numbers.

Chapter 8. Troubleshooting and support 151



152 IBM MQ: Internet Pass-Thru



Chapter 9. Messages

When run from the command line, MQIPT displays information, warning, and
error messages on the console.

All message identifiers follow the same format:
MQCpsnnn

where:
v p is the producer of the message:

– A: Administration Client
– P: MQIPT

v s is the severity of the message:
– I: information
– W: warning
– E: error

v nnn is the three-digit message number.

List of MQIPT MQC messages

MQCAE001 Unknown host: {0}

Explanation: The MQIPT host cannot be found.

User response: Check the host name was specified
correctly. Try to PING the host name or use its IP
address.

MQCAE002 The following error was reported by the
system: {0}

Explanation: An error has occurred while
communicating with an MQIPT.

User response: Review the text of the error message
and take the appropriate action.

MQCAE005 No valid destination address has been
defined

Explanation: When adding a route, the destination
field has been left blank.

User response: Enter a valid destination address.

MQCAE006 No valid destination port has been
defined

Explanation: When adding a route, the destination
port address field has been left blank.

User response: Enter a valid destination port address.

MQCAE007 No valid listener port has been defined

Explanation: When adding a route, the listener port
address field has been left blank.

User response: Enter a valid listener port address,
between 1 - 65535.

MQCAE008 No valid network address has been
defined

Explanation: When adding an MQIPT, the network
address field has been left blank.

User response: Enter a valid network address.

MQCAE009 No valid command port has been
defined

Explanation: When adding an MQIPT, an invalid
command port address has been used.

User response: Enter a valid command port address,
between 1 - 65535.

MQCAE010 Could not show online help

Explanation: The file for online help was available but
could not be displayed.

User response: Make sure that Netscape is installed
and available in the system PATH environment
variable.

MQCAE011 Could not parse parameter

Explanation: There has been an internal error that

© Copyright IBM Corp. 2000, 2017 153



caused an attempt to be made to update a nonexistent
parameter in the table.

User response: If the condition persists contact IBM
Software Support.

MQCAE012 Could not find online help file {0}

Explanation: File "passtfrm.htm" could not be found.

User response: Make sure this file is accessible in the
doc language subdirectory.

MQCAE013 Interrupted while trying to show online
help

Explanation: A system error occurred while displaying
the online help.

User response: Try again. Contact IBM Software
Support if the condition persists.

MQCAE015 The password you have just entered has
not been recognized

Explanation: The MQIPT expects a valid password,
and the one used in the last command was incorrect. It
must match that defined in the configuration file.

User response: Change the password using the menu
MQIPT->Connection panel and retry the last command
again.

MQCAE016 Node mismatch

Explanation: There is an internal inconsistency
between the node selected on the tree and the data
held in memory.

User response: Close the Administration Client and
retry the command again. Contact IBM Software
Support if the condition persists.

MQCAE017 Could not create NLS text for message
{0}

Explanation: No NLS text has been found for the
defined message number.

User response: The guiadmin.properties file may have
become corrupted and the specified message number
could not be found. Check the following:

1. look in the Readme file for a possible new message

2. guiadmin.properties file is in the guiadmin.jar file

3. the message number is in the guiadmin.properties
file

MQCAE019 You have failed to repeat your proposed
new password

Explanation: When changing the password, it has not
been entered twice, for verification.

User response: Enter the new password again in the
appropriate field.

MQCAE020 Failed to change MQIPT access
parameters

Explanation: An internal error has been detected
while trying to change MQIPT access parameters.

User response: Close the Administration Client and
try the command again. If the condition persists contact
IBM Software Support.

MQCAE021 Internal failure to identify MQIPT

Explanation: An internal error has been detected
while trying to save a configuration file on an MQIPT.

User response: Close the Administration Client and
try the command again. If the condition persists contact
IBM Software Support.

MQCAE022 Internal failure to save MQIPT
configuration

Explanation: An internal error has been detected
while trying to save a configuration file on an MQIPT.

User response: Close the Administration Client and
try the command again. If the condition persists contact
IBM Software Support.

MQCAE023 MQIPT {0} did not recognize your
password

Explanation: The MQIPT expects a valid password,
and the one used in the last command was incorrect. It
must match that defined in the configuration file.

User response: Change the password using the menu
MQIPT->Connection panel and retry the last command
again.

MQCAE024 MQIPT {0} has not recognized the
command

Explanation: The Administration Client has sent a
command to the MQIPT which it has not recognized.

User response: Make sure the version of code used by
the Administration Client is the same as the MQIPT.

MQCAE025 MQIPT {0} has failed to send
configuration file

Explanation: The MQIPT attempted to send the
configuration file, but failed.

User response: Close the Administration Client and
retry the command. If this still fails, stop and restart
the MQIPT.

MQCAE012 • MQCAE025

154 IBM MQ: Internet Pass-Thru



MQCAE026 Remote shutdown is disabled on
MQIPT {0}

Explanation: An attempt to shut down the MQIPT
remotely has failed because remote shutdown was not
enabled in the configuration file.

User response: To enable remote shutdown of MQIPT,
edit the configuration file and set the RemotShutDown
property to true.

MQCAE027 Look and feel {0} is not supported

Explanation: The recommended look and feel for the
platform you are using is not available.

User response: Processing continues with the system
default look and feel.

MQCAE028 Look and feel class {0} cannot be found

Explanation: The recommended look and feel for the
platform you are using is not available.

User response: Processing continues with the system
default look and feel.

MQCAE029 Must be non-negative and no bigger
than Maximum Connection Threads

Explanation: The Minimum Connection Threads value
must be less than or equal to the Maximum Connection
Threads value.

User response: Change the value accordingly.

MQCAE030 Must be greater than zero and at least as
big as Minimum Connection Threads

Explanation: The Maximum Connection Threads value
must be greater than the Minimum Connection Threads
value.

User response: Change the value accordingly.

MQCAE031 Port numbers must be in the range 0 to
65535

Explanation: You are attempting to set a value that
does not meet the specification.

User response: Change the value accordingly.

MQCAE032 Trace must be in the range 0 to 5

Explanation: Trace must be in the range 0 to 5

User response: Change the value accordingly.

MQCAE033 Maximum Log Size must be in the
range 5 to 50

Explanation: Max Log file size must be in the range 5
to 50

User response: Change the value accordingly.

MQCAE049 No route has been selected on any
MQIPT

Explanation: An attempt has been made to delete a
route without first selecting the route to be deleted.

User response: Select a route and retry the command
again.

MQCAE050 Could not connect to MQIPT {0}

Explanation: The Administration Client could not
connect to the specified MQIPT.

User response: This can be caused by any of the
following :

1. MQIPT is not running

2. MQIPT is not listening on its CommandPort

3. Only one Administration Client is using the MQIPT
CommandPort

4. The request has timed out.

MQCAE051 Could not read reply from MQIPT {0}

Explanation: A reply was received from the MQIPT
that did not conform to the expected protocol.

User response: Make sure the version of code used by
the Administration Client is the same as the MQIPT.

MQCAE052 Configuration has not been saved

Explanation: A valid reply was received from the
MQIPT but it subsequently failed to save the
configuration file.

User response: This can be caused by any of the
following :

1. MQIPT does not have write access to the
configuration file

2. The configuration file has been opened by another
process

3. The disk is full

MQCAE053 MQIPT has not confirmed saving of
configuration

Explanation: The configuration file has been sent to
the MQIPT but the MQIPT failed to acknowledge it.

User response: This can be caused by any of the
following :

1. MQIPT is not running

MQCAE026 • MQCAE053

Chapter 9. Messages 155



2. MQIPT is not listening on its CommandPort

3. Only one Administration Client is using the MQIPT
CommandPort

4. The request has timed out

MQCAE054 MQIPT data has not been refreshed

Explanation: Contact has been made with the MQIPT
but the Administration Client was unable to read the
configuration file.

User response: This can be caused by any of the
following :

1. MQIPT has failed

2. The request has timed out

MQCAE055 No MQIPT or route on an MQIPT has
been selected

Explanation: Your chosen menu option cannot be
performed because no MQIPT or route has been
selected.

User response: Select an MQIPT or route and try
again.

MQCAE056 Duplicate listener port has been rejected

Explanation: The specified listener port has been
rejected because it is already being used by another
route.

User response: Choose another listener port address.

MQCAI002 The MQIPT has been removed from
display

Explanation: The MQIPT whose node you selected on
the tree has been removed from the client's memory.

MQCAI003 New route added to the display

Explanation: The new route that you have just
specified has been added to the current MQIPT.

MQCAI004 Route has been removed from the
display

Explanation: The route that you selected on the tree
has been removed from the client's memory.

MQCAI005 Selected MQIPT is being displayed

Explanation: The global parameters of the MQIPT that
you selected on the tree are being shown in the table.

MQCAI006 Selected route is being displayed

Explanation: The parameters of the route that you
selected on the tree are being shown in the table.

MQCAI007 Client configuration has been saved

Explanation: The access parameters for all the MQIPTs
on the tree have been saved.

MQCAI008 Display of online help succeeded

Explanation: The online help has been displayed as
requested.

MQCAI009 Table has been updated

Explanation: The value you have just entered on the
table has been used to update the model in memory.

MQCAI010 No MQIPT or route has been selected

Explanation: No action has been taken because there
is insufficient information on which to act.

MQCAI011 User action has been cancelled

Explanation: You have cancelled out of an action,
involving a popup window, that you had previously
initiated.

MQCAI014 Configuration has been saved on
MQIPT

Explanation: A new configuration file has been saved
on the MQIPT that is currently selected on the tree, and
it has been used to restart the MQIPT.

MQCAI015 Online help has terminated

Explanation: The online help has been displayed as
requested and subsequently terminated.

MQCAI017 Select File/Add MQIPT to add an
MQIPT to the tree

Explanation: This message appears when there are no
MQIPTs on the tree; it tells you how to add one.

MQCAI018 New MQIPT added to display

Explanation: A new MQIPT has been added to the
tree as instructed.

MQCAI019 MQIPT access parameters have been
changed

Explanation: The access parameters of the MQIPT that
is currently selected on the tree have been changed.

MQCAE054 • MQCAI019

156 IBM MQ: Internet Pass-Thru



MQCAI021 Select an MQIPT or route on the tree to
display its contents

Explanation: This message appears when no
information is being shown on the table; it tells you
how to see some.

MQCAI022 The command port has changed

Explanation: The MQIPT whose command port was
instructed to change has now changed.

MQCAI023 The password has changed

Explanation: Any future communication with the
MQIPT which you have just changed will use the new
password.

MQCAI025 MQIPT {0} has been refreshed

Explanation: The information you hold on the MQIPT
has been updated by reading its configuration file.

MQCAI026 MQIPT {0} has received shutdown
request

Explanation: The MQIPT has acknowledged receipt of
a shutdown request and will now shut down.

MQCAI027 Client configuration has been refreshed

Explanation: The information displayed in the
Administration Client has been refreshed from the local
file client.conf.

MQCAI028 MQIPT {0} is active

Explanation: The MQIPT has responded successfully
to a ping request.

MQCAI029 MQIPT {0} is not active

Explanation: The MQIPT has not responded to a ping
request within a specified time.

User response: This can be caused by any of the
following:

1. MQIPT is not running

2. MQIPT is not listening on its CommandPort

3. The request has timed out. The timeout can be
increased by changing the timeout property on the
connection information for the MQIPT.

MQCAI030 Route {0} is active

Explanation: The MQIPT route has responded
successfully to a ping request.

MQCAI031 Route {0} is not active

Explanation: The MQIPT route has not responded to a
ping request within a specified time.

User response: This can be caused by any of the
following :

1. MQIPT is not running

2. MQIPT route is not active

3. The request has timed out. The timeout can be
increased by changing the timeout property on the
connection information for the MQIPT.

MQCAI100 This script is used to start the
Administration Client for {0}. Specifying
a SOCKS proxy will allow the
Administrator Client to talk to an
MQIPT through a firewall.

Explanation: Online help information for mqiptGui
script.

MQCAI101 Format of command is :

Explanation: Online help information for mqiptGui
script.

MQCAI102 mqiptGui {socks_host {socks_port}}

Explanation: Online help information for mqiptGui
script.

MQCAI103 socks_host - host name of SOCKS proxy
(optional)

Explanation: Online help information for mqiptGui
script.

MQCAI104 socks_port - SOCKS proxy port address
(optional - default 1080)

Explanation: Online help information for mqiptGui
script.

MQCPA100 This script is used to stop or refresh {0}.

Explanation: Online help information for the
mqiptAdmin script.

MQCPA101 (-stop | -refresh | -status) {hostname
{port}}

Explanation: Online help information for the
mqiptAdmin script.

MQCAI021 • MQCPA101

Chapter 9. Messages 157



MQCPA102 hostname - host name running MQIPT
(default localhost)

Explanation: Online help information for the
mqiptAdmin script.

MQCPA103 port - port address MQIPT is listening
on for commands (default 1881)

Explanation: Online help information for the
mqiptAdmin script.

MQCPA104 Command complete from MQIPT server
at {0}

Explanation: Command sent from IPTAdmin has been
accepted and run by IPTController

MQCPE001 Directory does not exist or is not a
directory

Explanation: At MQIPT initialization, a required
directory could not be found. This message refers to a
directory specified either in the MQIPT configuration
file mqipt.conf or in the MQIPT command line startup
options on the default directory.

User response: Specify the correct directory and retry
the command.

MQCPE004 Route startup failed on port {0}

Explanation: It was not possible to start the route with
the specified ListenerPort number.

User response: An I/O error occurred during route
startup. Check for other adjacent error messages and
log records to provide further explanation of the
problem.

MQCPE005 The configuration file {0} could not be
found

Explanation: The MQIPT configuration file mqipt.conf
could not be found in the specified directory

User response: Specify the correct directory and retry
the command.

MQCPE006 The number of routes has exceeded {0}.
MQIPT will start but this configuration
is unsupported

Explanation: Your configuration has exceeded the
maximum supported number of routes for one instance
of MQIPT. Operation will not be halted but the system
might become unstable or overloaded as a result.
Configurations that exceed the stated maximum
number of routes will not be supported.

User response: Consider starting additional instances
of MQIPT with fewer routes per instance.

MQCPE007 Route not restarted on listener port {0}

Explanation: On a REFRESH operation, the route that
was operating on the specified ListenerPort was not
restarted with the new configuration.

User response: Check for other adjacent error
messages for further explanation of the problem.

MQCPE008 Duplicate route defined for listener port
{0}

Explanation: More than one route has been defined
with the same ListenerPort value.

User response: Remove the duplicate route from the
configuration file and retry the command.

MQCPE009 Log directory {0} is not valid

Explanation: The log path shown in the text either
does not exist or is not accessible at the time.

User response: Check the directory exists and is
accessible by MQIPT.

MQCPE010 Listener or command port number {0} is
not valid

Explanation: The port address supplied for the
command port or listener port parameter is invalid.

User response: Specify a valid port address that is free
for use. For guidance on use of port addresses in your
network, consult your network administrator.

MQCPE012 The value {0} is not valid for the
property {1}

Explanation: An invalid property value has been
specified.

User response: Refer to this User Guide for full details
of the valid values for each property.

MQCPE013 ListenerPort property was not found in
route {0}

Explanation: MQIPT has detected a route in the
configuration file that does not contain a ListenerPort
property. The ListenerPort property is the primary and
unique identifier for each route, and is therefore
mandatory.

User response: Specify a valid ListenerPort property
for the given route.

MQCPE014 ListenerPort property value {0} is not
valid

Explanation: An invalid port address has been
specified for the ListenerPort property of a route.

User response: A port address must be in the range

MQCPA102 • MQCPE014

158 IBM MQ: Internet Pass-Thru



1024-65535. Check each ListenerPort in the
configuration file.

MQCPE015 No text was found for message number
{0}

Explanation: An internal error has been encountered
for which no description is available.

User response: The mqipt.properties file may have
become corrupted and the specified message number
could not be found. Check the following:

1. if you are using the MQIPT_PATH environment
variable, ensure it is set correctly

2. look in the Readme file for a possible new message

3. the mqipt.properties file is in the com.ibm.mq.ipt.jar
file

4. the message number is in the mqipt.properties file

MQCPE016 The maximum number of connection
threads is {0} but this is less than the
minimum number of connection
threads, which is {1}

Explanation: Your configuration file has specified the
minimum number of connection threads with a value
greater than the maximum number of connection
threads.

User response: This could be an error in a single
route, a conflict between a global property and a route
property, or a route property overriding the system
default values. Refer to the earlier chapters of this User
Guide for full details of the valid values and applicable
defaults.

MQCPE017 The exception {0} was thrown causing
MQIPT to shut down

Explanation: MQIPT has abnormally terminated and
has been shut down. This may have occurred because
of system environmental conditions or constraints, such
as memory overflow.

User response: If the condition persists, contact IBM
Software Support.

MQCPE018 The ListenerPort property is blank - the
route will not start

Explanation: The ListenerPort number has been
omitted in a route.

User response: Edit the configuration file and add a
valid ListenerPort.

MQCPE019 The stanza {0} was not found before the
following : {1}

Explanation: A sequence error has occurred in the
configuration file.

User response: Edit the configuration file and make
sure all [route] entries are after the [global] entry.

MQCPE020 The new value for
MaxConnectionThreads is {0}. This must
be greater than the current value {1}

Explanation: After the route has started, the
MaxConnectionThread property can only be increased.

User response: Edit the configuration file and change
the MaxConnectionThread property.

MQCPE021 The Destination property was not
supplied for route {0}

Explanation: The Destination property is mandatory
for a route, but was omitted in the route specified.

User response: Edit the configuration file and add a
Destination property for the given route.

MQCPE022 The CommandPort value {0} is outside
the valid range 1 - 65535

Explanation: The CommandPort property was outside
the range 1-65535.

User response: Edit the configuration file and change
the CommandPort property to a valid port address.

MQCPE023 Request for shutdown from
Administration Client {0} is ignored
because it is disabled

Explanation: An attempt to shut down the MQIPT
remotely has failed because remote shutdown was not
enabled in the configuration file.

User response: To enable remote shutdown of MQIPT,
edit the configuration file and set the RemoteShutDown
property to true.

MQCPE024 The command received by the MQIPT
controller has not been recognized

Explanation: The MQIPT has received a command
through its command port which it does not recognize.

User response: Check the mqipt.log file for the
identity of the command.

MQCPE015 • MQCPE024

Chapter 9. Messages 159



MQCPE025 Failed to connect to server on host {0},
port {1}

Explanation: The line mode (non-GUI) Administration
Client has failed to communicate with the MQIPT.

User response: Make sure the CommandPort property
has been specified as {1} in the configuration file and
MQIPT is running on host {0}.

MQCPE026 No reply received from server on host
{0}, port {1}

Explanation: The line mode (non-GUI) Administration
Client has connected with the MQIPT but has not
received a reply.

User response: This indicates that either the request
has timed-out or there is a problem with the MQIPT.

MQCPE027 Reply from MQIPT not recognized

Explanation: The line mode (non-GUI) Administration
Client has received a reply from the MQIPT, which it
does not recognize.

User response: Check the mqiptAdmin script is using
the same version of the MQipt.jar file as MQIPT.

MQCPE028 Invalid stanza detected : {0}

Explanation: The stated unrecognized stanza has been
found in the configuration file.

User response: Only [global] and [route] stanzas are
valid in the configuration file.

MQCPE029 Was not able to flush log output

Explanation: Some messages might not have been
written to the log because the communication buffer
could not be flushed.

User response: Check there is MQIPT home directory
disk has not become full and MQIPT still has access to
the logs subdirectory.

MQCPE030 {0} not found in CLASSPATH

Explanation: The specified jar file was not found in
the system environment CLASSPATH variable.

User response: Add the specified file to the system
CLASSPATH.

MQCPE031 {0} class not found

Explanation: This message is generated when
displaying the version number of MQIPT. The specified
class could not be found in the MQIPT jar file or the
system environment CLASSPATH variable has been
corrupted.

User response: Check the specified class file is in the

MQipt.jar file and the MQipt.jar file is in the system
CLASSPATH.

MQCPE033 Failed to send configuration file to
Administration Client at {0}

Explanation: An error occurred sending the
configuration file to the Administration Client.

User response: Check the configuration file is in the
MQIPT home directory and is not being shared by
another process.

MQCPE034 Administration Client at {0} did not
supply the correct password

Explanation: The AccessPW property in the
configuration file did not match that provided by the
Administration Client.

User response: Either change the AccessPW property
in the configuration file or the saved password in the
Administration Client.

MQCPE035 Failed to start command listener on port
{0}

Explanation: An I/O error occurred starting the
CommandPort listener on the specified port address.

User response: Check the port address used for the
CommandPort property in the configuration file.

MQCPE038 MQIPT has not started as expected

Explanation: This message is generated by the mqipt
fork process, which starts MQIPT as a system service.

User response: Check the error logs for more
information. You can try increasing the sleep time
IPTFork uses before it checks if MQIPT is running. Edit
mqiptFork script and increase the parameter passed to
IPTFork.

MQCPE039 I/O error occurred running mqipt script

Explanation: An error has occurred launching MQIPT
from the fork process

User response: Check the system PATH environment
variable contains the location of the JDK and the mqipt
script has execute authority.

MQCPE040 Interruption occurred running mqipt
script

Explanation: An error has occurred after launching
MQIPT from the fork process.

User response: Check the error logs for more
information. If the condition persists contact IBM
Software Support.

MQCPE025 • MQCPE040

160 IBM MQ: Internet Pass-Thru



MQCPE042 There is a conflict with the following
properties on route {0} :

Explanation: Some properties can not be used with
others. This message precedes the list of properties in
conflict.

User response: Check the following error messages
and take the appropriate action.

MQCPE043 ....{0} and {1}

Explanation: The following properties cannot both be
set at the same time on the same route.

User response: Edit the configuration file and disable
one of the specified properties on the given route.

MQCPE044 {0} is only valid on the {1} operating
system

Explanation: Some features of MQIPT are only valid
on certain platforms.

User response: Edit the configuration file and disable
the specified property.

MQCPE045 ....HTTP proxy or server name is missing

Explanation: The HTTPProxy or HTTPServer property
must be set if the HTTP property has been set to true.

User response: Edit the configuration file and define
an HTTPProxy or HTTPServer for the given route.

MQCPE048 Route startup failed on port {0},
exception was : {1}

Explanation: It was not possible to start the route with
the specified ListenerPort number.

User response: Check for other adjacent error
messages and log records to provide further
explanation of the problem.

MQCPE049 Error starting or stopping the Java
Security Manager \n{0}

Explanation: An exception was thrown while trying to
start or stop the Java Security Manager.

User response: The Java Security Manager has
previously been enabled, but runtime permissions have
not been enabled. Add a RuntimePermission for
setSecurityManager to your local policy file. MQIPT
must be restarted for the changes to take effect.

MQCPE050 Security exception on port {0} from the
Administration Client

Explanation: A security exception was thrown while
accepting a connection from the Administration Client.

User response: The Java Security Manager has

previously been enabled, but permissions have not
been granted for the host identified in the error
message. To allow the host to connect to MQIPT, add a
SocketPermission to accept/resolve connections on the
port address of the CommandPort. The Java Security
Manager must be restarted for any changes to take
effect.

MQCPE051 Security exception accepting a
connection on route {0}

Explanation: A security exception was thrown while
accepting a connection on the specified route.

User response: The Java Security Manager has
previously been enabled, but permissions have not
been granted for the host identified in the error
message. To allow the host to connect on this route,
add a SocketPermission to accept/resolve connections
for the ListenerPort. The Java Security Manager must
be restarted for any changes to take effect.

MQCPE052 Connection request on route {0} failed :
{1}

Explanation: This message is issued in the connection
log to record a security exception for a connection
request.

User response: The Java Security Manager has
previously been enabled, but permissions have not
been granted for the host identified in the error
message. To allow the host to connect on this route,
add a SocketPermission to accept/resolve connections
for the ListenerPort. The Java Security Manager must
be restarted for any changes to take effect.

MQCPE053 Security exception making a connection
to {0}({1})

Explanation: A security exception was thrown while
making a connection on the specified route.

User response: The Java Security Manager has
previously been enabled, but permissions have not
been granted for the target identified in the error
message. To allow MQIPT to connect to the target on
this route, add a SocketPermission to connect/resolve
connections for the ListenerPort. The Java Security
Manager must be restarted for any changes to take
effect.

MQCPE054 Connection request to {0}({1}) failed : {2}

Explanation: This message is issued in the connection
log to record a security exception for a connection
request to a target host.

User response: The Java Security Manager has
previously been enabled, but permissions have not
been granted to make a connection to the target host
identified in the error message. To allow MQIPT to
connect to the target host, add a SocketPermission to

MQCPE042 • MQCPE054

Chapter 9. Messages 161



connect/resolve connections for the ListenerPort. The
Java Security Manager must be restarted for any
changes to take effect.

MQCPE055 ....Socks proxy name is missing

Explanation: The SocksProxy property must be set if
the SocksClient property has been set to true.

User response: Edit the configuration file and define a
SocksProxy for the given route.

MQCPE056 Conflict with route properties

Explanation: Some properties cannot be used with
others.

User response: Check the console messages for details
of the error and take the appropriate action.

MQCPE057 SSL protocol ({0}) was not recognized

Explanation: The route has been put into SSL proxy
mode and the initial data flow is not recognized.

User response: Make sure only SSL connections are
being made to this route.

MQCPE058 CONNECT request to {2}({3}) through
{0}({1}) failed

Explanation: An HTTP CONNECT request was sent
to the HTTP proxy to create an SSL tunnel to the HTTP
server. The HTTP proxy did not send back a "200 OK"
response to this request.

User response: This can be caused by various
problems. Enable tracing on the route and retry the
connection. The trace file will show the real error.

MQCPE059 There are no defined key ring files

Explanation: An SSL client or server has been defined
without specifying at least one key ring file.

User response: Use the SSLClientKeyRing and
SSLClientCAKeyRing properties on the client side or
SSLServerKeyRing and SSLServerCAKeyRing on the
server side to define a key ring file and then restart the
route.

MQCPE060 Runtime error setting SSL client connect
timeout to {0} seconds

Explanation: An SSL runtime error has occurred on
the client side setting the timeout value.

User response: Check the value specified in the
SSLClientConnectTimeout property is valid. Running a
trace on the given route will show further error
information.

MQCPE061 There are no enabled cipher suites

Explanation: An SSL client or server connection has
been started but MQIPT is unable to determine a valid
cipher suite.

User response: Check there are valid certificates in the
defined key ring file(s). The private and public keys
used to generate the certificates and the encryption
algorithms used must comply with the list of
supported cipher suites, which can be found in the
MQIPT book.

MQCPE062 Runtime error setting SSL cipher suite
{0}

Explanation: An unsupported SSL cipher suite has
been defined on the client or server side.

User response: Check the value specified in the
SSLClientCipherSuites or SSLServerCipherSuites is
valid and supported on this connection. Running a
trace on the given route will show the list of enabled
cipher suites. The MQIPT book contains a list of
supported cipher suites.

MQCPE063 File {0} already exists - use the replace
option

Explanation: The file name parameter specified for the
mqiptPW script already exists.

User response: Either choose another file name or use
the replace option.

MQCPE064 Runtime error generating decryption
keys :\n {0}

Explanation: An error has occurred while generating
cipher keys to decrypt the password used to open a
key ring file.

User response: The runtime error listed in the
message should be rectified and the command run
again.

MQCPE065 ....LDAP server name is missing

Explanation: The LDAPServer1 or LDAPServer2
property must be set if the LDAP property has been set
to true.

User response: Edit the configuration file and define
an LDAPServer* for the given route.

MQCPE066 ....LDAP password is missing for the
LDAPServer{0}Password property

Explanation: An LDAP userid has been specified
without a password, for either the main or backup
LDAP server.

User response: Edit the configuration file and define

MQCPE055 • MQCPE066

162 IBM MQ: Internet Pass-Thru



an LDAP password for the given route. The
LDAPServer1Password property is for the main server
and LDAPServer2Password property is for the backup
server.

MQCPE067 ....SSLClient or SSLServer missing for
LDAP server

Explanation: The SSLClient or SSLServer property
must be set if the LDAP property has been set to true.

User response: Edit the configuration file and define
an SSLClient or SSLServer for the given route.

MQCPE068 ....Security exit name is missing

Explanation: The SecurityExitName property must be
set if the SecurityExit property has been set to true.

User response: Edit the configuration file and define a
SecurityExitName for the given route.

MQCPE071 Error writing to {0}

Explanation: An error occurred while creating or
updating the file containing the encryted password.
The error message also contains the exception thrown.

User response: This error is generated from the the
mqiptPW script. The error listed in the exception
should be rectified and the command run again.

MQCPE072 An unknown error occurred in security
exit {0}

Explanation: An error occurred in a user-defined
security exit while validating a connection request.

User response: Enable tracing in the security exit and
try the connection request again. The error will be
recorded in the security exit trace file.

MQCPE073 Security exit {0} timed out

Explanation: A user-defined security exit timed out
while validating a connection request.

User response: Increase the timeout period for the
security exit and try the connection request again.

MQCPE074 ....Certificate exit name is missing

Explanation: The SSLExitName property must be set
if the SSLClientExit or SSLServerExit property has been
set to true.

User response: Edit the configuration file and define a
SSLExitName for the given route.

MQCPE075 ....SSLPlainConnections needs
SSLServer or SSLProxyMode enabled

Explanation: The SSLExitName property must be set
if the SSLClientExit or SSLServerExit property has been
set to true.

User response: Edit the configuration file and define a
SSLExitName for the given route.

MQCPE076 Route {0} property {1} contains
unsupported CipherSuites. The
following CipherSuites are
unsupported: {2}

Explanation: At least one unsupported CipherSuite
was included in the SSLClientCipherSuites or
SSLServerCipherSuites

User response: Edit the configuration file and remove
the unsupported CipherSuite from the route
configuration.

MQCPE077 Route {0} property {1} specifies file
location {2} which does not exist.

Explanation: A route property refers to a file or
directory which does not exist.

User response: Edit the configuration file and specify
the correct location for the file or directory.

MQCPE078 Route {0} property {1} specifies file
location {2} which cannot be read.

Explanation: A route property refers to a file cannot
be read.

User response: Ensure that the file permissions allow
MQIPT to read it.

MQCPE079 Route {0} site certificate label {1} was not
found in keyring file {2}.

Explanation: A site certificate label was specified but
it was not found in the keyring file.

User response: Ensure that correct site certificate label
is specified and that the certificate exists in the
appropriate keyring.

MQCPE080 Unable to determine MQIPT installation
directory. Set the MQIPT_PATH
environment variable to the absolute
path of the top-level MQIPT directory.

Explanation: The MQIPT command was unable to
determine the installation directory.

User response: Set the MQIPT_PATH environment
variable to the absolute path of the top-level MQIPT
directory.

MQCPE067 • MQCPE080

Chapter 9. Messages 163



MQCPE081 Invalid MQIPT_PATH {0}. The directory
does not exist or does not contain a
valid MQIPT installation.

Explanation: The MQIPT_PATH environment variable
is set incorrectly. Either the directory does not exist or
the directory is not an MQIPT installation.

User response: Check the MQIPT_PATH environment
variable is set correctly and re-run the command.

MQCPE082 Unable to install the MQIPT service
because a service is already installed.
Only one MQIPT service may be
installed at a time.

Explanation: The user attempted to install the MQIPT
service, but an MQIPT service is already installed. Only
one MQIPT service may be installed on the system at a
time.

User response: Merge the required routes into the
existing MQIPT service configuration, or remove the
existing service and install the new service in its place.

MQCPE083 Unable to remove the MQIPT service
because the installed service was not
installed by the current MQIPT
installation. Run mqiptService from the
MQIPT installation that installed the
service.

Explanation: The MQIPT service may only be
removed using the MQIPT installation that originally
installed it. This error occurs when you have multiple
MQIPT installations on the system and you attempt to
remove the MQIPT service using a different installation
from the one that originally installed it.

User response: Run mqiptService -remove from the
correct MQIPT installation.

MQCPE084 The MQIPT service is not installed.

Explanation: The user attempted to remove the
MQIPT service but there is no MQIPT service installed.

MQCPE085 Error refreshing the Java Security
Manager policy\n{0}

Explanation: An exception was thrown while trying to
refresh the Java Security Manager policy.

User response: Investigate the cause of the error and
ensure that the updated policy file has the correct
syntax.

MQCPE086 Security exit {0} for route {1} failed to
initialize due to error {2}.

Explanation: The security exit initialization method

returned an unexpected error, which prevented the
route from starting.

User response: Investigate the cause of the error and
restart the route.

MQCPE087 Security exit {0} for route {1} failed to
load due to error {2}.

Explanation: The security exit could not be loaded,
which prevented the route from starting.

User response: Investigate the cause of the exit load
error and restart the route.

MQCPE088 Certificate exit {0} for route {1} failed to
initialize due to error {2}.

Explanation: The certificate exit initialization method
returned an unexpected error, which prevented the
route from starting.

User response: Investigate the cause of the error and
restart the route.

MQCPE089 Certificate exit {0} for route {1} failed to
load due to error {2}.

Explanation: The certificate exit could not be loaded,
which prevented the route from starting.

User response: Investigate the cause of the exit load
error and restart the route.

MQCPE090 The security exit rejected the connection
with return code {0} and error {1}.

Explanation: The security exit rejected a connection to
the route listener port.

User response: Investigate the error returned by the
exit.

MQCPE091 The SSLClient certificate exit rejected
the connection with return code {0} and
error {1}.

Explanation: The SSLClient certificate exit rejected the
remote server certificate.

User response: Investigate the error returned by the
exit.

MQCPE092 The SSLServer certificate exit rejected
the connection with return code {0} and
error {1}.

Explanation: The SSLServer certificate exit rejected the
remote client certificate.

User response: Investigate the error returned by the
exit.

MQCPE081 • MQCPE092

164 IBM MQ: Internet Pass-Thru



MQCPE093 Global property {0} specifies file
location {1} which does not exist.

Explanation: A global property refers to a file or
directory which does not exist.

User response: Edit the configuration file and specify
the correct location for the file or directory.

MQCPE094 Global property {0} specifies file
location {1} which cannot be read.

Explanation: A global property refers to a file cannot
be read.

User response: Ensure that the file permissions allow
MQIPT to read it.

MQCPE095 The MQIPT installation directory {0}
must not contain a space on this
platform.

Explanation: The MQIPT installation directory
contains a space character, which is not supported on
the IBM AIX, HP-UX, Linux or Solaris platforms.

User response: Rename the installation directory so
that it does not contain a space.

MQCPE096 Error enabling TCP keep alive

Explanation: The TCP keep alive route property is set,
but MQIPT was unable to enable TCP keep alive.

User response: Investigate the cause of the failure or
disable TCP keep alive.

MQCPI001 {0} starting

Explanation: This MQIPT instance is beginning
execution. Further initialization messages will follow.

MQCPI002 {0} shutting down

Explanation: MQIPT is going to shut down. This can
result from a STOP command, or automatically if a
configuration error prevents a successful startup or
REFRESH action.

MQCPI003 {0} shutdown complete

Explanation: The shutdown process has completed.
All MQIPT processes are now ended.

MQCPI004 Reading configuration information from
{0}

Explanation: The MQIPT configuration file mqipt.conf
is being read from the directory described in this
message.

MQCPI005 Listener port specified as not active - {0}
-> {1}({2})

Explanation: The route referred to in the message has
been marked as inactive. No communication requests
will be accepted on this route.

MQCPI006 Route {0} is starting and will forward
messages to :

Explanation: A route has been started on the listener
port shown in this message. This message is followed
by other messages listing any properties associated
with this route. Message MQCPI078 will be issued
when the route is ready to accept connections.

MQCPI007 Route {0} has been stopped

Explanation: The route that was operating on the
specified ListenerPort is being shut down. This action
normally occurs when a REFRESH command is issued
to MQIPT and the route configuration has been
changed.

MQCPI008 Listening for control commands on port
{0}

Explanation: This MQIPT instance is listening for
control commands on the specified port.

MQCPI009 Control command received: {0}

Explanation: This message indicates that a control
command has been received at the command port.
Where applicable, details are included in the message.

MQCPI010 Stopping command port on {0}

Explanation: On a REFRESH operation, the command
port is no longer in use in the new configuration.
Commands will no longer be accepted at the specified
port.

MQCPI011 The path {0} will be used to store the
log files

Explanation: Logging output will be directed to the
location described in this message, under the current
configuration.

User response: This may change if the configuration is
amended and a REFRESH operation is requested.

MQCPI012 Changing the value of
MinConnectionThreads has no effect
after the route is started

Explanation: The minimum number of connection
threads is assigned at route startup and cannot be
changed until MQIPT is restarted.

MQCPE093 • MQCPI012

Chapter 9. Messages 165



MQCPI013 Connection from {0} to host {1} closed

Explanation: This message is issued in the connection
log to record connection activity.

MQCPI014 Eyecatcher protocol ({0}) not recognized

Explanation: This message is issued in the connection
log to record connection activity.

MQCPI015 Client access has been disabled on this
route

Explanation: This message is issued in the connection
log to record connection activity.

MQCPI016 Queue Manager access has been
disabled on this route

Explanation: This message is issued in the connection
log to record connection activity.

MQCPI017 A queue manager on {0} was connected
to host {1}

Explanation: This message is issued in the connection
log to record connection activity.

MQCPI018 A client on {0} was connected to host {1}

Explanation: This message is issued in the connection
log to record connection activity.

MQCPI019 {0} routes have been created - this
exceeds the maximum number of
supported routes, which is {1}

Explanation: The maximum number of supported
routes has been exceeded.

User response: MQIPT will continue to operate, but
you might want to create a second MQIPT instance and
split the routes between the two.

MQCPI020 The configuration file has been sent to
Administration Client {0}

Explanation: As a result of a request from the
Administration Client, the configuration file has been
sent.

MQCPI021 Password checking has been enabled on
the command port

Explanation: This message shows that a password is
required to access the command port.

MQCPI022 Password checking has been disabled
on the command port

Explanation: This message shows that a password is
not required to access the command port.

MQCPI024 ....and HTTP proxy at {0}({1})

Explanation: This message indicates that the outgoing
connection for this route will be made using this HTTP
proxy.

MQCPI025 The refresh requested by
Administration Client {0} has finished

Explanation: As a result of receiving a REFRESH
command, the MQIPT has reread its configuration file
and restarted.

MQCPI026 Administration Client {0} has requested
shutdown

Explanation: As a result of receiving a STOP
command, the MQIPT is shutting down.

MQCPI027 {0} sent to {1} on port {2}

Explanation: This displays on the system console the
command sent by the line mode (non-GUI)
Administration Client to the designated MQIPT.

MQCPI031 ......cipher suites {0}

Explanation: This message lists the cipher suites in
use for this route.

MQCPI032 ......keyring file {0}

Explanation: This message gives the file name of the
key ring for this route.

MQCPI033 ......client authentication set to {0}

Explanation: This message defines whether an SSL
server is requesting client authentication for this route.

MQCPI034 ....{0}({1})

Explanation: This message shows the destination and
destination port address for this route.

MQCPI035 ....using {0}

Explanation: This message shows the protocol being
used to the destination. It will either be IBM MQ
protocol, HTTP tunneling or HTTP chunking.

MQCPI013 • MQCPI035

166 IBM MQ: Internet Pass-Thru



MQCPI036 ....SSL Client side enabled with
properties :

Explanation: This message shows that the route will
be using SSL to send data to the destination host.

MQCPI037 ....SSL Server side enabled with
properties :

Explanation: This message shows that the route will
be using SSL to receive data from the sending host.

MQCPI038 ......peer certificate uses {0}

Explanation: This message lists the distinguished
names used to control authentication of peer
certificates.

MQCPI039 ....and Socks proxy at {0}({1})

Explanation: This message shows that the outgoing
connection for this route will be made using this Socks
proxy, which is defined when MQIPT is started from
the command line.

MQCPI040 Command port has been accessed by
Administration Client {0}

Explanation: This message is written to the system
console and the MQIPT log file (if logging is enabled).
The MQIPT has received a connection from the
Administration Client.

MQCPI041 ....will reply to Network Dispatcher
advisor requests in {0} mode

Explanation: This message is written to the system
console when a route is started. Used to show which
mode MQIPT will use to reply to the Network
Dispatcher advisor. Valid options are "Normal" and
"Replace" mode.

MQCPI042 Maximum connections reached on route
{0} - further requests will be blocked

Explanation: This message is written to the system
console when the maximum number of connections has
been reached for the given route. Further requests will
be blocked until a connection becomes free or the
MaxConnectionThreads value is increased.

MQCPI043 Connections on route {0} now unblocked

Explanation: This message is written to the system
console when the given route is unblocked for
connection requests.

MQCPI044 MQIPT has been launched from system
startup

Explanation: MQIPT has been started as a system
service.

MQCPI045 Launching MQIPT from system startup

Explanation: MQIPT is going to be started as a system
service.

MQCPI046 Sleeping for {0} seconds while MQIPT is
launched from system startup

Explanation:

MQCPI047 ......CA keyring file {0}

Explanation: This message gives the file name of the
CA key ring for this route.

MQCPI048 The ping by Administration Client {0}
has finished

Explanation: Response message from the
IPTController to Administration Client.

MQCPI050 Adding entry to inittab to automatically
start MQIPT at system startup

Explanation: User has run the mqiptService script to
start MQIPT as a system service.

MQCPI051 Removing entry from inittab that
automatically starts MQIPT at system
startup

Explanation: User has run the mqiptService script to
remove MQIPT from starting as a system service.

MQCPI052 ....Socks server side enabled

Explanation: This route will act as a SOCKS server
(proxy) and will accept connections from a socksified
application.

MQCPI053 Starting the Java Security Manager

Explanation: The default Java Security Manager will
be started as the SecurityManager property has been
set to true.

MQCPI054 Stopping the Java Security Manager

Explanation: The default Java Security Manager will
be stopped as the SecurityManager property has been
set to false.

MQCPI036 • MQCPI054

Chapter 9. Messages 167



MQCPI055 Setting the java.security.policy to {0}

Explanation: The default Java Security Manager is
about to be started and will use the supplied policy
file.

MQCPI057 ....trace level {0} enabled

Explanation: This message is written to the system
console when a route is started. Used to show the level
of tracing enabled on this route.

MQCPI058 ....and a URI name of {0}

Explanation: This message is written to the system
console when a route is started. Used to show the
Uniform Resource Identifier name on this route.

MQCPI059 ....servlet client enabled

Explanation: This message is written to the system
console when a route is started. This route will connect
to the MQIPT servlet.

MQCPI060 Installing files to automatically start
MQIPT at system startup

Explanation: User has run the mqiptService script to
start MQIPT as a system service.

MQCPI061 Removing files that automatically starts
MQIPT at system startup

Explanation: User has run the mqiptService script to
remove MQIPT from starting as a system service.

MQCPI064 ......no SSL authentication on this route

Explanation: This message is written to the system
console when a route is started and shows there is no
SSL authentication is in use for this route, as an
anonymous cipher suite has been specified.

MQCPI066 ....and HTTP server at {0}({1})

Explanation: This message indicates that the outgoing
connection for this route will be made using this HTTP
server.

MQCPI069 ....binding to local address {0} when
making new connections

Explanation: This message shows the local IP address
each new connection is bound to the destination
address. This should only be used on a multihomed
system.

MQCPI070 ....using local port address range {0}-{1}
when making new connections

Explanation: This message shows the local port
addresses that will be used for new connections. This
will allow firewall administrators to restrict connections
from MQIPT.

MQCPI071 ......site certificate uses {0}

Explanation: This message lists the distinguished
names used to control selection of a site certificate.

MQCPI072 ......and certificate label {0}

Explanation: This message lists the label name used to
control selection of a site certificate.

MQCPI073 Updated file {0}

Explanation: The file name specified for the mqiptPW
script has been updated.

MQCPI074 Created file {0}

Explanation: The file name specified for the mqiptPW
script has been created.

MQCPI075 ....LDAP main server at {0}({1})

Explanation: This message lists the name of the main
LDAP server used for CRL support.

MQCPI076 ....LDAP backup server at {0}({1})

Explanation: This message lists the name of the
backup LDAP server used for CRL support.

MQCPI077 ....LDAP errors will be ignored

Explanation: This message means that any errors
received from LDAP will be ignored.

MQCPI078 Route {0} ready for connection requests

Explanation: This message is displayed when a route
is ready to accept connection requests.

MQCPI079 ....using security exit {0}

Explanation: This message is written to the system
console when a route is started. Used to show the fully
qualified name of the security exit.

MQCPI080 ......and timeout of {0} second(s)

Explanation: This message is written to the system
console when a route is started. Used to show the
timeout value of the security or certificate exit.

MQCPI055 • MQCPI080

168 IBM MQ: Internet Pass-Thru



MQCPI081 Start message for IBM MQ Internet
Pass-Thru

Explanation: Start message for IBM MQ Internet
Pass-Thru as a service

MQCPI082 Stop message for IBM MQ Internet
Pass-Thru

Explanation: Stop message for IBM MQ Internet
Pass-Thru as a service

MQCPI083 ....refresh commands will not restart the
route

Explanation: This message indicates that when a
refresh command has been issued the route will not be
restarted.

MQCPI084 ......CRL cache expiry timeout is {0}
hour(s)

Explanation: This console message displays how long
a CRL (or ARL) will remain in the MQIPT cache.

MQCPI085 ....CRLs will be saved in the key ring
file(s)

Explanation: This console message means that any
CRLs (or ARLs) retrieved from an LDAP server will be
saved in the key ring file, attached to the associated CA
certificate.

MQCPI086 ......timeout of {0} second(s)

Explanation: This message is written to the system
console when a route is started. Used to show the
timeout value for connecting to the LDAP server.

MQCPI087 ......userid is {0}

Explanation: This message is written to the system
console when a route is started. Used to show the
userid name to connect to the LDAP server.

MQCPI088 ....buffer size {0}

Explanation: This message is written to the system
console when a route is started. Used to show the size
of buffers being used, but only if not the value of
65535. This value will only be used if greater than the
default 65535.

MQCPI089 ....use cookies {0}

Explanation: This message is written to the system
console when a route is started. Used to show which
cookies will be passed to the MQIPT servlet, as
returned in the previous HTTP response.

MQCPI090 ......search baseDN uses {0}

Explanation: This message is written to the system
console when a route is started. Used to show the
LDAP baseDN key names to retrieve CRLs (and ARLs).

MQCPI091 ....allow plain connections

Explanation: This message is written to the system
console when a route is started. Used to show plain
connections are allowed when acting as an SSL server
or running in SSL proxy mode.

MQCPI092 ....socket timeout {0} ms

Explanation: This message shows the socket timeout
value (in milliseconds)

MQCPI100 This script is used to start {0}

Explanation: Online help message from mqipt script.

MQCPI101 Format of command is :

Explanation: Online help message from MQIPT script.

MQCPI102 mqipt {dir_name}

Explanation: Online help message from mqipt script.

MQCPI103 dir_name - directory containing
mqipt.conf

Explanation: Online help message from mqipt script.

MQCPI106 This script is used to display the current
version number

Explanation: Online help message from mqiptVersion
script.

MQCPI107 mqiptVersion {-v}

Explanation: Online help message from mqiptVersion
script.

MQCPI108 where -v will also display the build
timestamp

Explanation: Online help message from mqiptVersion
script.

MQCPI109 This script is used to start {0}, from
system startup, in another JVM and is
only used in mqipt.ske. Use the mqipt
script to start MQIPT from the
command line.

Explanation: Online help message from mqiptFork
script.

MQCPI081 • MQCPI109

Chapter 9. Messages 169



MQCPI110 This class is used to display a simple
NLS message on the console.

Explanation: Online help message from IPTMessages
class.

MQCPI111 java com.ibm.mq.ipt.IPTMessages
(message_id1) {message_id2}
{message_id...}

Explanation: Online help message from IPTMessages
class.

MQCPI112 where message_id matches a key in the
file mqipt.properties

Explanation: Online help message from IPTMessages
class.

MQCPI113 This script is used to manage MQIPT as
a system service.

Explanation: Online help message from mqiptService
script.

MQCPI114 mqiptService (-install | -remove )

Explanation: Online help message from mqiptService
script.

MQCPI115 -install will install files to start MQIPT
automatically at system startup

Explanation: Online help message from mqiptService
script.

MQCPI116 -remove will remove files that start
MQIPT automatically at system startup

Explanation: Online help message from mqiptService
script.

MQCPI121 Use this script to encrypt a password
and store it in a file

Explanation: Online help message from mqiptPW
script.

MQCPI122 mqiptPW password file_name { -replace
}

Explanation: Online help message from mqiptPW
script.

MQCPI123 password - password used to open a key
ring file

Explanation: Online help message from mqiptPW
script.

MQCPI124 file_name - encrypted password will be
stored in this file

Explanation: Online help message from mqiptPW
script.

MQCPI125 replace option must be used to update
an existing file

Explanation: Online help message from mqiptPW
script.

MQCPI126 mqipt (-start | -stop )

Explanation: Online help message from mqipt script.

MQCPI127 ....in full duplex mode

Explanation: This message shows the HTTP protocol
being used to the destination is working in full duplex
mode.

MQCPI128 ....in half duplex mode

Explanation: This message shows the HTTP protocol
being used to the destination is working in half duplex
mode.

MQCPI129 ......using certificate exit {0}

Explanation: This message is written to the system
console when a route is started. Used to show the fully
qualified name of the certificate exit.

MQCPI130 Connection to caller closed due to
connection failure to destination

Explanation: This message is written to the connection
log for the closed connection to the caller, when MQIPT
failed to connect to the target destination.

User response: See previous connection failure for
reason of closure.

MQCPI131 ......and certificate exit data ''{0}''

Explanation: This message is written to the system
console when a route is started. Used to show the data
for the certificate exit.

MQCPI132 ....listening on local address {0}

Explanation: This message shows the local IP address
the route is listening on. This should only be used on a
multihomed system.

MQCPI110 • MQCPI132

170 IBM MQ: Internet Pass-Thru



MQCPI133 This script starts the iKeyman certificate
management utility.

Explanation: This message introduces the usage
statement for the mqiptKeyman command used to start
the iKeyman certificate management utility.

MQCPI134 mqiptKeyman

Explanation: This message shows the usage statement
for the mqiptKeyman command used to start the
iKeyman certificate management utility.

MQCPI135 This script runs the iKeycmd certificate
management utility.

Explanation: This message introduces the usage
statement for the mqiptKeyman command used to start
the iKeyman certificate management utility.

MQCPI136 mqiptKeycmd {object} [{action} ...]

Explanation: This message shows the usage statement
for the mqiptKeyman command used to start the
iKeyman certificate management utility.

MQCPI137 mqiptIcons {-install | -remove}
InstallationName

Explanation: This message shows the usage statement
for the mqiptIcons command used to install or remove
MQIPT icons from the Windows Start menu.

MQCPI138 The Java Security Manager policy has
been refreshed.

Explanation: The Java Security Manager is still
enabled and the policy has been re-read. Any changes
to the security policy will now take effect.

MQCPI139 ......secure socket protocols {0}

Explanation: This message lists the secure socket
protocol versions enabled for this route.

MQCPI140 ....TCP keep alive enabled

Explanation: This message shows that TCP keep alive
parameter has been enabled

MQCPW001 CRL expired for {0}

Explanation: This message is displayed when a CRL
(or ARL) is retrieved from an LDAP server.

User response: Update the specified CRL in the LDAP
server.

MQCPW003 ....Expired CRLs will be ignored

Explanation: This console message means that any
expired CRLs (or ARLs) will be ignored and the
connection request may be allowed.

MQCPW004 ......SSLServerAskClientAuth is disabled,
certificate exit might not be called

Explanation: This console message is displayed at
startup to show a conflict with the SSLServerExit and
SSLServerAskClientAuth properties.

User response: With SSLServerAskClientAuth
disabled, the SSL client is not required to send an SSL
certificate, so the certificate exit might not be called.

MQCPW005 Route {0} {1} keyring file {2} certificate
{3} serial number {4} is not yet valid.
The certificate cannot be used before {5}.

Explanation: This console message is displayed at
route startup if one of the keyring files contains a
certificate which is not yet valid because its Not Before
date is in the future.

User response: Check that the system clock is set
correctly. If your organization operates its own CA,
check the system clock on the CA system.

MQCPW006 Route {0} {1} keyring file {2} certificate
{3} serial number {4} has expired. The
certificate cannot be used after {5}.

Explanation: This console message is displayed at
route startup if one of the keyring files contains a
certificate which has expired.

User response: Check that the system clock is set
correctly. If the clock is set correctly, obtain a
replacement certificate.

MQCPI133 • MQCPW006

Chapter 9. Messages 171



172 IBM MQ: Internet Pass-Thru



Index

A
accessibility information 5
AccessPW property 124
Active property 126
administering MQIPT 115
administering MQIPT by using the

command line 118
Administration Client 115

administering MQIPT 116
connection information 115
file menu options 117
inheritance of properties 116
starting 115

AIX
uninstalling MQIPT version 2.0 61

automatically starting MQIPT
problems 145

B
backing up key files 142

C
certificate exit

com.ibm.mq.ipt.exit.CertificateExit
class 40

com.ibm.mq.ipt.exit.CertificateExitResponse
class 42

com.ibm.mq.ipt.exit.IPTCertificate
class 42

com.ibm.mq.ipt.exit.IPTTrace class 43
overview 40

certificate exit return codes 45
certificate related technologies 35
channel concentrator, MQIPT as a 1
chunking, HTTP 21
CipherSuites 25
client/server channels 17
ClientAccess property 126
cluster sender/receiver channels 17
clustering 23
command line commands 118
command port 58
CommandPort property 124
common problems 145
configuration

default configuration file 120
file protection 57
property reference information 124,

125
reference information 119
summary of properties 120
using the Administration Client 115
using the command line 118

configuration file 11, 115
connection logs 58
connection scenarios 16
connection threads

performance tuning 143

ConnectionLog property 125
control, port numbers 57
cryptographic algorithms 25

D
denial of service attacks 57
Destination property 126
destination queue managers, access

to 11
DestinationPort property 126
DMZ, MQIPT with 2

E
encrypting key-ring password for

iKeyman 37
encryption 3
end-to-end connectivity problems 149
example configurations 1, 69

allocating port addresses 93
Apache rewrite 101
certificate exit to authenticate an

SSL/TLS server 111
configuring a SOCKS client 88
configuring a SOCKS proxy 87
configuring access control 85
configuring MQIPT clustering

support 90
creating a key-ring file 72
creating test certificates 75
dynamic one route exit 108
HTTP proxy configuration 83
HTTP tunneling 81
installation verification test 70
routing security exit 105
security exit 104
SSL/TLS client authentication 79
SSL/TLS proxy mode 97, 99
SSL/TLS server authentication 77
using an LDAP server 94

execution trace facility 150

F
failure conditions 18
fault finding 145
features 21
FFST reports 145

G
generic

uninstalling MQIPT version 2.0 62
getting started with MQIPT 69

H
handshake 31
heartbeat mechanism 21
high availability 19
HP-UX

uninstalling MQIPT version 2.0 61
HTTP property 126
HTTP support 21
HTTP tunneling, HTTP with 3
HTTPProxy property 126
HTTPProxyPort property 126
HTTPS 22
HTTPS property 127
HTTPServer property 126
HTTPServerPort property 127

I
idle timeout

performance tuning 143
IdleTimeout property 127
IgnoreExpiredCRLs property 127
iKeyman 37, 38

command line interface 37
command-line interface 38
encrypting key-ring password 37
graphical user interface 37, 38
key-ring file format 37

iKeyman and iKeycmd, tracing
errors 150

inheritance of properties 116
installation verification test 70
installing 59
introduction 1

J
Java Security Manager 49
JRE diagnostic options 149

K
key-ring file

selecting certificates 33
key-ring file format for iKeyman 37
keyring file

encrypting a password 33
keyring password 33

L
LDAP and CRLs 45
LDAP property 127
LDAPCacheTimeout property 127
LDAPIgnoreErrors property 127
LDAPSaveCRLs property 128
LDAPServer1 property 128
LDAPServer1Password property 128
LDAPServer1Port property 128

© Copyright IBM Corp. 2000, 2017 173



LDAPServer1Timeout property 128
LDAPServer1Userid property 128
LDAPServer2 property 128
LDAPServer2Password property 128
LDAPServer2Port property 128
LDAPServer2Timeout property 129
LDAPServer2Userid property 128
Linux

service control program 148
uninstalling MQIPT version 2.0 61

ListenerAddress property 129
ListenerPort property 129
LocalAddress property 129

M
maintenance 142
MaxConnectionThreads property 129
MaxLogFileSize property 125
messages 153
messages, safety of 18
migrating from an earlier MQIPT 62
MinConnectionThreads property 129
MQIPT and SSL/TLS 32
mqipt.conf 115
multi-instance queue managers 19
multihomed systems 57
multiple queue managers 11

N
Name property 129
NDAdvisor property 129
NDAdvisorReplaceMode property 130
Network Dispatcher 47
normal termination 18

O
other security considerations 57
OutgoingPort property 130

P
performance tuning 143

connection threads 143
idle timeout 143

port 57
port number control 57
prerequisites 4
privacy 5
problem determination 145
problems

common 145
end-to-end connectivity 149

properties
global section 124
route section 125
summary 120

protocol forwarder, MQIPT as 11

Q
QMgrAccess property 130

R
refresh line mode command 119
RemoteShutDown property 125
reporting problems 150
requester/sender channels 18
requester/server channels 18
return codes

certificate exit 45
security exit 56

RouteRestart property 130

S
safety of messages 18
security considerations, other 57
security exit

com.ibm.mq.ipt.SecurityExit class 53
com.ibm.mq.ipt.SecurityExitResponse

class 55
overview 52
tracing 56

security exit return codes 56
SecurityExit property 130
SecurityExitName property 130
SecurityExitPath property 130
SecurityExitTimeout property 130
SecurityManager property 125
SecurityManagerPolicy property 125
sender/receiver channels 18
server/receiver channels 18
server/requester channels 18
service control program

UNIX and Linux 148
Windows 147

SOCKS support 22
SocksClient property 130
SocksProxyHost property 131
SocksProxyPort property 131
SocksServer property 131
Solaris

uninstalling MQIPT version 2.0 61
SSL support

handshake 31
SSL/TLS overview 24
SSL/TLS support 24

error messages 35
example 3
LDAP and CRLs 45
MQIPT and SSL/TLS 32
testing 34
trust settings 33

SSLClient property 131
SSLClientCAKeyRing property 131
SSLClientCAKeyRingPW property 131
SSLClientCipherSuites property 132
SSLClientConnectTimeout property 132
SSLClientDN_C property 132
SSLClientDN_CN property 132
SSLClientDN_DC property 132
SSLClientDN_DNQ property 132
SSLClientDN_L property 132
SSLClientDN_O property 133
SSLClientDN_OU property 133
SSLClientDN_PC property 133
SSLClientDN_ST property 133
SSLClientDN_Street property 133

SSLClientDN_T property 133
SSLClientDN_UID property 133
SSLClientExit property 134
SSLClientKeyRing property 134
SSLClientKeyRingPW property 134
SSLClientProtocols property 134
SSLClientSiteDN_C property 134
SSLClientSiteDN_CN property 134
SSLClientSiteDN_DC property 135
SSLClientSiteDN_DNQ property 135
SSLClientSiteDN_L property 135
SSLClientSiteDN_O property 135
SSLClientSiteDN_OU property 135
SSLClientSiteDN_PC property 135
SSLClientSiteDN_ST property 135
SSLClientSiteDN_Street property 136
SSLClientSiteDN_T property 136
SSLClientSiteDN_UID property 136
SSLClientSiteLabel property 136
SSLExitData property 136
SSLExitName property 136
SSLExitPath property 136
SSLExitTimeout property 136
SSLPlainConnections property 136
SSLProxyMode property 137
SSLServer property 137
SSLServerAskClientAuth property 137
SSLServerCAKeyRing property 137
SSLServerCAKeyRingPW property 137
SSLServerCipherSuites property 137
SSLServerDN_C property 137
SSLServerDN_CN property 138
SSLServerDN_DC property 138
SSLServerDN_DNQ property 138
SSLServerDN_L property 138
SSLServerDN_O property 138
SSLServerDN_OU property 138
SSLServerDN_PC property 139
SSLServerDN_ST property 139
SSLServerDN_Street property 139
SSLServerDN_T property 139
SSLServerDN_UID property 139
SSLServerExit property 139
SSLServerKeyRing property 139
SSLServerKeyRingPW property 139
SSLServerProtocols property 140
SSLServerSiteDN_C property 140
SSLServerSiteDN_CN property 140
SSLServerSiteDN_DC property 140
SSLServerSiteDN_DNQ property 140
SSLServerSiteDN_L property 141
SSLServerSiteDN_O property 141
SSLServerSiteDN_OU property 141
SSLServerSiteDN_PC property 141
SSLServerSiteDN_ST property 141
SSLServerSiteDN_Street property 141
SSLServerSiteDN_T property 141
SSLServerSiteDN_UID property 141
SSLServerSiteLabel property 142
starting MQIPT

automatically 12
from command line 12

stop line mode command 119
stopping MQIPT 13
support 145

174 IBM MQ: Internet Pass-Thru



T
TCP/IP and MQIPT 11
TCPKeepAlive property 142
termination 18
thread pool management 143
topology of MQIPT 13
Trace property 125, 142
tracing errors

iKeyman and iKeycmd 150
MQIPT 150

troubleshooting 145
trust settings 33
tunnelling, HTTP 21

U
uninstalling MQIPT version 2.0

AIX 61
generic UNIX 62
HP-UX 61
Linux 61
Solaris 61
Windows 62

uninstalling MQIPT version 2.1 62
UNIX

service control program 148
upgrading MQIPT 66
UriName property 142
uses of MQIPT 1

W
what's new in version 2.1 7
Windows

service control program 147
uninstalling MQIPT version 2.0 62

Index 175



176 IBM MQ: Internet Pass-Thru



Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2000, 2017 177



IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

178 IBM MQ: Internet Pass-Thru



Programming interface information
Programming interface information, if provided, is intended to help you create
application software for use with this program.

This book contains information on intended programming interfaces that allow the
customer to write programs to obtain the services of WebSphere MQ.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Important: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks
IBM, the IBM logo, ibm.com®, are trademarks of IBM Corporation, registered in
many jurisdictions worldwide. A current list of IBM trademarks is available on the
Web at “Copyright and trademark information”www.ibm.com/legal/
copytrade.shtml. Other product and service names might be trademarks of IBM or
other companies.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

This product includes software developed by the Eclipse Project
(http://www.eclipse.org/).

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Notices 179



180 IBM MQ: Internet Pass-Thru



Sending your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or give us any other feedback that
you might have.

Use one of the following methods to send us your comments:
v Send an email to ibmkc@us.ibm.com
v Use the form on the web here: www.ibm.com/software/data/rcf/

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

Include the following information:
v Your name and address
v Your email address
v Your telephone or fax number
v The publication title and order number
v The topic and page number related to your comment
v The text of your comment

IBM or any other organizations will only use the personal information that you
supply to contact you about the issues that you submit.

Thank you for your participation.

© Copyright IBM Corp. 2000, 2017 181



182 IBM MQ: Internet Pass-Thru





IBM®

SC34-2920-00


	Contents
	Figures
	Chapter 1. Introduction to IBM MQ Internet Pass-Thru
	Edition Notice
	Who this book is for
	What you need to know to understand this document
	Prerequisites
	Accessibility information
	Look and feel

	Privacy


	Chapter 2. What's new in MQIPT Version 2.1
	Chapter 3. How MQIPT works
	Starting and stopping MQIPT
	Possible configurations of MQIPT
	Compatible configurations
	Supported channel configurations
	Channel termination and failure conditions
	Safety of messages
	Multi-instance queue managers and high availability

	Chapter 4. Using MQIPT features
	HTTP support
	HTTPS

	SOCKS support
	Clustering

	SSL/TLS support
	SSL/TLS handshake
	MQIPT implementation of SSL/TLS
	Encrypting a keyring password
	Selecting certificates from a key-ring file
	Trust settings
	Testing SSL/TLS
	SSL/TLS error messages
	iKeyman
	Digital certificate considerations for MQIPT

	Certificate exit
	The com.ibm.mq.ipt.exit.CertificateExit class
	The com.ibm.mq.ipt.exit.CertificateExitResponse class
	The com.ibm.mq.ipt.exit.IPTCertificate class
	The com.ibm.mq.ipt.exit.IPTTrace class
	Certificate exit return codes

	LDAP and CRLs
	Multi-valued certificate Distinguished Name OU properties

	Network Dispatcher support
	Java Security Manager
	Security exits
	The com.ibm.mq.ipt.exit.SecurityExit class
	The com.ibm.mq.ipt.exit.SecurityExitResponse class
	Security exit return codes
	Tracing

	Port number control
	Other security considerations
	Connection logs

	Chapter 5. Installing, uninstalling, and migrating MQIPT
	Installing MQIPT
	Uninstalling MQIPT version 2.0
	Uninstalling MQIPT version 2.1
	Migrating from MQIPT Version 2.0 to Version 2.1
	Upgrading your MQIPT Version 2.1 installation

	Chapter 6. Scenarios: Getting started with MQIPT
	Scenario: Verifying that MQIPT is working correctly
	Scenario: Creating a key-ring file
	Scenario: Creating test certificates
	Scenario: Authenticating an SSL/TLS server
	Scenario: Authenticating an SSL/TLS client
	Scenario: Configuring HTTP tunneling
	Scenario: Configuring an HTTP proxy
	Scenario: Configuring access control
	Scenario: Configuring a SOCKS proxy
	Scenario: Configuring a SOCKS client
	Scenario: Configuring MQIPT clustering support
	Scenario: Allocating port numbers
	Scenario: retrieving CRLs by using an LDAP server
	Scenario: running MQIPT in SSL/TLS proxy mode
	Scenario: running MQIPT in SSL/TLS proxy mode with a security manager
	Scenario: Apache rewrite
	Scenario: Using a security exit
	Scenario: Routing client connection requests to IBM MQ queue manager servers by using security exits
	Scenario: Dynamically routing client connection requests
	Scenario: Using a certificate exit to authenticate an SSL/TLS server

	Chapter 7. Administering and configuring MQIPT
	Using the MQIPT Administration Client
	Starting the Administration Client
	Administering an instance of MQIPT
	Setting MQIPT properties
	Administration Client menu options

	Administering MQIPT by using the command line
	Configuration reference information
	Summary of properties
	Global properties
	Route properties

	Making backups
	Performance tuning

	Chapter 8. Troubleshooting and support
	Automatically starting MQIPT
	Using a Windows service control program
	Using a UNIX or Linux init.d system service

	Checking for end-to-end connectivity
	Using JRE diagnostic options
	Tracing errors in MQIPT
	Tracing errors in iKeyman and iKeycmd
	Reporting problems

	Chapter 9. Messages
	List of MQIPT MQC messages

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

	Notices
	Programming interface information
	Trademarks

	Sending your comments to IBM

