

Concepts

IBM WebSphere Process Server

Query Table Builder
SupportPac PA71

Version 1.0
December, 2008

© IBM Corporation, 2008

Table of contents

1. Overview ..3
2. Model ...5

2.1. Common properties of query tables...6
2.2. Predefined query tables ...6

2.2.1. Predefined query tables with instance data.........................7
2.2.2. Predefined query tables with template data........................8

2.3. Supplemental query tables...8
2.4. Composite query tables ...9

2.4.1. Content ...9
2.4.2. The relationship between primary and attached query tables

.. 11
2.4.3. Filters.. 13
2.4.4. Authorization.. 13
2.4.5. Attributes .. 14

2.5. Query table condition language... 14
2.5.1. General ... 14
2.5.2. Attributes .. 16
2.5.3. Values ... 17

2.6. Authorization.. 19
2.6.1. Work items .. 19
2.6.2. Instance based authorization flag.................................... 20
2.6.3. Authorization filter .. 22

2.7. Attribute types ... 22
2.7.1. Database type to attribute type mapping 23
2.7.2. Attribute type to literal representation mapping................ 24
2.7.3. Attribute type to user parameter mapping 25
2.7.4. Attribute type to Java object type mapping 26
2.7.5. Attribute type compatibility .. 27

3. Query Table Builder.. 28
4. Administration ... 29
5. Queries... 30

5.1. Entity based and row based query table API 30
5.2. Query table API parameters ... 31

5.2.1. Query table name ... 32
5.2.2. Filter options .. 32
5.2.3. Authorization options .. 34
5.2.4. Parameters .. 36

5.3. Query results ... 36
5.3.1. EntityResultSet... 36

5.3.2. RowResultSet ... 38
6. Performance.. 39

6.1. Composite query table definition... 39
6.2. Query table API .. 40
6.3. Other .. 42

7. The query table API and the standard query API 43
Related References ... 46
Tables and Figures .. 47

 Page 1

Abstract

This document describes Business Process Choreographer Query Tables,
which is new functionality in WebSphere Process Server, version 6.2.
Query tables are used in the context of the human tasks and business
processes of Business Process Choreographer.
A common usage pattern of business process and human task applications
is as follows: a list of human tasks or business processes is presented to a
user. The user picks and works on a business process or a human task,
and finally returns to the refreshed list, for example My To Dos. In order
to display the list of human tasks or business processes, a query is run
against the Business Process Choreographer database.
Query tables allow defining a customized view on the data that is
contained in the Business Process Choreographer database; inclusion of
external business data is also supported. Query tables are defined by the
designer of the client application according to the needs of the client. That
is, a query table is defined in such a way that it contains all the columns
that are displayed when the business user later retrieves the respective
task list or business process list. Query tables allow optimizing for query
performance without changing a query table’s definition. They are highly
configurable, and are developed visually using the Query Table Builder
tool.

The target audience of this document is administrators, architects, and
solution specialists that create and manage business process based or
human task based applications on WebSphere Process Server.

© Copyright International Business Machines Corporation 2008.

All rights reserved.

 Page 2

 Page 3

1. Overview

Query tables support task and process list queries on data that is
contained in the Business Process Choreographer database schema. This
includes human task data and business process data, both managed by
Business Process Choreographer, as well as external business data. Query
tables provide an abstraction on the data of Business Process
Choreographer that can be used by client applications. By that, client
applications become independent of the actual implementation of the
query table. Query table definitions are deployed on Business Process
Choreographer containers and are accessible using the query table API.
Using query tables has an impact on the way applications are developed
and deployed. The following steps describe the roles involved in designing
and developing a Business Process Choreographer application that uses
query tables:

Table 1: Query table development steps

Step Who Description

1. Analysis

(Refer to
sections 2, 6)

Business
Analyst,
Client
Developer

Analyze which query tables are needed
in the particular client application.
Questions to be answered are:
• How many task or process lists are

provided to the user? Are there task
or process lists that can share the
same query table?

• What kind of authorization is used?
Instance based authorization, role
based authorization, or none?

• Are there other query tables already
defined in the system that can be
re-used?

2. Query
Table
Development

(Refer to
sections 2, 0 3,
 5, 6)

Client
Developer,
Business
Analyst

Develop the query tables that are used
in the client application. Try to specify
the definition of the query tables such
that the best performance is achieved
with query table queries.

3. Query
Table
Deployment

(Refer to
section 4)

Administrator Query tables must be deployed to the
runtime before they can be used. This
step is done using a new wsadmin
command which uses the command
line tools in the WebSphere Process
Server scripting environment.

 Page 4

4. Query
Table
Queries

(Refer to
sections 5 2, 5,
 6)

Client
Developer

To include queries against query tables
is the last step of query table
development. The client developer
must know the name of the query table
along with its attributes.

This document is structured as followed:

• Section 2 explains the elements of query table definitions:
attributes, filters, selection criteria, and authorization options.

• Section 3 contains a short notice about the Query Table Builder.

• Section 4 provides an overview of query table deployment.

• Section 5 introduces the query table API.

• Section 6 explains factors which influence the performance of query
tables; the focus is on query response time.

• Section 7 provides a comparison between the query table API and
the standard query API.

Note: Currently, query tables are not supported if the Business Process
Choreographer database is on Informix 10.

 Page 5

2. Model

There are three different kinds of query tables: predefined, supplemental,
and composite query tables:

Query Table

Predefined Composite Supplemental

kind
kind

kind

BPEDB Custom

Figure 1: Query table kinds

While predefined and supplemental query tables directly point to tables or
views in the database, composite query tables compose parts of this data
and make it available in a single query table.
Predefined, supplemental, and composite query tables are represented
using similar models in the query table runtime and can be queried using
the query table API.
Composite query tables are designed by client developers. They are
suggested for use in production scenarios in favor of the standard
Business Process Choreographer query APIs, because they provide an
abstraction over the actual implementation of the query and thus enable
query optimizations. They also allow for a fine-grained configuration of
authorization and filters. Furthermore, composite query tables allow
changes at runtime without redeployment of the client that accesses the
query table.
Predefined and supplemental query tables relate to database tables or
database views in the Business Process Choreographer database.
Supplemental query tables are query tables that contain supplemental
business data that is maintained by customer applications. Currently,
composite query tables do not have a specific representation of data in
the database; they access the database contents of the related predefined
and supplemental query tables.

 Page 6

2.1. Common properties of query tables

Query tables have the following properties:

Table 2: Properties of query tables

Property Description

Name The query table name must be unique within a Business
Process Choreographer installation. When the query is run,
this query table name is used to identify the query table
that is queried.

Attributes Attributes of query tables define the pieces of information
that are available for queries. For predefined query tables,
these are the columns specified by the predefined database
views. Attributes of query tables are defined with a name
and a type. The name of an attribute is defined with
uppercase letters. The type of an attribute is one of the
following:

• boolean: A boolean value

• decimal: A floating point number

• ID: An object ID, such as TKIID of query table TASK

• number: An integer, short, or long

• string: A string

• timestamp: A timestamp
Authorization Each query table defines whether instance based

authorization is used when queries are run on it.
If instance based authorization is not used, the query is run
without checks against the existence of work items of the
related objects in the query table.
If instance based authorization is used, only objects with a
work item for the user who performs the query are
returned. However, with using the AdminAuthorization-
Options this check can be reduced to a check of the
existence of a work item of any user. The user must be in
the J2EE role BPESystemAdministrator for those queries.

2.2. Predefined query tables

Predefined query tables in Business Process Choreographer are the query
table representation of the corresponding predefined Business Process
Choreographer database views, such as TASK or PROCESS_INSTANCE.
They provide access to the data in the Business Process Choreographer
database. Accessing predefined query tables using the query table API
offers more options for configuration than accessing the predefined
database views using the standard query API. The query table API is
described in section 5.

 Page 7

Although the predefined query tables can be queried directly using the
query table API, the suggested use of query tables is to develop a
composite query table that contains all the information to be retrieved
when the query is run, not just the information from a single table.

2.2.1. Predefined query tables with instance data

Query tables in the following table:
• Can be used as the primary query of a composite query table. See

chapter 2.4.1 for details.

• Use instance based authorization if queried directly. This is
accomplished with a join (SQL-) with the view that stores
authorization information, that is, the predefined WORK_ITEM view
or query table.

• Contain instance data, for example instance data of task instances
or process instances.

Table 3: Predefined query tables containing instance data

Query table name Description

ACTIVITY

ACTIVITY_ATTRIBUTE

ACTIVITY_SERVICE

Information about activities of a process
instance.

ESCALATION

ESCALATION_CPROP

ESCALATION_DESC

Information about escalations belonging to
human tasks.

PROCESS_ATTRIBUTE

PROCESS_INSTANCE

QUERY_PROPERTY

Information about process instances.

TASK

TASK_CPROP

TASK_DESC

Information about human tasks.

The information contained in the WORK_ITEM query table also contains
instance data, but this is not available as the primary query table or an
attached query table. This reflects the fact that in Business Process
Choreographer work items represent authorization of a certain kind,
whether reader authority, administrator authority, potential owner
authority, and so on, on a given object such as a human task or business
process. This is different to systems such as WMQWF. For more details,
refer to the Business Process Choreographer Programming Model white
paper [BPCProgModel]. Work item information is available implicitly when
querying query tables that use instance based authorization. That is,
attributes of the WORK_ITEM query table can be used when querying a
query table with instance based authorization, although not explicitly
specified by the query table.

 Page 8

2.2.2. Predefined query tables with template data

Query tables in the following table:
• Can be used as the primary query table of a composite query table.
• Require administrator authorization if queried directly.
• Contain template data, for example the template data of task

templates or process templates.

Table 4: Predefined query tables containing template data

Query table name Description

ESC_TEMPL

ESC_TEMPL_CPROP

ESC_TEMPL_DESC

Information about escalation
templates.

PROCESS_TEMPLATE

PROCESS_TEMPL_ATTR

Information about process
templates.

TASK_TEMPL

TASK_TEMPL_CPROP

TASK_TEMPL_DESC

Information about task templates.

2.3. Supplemental query tables

Supplemental query tables in Business Process Choreographer expose
data to the query table API that is not managed by Business Process
Choreographer. Supplemental query table are often used by customers to
make additional business data available. With supplemental query tables,
this external data can be used together with data from the predefined
query tables of Business Process Choreographer when retrieving business
process instance information or human task information.
Instance based authorization with work items is not supported for
supplemental query tables. All authenticated users can access the
contents of supplemental query tables.
The purpose of supplemental query tables is to provide information in a
composite query table in addition to information that is contained in a
predefined query table. Supplemental query tables should not be used in
order to simplify programming when accessing database tables or views
from client applications without being correlated to Business Process
Choreographer data.
The following properties are defined on a supplemental query table:

Table 5: Properties on supplemental query tables

Property Description

name The name of the supplemental query table. It must follow the
syntax of prefix.name. Only uppercase letters may be used.
The total length is restricted to 28 characters. The prefix must
be different from the reserved word ‘IBM’.

 Page 9

database
name

The name of the related table or view in the database. Only
uppercase letters may be used.

database
schema

The schema of the related table or view in the database. Only
uppercase letters may be used. The database schema should
be different to the database schema of the Business Process
Choreographer database. Nevertheless, the table or view must
be accessible with the same JDBC data source that is used for
accessing the Business Process Choreographer database.

attributes Attributes on supplemental query tables must match the
related name of the columns in the related database table or
view. Only uppercase letters may be used. See section 2.7 for
rules that apply for the type of an attribute and the type in the
database. Section 2.7.1 contains an example with sample
attributes referencing database columns of a database table of
which the create table statement is provided.

join Joins must be defined on supplemental query tables if they are
attached in composite query tables. A join defines which
attributes are used to correlate information in the
supplemental query table with the information in the primary
query table. When a join is defined, the source attribute and
the target attribute must be of the same type.

2.4. Composite query tables

Composite query tables are composed of predefined query tables and
supplemental query tables. They combine data from existing tables or
views. Typically, a composite query table is used to retrieve the
information that is shown on a process instance list or a task list, such as
“My To Dos”. Composite query tables allow filters and authorization
options for optimized data access when the query is run.
A query table is uniquely identified using its name, which is defined as
prefix.name. The maximum length of the prefix.name is 28 characters,
and the prefix must be different from the reserved prefix ‘IBM’.

2.4.1. Content

Figure 2 provides an overview of the content of composite query tables:

 Page 10

primary query table

predefined

authorization

work item
query table

attached query tables

predefined

supplemental

WORK_ITEM view a primary query table attached
query table

attached
query table

…

…

query table definition (defined columns/attributes)

additional attributes
at query time

available
attributes

defined
attributes

Figure 2: Query table contents overview

All composite query tables are defined with one primary query table and
zero or more attached query tables. Information contained in the primary
and attached query tables provide the set of information, or available
attributes, which can be defined to be part of the query table. If the
primary query table contains instance data, such as TASK or
PROCESS_INSTANCE, and instance based authorization is used, work item
information can be retrieved when running the query. This is in addition to
the attributes that are part of the query table definition (see section 0 2.2
for a list of available predefined query tables).
The primary query table must be one of the predefined query tables as
listed in section 0. The primary query table of a composite query table is
used for:

• Authorizing the contents of a query table using work items which are
contained in the WORK_ITEM query table, if instance based
authorization is used.

• Determining the list of objects returned as rows of a table when
querying the composite query table. Information which is contained
in the attached query tables or in the WORK_ITEM query table is
available in the composite query table only if it is related to a row
that is contained in the primary query table.

Typically, the primary query table is chosen based on the purpose of the
composite query table. If the composite query table describes a task list,
the query table TASK is the primary query table. If the composite query
table describes a process list, the query table PROCESS_INSTANCE is the
primary query table. Lists of activities are retrieved using a primary query
table, ACTIVITY. Lists of human task escalations are retrieved using a
primary query table, ESCALATION. Various other predefined query tables
are available as a primary query table, but they are intended to be used
for special purposes only.
Attached query tables are available in order to provide information in
addition to the information that is provided by the primary query table.
For example, if TASK is the primary query table, the description of the
task, provided in query table TASK_DESC, can be added to the contents of
the composite query table.

 Page 11

Work item information can be queried at runtime if the primary query
table contains instance data and if the composite query table is configured
to use instance based authorization.

2.4.2. The relationship between primary and attached query tables

The relationship between a piece of information, or row, in the primary
query table and the information, or row, which is added with an attached
query table is described as follows. At maximum, one single row of the
attached query table must qualify for a corresponding row in the primary
query table, which is referred to as one-to-one or one-to-zero
relationship. If the one-to-one or one-to-zero relationship is violated, a
runtime exception occurs when the query is run.
Primary query tables and attached query tables are correlated using a join
attribute that is defined on the attached query table. This join attribute
cannot be changed for predefined query tables, because it describes the
relationship between the data in the various query tables of Business
Process Choreographer. Frequently, this join attribute is sufficient to
maintain the one-to-one or one-to-zero relationship. For example,
CONTAINMENT_CTX_ID is used on the TASK query table to attach the
related process instance information that is identified by the PIID attribute
on query table PROCESS_INSTANCE. However, in cases where a one-to-
many relationship exists, an additional criterion must be specified. This is
called the selection criterion.
Selection criteria are used in the query table definition in order to choose
one piece of information from the one-to-many relationship. In the sample
contents of Table 6, this is “LOCALE='en_US'”. Many descriptions identified
using different locales exist for a single task. Selection criteria which are
based on the Query Table Condition Language are specified during query
table development using the Query Table Builder tool. See section 2.5 for
details.
Example 1: The following figure provides a sample visualization of the
selection criteria that is specified on attached query tables:

………
SalesCorpcustomerTK3

TK3
TK2
TK2
TK2
TK1
…

id
12/1/2008DueDate
IBMcustomer
1234id
-DueDate
……

………
SalesCorpcustomerTK3

TK3
TK2
TK2
TK2
TK1
…

id
12/1/2008DueDate
IBMcustomer
1234id
-DueDate
……

The TaskIBMTSK_22TK2

……………

The TaskIBMTSK_22TK2

……………

………
TK3
TK3
TK2
TK2
TK1
…

The Tasken_US
Der Taskde_DE
The Tasken_US
Der Taskde_DE
The Tasken_US
……

………
TK3
TK3
TK2
TK2
TK1
…

The Tasken_US
Der Taskde_DE
The Tasken_US
Der Taskde_DE
The Tasken_US
……

…………

…TASK_32TK3

…TSK_22TK2

…TASK_13TK1

…………

…TASK_32TK3

…TSK_22TK2

…TASK_13TK1

…NAMESTATETKIID …NAMESTATETKIID TKIID VALUENAMETKIID VALUENAME

TKIID DESCLOCALETKIID DESCLOCALE

DESCRIPTIONCUSTOMERNAMESTATEID DESCRIPTIONCUSTOMERNAMESTATEID

TASK_CPROP

TASK_DESC

TASK

primary

attached

attached

selection criterion
LOCALE=‘en_US’

selection criterion
CUSTOMER=‘IBM’

query table definition (defined columns/attributes) with sample values

Figure 3: Sample composite query table with selection criteria

 Page 12

The query table shown in Figure 3 contains the attributes ID, STATE,
NAME, CUSTOMER, and DESCRIPTION.
ID, STATE, and NAME are provided by the primary query table TASK.
CUSTOMER is a custom property on TASK. Custom properties are stored
in the query table TASK_CPROP. For a particular task, a custom property
is uniquely identified using its name. This is reflected in the selection
criterion “CUSTOMER=’IBM’”.
DESCRIPTION is the task’s description, stored in query table TASK_DESC.
The task description for a particular task is uniquely identified through its
locale. This is reflected in the selection criterion “LOCALE=’en_US’”.
Example 2: For example, if TASK is the primary query table and
TASK_DESC is attached to it, a particular locale must be chosen, which is
attribute LOCALE of query table TASK_DESC. The focus of this example is
on the relationship between the primary and the attached query tables,
using TASK as the primary query table and TASK_DESC as the attached
query table. Table 6 shows sample contents of a composite query table
with a valid selection criterion for the attached query table TASK_DESC.
Table 7 shows hypothetical invalid contents if the selection criterion is set
incorrectly, which means that the one-to-one or one-to-zero relationship
is violated:

Table 6: Valid contents of a composite query table

Information from
TASK (primary query
table)

Information from TASK_DESC (attached
query table)

NAME LOCALE DESCRIPTION

task_one en_US This is a description.

task_two en_US This is a description.

… … …

Table 7: Invalid contents of a composite query table: TASK as primary
and TASK_DESC as attached query table

Information from
TASK (primary query
table)

Information from TASK_DESC (attached
query table)

NAME LOCALE DESCRIPTION

task_one en_US This is a description.

task_one de_DE Das ist eine
Beschreibung.

… … …

 Page 13

2.4.3. Filters

Filters are used to limit the number of objects, or rows, that are contained
in a composite query table:

query table filter

primary filterwork item filter

attached query tables

predefined

supplemental

WORK_ITEM primary query table attached
query table

query table definition (build-time conditions)

attached
query table

…

primary query table

predefined

authorization

work item
query table

additional attributes
at query time

defined
attributes

Figure 4: Filters in composite query tables

Filters in composite query tables can be defined during development at
three different locations:

• On the primary query table, this is the primary query table filter.
• On the implicitly available WORK_ITEM query table which is

responsible for authorization if the primary query table contains
instance data. This filter is called the authorization filter. It is
available only if the composite query table is configured to use
instance based authorization.

• On the composite query table, this is the query table filter.
Filters are defined using the query table condition language, as described
in section 2.5. For example, a composite query table with the primary
query table TASK can filter on tasks that are in state ready
(“STATE=STATE_READY” as the primary query table filter).

2.4.4. Authorization

Authorization for accessing the contents of a composite query table with a
primary query table primaryQT is similar to the authorization that is used
to access the contents of primaryQT. The difference is that composite
query tables can be configured to be more restrictive. Only predefined
query tables are available as the primary query table.
Composite query tables with a primary query table that contains
instance data: They can be configured to not use instance based
authorization. In this case, all users have access to the contents of the
composite query table.
If instance based authorization is configured for use, the data contained in
the composite query table is checked for existing work items in query
table WORK_ITEM. This check is made against the primary query table.
Everybody work items, individual work items, group work items, and

 Page 14

inherited work items are used for this check, depending on the
configuration of the composite query table.
Composite query tables with a primary query table that contains
template data: The use of role based authorization of composite query
tables with a primary query table that contains template data cannot be
changed. Queries against those query tables can be run only by users that
are in the J2EE role BPESystemAdministrator of Business Process
Choreographer. The AdminAuthorizationOptions object must be used for
those queries.
For more details on authorization, see section 2.6 and 5.2.3.

2.4.5. Attributes

Attributes of composite query tables are defined using a reference to
attributes of the primary query table or the attached query tables, which
can be predefined query tables or supplemental query tables. Both types
and constants of referenced attributes are inherited from the attributes of
the composite query table. For more information on attributes and its
related types, see section 2.7.

2.5. Query table condition language

Filters and selection criteria (see section 2.4) are defined with the query
table condition language. The query table condition language is used to
specify a condition which evaluates to true or false at runtime. This
language is similar to SQL where clauses.

2.5.1. General

An expression in the query table condition language is defined as follows:

Table 8: Query table condition language: expressions

<expression> ::= <attribute> <binary_op> <value> |
 <attribute> <unary_op> |
 <attribute> <list_op> <list> |
 (<expression>) |
 <expression> AND <expression> |
 < expression> OR <expression>
Rules:

• AND takes precedence over OR.
• Brackets can be used to group expressions and must be balanced.

Examples:

• STATE = STATE_READY
• NAME IS NOT NULL
• STATE IN (2, 5, STATE_FINISHED)
• ((PRIORITY=1) OR (WI.REASON=2)) AND (STATE=2)

 Page 15

The following binary operators are available:

Table 9: Query table condition language: binary operators

<binary_op> ::= = | < |
 > | <> |
 <= | >= |
 LIKE | NOT LIKE |
Rules:

• The left side operand of a binary operator must reference an
attribute of a query table. Valid attributes depend on the location of
the filter or selection criterion. See Table 13 for details.

• The right side operand of a binary operator must be a literal value,
constant value, or parameter.

• The LIKE and NOT LIKE operators are only valid for attributes of
attribute type STRING.

• The left side operand and the right side operand must be of
compatible attribute types. See section 2.7.5 for details.

• User parameters are converted to the attribute type of the left side
attribute.

Examples:

• STATE > 2
• NAME LIKE 'start%'
• STATE <> PARAM(theState)

The following unary operators are available:

Table 10: Query table condition language: unary operators

<unary_op> ::= IS NULL | IS NOT NULL
Rules:

• The left side operand of a unary operator must reference an
attribute of a query table. Valid attributes depend on the location of
the filter or selection criterion. See Table 13 for details.

• All attributes can be checked for null values.

Example:

• DESCRIPTION IS NOT NULL

The following list operators are available:

Table 11: Query table condition language: list operators

<list_op> ::= IN | NOT IN
Rules:

• The right side of a list operator must not be replaced by a user
parameter.

• User parameters can be used within the list on the right side
operand.

 Page 16

Example:

• STATE IN (STATE_READY, STATE_RUNNING, PARAM(st), 1)

Lists are represented as follows:

Table 12: Query table condition language: lists

<list> ::= <value> [, <list>]
Rules:

• See Table 11.

Examples:

• (2, 5, 8)
• (STATE_READY, STATE_CLAIMED)

For the <attribute> element, see section 2.5.2; for the <value> element,
see section 2.5.3.

2.5.2. Attributes

Attributes in an expression refer to attributes of query tables. Depending
on the location of the expression, different attributes are available. For the
client developer, query filters passed into the query table API (see section
 5.2.2) are the only location where expressions can be used. For
developers of composite query tables, various other locations exist where
expressions can be used. The following table describes the attributes that
are available at the different locations:

Table 13: Query table condition language expressions - available
attributes

Where Expression Available attributes

query
table API

Query filter

Query table
filter

• All attributes defined on the query
table

• If instance based authorization is used:
All attributes defined on the WORK_-
ITEM query tables, prefixed with “WI.”

Examples:
• STATE=STATE_READY, if the query

table contains an attribute STATE and
if a constant STATE_READY is defined
on this attribute

• STATE=STATE_READY AND WI.-
REASON=REASON_POTENTIAL_OWNE
R, if the query table contains an
attribute STATE and if the query table
uses instance based authorization

composite
query
table

Primary query
table filter

• All attributes defined on the primary
query table

Examples:
• STATE=STATE_READY, if the query

 Page 17

table contains an attribute STATE and
if a constant STATE_READY is defined
on this attribute

Authorization
filter

• All attributes defined on the predefined
query table WORK_ITEM, prefixed with
“WI.”

Example:
• WI.REASON=REASON_POTENTIAL_OW

NER

Selection
criterion

• All attributes defined on the related
attached query table

Example:
• LOCALE=’en_US’, if the attached query

table contains an attribute LOCALE,
such as TASK_DESC

Figure 5 shows the various locations of query table condition language
expressions, and includes examples:

LOCALE=‘en_US’NAME=‘xyz’

CUSTOMER=‘IBM’

CUSTOMER=‘IBM’ OR CUSTOMER=‘Other’

STATE=STATE_READYWI.REASON=READER

attached query tables

predefined

DISPCUSTOMERNAMESTATEID DISPCUSTOMERNAMESTATEID

WORK_ITEM view TASK TASK_
CPROP

query table definition (build-time)

query table query (runttime)

TASK_
DESC

primary query tableauthorization

REASONREASON

FilterOptions fo = new FilterOptions();
fo.setQueryCondition(“CUSTOMER=‘IBM’”);

Authorization Filter Primary Query Table Filter

Query Table Filter

Query Filter

Selection Criteria

Figure 5: Query table condition language - expressions at various

locations

2.5.3. Values

Within query table condition language expressions, values are one of the
following options:

• Constants: A constant value, which is defined on the attribute of a
predefined query table. For example, STATE_READY is defined on
attribute STATE of the query table TASK.

 Page 18

• Literals: Any hard coded value.
• Parameters: A parameter is replaced when the query is run with a

specific value.
Constants are available for some attributes of predefined query tables.
For information on constants that are available on attributes of predefined
query tables, see [predefinedViews]. Only constants that define integer
values are exposed with query tables. Also, instead of constants, related
literal values, or parameters can be used. Examples are:

• STATE_READY on the attribute STATE of query table TASK can be
used in a filter to check whether the task is in the ready state.

• REASON_POTENTIAL_OWNER on the attribute REASON of query
table WORK_ITEM can be used in a filter in order to check whether
the user who runs the query against a query table is a potential
owner.

• Query filter “STATE=STATE_READY” is equal to “STATE=2”, if the
query is run on the query table TASK.

Literals can also be used in expressions. A special syntax must be used
for timestamps and for IDs. See section 2.7 for details. Examples are:

• STATE=1
• NAME='theName'
• CREATED > TS ('2008-11-26 T12:00:00').
• TKTID=ID('_TKT:801a011e.9d57c52.ab886df6.1fcc0000')

Parameters in expressions allow for a certain dynamicity of composite
query tables. There are two types of parameters, user parameters and
system parameters:

• User parameters are specified using PARAM (name). This parameter
must be provided when the query is run. It is passed as an instance
of class com.ibm.bpe.api.Parameter into the query table API.

• System parameters are parameters that are provided by the query
table runtime, without being specified when the query is run. There
are two system parameters available, $USER and $LOCALE. $USER,
which is a string, contains the value of the user who runs the query.
$LOCALE, which is a string, contains the value of the locale that is
used when the query is run. If this is not specified using the query
table API, the server’s locale is used. An example for the value of
$LOCALE is ‘en_US’.

It might be useful to specify a parameter in the selection criteria of an
attached query table which selects on a specific locale, such as, if in a
composite query table the primary query table is TASK and an attached
query table is TASK_DESC. Examples are:

• STATE=PARAM(theState)
• LOCALE=$LOCALE
• OWNER=$USER

 Page 19

2.6. Authorization

Two different types of authorization concepts are used when queries are
run against query tables, instance based authorization and role based
authorization.
Instance based authorization provided by Business Process
Choreographer is based on work items. Each work item describes who (an
individual, a group, or everybody) has which rights (reason) on what
(object ID). This information is accessible using the WORK_ITEM query
table if instance based authorization is used. The instance based
authorization flag on query tables is described in detail in section 2.6.2;
details on work items are described in section 2.6.1.

Role based authorization is based on J2EE roles. If role based
authorization is used, callers of the query table API must be in the J2EE
role BPESystemAdministrator. Role based authorization is currently only
available for predefined query tables with template data or for composite
query tables with a primary query table that contains template data.

2.6.1. Work items

The table describes the different types of work items that are considered if
instance based authorization is used:

Table 14: Work item types

Work item
type

Description

everybody Everybody work items allow all users to access a particular
object, such as a task or a process instance. In this case,
the EVERYBODY attribute of the related work item is set to
TRUE.

individual Individual work items are work items that are created for
particular users. The OWNER_ID attribute of the related
work item is set to a particular user in this case. Multiple
work items which differ in the attribute OWNER_ID can exist
for one particular object (such as a task).

group Group work items are work items that are created for users
of a particular group. In this case, the GROUP_NAME
attribute of the related work item is set to a particular
group.

inherited Inherited work items reflect the fact that readers and
administrators of process instances are also allowed to
access the human tasks which belong to these process
instances, including escalations, and so on. Checks for an
inherited work item in task queries is performed with
complex SQL joins at runtime, which impacts on
performance.

Work items are created by the Business Process Choreographer in
different situations. For example, at task creation, work items are created

 Page 20

for the different roles, such as reader, potential owner, and so on, if
related people assignment criteria were specified. For task lists or process
lists, work items that are defined using staff assignment criteria are
usually important. The following table describes the types of work items
that are created, depending on the people assignment criterion that has
been used. Inherited work items do not appear in the Table 15 because
inherited work items reflect a relationship that is not explicitly modeled
during process application development.

Table 15: Work items and staff verbs

Work item type Related people assignment
criterion

everybody Everybody

individual all people assignment criteria
except verbs Nobody1, Everybody,
and Group

group Group

2.6.2. Instance based authorization flag

The instance based authorization flag on query tables indicates whether or
not objects are authorized using instance based authorization before
returning objects in a query table. This is done by verifying if a suitable
work item exists. Thus the instance based authorization flag, together
with the query table API, influence which objects that are returned when a
query is run on a query table. For more information of the query table
API, see section 5.

For predefined query tables with instance data, instance based
authorization is always used. Predefined query tables with template data
use role based authorization, which requires the caller to be in the J2EE
role BPESystemAdministrator. Objects in those query tables do not have
related work items.
The instance based authorization flag on composite query tables can be
set to false if a predefined query table with instance data is the primary
query table. In such cases the security constraints implied by instance
based authorization artifacts are overridden. That is, every authenticated
user can use the respective query table to retrieve data, independent of
whether or not they are authorized for the respective objects. Composite
query tables with a primary query table that contains template data must
not be set to use instance based authorization.
Also, supplemental query tables must not be set to use instance based
authorization because supplemental query tables are not managed by
Business Process Choreographer and therefore Business Process
Choreographer has no authorization information for these table contents.
Figure 6 provides an overview of the available options for the instance
based authorization flag, depending on the kind of query table. Also, it

1 The Nobody people assignment criterion results in a work item that is visible only by
administrators.

 Page 21

outlines the different behaviors together with the query table API and its
authorization options:

(A)
Query result contains

objects with work items
related to the caller.

Query with

AuthorizationOptions

Query with

AdminAuthorization
Options*

(B)
Query result contains

all objects that are
in this query table.

(C)
Query result contains

all objects that are
in this query table. (D)

Query result contains
all objects that are
in this query table.

n/a

Composite
Query Tables

primary query table
with template data

primary query table
with instance data

primary query table
with instance data

Predefined
Query Tables template datainstance data n/a

Supplemental
Query Tables n/an/a business data

Role Based
Authorization

Instance Based
Authorization

NoneAuthorization

*) If the onBehalfUser is set, (A) applies
Figure 6: Instance based authorization flag on query tables

Instance based authorization for objects in the query result using work
items depend on the authorization parameter that is passed to the query
table API and on the setting of the instance based authorization flag of the
query table. For details on the authorization options of the query table
API, see section 5.2.3.

(A) Queries on predefined or composite query tables using the
AuthorizationOptions object return entities that correlate with a
related work item for this particular user. This is also the case if the
AdminAuthorizationOptions object is used and the onBehalfUser is
set. Standard clients which present task or process lists to users
would usually use this combination of query tables and query table
API parameters.

(B) The full content of a query table consists of the entities that have a
related work item, as configured with the instance based
authorization of the query table. Instance based authorization
considers four types of work items: everybody, individual, group,
and inherited. The caller must be in the J2EE role
BPESystemAdministrator. This combination of query tables and
query table API parameters is intended for use in administrative
scenarios where the full list of available tasks or processes must be
shown or searched.

 Page 22

(C) Queries on query tables not using instance based authorization
return the same result if AdminAuthorizationOptions or
AuthorizationOptions is passed into the query table API. This is
available for supplemental query tables and composite query tables
with a primary query table with instance data. There is no check on
work items, therefore all authenticated users see the full content.
Clients that do not want to restrict object visibility by applying the
instance based authorization constraints provided by Business
Process Choreographer can use this combination of query tables
and query table API parameters for task and process list queries.
For other operations, such as claim and complete, users must have
a related work items.

(D) Template data, as contained in predefined query tables with
template data or related composite query tables, can be accessed
only with role based authorization. This requires the caller to be in
the J2EE role BPESystemAdministrator. The query table API can be
used to access template information instead of the standard query
API.

2.6.3. Authorization filter

On composite query tables, an authorization filter can be specified if
instance based authorization is used. This filter restricts the work items
which are used for authorization, based on certain attributes of work
items. For example, the authorization filter “WI.REASON=REASON_
POTENTIAL_OWNER” on a composite query table with the primary query
table TASK restricts the tasks that are returned when a person runs the
query. The result only contains tasks that represent a to-do for that
person, that is, the result is restricted to those tasks the person is
authorized to claim. This filter can also be specified as the query table
filter or as the query filter. Nevertheless, for query performance reasons,
it is a best practice to specify those filters.

2.7. Attribute types

A subset of types that are available in the Java programming language
and databases is used to define the type of an attribute of a query table.
Attribute types are an abstraction of the concrete Java type or database
type. Attribute types are needed when query tables are defined, when
literal values are used in queries, and when values of a query result are
accessed. For supplemental query tables, it is important that a valid
database type to attribute type mapping is used. This section lists the
various attribute types and their specific rules and mappings.

 Page 23

The following table describes the existing attribute types:

Table 16: Attribute type to database type mapping

Attribute
type

Description

ID The ID which is used to identify a human task (TKIID), a
process instance (PIID), or other objects. For example,
IDs are used to claim or complete a particular human
task, which is identified with the specified TKIID.

STRING Task descriptions or query properties can be represented
as a string.

NUMBER Numbers are used for attributes, such as the priority on a
task.

TIMESTAMP Timestamps describe a point in time, such as the time
when a human task is created, or a process instance is
finished.

DECIMAL Decimals can be used as the type for query properties, for
example when defining a query property with a variable of
XSD type double.

BOOLEAN Booleans can have one of two values, true or false. For
example, human tasks provide an attribute, autoClaim,
which identifies whether the task is claimed automatically
if only a single user exists as the potential owner for this
task.

2.7.1. Database type to attribute type mapping

The following table lists the attribute types and their mapping to database
types:

Table 17: Attribute type to database type mapping

Database type Attribute
type

A binary type with 16 bytes. This is the type used for IDs
such as TKIID on TASK of the Business Process
Choreographer tables.

ID

A character based type. The length depends on the
column in the database table that is referenced by the
attribute of the query table.

STRING

An integer database type, such as integer, short, or long. NUMBER

A timestamp database type. TIMESTAMP

A decimal type such as float or double. DECIMAL

A type that is convertible to a boolean value, such as a
number. 1 is interpreted as true and all other numbers as
false.

BOOLEAN

 Page 24

Example:
Consider a table in a DB2 environment, CUSTOM.ADDITIONAL_INFO,
which should be represented in Business Process Choreographer as a
supplemental query table. The related SQL statement for the creation of
the database table would be2:

Table 18: Example of create table statement for DB2

CREATE TABLE CUSTOM.ADDITIONAL_INFO
(
 PIID CHAR(16) FOR BIT DATA,
 INFO VARCHAR(220),
 COUNT INTEGER
);

The following mapping of database column types to query table attribute
types would be used for a supplemental query table for table
CUSTOM.ADDITIONAL_INFO:

Table 19: Database types to attribute types mapping example

Database column and type Query table attribute and type
PIID CHAR(16) FOR BIT DATA PIID (ID)
INFO VARCHAR(220) INFO (STRING)
COUNT INTEGER COUNT (NUMBER)

Supplemental query tables typically refer to existing database tables and
views, such that table or view creation is not necessary.

2.7.2. Attribute type to literal representation mapping

The following table lists the attribute types and their mapping to literal
values. These can be used in expressions of the query table condition
language, in filters of composite query tables, in selection criteria, and in
filters that are passed to the query table API. Placeholders are marked
italic. Note that the attribute types ID and TIMESTAMP use a special
syntax, defined in Table 20, which is also used by the standard query API.

Table 20: Attribute type to literal values mapping

Attribute
type

Syntax and usage as literal value in expressions

ID (‘string representation of an ID’) ID

When developing client applications, IDs are represented
either as a string or as an instance of the interface
com.ibm.bpe.api.OID. The string representation can be
obtained from an instance of the interface
com.ibm.bpe.api.OID using the toString() method, and

2 The create table statement is provided for a better understanding of the example only.
Supplemental query tables typically refer to existing database tables or views.

 Page 25

 must be enclosed in quotes.

‘the string’ STRING

The string must be enclosed in quotes.

number NUMBER

The number as text, and no quotation marks. Constants
are defined for some number attributes on predefined
query tables.

TS (‘YYYY-MM-DDThh:mm:ss’) TIMESTAMP

The timestamp must be specified as defined above, where:
• YYYY is the 4-digit year
• MM is the 2-digit month of the year
• DD is the 2-digit day of the month
• hh is the 2-digit hour of the day (24-hour)
• mm is the 2-digit minutes of the hour
• ss is the 2-digit seconds of the minute

The timestamp is interpreted as defined in the user’s time
zone.

number.fraction DECIMAL

The decimal number as text and no quotation marks; the
.fraction part is optional.

true (ignore case), false (ignore case) BOOLEAN

The boolean value as text.

Examples:

• filterOptions.setQueryCondition(“STATE=2”);
• filterOptions.setQueryCondition(“STATE=STATE_READY”);
• a selection criterion on an attached query table TASK_DESC:

“LOCALE=’en_US’”
• filterOptions.setQueryCondition(

 “PTID=ID(‘_PT:8001011e.1dee8e51.247d6df6.29a60000’)”);

2.7.3. Attribute type to user parameter mapping

The following table lists the attribute types and their mapping to
parameter values that can be used in expressions of the query table
condition language, in filters of composite query tables, in selection
criterions, and in filters passed to the query table API. Note that
placeholders are marked italic.

Table 21: Attribute type to user parameter values mapping

Attribute
type

Usage as parameter value in expressions

ID PARAM (name)
When developing client applications, IDs are represented
either as a string or as an instance of the interface
com.ibm.bpe.api.OID.

 Page 26

As a parameter, both representations are valid. An array
of bytes reflecting a valid OID can also be used (byte[16]).

STRING PARAM(name)
The string representation of the object passed to the query
table API at runtime. Note that the “toString()” method is
used.

NUMBER PARAM(name)
A java.lang.Long, java.lang.Integer, java.lang.Short, or a
java.lang.String representation (as defined in Table 20) of
the number must be passed to the query table API.

TIMESTAMP PARAM(name)
The following representations are valid:

• a java.lang.String representation of the timestamp
as defined in Table 20

• instances of com.ibm.bpe.api.UTCDate
• instances of java.util.Calendar

DECIMAL PARAM(name)
A java.lang.Long, java.lang.Integer, java.lang.Short,
java.lang.Double, java.lang.Float, or a java.lang.String
representation (as defined in Table 20) of the decimal
must be passed to the query table API.

BOOLEAN PARAM(name)
Valid values are:

• a java.lang.String representation (as defined in Table
20) of the boolean

• a java.lang.Short, java.lang.Integer, java.lang.Long
with appropriate values 0 (meaning false) or 1
(meaning true)

• a java.lang.Boolean object

Example:

Table 22: Query example with parameters

…
// this example shows a query against a composite query table
// COMP.TASKS with a parameter "customer"

java.util.List params = new java.util.ArrayList();
list.add(new com.ibm.bpe.api.Parameter("customer", "IBM");
bfm.queryEntities("COMP.TASKS", null, null, params);
…

2.7.4. Attribute type to Java object type mapping

The following table lists the attribute types and their mapping to Java
object types in query result sets.

 Page 27

Table 23: Attribute type to Java object type mapping

Attribute
type

Related Java object type

ID com.ibm.bpe.api.OID

STRING java.lang.String

NUMBER java.lang.Long

TIMESTAMP java.util.Calendar

DECIMAL java.lang.Double

BOOLEAN java.lang.Boolean

Example:

Table 24: Query example with attribute type conversion

…
// the follwing example shows a query against a composite query table
// COMP.TA; attribute "STATE" is of attribute type NUMBER
…
// run the query
EntityResultSet rs = bfm.queryEntities("COMP.TA",null,null,params);

// get the entities and iterate over it
List entities = rs.getEntities();
for (int i = 0 ; i < entities.size(); i++) {

 // work on a particular entity
 Entity en = (Entity) entities.get(i);

 // note that the following code could be written
 // more generalized using the attribute info objects
 // contained in ei.getAttributeInfo()

 // get attribute STATE
 Long state = (Long) en.getAttributeValue("STATE");
 …
}
…

2.7.5. Attribute type compatibility

The following table lists the attribute types and their compatible attribute
types which can be used in filters and selection criterions. Compatible
attribute types are marked with ‘X’.

Table 25: Attribute type compatibility

Attribute type ID STRING NUMBER TIMESTAMP DECIMAL BOOLEAN

ID X

STRING X

NUMBER X X

TIMESTAMP X

DECIMAL X X

BOOLEAN X

 Page 28

3. Query Table Builder

The Query Table Builder is provided as an Eclipse plug-in and it supports
the visual development of supplemental and composite query tables. Use
the Query Table Builder to:

• Develop composite and supplemental query tables
• Import and export Query Table definitions in XML format

On WebSphere Process Server installations that are local to the Query
Table Builder, the following functionality is provided:

• Test query tables
• Deploy, update, and undeploy query tables

The following figure shows the Query Table Builder tool:

Figure 7: The Query Table Builder tool

See [QueryTableBuilder] for more details.

 Page 29

4. Administration

Query tables are administered using the wsadmin script,
manageQueryTable.py. Unlike predefined query tables which are available
out-of-the-box, composite and supplemental query tables must be
deployed on WebSphere Process Server before being used with the query
table API.
When query tables are deployed, the query table definition is stored in the
Business Process Choreographer database. Additional database artifacts
are not created in WebSphere Process Server, version 6.2. Any changes to
composite and supplemental query tables, including deployment, update,
and undeployment, are visible to the query table API without restarting
the server.
For supplemental query tables, the user, or administrator, is
responsible for providing the related database table or view.
For composite query tables, the information is composed of the existing
database tables or views that relate to the predefined or supplemental
query tables. Data is not duplicated in WebSphere Process Server, version
6.2.
Supplemental query tables which are referenced by deployed composite
query tables must not be updated or undeployed.
For more details on query table administration, see [QTAdministration].

 Page 30

5. Queries

Queries are run on query tables using the query table API. With Business
Process Choreographer, version 6.2, the query table API is available on
the Business Flow Manager EJB only. The following methods are provided:

Table 26: Methods for queries run on query tables

Purpose Methods

Query contents • queryEntities (…)
• queryRows (…)

Both methods return contents of the query
table. The method queryEntities returns
content based on entities and queryRows
returns content based on rows.

Query the number of
objects

• queryEntityCount (…)
• queryRowCount (…)

Both methods return the number of objects in
the query table, while the actual number can
depend on whether the entity based or the
row based approach is taken.

The two types of API methods, entity based methods and row based
methods, can be used to retrieve content from query tables. Also, all four
methods of the query table API take the same parameters as input.

5.1. Entity based and row based query table API

Composite query tables, which are suggested to be used for task and
process list queries, are composed of one primary query table and zero or
more attached query tables. A specific instance that is contained in any
predefined query table only exists once within a Business Process
Choreographer environment. Examples of instances are human tasks and
business processes. Those instances are uniquely identified using an ID or
a set of IDs3, which are the TKIID for instances of human tasks and the
PIID for process instances. Objects contained in composite query tables
are uniquely identified by the unique ID of the objects contained in the
primary query table. The attached query tables may not lead to duplicates
– this is enforced by the one-to-one or one-to-zero relationship between
the primary and attached query tables.
A client application programmer for user interfaces is typically interested
in unique instances without duplicates, for example, a human task is to be
displayed once only on the user interface. Unique instances are returned

3 Business processes, human tasks, escalations, and activities are uniquely identified
through one ID, respectively PIIDs, TKIIDs, EIIDs, and AIIDs. Additional information is
often identified with a set of IDs or attributes. For example, a task description is identified
using TKIID and LOCALE.

 Page 31

by the entity based query table API. Also, in object oriented programming,
dealing with entities, as returned by the entity based query table API, can
be more natural than dealing with rows, as returned by the row based
query table API.
Row based queries may return duplicate rows of the primary query table,
if instance based authorization is used:

• Information from the WORK_ITEM query table is retrieved with the
query. For example, if WI.REASON is retrieved in addition to the
attributes that are defined on the query table, multiple rows qualify
because there can be multiple reasons why a user can access the
entity, for example, a task or a process instance.

• Instance based authorization is used, and distinct has not been
specified. Even though work item information is not retrieved,
multiple rows may be returned if instance based authorization is
used.

If the entity based query table API is used, the two cases above are taken
into account. The consequences are as follows:

• Entity based queries are always executed with the SQL distinct
operator.

• Entity based queries return a result which allows array values for
work item related information.

The two different types of query result sets are described in section 5.3.

5.2. Query table API parameters

The following input parameters are passed into the methods of the query
table API:

Table 27: Parameters of the query table API

Parameter May be null
(optional)

Type and brief description

java.lang.String query table
name

no

The unique name of the query table.

com.ibm.bpe.api.FilterOptions filter options yes

Options which can be used to configure the
query. For example, a query threshold is set
on this parameter.

com.ibm.bpe.api.AuthorizationOptions or
com.ibm.bpe.api.AdminAuthorizationOptions

authorization
options

yes

Authorization can be further constrained,
and administrator queries are configured
with this parameter.

a java.util.List of
com.ibm.bpe.api.Parameter

parameters yes

This parameter is used to pass user
parameters which have been specified in a
filter or selection criterion on a composite
query table.

 Page 32

If composite query tables are used, it is expected that most of the
optional parameters do not need to be specified by the client application
developer. This is because composite query tables can be customized
when the build is done, similar to the customization options that are
available using the query table API when the query is run.

5.2.1. Query table name

The query table name is the name of the query table on which the query
is run.

• For predefined query tables, this is the name of the predefined
query table.

• For composite and supplemental query tables, this is the name of
the respective query table that is specified while modeling the query
table. The name of a composite or supplemental query table follows
the prefix.name naming convention, and prefix may not be ‘IBM’.

Both the query table name and prefix must be in uppercase letters.

5.2.2. Filter options

An instance of the class com.ibm.bpe.api.FilterOptions can be passed
to the query table API. The filter options allow a configuration of the query
using:

• a threshold and offset (skipCount)
• sort attributes (similar to the order by clause in an SQL query)
• an additional query filter
• the set of attributes returned, including work item information
• other

While the result set that can be obtained from a query table is specified by
the definition of the respective query table, there are situations where
specifying additional options when the query is run are required or
advantageous, such as if system parameters are used. The following table
describes the options that can be specified as filter options using the
com.ibm.bpe.api.FilterOptions object:

Table 28: Query table API parameters: Filter options

Option Type Description

selected
attributes

java.lang.
String

• A comma separated list of attributes of the
query table that must be returned in the
result set.

• If instance based authorization is used,
work item information can be retrieved by
specifying attributes of the WORK_ITEM
query table, prefixed with ‘WI.’.

• If null is specified, all attributes of the query
table are returned, without work item
information.

query
filter

java.lang.
String

The query filter which is defined using the query
table condition language. For details see section
 2.5, section 0, and section 2.5.2.

 Page 33

sort
attributes

java.lang.
String

A comma separated list of attributes of the query
table, optionally followed by ASC or DESC, similar
to the SQL order by clause: <sortAttributes> ::=
attribute [ASC|DESC] [, <sortAttributes>]4.
If ASC or DESC is not specified, ASC is assumed.
ASC means ascending, DESC means descending.
Sorting occurs in the sequence of the sort
attributes. This example sorts tasks in query table
TASK in ascending order by state, and within the
groups of the same STATE by NAME in ascending
order: “STATE DESC, NAME ASC”.

threshold java.lang.
Integer

Defines the maximum:
• number of rows returned if queryRows is

used.
• number of entities returned if queryEntities

is used. The actual number of available
entities in the respective query table may
exceed threshold even if the entity result set
does not contain a number of threshold
entities. This is due to technical reasons if
work item information is selected.

• count returned if queryRows or
queryEntities is used.

The default is null which means that no threshold
is set.

skip
count

java.lang.
Integer

Defines the number of rows (row based queries)
or the number of entities (entity based queries)
that are skipped. As with the threshold
parameter, skipCount may not be accurate for
entity based queries.
Skip count is used to allow paging over a large
result set. The default is null which means that no
skipCount is set.

time
zone

java.util.
TimeZone

The time zone that is used when converting
timestamps. If not specified (null), the time zone
on the server is used.

locale java.util.
Locale

The locale which can be specified when the query
is run in order to override the system parameter
$LOCALE.
The default is null, which means that the locale on
the server is used.

distinct
rows

java.lang.
Boolean

Used for row based queries only. If set to true,
row based queries return distinct rows. This does
not imply that unique “entities” are returned due
to the possible multiplicity of work item
information.

4 This is referred to as the query table sort language in some instances.

 Page 34

5.2.3. Authorization options

An instance of the class com.ibm.bpe.api.AuthorizationOptions can be
passed to the query table API if the query is run on a predefined query
table that contains instance data. It can also be passed if the query is run
on a composite query table with a primary query table that contains
instance data and instance based authorization is configured to be used. If
the query is run on a predefined query table with template data or a
composite query table with a primary query table that contains template
data, an EngineNotAuthorizedException is thrown. In all other cases, the
authorization options passed to the query table API are ignored.
Instances of the class com.ibm.bpe.api.AuthorizationOptions allow the
specification of the type of work items used to identify eligible instances
that are returned by the query. Refer to section 2.6 for details on types of
work items.
Composite query tables can restrict the types of work items that are taken
into account when identifying objects (or entities) that are contained in it.
For example, if the authorization options that are passed to the query
table API are configured to use everybody work items, this is only taken
into account if everybody work items are defined for use on the definition
of the composite query table. As a simple rule, a work item type that is
not specified to be considered on the query table definition cannot be
overwritten to be considered by the query table API, but a work item type
that is specified to be considered on the query table definition can be
overwritten not to be used. Also, the property “instance based
authorization” on a composite or predefined query table cannot be
overwritten by the query table API.
Depending on the kind of query table being queried, different
authorization option defaults apply if the authorization object is not
specified or if the related attributes (everybody, individuals, groups, or
inherited) are set to null, which is the default.

Table 29: Query table API parameters: Authorization option defaults for
instance based authorization

Work item types
Query
table kinds

everybody individual group inherited

predefined with instance
data

TRUE TRUE TRUE FALSE

predefined with
template data

n/a n/a n/a n/a

composite with a
primary query table with
instance data

TRUE TRUE TRUE TRUE

composite with a
primary query table with
template data

n/a n/a n/a n/a

supplemental n/a n/a n/a n/a

 Page 35

If n/a is specified in Table 29 it means that instance based authorization is
not used and, therefore, any setting on the authorization object with
respect to work items is ignored.
If TRUE is specified, the resulting query will only consider the specific
work item type if the query table is defined to use this type of work item.
This is true for all predefined query tables with instance data, but might
not be true for a composite query table.
An instance of the class com.ibm.bpe.api.AdminAuthorizationOptions
needs to be specified instead of an instance of the class
com.ibm.bpe.api.AuthorizationOptions if:

1) A query is run on a predefined query table with template data or on
a composite query table that has a primary query table with
template data.

2) A query is run on a query table with instance data or on a
composite query table with a primary query table that contains
instance data. It should return the content of that query table,
regardless of restrictions due to authorization for a particular user.
This behavior is equivalent to using the queryAll(…) method on the
standard query API.

3) A query should be executed on behalf of another user.
The following table describes how the various behaviors above are
accomplished:

Table 30: Query table API parameters: AdminAuthorizationOptions

Situation Description

onBehalfUser
set to null

1) If the query is run on a predefined query table with
template data, or on a composite query table that has a
primary query table with template data, all contents of
that query table are returned.

2) If the query is run on a predefined query table which
uses instance based authorization, the particular
objects contained in the query table are not checked for
work items for a particular user. All objects that are
contained in the query table are returned. Instance
based authorization is used for all predefined query
tables with instance data.

onBehalfUser
set to a
particular
user

3) The query is run under the authority of the specified
user, and the objects in the query table are checked
against the work items for this user.

For more details on authorization with query tables, see section 2.6.

 Page 36

5.2.4. Parameters

In query table definitions, parameters can be specified in filters on the
primary query table, on the authorization, and on the query table, and in
selection criteria on attached query tables.
The system parameters, $USER and $LOCALE, are replaced at runtime,
and are not required to be passed into the query table API. The $LOCALE
parameter can be overridden by setting the locale in the filter options.
Refer to section 2.5.3 for details.

User parameters must be passed into the query table API when the query
is run. This is accomplished by passing a list of instances of the class
com.ibm.bpe.api.Parameter. The following properties must be specified
on a parameter object:

Table 31: Query table API parameters: User parameters

Property Description

Name The name of the parameter as used in the query table
definition. The name is case sensitive.

Value The value of the parameter. See section 2.7 for valid object
types.

5.3. Query results

The result of a queryEntityCount(…) or queryRowCount(…) query is a
number. Results returned by the queryEntities(…) and the queryRows(…)
method are more complex and described in sections 5.3.1 and 5.3.2.

5.3.1. EntityResultSet

An instance of the class com.ibm.bpe.api.EntityResultSet is returned by
the method queryEntities(…). An entity result set has the following
properties:

Table 32: Query table API entity result set: Entity result set properties

Property Description

queryTableName Name of the query table on which the query was run.

entityTypeName • If the query was run on a composite query table,
this is the name of the primary query table.

• If the query was run on a predefined query table or
on a supplemental query table, this is the name of
the query table, that is, the same value as property
queryTableName.

entityInfo This property contains the meta information of the
entities that are contained in the entity result set. A
java.util.List list of com.ibm.bpe.api.AttributeInfo
objects can be retrieved on this object. This list
contains the attribute names and attribute types of the
information contained in the entities of this result set.

entities A java.util.List list of entity objects.

 Page 37

Instances of the class com.ibm.bpe.api.Entity contain the information that
is retrieved from the query table query. An entity represents a uniquely
identifiable object such as a task, a process instance, an activity, or an
escalation. The following properties are available for entities:

Table 33: Query table API entity result set: Entity properties

Property Description

entityInfo The EntityInfo object which is also
contained in the entity result set (see
Table 32).

attributeValue (attributeName) The value of the specified attribute
that has been retrieved for this entity.
Type conversion is described in section
 2.7.4. The type is contained in the
related AttributeInfo object of this
attribute.

attributeValuesOfArray
(attributeName)

An array of values. Use this property if
the attribute info property array is set
to true which is the case only if the
attribute refers to work item
information.

Example:

Table 34: Example of the entity based query table API

…
// the follwing example shows a query against
// predefined query table TASK, using the entity based API

…
// run the query
EntityResultSet rs = bfm.queryEntities("TASK", null, null, null);

// get the entitie's meta information
EntityInfo ei = rs.getEntityInfo();
List atts = ei.getAttributeInfo();

// get the entities and iterate over it
Iterator entitiesIter = rs.getEntities().iterator();
while (entitiesIter.hasNext()) {

 // work on a particular entity
 Entity en = (Entity) entitiesIter.next();

 for (int i = 0; i < atts.size(); i++) {
 AttributeInfo ai = (AttributeInfo) atts.get(i);
 Serializable value = en.getAttributeValue(ai.getName()) ;

 // process…
 }
}
…

 Page 38

5.3.2. RowResultSet

An instance of the class com.ibm.bpe.api.RowResultSet is returned by the
method queryRows(…). This type of result set is similar to a JDBC result
set. A row result set has the following properties:

Table 35: Query table API row result set: Row result set properties

Property /
Method

Description

queryTableName Name of the query table on which the query was run.

primaryQuery-
TableName

• If the query was run on a composite query table,
this is the name of the primary query table.

• If the query was run on a predefined query table or
on a supplemental query table, this is the name of
the query table, that is, the same value as property
queryTableName.

attributeInfo This property contains a list of the
com.ibm.bpe.api.AttributeInfo objects that describe the
meta information for this result set. AttributeInfo
objects contain the attribute names and attribute types
of the information.

attributeValue The value of the specified attribute that was retrieved
for this row. Type conversion is described in section
 2.7.4. The type is contained in the related AttributeInfo
object of this attribute.

next, first, last,
previous

The row result set is navigated using these methods.
Compare its usage to iterators, enumerations, or JDBC
result sets.

Example:

Table 36: Example of the row based query table API

…
// the follwing example shows a query against
// predefined query table TASK, using the entity based API
…
// run the query
RowResultSet rs = bfm.queryRows("TASK", null, null, null);

// get the entitie's meta information
List atts = rs.getAttributeInfo();

// get the entities and iterate over it
while (rs.next()) {
 // work on a particular row
 for (int i = 0; i < atts.size(); i++) {
 AttributeInfo ai = (AttributeInfo) atts.get(i);
 Serializable value = rs.getAttributeValue(ai.getName()) ;

 // process…
 }
}
…

 Page 39

6. Performance

Query tables introduce a clean programming model for developing client
applications that retrieve lists of human tasks and business processes.
Query tables have a positive effect on query performance. Sections 6.1
and 6.2 describe options for query tables, as well as query table API
parameters that impact on query performance. Section 6.3 describes
other factors that impact on performance.

6.1. Composite query table definition

The following table provides information about the query performance
impact of options that are defined on composite query tables. It also
provides information other topics related to composite query table
definitions. The impact given in column Performance Impact is an average
performance impact, actual impact observations may vary.

Table 37: Query performance impact of composite query table options

Object
or topic

Performance
impact

Description

query table
filter

negative Filters on query tables are the filters with
the highest negative impact on query
performance. These filters typically cannot
use any defined indexes in the database.

primary
query table
filter

positive A filter on the primary query table
provides high performance filtering at a
very early stage of the query result set
calculation. It is suggested to restrict the
contents of the query table using a
primary query table filter.

authorization
filter

positive A filter on authorization can improve the
performance of the query, such as how
the primary query table filter improves it.
If possible, an authorization filter should
be applied. For example, everybody work
items are often not used by applications
and therefore can be excluded.

selection
criteria

none Some primary query table to attached
query table relationships require the
definition of a selection criterion in order
to meet the one-to-one or one-to-zero
relationship. A selection criterion typically
has low performance impact because it is
evaluated for a small numbers of rows
only.

 Page 40

parameters none Currently, using parameters in query
tables has no negative performance
impact. Nevertheless, parameters should
be used only if needed.

instance
based
authorization

negative If instance based authorization is used,
each object in the query table must be
checked against the existence of a work
item. Work items are represented as
entries in the WORK_ITEM query table.
This check has a performance impact;
most applications use instance based
authorization, however.

authorization:
• everybody
• individuals
• groups
• inherited

negative Each type of work item that is specified
for use in the query table has a
performance impact. Applications with
high volume queries should only use
individual and group work items, or only
one of those. Inherited work items are
usually not required, in particular when
defining task lists that return human tasks
representing to-dos. They should be used
only when it is clear that they are needed,
for example, to return lists of tasks that
belong to a business process where a
person might have read access based on
the authorization for the enclosing
business process.

contained
attributes

none at this
point in time

Currently, the number of attributes
contained in a query table has no impact
on performance. Nevertheless, only those
attributes that are needed should be part
of a query table.

6.2. Query table API

The following table provides information about the query performance
impact of options that are specified on the query table API. Note that the
impact given in column Performance Impact is an average performance
impact, actual impact observations may vary.

 Page 41

Table 38: Query performance impact of query table API options

Option Performance
impact

Description

selected
attributes

negative (less
is better)

The number of attributes that are selected
when a query is run on a query table impacts
on the number that need to be processed both
by the database and by the Business Process
Choreographer query table runtime. Also, for
composite query tables, information from
attached query tables need be retrieved only if
those are either specified by the selected
attributes or referenced by the query table
filter or by the query filter.

query
filter

negative If specified, the query filter currently has the
same performance impact as the query table
filter (see Table 37). However, it is a good
practice if filters are specified on query tables
rather than passed into the query table API.

sort
attributes

negative The sorting of query result sets is an
expensive operation, and database
optimizations are restricted if sorting is used.
If not needed, sorting should be avoided. Most
applications require sorting, however.

threshold positive The specification of a threshold can greatly
improve the performance of queries. It is a
best practice to always specify a threshold.

skip
count

negative Skipping a particular number of objects in the
query result set is expensive and should be
done only if required, for example when
paging over a query result.

time
zone

none The time zone setting has no performance
impact.

locale none The locale setting has no performance impact.

distinct
rows

negative Using distinct in queries has some
performance impact but might be necessary in
order to retrieve non-duplicate rows. This
option impacts only on row based queries and
is ignored otherwise.

count
queries

positive If only the total number of entities or the
number of rows for a particular query is
needed, that is, the contents are not needed
for all entries of the query table, the method
queryEntityCount or queryRowCount should
be used. The Business Process Choreographer
runtime can apply optimizations that are valid
only for count queries.

 Page 42

6.3. Other

In addition to the options and topics that are described in section 6.1 and
 6.2, other factors that influence performance are described in Table 39:

Table 39: Query table performance: Miscellaneous topics

Topic Description

Number of
query tables
on the
system

The number of query tables which are deployed on a
Business Process Choreographer container does not
influence the performance of query table queries. Also,
currently, it does not influence the navigation of business
process instances, nor does it have impact on claim or
complete operations on human tasks.
Due to maintainability, keep the number of query tables at
a reasonable level. Typically, one query table represents
one task list or process list which is displayed on the user
interface.

Database
tuning

Although optimized SQL is used to access the contents of a
query table, database tuning best practices need still to be
implemented on a Business Process Choreographer
database:
• Database memory should be set to a maximum, taking

into account other processes that are running on the
database server, as well as hardware constraints.

• Statistics on the database must be up-to-date, and
should be updated on a regular basis. Typically, those
procedures are already implemented in large topologies.
For example, collect database statistics for the optimizer
once per week in order to reflect changes of the data in
the database.

• Database systems provide tools to re-organize (or
defragment) the data containers. The physical layout of
the data in a database can also influence query
performance and access paths of queries.

• Optimal indexes are the key for good query
performance. Business Process Choreographer comes
with predefined indexes which are optimized for both
process navigation and query performance of typical
scenarios. In customized environments, additional
indexes may be necessary in order to support high
volume task or process list queries. Use tools provided
by the database in order to support the queries which
are run on a query table.

 Page 43

7. The query table API and the standard
query API

This section compares the main differences between the standard query
API, which is available with WebSphere Process Server, version 6 and the
query table API which is available with WebSphere Process Server, version
6.2. Technical terms related to the standard query API are in italic.
Technical terms used in the standard query API may also be used in the
query table API, such as the term work items.

Table 40: The query table API and the standard query API

Difference Description

EJB API
methods
and signatures

A number of EJB methods on the Business Flow
Manager and/or Human Task Manager EJB interface are
available in order to query data that is contained in the
Business Process Choreographer database:
• standard query API (incomplete list)

o query(…)

o queryAll(…)

o queryProcessTemplates()

o …

• query table API (complete list)

o queryEntities(…)

o queryEntityCount(…)

o queryRows(…)

o queryRowCount(…)
Currently, query tables can be accessed only using the
query table API which is available on the Business Flow
Manager EJB interface. All other methods use the
predefined database views which are not query tables.
The query table counterparts are called predefined
database views.

protocols The standard query API is available on additional
interfaces, such as the Web services interface and the
REST interface of Business Process Choreographer. The
query table API is currently only available on the EJB
interface.

query table
name

The query table API allows queries to be run on one
specific query table, which is identified by the query
table name. The standard query API provides similar
functionality using the select clause.

select clause
and
selected
attributes

The select clause in the standard query API allows the
specification of the attributes or columns that the query
should return. Those attributes are specified fully
qualified using view.name, for example, TASK.STATE.

 Page 44

The selected attributes that are specified in the filter
options of the query table API also specify the attributes
that the query should return. In contrast to the
standard query API, the selected attributes of the query
table API are not specified fully qualified because the
query is run on one query table of which attributes are
uniquely identifiable by the names defined for them.

where clause
and
filters

The where clause which is passed to the standard query
API defines a filter which is applied to the query. The
same is true for the query filter (property
queryCondition on the query table API) on the query
table API.

where clause
and
selection criteria

In the standard query API, a concept of selection
criteria does not exist. Nevertheless, it can be
compared to the part of the where clause that defines,
for example, the name or locale of QUERY_PROPERTY,
or TASK_CPROP, or TASK_DESC that must be added to
the result. For example, a where clause of
“QUERY_PROPERTY.NAME=’xyz’” would relate to a
selection criterion of “NAME=’xyz’”.

work items and
authorization

In order to provide a personalized view on the data in
the Business Process Choreographer database, work
items are used. Work items are accessible using the
WORK_ITEM view or the WORK_ITEM query table,
respectively.
If the standard query API is used, all four types of work
items are considered: everybody, individual, groups,
and inherited work items, if applicable. The
configuration of the authorization is achieved by a
customized where clause, such as
“WORK_ITEM.EVERYBODY=0”, for the exclusion of
everybody work items.
If the query table API is used, you can customize the
use of work items on the query table definition when
the query table is developed and on the query table
API, using the AuthorizationOptions or
AdminAuthorizationOptions object.

parameters The standard query API does not have a concept of
parameters that can be set on the query API.
A query table definition allows the use of parameters
that must be set when the query is executed.
• Composite query tables allow parameters in filters

and selection criteria.

• Predefined query tables do not contain parameters.

• Supplemental query tables do not allow the
specification of parameters.

stored queries
and query

Within the standard query API, stored queries can be
used to predefine a set of options that is passed to the
query API under a particular name, which is the name

 Page 45

tables of the stored query. Stored queries are then used to run
a query that is based on those options. Stored queries
allow the use of parameters, which are passed to the
standard query API at runtime.
Query tables are highly customizable and also can be
defined to use parameters.
The difference between a stored query and a query
table is that stored queries are defined for one
particular query, while a query table is defined for a
particular set of queries. For example, the query table
definition does not allow the specification of an order by
clause because this information is typically available
only when the query is run.

materialized
views

Business Process Choreographer materialized views are
available with WebSphere Process Server, version
6.0.2.1 for DB2 and version 6.0.2.2 for Oracle.
Materialized views provide a query performance
improvement using database technologies. Materialized
views are currently only available for the standard
query API.

custom tables Custom tables have been introduced with WebSphere
Process Server, version 6.0.2.4. Custom tables are used
to include data external to the Business Process
Choreographer database schema into queries using the
standard query API.
In WebSphere Process Server, version 6.2, the query
table API offers the same functionality with
supplemental query tables as the replacement for
custom tables on the standard query API.

queryAll and
Admin
Authorization
Options

The standard query API offers a queryAll(…) method
which can be used by users that are in the J2EE role
BPESystemAdministrator. On the standard query API, if
the queryAll(…) method is used instead of the query(…)
method, the query result contains all objects without
being restricted by work items for a particular user,
group, or everybody.
In the query table API, the queryAll functionality is
provided by the AdminAuthorizationOptions object,
which can be passed to the query table API instead of
the AuthorizationOptions object.

 Page 46

Related References
[BPCSamples]
 Business Process Choreographer Samples

http://publib.boulder.ibm.com/bpcsamp/index.html
[InfoCenter]
 WebSphere Process Server, version 6.2, information center

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx/
index.jsp

[predefinedViews]
 WebSphere Process Server, version 6.2, information center –

Database Views for Business Process Choreographer
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx/
topic/com.ibm.websphere.bpc.620.doc/doc/bpc/
r6bpc_dbviews.html

[QTAdministration]
 WebSphere Process Server, version 6.2, information center –

Administering query tables
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx/
topic/com.ibm.websphere.bpc.620.doc/doc/bpc/
t4querytables_admin.htm

[QueryTableBuilder]
 The Query Table Builder tool is available as an Eclipse plugin and

can be downloaded on the WebSphere® Business Process
Management SupportPacs site. Look for PA71 WebSphere Process
Server - Query Table Builder.
http://www-01.ibm.com/support/
docview.wss?rs=2308&uid=swg27009734

[BPCProgModel]
 WebSphere Process Server V6.1 Business Process Choreographer

Programming Model
 http://www-01.ibm.com/support/

docview.wss?uid=swg27012602

 Page 47

Tables and Figures
Tables
Table 1: Query table development steps ..3
Table 2: Properties of query tables..6
Table 3: Predefined query tables containing instance data......................7
Table 4: Predefined query tables containing template data8
Table 5: Properties on supplemental query tables8
Table 6: Valid contents of a composite query table.............................. 12
Table 7: Invalid contents of a composite query table: TASK as primary

and TASK_DESC as attached query table............................. 12
Table 8: Query table condition language: expressions.......................... 14
Table 9: Query table condition language: binary operators................... 15
Table 10: Query table condition language: unary operators.................. 15
Table 11: Query table condition language: list operators...................... 15
Table 12: Query table condition language: lists................................... 16
Table 13: Query table condition language expressions - available

attributes .. 16
Table 14: Work item types ... 19
Table 15: Work items and staff verbs .. 20
Table 16: Attribute type to database type mapping 23
Table 17: Attribute type to database type mapping 23
Table 18: Example of create table statement for DB2 24
Table 19: Database types to attribute types mapping example 24
Table 20: Attribute type to literal values mapping 24
Table 21: Attribute type to user parameter values mapping 25
Table 22: Query example with parameters ... 26
Table 23: Attribute type to Java object type mapping 27
Table 24: Query example with attribute type conversion...................... 27
Table 25: Attribute type compatibility .. 27
Table 26: Methods for queries run on query tables 30
Table 27: Parameters of the query table API 31
Table 28: Query table API parameters: Filter options........................... 32
Table 29: Query table API parameters: Authorization option defaults for

instance based authorization.. 34
Table 30: Query table API parameters: AdminAuthorizationOptions....... 35
Table 31: Query table API parameters: User parameters...................... 36
Table 32: Query table API entity result set: Entity result set properties .36
Table 33: Query table API entity result set: Entity properties................ 37
Table 34: Example of the entity based query table API 37

 Page 48

Table 35: Query table API row result set: Row result set properties....... 38
Table 36: Example of the row based query table API 38
Table 37: Query performance impact of composite query table options.. 39
Table 38: Query performance impact of query table API options 41
Table 39: Query table performance: Miscellaneous topics..................... 42
Table 40: The query table API and the standard query API................... 43

Figures
Figure 1: Query table kinds ..5
Figure 2: Query table contents overview.. 10
Figure 3: Sample composite query table with selection criteria 11
Figure 4: Filters in composite query tables ... 13
Figure 5: Query table condition language - expressions at various

locations ... 17
Figure 6: Instance based authorization flag on query tables 21
Figure 7: The Query Table Builder tool... 28

