
WebSphere  Event Broker

Message Flows  

Version 6 Release  0 

   

���





WebSphere  Event Broker

Message Flows  

Version 6 Release  0 

   

���



Note 

Before  using this information  and the product it supports, read the information  in the Notices  appendix.

Fourth  Edition  (July  2006)  

This  edition  applies  to IBM® WebSphere  Event  Broker  Version  6.0 and  to all subsequent  releases  and  modifications  

until  otherwise  indicated  in new  editions.  

© Copyright  International  Business  Machines  Corporation  2000,  2006.  All rights  reserved.  

US  Government  Users  Restricted  Rights  – Use,  duplication  or disclosure  restricted  by GSA  ADP  Schedule  Contract  

with  IBM  Corp.

 



Contents  

About this topic collection . . . . . . . v 

Part 1. Developing message flows  . . 1 

Developing message flows  . . . . . . 3  

Message  flows  overview   . . . . . . . . . . 4  

Designing  a message  flow   . . . . . . . . . 13 

Managing  message  flows  . . . . . . . . . . 34  

Defining  message  flow  content   . . . . . . . . 45 

Defining  a promoted  property   . . . . . . . . 56  

Collecting  message  flow  accounting  and  statistics  

data   . . . . . . . . . . . . . . . . . 67 

Part 2. Deploying  . . . . . . . . . 73 

Deploying  . . . . . . . . . . . . . 75 

Deployment  overview  . . . . . . . . . . . 75 

Deploying  a message  flow  application   . . . . . 84  

Deploying  a broker  configuration   . . . . . . . 90  

Deploying  a publish/subscribe  topology   . . . . 91  

Deploying  a publish/subscribe  topics  hierarchy   . . 93 

Checking  the  results  of deployment   . . . . . . 95  

Canceling  a deployment  that  is in progress  . . . . 97  

Renaming  objects  that  are  deployed  to execution  

groups   . . . . . . . . . . . . . . . . 99 

Removing  a deployed  object  from  an execution  

group   . . . . . . . . . . . . . . . . 99 

Part 3. Exploiting user-defined 

extensions  . . . . . . . . . . . . 101 

User-defined nodes . . . . . . . . . 103 

Installing a user-defined node on a 

broker domain  . . . . . . . . . . . 105 

Deleting a user-defined node  . . . . 107 

Part 4. Reference  . . . . . . . . . 109 

Message flows  . . . . . . . . . . . 111  

Message  flow  preferences   . . . . . . . . . 111 

Description  properties  for a message  flow   . . . . 111 

Built-in  nodes   . . . . . . . . . . . . . 114 

User-defined  nodes   . . . . . . . . . . . 170 

Supported  code  pages   . . . . . . . . . . 171 

Data  integrity  within  message  flows  . . . . . . 199  

Configurable  message  flow  properties   . . . . . 199  

Message  flow  porting  considerations   . . . . . 200 

Message  flow  accounting  and  statistics  data   . . . 201 

Part 5. Appendixes  . . . . . . . . 219 

Appendix. Notices  . . . . . . . . . 221 

Trademarks   . . . . . . . . . . . . . . 223 

Index  . . . . . . . . . . . . . . . 225

 

© Copyright  IBM Corp. 2000, 2006 iii



iv Message  Flows



About  this  topic  collection  

This  PDF  has  been  created  from  the  WebSphere  Event  Broker  Version  6.0  (Fix  Pack  

2 update,  July  2006)  information  center  topics.  Always  refer  to  the  WebSphere  

Event  Broker  online  information  center  to  access  the  most  current  information.  The  

information  center  is  periodically  updated  on  the  document  update  site  and  this  

PDF  and  others  that  you  can  download  from  that  Web site  might  not  contain  the  

most  current  information.  

The  topic  content  included  in  the  PDF  does  not  include  the  ″Related  Links″ 

sections  provided  in  the  online  topics.  Links  within  the  topic  content  itself  are  

included,  but  are  active  only  if they  link  to  another  topic  in  the  same  PDF  

collection.  Links  to  topics  outside  this  topic  collection  are  also  shown,  but  these  

attempt  to  link  to  a PDF  that  is called  after  the  topic  identifier  (for  example,  

ac12340_.pdf)  and  therefore  fail.  Use  the  online  information  to navigate  freely  

between  topics.  

Feedback: do  not  provide  feedback  on  this  PDF. Refer  to  the  online  information  to  

ensure  that  you  have  access  to  the  most  current  information,  and  use  the  Feedback  

link  that  appears  at the  end  of  each  topic  to  report  any  errors  or  suggestions  for  

improvement.  Using  the  Feedback  link  provides  precise  information  about  the  

location  of  your  comment.  

The  content  of  these  topics  is  created  for  viewing  online;  you  might  find  that  the  

formatting  and  presentation  of  some  figures,  tables,  examples,  and  so  on  are  not  

optimized  for  the  printed  page.  Text highlighting  might  also  have  a different  

appearance.  

 

© Copyright  IBM Corp. 2000, 2006 v

ftp://ftp.software.ibm.com/software/integration/wbibrokers/docs


vi Message  Flows



Part  1. Developing  message  flows  

Developing  message  flows   . . . . . . . . . 3 

Message  flows  overview   . . . . . . . . . . 4  

Message  flow  projects   . . . . . . . . . . 4 

Message  flow  nodes   . . . . . . . . . . . 5 

Message  flow  version  and  keywords   . . . . . 6 

Message  flow  connections   . . . . . . . . . 7  

Properties   . . . . . . . . . . . . . . 7 

Broker  schemas   . . . . . . . . . . . . 8 

Message  flow  accounting  and  statistics  data   . . . 9 

Designing  a message  flow   . . . . . . . . . 13 

Deciding  which  nodes  to use   . . . . . . . 14  

Using  more  than  one  input  node   . . . . . . 16 

Using  subflows   . . . . . . . . . . . . 17  

Optimizing  message  flow  response  times   . . . 18  

System  considerations  for  message  flow  

development   . . . . . . . . . . . . . 19  

Using  WebSphere  MQ  cluster  queues  for  input  

and  output   . . . . . . . . . . . . . 21  

Using  WebSphere  MQ  shared  queues  for input  

and  output  (z/OS)   . . . . . . . . . . . 22 

Converting  data  with  message  flows   . . . . . 22  

Configuring  message  flows  for  data  conversion  24 

Ensuring  that  messages  are  not  lost   . . . . . 25 

Handling  errors  in  message  flows   . . . . . . 27  

Managing  message  flows  . . . . . . . . . . 34  

Creating  a message  flow  project   . . . . . . 34 

Deleting  a message  flow  project   . . . . . . 36 

Creating  a broker  schema  . . . . . . . . . 37 

Creating  a message  flow   . . . . . . . . . 37  

Opening  an existing  message  flow  . . . . . . 38  

Copying  a message  flow  using  copy   . . . . . 39  

Renaming  a message  flow   . . . . . . . . 39 

Moving  a message  flow   . . . . . . . . . 40 

Deleting  a message  flow   . . . . . . . . . 41  

Deleting  a broker  schema  . . . . . . . . . 42 

Viewing  version  and  keyword  information  for 

deployable  objects   . . . . . . . . . . . 42  

Saving  a message  flow   . . . . . . . . . 43  

Defining  message  flow  content   . . . . . . . . 45 

Adding  a message  flow  node   . . . . . . . 46 

Adding  a subflow   . . . . . . . . . . . 47  

Renaming  a message  flow  node   . . . . . . 48  

Configuring  a message  flow  node   . . . . . . 49  

Removing  a message  flow  node   . . . . . . 50 

Connecting  message  flow  nodes   . . . . . . 51 

Removing  a node  connection   . . . . . . . 53 

Adding  a bend  point   . . . . . . . . . . 53  

Removing  a bend  point   . . . . . . . . . 54 

Aligning  and  arranging  nodes   . . . . . . . 55 

Defining  a promoted  property   . . . . . . . . 56  

Promoting  a property   . . . . . . . . . . 57 

Renaming  a promoted  property   . . . . . . 61  

Removing  a promoted  property   . . . . . . 62 

Converging  multiple  properties  . . . . . . . 64 

Collecting  message  flow  accounting  and  statistics  

data   . . . . . . . . . . . . . . . . . 67 

Starting  to collect  message  flow  accounting  and  

statistics  data  . . . . . . . . . . . . . 67  

Stopping  message  flow  accounting  and  statistics  

data  collection   . . . . . . . . . . . . 69 

Viewing  message  flow  accounting  and  statistics  

data  collection  parameters   . . . . . . . . 70  

Modifying  message  flow  accounting  and  statistics  

data  collection  parameters   . . . . . . . . 70  

Resetting  message  flow  accounting  and  statistics  

archive  data   . . . . . . . . . . . . . 71

 

© Copyright  IBM Corp. 2000, 2006 1



2 Message  Flows



Developing  message  flows  

A  message  flow  is a sequence  of  processing  steps  that  run in  the  broker  when  an 

input  message  is received.  The  topics  in  this  section  describe  how  to create  and  

maintain  message  flows.  

Concept  topics:  

v   “Message  flows  overview”  on  page  4 

v   “Message  flow  projects”  on  page  4 

v   “Message  flow  nodes”  on  page  5 

v   “Message  flow  connections”  on  page  7 

v   The  message  tree  

v   Parsers  

v   “Properties”  on  page  7 

v   Message  flow  transactions  

v   “Broker  schemas”  on  page  8 

v   “Message  flow  accounting  and  statistics  data”  on  page  9

Task  topics:  

v   “Designing  a message  flow”  on  page  13  

v   “Creating  a message  flow  project”  on  page  34  

v   “Deleting  a message  flow  project”  on  page  36  

v   “Creating  a broker  schema”  on  page  37  

v   “Creating  a message  flow”  on  page  37  

v   “Opening  an  existing  message  flow”  on  page  38  

v   “Defining  message  flow  content”  on  page  45  

v   “Copying  a message  flow  using  copy”  on  page  39  

v   “Saving  a message  flow”  on  page  43  

v   “Renaming  a message  flow”  on  page  39  

v   “Moving  a message  flow”  on  page  40  

v   “Deleting  a message  flow”  on  page  41  

v   “Deleting  a broker  schema”  on  page  42  

v   “Defining  a promoted  property”  on  page  56  

v   “Collecting  message  flow  accounting  and  statistics  data”  on  page  67 

There  is  also  a section  of  topics  that  contain  reference  information  about  message  

flows.  

The  workbench  provides  a set  of toolbar  icons  that  invoke  wizards  that  you  can  

use  to  create  any  of  the  resources  associated  with  message  flows,  for  example,  

message  flow  projects.  Hover  your  mouse  pointer  over  each  icon  to  see  its  

function.  

The  workbench  lets  you  open  resource  files  with  other  editors.  Use  only  the  

workbench  message  flow  editor  to  work  with  message  flow  files,  because  this  

editor  correctly  validates  all  changes  that  you  make  to  these  files  when  you  save  

the  message  flow. 

 

© Copyright  IBM Corp. 2000, 2006 3



When  you  have  completed  developing  your  message  flow, deploy  it  to  a broker  to 

start  its  execution.  

For  a basic  introduction  to  developing  message  flows,  see  the  WebSphere  Message  

Broker  Basics  IBM  Redbook.  

Message flows overview 

A message  flow  is a sequence  of processing  steps  that  execute  in  the  broker  when  

an  input  message  is received.  

You define  a message  flow  in the  workbench  by  including  a number  of message  

flow  nodes,  each  of  which  represents  a set  of  actions  that  define  a processing  step.  

The  connections  in  the  flow  determine  which  processing  steps  are  carried  out,  in 

which  order,  and  under  which  conditions.  A message  flow  must  include  an  input  

node  that  provides  the  source  of  the  messages  that  are  processed.  You must  then  

deploy  the  message  flow  to  a broker  for  execution.  

You can  create  a message  flow  using  the  built-in  nodes  or  other  message  flows  

(known  as  subflows).  When  you  want  to  invoke  a message  flow  to process  

messages,  you  deploy  it to a broker,  where  it is executed  within  an  execution  

group.  

The  following  topics  describe  the  concepts  that  you  need  to  understand  to design,  

create,  and  configure  a message  flow  and  its  associated  resources:  

v   Projects  

v   Nodes  

v   Version  and  keywords  

v   “Message  flow  connections”  on  page  7 

v   “Properties”  on  page  7 

v   Accounting  and  statistics  data  

v   “Converting  data  with  message  flows”  on  page  22  

For  a basic  introduction  to  developing  message  flows,  see  the  WebSphere  Message  

Broker  Basics  IBM  Redbook.  

Message flow projects 

A message  flow  project  is a specialized  container  in which  you  create  and  maintain  

all  the  resources  associated  with  one  or  more  message  flows.  

You can  create  a message  flow  project  to  contain  a single  message  flow  and  its  

resources,  or  you  can  group  together  related  message  flows  and  resources  in  a 

single  message  flow  project  to provide  an  organizational  structure  to your  message  

flow  resources.  

Message  flow  project  resources  are  created  as files,  and  are  displayed  within  the  

project  in  the  Navigator  view. These  resources  define  the  content  of the  message  

flow. 

Import  one  of  the  samples  from  the  Samples  Gallery  to  see  how  the  sample’s  

message  flow  resources  are  stored  in a Message  Flow  project.  If  the  sample  has  a 

message  set,  its  message  set  resources  are  stored  in  a Message  Set  project.  For  

example,  import  the  Video  Rental  sample  or  the  Comma  Separated  Value  (CSV)  

sample;  both  of  these  samples  have  a Message  Flow  project  and  a Message  Set  

project.  

 

4 Message  Flows

http://www.redbooks.ibm.com/abstracts/sg247137.html
http://www.redbooks.ibm.com/abstracts/sg247137.html
http://www.redbooks.ibm.com/abstracts/sg247137.html
http://www.redbooks.ibm.com/abstracts/sg247137.html
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.msgbroker.samplesgallery
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.res
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.csv.res
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.csv.res


Message flow nodes 

A  message  flow  node  is a processing  step  in  a message  flow. 

It  receives  a message,  performs  a set  of  actions  against  the  message,  and  optionally  

passes  the  message  on  to  the  next  node  in  the  message  flow. A  message  flow  node  

can  be  a built-in  node  , a user-defined  node,  or  a subflow  node.  

A  message  flow  node  has  a fixed  number  of  input  and  output  points  known  as  

terminals.  You can  make  connections  between  the  terminals  to define  the  routes  

that  a message  can  take  through  a message  flow. 

Built-in  node  

A built-in  node  is  a message  flow  node  that  is supplied  by  WebSphere  

Event  Broker.  The  built-in  nodes  provide  input  and  output  functions.  

 For  information  on  all  the  built-in  nodes  supplied  by  WebSphere  Event  

Broker,  see  “Built-in  nodes”  on  page  114. 

User-defined  node  

A user-defined  node  is an  extension  to  the  broker  that  provides  a new  

message  flow  node  in  addition  to  those  supplied  with  the  product.  It must  

be  written  to the  user-defined  node  API  provided  by  WebSphere  Event  

Broker  for  both  C  and  Java  languages.  

Subflow  

A subflow  is a directed  graph  that  is composed  of message  flow  nodes  and  

connectors  and  is designed  to  be  embedded  in  a message  flow  or  in  

another  subflow.  A subflow  must  include  at least  one  Input  node  or  one  

Output  node.  A subflow  can  be  executed  by  a broker  only  as part  of the  

message  flow  in  which  it is  embedded,  and  therefore  cannot  be  

independently  deployed.  

 The  subflow,  when  it is  embedded  in  a main  flow, is represented  by  a 

subflow  node,  which  has  a unique  icon.  The  icon  is displayed  with  the  

correct  number  of terminals  to represent  the  Input  and  Output  nodes  that  

you  have  included  in  the  subflow  definition.  

 The  use  of  subflows  is demonstrated  in  the  Error  Handler  sample  and  the  

Coordinated  Request  Reply  sample.  The  Error  Handler  sample  uses  a 

subflow  to  trap  information  about  errors  and  store  the  information  in  a 

database.  The  Coordinated  Request  Reply  sample  uses  a subflow  to  

encapsulate  the  storage  of the  ReplyToQ  and  ReplyToQMgr  values  in  a 

WebSphere  MQ  message  so  the  processing  logic  can  be  reused  in  other  

message  flows  and  to  allow  alternative  implementations  to  be  substituted.

 A  node  does  not  always  produce  an  output  message  for  every  output  terminal:  

often  it produces  one  output  for  a single  terminal  based  on  the  message  received  

or  the  result  of  the  operation  of the  node.  

If  more  than  one  terminal  is connected,  the  node  sends  the  output  message  on  

each  terminal,  but  sends  on  the  next  terminal  only  when  the  processing  has  

completed  for  the  current  terminal.  Updates  to a message  are  never  propagated  to  

previously-executed  nodes,  only  to  nodes  following  the  node  in  which  the  update  

has  been  made.  The  order  in  which  the  message  is propagated  to  the  different  

output  terminals  is determined  by  the  broker;  you  cannot  change  this  order. 

 

Developing  message  flows 5

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.res
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.coordinated_request_reply.res


The  message  flow  can  accept  a new  message  for  processing  only  when  all  paths  

through  the  message  flow  (that  is, all  connected  nodes  from  all  output  terminals)  

have  been  completed.  

The  Airline  Reservations  sample  uses  Environment  variables  in  the  

XML_Reservation  sample  to store  information  that  has  been  taken  from  a database  

table  and  to  pass  that  information  to  a node  downstream  in the  message  flow. 

Message flow version and keywords 

When  you  are  developing  a message  flow, you  can  define  the  version  of the  

message  flow  as  well  as  any  other  key  information  that  you  need  to  be  associated  

to  it.  After  the  message  flow  has  been  deployed,  the  Configuration  Manager  can  be  

used  to  display  the  properties  of the  message  flow. This  includes  the  deployment  

and  modification  dates  and  times  (the  default  information  that  is displayed)  as 

well  as  any  additional  version  or  keyword  information  that  you  have  set.  

You can  define  information  to give  details  on  the  message  flow  that  has  been  

deployed,  therefore  you  can  check  that  it is the  message  flow  that  you  expect.  

Version 

You can  set  the  version  of  the  message  flow  in  the  Version  property.  This  is in  the  

Properties  dialog.  

You can  also  define  a default  message  flow  version  in the  Default  version  tag  of  

the  message  flow  preferences.  All  new  message  flows  that  are  created  after  this  has  

been  set  have  this  default  applied  to  the  Version  property  at the  message  flow  

level.  

Keywords 

Keywords  are  extracted  from  the  compiled  message  flow  (the  .cmf  file)  rather  than  

the  message  flow  source  (the  .msgflow  file).  Not  all  of the  source  properties  are  

added  to  the  compiled  file.  Therefore,  add  message  flow  keywords  in  only  these  

places:  

v   The  label  property  of  a passthrough  node  

v    ESQL  comments  or  string  literals  

v   The  Long  Description  property  of the  message  flow

Any  keywords  that  you  define  need  to  follow  certain  rules to  ensure  that  the  

information  can  be  parsed.  The  following  is an  example  of what  you  can  define  in 

the  Long  Description  property:  

$MQSI  Author=John  Smith  MQSI$  

$MQSI  Subflow  1 Version=v1.3.2  MQSI$  

The  information  the  Configuration  Manager  will  show  is:  

 Message  flow  name  

Deployment  Time  28-Aug-2004  15:04  

Modification  Time  28-Aug-2004  14:27  

Version  v1.0  

Author  John  Smith  

Subflow  1 Version  v1.3.2

 

6 Message  Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.res


In  this  display  the  version  information  has  also  been  defined  using  the  Version  

property  of  the  object.  If  the  version  information  has  not  been  defined  using  the  

property,  it is omitted  from  this  display.  

If  message  flows  contain  subflows,  you  can  embed  keywords  in  each  subflow.  

Message flow connections 

A  connection  is  an  entity  that  connects  an  output  terminal  of  one  message  flow  

node  to  the  input  terminal  of  another.  It represents  the  flow  of control  and  data  

between  two  message  flow  nodes.  

The  connections  of  the  message  flow, represented  by  black  lines  within  the  

message  flow  editor  view, determine  the  path  that  a message  takes  through  the  

message  flow. You can  add  bend  points  to  the  connection  to  alter  the  way  in which  

it  is  displayed.  

See  “Bend  points”  for  a description  of  bend  points.  See  “Message  flow  node  

terminals”  for  a description  of  terminals.  

Bend points 

A  bend  point  is a point  that  is introduced  in  a connection  between  two  message  

flow  nodes  at  which  the  line  that  represents  the  connection  changes  direction.  

Use  bend  points  to  change  the  visual  path  of  a connection  to display  node  

alignment  and  processing  logic  more  clearly  and  effectively.  Bend  points  have  no  

effect  on  the  behavior  of the  message  flow;  they  are  visual  modifications  only.  

A  connection  is  initially  made  as  a straight  line  between  the  two  connected  nodes  

or  brokers.  Use  bend  points  to move  the  representation  of  the  connection,  without  

moving  its  start  and  end  points.  

Message flow node terminals 

A  terminal  is  the  point  at which  one  node  in  a message  flow  is connected  to  

another  node.  

Use  terminals  to  control  the  route  that  a message  takes,  depending  whether  the  

operation  performed  by  a node  on  that  message  is successful.  Terminals  are  wired  

to  other  node  terminals  using  message  flow  node  connections  to indicate  the  flow  

of  control.  

Every  built-in  node  has  a number  of  terminals  to  which  you  can  connect  other  

nodes.  Input  nodes  (for  example,  MQInput)  do  not  have  in  terminals;  all  other  

nodes  have  at  least  one  in  terminal  through  which  to receive  messages  to be 

processed.  Most  built-in  nodes  have  failure  terminals  that  you  can  use  to  manage  

the  handling  of  errors  in the  message  flow. Most  nodes  have  output  terminals  

through  which  the  message  can  flow  to  a subsequent  node.  

If  you  have  any  user-defined  nodes,  these  might  also  have  terminals  that  you  can  

connect  to  other  built-in  or  user-defined  node  terminals.  

Properties 

This  topic  discusses  the  following  types  of  broker  properties:  

v   Promoted  properties:  see  “Promoted  properties”  on  page  8.

 

Developing  message  flows 7



Promoted properties 

A promoted  property  is a message  flow  node  property  that  has  been  promoted  to 

the  level  of the  message  flow  in  which  it is  included.  

A message  flow  contains  one  or  more  message  flow  nodes,  each  of  which  is an  

instance  of  a message  flow  type  (a built-in  node).  You can  promote  the  properties  

of  a message  flow  node  to apply  to  the  message  flow  to which  it belongs.  If  you  

do  this,  any  user  of  the  message  flow  can  set  values  for  the  properties  of the  nodes  

in  this  higher  message  flow  by  setting  them  at the  message  flow  level,  without  

being  aware  of  the  message  flow’s  internal  structure.  

You can  promote  compatible  properties  (that  is,  properties  that  represent  

comparable  values)  from  more  than  one  node  to the  same  promoted  property;  you  

can  then  set  a single  property  that  affects  multiple  nodes.  

A subset  of  message  flow  node  properties  is also  configurable  (that  is,  the  

properties  can  be  updated  at deploy  time).  You can  promote  configurable  

properties:  if you  do  so,  the  promoted  property  (which  can  have  a different  name  

from  the  property  or  properties  that  it represents)  is the  one  that  is available  to 

update  at  deploy  time.  Configurable  properties  are  those  associated  with  system  

resources,  for  example  queues:  they  can  be  set  at deploy  time  by  an  administrator  

rather  than  a message  flow  developer.  

Broker schemas 

A broker  schema  is  a symbol  space  that  defines  the  scope  of  uniqueness  of  the  

names  of  resources  (message  flows)  defined  within  it.  

The  broker  schema  is defined  as  the  relative  path  from  the  project  source  directory  

to  the  flow  name.  When  you  first  create  a message  flow  project,  a default  broker  

schema  named  (default)  is created  within  the  project.  

You can  create  new  broker  schemas  to  provide  separate  symbol  spaces  within  the  

same  message  flow  project.  A broker  schema  is implemented  as  a folder,  or  

subdirectory,  within  the  project,  and  provides  organization  within  that  project.  You 

can  also  use  project  references  to  spread  the  scope  of  a single  broker  schema  across  

multiple  projects  to  create  an  application  symbol  space  that  provides  a scope  for  all  

resources  associated  with  an  application  suite.  

A broker  schema  name  must  be  a character  string  that  starts  with  a Unicode  

character  followed  by  zero  or  more  Unicode  characters  or  digits,  and  the  

underscore.  You can  use  the  period  to provide  a structure  to  the  name,  for  example  

Stock.Common. A directory  is created  in the  project  directory  to  represent  the  

schema,  and  if the  schema  is structured  using  periods,  further  subdirectories  are  

defined.  For  example,  the  broker  schema  Stock.Common  results  in  a directory  

Common  within  a directory  Stock  within  the  message  flow  project  directory.  

If you  create  a message  flow  resource  in the  default  broker  schema  within  a 

project,  the  file  or  files  associated  with  that  resource  are  created  in  the  directory  

that  represents  the  project.  If you  create  a resource  in another  broker  schema,  the  

files  are  created  within  the  schema  directory.  

For  example,  if you  create  a message  flow  Update  in  the  default  schema  in  the  

message  flow  project  Project1,  its  associated  files  are  stored  in  the  Project1  

 

8 Message  Flows



directory.  If you  create  another  message  flow  in  the  Stock.Common  broker  schema  

within  the  project  Project1,  its  associated  files  are  created  in  the  directory  

Project1\Stock\Common.  

Because  each  broker  schema  represents  a unique  name  scope,  you  can  create  two  

message  flows  that  share  the  same  name  within  two  broker  schemas.  The  broker  

schemas  ensure  that  these  two  message  flows  are  recognized  as  separate  resources.  

The  two  message  flows,  despite  having  the  same  name,  are  considered  unique.  

If  you  move  a message  flow  from  one  project  to  another,  you  can  continue  to  use  

the  message  flow  within  the  original  project  if you  preserve  the  broker  schema.  If 

you  do  this,  you  must  update  the  list  of dependent  projects  for  the  original  project  

by  adding  the  target  project.  If,  however,  you  do  not  preserve  the  broker  schema,  

the  flow  becomes  a different  flow  because  the  schema  name  is  part  of the  fully  

qualified  message  flow  name,  and  it is no  longer  recognized  by  other  projects.  This  

action  results  in  broken  links  that  you  must  manually  correct.  For  further  

information  about  correcting  errors  after  moving  a message  flow, see  “Moving  a 

message  flow”  on  page  40.  

Do  not  move  resources  by  moving  their  associated  files  in  the  file  system;  you  

must  use  the  workbench  to  move  resources  to  ensure  that  all  references  are  

corrected  to  reflect  the  new  organization.  

Message flow accounting and statistics data 

Message  flow  accounting  and  statistics  data  is the  information  that  can  be  collected  

by  a broker  to  record  performance  and  operating  details  of  message  flow  

execution.  

These  reports  are  not  the  same  as  the  publish/subscribe  statistics  reports  that  you  

can  generate.  The  publish/subscribe  statistics  provide  information  about  the  

performance  of  brokers,  and  the  throughput  between  the  broker  and  clients  that  

are  connected  to  the  broker.  Message  flow  accounting  and  statistics  reports  provide  

information  about  the  performance  and  operating  details  of a message  flow  

execution.  

Message  flow  accounting  and  statistics  data  records  dynamic  information  about  the  

runtime  behavior  of  a message  flow. For  example,  it indicates  how  many  messages  

are  processed  and  how  large  those  messages  are,  as  well  as  CPU  usage  and  

elapsed  processing  times.  The  broker  collects  the  data  and  records  it  in a specified  

location  when  one  of a number  of events  occurs  (for  example,  when  a snapshot  

interval  expires  or  when  the  execution  group  you  are  recording  information  about  

stops).  

Accounting  and  statistics  data  is collected  only  for  message  flows  that  start  with  an  

MQInput,  HTTPInput,  or  user-defined  input  node.  If you  start  data  collection  for  a 

message  flow  that  starts  with  this  node,  the  data  is collected  for  all  built-in  and  

user-defined  nodes,  including  those  in  subflows.  If the  message  flow  starts  with  

another  input  node  (for  example,  a Real-timeInput  node),  no  data  is  collected  (and  

no  error  is  reported).  

Collecting  message  flow  accounting  and  statistics  data  is optional;  by  default  it is 

switched  off.  To use  this  facility,  request  it on  a message  flow  or  execution  group  

basis.  The  settings  for  accounting  and  statistics  data  collection  are  reset  to  the  

defaults  when  an  execution  group  is redeployed.  Previous  settings  for  message  

flows  in an  execution  group  will  not  be  passed  on  to  the  new  message  flows  

 

Developing  message  flows 9



deployed  to  that  execution  group.  Data  collection  is started  and  stopped  

dynamically  when  you  issue  the  mqsichangeflowstats  command;  you  do  not  need  

to  make  any  change  to  the  broker  or  to  the  message  flow, or  redeploy  the  message  

flow, to  request  statistics  collection.  

You can  activate  data  collection  on  both  your  production  and  test  systems.  If  you  

collect  the  default  level  of  statistics  (message  flow),  the  impact  on  broker  

performance  is minimal.  However,  collecting  more  data  than  the  default  message  

flow  statistics  can  generate  high  volumes  of  report  data  that  might  cause  a small  

but  noticeable  performance  overhead.  

When  you  plan  data  collection,  consider  the  following  points:  

v   Collection  options  

v   Accounting  origin  

v   Output  formats  

You can  find  more  information  on  how  to  use  accounting  and  statistics  data  to  

improve  the  performance  of a message  flow  in  this  developerWorks  article  on  

message  flow  performance.  

The  following  SupportPac  provides  additional  information  about  using  accounting  

and  statistics:  

v   Using  statistics  and  accounting  SupportPac  (IS11)

Message flow accounting and statistics collection options 

The  options  that  you  specify  for  message  flow  accounting  and  statistics  collection  

determine  what  information  is collected.  You can  request  the  following  types  of  

data  collection:  

v   Snapshot  data  is  collected  for  an  interval  of  approximately  20  seconds.  The  exact  

length  of  the  interval  depends  on  system  loading  and  the  level  of current  broker  

activity.  You cannot  modify  the  length  of  time  for  which  snapshot  data  is 

collected.  At  the  end  of this  interval,  the  recorded  statistics  are  written  to  the  

output  destination  and  the  interval  is restarted.  

v   Archive  data  is  collected  for  an  interval  that  you  have  set  for  the  broker  on  the  

mqsicreatebroker  or  mqsichangebroker  command.  You can  specify  an  interval  of 

between  10  and  14400  minutes,  the  default  value  is 60  minutes.  At  the  end  of 

this  interval,  the  recorded  statistics  are  written  to the  output  destination  and  the  

interval  is restarted.  

An  interval  is  prematurely  expired  and  restarted  when  any  of  the  following  

events  occur:  

–   The  message  flow  is redeployed.  

–   The  set  of  statistics  data  to be  collected  is modified.  

–   The  broker  is  shut  down.  

This  preserves  the  integrity  of the  data  already  collected  when  that  event  occurs.  

On  z/OS,  you  can  set  the  command  parameter  to 0,  which  means  that  the  

interval  is controlled  by  an  external  timer  mechanism.  This  support  is provided  

by  the  Event  Notification  Facility  (ENF),  which  you  can  use  instead  of the  broker  

command  parameter  if you  want  to coordinate  the  expiration  of this  timer  with  

other  system  events.  

You can  request  snapshot  data  collection,  archive  data  collection,  or  both.  You can  

activate  snapshot  data  collection  while  archive  data  collection  is active.  The  data  

recorded  in both  reports  is the  same,  but  is collected  for  different  intervals.  If you  

 

10 Message  Flows

http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html
http://www.ibm.com/support/docview.wss?uid=swg24007228


activate  both  snapshot  and  archive  data  collection,  be  careful  not  to  combine  

information  from  the  two  different  reports,  because  you  might  count  information  

twice.  

You can  use  the  statistics  generated  for  the  following  purposes:  

v   You can  record  the  load  that  applications,  trading  partners,  or  other  users  put  on  

the  broker.  This  allows  you  to record  the  relative  use  that  different  users  make  of  

the  broker,  and  perhaps  to  charge  them  accordingly.  For  example,  you  could  

levy  a nominal  charge  on  every  message  that  is processed  by  a broker,  or  by  a 

specific  message  flow. 

Archive  data  provides  the  information  that  you  need  for  a use  assessment  of  this  

kind.  

v   You can  assess  the  execution  of a message  flow  to determine  why  it, or  a node  

within  it,  is  not  performing  as  you  expect.  

Snapshot  data  is appropriate  for  performance  assessment.  

v   You can  determine  the  route  that  messages  are  taking  through  a message  flow. 

For  example,  you  might  find  that  an  error  path  is taken  more  frequently  than  

you  expect  and  you  can  use  the  statistics  to  understand  when  the  messages  are  

routed  to  this  error  path.  

Check  the  information  provided  by  snapshot  data  for  routing  information;  if this  

is insufficient  for  your  needs,  use  archive  data.

Message flow accounting and statistics accounting origin 

Accounting  and  statistics  data  can  be  identified  by  the  account  identifier  of the  

originator.  The  accounting  origin  for  all  accounting  and  statistics  data  for  all  

message  flows  is  set  to  Anonymous. You cannot  change  this  value.  

Output formats for message flow accounting and statistics data 

When  you  collect  message  flow  statistics,  you  can  choose  the  output  destination  

for  the  data:  

v   User  trace  

v   XML  publication  

v   SMF

Statistics  data  is  written  to  the  specified  output  location  in  the  following  

circumstances:  

v   When  the  archive  data  interval  expires.  

v   When  the  snapshot  interval  expires.  

v   When  the  broker  shuts  down.  Any  data  that  has  been  collected  by  the  broker,  

but  not  yet  written  to  the  specified  output  destination,  is written  during  

shutdown.  It might  therefore  represent  data  for  an  incomplete  interval.  

v   When  any  part  of  the  broker  configuration  is redeployed.  Redeployed  

configuration  data  might  contain  an  updated  configuration  that  is not  consistent  

with  the  existing  record  structure  (for  example,  a message  flow  might  include  an  

additional  node,  or  an  execution  group  might  include  a new  message  flow).  

Therefore  the  current  data,  which  might  represent  an  incomplete  interval,  is 

written  to  the  output  destination.  Data  collection  continues  for  the  redeployed  

configuration  until  you  change  data  collection  parameters  or stop  data  collection.  

v   When  data  collection  parameters  are  modified.  If you  update  the  parameters  that  

you  have  set  for  data  collection,  all  data  collected  for  the  message  flow  (or  

message  flows)  is written  to  the  output  destination  to retain  data  integrity.  

Statistics  collection  is restarted  according  to  the  new  parameters.  

 

Developing  message flows 11



v   When  an  error  occurs  that  terminates  data  collection.  You must  restart  data  

collection  yourself  in  this  case.  

User trace 

You can  specify  that  the  data  collected  is written  to  the  user  trace  log.  The  data  is 

written  even  if trace  is currently  switched  off.  The  default  output  destination  for  

accounting  and  statistics  data  is the  user  trace  log.  The  data  is  written  to  one  of the  

following  locations:  

v   On  Windows  systems,  if the  broker  workpath  has  been  set  using  the  -w  option  

of  the  mqsicreatebroker  command,  data  is written  to  workpath\log.  If the  broker  

workpath  has  not  been  specified,  data  is written  to install_dir\log, where  

install_dir  is  the  directory  in  which  WebSphere  Event  Broker  is installed.  

v   On  UNIX  systems,  data  is written  to  /var/wmqi/log.  

v   On  Linux  systems,  data  is written  to  /var/wmqi/log.  

v   On  z/OS  systems,  data  is written  to  /component_filesystem/log.

XML publication 

You can  specify  that  the  data  collected  is published.  The  publication  message  is 

created  in XML  format  and  is available  to subscribers  registered  in  the  broker  

network  that  subscribe  to  the  correct  topic.  

The  topic  on  which  the  data  is published  has  the  following  structure:  

$SYS/Broker/brokerName/StatisticsAccounting/recordType/executionGroupLabel/messageFlowLabel  

The  variables  correspond  to the  following  values:  

brokerName  

The  name  of  the  broker  for  which  statistics  are  collected.  

recordType   

Set  to  Snapshot  or  Archive, depending  on  the  type  of data  to  which  you  

are  subscribing.  Alternatively,  use  # to  register  for  both  snapshot  and  

archive  data  if it  is being  produced.  

executionGroupLabel  

The  name  of  the  execution  group  for  which  statistics  are  collected.  

messageFlowLabel   

The  label  on  the  message  flow  for  which  statistics  are  collected.

Subscribers  can  include  filter  expressions  to  limit  the  publications  that  they  receive.  

For  example,  they  can  choose  to  see  only  snapshot  data,  or  to see  data  collected  for  

a single  broker.  Subscribers  can  specify  wild  cards  (+  and  #) to receive  publications  

that  refer  to  multiple  resources.  

The  following  examples  show  the  topic  with  which  a subscriber  should  register  to 

receive  different  sorts  of  data:  

v   Register  the  following  topic  for  the  subscriber  to  receive  data  for  all  message  

flows  running  on  BrokerA: 

$SYS/Broker/BrokerA/StatisticsAccounting/#  

v   Register  the  following  topic  for  the  subscriber  to  receive  only  archive  statistics  

relating  to  a message  flow  Flow1  running  on  execution  group  Execution  on  

broker  BrokerA:  

$SYS/Broker/BrokerA/StatisticsAccounting/Archive/Execution/Flow1 

 

12 Message  Flows



v   Register  the  following  topic  for  the  subscriber  to receive  both  snapshot  and  

archive  data  for  message  flow  Flow1  running  on  execution  group  Execution  on  

broker  BrokerA  

$SYS/Broker/BrokerA/StatisticsAccouting/#/Execution/Flow1

Message  display,  test  and  performance  utilities  SupportPac  (IH03)  can  help  you  

with  registering  your  subscriber.  

SMF 

On  z/OS,  you  can  specify  that  the  data  collected  is written  to  SMF. SMF  supports  

the  collection  of  data  from  multiple  subsystems,  and  you  might  therefore  be  able  to 

synchronize  the  information  recorded.  When  you  want  to  interpret  the  information  

recorded,  you  can  use  any  utility  program  that  processes  SMF  records.  Accounting  

and  statistics  data  uses  SMF  type  117 records.  

Designing a message flow 

Before  you  start:  

Read  the  concept  topic  about  message  flow  nodes.  

When  you  design  a message  flow, consider  several  design  factors  which  include  

some  or  all  of  the  following  options:  

v   Which  nodes  provide  the  function  that  you  require.  In  many  cases,  you  can  

choose  between  several  nodes  that  provide  a suitable  function.  You might  have  

to  consider  other  factors  listed  here  to  determine  which  node  is best  for  your  

overall  needs.  You can  include  built-in  nodes,  user-defined  nodes,  and  subflow  

nodes.  For  more  information,  see  “Deciding  which  nodes  to  use”  on  page  14.  

v   Whether  it is  appropriate  to include  more  than  one  input  node.  For  more  

information,  see  “Using  more  than  one  input  node”  on  page  16.  

v   Whether  you  can  make  use  of subflows,  for  example  to  define  a specific  output  

node  with  common  properties.  For  more  information,  see  “Using  subflows”  on  

page  17.  

v   What  response  times  your  applications  expect  from  the  message  flow. This  is 

influenced  by  several  aspects  of  how  you  configure  your  nodes  and  the  flow. For  

more  information,  see  “Optimizing  message  flow  response  times”  on  page  18.  

v   Whether  you  want  to  use  WebSphere  MQ  cluster  queues.  For  more  information,  

see  “Using  WebSphere  MQ  cluster  queues  for  input  and  output”  on  page  21.  

v   Whether  you  want  to  use  WebSphere  MQ  shared  queues  on  z/OS.  Their  use  is 

described  further  in “Using  WebSphere  MQ  shared  queues  for  input  and  output  

(z/OS)”  on  page  22.  

v   Whether  you  want  your  messages  to  go  through  data  conversion.  The  options  

that  you  have  are  described  in  “Configuring  message  flows  for  data  conversion”  

on  page  24.  

v   What  steps  you  can  take  to  ensure  that  messages  are  not  lost.  For  more  

information,  see  “Ensuring  that  messages  are  not  lost”  on  page  25.  

v   How  errors  are  handled  within  the  message  flow. You can  use  the  facilities  

provided  by  the  broker  to handle  any  errors  that  are  encountered  during  

message  flow  execution  (for  example,  if  the  input  node  fails  to  retrieve  an  input  

message,  or  if writing  to  a database  results  in  an  error).  However,  you  might  

prefer  to  design  your  message  flow  to handle  errors  in  a specific  way.  For  more  

information,  see  “Handling  errors  in  message  flows”  on  page  27.

 

Developing  message  flows 13

http://www.ibm.com/support/docview.wss?uid=swg24000637


For  a basic  introduction  to  developing  message  flows,  see  the  WebSphere  Message  

Broker  Basics  IBM  Redbook.  

Deciding which nodes to use 

Before  you  start:  

Read  the  concept  topic  about  message  flow  nodes.  

WebSphere  Event  Broker  includes  a large  number  of  message  processing  nodes  

that  you  can  use  within  your  message  flows.  You can  also  choose  from  

user-defined  nodes  that  have  been  created  and  supplied  by  users,  or  other  vendors  

and  companies.  

Your decision  about  which  nodes  to  use  depends  on  the  processing  that  you  want  

to  perform  on  your  messages.  The  built-in  nodes  can  be  considered  in  several  

categories,  and  are  displayed  in  the  workbench  grouped  in those  categories  

(although  this  grouping  has  no  effect  on  their  operation).  You can  also  categorize  

user-defined  nodes  in  the  same  way.  The  categories  are:  

Input  and  output  

Input  and  output  nodes  define  points  in  the  message  flow  to  which  clients  

send  messages  (input  nodes  such  as  MQInput)  and  from  which  clients  

receive  messages  (output  nodes  such  as  MQOutput).  Client  applications  

interact  with  these  nodes  by  putting  messages  to,  or  getting  messages  

from,  the  I/O  resource  that  is specified  by  the  node  as the  source  or  target  

of  the  messages.  Although  a message  flow  must  include  at  least  one  input  

node,  it does  not  have  to include  an  output  node.  

v   If  you  are  creating  a message  flow  that  you  want  to  deploy  to a broker,  

you  must  include  at least  one  input  node  to receive  messages.  The  input  

node  that  you  choose  depends  on  the  source  of  the  input  messages  and  

where  in  the  flow  you  want  to  receive  the  messages:  

MQInput  

If  the  messages  arrive  at the  broker  on  a WebSphere  MQ  queue  

and  the  node  is to  be  at the  start  of  a message  flow. 

 The  use  of message  flows  that  contain  MQeInput  nodes  in  

WebSphere  Event  Broker  Version  6.0  is deprecated.  Redesign  

your  message  flows  to  remove  the  MQe  nodes  and  replace  them  

with  MQ  nodes  that  are  configured  to your  own  specifications  

and  coordinated  with  your  MQe  Gateway  configuration.  For  

more  details,  see  Migrating  a message  flow  that  contains  

WebSphere  MQ  Everyplace  nodes.  

MQGet  

If  the  messages  arrive  at the  broker  on  a WebSphere  MQ  queue  

and  the  node  is not  to be  at the  start  of  a message  flow. 

SCADAInput  

If  the  messages  are  sent  by  a telemetry  device.  

Real-timeInput  or  Real-timeOptimizedFlow  

If  the  messages  are  sent  by  a JMS  or  multicast  application.  The  

Real-timeInput  node  is an  input  node  and  the  

Real-timeOptimizedFlow  node  is a complete  message  flow  that  

provides  a high  performance  publish/subscribe  message  flow. 

 

14 Message  Flows

|
|
|
|
|
|
|

|
|
|
|

http://www.redbooks.ibm.com/abstracts/sg247137.html
http://www.redbooks.ibm.com/abstracts/sg247137.html


JMSInput  

If the  messages  are  sent  by  a JMS  application.  

User-defined  input  node  

If the  message  source  is a client  or  application  that  uses  a 

different  protocol  or  transport.  

Input  node  

If you  are  creating  a message  flow  that  you  want  to  embed  in  

another  message  flow  (a  subflow)  that  you  will  not  deploy  as  a 

standalone  message  flow, you  must  include  at least  one  Input  

node  to  receive  messages  into  the  subflow.  

 An  instance  of the  Input  node  represents  an  in  terminal.  For  

example,  if you  have  included  one  instance  of  the  Input  node,  

the  subflow  icon  shows  one  in  terminal  that  you  can  connect  to  

other  nodes  in the  main  flow  in  the  same  way  that  you  connect  

any  other  node.  

 You can  deploy  only  message  flows  that  have  at least  one  input  

node.  If your  message  flow  does  not  contain  an  input  node,  you  

are  prevented  from  adding  it  to  the  broker  archive  file.  The  

input  node  can  be  in  the  main  flow, or  in  a message  flow  that  is 

embedded  in  the  main  flow. 

 You can  use  more  than  one  input  node  in  a message  flow. For  

more  information,  see  “Using  more  than  one  input  node”  on  

page  16.
v    If you  want  to  send  the  messages  produced  by  the  message  flow  to a 

target  application,  you  can  include  one  or  more  output  nodes.  The  one  

that  you  choose  depends  on  the  transport  across  which  the  target  

application  expects  to receive  those  messages:  

Publication  

If you  want  to distribute  the  messages  using  the  

publish/subscribe  network  for  applications  that  subscribe  to  the  

broker  across  all  supported  protocols.  A Publication  node  is an  

output  node  that  use  output  destinations  that  are  identified  by  

subscribers  whose  subscriptions  match  the  characteristics  of the  

current  message.  

MQOutput  

If the  target  application  expects  to  receive  messages  on  a 

WebSphere  MQ  queue,  or  on  the  WebSphere  MQ  reply-to  queue  

specified  in  the  input  message  MQMD.  

 The  use  of  message  flows  that  contain  MQeOutput  nodes  in 

WebSphere  Event  Broker  Version  6.0  is deprecated.  Redesign  

your  message  flows  to  remove  the  MQe  nodes  and  replace  them  

with  MQ  nodes  that  are  configured  to  your  own  specifications  

and  coordinated  with  your  MQe  Gateway  configuration.  For  

more  details,  see  Migrating  a message  flow  that  contains  

WebSphere  MQ  Everyplace  nodes.  

MQReply  

If the  target  application  expects  to  receive  messages  on  the  

WebSphere  MQ  reply-to  queue  specified  in  the  input  message  

MQMD  

 

Developing  message  flows 15

|
|

|
|
|
|
|
|
|



SCADAOutput  

If  a telemetry  device  is the  target  of  the  output  messages,  and  

the  Publication  node  is not  suitable  

Real-timeOptimizedFlow  

If  the  target  application  is a JMS  or  multicast  application  

JMSOutput  

If  the  messages  are  for  a JMS  destination.  

User-defined  output  node  

If  the  target  is a client  or  application  that  uses  a different  

protocol  or  transport  

Output  node  

If  you  are  creating  a message  flow  that  you  want  to embed  in  

another  message  flow  (a  subflow)  that  you  will  not  deploy  as a 

standalone  message  flow, you  must  include  at  least  one  Output  

node  to propagate  messages  to subsequent  nodes  that  you  

connect  to  the  subflow.  

 An  instance  of  the  Output  node  represents  an  out  terminal.  For  

example,  if you  have  included  two  instances  of  the  Output  node,  

the  subflow  icon  shows  two  out  terminals  that  you  can  connect  

to  other  nodes  in  the  main  flow  in the  same  way  that  you  

connect  any  other  node.

Using more than one input node 

Before  you  start:  

Read  the  concept  topic  about  message  flow  nodes.  

You can  include  more  than  one  input  node  in  a single  message  flow. You might  

find  this  useful  in  the  following  situations:  

v   The  message  flow  provides  common  processing  for  messages  that  are  received  

across  multiple  transports.  For  example,  a single  message  flow  might  handle:  

–   Data  in  messages  received  across  WebSphere  MQ,  and  therefore  through  a 

WebSphere  MQ  queue  and  an  MQInput  node  

–   Messages  that  are  received  across  native  IP connections  (a  Real-timeInput  

node)
v   You need  to  set  standard  properties  on  the  MQInput  node  if input  messages:  

–   are  all  received  across  WebSphere  MQ,  and  

–   do  not  include  an  MQRFH2  header.

If  the  required  standard  properties  are  not  always  the  same  for  every  message,  

you  can  include  more  than  one  input  node  and  configure  each  to  handle  a 

particular  set  of  properties.  

v   Each  input  node  in  a message  flow  causes  the  broker  to  start  a separate  thread  

of  execution.  Including  more  than  one  input  node  might  improve  the  message  

flow  performance.  However,  if you  include  multiple  input  nodes  that  access  the  

same  input  source  (for  example,  a WebSphere  MQ  queue),  the  order  in  which  

the  messages  are  processed  cannot  be  guaranteed.  If  you  want  the  message  flow  

to  process  messages  in  the  order  in  which  they  are  received,  this  option  is not  

appropriate.  

If  you  are  not  concerned  about  message  order, consider  using  additional  

instances  of  the  same  message  flow  rather  than  multiple  input  nodes.  If you  set  

 

16 Message  Flows

|
|



the  Additional  Instances  property  of the  message  flow  when  you  deploy  it to  the  

broker,  multiple  copies  of  the  message  flow  are  started  in the  execution  group.  

This  is the  most  efficient  way  of handling  multiple  instances.

The  Scribble  sample  uses  two  input  nodes:  an  MQInput  node  and  a Real-timeInput  

node.  This  enables  the  sample’s  message  flow  to  accept  input  across  both  

WebSphere  MQ  transport  and  native  IP  connections.  

Using subflows 

You can  include  subflows  in  your  message  flows  in exactly  the  same  way  as  you  

include  built-in  or  user-defined  nodes.  

You can  also  connect  them  to  other  nodes  in the  same  way.  Because  you  can  define  

a subflow  once,  and  use  it in  more  than  one  message  flow  (and  even  in  more  than  

one  message  flow  project),  a subflow  can  provide  benefits:  

v   Reuse  and  reduced  development  time.  

v   A  consistent  way  of achieving  a particular  function,  and  increased  

maintainability  of your  message  flows  (consider  a subflow  as analogous  to a 

programming  macro,  or  to  inline  code  that  is written  once  but  used  in many  

places).  

v   Flexibility.  If  you  promote  some  or  all  of  the  properties  of  the  nodes  in  the  

subflow,  you  can  tailor  a subflow  to a specific  context  (for  example,  by  updating  

the  output  queue  information).

However,  you  must  remember  that  a subflow  is  not  a single  node,  and  its  inclusion  

increases  the  number  of  nodes  in the  message  flow, which  might  affect  its  

performance.  

Consider  these  examples  of subflow  use:  

v   You can  define  a subflow  that  provides  a common  destination  for  messages  that  

result  in  an  error  within  the  message  flow.

Use  the  Passthrough  node  to  enable  versioning  of  a subflow  at run time.  The  

Passthrough  node  allows  you  to  add  a label  to your  message  flow  or  subflow.  By  

combining  this  label  with  keyword  replacement  from  your  version  control  system,  

you  can  identify  which  version  of a subflow  is included  in  a deployed  message  

flow. You can  use  this  label  for  your  own  purposes.  If you  have  included  the  

correct  version  keywords  in  the  label,  you  can  see  the  value  of  the  label:  

v   Stored  in  the  broker  archive  (BAR)  file,  using  the  mqsireadbar  command  

v   As  last  deployed  to a particular  broker,  on  the  properties  of a deployed  message  

flow  in  the  Message  Brokers  Toolkit  

v   In  the  run time,  if you  enable  user  trace  for  that  message  flow.

The  message  that  it propagates  on  its  out  terminal  is the  same  message  that  it 

received  on  its  in  terminal.  For  example,  if you  develop  an  error  processing  

subflow  to  include  in  several  message  flows,  you  might  want  to  modify  that  

subflow.  However,  you  might  want  to  introduce  the  modified  version  initially  to  

just  a subset  of  the  message  flows  in  which  it is included.  Set  a value  for  the  

instance  of  the  Passthrough  node  that  identifies  which  version  of  the  subflow  you  

have  included.  

The  use  of  subflows  is demonstrated  in  the  Error  Handler  sample  and  the  

Coordinated  Request  Reply  sample.  The  Error  Handler  sample  uses  a subflow  to  

 

Developing  message  flows 17

|
|
|
|
|
|

|

|
|

|

|
|
|
|
|
|
|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.scribble.res
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.res
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.coordinated_request_reply.res


trap  information  about  errors  and  store  the  information  in  a database.  The  

Coordinated  Request  Reply  sample  uses  a subflow  to  encapsulate  the  storage  of  

the  ReplyToQ  and  ReplyToQMgr  values  in  a WebSphere  MQ  message  so  that  the  

processing  logic  can  be  easily  reused  in other  message  flows  and  to allow  

alternative  implementations  to be  substituted.  

Adding keywords to subflows 

You can  embed  keywords  in  each  subflow  that  you  use  in  a message  flow. A  

different  keyword  must  be  used  in  each  instance  of  a subflow.  This  is because  only  

the  first  recorded  instance  of each  keyword  within  the  message  flow  .cmf  file  is 

available  to  Configuration  Manager  Proxy  applications  and  to  the  toolkit.  The  

order  that  subflows  appear  in  the  .cmf  file  is not  guaranteed.  

Optimizing message flow response times 

Before  you  start:  

Read  the  concept  topic  about  message  flow  nodes.  

When  you  design  a message  flow, the  flexibility  and  richness  of the  built-in  nodes  

often  means  that  there  are  several  ways  to  achieve  the  processing  and  therefore  the  

end  results  that  you  require.  However,  you  can  also  find  that  these  different  

solutions  deliver  different  performance  and,  if this  is an  important  consideration,  

you  must  design  for  performance  as  well  as  function.  

There  are  two  ways  in  which  your  applications  can  perceive  performance:  

1.   Response  time.  This  indicates  how  quickly  each  message  is processed  by  the  

message  flow. This  is particularly  influenced  by  how  you  design  your  message  

flows.  This  is further  discussed  in  this  topic.  

2.   Throughput.  This  indicates  how  many  messages  of particular  sizes  can  be  

processed  by  a message  flow  in  a given  time.  This  is mainly  affected  by  

configuration  and  system  resource  factors,  and  is therefore  discussed  in  

Optimizing  message  flow  throughput  with  other  domain  configuration  

information.

There  are  several  aspects  that  influence  message  flow  response  times.  However,  as 

you  create  and  modify  your  message  flow  design  to arrive  at the  best  results  that  

meet  your  specific  business  requirements,  you  must  also  consider  the  eventual  

complexity  of  the  message  flow. The  most  efficient  message  flows  are  not  

necessarily  the  easiest  to understand  and  maintain;  experiment  with  the  solutions  

available  to  arrive  at  the  best  balance  for  your  needs.  

Several  factors  influence  message  flow  response  times:  

The  number  of  nodes  that  you  include  in  the  message  flow  

Every  node  causes  some  processing  overhead,  so  consider  the  content  of  

the  message  flow  carefully,  including  the  use  of  subflows.  

 Use  as  few  nodes  as  possible  in  a message  flow;  every  node  that  you  

include  in  the  message  flow  increases  the  overhead  in  the  broker.  There  is 

an  upper  limit  to the  number  of nodes  within  a single  flow. This  limit  is 

governed  by  system  resources,  particularly  the  stack  size.  

 For  more  information  about  stack  sizes,  see  “System  considerations  for  

message  flow  development”  on  page  19.  

 

18 Message  Flows



The  use  of  persistent  and  transactional  messages  

Persistent  messages  are  saved  to  disk  during  message  flow  processing.  This  

is avoided  if you  can  specify  that  messages  either  on  input,  output,  or  

both,  are  non-persistent.  If your  message  flow  is handling  only  

non-persistent  messages,  check  the  configuration  of  the  nodes  and  the  

message  flow  itself;  if your  messages  are  non-persistent,  transactional  

support  might  be  unnecessary.  The  default  configuration  of some  nodes  

enforces  transactionality;  if you  update  these  properties  and  redeploy  the  

message  flow, response  times  might  improve.  

Message  size  

A larger  message  takes  longer  to process.  If you  can  split  large  messages  

into  smaller  chunks  of  information,  you  might  be  able  to  improve  the  

speed  at  which  they  are  handled  by  the  message  flow. The  Large  

Messaging  sample  demonstrates  how  to minimise  the  virtual  memory  

requirements  for  the  message  flow  to  improve  a message  flow’s  

performance  when  processing  potentially  large  messages.

You  can  find  more  information  on  improving  the  performance  of  a message  flow  in  

this  developerWorks  article  on  message  flow  performance.  

System considerations for message flow development 

Default stack size 

When  a message  flow  thread  executes,  it requires  storage  to  perform  the  

instructions  that  are  defined  by  the  logic  of  its  connected  nodes.  This  storage  

comes  from  the  execution  group’s  heap  and  stack  size.  The  default  stack  size  

allocated  to  a message  flow  thread  depends  on  the  platform  used.  

Each  message  flow  thread  is allocated  1MB  of  stack  space.  

Each  message  flow  thread  is allocated  8MB  of  stack  space.  

Each  message  flow  thread  is allocated  1MB  of  stack  space.  

Each  message  flow  thread  is allocated  512  KB  of  downward  stack  space  and  50 KB  

of  upward  stack  space.  

In  a message  flow, a node  typically  uses  about  2KB  of the  stack  space.  A typical  

message  flow  can  therefore  include  roughly  250  nodes  on  z/OS,  500  nodes  on  

UNIX  platforms  and  500  nodes  on  Windows.  This  amount  can  be  higher  or  lower  

depending  on  the  type  of  nodes  used  and  the  processing  they  perform.  

Increasing the stack size on Windows and UNIX platforms 

You can  increase  the  stack  size  by  setting  the  MQSI_THREAD_STACK_SIZE  

environment  variable  to an  appropriate  value.  When  you  restart  brokers  running  

on  the  system  they  will  use  the  new  value.  

The  value  of  MQSI_THREAD_STACK_SIZE  that  you  set  is used  for  every  thread  

that  is  created  within  a DataFlowEngine  process.  If  the  execution  group  has  a large  

number  of  message  flows  assigned  to it,  and  you  set  a large  value  for  

MQSI_THREAD_STACK_SIZE,  the  DataFlowEngine  process  will  therefore  need  a 

large  amount  of  storage  for  the  stack.  

 

Developing  message  flows 19

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.largemessaging.res
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.largemessaging.res
http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html


Increasing the stack size on z/OS 

Integrator  components  on  z/OS  are  compiled  using  the  new  XPLINKage  (extra  

performance  linkage),  which  adds  optimization  to  the  runtime  code.  However,  if 

the  initial  stack  size  is not  large  enough,  then  stack  extents  will  be  used.  128KB  is 

used  in  each  extent.  It is  very  important  that  a large  enough  downward  stack  size  

is chosen,  because  XPLINK  performs  badly  when  stack  extents  are  used.  

To determine  suitable  stack  sizes,  a component  administrator  for  z/OS  can  use  the  

LE  (Language  Environment®) Report  Storage  tool.  To do  this,  a message  flow  must  

be  tested  using  the  RPTSTG  option  with  the  _CEE_RUNOPTS  environment  

variable.  This  should  be  set  in  the  component  profile  (BIPBPROF  for  a broker)  

during  the  development  and  test  of  message  flows  intended  for  production.  For  

example:  

export  _CEE_RUNOPTS=XPLINK\(ON\),RPTSTG(ON)  

You can  then  override  the  default  values  for  the  stack  sizes  on  z/OS  by  altering  or  

adding  the  LE_CEE_RUNOPTS  environment  variable  in  the  component  profile.  

When  updating  the  component  profile  you  must  stop  the  component,  make  the  

necessary  changes  to  the  profile,  submit  BIPGEN  to  recreate  the  ENVFILE  and  

restart  the  component.  

For  example,  you  can  change  the  default  values  of  50K  and  512K  in  the  following  

line  to  suit  your  needs:  

export  _CEE_RUNOPTS=XPLINK(ON),THREADSTACK(ON,50K,15K,ANYWHERE,KEEP,512K,128K)  

Using  RPTSTG  increases  the  time  an  application  takes  to run. You should  therefore  

use  it as  an  aid  to  only  the  development  of message  flows,  and  your  final  

production  environment.  When  you  have  determined  the  correct  stack  sizes  

needed  you  should  remove  this  option  from  the  _CEE_RUNOPTS  environment  

variable.  

Note:   XPLINK  stacks  grow  downward  in  virtual  storage  while  the  old  standard  

linkage  grows  upward.  If  your  message  flow  uses  user-defined  nodes  that  

have  been  compiled  with  the  standard  linkage  convention,  you  will  need  to  

determine  and  set  a suitable  value  for  the  upward  stack  size.  

Determining the correct stack size 

In  WebSphere  Event  Broker  any  processing  that  involves  nested  or  recursive  

processing  can  cause  extensive  usage  of  the  stack.  For  example,  in  the  following  

situations  you  might  need  to  increase  the  stack  size:  

v   When  a message  flow  is processing  a message  that  contains  a large  number  of  

repetitions  or  complex  nesting.  

v   When  a message  flow  is executing  ESQL  that  recursively  calls  the  same  

procedure  or  function,  or  when  an  operator,  for  example  the  concatenation  

operator,  is used  repeatedly  in  an  ESQL  statement.
   Related  tasks  

   “Optimizing  message  flow  response  times”  on  page  18
   Related  reference  

   “Message  flows”  on  page  111

 

20 Message  Flows



Using WebSphere  MQ cluster queues for input and output 

When  you  design  the  WebSphere  MQ  network  that  underlies  your  WebSphere  

Event  Broker  broker  domain,  consider  whether  to  use  clusters.  

The  use  of  queue  manager  clusters  brings  the  following  significant  benefits:  

1.   Reduced  system  administration  

Clusters  need  fewer  definitions  to  establish  a network;  you  can  set  up  and  

change  your  network  more  quickly  and  easily.  

2.   Increased  availability  and  workload  balancing  

You can  benefit  by  defining  instances  of  the  same  queue  to  more  than  one  

queue  manager,  thus  distributing  the  workload  through  the  cluster.

If  you  use  clusters  with  WebSphere  Event  Broker,  consider  the  following:  

For  SYSTEM.BROKER  queues:   

The  SYSTEM.BROKER  queues  are  defined  for  you  when  you  create  

WebSphere  Event  Broker  components,  and  are  not  defined  as  cluster  

queues.  Do  not  change  this  attribute.  

For  broker,  Configuration  Manager,  and  User  Name  Server  connectivity:  

If  you  define  the  queue  managers  that  support  your  brokers,  the  

Configuration  Manager,  and  the  User  Name  Server  to  a cluster,  you  can  

benefit  from  the  simplified  administration  provided  by  WebSphere  MQ  

clusters.  You might  find  this  particularly  relevant  for  the  brokers  in  a 

collective,  which  must  all  have  WebSphere  MQ  interconnections.  

For  message  flow  input  queues:  

If  you  define  an  input  queue  as  a cluster  queue,  consider  the  implications  

for  the  order  of  messages  or the  segments  of  a segmented  message.  The  

implications  are  the  same  as they  are  for  any  WebSphere  MQ  cluster  

queue.  In particular,  the  application  must  ensure  that,  if it is sending  

segmented  messages,  all  segments  are  processed  by  the  same  target  queue,  

and  therefore  by  the  same  instance  of the  message  flow  at the  same  broker.  

For  message  flow  output  queues:  

v   WebSphere  Event  Broker  always  specifies  MQOO_BIND_AS_Q_DEF  

when  it opens  a queue  for  output.  If  you  expect  segmented  messages  to 

be  put  to  an  output  queue,  or  want  a series  of messages  to  be  handled  

by  the  same  process,  you  must  specify  DEFBIND(OPEN)  when  you  

define  that  queue.  This  ensures  that  all  segments  of  a single  message,  or  

all  messages  within  a sequence,  are  put  to  the  same  target  queue  and  are  

processed  by  the  same  instance  of  the  receiving  application.  

v   If you  create  your  own  output  nodes,  specify  MQOO_BIND_AS_Q_DEF  

when  you  open  the  output  queue,  and  DEFBIND(OPEN)  when  you  

define  the  queue,  if you  need  to guarantee  message  order,  or  to  ensure  a 

single  target  for  segmented  messages.

For  publish/subscribe:  

v   If the  target  queue  for  a publication  is a cluster  queue,  you  must  deploy  

the  publish/subscribe  message  flow  to  all  the  brokers  on  queue  

managers  in  the  cluster.  However,  the  cluster  does  not  provide  any  of  

the  failover  function  to  the  broker  domain  topology  and  function.  If a 

broker  to  which  a message  is published,  or  a subscriber  registers,  is 

unavailable,  the  distribution  of the  publication  or  registration  is not  

taken  over  by  another  broker.  

 

Developing  message  flows 21



v   When  a client  registers  a subscription  with  a broker  that  is running  on  a 

queue  manager  that  is a member  of  a cluster,  the  broker  forwards  a 

proxy  registration  to  its  neighbors  within  the  broker  domain;  the  

registration  details  are  not  advertised  to  other  members  of  the  cluster.  

v   A client  might  choose  to  become  a clustered  subscriber,  so  that  its  

subscriber  queue  is one  of  a set  of  clustered  queues  that  receive  any  

given  publication.  In  this  case,  when  registering  a subscription,  use  the  

name  of  an  ″imaginary″ queue  manager  that  is associated  with  the  

cluster;  this  is not  the  queue  manager  to  which  the  publication  will  be  

sent,  but  an  alias  for  the  broker  to  use.  As  an  administrative  activity,  a 

blank  queue  manager  alias  definition  is made  for  this  queue  manager  on  

the  broker  that  satisfies  this  subscription  for  all  clustered  subscribers.  

When  the  broker  publishes  to  a subscriber  queue  that  names  this  queue  

manager,  resolution  of  the  queue  manager  name  results  in the  

publication  being  sent  to  any  queue  manager  that  hosts  the  subscriber  

cluster  queue,  and  only  one  clustered  subscriber  receives  the  publication.  

For  example,  if the  clustered  subscriber  queue  was  SUBS_QUEUE  and  

the  ″imaginary″ subscriber  queue  manager  was  CLUSTER_QM,  the  

broker  definition  would  be:  

DEFINE  QREMOTE(CLUSTER_QM)  RQMNAME(’  ’)  RNAME(’  ’)  

This  sends  broker  publications  for  SUBS_QUEUE  on  CLUSTER_QM  to  

one  instance  of  the  cluster  queue  named  SUBS_QUEUE  anywhere  in  the  

cluster.

To understand  more  about  clusters,  and  the  implications  of using  cluster  queues,  

see  the  WebSphere  MQ  Queue  Manager  Clusters  book.  

Using WebSphere  MQ shared queues for input and output 

(z/OS) 

On  z/OS  systems  you  can  define  WebSphere  MQ  shared  queues  as  input  and  

output  queues  for  message  flows.  

Use  the  WebSphere  MQ  for  z/OS  product  facilities  to define  these  queues  and  

specify  that  they  are  shared.  

For  more  information  about  configuring  on  z/OS,  refer  to  the  WebSphere  MQ  for  

z/OS  Concepts  and  Planning  Guide. 

Using  shared  queues  helps  to provide  failover  support  between  different  images  

running  WebSphere  Event  Broker  on  a sysplex.  

You cannot  use  shared  queues  for  broker  or  User  Name  Server  component  queues  

such  as  SYSTEM.BROKER.CONTROL.QUEUE.  

Shared  queues  are  available  only  on  z/OS.  

Converting data with message flows 

Data  conversion  is  the  process  by  which  data  is transformed  from  the  format  

recognized  by  one  operating  system  into  that  recognized  by  a second  operating  

system  with  different  characteristics  such  as  numeric  order. 

 

22 Message  Flows



If  you  are  using  a network  of systems  that  use  different  methods  for  storing  

numeric  values,  or  you  need  to  communicate  between  users  who  view  data  in  

different  code  pages,  you  must  consider  how  to  implement  data  conversion.  

Numeric  order  

For  numeric  and  encoding  aspects,  consider:  

v   Big  Endian  versus  Little  Endian  

v   Encoding  values  in WebSphere  MQ  (the  Encoding  field  in  the  MQMD)  

Encoding  values  are  system  specific.  For  example,  Windows  usually  has  

an  encoding  of 546,  hexadecimal  value  X’00000222’.  The  three  final  

hexadecimal  digits  identify:  

1.   The  float  number  format  

This  value  can  be  1 (IEEE  format  byte  order  normal),  2 (IEEE  format  

byte  order  reversed),  or  3 (zSeries  format  byte  order  normal).  Note  

that  operations  on  floating  point  numbers,  whether  IEEE  or  z/Series  

(S/390)  format,  are  subject  to  rounding  error.  

2.   The  packed  decimal  number  format  

This  value  can  be  1 (byte  order  normal)  or  2 (byte  order  reversed).  

3.   The  hexadecimal  number  format  

This  value  can  be  1 (byte  order  normal)  or  2 (byte  order  reversed).  

The  bit  order  within  a byte  is never  reversed.  Byte  order  normal  means  

that  the  least  significant  digit  occupies  the  highest  address.  

Systems  that  process  numbers  in  normal  byte  order  are  Big  Endian  

(z/Series,  iSeries,  Linux,  and  UNIX).  Systems  that  process  numbers  in 

reversed  byte  order  are  Little  Endian  (mainly  PCs).  

For  further  details  about  numeric  order, see  Appendix  D,  Machine  

Encodings,  in  the  WebSphere  MQ  Application  Programming  Reference.

Code  page  conversions   

Code  page  conversion  might  be  required  for  any  of the  following  reasons:  

v   ASCII  versus  EBCDIC  

v   National  languages  

v   Operating  system  specific  code  pages

For  more  information  about  code  page  support  in  WebSphere  MQ,  see  the  

WebSphere  MQ  Application  Programming  Reference  book.

 When  you  use  WebSphere  Event  Broker,  you  can  use  the  data  conversion  facilities  

of  WebSphere  MQ.  

WebSphere  MQ  facilities  

 Headers  and  message  body  are  converted  according  to the  MQMD  values,  

and  other  header  format  names.  You might  have  to  set  up  data  conversion  

exits  to  convert  the  body  of  your  messages.  

 When  you  use  WebSphere  MQ  facilities,  the  whole  message  is converted  to 

the  specified  encoding  and  CCSID,  according  to  the  setting  of the  format  in 

the  WebSphere  MQ  header.  

 For  more  detail  about  data  conversion  using  WebSphere  MQ  facilities,  see  

Appendix  F, Data  Conversion,  in  the  WebSphere  MQ  Application  

Programming  Reference.

 

Developing  message  flows 23

|
|
|
|



Configuring message flows for data conversion 

If you  exchange  messages  between  applications  that  run on  systems  that  are  

incompatible  in  some  way,  you  can  configure  your  system  to provide  data  

conversion  as  the  message  passes  through  the  broker.  Data  conversion  might  be 

necessary  if either  of  the  following  two  values  are  different  on  the  sending  and  

receiving  systems:  

1.   CCSID.  The  Coded  Character  Set  Identifier  refers  to  a set  of coded  characters  

and  their  code  point  assignments.  WebSphere  Event  Broker  can  process  and  

construct  application  messages  in  any  code  page  for  which  WebSphere  MQ  

provides  conversion  to  and  from  Unicode,  on  all  operating  systems.  For  more  

information  about  code  page  support,  see  the  WebSphere  MQ  Application  

Programming  Reference.  

This  behavior  might  be  affected  by  the  use  of other  products  in  conjunction  

with  WebSphere  Event  Broker.  Check  the  documentation  for  other  products,  

including  any  databases  that  you  use,  for  further  code  page  support  

information.  

2.   Encoding.  This  defines  the  way  in  which  a machine  encodes  numbers,  that  is 

binary  integers,  packed-decimal  integers,  and  floating  point  numbers.  Numbers  

that  are  represented  as  characters  are  handled  in the  same  way  as all  other  

string  data.

If  the  native  CCSID  and  encoding  on  the  sending  and  receiving  systems  are  the  

same,  you  do  not  need  to invoke  data  conversion  processes.  

WebSphere  Event  Broker  and  WebSphere  MQ  provide  data  conversion  facilities  to 

support  message  exchange  between  unlike  systems.  Your choice  of which  facilities  

to  use  depends  on  the  characteristics  of  the  messages  that  are  processed  by  the  

message  flow:  

v   Messages  that  contain  text  only  

v   Message  that  include  numerics

Messages  that  contain  text  only  

 Read  this  section  if your  messages  are  WebSphere  MQ  messages  that  

contain  all  text  (character  data  or  string).  If  WebSphere  MQ  supports  the  

systems  on  which  both  sending  and  receiving  applications  are  running  for  

data  conversion,  use  WebSphere  MQ  facilities.  This  provides  the  most  

efficient  data  conversion  option.  

 The  default  behavior  of  WebSphere  MQ  is to put  messages  to  queues  

specifying  the  local  system  CCSID  and  encoding.  Applications  issuing  

MQGET  can  request  that  the  queue  manager  provides  conversion  to  their  

local  CCSID  and  encoding  as  part  of get  processing.  

 To use  this  option:  

1.   Design  messages  to  be  text-only.  If  you  are  using  COBOL,  move  

numeric  fields  to USAGE  DISPLAY  to  put  them  into  string  form.  

2.   Set  the  Format  field  in  the  MQMD  to  MQFMT_STRING  (value  

MQSTR).  

3.   Issue  MQGET  with  MQGMO_CONVERT  in  the  receiving  application.  If 

you  prefer,  you  can  convert  when  the  message  is received  by  the  

broker,  by  setting  the  Convert  property  of the  MQInput  node  to  yes  (by  

selecting  the  check  box).

If  you  require  more  sophisticated  data  conversion  than  WebSphere  MQ  

provides  in  this  way  (for  example,  to  an  unsupported  code  page),  use  

 

24 Message  Flows



WebSphere  MQ  data  conversion  exits.  For  more  information  about  these,  

see  the  WebSphere  MQ  Application  Programming  Reference. 

Messages  that  include  numerics  

 Read  this  section  if your  messages  include  numeric  data,  or  are  text  only  

but  are  not  WebSphere  MQ  messages.  If your  messages  are  WebSphere  MQ  

messages  that  include  numeric  data,  you  can  use  WebSphere  MQ  data  

conversion  exits.  If  the  messages  are  not  WebSphere  MQ  messages  and  are  

text  only,  or  text  and  numeric,  you  must  use  procedures  invoked  by  your  

own  sending  or  receiving  applications.  

1.   Define  the  output  message  in  the  MRM  domain.  You can  create  this  

definition  in one  of  the  following  ways:  

v   Import  an  external  message  definition  (for  example  a C header  or  

COBOL  copybook).  

v   Create  the  message  model  in  the  message  definition  editor.
2.   Configure  a message  flow  to  receive  and  process  this  message:  

a.   If  you  include  an  MQInput  node,  do  not  request  conversion  by this  

node.  

b.   Include  a Compute  node  in  the  message  flow  to create  the  output  

message  with  the  required  content:  

v   If the  output  message  is a WebSphere  MQ  message,  code  ESQL  in 

the  Compute  node  to set  the  CCSID  and  encoding  for  the  target  

system  in  the  MQMD.  

For  example,  to  set  values  for  a target  z/OS  system  running  with  

CCSID  of 37  and  encoding  of 785:  

SET  OutputRoot.MQMD.CodedCharSetId  = 37;  

SET  OutputRoot.MQMD.Encoding  = 785;  

v   If the  output  message  is not  a WebSphere  MQ  message,  code  

ESQL  in  the  Compute  node  to  set  the  CCSID  and  encoding  for  

the  target  system  in  the  Properties  folder.

Ensuring that messages are not lost 

It  is  important  to  safeguard  that  messages  that  flow  through  your  broker  domain.  

This  is  true of  both  application-generated  messages  and  those  used  internally  for  

inter-component  communication.  Messages  used  internally  between  components  

always  use  the  WebSphere  MQ  protocol.  Application  messages  can  use  all  

supported  transport  protocols.  

For  application  and  internal  messages  travelling  across  WebSphere  MQ,  two  

techniques  protect  against  message  loss:  

v   Message  persistence  

If  a message  is persistent,  WebSphere  MQ  ensures  that  it  is not  lost  when  a 

failure  occurs,  by  copying  it to  disk.  

v   Syncpoint  control  

An  application  can  request  that  a message  is processed  in  a synchronized  

unit-of-work  (UOW)

For  more  information  about  how  to use  these  options,  refer  to  the  WebSphere  MQ  

System  Administration  Guide. 

 

Developing  message  flows 25



Internal messages 

WebSphere  Event  Broker  components  use  WebSphere  MQ  messages  to  

communicate  events  and  data  between  broker  processes  and  subsystems,  and  the  

Configuration  Manager  and  User  Name  Server.  The  components  ensure  that  the  

WebSphere  MQ  features  are  exploited  to  protect  against  message  loss.  You do  not  

need  to  take  any  additional  steps  to  configure  WebSphere  MQ  or  WebSphere  Event  

Broker  to  protect  against  loss  of internal  messages.  

Application messages 

If delivery  of  application  messages  is  critical,  you  must  design  application  

programs  and  the  message  flows  that  they  use  to ensure  that  messages  are  not  lost.  

The  techniques  used  depend  on  the  protocol  used  by  the  applications.  

WebSphere  MQ  Enterprise  Transport  and  WebSphere  MQ  Mobile  Transport  

If  you  are  using  the  built-in  input  nodes  that  accept  messages  across  the  

WebSphere  MQ  or  WebSphere  MQ  Everyplace  protocols,  you  can  use  the  

following  guidelines  and  recommendations:  

v   Using  persistent  messages  

WebSphere  MQ  messaging  products  provide  message  persistence,  which  

defines  the  longevity  of  the  message  in  the  system  and  guarantees  

message  integrity.  Nonpersistent  messages  are  lost  in  the  event  of system  

or  queue  manager  failure.  Persistent  messages  are  always  recovered  if a 

failure  occurs.  

You can  control  message  persistence  in  the  following  ways:  

–   Program  your  applications  that  put  messages  to  a queue  using  the  

MQI  or  AMI  to  indicate  that  the  messages  are  persistent.  

–   Define  the  input  queue  with  message  persistence  as  the  default  

setting.  

–   Configure  the  output  node  to  handle  persistent  messages.  

–   Program  your  subscriber  applications  to  request  message  persistence.  

When  an  input  node  reads  a message  is read  from  an  input  queue,  the  

default  action  is to  use  the  persistence  defined  in  the  WebSphere  MQ  

message  header  (MQMD),  that  has  been  set  either  by  the  application  

creating  the  message,  or  by  the  default  persistence  of  the  input  queue.  

The  message  retains  this  persistence  throughout  the  message  flow, unless  

it is  changed  in  a subsequent  message  processing  node.  

You can  override  the  persistence  value  of  each  message  when  the  

message  flow  terminates  at an  output  node.  This  node  has  a property  

that  allows  you  to  specify  the  message  persistence  of  each  message  

when  it is put  to  the  output  queue,  either  as  the  required  value,  or  as  a 

default  value.  If  you  specify  the  default,  the  message  takes  the  

persistence  value  defined  for  the  queues  to  which  the  messages  are  

written.  

If a message  passes  through  a Publication  node,  the  persistence  of  

messages  sent  to subscribers  is determined  by  the  subscribers’  

registration  options.  If a subscriber  has  requested  persistent  message  

delivery,  and  is authorized  to  do  so  by  explicit  or  implicit  (inherited)  

ACL,  the  message  is delivered  persistently  regardless  of  its  existing  

persistence  property.  Also,  if the  user  has  requested  nonpersistent  

message  delivery,  the  message  is delivered  nonpersistent  regardless  of  its  

existing  persistence  property.  

v   Processing  messages  under  syncpoint  control  

 

26 Message  Flows



The  default  action  of a message  flow  is to process  incoming  messages  

under  syncpoint  in  a broker-controlled  transaction.  This  means  that  a 

message  that  fails  to  be  processed  for  any  reason  is backed  out  by the  

broker.  Because  it was  received  under  syncpoint,  the  failing  message  is 

reinstated  on  the  input  queue  and  can  be  processed  again.  If the  

processing  fails,  the  error  handling  procedures  that  are  in  place  for  this  

message  flow  (defined  either  by  how  you  have  configured  the  message  

flow, or  by  the  broker)  are  executed.  

For  full  details  of input  node  processing,  see  “Managing  errors  in  the  

input  node”  on  page  29.

WebSphere  MQ  Telemetry  Transport  

If  you  are  using  the  built-in  input  node  SCADAInput  that  accepts  

messages  from  telemetry  devices  across  the  MQIsdp  protocol,  this  protocol  

does  not  have  a concept  of  queues.  Clients  connect  to a SCADAInput  node  

by  specifying  the  port  number  on  which  the  node  is  listening.  Messages  

are  sent  to  clients  using  a clientId. However,  you  can  specify  a maximum  

QoS  (Quality  of  Service)  within  a SCADA  subscription  message,  which  is 

similar  to  persistence:  

v   QoS0  Nonpersistent.  

v   QoS1  Persistent,  but  might  be  delivered  more  than  once  

v   QoS2  Once  and  once  only  delivery

If  a persistent  SCADA  message  is published,  it might  be  downgraded  to  

the  highest  level  that  the  client  can  accept.  In some  circumstances  this  

might  mean  that  the  message  becomes  nonpersistent.  

WebSphere  MQ  Real-time  Transport  and  WebSphere  MQ  Multicast  Transport  

If  you  are  using  the  built-in  input  nodes  Real-timeInput  and  

Real-timeOptimizedFlow  that  accept  messages  from  JMS  and  multicast  

applications,  no  facilities  are  available  to  protect  against  message  loss.  You 

can,  however,  provide  recovery  procedures  by  configuring  the  message  

flow  to  handle  its  own  errors.  

Other  transports  and  protocols  

For  user-defined  input  nodes  that  receive  messages  from  another  transport  

protocol,  you  must  rely  on  the  support  provided  by  that  transport  protocol,  

or  use  the  recovery  procedures  provided  by  the  supplier  of the  

user-defined  nodes.

Handling errors in message flows 

The  broker  provides  basic  error  handling  for  all  your  message  flows.  If  basic  

processing  is  not  sufficient,  and  you  want  to  take  specific  action  in  response  to  

certain  error  conditions  and  situations,  you  can  enhance  your  message  flows  to  

provide  your  own  error  handling.  

The  options  that  you  can  use  to  do  this  are  quite  complex  in  some  cases.  The  

options  that  are  provided  for  MQInput  nodes  are  extensive  because  these  nodes  

deal  with  persistent  messages  and  transactions.  MQInput  is also  affected  by  

configuration  options  for  WebSphere  MQ.  

Because  you  can  decide  to  handle  different  errors  in  different  ways,  there  are  no  

fixed  procedures  to  describe.  This  section  provides  information  about  the  principles  

of  error  handling,  and  the  options  that  are  available,  and  you  must  decide  what  

combination  of  choices  that  you  need  in  each  situation  based  on  the  details  that  are  

provided  in  this  section.  

 

Developing  message  flows 27



You can  choose  one  or  more  of these  options  in  your  message  flows:  

v   Connect  the  failure  terminal  of  any  node  to a sequence  of  nodes  that  processes  

the  node’s  internal  exception  (the  fail  flow).  

v   Connect  the  catch  terminal  of  the  input  node  to a sequence  of nodes  that  

processes  exceptions  that  are  generated  beyond  it  (the  catch  flow).  

v   Ensure  that  all  messages  received  by  an  MQInput  node  are  processed  within  a 

transaction,  or  are  not.  

v   Ensure  that  all  messages  received  by  an  MQInput  node  are  persistent,  or  are  not.

If  you  include  user-defined  nodes  in your  message  flow, you  must  refer  to  the  

information  provided  with  the  node  to  understand  how  you  might  handle  errors  

with  these  nodes.  The  descriptions  in  this  section  cover  only  the  built-in  nodes.  

When  you  design  your  error  handling  approach,  consider  the  following  factors:  

v   Most  of  the  built-in  nodes  have  failure  terminals.  The  exceptions  are  Input,  

Output,  Passthrough,  Publication,  Real-timeInput,  and  Real-timeOptimizedFlow.  

When  an  exception  is  detected  within  a node,  the  message  and  the  exception  

information  are  propagated  to  the  node’s  failure  terminal.  If the  node  does  not  

have  a failure  terminal,  or  it is not  connected,  the  broker  throws  an  exception  

and  returns  control  to  the  input  node.  

If  an  MQinput  node  detects  an  internal  error, its  behavior  is  slightly  different;  if 

the  failure  terminal  is not  connected,  it attempts  to  put  the  message  to  the  input  

queue’s  backout  requeue  queue,  or  (if  that  is not  defined)  to the  dead  letter  

queue  of  the  broker’s  queue  manager,  

For  more  information,  see  the  following:  

–   “Handling  MQInput  errors”  on  page  31
v    The  MQInput,  and  SCADAInput  nodes  have  catch  terminals.  

A  message  is  propagated  to  a catch  terminal  only  if it has  first  been  propagated  

beyond  the  node  (for  example,  to  the  nodes  connected  to  the  out  terminal).  

v   When  a message  is propagated  to  the  failure  or  catch  terminal,  the  node  creates  

and  populates  a new  ExceptionList  with  an  exception  that  represents  the  error  

that  has  occurred.  The  ExceptionList  is propagated  as  part  of  the  message  tree.  

v   The  MQInput  node  has  additional  processing  for  transactional  messages  (other  

input  nodes  do  not  handle  transactional  messages).  

v   If  you  include  a Trace  node  that  specifies  $Root  or  $Body, the  complete  message  

is parsed.  This  might  generate  parser  errors  that  are  not  otherwise  detected.

The  general  principles  of  error  handling  are:  

v   If  you  connect  the  catch  terminal  of  the  input  node,  you  are  indicating  that  the  

flow  handles  all  exceptions  that  are  generated  anywhere  in  the  out  flow. The  

broker  performs  no  rollback  and  takes  no  action  unless  there  is an  exception  on  

the  catch  flow. If you  want  any  rollback  action  after  an  exception  has  been  raised  

and  caught,  you  must  provide  this  in  the  catch  flow. 

v   If  you  do  not  connect  the  catch  terminal  of the  MQInput  node,  you  can  connect  

the  failure  terminal  and  provide  a fail  flow  to  handle  exceptions  generated  by  

the  node.  The  fail  flow  is invoked  immediately  when  an  exception  occurs  in the  

node.  

The  fail  flow  is also  invoked  if an  exception  is generated  beyond  the  MQInput  

node  (in  either  out  or  catch  flows),  the  message  is transactional,  and  the  

reinstatement  of the  message  on  the  input  queue  causes  the  backout  count  to  

reach  the  backout  threshold.  

 

28 Message  Flows



The  SCADAInput  node  does  not  propagate  the  message  to  the  failure  terminal  if 

an  exception  is generated  beyond  the  node  and  you  have  not  connected  its  catch  

terminal.  

v   If  a node  propagates  a message  to  a catch  flow, and  another  exception  occurs  

that  returns  control  to  the  same  node  again,  the  node  handles  the  message  as 

though  the  catch  terminal  is not  connected.  

v   If  you  do  not  connect  either  failure  or  catch  terminals  of the  input  node,  the  

broker  provides  default  processing  (which  varies  with  the  type  of input  node).  

v   If  you  have  a common  procedure  for  handling  particular  errors,  you  might  find  

it appropriate  to  create  a subflow  that  includes  the  sequence  of nodes  required.  

Include  this  subflow  wherever  you  need  that  action  to be  taken.

The  Error  Handler  sample  demonstrates  how  to  use  an  error  handling  routine  to 

trap  information  about  errors  and  to store  that  information  in  a database.  The  error  

handling  routine  is a subflow  that  you  can  add,  unchanged,  to  any  message  flow. 

The  sample  also  demonstrates  how  to configure  message  flows  to  control  

transactionality;  in  particular,  the  use  of globally  coordinated  transactions  to ensure  

overall  data  integrity.  

Connecting failure terminals 

When  a node  that  has  a failure  terminal  detects  an  internal  error, it propagates  the  

message  to  that  terminal.  If  it does  not  have  a failure  terminal,  or if you  have  not  

connected  the  failure  terminal,  the  broker  generates  an  exception.  

The  nodes  sometimes  generate  errors  that  you  can  predict,  and  it is in  these  cases  

that  you  might  want  to  consider  connecting  the  failure  terminal  to  a sequence  of  

nodes  that  can  take  sensible  actions  in  response  to  the  expected  errors.  

Examples  of  expected  errors  are:  

v   Temporary  errors  when  the  input  node  retrieves  the  message.  

v   Messages  with  an  internal  or  format  error  that  cannot  be  recognized  or  

processed  by  the  input  node.

You  can  also  connect  the  failure  terminal  if you  do  not  want  WebSphere  MQ  to  

retry  a message  or  put  it to  a backout  or  dead  letter  queue.  

Managing errors in the input node 

When  you  design  your  message  flow, consider  which  terminals  on  the  input  node  

to  connect:  

v   If  the  node  detects  an  error, it always  propagates  the  message  to  the  failure  

terminal  if the  node  has  one  and  if you  have  connected  a fail  flow. 

v   If  you  connect  the  catch  terminal  (if  the  node  has  one),  this  indicates  that  you  

want  to  handle  all  exceptions  that  are  generated  in  the  out  flow. This  handles  

errors  that  can  be  expected  in  the  out  flow. The  broker  does  not  take  any  action  

unless  there  is  an  exception  on  the  catch  flow  and  the  message  is transactional.  

Connect  the  failure  terminal  to handle  this  case  if you  choose.  

v   If  you  do  not  connect  the  catch  terminal,  or  the  node  does  not  have  a catch  

terminal,  the  broker  provides  default  processing.  This  depends  on  the  node  and  

whether  the  message  is transactional.  Processing  for  non-transactional  messages  

is described  in  this  topic.  Refer  to  “Handling  MQInput  errors”  on  page  31  for  

details  of  how  these  nodes  handle  transactional  messages  (other  input  nodes  do  

not  support  transactional  messages).

 

Developing  message  flows 29

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.res


All  input  nodes  process  non-transactional,  non-persistent  messages.  The  built-in  

input  nodes  handle  failures  and  exceptions  associated  with  these  messages  in  this  

way:  

v   If  the  node  detects  an  internal  error:  

–   If you  have  not  connected  the  failure  terminal,  the  node  logs  the  error  in  the  

local  error  log  and  discards  the  message.  

The  Real-timeInput  and  Real-timeOptimizedFlow  nodes  retry  once  before  

they  discard  the  message;  that  is,  they  retrieve  the  message  again  and  attempt  

to  process  it.  

–   If you  have  connected  the  failure  terminal,  you  are  responsible  for  handling  

the  error  in the  fail  flow. The  broker  creates  a new  ExceptionList  to  represent  

the  error  and  this  is propagated  to  the  failure  terminal  as  part  of the  message  

tree,  but  neither  the  node  nor  the  broker  provide  any  further  failure  

processing.
v   If  the  node  has  successfully  propagated  the  message  to  the  out  terminal  and  a 

later  exception  results  in  the  message  being  returned  to  the  input  node:  

–   If you  have  not  connected  the  catch  terminal  or  the  node  does  not  have  a 

catch  terminal,  the  node  logs  the  error  in the  local  error  log  and  discards  the  

message.  

–   If you  have  connected  the  catch  terminal,  you  are  responsible  for  handling  the  

error  in  the  catch  flow. The  broker  creates  a new  ExceptionList  to represent  

the  error  and  this  is propagated  to  the  catch  terminal  as  part  of  the  message  

tree,  but  neither  the  node  nor  the  broker  provide  any  further  exception  

processing.
v   If  the  node  has  already  propagated  the  message  to  the  catch  terminal  and  an  

exception  is  thrown  in  the  catch  flow:  

–   If you  have  not  connected  the  failure  terminal,  or  the  input  node  does  not  

have  a failure  terminal,  the  node  logs  the  error  in the  local  error  log  and  

discards  the  message.  

–   If you  have  connected  the  failure  terminal,  you  are  responsible  for  handling  

the  error  in the  fail  flow. The  broker  creates  a new  ExceptionList  to  represent  

the  error  and  this  is propagated  to  the  failure  terminal  as  part  of the  message  

tree,  but  neither  the  node  nor  the  broker  provide  any  further  failure  

processing.  

The  SCADAInput  node  does  not  propagate  the  message  to  the  failure  

terminal  if an  exception  is  generated  in  the  catch  flow. The  node  logs  the  

error  in  the  local  error  log  and  discards  the  message.
v    If  the  node  has  propagated  the  message  to the  failure  terminal  and  an  exception  

is thrown  in  the  fail  flow, the  node  logs  the  error  in  the  local  error  log  and  

discards  the  message.

This  action  is  summarized  in  the  table  below:  

 Error  event  Failure  terminal  

connected  

Failure  terminal  

not  connected  

Catch  terminal  

connected  

Catch  terminal  

not  connected  

Node  detects  

internal  error  

Fail  flow  

handles  the  error  

Node  logs  the  

error  and  

discards  the 

message  

Not  applicable  Not  applicable  

 

30 Message  Flows



Error  event  Failure  terminal  

connected  

Failure  terminal  

not  connected  

Catch  terminal  

connected  

Catch  terminal  

not  connected  

Node  propagates  

message  to out  

terminal,  

exception  occurs  

in out  flow  

Not  applicable  Not  applicable  Catch  flow  

handles  the  error  

Node  logs  the 

error  and  

discards  the 

message  

Node  propagates  

message  to catch  

terminal,  

exception  occurs  

in catch  flow  

Fail  flow  

handles  the  error  

(not 

SCADAInput)  

Node  logs  the  

error  and  

discards  the  

message  

Not  applicable  Not  applicable  

Node  propagates  

message  to 

failure  terminal,  

exception  occurs  

in fail flow  

Not  applicable  Not  applicable  Node  logs  the  

error  and  

discards  the  

message  

Node  logs  the 

error  and  

discards  the 

message

  

Handling  MQInput  errors:    

The  MQInput  node  takes  the  following  actions  when  it handles  errors  with  

persistent  and  transactional  messages.  Errors  encountered  with  non-transactional  

messages  are  handled  as  described  in  “Managing  errors  in  the  input  node”  on  

page  29.  

v   The  MQInput  node  detects  an  internal  error  in  the  following  situations:  

–   A  message  validation  error  occurs  when  the  associated  message  parser  is 

initialized.  

–   A  warning  is  received  on  an  MQGET.  

–   The  backout  threshold  is reached  when  the  message  is rolled  back  to the  

input  queue.
v    If  the  MQInput  node  detects  an  internal  error, one  of  the  following  actions  occur:  

–   If  you  have  not  connected  the  Failure  terminal,  the  MQInput  node  attempts  to  

put  the  message  to the  input  queue’s  backout  requeue  queue,  or  (if  that  is not  

defined)  to  the  dead  letter  queue  of the  broker’s  queue  manager.  If  the  put  

attempt  fails,  the  message  is rolled  back  to  the  input  queue.  The  MQInput  

node  writes  the  original  error  and  the  MQPUT  error  to the  local  error  log.  

The  MQInput  node  now  invokes  the  retry  logic,  described  in  “Retry  

processing”  on  page  32.  

–   If  you  have  connected  the  Failure  terminal,  you  are  responsible  for  handling  

the  error  in  the  flow  connected  to  the  Failure  terminal.  The  broker  creates  a 

new  ExceptionList  to  represent  the  error  and  this  is propagated  to the  Failure  

terminal  as  part  of  the  message  tree,  but  neither  the  MQInput  node  nor  the  

broker  provide  any  further  failure  processing.
v    If  the  MQInput  node  has  successfully  propagated  the  message  to  the  out  

terminal  and  an  exception  is thrown  in  the  out  flow, the  message  is returned  to  

the  MQInput  node:  

–   If  you  have  not  connected  the  Catch  terminal,  the  message  is  rolled  back  to  

the  input  queue.  The  MQInput  node  writes  the  error  to  the  local  error  log  and  

invokes  the  retry  logic,  described  in  “Retry  processing”  on  page  32.  

–   If  you  have  connected  the  Catch  terminal,  you  are  responsible  for  handling  

the  error  in  the  flow  connected  to  the  Catch  terminal.  The  broker  creates  a 

new  ExceptionList  to  represent  the  error  and  this  is propagated  to the  Catch  

 

Developing  message  flows 31



terminal  as  part  of  the  message  tree,  but  neither  the  MQInput  node  nor  the  

broker  provide  any  further  failure  processing.
v    If  the  MQInput  node  has  already  propagated  the  message  to the  Catch  terminal  

and  an  exception  is thrown  in  the  flow  connected  to  the  Catch  terminal,  the  

message  is returned  to  the  MQInput  node:  

–   The  MQInput  node  writes  the  error  to  the  local  error  log.  

–   The  message  is  rolled  back  to  the  input  queue.
v    If  the  MQInput  node  has  already  propagated  the  message  to the  Failure  terminal  

and  an  exception  is thrown  in  the  flow  connected  to  the  Failure  terminal,  the  

message  is returned  to  the  MQInput  node  and  rolled  back  to the  input  queue.  

The  MQInput  node  writes  the  error  to  the  local  error  log  and  invokes  the  retry  

logic,  described  in  “Retry  processing.”  The  message  is not  propagated  to  the  

Catch  terminal,  even  if that  is  connected.

This  action  is  summarized  in  the  table  below:  

 Error  event  Failure  terminal  

connected  

Failure  terminal  

not  connected  

Catch  terminal  

connected  

Catch  terminal  

not  connected  

Node  detects  

internal  error  

Flow  connected  

to the  Failure  

terminal  handles  

the  error  

Message  put  to 

alternative  

queue;  node  

retries  if the  put  

fails  

Not  applicable  Not  applicable  

Node  propagates  

message  to  out  

terminal,  

exception  occurs  

in out  flow  

Not  applicable  Not  applicable  Flow  connected  

to the  Catch  

terminal  handles  

the  error  

Node  retries  

Node  propagates  

message  to  

Catch  terminal,  

exception  occurs  

in flow  

connected  to the  

Catch  terminal  

Error  logged,  

message  rolled  

back  

Error  logged,  

message  rolled  

back  

Not  applicable  Not  applicable  

Node  propagates  

message  to  

Failure  terminal,  

exception  occurs  

in flow  

connected  to the  

Failure  terminal  

Not  applicable  Not  applicable  Node  retries  Node  retries

  

Retry  processing:    

The  node  attempts  retry  processing  when  a message  is rolled  back  to the  input  

queue.  It checks  whether  the  message  has  been  backed  out  before,  and  if it has,  

whether  the  backout  count  has  reached  (equalled)  the  backout  threshold.  The  

backout  count  for  each  message  is maintained  by  WebSphere  MQ  in  the  MQMD.  

You specify  (or  allow  to  default  to  0)  the  backout  threshold  attribute  BOTHRESH  

when  you  create  the  queue.  If  you  accept  the  default  value  of 0,  the  node  increases  

this  to 1. The  node  also  sets  the  value  to 1 if it cannot  detect  the  current  value.  

This  means  that  if a message  has  not  been  backed  out  before,  it is backed  out  and  

retried  at  least  once.  

 

32 Message  Flows



1.   If the  node  has  propagated  a message  to the  out  terminal  many  times  following  

repeated  failed  attempts  in  the  out  flow, and  the  number  of retries  has  reached  

the  backout  threshold  limit,  it attempts  to  propagate  the  message  through  the  

Failure  terminal  if that  is  connected.  If you  have  not  connected  the  Failure  

terminal,  the  node  attempts  to put  the  message  to  another  queue.  

If a failure  occurs  beyond  the  Failure  terminal,  further  retries  are  made  until  

the  backout  count  field  in  the  MQMD  reaches  twice  the  backout  threshold  set  

for  the  input  queue.  When  this  limit  is reached,  the  node  attempts  to  put  the  

message  to  another  queue.  

2.   If the  backout  threshold  has  not  been  reached,  the  node  gets  the  message  from  

the  queue  again.  If this  fails,  this  is handled  as  an  internal  error  (described  

above).  If  it succeeds,  the  node  propagates  the  message  to the  out  flow. 

3.   If the  backout  threshold  has  been  reached:  

v   If  you  have  connected  the  Failure  terminal,  node  propagates  the  message  to 

that  terminal.  You must  handle  the  error  on  the  flow  connected  to  the  Failure  

terminal.  

v   If  you  have  not  connected  the  Failure  terminal,  the  node  attempts  to put  the  

message  on  an  available  queue,  in  order  of preference:  

a.   The  message  is put  on  the  input  queue’s  backout  requeue  name  (queue  

attribute  BOQNAME), if one  is defined.  

b.   If  the  backout  queue  is not  defined,  or  it cannot  be  identified  by  the  

node,  the  message  is put  on  the  dead  letter  queue  (DLQ),  if one  is 

defined.  (If  the  broker’s  queue  manager  has  been  defined  by  the  

mqsicreatebroker  command,  a DLQ  with  a default  name  of  

SYSTEM.DEAD.LETTER.QUEUE  has  been  defined  and  is  enabled  for  this  

queue  manager.)  

c.   If  the  message  cannot  be  put  on  either  of  these  queues  because  there  is an  

MQPUT  error  (including  queue  does  not  exist),  or  because  they  cannot  be  

identified  by  the  node,  it cannot  be  handled  safely  without  risk  of  loss.  

The  message  cannot  be  discarded,  therefore  the  message  flow  continues  

to  attempt  to  backout  the  message.  It records  the  error  situation  by  

writing  errors  to the  local  error  log.  A  second  indication  of  this  error  is 

the  continual  incrementing  of the  BackoutCount  of the  message  in  the  

input  queue.  

If  this  situation  has  occurred  because  neither  queue  exists,  you  can  define  

one  of  the  backout  queues  mentioned  above.  If  the  condition  preventing  

the  message  from  being  processed  has  cleared,  you  can  temporarily  

increase  the  value  of  the  BOTHRESH  attribute.  This  forces  the  message  

through  normal  processing.
4.   If twice  the  backout  threshold  has  been  reached  or  exceeded,  the  node  attempts  

to  put  the  message  on  an  available  queue,  in order  of  preference,  as  defined  in  

the  previous  step.

Handling  message  group  errors:    

WebSphere  MQ  supports  message  groups.  You can  specify  that  a message  belongs  

to  a group  and  its  processing  is then  completed  with  reference  to  the  other  

messages  in  the  group  (that  is,  either  all  messages  are  committed  or  all  messages  

are  rolled  back).  When  you  send  grouped  messages  to  a broker,  this  condition  is 

upheld  if you  have  configured  the  message  flow  correctly,  and  errors  do  not  occur  

during  group  message  processing.  

 

Developing  message  flows 33



To configure  the  message  flow  to  handle  grouped  messages  correctly,  follow  the  

actions  described  in  the  “MQInput  node”  on  page  142.  However,  correct  processing  

of  the  message  group  cannot  be  guaranteed  if an  error  occurs  while  one  of  the  

messages  is  being  processed.  

If you  have  configured  the  MQInput  node  as  described,  under  normal  

circumstances  all  messages  in  the  group  are  processed  in  a single  unit  of  work  

which  is  committed  when  the  last  message  in  the  group  has  been  successfully  

processed.  However,  if an  error  occurs  before  the  last  message  in  the  group  is 

processed,  the  unit  of  work  that  includes  the  messages  up  to  and  including  the  

message  that  generates  the  error  is subject  to  the  error  handling  defined  by  the  

rules documented  here,  which  might  result  in  the  unit  of  work  being  backed  out.  

However,  any  of  the  remaining  messages  within  the  group  might  be  successfully  

read  and  processed  by  the  message  flow, and  therefore  are  handled  and  committed  

in  a new  unit  of  work.  A  commit  is issued  when  the  last  message  is encountered  

and  processed.  Therefore  if an  error  occurs  within  a group,  but  not  on  the  first  or  

last  message,  it is possible  that  part  of  the  group  is backed  out  and  another  part  

committed.  

If your  message  processing  requirements  demand  that  this  situation  is handled  in  a 

particular  way,  you  must  provide  additional  error  handling  to  handle  errors  within  

message  groups.  

Managing message flows 

This  section  contains  information  on  managing  message  flows:  

v   “Creating  a message  flow  project”  

v   “Deleting  a message  flow  project”  on  page  36  

v   “Creating  a broker  schema”  on  page  37  

v   “Creating  a message  flow”  on  page  37  

v   “Opening  an  existing  message  flow”  on  page  38  

v   “Copying  a message  flow  using  copy”  on  page  39  

v   “Renaming  a message  flow”  on  page  39  

v   “Moving  a message  flow”  on  page  40  

v   “Deleting  a message  flow”  on  page  41  

v   Displaying  version  and  keyword  information  

v   “Saving  a message  flow”  on  page  43  

To learn  more  about  message  flows,  try  importing  the  Airline  Reservations  sample  

(or  another  sample  from  the  Samples  Gallery)  and  explore  the  samples  message  

flow  resources;  try  creating,  deleting,  or  renaming  the  resources.  

For  a basic  introduction  to  developing  message  flows,  see  the  WebSphere  Message  

Broker  Basics  IBM  Redbook.  

Creating a message flow project 

Before  you  start:  

Read  the  concept  topic  about  message  flow  projects.  

 

34 Message  Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.res
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.msgbroker.samplesgallery
http://www.redbooks.ibm.com/abstracts/sg247137.html
http://www.redbooks.ibm.com/abstracts/sg247137.html


A  message  flow  project  is a container  for  message  flows;  you  must  create  a project  

before  you  can  create  a message  flow. 

The  project  and  its  resources  are  stored  in  a file  system  or  in  a shared  repository.  If 

you  are  using  a file  system,  this  can  be  the  local  file  system  or  a shared  drive.  If 

you  store  files  in a repository,  you  can  use  any  of  the  available  repositories  that  are  

supported  by  Eclipse,  for  example  CVS.  

To create  a message  flow  project:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Click  File  → New  → Message  Flow  Project  or  right-click  any  resource  in the  

Navigator  view  and  click  New  → Message  Flow  Project. 

You can  also  press  Ctrl+N.  This  displays  a dialog  that  allows  you  to  select  the  

wizard  to  create  a new  object.  Click  Message  Brokers  in  the  left  view;  the  right  

view  displays  a list  of objects  that  you  can  create  for  WebSphere  Event  Broker.  

Click  Message  Flow  Project  in  the  right  view, then  click  Next. The  New  

Message  Flow  Project  wizard  displays.  

3.   Enter  a name  for  the  project.  Choose  a project  name  that  reflects  the  message  

flows  that  it contains.  For  example,  if you  want  to  use  this  project  for  financial  

processing  message  flows,  you  might  give  it the  name  Finance_Flows.  

4.   Leave  the  Use  default  check  box  checked  (it  is checked  when  the  dialog  opens)  

This  applies  if you  want  to  use  the  default  location  for  the  new  message  project  

directory,  that  is,  in  the  \workspace  subdirectory  of your  current  installation.  

You cannot  edit  the  Directory  entry  field.  

a.   Alternatively,  clear  the  Use  default  check  box  and  specify  a location  for  the  

new  message  flow  project  files  in  the  Directory  entry  field.  This  applies  if 

you  do  not  want  to  use  the  default  location.  

b.   Use  the  Browse  button  to  find  the  desired  location  or  type  the  location  in.
5.   Click  Next  if you  want  to  specify  that  this  message  flow  project  depends  on  

other  message  flow  projects,  or  on  message  set  projects,  You are  presented  with  

a list  of  current  projects.  Select  one  or  more  message  flow  projects  from  the  list  

to  indicate  this  new  message  flow  project’s  dependencies.  

This  message  flow  project  has  a dependency  on  another  message  flow  project  if 

you  intend  to  use  subflows  within  it that  are  defined  in  another  project.  

You can  add  dependencies  after  you  have  created  the  message  flow  project  by  

right-clicking  the  project  in  the  Resource  Navigator  and  clicking  Properties. 

Click  References  and  select  the  dependent  message  flow  or  message  set  project  

from  the  list  of projects  displayed.  

6.   Click  Finish  to  complete  the  task.  

The  project  file  is  created  within  a directory  that  has  the  same  name  as  your  

message  flow  project  in  the  specified  location.  All  other  files  that  you  create  (or  

cause  to  be  created)  related  to this  message  flow  project  are  created  in  this  same  

directory.  

A  default  broker  schema  (default)  is also  created  within  the  project.  You can  

create  and  use  different  schemas  within  a single  project  to  organize  message  flow  

resources,  and  to  provide  the  scope  of  resource  names  to ensure  uniqueness.  

Next:  create  a message  flow  

 

Developing  message  flows 35



Deleting a message flow project 

A message  flow  project  is the  container  in which  you  create  and  maintain  all  the  

resources  associated  with  one  or  more  message  flows.  These  resources  are  created  

as  files,  and  are  displayed  within  the  project  in  the  Resource  Navigator  view. If 

you  do  not  want  to  retain  a message  flow  project,  you  can  delete  it. 

Before  you  start:  

v   Create  a message  flow  project  

v   Read  the  concept  topic  about  message  flow  projects

Deleting  a message  flow  project  in  the  workbench  deletes  the  project  and  its  

resources;  the  Configuration  Manager  does  not  hold  a copy.  If you  are  using  a 

shared  repository,  the  repository  might  retain  a copy  of  a deleted  resource.  

In  previous  releases  you  could  remove  resources  from  the  Control  Center,  which  

removed  the  reference  in  your  workspace,  but  retained  the  resource  in  the  

Configuration  Manager  repository.  

To delete  a message  flow  project:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Highlight  the  message  flow  project  that  you  want  to  delete  and  click  Edit  → 

Delete  You can  also  press  Del,  or  right-click  the  project  in  the  Navigator  view  

and  click  Delete  

3.   You must  choose  if you  want  the  contents  of  the  message  flow  project  folder  

deleted  with  this  action  on  the  displayed  confirmation  dialog.  The  dialog  

contains  two  buttons:  

a.   The  first  confirms  that  all  contents  are  to  be  deleted.  

b.   The  second  requests  that  the  directory  contents  are  not  deleted.  The  default  

action  is  not  to  delete  the  contents,  and  the  second  button  is selected  by  

default  when  the  dialog  is initially  displayed.
a.   Select  the  appropriate  button.  If you  choose  not  to  delete  the  contents  of the  

message  flow  project  directory,  all  the  files  and  the  directory  itself  are  

retained.  

If  you  later  create  another  project  with  the  same  name,  and  specify  the  same  

location  for  the  project  (or  accept  this  as the  default  value),  you  can  access  

the  files  previously  created.  

If  you  choose  to  delete  all  the  contents,  all  files  and  the  directory  itself  are  

deleted.
4.   Click  Yes to  complete  the  delete  request,  or  No  to  terminate  the  delete  request.  

When  you  click  Yes, the  requested  objects  are  deleted.  

If you  maintain  resources  in  a shared  repository,  a copy  is retained  in  that  

repository.  You can  follow  the  instructions  provided  by  the  repository  supplier  to  

retrieve  the  resource  if required.  

If you  are  using  the  local  drive  or  a shared  drive  to  store  your  resources,  no  copy  

of  the  resource  is  retained.  Be  very  careful  to  select  the  correct  resource  when  you  

complete  this  task.  

 

36 Message  Flows



Creating a broker schema 

If  you  want  to  organize  your  message  flow  project  resources,  and  to  define  the  

scope  of  resource  names  to ensure  uniqueness,  you  can  create  broker  schemas.  A 

default  schema  is  created  when  you  create  the  message  flow  project,  but  you  can  

create  additional  schemas  if you  choose.  

Before  you  start:  

v   Create  a message  flow  project  

v   Read  the  concept  topic  about  broker  schemas

To  create  a broker  schema:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Click  File  → New  → BrokerSchema  or  right-click  any  resource  in  the  Navigator  

view  and  click  New  → BrokerSchema. 

You can  also  press  Ctrl+N.  This  displays  a dialog  that  allows  you  to  select  the  

wizard  to  create  a new  object.  Click  Message  Brokers  in  the  left  view. The  right  

view  displays  a list  of objects  that  you  can  create  for  WebSphere  Event  Broker.  

Click  Broker  Schema  in  the  right  view, then  click  Next. The  New  Broker  

Schema  wizard  displays.  

3.   Enter  the  message  flow  project  in  which  you  want  the  new  schema  to be  

created.  If  you  have  a message  flow  project  or  one  of  its  resources  highlighted  

when  you  invoke  the  wizard,  that  project  name  appears  in  the  dialog.  If a name  

does  not  appear  in  this  field,  or  if you  want  to  create  the  schema  in  another  

project,  click  Browse  and  select  the  correct  project  from  the  displayed  list.  

You can  type  the  project  name  in,  but  you  must  enter  a valid  name.  The  dialog  

displays  a red  cross  and  the  error  message  The  specified  project  does  not  

exist  if your  entry  is not  a valid  project.  

4.   Enter  a name  for  the  schema.  Choose  a name  that  reflects  the  resources  that  it 

contains.  For  example,  if you  want  to  use  this  schema  for  message  flows  for  

retail  applications,  you  might  give  it the  name  Retail.  

A broker  schema  name  must  be  a character  string  that  starts  with  a Unicode  

character  followed  by  zero  or  more  Unicode  characters  or  digits,  and  the  

underscore.  You can  use  the  period  to  provide  a structure  to  the  name,  for  

example  Stock.Common. 

5.   Click  Finish  to  complete  the  task.  

The  schema  directory  is  created  in  the  project  directory.  If the  schema  is structured  

using  periods,  further  subdirectories  are  defined.  For  example,  the  broker  schema  

Stock.Common  results  in  a directory  Common  within  a directory  Stock  within  the  

message  flow  project  directory.  

Creating a message flow 

Create  a message  flow  to  specify  how  to  process  messages  in  the  broker.  You can  

create  any  number  of  message  flows  and  deploy  them  to  one  or  more  brokers.  

Before  you  start:  

v   Create  a message  flow  project  

v   Read  the  concept  topic  about  broker  schemas

The  message  flow  and  its  resources  are  stored  in  a file  system  or  in  a shared  

repository.  If  you  are  using  a file  system,  this  can  be  the  local  drive  or  a shared  

 

Developing  message  flows 37



drive.  If  you  store  files  in  a repository,  you  can  use  any  of  the  available  repositories  

that  are  supported  by  Eclipse,  for  example  CVS.  

Use  this  process  to  create  a complete  message  flow  that  you  can  deploy,  or  a 

subflow  that  provides  a subset  of function  (for  example,  a reusable  error  

processing  routine)  that  you  cannot  deploy  on  its  own.  

To create  a message  flow:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Check  that  you  have  already  created  the  message  flow  project  in  which  you  

want  to  create  the  message  flow. You can  only  create  a message  flow  in  an  

existing  project.  The  project  can  be  empty,  or  can  already  have  message  flows  

defined  in it.  

3.   Click  File  → New  → Message  Flow  or  right-click  any  resource  in  the  Navigator  

view  and  click  New  → Message  Flow. 

You can  also  press  Ctrl+N.  This  displays  a dialog  that  allows  you  to  select  the  

wizard  to  create  a new  object.  Click  Message  Brokers  in  the  left  view.  The  right  

view  displays  a list  of  objects  that  you  can  create  for  WebSphere  Event  Broker.  

Click  Message  Flow  in  the  right  view, then  click  Next. The  New  Message  Flow  

wizard  displays.  

4.   Identify  the  project  in  which  you  want  to  define  the  message  flow. If you  have  

a resource  selected  in  the  Navigator  view, the  name  of the  corresponding  

project  is  displayed  in the  first  entry  field,  Project. 

If  you  do  not  have  a resource  selected,  the  first  field  is blank.  Click  Browse  to 

select  the  appropriate  project  for  this  message  flow. A dialog  containing  a list  of 

valid  projects  is  displayed.  Select  the  correct  project  and  click  OK. 

You can  type  the  project  name  in,  but  you  must  enter  a valid  name.  The  dialog  

displays  a red  cross  and  the  error  message  The  specified  project  does  not  

exist  if your  entry  is not  a valid  project.  

5.   Complete  the  Schema  and  Name  fields  when  the  project  is  correct:  

a.   In  Schema,  enter  the  identifier  of the  broker  schema  in  which  the  message  

flow  is  defined.  When  you  create  a message  flow  project,  a default  schema  

is  created  within  it, and  this  default  value  is always  assumed  if you  do  not  

enter  a value  in  this  field,  or  do  not  select  a value  using  the  Browse  button.  

You can  create  and  use  different  schemas  within  a single  project  to organize  

message  flow  resources,  and  to  provide  the  scope  of  resource  names  to  

ensure  uniqueness.  

b.   In  Name, enter  the  name  of  the  message  flow. You can  use  any  valid  

character  for  the  name;  choose  a name  that  reflects  its  function,  for  example  

OrderProcessing.
6.   Click  Finish. 

The  new  message  flow  (<message_flow_name>.msgflow)  is displayed  within  its  

project  in  the  Navigator  view. The  editor  view  is empty  and  ready  to receive  your  

input.  

Next:  save  the  message  flow  or  define  message  flow  content.  

Opening an existing message flow 

Open  an  existing  message  flow  to  change  or  update  its  contents,  or  to  add  or  

remove  nodes.  

 

38 Message  Flows



Before  you  start  

To complete  this  task,  you  must  have  completed  the  following  tasks:  

v   “Creating  a message  flow”  on  page  37

To  open  an  existing  message  flow:  

1.   Switch  to  the  Broker  Application  Development  perspective.  The  Navigator  view  

is populated  with  all  the  message  flow  and  message  set  projects  that  you  have  

access  to.  A  message  flow  is contained  in  a file  called  

<message_flow_name>.msgflow.  

2.   Right-click  the  message  flow  that  you  want  to work  with,  and  click  Open. 

Alternatively  you  can  double-click  the  message  flow  in  the  Navigator  view. 

The  graphical  view  of the  message  flow  is  displayed  in  the  editor  view. You 

can  now  work  with  this  message  flow, for  example,  adding  or  removing  nodes,  

changing  connections,  or  modifying  properties.

Copying a message flow using copy 

You might  find  it useful  to copy  a message  flow  as a starting  point  for  a new  

message  flow  that  has  similar  function.  For  example,  you  might  want  to  replace  or  

remove  one  or  two  nodes  to  process  messages  in  a different  way.  

Before  you  start  

To complete  this  task,  you  must  have  completed  the  following  task:  

v   “Creating  a message  flow”  on  page  37

To  copy  a message  flow:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.    Select  the  message  flow  (<message_flow_name>.msgflow)  that  you  want  to  

copy  in the  Navigator  view. 

a.   Right-click  the  file  and  click  Copy  from  the  menu.
3.   Right-click  the  broker  schema  within  the  message  flow  project  to which  you  

want  to  copy  the  message  flow  and  click  Paste. You can  copy  the  message  flow  

within  the  same  broker  schema  within  the  same  message  flow, or  to  a different  

broker  schema  within  the  same  message  flow  project,  or  to a broker  schema  in  

a different  message  flow  project.  

The  message  flow  is  copied  with  all  property  settings  intact.  If you  intend  to use  

this  copy  of the  message  flow  for  another  purpose,  for  example  to retrieve  

messages  from  a different  input  queue,  you  might  have  to  modify  its  properties.  

You can  also  use  File  → Save  As  to copy  a message  flow. This  is described  in  

“Saving  a message  flow”  on  page  43.  

Renaming a message flow 

You can  rename  a message  flow. You might  want  to do  this  if you  have  modified  

the  message  flow  to  provide  a different  function  and  you  want  the  name  of  the  

message  flow  to  reflect  this  new  function.  

Before  you  start  

 

Developing  message  flows 39



To complete  this  task,  you  must  have  completed  the  following  task:  

v   “Creating  a message  flow”  on  page  37

To  rename  a message  flow:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Right-click  the  message  flow  that  you  want  to  rename  

(<message_flow_name>.msgflow)  in the  Navigator  view, and  click  Rename,  or  

click  File  → Rename.  If you  have  the  message  flow  selected,  you  can  also  press  

F2.  The  Rename  Resource  dialog  is displayed.  

3.   Type  in  the  new  name  for  the  message  flow. 

4.   Click  OK  to  complete  this  action,  or  Cancel  to  cancel  the  request.  If you  click  

OK, the  message  flow  is renamed.  

After  you  have  renamed  the  message  flow, any  references  that  you  have  to this  

message  flow  (for  example,  if it is embedded  in  another  message  flow)  are  no  

longer  valid.  

5.    You must  open  the  affected  message  flows  and  correct  the  references  if you  are  

not  sure  where  you  have  embedded  this  message  flow. 

a.   Click  File  → Save  All  The  save  action  saves  and  validates  all  resources.  

Unresolved  references  are  displayed  in  the  Tasks view, and  you  can  click  

each  error  listed.  

This  opens  the  message  flow  that  makes  a non-valid  reference  in  the  editor  

view  

b.   Right  click  the  subflow  icon  and  click  Locate  Subflow. The  Locate  Subflow  

dialog  is  displayed,  listing  the  available  message  flow  projects.  

c.    Expand  the  list  and  explore  the  resources  available  to locate  the  required  

subflow.  

d.    Select  the  correct  subflow  and  click  OK. All  references  in the  current  

message  flow  are  updated  for  you  and  the  errors  removed  from  the  Tasks 

view.

Moving a message flow 

You can  move  a message  flow  from  one  broker  schema  to  another  within  the  same  

project  or  to  a broker  schema  in  another  project.  You might  want  to  do  this,  for  

example,  if you  are  reorganizing  the  resources  in  your  projects.  

Before  you  start  

To complete  this  task,  you  must  have  completed  the  following  task:  

v   “Creating  a message  flow”  on  page  37

To  move  a message  flow:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Drag  and  drop  the  message  flow  that  you  want  to  move  from  its  current  

location  to  a broker  schema  within  the  same  or  another  message  flow  project.  If 

the  target  location  that  you  have  chosen  is not  valid,  a black  no-entry  icon  

appears  over  the  target,  an  error  dialog  is displayed,  and  the  message  flow  is 

not  moved.  

You can  move  a message  flow  to  another  schema  in  the  same  project  or  to a 

schema  in another  message  flow  project.  

3.   If  you  prefer,  you  can:  

 

40 Message  Flows



a.   Right-click  the  message  flow  that  you  want  to move  

(<message_flow_name>.msgflow)  in  the  Navigator  view  and  click  Move, or  

File  → Move  The  Move  dialog  is displayed.  This  contains  a list  of  all  valid  

projects  to  which  you  can  move  this  message  flow. 

b.   Select  the  project  and  the  broker  schema  within  the  project  to  which  you  

want  to  move  the  message  flow. You can  move  a message  flow  to another  

schema  in  the  same  project  or  to  a schema  in another  message  flow  project.  

c.   Click  OK  to  complete  the  move,  or  Cancel  to  cancel  the  move.  If you  click  

OK, the  message  flow  is moved  to its  new  location.

4.   Check  the  Tasks view  for  any  errors  (indicated  by  the  error  icon  

  

) or  

warnings  (indicated  by  the  warning  icon  

  

) generated  by  the  move.  The  

errors  in  the  Tasks view  include  those  caused  by  broker  references.  When  the  

move  is  done,  all  references  to  this  message  flow  (for  example,  if this  is a 

reusable  error  message  flow  that  you  have  embedded  in another  message  flow)  

are  checked.  

If you  have  moved  the  message  flow  within  the  same  broker  schema  (in  the  

same  or  another  project),  all  references  are  still  valid.  

However,  if you  move  the  message  flow  from  one  broker  schema  to  another  (in  

the  same  or  a different  project),  the  references  are  broken.  

This  is  because  the  resources  are  linked  by  a fully-qualified  name  of  which  the  

broker  schema  is a part.  Information  about  any  broken  references  is written  to  

the  Tasks  view, for  example,  Linked  or  nested  flow  mflow1  cannot  be  

located. 

5.   Double-click  each  error  or  warning  to  correct  it. This  opens  the  message  flow  

that  has  the  error  in  the  editor  view  and  highlights  the  node  in  error.

Deleting a message flow 

You can  delete  a message  flow  that  you  have  created  in  a message  flow  project  if 

you  no  longer  need  it.  

Deleting  a message  flow  in  the  workbench  deletes  the  project  and  its  resources,  

and  the  Configuration  Manager  does  not  hold  a copy.  If you  are  using  a shared  

repository,  the  repository  might  retain  a copy  of  a deleted  resource.  

In  previous  releases  you  could  remove  resources  from  the  Control  Center,  which  

removed  the  reference  in  your  workspace,  but  retained  the  resource  in  the  

Configuration  Manager  repository.  

Before  you  start  

To complete  this  task,  you  must  have  completed  the  following  task:  

v   “Creating  a message  flow”  on  page  37

To  delete  a message  flow:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Select  the  message  flow  in  the  Navigator  view  

(<message_flow_name>.msgflow)  and  press  the  Delete  key.  A confirmation  

dialog  is  displayed.  

You can  also  right-click  the  message  flow  in  the  Navigator  view  and  click  

Delete, or  click  Edit  → Delete. The  same  dialog  is displayed.  

 

Developing  message  flows 41



3.   Click  Yes to  delete  the  message  flow  definition  file  or  No  to  cancel  the  delete  

request.  When  you  click  Yes, the  requested  objects  are  deleted.  

If  you  maintain  resources  in a shared  repository,  a copy  is retained  in that  

repository.  You can  follow  the  instructions  provided  by  the  repository  supplier  

to  retrieve  the  resource  if required.  

If  you  are  using  the  local  file  system  or  a shared  file  system  to  store  your  

resources,  no  copy  of  the  resource  is retained.  Be  very  careful  to select  the  

correct  resource  when  you  complete  this  task.  

4.   Check  the  Tasks  view  for  any  errors  that  are  caused  by  the  deletion.  Errors  are  

generated  if you  delete  a message  flow  that  is embedded  within  another  flow  

because  the  reference  is no  longer  valid.  

a.   Click  the  error  in  the  Tasks view  This  opens  the  message  flow  that  now  has  

a non-valid  reference.  

b.   Either  remove  the  node  that  represents  the  deleted  message  flow  from  the  

parent  message  flow, or  create  a new  message  flow  with  the  same  name  to  

provide  whatever  processing  is required.

Deleting a broker schema 

You can  delete  a broker  schema  that  you  have  created  in  a message  flow  project  if 

you  no  longer  need  it.  

Before  you  start:  

v   Create  a broker  schema  

v   Read  the  concept  topic  about  broker  schemas

To  delete  a broker  schema:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Select  the  broker  schema  in  the  Navigator  view  and  press  the  Delete  key.  A 

confirmation  dialog  is  displayed.  

You can  also  right-click  the  broker  schema  in  the  Navigator  view  and  click  

Delete, or  click  Edit  → Delete. The  same  dialog  is displayed.  

If  the  broker  schema  contains  resources,  the  Delete  menu  option  is disabled,  

and  the  Delete  key  has  no  effect.  You must  delete  all  resources  within  the  

schema  before  you  can  delete  the  schema.  

3.   Click  Yes to  delete  the  broker  schema  directory  or  No  to  cancel  the  delete  

request.  When  you  click  Yes, the  requested  objects  are  deleted.  

If  you  maintain  resources  in a shared  repository,  a copy  is retained  in that  

repository.  You can  follow  the  instructions  provided  by  the  repository  supplier  

to  retrieve  the  resource  if required.  

If  you  are  using  the  local  file  system  or  a shared  file  system  to  store  your  

resources,  no  copy  of  the  resource  is retained.  Be  very  careful  to select  the  

correct  resource  when  you  complete  this  task.  

Viewing  version and keyword information for deployable 

objects 

This  topic  contains  information  about  how  to  view  the  version  and  keyword  

information  of  deployable  objects.  

v   “Displaying  object  version  in the  bar  file  editor”  on  page  43  

v   “Displaying  version,  deploy  time,  and  keywords  of deployed  objects”  on  page  

43

 

42 Message  Flows



Displaying object version in the bar file editor 

A  column  in the  bar  editor  called  Version  displays  the  version  tag  for  all  objects  

that  have  a defined  version.  These  are:  

v   .cmf  files

You cannot  edit  the  Version  column.  

You can  use  the  mqsireadbar  command  to list  the  keywords  defined  for  each  

deployable  file  within  a deployable  archive  file.  

Displaying version, deploy time, and keywords of deployed 

objects 

The  Eclipse  Properties  View displays,  for  any  deployed  object:  

v   Version  

v   Deploy  Time  

v   All  defined  keywords

For  example,  if you  deploy  a message  flow  with  these  literal  strings:  

v   $MQSI_VERSION=v1.0  MQSI$  

v   $MQSI  Author=fred  MQSI$  

v   $MQSI  Subflow  1 Version=v1.3.2  MQSI$

then  the  Properties  View  displays:  

 Deployment  Time  Date  and  time  of deployment  

Modification  Time  Date  and  time  of modification  

Version  v1.0  

Author  fred  

Subflow  1 Version  v1.3.2
  

You are  given  a reason  if the  keyword  information  is not  available.  For  example,  if 

keyword  resolution  has  not  been  enabled  at deploy  time,  the  Properties  View  

displays  the  message  Deployed  with  keyword  search  disabled. Also,  if you  deploy  

to  a Configuration  Manager  that  is an  earlier  version  than  Version  6.0,  the  

properties  view  displays  Keywords  not  available  on  this  Configuration  Manager. 

Saving a message flow 

You might  want  to  save  your  message  flow  when  you  want  to: 

v   Close  the  workbench.  

v   Work with  another  resource.  

v   Validate  the  contents  of  the  message  flow.

Before  you  start:  

To complete  this  task,  you  must  have  completed  the  following  task:  

v   “Creating  a message  flow”  on  page  37

To  save  a message  flow:  

 

Developing  message  flows 43



1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Select  the  editor  view  that  contains  the  open  message  flow  that  you  want  to 

save.  

3.   If  you  want  to  save  the  message  flow  without  closing  it in  the  editor  view, 

press  Ctrl+S  or  click  File  → Save  name  on  the  taskbar  menu  (where  name  is the  

name  of this  message  flow).  You can  also  choose  to  save  everything  by  clicking  

File  → Save  All. 

The  message  flow  is saved  and  the  message  flow  validator  is  invoked  to  

validate  its  contents.  The  validator  provides  a report  of any  errors  that  it finds  

in  the  Tasks  view. The  message  flow  remains  open  in  the  editor  view. 

For  example,  if you  save  a message  flow  and  have  not  set  a mandatory  

property,  an  error  message  appears  in  the  Tasks view  and  the  editor  marks  the  

node  with  the  error  icon  

  

. The  message  flow  in  the  Navigator  view  is  also  

marked  with  the  error  icon.  This  can  occur  if you  have  not  edited  the  

properties  of  an  MQInput  node  to  define  the  queue  from  which  the  input  node  

retrieves  its  input  messages.  

(If  you  edit  the  properties  of  a node,  you  cannot  click  OK  unless  you  have  set  

all  mandatory  properties.  Therefore  this  situation  can  arise  only  if you  have  

never  set  any  properties.)  

You might  also  get  warnings  when  you  save  a message  flow. These  are  

indicated  by  the  warning  icon  

  

. This  informs  you  that,  although  there  is  not  

an  explicit  error  in  the  configuration  of  the  message  flow, there  is a situation  

that  might  result  in unexpected  results  when  the  message  flow  completes.  For  

example,  if you  have  included  an  input  node  in  your  message  flow  that  you  

have  not  connected  to any  other  node,  you  get  a warning.  In this  situation,  the  

editor  marks  the  node  with  the  warning  icon.  The  message  flow  in  the  

Navigator  view  is also  marked  with  a warning  icon.  

4.   If  you  save  a message  flow  that  includes  a subflow,  and  the  subflow  is no  

longer  available,  three  error  messages  are  added  to  the  Tasks view  that  indicate  

that  the  input  and  output  terminals  and  the  subflow  itself  cannot  be  located.  

This  can  occur  if the  subflow  has  been  moved  or  renamed.  

To resolve  this  situation,  right-click  the  subflow  node  in  error  and  click  Locate  

Subflow.  The  Locate  Subflow  dialog  is displayed,  listing  the  available  message  

flow  projects.  Expand  the  list  and  explore  the  resources  available  to  locate  the  

required  subflow.  Select  the  correct  subflow  and  click  OK. All  references  in  the  

current  message  flow  are  updated  for  you  and  the  errors  removed  from  the  

Tasks  view. 

5.   If  you  want  to  save  the  message  flow  when  you  close  it,  click  the  close  view  

icon  

   

on  the  editor  view  tab  for  this  message  flow  or  click  File  → Close  on  

the  taskbar  menu.  The  editor  view  is  closed  and  the  file  saved.  The  same  

validation  occurs  and  any  errors  and  warnings  are  written  to  the  Tasks view. 

For  information  about  using  the  File  → Save  As  option  to  take  a copy  of  the  

current  message  flow, see  “Copying  a message  flow  using  save.”  

See  “Correcting  errors  from  saving  a message  flow”  on  page  45  for  information  

about  handling  errors  from  the  save  action.  

Copying a message flow using save 

You can  copy  a message  flow  by  using  the  File  → Save  As  option.  

1.   Click  File  → Save  name  As.  

 

44 Message  Flows



2.   Specify  the  message  flow  project  in which  you  want  to  save  a copy  of  the  

message  flow. The  project  name  defaults  to  the  current  project.  You can  accept  

this  name,  or  choose  another  name  from  the  valid  options  that  are  displayed  in  

the  File  Save  dialog.  

3.   Specify  the  name  for  the  new  copy  of the  message  flow. If  you  want  to  save  

this  message  flow  in  the  same  project,  you  must  either  give  it another  name,  or  

confirm  that  you  want  to  overwrite  the  current  copy  (that  is,  copy  the  flow  to 

itself).  

If you  want  to  save  this  message  flow  in  another  project,  the  project  must  

already  exist  (you  can  only  select  from  the  list  of existing  projects).  You can  

save  the  flow  with  the  same  or  another  name  in  another  project.  

4.   Click  OK. The  message  flow  is saved  and  the  message  flow  editor  validates  its  

contents.  The  editor  provides  a report  of  any  errors  that  it finds  in  the  Tasks 

view. See  “Correcting  errors  from  saving  a message  flow”  for  information  about  

handling  errors  from  the  save  action.

Correcting errors from saving a message flow 

Correct  the  errors  that  are  reported  when  you  save  a message  flow. 

To correct  errors  from  the  save  or  save  as  action:  

1.   Examine  the  list  of errors  and  warnings  that  the  validator  has  generated  in the  

Tasks view. 

2.   Double-click  each  entry  in  turn.  The  message  flow  is displayed  in  the  editor  

view  (if  it is  not  already  there),  and  the  editor  selects  the  node  in  which  the  

error  was  detected.  If the  error  has  been  generated  because  you  have  not  set  a 

mandatory  property,  the  editor  also  opens  the  properties  dialog  for  that  node.  

If you  have  included  a user-defined  node  in  your  message  flow, and  have  one  

or  more  of  its  properties  have  been  defined  as  configurable,  you  might  get  a 

warning  about  a custom  property  editor.  If a property  has  been  defined  as 

configurable,  and  you  have  specified  that  it uses  a custom  property  editor,  the  

bar  editor  cannot  handle  the  custom  property  editor  and  handles  the  property  

as if it  is type  String.  This  restricts  your  ability  to  make  changes  to this  

property  at  deploy  time.  

3.   Correct  the  error  indicated  by  the  message.  For  example,  provide  a value  for  

the  mandatory  property.  

4.   When  you  have  corrected  all  the  errors,  you  can  save  again.  The  editor  

validates  all  the  resources  that  you  have  changed,  removes  any  corrected  errors  

from  the  Tasks  view, and  removes  the  corresponding  graphical  indication  from  

the  nodes  that  you  have  modified  successfully.  

You do  not  have  to  correct  every  error  to save  your  work.  The  editor  saves  your  

resources  even  if it detects  errors  or  warnings,  so  that  you  can  continue  to  work  

with  them  at  a later  date.  However,  you  cannot  deploy  any  resource  that  has  a 

validation  error. You must  correct  every  error  before  you  deploy  a resource.  

Warnings  do  not  prevent  successful  deployment.  

Defining message flow content 

When  you  create  a new  message  flow, the  editor  view  is initially  empty.  You must  

create  the  contents  of  the  message  flow  by:  

v   “Adding  a message  flow  node”  on  page  46  

v   “Adding  a subflow”  on  page  47  

 

Developing  message  flows 45



v   “Renaming  a message  flow  node”  on  page  48 

v   “Configuring  a message  flow  node”  on  page  49  

v   “Connecting  message  flow  nodes”  on  page  51  

v   “Adding  a bend  point”  on  page  53  

v   “Aligning  and  arranging  nodes”  on  page  55

When  you  finalize  the  content  of  the  message  flow, you  might  also  need  to  

perform  the  following  tasks:  

v   “Removing  a message  flow  node”  on  page  50  

v   “Removing  a node  connection”  on  page  53  

v   “Removing  a bend  point”  on  page  54

To  learn  more  about  message  flow  content,  try  importing  the  Airline  Reservations  

sample  or  the  Error  Handler  sample,  and  follow  the  supplied  instructions  to build  

the  sample  yourself.  Also,  try  adding  and  deleting  nodes,  adding  subflows,  and  

connecting  nodes  together.  

For  a basic  introduction  to  developing  message  flows,  see  the  WebSphere  Message  

Broker  Basics  IBM  Redbook.  

Adding a message flow node 

When  you  create  a new  message  flow, the  first  action  to  take  to  define  its  function  

is to  add  nodes.  

Before  you  start:  

v   Create  a message  flow  or  

v   Open  an  existing  message  flow  

v   Read  the  concept  topic  about  message  flow  nodes

To  add  a node  to  a message  flow:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Open  the  message  flow  that  you  want  to  work  with.  

3.   Click  Selection  above  the  palette  of  nodes.  

4.   Decide  which  node  you  want  to  add.  This  might  be  a built-in  node  or  a 

user-defined  node.  You can  select  any  of  the  nodes  that  appear  in  the  node  

palette  to  the  left  of the  editor  view. You can  only  add  one  node  at a time.  

5.    

In  Message  Brokers  Toolkit  , drag-and-drop  the  node  that  you  want  to  include  

in  the  flow  from  the  node  palette  into  the  editor  view. 

When  you  add  a node  into  the  editor  view, the  editor  automatically  assigns  a 

name  to  the  node.  The  name  is  equal  to  the  type  of  node  for  the  first  instance.  

6.   Repeat  steps  4 and  5 to  add  further  nodes.  

7.   You can  also  add  nodes  from  other  flows  into  this  flow. To do  this:  

a.   Open  the  other  flow, select  the  node  or  nodes  that  you  want  to  copy  from  

the  editor  or  outline  views,  and  press  Ctrl+C  or  click  Edit  → Copy. 

b.   Return  to  the  flow  that  you  are  currently  working  with,  and  press  Ctrl+V  or  

click  Edit  → Paste. This  action  copies  the  node  or  nodes  into  your  current  

flow. The  node  names  and  properties  are  preserved  in  the  new  copy.

 

46 Message  Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.res
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.res
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.res
http://www.redbooks.ibm.com/abstracts/sg247137.html
http://www.redbooks.ibm.com/abstracts/sg247137.html


When  you  have  added  the  nodes  that  you  want  in  this  message  flow, you  can  

connect  them  to  specify  the  flow  of  control  through  the  message  flow, and  you  can  

configure  their  properties.  

Next:  configure  the  nodes.  

Adding a node using the keyboard 

Before  you  start  

To complete  this  task,  you  must  have  completed  the  following  task:  

v   “Creating  a message  flow”  on  page  37

You  can  use  the  Message  Flow  editor  to  perform  tasks  using  the  keyboard,  such  as  

adding  a node  to  a message  flow. 

Complete  the  following  steps  to  add  a node  to  the  canvas:  

1.   Open  the  message  flow  you  want  to  add  a node  to  by  double-clicking  the  

message  flow  in  the  Navigator  view. You can  also  open  the  message  flow  by  

right-clicking  it  in the  Navigator  view  and  clicking  Open. The  message  flow  

contents  are  displayed  in  the  editor  view. 

2.   Open  the  Palette  view  or  the  Palette  bar. 

3.   Select  a node  in  the  Palette  view  or  Palette  bar  using  the  up  and  down  arrows  

to  highlight  the  node  you  want  to  add  to  the  canvas.  

4.   Add  the  Node  to the  canvas  using  one  of  the  following  methods:  

v   Select  Palette  → Add  Node  to  Canvas  by  pressing  Alt  + L and  then  pressing  

N.  

v   Press  Shift  + F10  to  open  the  context-sensitive  menu  for  the  Palette,  and  

Press  N.

The  node  that  you  selected  in  the  Palette  bar  or  Palette  view  is placed  on  the  

canvas  in  the  Editor  view. 

You can  move  the  node  that  you  have  placed  on  the  canvas  using  the  keyboard  

controls  described  in  Message  Brokers  Toolkit  keyboard  shortcuts  

Adding a subflow 

Within  a message  flow, you  might  want  to  include  an  embedded  message  flow, 

also  known  as  a subflow.  

Before  you  start  

To complete  this  task,  you  must  have  completed  one  of  the  following  tasks:  

v   “Creating  a message  flow”  on  page  37  

v   “Opening  an  existing  message  flow”  on  page  38

When  you  add  a subflow,  it appears  in  the  editor  view  as  a single  node.  

You can  embed  subflows  into  your  message  flow  if either  of the  following  

statements  is  true: 

v   The  flow  that  you  want  to  embed  is defined  in  the  same  message  flow  project.  

v   The  flow  is defined  in  a different  message  flow  project,  and  you  have  specified  

the  dependency  of  the  current  message  flow  project  on  that  other  project.

 

Developing  message  flows 47



To add  a subflow  to  a message  flow:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Open  the  message  flow  that  you  want  to  work  with.  

3.   Drag  and  drop  the  message  flow  from  the  Navigator  view  into  the  editor  view. 

Alternatively,  highlight  the  embedding  message  flow  and  click  Edit  → Add  

subflow,  which  displays  a list  of  valid  flows  that  you  can  add  to the  current  

flow. 

4.   Select  the  flow  that  you  want  to  add  from  the  list.  The  subflow  icon  is 

displayed  with  the  terminals  that  represent  the  Input  and  Output  nodes  that  

you  have  included  in  the  subflow.  

5.   Click  OK. 

6.   Repeat  steps  3,  4, and  5 to  add  further  subflow  nodes.  

7.   Select  and  open  (double-click)  the  flow  by  name  in  the  Navigator  view, or  

right-click  the  embedded  flow  icon  and  select  Open  Subflow  to work  with  the  

contents  of  the  embedded  flow  

When  you  have  added  the  nodes  that  you  want  in  this  message  flow, you  can  

connect  them  to  specify  the  flow  of control  through  the  message  flow, and  you  can  

modify  their  properties.  

Renaming a message flow node 

You can  change  the  name  of  a node.  Its  current  name  might  be  the  default  name  

that  the  editor  assigns  to  it when  you  add  the  node  to  the  editor  view. Change  the  

current  name  to  reflect  the  purpose  of  the  node.  The  node  can  be  a built-in  node,  a 

user-defined  node,  or  a subflow  node.  

Before  you  start:  

v   Create  a message  flow  

v   Read  the  concept  topic  about  message  flow  nodes

When  you  rename  a node,  use  only  the  supported  characters  for  this  entity.  The  

editor  prevents  you  from  entering  unsupported  characters.  

To rename  a node:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Open  the  message  flow  that  you  want  to  work  with.  

3.   Right-click  the  node  that  you  want  to  rename  in  the  editor  view  and  click  

Rename.  The  Rename  Node  dialog  is displayed.  

4.   Modify  the  existing  name  in  the  text  entry  field,  or  press  the  Delete  key  to 

erase  the  current  name  and  enter  a new  one.  The  name  that  you  enter  must  be 

unique  within  the  message  flow;  you  are  prevented  from  entering  a duplicate  

name.  

5.   Click  OK  to  apply  the  new  node  name,  or  Cancel  to  end  the  dialog  without  

changing  the  name.  

If you  generate  ESQL  code  for  a Compute,  Database,  or  Filter  node,  the  code  is 

contained  within  a module  that  is associated  with  the  node.  The  name  of  the  

module  within  the  ESQL  file  must  match  the  name  specified  for  the  module  in the  

ESQL  Module  property  of  the  corresponding  node.  Although  you  can  modify  the  

module  name,  and  change  it from  its  default  value  (which  is the  name  of the  

 

48 Message  Flows

|
|
|
|
|



message  flow, concatenated  with  the  name  of the  node  with  which  the  module  is 

associated),  ensure  that  the  module  in  the  ESQL  file  matches  the  node  property.  

Configuring a message flow node 

When  you  have  included  an  instance  of a node  in  your  message  flow, you  can  

configure  it  to  customize  its  function.  The  node  can  be  a built-in  node,  a 

user-defined  node,  or a subflow  node.  

Before  you  start: 

v   Add  a node  

v   Read  the  concept  topic  about  message  flow  nodes

To  configure  a node:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Open  the  message  flow  that  you  want  to  work  with.  

3.   Click  Selection  above  the  palette  of  nodes.  

4.   Right-click  the  node  in  the  editor  view, and  click  Properties. The  node’s  

properties  dialog  is  displayed.  

5.   You can  select  each  group,  displayed  on  the  left  as  a tree  navigation,  in  turn  to  

view  and  modify  the  properties  of  the  node.  Every  node  has  at  least  one  group,  

Description.  This  contains  two  text  entry  fields,  in  which  you  can  enter  a short  

description,  or  a long  description,  or  both.  These  are  used  only  for  

documentation  purposes,  and  are  optional.  

If the  node  only  has  Description  properties  (for  example,  the  FlowOrder  node),  

these  are  initially  displayed  when  you  open  the  properties  dialog.  

For  most  other  nodes,  the  Basic  properties  are  initially  displayed.  A few  nodes  

do  not  have  Basic  properties;  for  these,  the  first  group  is displayed.  

6.   On  the  right  are  the  properties  of  the  currently-selected  group.  There  can  be 

one  or  more  properties  in  this  display.  If  the  property  is required,  that  is,  one  

for  which  you  must  enter  a value,  the  property  name  is marked  with  an  

asterisk.  

For  example,  the  Basic  properties  of the  MQInput  node  include  just  one  

property,  Queue  Name. This  identifies  the  queue  from  which  input  messages  are  

retrieved  by  the  node,  and  is a required  property.  On  the  properties  dialog,  it 

appears  like  this:  

 

a.   Make  the  changes  that  you  want  to  make  to  the  properties.  In  most  cases,  

you  cannot  click  OK  to  dismiss  the  properties  dialog  unless  you  have  

completed  all  mandatory  properties.
7.   When  you  have  updated  the  properties  of  the  node,  click  OK  to  save  the  

changes,  or  Cancel  to  leave  the  dialog  without  saving  your  changes.  

For  details  of  how  to  configure  each  individual  built-in  node,  see  the  node  

description.  You can  find  a list  of  the  nodes,  with  links  to  the  individual  topics,  in  

“Built-in  nodes”  on  page  114. 

In  the  Message  flow  editor  you  can  display  node  and  connection  metadata  by  

hovering  the  mouse  over  a node  or  subflow  in  a message  flow. To view  metadata  

information  for  a node,  subflow  or  connection:  

1.   Open  the  Broker  Application  Development  Perspective  

Queue  Name*  ________________________________  

 

Developing  message  flows 49

|
|



2.   Open  a message  flow  

3.   In  the  Editor  view, hover  the  mouse  over  a node,  a subflow,  or  a node  

connection  in  the  open  message  flow  by  placing  the  mouse  over  the  element.

Promoted properties 

You can  promote  node  properties  to  their  containing  message  flow. Use  this  

technique  to  set  some  values  at the  message  flow  level,  without  having  to change  

individual  nodes.  This  can  be  useful,  for  example,  when  you  embed  a message  

flow  in  another  flow, and  want  to  override  some  property  such  as  output  queue  

with  a value  that  is  correct  in this  context.  

Overriding properties at deploy time 

A small  number  of  node  property  values  can  be  overridden  when  a message  flow  

is deployed.  These  are  known  as  configurable  properties,  and  you  can  use  these  to  

modify  some  characteristics  of a deployed  message  flow  without  changing  the  

message  flow  definitions.  For  example,  you  can  update  queue  manager  

information.  

Even  though  you  can  set  values  for  configurable  properties  at deploy  time,  you  

must  set  values  for  these  properties  within  the  message  flow  if they  are  mandatory.  

Next:  connect  the  nodes.  

Removing a message flow node 

When  you  have  created  and  populated  a message  flow, you  might  need  to  remove  

a node  to  change  the  function  of the  flow, or  to replace  it  with  another  more  

appropriate  node.  The  node  can  be  a built-in  node,  a user-defined  node,  or  a 

subflow  node.  

Before  you  start:  

v   Add  a node  

v   Add  a subflow  

v   Read  the  concept  topic  about  message  flow  nodes

To  remove  a node:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Open  the  message  flow  that  you  want  to  work  with.  

3.   Select  the  node  in  the  editor  view  and  press  the  Delete  key.  

4.   Highlight  the  node  and  click  Edit  → Delete  

You can  also  right-click  the  node  in  the  editor  view  and  click  Delete, or  

right-click  the  node  in  the  Outline  view  and  click  Delete. The  editor  removes  

the  node.  If  you  have  created  any  connections  between  that  node  and  any  other  

node,  those  connections  are  also  deleted  when  you  delete  the  node.  

5.   If  you  delete  a node  in  error, you  can  restore  it by  right-clicking  in  the  editor  

view  and  clicking  Undo  Delete. The  node  and  its  connections,  if any,  are  

restored.  

6.    

You can  also  click  Edit  → Undo  Delete  or  press  Ctrl+Z.  

7.   If  you  undo  the  delete,  but  decide  it  is the  correct  delete  action,  you  can  

right-click  in  the  editor  view  and  click  Redo  Delete. 

 

50 Message  Flows



You can  also  click  Edit  → Redo  Delete.

Connecting message flow nodes 

When  you  include  more  than  one  node  in  your  message  flow, you  must  connect  

the  nodes  to  indicate  how  the  flow  of control  passes  from  input  to  output.  The  

nodes  can  be  built-in  nodes,  user-defined  nodes,  or  subflow  nodes.  

Before  you  start: 

v   Add  a node  

v   Add  a subflow  

v   Read  the  concept  topic  about  connections

Your  message  flow  might  contain  just  one  MQInput  node,  and  one  MQOutput  

node.  Or  it might  involve  a large  number  of  nodes,  and  perhaps  embedded  

message  flows,  that  provide  a number  of  paths  that  a message  can  travel  through  

depending  on  its  content.  

When  you  have  completed  a connection,  it is  displayed  as  a black  line,  and  is 

drawn  as  close  as  possible  to a straight  line  between  the  connected  terminals.  This  

might  result  in the  connection  passing  across  other  nodes.  To avoid  this,  you  can  

add  bend  points  to  the  connection.  

In  the  Message  flow  editor  you  can  display  node  and  connection  metadata  by  

hovering  the  mouse  over  a node  or  subflow  in  a message  flow. To view  metadata  

information  for  a node,  subflow  or  connection:  

1.   Open  the  Broker  Application  Development  Perspective  

2.   Open  a message  flow  

3.   In  the  Editor  view, hover  the  mouse  over  a node,  a subflow,  or  a node  

connection  in  the  open  message  flow  by  placing  the  mouse  over  the  element.

If  you  define  a complex  message  flow, you  might  have  to  create  a large  number  of 

connections.  The  principle  is the  same  for  every  connection.  You create  connections  

either  by  using  the  mouse,  or  by  using  the  Terminal  Selection  dialog.  See  “Creating  

node  connections  with  the  mouse”  and  “Creating  node  connections  with  the  

Terminal  Selection  dialog  box”  on  page  52  for  more  information.  

Next:  add  a bend  point.  

Creating node connections with the mouse 

Before  you  start:  

Read  the  concept  topic  about  connections.  

To connect  one  node  to  another  using  the  mouse:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Open  the  message  flow  that  you  want  to  work  with.  

3.   Click  Connection  above  the  node  palette.  

4.   Click  the  terminal  from  which  the  connection  is to  be  made,  that  is,  the  

terminal  from  which  the  message  is propagated  from  the  current  node.  For  

example,  you  can  click  the  failure  terminal  of the  MQInput  node.  You do  not  

need  to  keep  the  mouse  button  pressed.  If  you  are  unsure  which  terminal  is 

 

Developing  message  flows 51



which,  hover  your  mouse  over  each  one;  the  terminal  is highlighted  in  blue  

and  a pop-up  displays  the  name  of  the  terminal.  

5.   Move  your  mouse  and  click  again  when  the  mouse  pointer  is above  the  in  

terminal  of  the  next  node  in  the  message  flow  (to  which  the  message  now  

passes  for  further  processing).  The  terminal  is highlighted  in  blue  and  a popup  

displays  the  name  of  the  terminal  so  that  you  can  check  that  you  have  the  

correct  terminal.  The  connection  is made  when  you  click  on  a valid  in terminal.  

The  connection  appears  as  a black  line  between  the  two  terminals.  

In  the  Message  flow  editor  you  can  display  node  and  connection  metadata  by  

hovering  the  mouse  over  a node  or  subflow  in  a message  flow. To view  metadata  

information  for  a node,  subflow  or  connection:  

1.   Open  the  Broker  Application  Development  Perspective  

2.   Open  a message  flow  

3.   In  the  Editor  view, hover  the  mouse  over  a node,  a subflow,  or  a node  

connection  in  the  open  message  flow  by  placing  the  mouse  over  the  element.

Creating node connections with the Terminal Selection dialog 

box 

Before  you  start:  

Read  the  concept  topic  about  connections.  

You can  use  the  Terminal  Selection  dialog  box  to connect  nodes.  To connect  one  

node  to  another  in  this  way:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Open  the  message  flow  that  you  want  to  work  with.  

3.   Click  Connection  above  the  node  palette.  

4.   Click  the  node  from  which  you  want  the  connection  to be  made.  The  Terminal  

Selection  dialog  is displayed.  

5.   Select  the  terminal  from  the  list  of  valid  terminals  on  this  node.  Click  OK. The  

dialog  box  closes.  

6.   Click  the  node  to  which  to  make  the  connection.  If there  is  only  one  in  terminal  

on  this  node,  the  connection  is made  immediately.  If there  is more  than  one  in 

terminal  on  this  node,  the  Terminal  Selection  dialog  is displayed  again,  this  

time  listing  the  in  terminals  of  the  selected  node.  Select  the  correct  terminal  by 

clicking  it,  and  click  OK. 

You can  also  make  a connection  as  follows:  

1.   Click  Selection  above  the  node  palette.  

2.   Right-click  the  node  from  which  you  want  to  make  the  connection  and  click  

Create  Connection. The  Terminal  Selection  dialog  is displayed.  

3.   Select  the  terminal  from  the  list  of  valid  terminals  on  this  node.  Click  OK. The  

dialog  box  closes.  

4.   Click  the  node  to  which  to  make  the  connection.  If there  is  only  one  in  terminal  

on  this  node,  the  connection  is made  immediately.  If there  is more  than  one  in 

terminal  on  this  node,  the  Terminal  Selection  dialog  is displayed  again,  this  

time  listing  the  in  terminals  of  the  selected  node.  Highlight  the  correct  terminal  

and  click  OK.

 

52 Message  Flows



In  the  Message  flow  editor  you  can  display  node  and  connection  metadata  by  

hovering  the  mouse  over  a node  or  subflow  in  a message  flow. To view  metadata  

information  for  a node,  subflow  or  connection:  

1.   Open  the  Broker  Application  Development  Perspective  

2.   Open  a message  flow  

3.   In  the  Editor  view, hover  the  mouse  over  a node,  a subflow,  or  a node  

connection  in  the  open  message  flow  by  placing  the  mouse  over  the  element.

Removing a node connection 

The  message  flow  editor  displays  the  nodes  and  connections  in  the  editor  view. 

You can  remove  connections  to change  the  way  in  which  the  message  flow  

processes  messages.  

Before  you  start:  

v   Connect  the  nodes  

v   Read  the  concept  topic  about  connections

If  you  want  to  remove  a connection  that  you  have  created  between  two  nodes:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Open  the  message  flow  that  you  want  to  work  with.  

3.   Click  Selection  above  the  node  palette.  

4.   Select  the  connection  that  you  want  to  delete.  When  you  hover  your  mouse  

pointer  over  the  connection,  the  editor  highlights  the  connection  that  you  have  

selected  by  thickening  its  line,  adding  an  arrowhead  at  the  target  terminal  end,  

and  annotating  the  connection  with  the  name  of  the  two  terminals  connected,  

for  example  Out->In.  

When  you  select  the  connection,  the  editor  appends  a small  black  square  at  

each  end  and  at  every  bend  point  of  the  connection,  and  a small  arrowhead  at 

the  target  terminal  end.  The  annotation  disappears  when  you  select  the  

connection.  

5.   Check  that  the  selected  connection  is the  one  that  you  want  to  delete.  

6.   Right-click  the  connection  and  click  Delete, press  the  Delete  key,  or  click  Edit  → 

Delete. If  you  want  to delete  further  connections,  repeat  these  actions  from  step  

4. 

7.   If you  delete  a connection  in error,  you  can  restore  it by  right-clicking  in  the  

editor  view  and  clicking  Undo  Delete. The  connection  is restored.  

8.   If you  undo  the  delete,  but  decide  that  it is the  correct  delete  action,  you  can  

right-click  in  the  editor  view  and  click  Redo  Delete. You can  also  delete  a 

connection  by  selecting  it in  the  Outline  view  and  pressing  the  Delete  key.  

If  you  delete  a node,  its  connections  are  automatically  removed;  you  do  not  have  

to  do  this  as  a separate  task.  

Adding a bend point 

When  you  are  working  with  a message  flow, and  connecting  your  chosen  nodes  

together  to  determine  the  flow  of control,  you  might  find  that  a connection  that  

you  have  made  crosses  over  an  intervening  node  and  makes  the  flow  of control  

difficult  to  follow.  

 

Developing  message  flows 53



To help  you  to  display  the  message  flow  nodes  and  their  connections  in  a clear  

way,  you  can  add  bend  points  to  the  connections  that  you  have  made  to  improve  

the  organization  of  the  display.  The  addition  of bend  points  has  no  effect  on  the  

execution  of  the  nodes  or  the  operation  of  the  message  flow. 

Before  you  start: 

v   Connect  the  nodes  

v   Read  the  concept  topic  about  bend  points

To  add  a bend  point:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Open  the  message  flow  that  you  want  to  work  with.  

3.   Click  Selection  above  the  node  palette.  

4.   Select  the  connection  to  which  you  want  to  add  a bend  point.  The  editor  

appends  a small  black  square  to each  end  of the  connection  to highlight  it. 

a.   Check  that  this  is the  correct  connection.  The  editor  also  adds  a small  point  

(a  handle)  in  the  connection  halfway  between  the  in and  out  terminals  that  

are  joined  by  this  connection.
5.   Hover  your  mouse  pointer  over  this  point  until  the  editor  displays  a black  

cross  to  indicate  that  you  now  have  control  of  this  bend  point.  

a.   Hold  down  the  left  mouse  button  and  move  your  mouse  to  move  the  black  

cross  and  bend  point  across  the  editor  view.
6.    As  you  drag  your  mouse,  the  connection  is updated,  retaining  its  start  and  end  

points  with  a bend  point  at the  drag  point.  You can  move  this  anywhere  within  

the  editor  view  to  improve  the  layout  of your  message  flow. 

7.   Release  the  mouse  button  when  the  connection  is in  the  correct  place.  The  

editor  now  displays  the  bend  point  that  you  have  created  with  a small  square  

(like  those  at  the  ends  of the  connection),  and  displays  another  two  small  

points  within  the  connection,  one  between  your  newly-created  bend  point  and  

the  out  terminal,  the  other  between  the  new  bend  point  and  the  in  terminal.  

If you  want  to  add  more  than  one  bend  point  to  the  same  connection,  repeat  these  

actions  from  step  4 using  the  additional  small  points  inserted  into  the  connection.  

Next:  align  and  arrange  the  nodes.  

Removing a bend point 

When  you  are  working  with  a message  flow  in  the  editor  view,  you  might  want  to  

simplify  the  display  of  the  message  flow  by  removing  a bend  point  that  you  

previously  added  to  a connection  between  two  nodes.  

Before  you  start:  

v   Add  a bend  point  

v   Read  the  concept  topic  about  bend  points

To  remove  a bend  point:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Open  the  message  flow  that  you  want  to  work  with.  

3.   Click  Selection  above  the  node  palette.  

4.   Select  the  connection  from  which  you  want  to remove  the  bend  point.  The  

editor  highlights  the  connection  and  its  current  bend  points  by  thickening  its  

 

54 Message  Flows



line  and  appending  a small  black  square  to each  end  of the  connection,  and  by  

indicating  each  bend  point  with  a small  black  square.  Check  that  this  is the  

correct  connection.  

5.   Right-click  over  the  selected  connection,  if you  added  this  bend  point  in  the  

current  edit  session.  

a.   Click  Undo  Create  Bend  Point.

The  editor  removes  the  selected  bend  point.  

If you  right-click  in  the  editor  view  without  a connection  being  selected,  you  

can  also  click  Undo  Create  Bend  Point  from  the  menu.  However,  this  removes  

the  last  bend  point  that  you  created  in  any  connection,  which  might  not  be  the  

one  that  you  want  to remove.  

6.   Move  the  bend  point  to  straighten  the  line  if you  added  this  bend  point  in a 

previous  edit  session,  because  you  cannot  use  the  undo  action.  When  the  line  is 

straight,  the  bend  point  is removed  automatically.  

When  the  bend  point  has  been  removed,  the  connection  remains  highlighted.  

Both  ends  of  the  connection,  and  any  remaining  bend  points,  remain  displayed  

as small  black  squares.  The  editor  also  inserts  small  points  (handles)  into  the  

connection  between  each  bend  point  and  between  each  terminal  and  its  

adjacent  bend  point,  which  you  can  use  to  add  more  bend  points  if you  choose.  

7.   If you  want  to  remove  another  bend  point  from  the  same  connection,  repeat  

these  actions  from  step  4 on  page  54.  

Aligning and arranging nodes 

When  you  are  working  in the  Message  Flow  editor,  you  can  decide  how  your  

nodes  are  aligned  within  the  editor  view. 

This  option  is  closely  linked  to the  way  in  which  your  nodes  are  arranged.  Again,  

the  default  for  this  is left  to  right,  which  means  that  the  in terminal  of a node  

appears  on  its  left  edge,  and  its  out  terminals  appear  on  its  right  edge.  You can  

also  change  this  characteristic  of a node  by  rotating  the  icon  display  to  right  to left,  

top  to  bottom,  and  bottom  to top.  

Before  you  start  

To complete  this  task,  you  must  have  completed  the  following  task:  

v   “Adding  a message  flow  node”  on  page  46

To  modify  the  way  in  which  nodes  and  connections  are  displayed  in  the  editor:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Open  the  message  flow  that  you  want  to  work  with.  

3.   Click  Selection  above  the  node  palette.  

4.   Right-click  in  the  editor  window  and  select  Manhattan  Layout  if you  want  the  

connections  between  the  nodes  to be  displayed  in Manhattan  style;  that  is  with  

horizontal  and  vertical  lines  joined  at right  angles.  

5.   If you  want  to  change  the  layout  of  the  complete  message  flow:  

a.   Right-click  in the  editor  view  and  click  Layout. The  default  for  the  

alignment  is left  to right,  such  that  your  message  flow  starts  (with  an  input  

node)  on  the  left  and  control  passes  to  the  right.  

b.   From  the  four  further  options  displayed,  Left  to  Right, Right  to  Left, Top  

to  Bottom,  and  Bottom  to  Top, click  the  option  that  you  want  for  this  

 

Developing  message  flows 55



message  flow. The  message  flow  display  is updated  to  reflect  your  choice.  

As  a result  of  the  change  in  alignment,  all  the  nodes  within  the  message  

flow  are  also  realigned.  

For  example,  if you  have  changed  from  a left  to  right  display  (the  default)  

to  a right  to  left  display,  each  node  in  the  flow  has  now  also  changed  to 

right  to  left  (that  is,  the  in  terminal  now  appears  on  the  right  edge,  the  out  

terminals  appear  on  the  left  edge).
6.   You might  want  to  arrange  an  individual  node  in  a different  direction  from  that  

in  which  the  remaining  nodes  are  arranged  within  the  message  flow, To do  this:  

a.   Right-click  the  node  that  you  want  to  change  and  click  Rotate. This  gives  

you  four  further  options:  Left  to  Right, Right  to  Left, Top  to  Bottom, and  

Bottom  to  Top. 

b.   Click  the  option  that  you  want  for  this  node.  The  option  that  represents  the  

current  arrangement  of  the  node  is not  available  for  selection.  

If you  change  the  alignment  of  the  message  flow, or  the  arrangement  of an  

individual  node,  or  both,  these  settings  are  saved  when  you  save  the  message  flow. 

They  are  applied  when  another  user  accesses  this  same  message  flow, either  

through  a shared  repository  or  through  shared  files  or  import  and  export.  When  

you  reopen  the  message  flow, you  see  these  changed  characteristics.  The  alignment  

and  arrangement  that  you  have  selected  for  this  message  flow  have  no  impact  on  

the  alignment  and  arrangement  of  any  other  message  flow. 

In  the  Message  Brokers  Toolkit  Version  5.1  you  can  adjust  the  zoom  by  

right-clicking  in the  editor  view  and  clicking  Zoom  in  or  Zoom  out. Alternatively,  

you  can  use  the  drop-down  list  on  the  editor  toolbar  to specify  a zoom  percentage.  

You can  also  access  the  editor  toolbar  to  select  other  options  related  to the  display  

and  arrangement  of  nodes,  for  example,  snap  to  grid.  These  are  defined  in  

Message  Flow  editor.  

Defining a promoted property 

Before  you  start:  

Read  the  concept  topic  about  promoted  properties.  

When  you  create  a message  flow, you  can  promote  properties  from  individual  

nodes  within  that  message  flow  to  the  message  flow  level.  Properties  promoted  in 

this  way  override  the  property  values  that  you  have  set  for  the  individual  nodes.  

You can  perform  the  following  tasks  related  to  promoting  properties:  

v   “Promoting  a property”  on  page  57 

v   “Renaming  a promoted  property”  on  page  61  

v   “Removing  a promoted  property”  on  page  62  

v   “Converging  multiple  properties”  on  page  64

Some  of  the  properties  that  you  can  promote  to the  message  flow  are  also  

configurable;  you  can  modify  them  when  you  deploy  the  broker  archive  file  in  

which  you  have  stored  the  message  flow  to  each  broker.  If you  set  values  for  

configurable  properties  when  you  deploy  a broker  archive  file,  the  values  that  you  

set  override  values  set  in  the  individual  nodes,  and  those  that  you  have  promoted.  

 

56 Message  Flows



Promoting a property 

You can  promote  a node  property  to  the  message  flow  level  to simplify  the  

maintenance  of the  message  flow  and  its  nodes,  and  to  provide  common  values  for  

multiple  nodes  within  the  flow  by  converging  promoted  properties.  

Before  you  start:  

v   Create  a message  flow  

v   Read  the  concept  topic  about  promoted  properties

To  promote  message  flow  node  properties  to  the  message  flow  level:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Open  the  message  flow  for  which  you  want  to  promote  properties  by  

double-clicking  the  message  flow  in  the  Navigator  view. You can  also  open  the  

message  flow  by  right-clicking  it in  the  Navigator  view  and  clicking  Open  The  

message  flow  contents  are  displayed  in the  editor  view.  

If this  is the  first  message  flow  that  you  have  opened,  the  message  flow  control  

window  and  the  list  of available  built-in  message  flow  nodes  are  also  

displayed,  to  the  left  of  the  editor  view.  

3.   In  the  editor  view, right-click  the  symbol  of  the  message  flow  node  whose  

properties  you  want  to  promote.  

4.    Select  Promote  Property. 

The  Promote  Property  dialog  is displayed.  

 

The  left  side  of  the  dialog  lists  all  available  properties  for  all  the  nodes  within  

the  message  flow. The  properties  for  the  node  that  you  highlighted  are  

  

 

Developing  message  flows 57



expanded.  You can  access  the  properties  for  all  the  nodes  in the  open  message  

flow  from  this  dialog,  regardless  of  the  node  that  you  selected  when  you  first  

opened  the  dialog,  by  expanding  the  properties  for  all  the  other  nodes  in  the  

flow  (these  are  initially  collapsed).  

The  right  side  of the  dialog  lists  the  name  of  the  open  message  flow  and  all  the  

properties  that  are  currently  promoted  to the  message  flow. If  you  have  not  yet  

promoted  any  properties,  only  the  message  flow  name  as the  root  of the  

promoted  property  tree  is displayed  on  the  right.  In  the  image  shown  the  

message  flow  contains  no  promoted  properties  so only  the  name  of the  

message  flow  is displayed.  

The  majority  of  message  flow  node  properties  are  available  for  promotion,  but  

you  cannot  promote  the  following  properties:  

v   A property  group,  but  you  can  promote  an  individual  property.  

v   A property  that  you  cannot  edit  (for  example,  the  Fix  property  in  the  

Validate  group  of properties  for  the  MQInput  node).  

v   The  description  properties  (Short  Description  and  Long  Description).
5.   Select  the  property  that  you  want  to promote  to  the  message  flow. The  list  on  

the  left  initially  shows  the  expanded  list  of all  available  properties  for  the  

selected  node.  If  you  have  already  promoted  properties  from  this  node,  they  do  

not  appear  on  the  left,  but  on  the  right.  

The  list  on  the  left  also  includes  the  other  nodes  in the  open  message  flow. You 

can  expand  the  properties  listed  under  each  node  and  work  with  all  these  

properties  at  the  same  time.  You do  not  have  to close  the  dialog  and  select  

another  node  from  the  editor  view  to  continue  promoting  properties.  

You can  select  multiple  properties  to  promote  by  selecting  a property,  holding  

down  Ctrl,  and  selecting  one  or  more  other  properties.  

If  you  have  you  selected  multiple  properties  to  promote,  all  the  properties  you  

have  selected  must  be  available  for  promotion.  If one  or  more  of the  selected  

properties  is  not  available  for  promotion,  the  entire  selection  becomes  

unavailable  for  promotion,  and  the  Promote  button  in  the  right-hand  pane  is  

grayed  out.  

6.   Click  the  Promote  button  to  promote  the  property  or properties  

 

58 Message  Flows



Clicking  the  Promote  button  invokes  the  Target  Selection  dialog:
   

The  Target  Selection  dialog  displays  only  the  valid  targets  for  the  promotion  of 

the  previously  selected  property  or  properties  and  allows  you  to create  a new  

target  for  the  promotion,  such  as  to  a new  group  or  to  a new  property.  

7.   In  the  Target  Selection  dialog,  select  the  destination  group  or  property  for  the  

property  or  properties  you  want  to promote.  You can  group  together  related  

properties  from  the  same  or  different  nodes  in  the  message  flow  by  dropping  

the  selected  property  or  properties  onto  a group  or  property  that  already  exists.  

Alternatively,  you  can  click  New  Group  or  New  Property  to create  a new  

target  for  the  promotion.  You can  rename  groups  and  properties  by  selecting  

them  and  clicking  Rename,  or  by  double-clicking  on  the  group  or  property.  

8.   Click  OK  to  confirm  your  selections.  

Note:   If  you  create  a new  group  or  property  using  the  Target  Selection  dialog,  

the  changes  persist  even  if you  select  Cancel  in  the  dialog.  When  the  

dialog  closes,  groups  or  properties  that  you  have  created  using  the  

Target  Selection  dialog  will  appear  in  the  Promote  properties  dialog.  

9.   When  you  have  selected  the  properties  that  you  want  to promote  to the  

message  flow, click  OK  Your updates  are  committed,  and  the  Promoted  

Property  dialog  is closed.  If you  click  Apply, this  commits  the  changes  but  

leaves  the  dialog  open.  

When  you  have  promoted  a property,  you  can  no  longer  make  any  changes  to 

that  property  through  the  node  properties  dialog.  You can  only  update  its  value  

at  the  message  flow  level.

 

Developing  message  flows 59



Note:   You can  also  promote  properties  from  the  Promote  property  dialog  by  

dragging  the  selected  property  or  properties  from  the  left-hand  pane  of the  

Promote  Property  dialog  to  the  right-hand  pane:  

1.   Select  the  property  you  want  to promote.  You can  select  multiple  

properties  to  promote  by  selecting  a property,  holding  down  Ctrl,  and  

selecting  one  or  more  other  properties.  

2.   You can  drop  the  selected  property  or  properties  into  the  right-hand  

pane  using  the  following  methods:  

a.   Drop  the  selected  property  or  properties  in  an  empty  space.  

A  new  group  is automatically  created  for  the  message  flow, and  the  

property  is placed  within  it, with  the  original  name  of  the  property  

and  the  name  of  the  message  flow  node  from  which  it  came  

displayed  beneath  the  property  entry.  

The  name  of  the  first  group  created  defaults  to  Group1.  If a group  

called  Group1  already  exists,  the  group  is given  the  name  Group2,  

and  so  on.  You can  rename  the  group  by  double-clicking  it and  

entering  new  text  or  by  selecting  the  group  in  the  Promoted  

properties  pane  and  clicking  Rename.

Note:   

When  you  create  a new  promoted  property,  the  name  that  you  

enter  is  the  name  by  which  the  property  is known  within  the  

system,  and  must  meet  certain  Java  and  XML  naming  

restrictions.  These  are  enforced  by  the  dialog,  and  a message  is 

displayed  if you  enter  a name  that  includes  a non-valid  

character.  For  example,  you  cannot  include  a space  or  the  

double  quote  symbol.  

b.   Drop  the  selected  property  or  properties  onto  a group  that  already  

exists,  to  group  together  related  properties  from  the  same  or  different  

nodes  in  the  message  flow. 

For  example,  you  might  want  to  group  all  promoted  properties  that  

relate  to  database  interactions.  You can  change  the  groups  that  

promoted  properties  belong  to  at any  time,  by  selecting  a property  in 

the  Promoted  properties  pane  and  dragging  it onto  a different  group.  

c.   Drop  the  selected  property  or  properties  onto  a property  that  already  

exists,  to  converge  related  properties  from  the  same  or  different  nodes  

in  the  message  flow. 

For  example,  you  might  want  to  create  a single  promoted  property  

that  overrides  the  property  on  each  node  that  defines  a data  source.  

For  more  information  on  converging  properties,  see  “Converging  

multiple  properties”  on  page  64.

The  message  flow  node  properties  are  now  promoted  to the  message  flow. To 

confirm  this,  right-click  the  message  flow  in  the  Navigator  view, or  right-click  the  

editor  view, and  select  Properties. 

The  Properties  dialog  of the  message  flow  is displayed,  showing  the  message  flow  

node  properties  that  you  have  promoted,  organized  in the  groups  that  you  have  

created.  If  you  now  set  a value  for  one  of  these  properties,  that  value  appears  as 

the  default  value  for  the  property  whenever  the  message  flow  is itself  included  in  

other  message  flows.  

 

60 Message  Flows



When  you  have  promoted  a property,  you  can  no  longer  make  any  changes  to that  

property  through  the  node  properties  dialog.  You can  only  update  its  value  at  the  

message  flow  level.  

When  you  select  an  embedded  message  flow  within  another  message  flow  (a 

subflow)  and  view  its  properties,  you  see  the  promoted  property  values.  If you  

look  inside  the  embedded  flow  (that  is,  if you  select  Open  Subflow),  you  see  the  

original  values  for  the  properties.  The  value  of  a promoted  property  does  not  

replace  the  original  property,  but  it  takes  precedence  when  you  deploy  the  message  

flow. 

Promoting mandatory properties 

If  you  promote  a property  that  is mandatory  (that  is,  an  asterisk  appears  beside  the  

name  in  the  properties  dialog  of  the  message  flow  node),  the  mandatory  

characteristic  of  the  property  is preserved.  When  a mandatory  property  is 

promoted,  its  value  does  not  need  to  be  set  at  the  node-level.  If  the  flow  containing  

the  mandatory  promoted  property  is included  as  a subflow  within  another  flow, 

then  the  property  has  to  be  filled  in  for  the  subflow  node.  

Promoting properties through a hierarchy of message flows 

You can  repeat  the  process  of promoting  message  flow  node  properties  through  

several  levels  of  message  flow. You can  promote  properties  from  any  level  in  the  

hierarchy  to  the  next  level  above,  and  so  on  through  the  hierarchy  to  the  top  level.  

The  value  of  a property  is propagated  from  the  highest  point  in the  hierarchy  at  

which  it is set  down  to  the  original  message  flow  node  when  the  message  flow  is 

deployed  to  a broker.  The  value  of that  property  on  the  original  message  flow  

node  is  overridden.  

Renaming a promoted property 

If  you  have  promoted  a property  from  the  node  to  the  message  flow  level,  it is  

initially  assigned  the  same  name  that  it has  at the  node  level.  You can  rename  the  

property  to  have  a more  meaningful  name  in  the  context  of  the  message  flow. 

Before  you  start:  

v   Promote  a property  

v   Read  the  concept  topic  about  promoted  properties

To  rename  a promoted  property  : 

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Open  the  message  flow  for  which  you  want  to  promote  properties  by  

double-clicking  the  message  flow  in  the  Navigator  view. You can  also  open  the  

message  flow  by  right-clicking  it in  the  Navigator  view  and  clicking  Open  The  

message  flow  contents  are  displayed  in the  editor  view.  

If this  is the  first  message  flow  that  you  have  opened,  the  message  flow  control  

window  and  the  list  of available  built-in  message  flow  nodes  are  also  

displayed,  to  the  left  of  the  editor  view.  

3.   In  the  editor  view, right-click  the  symbol  of  the  message  flow  node  whose  

properties  you  want  to  promote.  

4.    Select  Promote  Property. 

The  Promote  Property  dialog  is displayed.  

 

 

Developing  message  flows 61



5.   Promoted  properties  are  shown  in the  Promoted  properties  pane  on  the  right  of  

the  Promote  property  dialog.  Double-click  the  promoted  property  in  the  list  of 

properties  that  are  currently  promoted  to the  message  flow  level,  or  select  the  

property  you  want  to  rename  and  click  Rename.  The  name  is highlighted,  and  

you  can  edit  it.  Modify  the  existing  text  or  enter  new  text  to  give  the  property  a 

new  name,  and  press  Enter. 

6.   Click  Apply  to  commit  this  change  without  closing  the  Property  Promotion  

dialog.  Click  OK  to  complete  your  updates  and  close  the  dialog.

Removing a promoted property 

If you  have  promoted  a property  from  the  node  to  the  message  flow  level,  you  can  

remove  (delete)  it if you  no  longer  want  to  specify  its  value  at  the  message  flow  

level.  The  property  reverts  to the  value  that  you  specified  at  the  node  level.  If you  

remove  a promoted  property  that  is a mandatory  property,  ensure  that  you  have  

set  a value  at  the  node  level.  If  you  have  not,  you  cannot  successfully  deploy  a 

broker  archive  file  that  includes  this  message  flow. 

Before  you  start:  

v   Promote  a property  

v   Read  the  concept  topic  about  promoted  properties

If  you  have  promoted  one  or  more  message  flow  node  properties,  and  want  to  

delete  them:  

1.   Switch  to  the  Broker  Application  Development  perspective.  

2.   Open  the  message  flow  for  which  you  want  to  promote  properties  by  

double-clicking  the  message  flow  in  the  Navigator  view. You can  also  open  the  

  

 

62 Message  Flows



message  flow  by  right-clicking  it in  the  Navigator  view  and  clicking  Open  The  

message  flow  contents  are  displayed  in the  editor  view.  

If this  is the  first  message  flow  that  you  have  opened,  the  message  flow  control  

window  and  the  list  of available  built-in  message  flow  nodes  are  also  

displayed,  to  the  left  of  the  editor  view.  

3.   In  the  Editor  view, right-click  the  symbol  of  the  message  flow  node  whose  

properties  you  want  to  promote.  

4.    Select  Promote  Property. 

The  Promote  Property  dialog  is displayed.  

 

5.   Select  the  promoted  property  that  you  want  to  remove  in  the  list  of  properties  

on  the  right  of  the  dialog,  and  click  Remove.  The  property  is removed  from  the  

list  on  the  right.  It  is restored  to  the  list  on  the  left,  in  its  appropriate  place  in  

the  tree  of properties  for  the  node  from  which  you  promoted  it.  You can  

promote  this  property  again  if you  choose.  

6.   If you  want  to  delete  all  the  promoted  properties  within  a single  group,  select  

the  group  in  the  list  on  the  right  and  click  Remove.  The  group  and  all  the  

properties  it contains  are  deleted  from  this  list:  the  individual  properties  that  

you  promoted  are  restored  to the  nodes  from  which  you  promoted  them.  

7.   Click  Apply  to  commit  this  change  without  closing  the  Property  Promotion  

dialog.  Click  OK  to  complete  your  updates  and  close  the  dialog.  

If  you  have  included  this  message  flow  in  a higher-level  message  flow, and  have  

set  a value  for  a promoted  property  that  you  have  now  deleted,  the  embedding  

flow  is not  automatically  updated  to reflect  the  deletion.  However,  when  you  

deploy  that  embedding  message  flow  in  the  broker  domain,  the  deleted  property  is 

ignored.  

  

 

Developing  message  flows 63



Converging multiple properties 

You can  promote  properties  from  several  nodes  in  a message  flow  to define  a 

single  promoted  property  that  provides  a single  value  to  be  for  that  property  in  all 

those  nodes.  

Before  you  start:  

v   Create  a message  flow  

v   Read  the  concept  topic  about  promoted  properties

To  converge  multiple  node  properties  to a single  promoted  property:  

 1.   Switch  to  the  Broker  Application  Development  perspective.  

 2.   Open  the  message  flow  for  which  you  want  to  promote  properties  by  

double-clicking  the  message  flow  in  the  Navigator  view. You can  also  open  

the  message  flow  by  right-clicking  it in  the  Navigator  view  and  clicking  Open  

The  message  flow  contents  are  displayed  in  the  editor  view. 

If  this  is the  first  message  flow  that  you  have  opened,  the  message  flow  

control  window  and  the  list  of available  built-in  message  flow  nodes  are  also  

displayed,  to  the  left  of  the  editor  view. 

 3.   In the  editor  view, right-click  the  symbol  of  the  message  flow  node  whose  

properties  you  want  to  promote.  

 4.    Select  Promote  Property.  

The  Promote  Property  dialog  is displayed.  

 

  

 

64 Message  Flows



5.   Select  the  property  that  you  want  to converge.  The  list  on  the  left  initially  

shows  the  expanded  list  of  all  available  properties  for  the  selected  node.  If 

you  have  already  promoted  properties  from  this  node,  they  do  not  appear  on  

the  left,  but  on  the  right.  

The  list  on  the  left  also  includes  the  other  nodes  in  the  open  message  flow. 

You can  expand  the  properties  listed  under  each  node  and  work  with  all these  

properties  at  the  same  time.  You do  not  have  to  close  the  dialog  and  select  

another  node  from  the  editor  view  to  continue  promoting  properties.  

You can  select  multiple  properties  to  promote  by  selecting  a property,  holding  

down  Ctrl,  and  selecting  one  or  more  other  properties.  

If  you  have  you  selected  multiple  properties  to  converge,  all  the  properties  

you  have  selected  must  be  available  for  promotion.  If one  or  more  of the  

selected  properties  is not  available  for  promotion,  the  entire  selection  becomes  

unavailable  for  promotion,  and  the  Promote  button  in the  right-hand  pane  is 

grayed  out.  

 6.   Click  the  Promote  button  to  promote  the  property  or  properties  

Clicking  the  Promote  button  invokes  the  Target  Selection  dialog:
   

The  Target  Selection  dialog  displays  only  the  valid  targets  for  the  promotion  

of  the  previously  selected  property  or  properties  and  allows  you  to create  a 

new  target  for  the  promotion,  such  as  to a new  group  or  to a new  property.  

 7.   To converge  properties  from  the  same  or  different  nodes  in  the  message  flow, 

expand  the  tree  and  click  on  a property  that  already  exists.  You can  rename  

the  properties  by  selecting  them  and  clicking  Rename,  or  by  double-clicking  

on  the  group  or  property.  

 8.   Click  OK  to  confirm  your  selections.  

 

Developing  message  flows 65



Note:   If  you  create  a new  group  or  property  using  the  Target  Selection  dialog,  

the  changes  persist  even  if you  select  Cancel  in  the  dialog.  When  the  

dialog  closes,  groups  or  properties  that  you  have  created  using  the  

Target  Selection  dialog  will  appear  in  the  Promote  properties  dialog.  

 9.   Expand  the  property  trees  for  all  the  nodes  for  which  you  want  to  promote  

properties.  

a.   Drag  the  first  instance  of  the  property  that  you  want  to  converge  from  the  

list  on  the  left,  and  drop  it on  the  appropriate  group  in  the  list  on  the  

right.  If  the  group  already  contains  one  or  more  promoted  properties,  the  

new  property  is added  at the  end  of  the  group.  Rename  the  new  property  

if you  want  to  by  double-clicking  the  property,  or  by  selecting  the  property  

and  clicking  Rename.  

If  you  want  the  promoted  property  to appear  in  a new  group,  you  can  

drag  and  drop  the  property  into  an  empty  space  below  the  existing  

groups,  which  forces  a new  group  to  be  created.  You can  also  place  the  

promoted  property  in  a new  group  by  selecting  the  property  you  want  to  

promote,  and  clicking  Promote,  which  opens  the  Target  Selection  dialog.  

Click  New  Group, and  enter  the  name  of the  new  group.  Click  OK  to  

confirm  your  changes.  

If  you  drag  the  property  onto  an  existing  promoted  property  of a different  

type,  a no-entry  icon  is displayed  and  you  cannot  drop  the  property.  You 

must  create  this  as  a new  promoted  property,  or  drop  it onto  a compatible  

existing  promoted  property.  Properties  must  be  associated  with  the  same  

property  editor  to  be  compatible.  For  example,  if you  are  using  built-in  

nodes,  you  can  only  converge  like  properties  (string  with  string,  boolean  

with  boolean).
10.   Drag  all  remaining  instances  of the  property  from  each  of the  nodes  in the  list  

on  the  left  onto  the  existing  promoted  property.  The  new  property  is added  

under  the  existing  promoted  property,  and  is not  created  as  a new  promoted  

property.  

11.   Click  Apply  to  commit  this  change  without  closing  the  Property  Promotion  

dialog.  Click  OK  to  complete  your  updates  and  close  the  dialog.  

Note:   You can  also  converge  properties  from  the  Promote  property  dialog  by  

dragging  the  selected  property  or  properties  from  the  left-hand  pane  of the  

Promote  Property  dialog  to  the  right-hand  pane:  

1.   Select  the  property  you  want  to promote.  You can  select  multiple  

properties  to  promote  by  selecting  a property,  holding  down  Ctrl,  and  

selecting  one  or  more  other  properties.  

2.   Drop  the  selected  property  or  properties  onto  a property  in  the  

right-hand  pane  to  converge  related  properties  from  the  same  or  

different  nodes  in  the  message  flow. 

For  example,  you  might  want  to create  a single  promoted  property  that  

overrides  the  property  on  each  node  that  defines  a data  source.  

For  more  information  on  converging  properties,  see  “Converging  

multiple  properties”  on  page  64.

 

66 Message  Flows



Collecting message flow accounting and statistics data 

Before  you  start:  

Read  the  concept  topic  about  message  flow  accounting  and  statistics  data.  

You can  collect  statistics  on  message  flow  behavior.  

The  following  topics  describe  the  tasks  that  you  can  complete  to  control  collection  

of  message  flow  accounting  and  statistics  data:  

v   “Starting  to  collect  message  flow  accounting  and  statistics  data”  

v   “Stopping  message  flow  accounting  and  statistics  data  collection”  on  page  69  

v   “Viewing  message  flow  accounting  and  statistics  data  collection  parameters”  on  

page  70  

v   “Modifying  message  flow  accounting  and  statistics  data  collection  parameters”  

on  page  70  

v   “Resetting  message  flow  accounting  and  statistics  archive  data”  on  page  71

The  topics  listed  here  show  examples  of how  to  issue  the  accounting  and  statistics  

commands.  The  examples  for  z/OS  are  shown  for  SDSF;  if you  are  using  another  

interface,  you  must  modify  the  example  shown  according  to the  requirements  of  

that  interface.  For  details  of other  z/OS  options,  see  Issuing  commands  to the  

z/OS  console.  

Starting to collect message flow accounting and statistics 

data 

Before  you  start:  

v   Create  a message  flow  

v   Deploy  a broker  archive  file  

v   Read  the  concept  topic  about  message  flow  accounting  and  statistics  collection  

options

You can  start  collecting  message  flow  accounting  and  statistics  data  for  an  active  

broker  at  any  time.  

Select  the  granularity  of the  data  that  you  want  to  be  collected  by  specifying  the  

appropriate  parameters  on  the  mqsichangeflowstats  command.  You must  request  

statistics  collection  on  a broker  basis.  If you  want  to  collect  information  for  more  

than  one  broker,  you  must  issue  the  corresponding  number  of  commands.  

To start  collecting  message  flow  accounting  and  statistics  data:  

1.   Identify  the  broker  for  which  you  want  to  collect  statistics  . 

2.   Decide  the  resource  for  which  you  want  to collect  statistics.  You can  collect  

statistics  for  a specific  execution  group,  or  for  all  execution  groups  for  the  

specified  broker.  

v   If  you  indicate  a specific  execution  group,  you  can  request  that  data  is 

recorded  for  a specific  message  flow  or  all  message  flows  in  that  group.  

v   If  you  specify  all  execution  groups,  you  must  specify  all  message  flows.
3.   Decide  if you  want  to  collect  thread  related  statistics.  

4.   Decide  if you  want  to  collect  node  related  statistics.  If you  do,  you  can  also  

collect  information  about  terminals  for  the  nodes.  

 

Developing  message  flows 67



5.   Decide  if you  want  to associate  data  collection  with  a particular  accounting  

origin.  This  option  is valid  for  snapshot  and  archive  data,  and  for  message  

flows  and  execution  groups.  However,  when  active,  you  must  set  its  origin  

value  in  each  message  flow  to  which  it refers.  If you  do  not  configure  the  

participating  message  flows  to  set  the  appropriate  origin  identifier,  the  data  

collected  for  that  message  flow  is collected  with  the  origin  set  to  Anonymous. 

See  “Setting  message  flow  accounting  and  statistics  accounting  origin”  on  page  

69  for  further  details.  

6.   Decide  the  target  destination:  

v   User  trace  log.  This  is the  default  setting.  The  output  data  can  be  processed  

using  mqsireadlog  and  mqsiformatlog.  

v   XML  format  publication  message.  If  you  chose  this  as your  target  destination,  

register  the  following  topic  for  the  subscriber:  

$SYS/Broker/brokerName/StatisticsAccounting/recordType/executionGroupLabel/messageFlowLabel  

Where,  brokerName, executionGroupLabel, and  messageFlowLabel  are  the  broker,  

execution  group  and  message  flow  on  which  you  want  to receive  data.  

recordType  is the  type  of  data  collection  on  which  you  want  to  receive  

publications  (snapshot,  archive,  or  # to  receive  both  snapshot  and  archive).  

v   SMF  (on  z/OS  only)
7.   Decide  the  type  of data  collection  that  you  want:  

v   Snapshot  

v   Archive  

You can  collect  snapshot  and  archive  data  at  the  same  time,  but  you  have  to  

configure  them  separately.  

8.   Issue  the  mqsichangeflowstats  command  with  the  appropriate  parameters  to  

reflect  the  decisions  that  you  have  made.  

For  example,  to  turn  on  snapshot  data  for  all  message  flows  in  the  default  

execution  group  for  BrokerA,  and  include  node  data  with  the  basic  message  

flow  statistics,  enter:  

mqsichangeflowstats  BrokerA  -s -e default  -j -c active  -n basic  

Using  SDSF  on  z/OS,  enter:  

/F BrokerA,cs  s=yes,e=default,j=yes,c=active,n=basic  

Refer  to  the  mqsichangeflowstats  command  for  further  examples.  

When  the  command  completes  successfully,  data  collection  for  the  specified  

resources  is started:  

v   If  you  have  requested  snapshot  data,  information  is collected  for  approximately  

20  seconds,  and  the  results  are  written  to  the  specified  output.  

v   If  you  have  requested  archive  data,  information  is collected  for  the  interval  

defined  for  the  broker  (on  the  mqsicreatebroker  or  mqsichangebroker  command,  

or  by  the  external  timer  facility  ENF).  The  results  are  written  to  the  specified  

output,  the  interval  is reset,  and  data  collection  starts  again.

Next:  

You can  now  perform  the  following  tasks:  

v   “Setting  message  flow  accounting  and  statistics  accounting  origin”  on  page  69 

v   “Stopping  message  flow  accounting  and  statistics  data  collection”  on  page  69 

v   “Viewing  message  flow  accounting  and  statistics  data  collection  parameters”  on  

page  70  

v   “Modifying  message  flow  accounting  and  statistics  data  collection  parameters”  

on  page  70  

 

68 Message  Flows



v   “Resetting  message  flow  accounting  and  statistics  archive  data”  on  page  71

Setting message flow accounting and statistics accounting 

origin 

Accounting  and  statistics  data  is associated  with  an  accounting  origin.  

All  message  flow  accounting  and  statistics  data  is collected  with  an  accounting  

origin  set  to  Anonymous. You cannot  change  this  value.  

Stopping message flow accounting and statistics data 

collection 

You can  stop  collecting  data  for  message  flow  accounting  and  statistics  at any  time.  

You do  not  have  to  stop  the  message  flow, execution  group,  or  broker  to make  this  

change,  nor  do  you  have  to  redeploy  the  message  flow. 

Before  you  start:  

v   Start  to  collect  message  flow  accounting  and  statistics  data  

v   Read  the  concept  topic  about  message  flow  accounting  and  statistics  data

You  can  stop  collecting  data  for  message  flow  accounting  and  statistics  at any  time.  

You do  not  have  to  stop  the  message  flow, execution  group,  or  broker  to make  this  

change,  nor  do  you  have  to  redeploy  the  message  flow. 

You can  modify  the  parameters  that  are  currently  in  force  for  collecting  message  

flow  accounting  and  statistics  data  without  stopping  data  collection.  See  

“Modifying  message  flow  accounting  and  statistics  data  collection  parameters”  on  

page  70  for  further  details.  

To stop  collecting  data:  

1.   Check  the  resources  for  which  you  want  to  stop  collecting  data.  

You do  not  have  to  stop  all  active  data  collection.  If  you  choose,  you  can  stop  a 

subset  of  data  collection.  For  example,  if you  started  collecting  statistics  for  all  

message  flows  in  a particular  execution  group,  you  can  stop  doing  so  for  a 

specific  message  flow  in  that  execution  group.  Data  collection  for  all  other  

message  flows  in  that  execution  group  continues.  

2.   Issue  the  mqsichangeflowstats  command  with  the  appropriate  parameters  to  

stop  collecting  data  for  some  or  all  resources.  

For  example,  to  switch  off  snapshot  data  for  all  message  flows  in  all  execution  

groups  for  BrokerA,  enter:  

mqsichangeflowstats  BrokerA  -s -g -j -c inactive  

Using  SDSF  on  z/OS,  enter:  

/F BrokerA,cs  s=yes  g=yes  j=yes  c=inactive  

Refer  to  the  mqsichangeflowstats  command  for  further  examples.  

When  the  command  completes  successfully,  data  collection  for  the  specified  

resources  is  stopped.  Any  outstanding  data  that  has  been  collected  is written  to  the  

output  destination  when  you  issue  this  command,  to  ensure  the  integrity  of data  

collection.  

 

Developing  message  flows 69



Viewing  message flow accounting and statistics data 

collection parameters 

You can  review  and  check  the  parameters  that  are  currently  in  effect  for  message  

flow  accounting  and  statistics  data  collection.  

Before  you  start:  

v   Start  to  collect  message  flow  accounting  and  statistics  data  

v   Read  the  concept  topic  about  message  flow  accounting  and  statistics  data

To  view  message  flow  accounting  and  statistics  data  collection  parameters:  

Issue  the  mqsireportflowstats  command  with  the  appropriate  parameters  to  view  

the  parameters  that  are  currently  being  used  by  the  broker  to  control  archive  data  

collection  or  snapshot  data  collection.  

You can  view  the  parameters  in  force  for  a broker,  an  execution  group,  or  an  

individual  message  flow. 

For  example,  to  view  parameters  for  snapshot  data  for  all  message  flows  in all  

execution  groups  for  BrokerA,  enter:  

mqsireportflowstats  BrokerA  -s -g -j 

Using  SDSF  on  z/OS,  enter:  

/F BrokerA,rs  s=yes,g=yes,j=yes  

Refer  to  the  mqsireportflowstats  command  for  further  examples.  

The  command  displays  the  current  status,  for  example:  

BIP8187I:  Statistics  Snapshot  settings  for flow  MyFlow1  in execution  

group  default  - On?:  inactive,  

ThreadDataLevel:  basic,  NodeDataLevel:   basic,  

OutputFormat:  usertrace,  AccountingOrigin:  basic  

Next:  

You can  now  modify  the  data  collection  parameters.  

Modifying message flow accounting and statistics data 

collection parameters 

You can  modify  the  parameters  that  you  have  set  for  message  flow  accounting  and  

statistics  data  collection.  For  example,  you  can  start  collecting  data  for  a new  

message  flow  that  you  have  deployed  to an  execution  group  for  which  you  are  

already  collecting  data.  

You can  modify  parameters  while  data  collection  is active;  you  do  not  have  to stop  

data  collection  and  restart  it.  

Before  you  start:  

v   Start  to  collect  message  flow  accounting  and  statistics  data  

v   Read  the  concept  topic  about  message  flow  accounting  and  statistics  data

To  modify  message  flow  accounting  and  statistics  parameters:  

 

70 Message  Flows



1.   Decide  which  data  collection  parameters  you  want  to change.  You can  modify  

the  parameters  that  are  in force  for  a broker,  an  execution  group,  or an  

individual  message  flow. 

2.   Issue  the  mqsichangeflowstats  command  with  the  appropriate  parameters  to  

modify  the  parameters  that  are  currently  being  used  by  the  broker  to  control  

archive  data  collection  or  snapshot  data  collection.  

For  example,  to  modify  parameters  to  extend  snapshot  data  collection  to a new  

message  flow  MFlow2  in  execution  group  EG2  for  BrokerA,  enter:  

mqsichangeflowstats  BrokerA  -s -e EG2  -f MFlow2  -c active  

Using  SDSF  on  z/OS,  enter:  

/F BrokerA,cs  s=yes,e=EG2,f=MFlow2,c=active  

If you  want  to  specify  an  accounting  origin  for  archive  data  for  a particular  

message  flow  in  an  execution  group,  enter:  

mqsichangeflowstats  BrokerA  -a -e EG4  -f MFlowX  -b basic  

Using  SDSF  on  z/OS,  enter:  

/F BrokerA,cs  a=yes,e=EG4,f=MFlowX,b=basic  

Refer  to  the  mqsichangeflowstats  command  for  further  examples.  

When  the  command  completes  successfully,  the  new  parameters  that  you  have  

specified  for  data  collection  are  in  force.  These  parameters  remain  in force  until  

you  stop  data  collection  or  make  further  modifications.  

Resetting message flow accounting and statistics archive data 

You can  reset  message  flow  accounting  and  statistics  archive  data  to  purge  any  

accounting  and  statistics  data  not  yet  reported  for  that  collecting  interval.  This  

removes  unwanted  data.  You can  request  this  at  any  time;  you  do  not  have  to  stop  

data  collection  and  restart  it to  perform  reset.  You cannot  reset  snapshot  data.  

Before  you  start:  

v   Start  to  collect  message  flow  accounting  and  statistics  data  

v   Read  the  concept  topic  about  message  flow  accounting  and  statistics  data

To  reset  message  flow  accounting  and  statistics  archive  data:  

1.   Identify  the  broker,  and  optionally  the  execution  group,  for  which  you  want  to 

reset  archive  data.  You cannot  reset  archive  data  on  a message  flow  basis.  

2.   Issue  the  mqsichangeflowstats  command  with  the  appropriate  parameters  to  

reset  archive  data.  

For  example,  to  reset  archive  data  for  BrokerA,  enter:  

mqsichangeflowstats  BrokerA  -a -g -j -r 

Using  SDSF  on  z/OS,  enter:  

/F BrokerA,cs  a=yes,g=yes,j=yes,r=yes  

When  this  command  completes,  all  accounting  and  statistics  data  accumulated  so  

far  for  this  interval  are  purged  and  will  not  be  included  in  the  reports.  Data  

collection  is restarted  from  this  point.  All  archive  data  for  all  flows  (indicated  by -j  

or  j=yes) in  all  execution  groups  (indicated  by  -g  or g=yes) is reset.  

This  command  has  a minimal  effect  on  snapshot  data  because  the  accumulation  

interval  is  much  shorter  than  for  archive  data.  It does  not  effect  the  settings  for  

archive  or  snapshot  data  collection  that  are  currently  in  force.  When  the  command  

has  completed,  data  collection  resumes  according  to  the  current  settings.  

 

Developing  message  flows 71



You can  change  any  other  options  that  are  currently  in effect  when  you  reset  

archive  data,  for  example  accounting  origin  settings  or  output  type.  

 

72 Message  Flows



Part  2. Deploying  

Deploying   . . . . . . . . . . . . . . 75 

Deployment  overview  . . . . . . . . . . . 75 

Deployment  environments   . . . . . . . . 76 

Types of deployment   . . . . . . . . . . 77 

Message  flow  application  deployment   . . . . 78 

Broker  configuration  deployment   . . . . . . 80  

Publish/subscribe  topology  deployment  . . . . 81 

Publish/subscribe  topics  hierarchy  deployment  82 

Cancel  deployment  . . . . . . . . . . . 82 

Deploying  a message  flow  application   . . . . . 84  

Creating  a server  project   . . . . . . . . . 85 

Creating  a broker  archive  . . . . . . . . . 85 

Adding  files  to a broker  archive   . . . . . . 86 

Deploying  a broker  archive  file  . . . . . . . 88 

Deploying  a broker  configuration   . . . . . . . 90  

Using  the  Message  Brokers  Toolkit  . . . . . 90  

Using  the  mqsideploy  command   . . . . . . 90  

Using  the  Configuration  Manager  Proxy  API   . . 91 

Deploying  a publish/subscribe  topology   . . . . 91  

Using  the  Message  Brokers  Toolkit  . . . . . 92  

Using  the  mqsideploy  command   . . . . . . 92  

Using  the  Configuration  Manager  Proxy  API   . . 93 

Deploying  a publish/subscribe  topics  hierarchy   . . 93 

Using  the  Message  Brokers  Toolkit  . . . . . 93  

Using  the  mqsideploy  command   . . . . . . 94  

Using  the  Configuration  Manager  Proxy  API   . . 94 

Checking  the  results  of deployment   . . . . . . 95  

Using  the  Message  Brokers  Toolkit  . . . . . 95  

Using  the  mqsideploy  command   . . . . . . 95  

Using  the  Configuration  Manager  Proxy  API   . . 95 

Canceling  a deployment  that  is in progress  . . . . 97  

Using  the  Message  Brokers  Toolkit  . . . . . 97  

Using  the  mqsideploy  command   . . . . . . 98  

Using  the  Configuration  Manager  Proxy  API   . . 98 

Renaming  objects  that  are  deployed  to execution  

groups   . . . . . . . . . . . . . . . . 99 

Removing  a deployed  object  from  an execution  

group   . . . . . . . . . . . . . . . . 99 

Using  the  Message  Brokers  Toolkit  . . . . . 99  

Using  the  mqsideploy  command   . . . . . . 99  

Using  the  Configuration  Manager  Proxy  API  100

 

© Copyright  IBM Corp. 2000, 2006 73



74 Message  Flows



Deploying  

The  topics  in  this  section  provide  information  about  deploying  resources  to  

execution  groups  on  brokers.  Read  the  overview  section  for  information  about  the  

different  mechanisms  that  you  can  use  to  deploy  and  different  types  of 

deployment:  

v   Deployment  overview  

–   Message  flow  application  deployment  

-   Broker  archive  file  

-   Configurable  properties
–    Broker  configuration  deployment  

–   Publish/subscribe  topology  deployment  

–   Publish/subscribe  topics  hierarchy  deployment  

–   Cancel  deployment

The  basic  tasks  associated  with  deployment  are  described  in  the  following  topics.  

v   Deploying  a message  flow  application  

–   Creating  a server  project  

–   Creating  a broker  archive  

–   Adding  files  to  a broker  archive  

-   Editing  a broker  archive  file  manually  

-   Editing  configurable  properties
–    Deploying  a broker  archive

Learn  how  to  perform  other  types  of  deployment:  

v   Deploying  a broker  configuration  

v   Deploying  a publish/subscribe  topology  

v   Deploying  a publish/subscribe  topics  hierarchy

Further  topics  describe  other  deployment-related  tasks:  

v   Checking  the  results  of deployment  

v   Canceling  a deployment  

v   Renaming  a deployed  object  

v   Removing  a deployed  object

Deployment overview 

Deployment  is  the  process  of  transferring  data  to  an  execution  group  on  a broker  

so  that  it can  take  effect  in  the  broker  domain.  For  deploying  message  flows  and  

associated  resources,  the  data  is packaged  in  a broker  archive  (bar)  file  before  

being  sent  to  the  Configuration  Manager,  from  where  it is unpackaged  and  

distributed  appropriately.  

This  topic  describes  the  environments  from  which  you  can  perform  a deployment,  

and  then  introduces  a number  of different  types  of deployment  that  you  might  

need  to  use:  

v   “Deployment  environments”  on  page  76  

v   “Types  of  deployment”  on  page  77

 

© Copyright  IBM Corp. 2000, 2006 75



Most  types  of  deployment  can  typically  be  configured  to perform  in one  of  two  

ways:  

v   Complete  deployment;  in  which  everything  is deployed  (or  re-deployed)  to  the  

whole  domain  

v   Delta  or  incremental  deployment;  made  either  to just  update  information  or  to  

deploy  to  selected  brokers  within  the  domain,  depending  on  the  type  of  

deployment

After  reading  this  conceptual  overview,  find  detailed  instructions  for  particular  

tasks  in  the  subsequent  topics.  

Read  the  WebSphere  Message  Broker  Basics  Redbook  for  further  information  about  

deployment.  

Deployment environments 

Depending  on  the  environment  in which  you  are  working,  you  can  choose  one  of  

the  following  options  to  initiate  a deployment:  

Message  Brokers  Toolkit  

 In  the  Broker  Administration  perspective  of  the  workbench,  the  Domain  

Navigator  view  displays  all  the  objects  associated  with  a specific  domain.  

For  example,  if you  expand  the  Topology  view, all  the  brokers  in  the  

domain  are  displayed;  if you  expand  a Broker  view, all  the  execution  

groups  within  that  broker  are  displayed.  From  the  Domain  Navigator  view  

you  can  deploy  a topology  to all  the  brokers  in  the  domain,  or  you  can  

deploy  all  the  execution  groups  to  a particular  broker.  You can  also  drag  a 

broker  archive  (bar)  file  from  the  Resource  Navigator  view  onto  an  

execution  group  within  the  Domain  Navigator  view  to  deploy  the  contents  

of  the  bar. 

 You might  typically  use  the  workbench  if you  are  working  in  a 

development  environment  or  if you  are  new  to WebSphere  Event  Broker.  

mqsideploy  command  

You can  deploy  from  the  command  line  using  the  mqsideploy  command.  

On  the  command  line,  you  must  typically  specify  the  connection  details  as  

well  as  parameters  specific  to  the  type  of  deployment  you  want  to  

perform.  Details  are  given  in  each  topic  describing  the  types  of  

deployment.  

 You might  typically  use  the  mqsideploy  command  in a script  when  you  are  

more  familiar  with  WebSphere  Event  Broker.  

 WebSphere  Event  Broker  provides  two  files  to help  you  when  writing  your  

own  scripts  for  managing  broker  deployment  outside  the  workbench.  

These  are:  

v   Initialization  file  mqsicfgutil.ini.  This  is a plain  text  file  in  the  

mqsideploy  command’s  working  directory  that  contains  configurable  

variables  that  are  required  to  connect  to  the  Configuration  Manager.  For  

example:  

hostname  = localhost  

queueManager  = QMNAME  

port  = 1414  

securityExit  = test.myExit  

 

76 Message  Flows

http://www.redbooks.ibm.com/abstracts/sg247137.html


If  you  do  not  explicitly  specify  any  of  this  information  as  parameters  on  

the  mqsideploy  command  (as  has  been  done  in  the  examples  in  

subsequent  topics),  the  information  is taken  from  the  mqsicfgutil.ini  file.  

Alternatively,  use  the  -n  parameter  on  the  command  to  specify  an  

XML-format  .configmgr  file  that  describes  the  connection  parameters  to  

the  Configuration  Manager.  

v   Batch  file  mqsideploy.bat.  The  parameters  used  with  the  mqsideploy  

command  in  WebSphere  Event  Broker  Version  6.0  are  not  the  same  as  

those  used  in  earlier  versions  of the  command.  On  Windows  platforms,  

use  mqsideploy.bat  if you  want  to  use  the  same  parameters  as  in  

previous  versions.

Configuration  Manager  Proxy  API   

 You can  control  deployment  from  any  Java  program  using  the  

Configuration  Manager  Proxy  API.  You can  also  interrogate  the  responses  

from  the  broker  and  take  appropriate  action.  

 The  Configuration  Manager  Proxy  API  also  allows  Java  applications  to  

control  other  objects  in  the  domain,  such  as brokers,  execution  groups,  

publish/subscribe  topologies,  topics,  subscriptions  and  the  Configuration  

Manager  and  its  event  log.  Because  of  this,  you  can  use  the  Configuration  

Manager  Proxy  API  to  create  and  manipulate  an  entire  domain  

programmatically.

Types  of deployment 

The  other  topics  within  this  section  describe  what  each  type  of deployment  does,  

the  situation  in  which  each  type  should  and  should  not  be  used.  

v   Broker  configuration  deployment

To  deploy  message  flows,  message  sets  and  other  deployable  objects  to  an  

execution  group,  use:  

v   Message  flow  application  deployment  

This  uses  a broker  archive  file  for  deployment.  You can  set  configurable  

properties  for  objects  in  the  message  flow.

In  publish/subscribe  scenarios,  you  can  deploy  topics  and  topologies:  

v   Topics  hierarchy  deployment  

v   Topology  configuration  deployment

You  can  also  cancel  a deployment.  

This  table  lists  appropriate  ways  of  deploying  for  a number  of common  scenarios.  

 Scenario  Suggested  deployment  

Adding  a broker  to the  domain  (when  not  

using  publish/subscribe)  

None  required.  

Connecting  publish/subscribe  brokers  using  

connections  or  a collective  

Delta  topology  deployment  

Modifying  the  publish/subscribe  topic  

hierarchy  

Delta  deployment  of the  topics  hierarchy  

(The  changed  elements  in the  topic  hierarchy  

are  deployed  to all  brokers  in the  domain.  

Modifying  the  publish/subscribe  topic  

hierarchy,  after  adding  a new  broker  to the  

domain  

Complete  topics  deployment  (The  entire  

topic  hierarchy  is deployed  to all  brokers  in  

the  domain.  The  new  broker  also  receives  

the  complete  topic  hierarchy.)  

 

Deploying  77



Scenario  Suggested  deployment  

Tidying  up  a broker’s  resources  after  

removing  it from  the  topology  

If the  broker  is part  of a publish/subscribe  

network,  or if you  are  using  the  Message  

Brokers  Toolkit, initiate  a delta  

publish/subscribe  topology  deployment.  

Otherwise,  no deployment  is required.  

Creating  an execution  group  Message  flow  application  deployment  using  

an incremental  bar  file  deployment.  

Deleting  an  execution  group  None  required.  

If a broker  is not  responding  to a deploy  

request  

Ensure  that  the  broker  is running.  If the  

broker  is not  running,  cancel  the broker  

deployment.  You should  only  cancel  a 

broker  deployment  if you  are  sure  that  the 

broker  will  never  respond  to the  deploy  

request.
  

Message flow application deployment 

You do  not  deploy  a message  flow  application  directly  to  an  execution  group.  

Instead,  you  package  all  the  relevant  resources  into  a broker  archive  (bar),  which  

you  then  deploy.  When  you  add  files  to  the  broker  archive,  they  are  automatically  

compiled  as  part  of  the  process.  

The  broker  archive  itself  is a compressed  file  which  is sent  to the  Configuration  

Manager  where  its  contents  are  extracted  and  distributed  to  execution  groups.  If an  

execution  group  has  not  been  initialized  on  the  broker  (that  is,  if the  broker  has  

only  just  been  created),  then  the  execution  group  is created  as part  of  the  

deployment.  

There  are  two  ways  of  deploying  a bar  file:  

v   Incremental  deployment,  in  which  deployed  files  are  added  to the  execution  

group.  Files  which  already  exist  in  the  execution  group  are  replaced  with  the  

new  version.  

v   Complete  deployment,  in  which  files  already  deployed  to  the  execution  group  

are  removed  before  the  complete  contents  of  the  bar  file  is  deployed.  Thus,  

nothing  is left  in  the  execution  group  from  any  previous  deployment.

Incremental bar file deployment 

Incrementally  deploying  a bar  file  tells  the  Configuration  Manager  to extract  the  

contents  of  the  bar  file  and  send  it to  an  execution  group.  

v   If  a file  in  the  bar  file  has  the  same  name  as  an  object  that  is already  deployed  to 

the  execution  group,  the  version  that  is already  deployed  is  replaced  with  the  

version  in  the  bar  file.  

v   If  a file  in  the  bar  file  is of  zero  length  and  a file  of  that  name  has  already  been  

deployed  to  the  execution  group,  then  the  deployed  file  is removed  from  the  

execution  group.

When  to  use  it  

v   If  you  want  to  incrementally  deploy  message  flows,  message  sets  or 

other  deployable  objects  to an  execution  group.

When  not  to  use  it  

 

78 Message  Flows



v   If you  want  to  completely  clear  the  contents  of the  execution  group  

before  the  bar  file  is deployed.  In this  case,  use  a complete  bar  file  

deployment  instead.

Complete bar file deployment 

Completely  deploying  a bar  file  tells  the  Configuration  Manager  to  extract  the  

deployable  content  of the  bar  file  and  send  it to  an  execution  group,  first  removing  

any  existing  deployed  contents  of  the  execution  group.  

When  to  use  it  

v   If you  want  to  deploy  message  flows,  message  sets  or  other  deployable  

objects  to an  execution  group.

When  not  to  use  it 

v   If you  want  to  merge  the  existing  contents  of the  execution  group  with  

the  contents  of  the  bar  file.  In  this  case,  use  an  incremental  bar  file  

deployment  instead.

Broker archive 

The  unit  of  deployment  to  the  broker  is the  broker  archive  or  bar  file.  

The  bar  file  is  a zipped  (compressed)  file  which  can  contain  a number  of  different  

files:  

v   A  .cmf  file  for  each  message  flow. This  is  a compiled  version  of the  message  

flow. You can  have  any  number  of  these  files  within  your  bar  file.  

v   A  broker.xml  file.  This  file  is called  the  broker  deployment  descriptor. You can  have  

only  one  of  these  files  within  your  bar  file.  This  file,  in  XML  format,  resides  in  

the  META-INF  folder  of the  zipped  file  and  can  be  modified  using  a text  editor  

or  shell  script.  

v   As  a zipped  file  archive,  the  broker  archive  file  can  also  contain  any  additional  

files  you  need.  For  example,  you  might  want  to  include  Java  source  files  for  

future  reference.  

To deploy  XML,  XSL,  and  JAR  files  inside  a broker  archive,  the  connected  

Configuration  Manager  and  target  broker  must  be  Version  6.0  or  later. 

Configurable properties of a broker archive 

System  objects  defined  in  message  flows  can  have  configurable  properties  that  you  

can  update  within  the  broker  archive  (bar)  file  before  deployment.  Configurable  

properties  allow  an  administrator  to  update  target-dependent  properties,  such  as  

queue  names,  queue  manager  names,  and  database  connections.  By  changing  

configurable  properties,  you  can  customize  a bar  file  for  a new  domain,  for  

example  a test  system,  without  needing  to  edit  and  rebuild  the  message  flows.  Any  

properties  that  you  define  are  contained  within  the  deployment  descriptor,  

META-INF/broker.xml.  

Edit  the  configurable  properties  using  the  Broker  Archive  editor,  or  by  manually  

editing  the  deployment  descriptor  using  an  external  text  editor  or  shell  script.  The  

deployment  descriptor  is parsed  when  the  bar  file  is deployed.  

Viewing version and keyword information for deployable objects 

This  topic  contains  information  about  how  to  view  the  version  and  keyword  

information  of  deployable  objects.  

v   “Displaying  object  version  in  the  bar  file  editor”  on  page  80  

v   “Displaying  version,  deploy  time,  and  keywords  of  deployed  objects”  on  page  

80

 

Deploying  79



Displaying object version in the bar file editor 

A column  in  the  bar  editor  called  Version  displays  the  version  tag  for  all  objects  

that  have  a defined  version.  These  are:  

v   .cmf  files

You cannot  edit  the  Version  column.  

You can  use  the  mqsireadbar  command  to  list  the  keywords  defined  for  each  

deployable  file  within  a deployable  archive  file.  

Displaying version, deploy time, and keywords of deployed objects 

The  Eclipse  Properties  View displays,  for  any  deployed  object:  

v   Version  

v   Deploy  Time  

v   All  defined  keywords

For  example,  if you  deploy  a message  flow  with  these  literal  strings:  

v   $MQSI_VERSION=v1.0  MQSI$  

v   $MQSI  Author=fred  MQSI$  

v   $MQSI  Subflow  1 Version=v1.3.2  MQSI$

then  the  Properties  View  displays:  

 Deployment  Time  Date  and  time  of deployment  

Modification  Time Date  and  time  of modification  

Version  v1.0  

Author  fred  

Subflow  1 Version  v1.3.2
  

You are  given  a reason  if the  keyword  information  is  not  available.  For  example,  if 

keyword  resolution  has  not  been  enabled  at deploy  time,  the  Properties  View  

displays  the  message  Deployed  with  keyword  search  disabled. Also,  if you  deploy  

to  a Configuration  Manager  that  is an  earlier  version  than  Version  6.0,  the  

properties  view  displays  Keywords  not  available  on  this  Configuration  Manager. 

Broker configuration deployment 

A broker  configuration  deployment  informs  a broker  of various  configuration  

settings,  including  the  list  of execution  groups,  multicast  and  inter-broker  settings.  

When  to  use  it  

v   If  you  have  modified  multicast  or  inter-broker  settings  in  the  Message  

Brokers  Toolkit  or  in a Configuration  Manager  Proxy  application.

When  not  to  use  it  

v   If  you  have  used  the  mqsichangeproperties  command  to change  

publish/subscribe  settings  directly  on  the  broker  component.  In  this  

case,  a broker  configuration  deployment  overwrites  any  changes  you  

have  made  to  the  settings.  

 

80 Message  Flows



v   If you  are  adding  execution  groups.  In this  case,  the  first  time  you  

deploy  a broker  archive  (bar)  file,  the  execution  group  is automatically  

initialized.

Publish/subscribe topology deployment 

Topology  deployment  is primarily  only  required  when  using  publish/subscribe.  It 

informs  each  broker  in  the  domain  of the  brokers  with  which  it can  share  

publications  and  subscriptions.  

There  are  two  ways  of deploying  a topology  configuration:  

v   Complete  topology  deployment,  in which  all  brokers  are  told  of  their  

neighboring  publish/subscribe  brokers.  

v   Delta  topology  deployment,  in  which  only  changes  to the  publish/subscribe  

topology  are  deployed.  Such  changes  are  deployed  only  to those  brokers  whose  

neighbor  lists  have  changed  since  the  last  successful  topology  deployment.

Complete topology deployment 

Deploying  a complete  topology:  

v   Tells each  broker  in  the  domain  the  set  of  brokers  with  which  it can  share  

publish/subscribe  information.  

v   Forces  the  Configuration  Manager  to  re-subscribe  to  the  broker’s  status  topics,  

such  as  start  and  stop  messages.  

Note:   Whatever  type  of deployment  you  perform,  the  Configuration  Manager  

attempts  to  subscribe  to the  broker’s  status  messages  if it is the  first  

deployment  to the  broker.  But  only  deploying  the  complete  topology  

initiates  a re-subscription.

When  to  use  it  

v   If the  Configuration  Manager  is not  correctly  reporting  whether  it is in  a 

stopped  or  started  state.  

v   If you  have  moved  a Configuration  Manager  from  one  queue  manager  

to  another.  

v   If a broker’s  publish/subscribe  function  has  become  inconsistent.  An  

example  of  inconsistency  would  be,  for  example,  if one  broker  is able  to  

share  publications  with  a second  broker,  but  not  the  other  way  round.

When  not  to  use  it 

v   If you  are  adding  brokers  to  the  domain  and  you  are  not  using  

publish/subscribe.  That  is,  if you  are  not  connecting  brokers  together  so  

that  they  can  share  publications  and  subscriptions.  

v   If you  are  adding  execution  groups  to a broker.  

v   If you  have  changed  the  publish/subscribe  network.  In  this  case,  deploy  

a delta  topology,  if possible,  so  that  you  only  deploy  to those  brokers  

affected  by  the  changes  you  have  made.  

v   If you  have  removed  a broker  from  the  domain.

Delta topology deployment 

Deploying  a delta  topology  sends  updated  publish/subscribe  network  information  

to  any  broker  with  a publish/subscribe  configuration  that  the  Configuration  

Manager  determines  not  to be  current.  

When  to  use  it  

v   If you  have  modified  a publish/subscribe  network.  

 

Deploying  81



v   If  you  are  using  the  workbench  to remove  a broker  from  the  domain,  the  

Configuration  Manager  automatically  requests  the  broker  component  to  

stop  message  flows  that  are  running  and  to  tidy  up  any  resources  being  

used.  If  this  operation  fails  for  any  reason,  you  can  again  request  the  

broker  to  tidy  up.  Deploying  a delta  topology  is the  most  convenient  

way.

When  not  to  use  it  

v   If  you  are  adding  brokers  to  the  domain  and  you  are  not  using  

publish/subscribe.  That  is,  if you  are  not  connecting  brokers  together  so  

that  they  can  share  publications  and  subscriptions.  

v   If  you  are  adding  or  removing  execution  groups.

Publish/subscribe topics hierarchy deployment 

If you  are  using  publish/subscribe,  deploy  the  topics  hierarchy  in these  situations:  

v   If  you  have  modified  the  hierarchy  of topics.  The  deployment  communicates  the  

new  hierarchy  to  each  broker.  

v   If  you  have  added  a broker  to  the  domain  and  you  want  it to  use  the  existing  

topics  hierarchy.  The  deployment  communicates  the  hierarchy  to  the  new  broker.

There  are  two  ways  of  deploying  a publish/subscribe  topics  hierarchy:  

v   Complete  deployment,  in  which  the  complete  topics  hierarchy  is sent  to all  the  

brokers  in  a domain.  

v   Delta  deployment,  in  which  changes  to  the  topics  hierarchy  (made  since  the  last  

topics  deployment)  are  sent  to  all  the  brokers  in  a domain.

Complete topics deployment 

A complete  topics  deployment  sends  the  publish/subscribe  topics  hierarchy  to  all 

the  brokers  in  a domain.  

When  to  use  it  

v   If  you  have  made  changes  to the  topics  hierarchy  and  one  of  the  brokers  

has  an  inconsistent  view  of the  expected  topics  hierarchy.  

v   If  you  have  added  a new  broker  to  the  domain  that  uses  the  topics  

hierarchy.

When  not  to  use  it  

v   If  you  have  changed  the  topics  hierarchy.  In  this  case,  a delta  topics  

deployment  is  usually  sufficient.

Delta topics deployment 

A delta  topics  deployment  sends  the  publish/subscribe  topics  hierarchy  to all  the  

brokers  in  a domain.  

When  to  use  it  

v   If  you  have  made  changes  to the  topics  hierarchy.

When  not  to  use  it  

v   If  the  topics  hierarchy  has  not  changed.

Cancel deployment 

The  Configuration  Manager  allows  only  one  deployment  to  be  in  progress  to  each  

broker  at  any  one  time.  If  for  some  reason  a broker  does  not  respond  to  a 

deployment  request,  subsequent  requests  cannot  reach  the  broker,  because,  to the  

Configuration  Manager,  a deployment  is still  in  progress.  

 

82 Message  Flows



Canceling  deployment  tells  the  Configuration  Manager  to  assume  that  a broker  

will  never  respond  to  an  outstanding  deploy.  In  most  cases,  the  action  does  not  

remove  any  deployment  messages  that  have  been  sent  to the  broker,  nor  does  it 

alter  the  running  configuration  of  the  broker.  (Thus,  for  any  brokers  that  have  

successfully  deployed  a configuration,  the  deployed  information  remains  on  the  

broker.)  

If  a broker  subsequently  does  provide  a response  to  an  outstanding  deployment  

that  has  been  canceled,  the  response  is ignored  by  the  Configuration  Manager  and  

there  is  then  an  inconsistency  between  what  is running  on  the  broker  and  the  

information  that  is provided  by  the  Configuration  Manager.  

Because  of  this  risk  of inconsistency,  only  cancel  a deployment  as a last  resort,  and  

only  if you  are  sure  that  a broker  will  never  be  able  to  process  a previous  

deployment  request.  However,  before  canceling  deployment,  you  can  manually  

remove  any  outstanding  deployment  messages  to ensure  that  they  are  not  

processed.  

When  canceling  deployment  across  the  domain,  the  locks  for  all  outstanding  

deploys  in the  domain  are  removed.  When  canceling  deployment  for  a specific  

broker,  only  the  lock  for  that  broker  is removed.  

Canceling  deployment  is the  equivalent  of  the  ’force  deploy’  action  in  previous  

versions,  except  that  cancel  does  not  redeploy  domain  information.  

You can  cancel  a deployment:  

v   To all  the  brokers  in  a domain  

v   To a single  broker

Cancel deployment to a domain 

Canceling  the  deployment  to a domain  tells  the  Configuration  Manager  to assume  

that  all  brokers  in  the  domain  that  have  outstanding  deployments  will  not  

respond.  If  a broker  then  does  provide  a response  to  an  outstanding  deploy  that  

has  been  canceled,  it will  be  ignored  and  there  will  be  an  inconsistency  between  

what  is  running  on  the  broker  and  the  information  that  is provided  by  the  

Configuration  Manager.  

When  applied  to  a domain,  canceling  deployment  does  not  remove  deployment  

messages  that  have  been  sent  to  the  brokers,  and  does  not  change  the  brokers’  

running  configuration.  

When  to  use  it  

Cancel  a domain  deployment  only  if these  two  conditions  are  both  met:  

v   You attempt  a deployment  and  you  receive  error  message  BIP1510.  

v   Any  of  the  brokers  that  have  outstanding  deployments  are  not  

responding.

When  not  to  use  it 

v   If a broker  is simply  taking  a long  time  to respond  to  a deployment  

request.  The  broker  might  have  been  temporarily  stopped,  for  example.  

v   If other  users  might  be  deploying  to  the  domain  at the  same  time.  

v   If only  one  broker  is not  responding,  or  a small  number  of  brokers  are  

not  responding.  In  this  case,  cancel  the  broker  deployment  instead.

 

Deploying  83



Cancel deployment to a broker 

Canceling  the  deployment  to a single  broker  tells  the  Configuration  Manager  to  

assume  that  a specific  broker  in the  domain  that  has  an  outstanding  deployment  

will  not  respond.  If  the  broker  then  does  provide  a response  to an  outstanding  

deploy  that  has  been  canceled,  it will  be  ignored  and  there  will  be  an  inconsistency  

between  what  is  running  on  the  broker  and  the  information  that  is provided  by  the  

Configuration  Manager.  

When  applied  to  an  individual  broker,  canceling  deployment  causes  the  

Configuration  Manager  to  attempt  to  remove  from  the  broker,  deployment  

messages  that  have  not  yet  been  processed.  This  only  succeeds  if the  broker  and  

the  Configuration  Manager  share  the  same  queue  manager  and  if the  message  has  

not  already  been  processed  by  the  broker.  

When  to  use  it  

Cancel  a domain  deployment  only  if these  two  conditions  are  both  met:  

v   You attempt  a deployment  and  you  receive  error  message  BIP1510.  

v   The  broker  is not  responding.

When  not  to  use  it  

v   If  the  broker  is simply  taking  a long  time  to respond  to  a deployment  

request.  The  broker  might  have  been  temporarily  stopped,  for  example.  

v   If  the  version  of  the  connected  Configuration  Manager  is earlier  than  

Version  6.0.  In this  case,  canceling  deployment  to  a specific  broker  has  

no  effect;  you  must  cancel  the  entire  domain  deployment  instead.

Deploying a message flow application 

Before  you  start:  

Before  you  can  deploy  a message  flow  application,  you  must  have  created,  and  

started,  a Configuration  Manager.  The  broker  added  to the  domain  is  actually  a 

reference,  so  you  must  also  create  and  start  the  physical  broker  on  the  target  

system.  A WebSphere  MQ  listener  must  be  running  and  you  must  also  have  

created  a domain,  added  a broker  to that  domain,  and  created  an  execution  group  

within  the  broker.  See  the  links  to related  tasks  below  for  help  with  these.  

Message  flow  applications  are  deployed  to  execution  groups  by  adding  required  

resources,  optionally  with  their  source  files,  to  a broker  archive  (bar)  file.  The  bar  

file  is then  sent  to  the  appropriate  Configuration  Manager  where  it is unpacked  

and  the  individual  files  deployed  to  execution  groups  on  individual  brokers.  The  

Message  flow  application  deployment  topic  gives  more  details.  

The  tasks  in  this  section  describe  the  process:  

1.   Creating  a server  project  

2.   Creating  a broker  archive  file  

3.   Adding  files  to  a broker  archive  

v   Editing  a broker  archive  file  manually  

v   Editing  configurable  properties
4.   Deploying  a broker  archive  file  

5.   Checking  the  results  of deployment

 

84 Message  Flows



“Viewing  version  and  keyword  information  for  deployable  objects”  on  page  79  

describes  how  to  view  version  and  keyword  information  about  deployed  objects.  

Creating a server project 

Before  you  can  deploy  a message  flow  application,  you  must  create  a server  project  

for  it.  

Before  you  start:  

Save  your  message  flow  projects.  

Follow  these  steps  to create  a server  project  using  the  Message  Brokers  Toolkit.  

1.   Switch  to  the  Broker  Administration  perspective.  

2.   Click  File  → New  → Other. 

3.   Select  Show  all  wizards,  then  in  the  list  of wizards,  expand  Server  and  click  

Server  Project. 

4.   Click  Next. 

5.   If asked,  click  OK  to  enable  ″Base  J2EE  Support″.  

6.   Enter  the  name  of  your  new  server  project.  

7.   Click  Finish. 

The  folder  that  is created  appears  twice  in  the  Navigator  view  (if  Show  empty  

projects  in  Navigators  has  been  selected  in  the  Broker  Administration  Preferences  

page):  

v   in  the  Domain  Connections  folder  

v   in  the  Broker  Archives  folder

Next:  

Continue  by  creating  a broker  archive  (bar)  and  adding  files  to  it.  

Creating a broker archive 

Create  a separate  broker  archive  (bar)  file  for  each  configuration  that  you  want  to  

deploy.  

There  are  two  ways  of creating  a bar  file:  

v   Using  the  Message  Brokers  Toolkit  

v   Using  the  mqsicreatebar  command

Using the Message Brokers Toolkit 

Before  you  start:  

Either  create  a server  project,  or  ensure  that  one  already  exixts.  

Follow  these  steps  to create  a bar  file  using  the  workbench:  

1.   From  the  Broker  Administration  perspective,  click  File  → New  → Message  

Broker  Archive.  

2.   Enter  the  name  of  your  server  project,  or  select  one  from  the  displayed  list.  

3.   Enter  a name  for  the  bar  file  that  you  are  creating.  

4.   Click  Finish.

 

Deploying  85



A file  with  a .bar  extension  is created  and  is displayed  in  the  Broker  

Administration  Navigator  view, under  the  Broker  Archives  folder.  The  Content  

editor  for  the  bar  file  opens.  

Next:  

Continue  by  adding  files  to  your  broker  archive  and  then  deploying  it.  

Using the mqsicreatebar command 

Follow  these  steps  to  create  a bar  file  using  the  mqsicreatebar  command:  

1.   Open  a command  window  that  is configured  for  your  environment.  

2.   Enter  the  command,  typed  on  a single  line,  using  this  as  an  example:  

mqsicreatebar  -b barName  -p  projectNames  -o filePath  

A  file  with  a .bar  extension  is created.  

The  -b (bar  file  name),  and  -o  (path  for  included  files)  parameters  must  be  

specified.  The  -p  (project  names)  parameter  is optional.  The  mqsicreatebar  topic  

gives  more  details.  

Next:  

Continue  by  adding  files  to  your  broker  archive  and  then  deploying  it.  

Adding files to a broker archive 

To deploy  files  to  an  execution  group,  you  first  include  them  in  a broker  archive  

(bar).  The  bar  file  is  deployed  by  sending  it to  the  Configuration  Manager  and  

from  there,  its  contents  are  sent  to the  execution  group  on  a broker.  

You can  only  add  message  flows  at the  project  level.  However,  after  you  have  

added  the  project  to  the  bar  file,  you  can  use  the  Remove  icon  to remove  

individual  message  flows  or  message  definitions,  if required.  Likewise,  if you  

check  the  Include  message  flow  source  box,  the  source  for  all  the  message  flows  

in  the  project  are  included  but  you  can  manually  remove  the  source  files  for  the  

message  flows  that  you  do  not  want.  

To deploy  XML,  XSL,  and  JAR  files  inside  a broker  archive,  the  connected  

Configuration  Manager  and  target  broker  must  be  Version  6.0  or  later. 

If there  is  a parent  flow  and  subflow  displayed  in  the  Add  dialogue,  subflows  are  

added  automatically,  so  you  only  have  to add  the  parent  flow. 

It is  not  possible  to  read  deployed  files  back  from  broker  execution  groups.  

Therefore,  keep  a copy  of  the  deployed  bar  file,  or  of  the  individual  files  within  it. 

Follow  these  steps  to  add  files  to  a broker  archive  (bar)  file  using  the  Message  

Brokers  Toolkit:  

1.   Switch  to  the  Broker  Administration  perspective.  

2.   Double-click  your  bar  file  in  the  Broker  Administration  Navigator  view  to open  

it.  The  contents  of  the  bar  file  are  shown  in  the  Content  editor.  (If  the  bar  file  is 

new, this  view  is empty.)  

3.   Click  the  Add  icon.  

4.   Check  the  boxes  for  the  message  flows  and  other  files  that  you  want  to  include.  

(Duplicates  within  a bar  file  are  automatically  removed.)  

 

86 Message  Flows



5.   Optional:  If  you  want  to include  your  message  flow  source  files,  check  the  

Include  message  flow  source  box.  

6.   Optional:  If  you  want  to compile  ESQL  so that  it is compatible  with  Version  2.1  

brokers,  check  the  Compile  ESQL  for  brokers  version  2.1  box.  

7.   Click  OK. 

A  list  of the  files  that  are  now  in your  bar  file  is displayed  in  the  Content  editor.  

You can  choose  not  to  display  your  message  flow  source  files  by  clearing  the  Show  

source  files  box  at  the  bottom  of the  Content  editor  pane.  

Next:  

The  next  step  is  to  deploy  your  broker  archive  (bar)  file,  but  you  might  first  want  

to  edit  configurable  properties.  You can  also  edit  the  contents  of your  bar  file  

manually.  

Editing a broker archive file manually 

Before  you  start:  

This  task  explains  how  to  manually  edit  a broker  archive  (bar)  file  that  already  

exists.  If  you  have  not  already  created  a bar  file,  create  it now, before  continuing.  

Follow  these  steps  to edit  a bar  file  manually  using  the  Message  Brokers  Toolkit:  

1.   Export  the  bar  file.  

a.   From  the  workbench,  click  File  → Export. The  Export  window  appears.  

b.   Select  the  export  destination,  such  as a compressed  file  with  .zip  extension,  

and  click  Next. 

c.   Select  the  resources  that  you  want  to  export  and  click  Next. 

d.   Complete  the  destination  information  and  click  Finish. The  file  appears  at 

the  destination  you  specified  as  a compressed  file.
2.   Extract  files  from  the  bar  file.  

3.   Edit  the  properties  that  you  want  to  change  in  an  editor  of  your  choice.  

4.   Save  the  file.  

5.   Import  the  bar  file  back  into  the  workbench  to  deploy  it. 

a.   From  the  workbench,  click  File  → Import. The  Import  window  appears.  

b.   Select  Zip  file  from  the  list.  

c.   Click  Next. 

d.   Specify  the  name  and  location  of  your  bar  file.  

e.   Select  the  server  project  that  you  want  to contain  the  bar  file.  

f.   Click  Finish. 

Next:  

Continue  by  deploying  your  broker  archive  (bar)  file.  

Editing configurable properties 

Before  you  start:  

 

Deploying  87



This  task  explains  how  to  edit  the  configurable  properties  of  your  broker  archive  

(bar)  file  deployment  descriptor.  If you  have  not  already  created  a bar  file,  create  it  

now, before  continuing.  

Follow  these  steps  to  edit  properties  using  the  Message  Brokers  Toolkit:  

1.   Switch  to  the  Broker  Administration  perspective.  

2.   Select  the  Configure  tab  at  the  bottom  of  the  Content  editor  pane.  The  

properties  that  you  can  configure  are  listed.  

3.   Click  the  property  for  which  you  want  to edit  the  value.  The  values  that  can  be  

edited  are  displayed.  

4.   Replace  the  current  value  with  the  new  value.  

5.   Save  your  bar  file.  

You can  also  edit  this  XML-format  file  manually  using  an  external  text  editor  or  

shell  script.  

Next:  

Continue  by  deploying  your  broker  archive  (bar)  file.  

Deploying a broker archive file 

Before  you  start:  

This  task  explains  how  to  deploy  your  broker  archive  (bar).  If  you  have  not  

already  created  a bar  file,  create  it now, before  continuing.  

There  are  three  ways  of  deploying  a broker  archive  (bar)  file:  

v   Using  the  Message  Brokers  Toolkit  

v   Using  the  mqsideploy  command  

v   Using  the  Configuration  Manager  Proxy  API

You  need  to  have  access  rights  if the  execution  group  to  which  you  want  to deploy  

is restricted  by  an  ACL.  

Using the Message Brokers Toolkit 

Follow  these  steps  to  deploy  a bar  file  using  the  workbench:  

1.   Switch  to  the  Broker  Administration  perspective.  

2.   Optional.  Normally,  an  incremental  bar  file  deployment  is performed.  If you  

want  to  perform  a complete  bar  file  deployment:  right-click  the  target  execution  

group  in  the  Domains  view  and  select  Remove  Deployed  Children. Wait for  

the  operation  to  complete  before  continuing.  

It is  not  necessary  to remove  deployed  children  if you  only  want  to refresh  one  

or  more  of  them  with  the  contents  of  the  bar  file.  The  difference  between  a 

complete  and  an  incremental  bar  file  deployment  is explained  in  the  Message  

flow  application  deployment  topic.  

3.   Click  the  bar  file  shown  in  the  Navigator  view  to highlight  it.  

4.   Drag  the  file  onto  your  target  execution  group  shown  in  the  Domains  view.  

Alternatively,  right-click  the  bar  file  and  click  Deploy  file. A  dialog  box  shows  

all  the  domains,  as  well  as  execution  groups  within  those  domains  to  which  the  

workbench  is  connected.  A dialog  box  shows  the  execution  groups  (within  their  

 

88 Message  Flows



domains)  to  which  you  can  deploy  the  bar  file.  Select  an  execution  group  and  

click  OK  to  deploy  the  bar  file.  (Note:  If  you  select  a broker  topology  that  is 

not  connected  to  a domain,  an  attempt  is made  to  connect  it. If you  click  

Cancel, the  broker  topology  remains  unconnected  to  a domain.)  

Whichever  method  you  use,  you  cannot  select  (and  deploy  to)  more  than  one  

execution  group  at a time.  

5.   If the  bar  file  has  not  been  saved  since  it was  last  edited,  you  are  asked  

whether  you  want  to  save  it before  deploying.  If  you  click  Cancel, the  bar  file  

is not  saved  and  deployment  does  not  take  place.  

The  bar  file  is  transferred  to  the  Configuration  Manager  from  where  its  contents  

(message  flows,  for  example)  are  deployed  to  the  execution  group.  In the  Domains  

view, the  assigned  message  flows  are  added  to the  appropriate  execution  group.  

Next:  

Continue  by  checking  the  results  of  the  deployment.  

Using the mqsideploy command 

Follow  these  steps  to deploy  a bar  file  using  the  mqsideploy  command:  

1.   Open  a command  window  that  is configured  for  your  environment.  

2.   Using  these  as  examples,  enter  the  appropriate  command,  typed  on  a single  

line:  

On  z/OS:  

/f MQ01CMGR,dp  b=broker  e=exngp  a=barfile  

This  performs  an  incremental  deployment.  Add  the  m=yes  parameter  to  perform  

a complete  bar  file  deployment.  

On  other  platforms:  

mqsideploy  -i ipAddress  -p port  -q qmgr  -b broker  -e exngp  -a barfile  

This  performs  an  incremental  deployment.  Add  the  –m  parameter  to  perform  a 

complete  bar  file  deployment.  

The  -i (IP  address),  -p  (port),  and  -q  (queue  manager)  parameters  represent  the  

connection  details  of the  queue  manager  workstation,  and  on  the  z/OS  console,  

MQ01CMGR  is the  name  of  the  Configuration  Manager  component.  

The  -b  (broker  name),  -e  (execution  group  name),  and  -a (bar  file  name)  

parameters  (or  z/OS  equivalent)  must  also  be  specified.  

Next:  

Continue  by  checking  the  results  of  the  deployment.  

Using the Configuration Manager Proxy API 

Use  the  deploy  method  of  the  ExecutionGroupProxy  class.  By  default,  the  deploy  

method  performs  an  incremental  deployment.  To perform  a complete  deployment,  

use  a variant  of  the  method  that  includes  the  boolean  isIncremental  parameter;  

setting  this  to  false  indicates  a complete  deployment.  (Setting  it to  true indicates  an  

incremental  deployment.)  

For  example:  

import  com.ibm.broker.config.proxy.*;  

import  java.io.IOException;  

 

 

Deploying  89



public  class  DeployTopology  { 

  public  static  void  main(String[]  args)  { 

    ConfigManagerConnectionParameters  cmcp  = new MQConfigManagerConnectionParameters  

   ("localhost",  1414,  "QM1");  

    try  { 

      ConfigManagerProxy  cmp  = ConfigManagerProxy.getInstance(cmcp);  

      TopologyProxy  t = cmp.getTopology();  

      BrokerProxy  b = t.getBrokerByName("BROKER1");  

      ExecutionGroupProxy  e = b.getExecutionGroupByName("default");  

      e.deploy("deploy.bar"); 

    } 

    catch  (ConfigManagerProxyException  cmpe)  { 

      cmpe.printStackTrace();  

    } 

    catch  (IOException  ioe)  { 

      ioe.printStackTrace();  

    } 

  } 

} 

Next:  

Continue  by  checking  the  results  of the  deployment.  

Deploying a broker configuration 

The  broker  configuration  deployment  overview  explains  when  you  might  want  to  

deploy  a broker  configuration.  

There  are  three  ways  to  deploy  a broker  configuration:  

v   Using  the  Message  Brokers  Toolkit  

v   Using  the  mqsideploy  command  

v   Using  the  Configuration  Manager  Proxy  API

Using the Message Brokers Toolkit  

If you  modify  any  multicast  or  interbroker  settings  with  the  workbench,  a broker  

configuration  deployment  is automatically  initiated  when  the  changes  are  applied.  

Using the mqsideploy command 

Follow  these  steps  to  deploy  a broker  configuration  using  the  mqsideploy  

command:  

1.   Open  a command  window  that  is configured  for  your  environment.  

2.   Using  these  as  examples,  enter  the  appropriate  command,  typed  on  a single  

line,  specifying  the  broker  to which  you  want  to deploy:  

On  z/OS:  

/f MQ01CMGR,dp  b=broker  

On  other  platforms:  

mqsideploy  -i ipAddress  -p port  -q qmgr  -b broker  

The  -i (IP  address),  -p  (port),  and  -q  (queue  manager)  parameters  represent  the  

connection  details  of  the  queue  manager  workstation,  and  on  the  z/OS  console,  

MQ01CMGR  is the  name  of the  Configuration  Manager  component.  

 

90 Message  Flows



By  specifying  the  broker  to  which  you  want  to  deploy  (b=  or  -b),  without  

indicating  a bar  file  (-a),  the  broker  configuration  is deployed  rather  than  a 

message  flow  application.  

Next:  

Continue  by  checking  the  results  of  the  deployment.  

Using the Configuration Manager Proxy API 

Use  the  deploy  method  of  the  BrokerProxy  class.  

For  example:  

import  com.ibm.broker.config.proxy.*;  

  

public  class  DeployBrokerConfig  { 

  public  static  void  main(String[]  args)  { 

    ConfigManagerConnectionParameters  cmcp  = 

            new  MQConfigManagerConnectionParameters  

                ("localhost",  1414,  "QM1");  

    try  { 

      ConfigManagerProxy  cmp = ConfigManagerProxy.getInstance(cmcp);  

      TopologyProxy  t = cmp.getTopology();  

      BrokerProxy  b = t.getBrokerByName("BROKER1");  

      if (b != null)  { 

        b.deploy(); 

      } 

    } 

    catch  (ConfigManagerProxyException  e) { 

      e.printStackTrace();  

    } 

  } 

} 

Next:  

Continue  by  checking  the  results  of  the  deployment.  

Deploying a publish/subscribe topology 

Before  you  start:  

Make  sure  that  you  have  configured  your  broker  domain.  

The  publish/subscribe  topology  deployment  overview  explains  when  you  might  

want  to  deploy  a topology  and  the  difference  between  a complete  and  delta  

deployment.  

There  are  three  ways  to  deploy  topology  information:  

v   Using  the  Message  Brokers  Toolkit  

v   Using  the  mqsideploy  command  

v   Using  the  Configuration  Manager  Proxy  API

You  can  configure  the  workbench  preferences  so that  topology  information  is 

automatically  deployed  after  a change.  

 

Deploying  91



After  you  have  deployed  a publish/subscribe  topology,  you  might  see  an  extra  

execution  group  process  called  $SYS_mqsi  in  a process  listing,  or  in  the  output  

from  the  mqsilist  command.  When  you  deploy  a publish/subscribe  topology  for  

the  first  time,  a new  execution  group  process  is started  on  your  broker  to handle  

the  publish/subscribe  messages.  This  execution  group  is  only  used  internally:  it  

does  not  appear  in  the  workbench  and  you  cannot  deploy  message  flows  to  it.  

After  you  have  deployed  one  or  more  of  your  own  flows  to  another  execution  

group,  $SYS_mqsi  is  removed  when  the  broker  is subsequently  restarted.  

Using the Message Brokers Toolkit  

Follow  these  steps  to  deploy  a topology  configuration  using  the  workbench:  

1.   Switch  to  the  Broker  Administration  perspective.  

2.   In  the  Domains  view, expand  the  Domains  from  where  you  want  to  perform  

the  deploy.  

3.   Right-click  Broker  Topology  hierarchy.  

4.   Click  Deploy  Topology  Configuration. 

5.   Click  Delta  to  deploy  only  the  changed  items,  or  click  Complete  to  deploy  the  

entire  configuration.  

Alternatively,  you  can  make  a change  to  the  Topology  document  in  the  Broker  

Administration  perspective,  save  the  changes  and  then  select  Delta. This  

behavior  can  be  modified  in  the  workbench  preferences  dialog.  

The  topology  is deployed,  and  the  Configuration  Manager  distributes  it to  the  

brokers  in  the  domain.  

Next:  

Continue  by  checking  the  results  of the  deployment.  

Using the mqsideploy command 

Follow  these  steps  to  deploy  a topology  configuration  using  the  mqsideploy  

command:  

1.   Open  a command  window  that  is configured  for  your  environment.  

2.   Using  these  as  examples,  enter  the  appropriate  command,  typed  on  a single  

line:  

On  z/OS:  

/f MQ01CMGR,dp  l=yes  

This  performs  a delta  deployment.  Add  the  m=yes  parameter  to deploy  the  

entire  configuration.  

On  other  platforms:  

mqsideploy  –i ipAddress  –p port  –q qmgr  –l 

This  performs  a delta  deployment.  Add  the  –m  parameter  to  deploy  the  entire  

configuration.  The  -i (IP  address),  -p  (port),  and  -q  (queue  manager)  parameters  

represent  the  connection  details  of  the  queue  manager  workstation,  and  on  the  

z/OS  console,  MQ01CMGR  is the  name  of  the  Configuration  Manager  

component.  

Next:  

Continue  by  checking  the  results  of the  deployment.  

 

92 Message  Flows



Using the Configuration Manager Proxy API 

Use  the  deploy  method  of  the  TopologyProxy  class.  By  default,  the  deploy  method  

performs  a delta  deployment.  To deploy  the  complete  hierarchy,  use  a variant  of 

the  method  that  includes  the  boolean  isDelta  parameter;  setting  this  to  false  

indicates  a complete  deployment.  (Setting  it to  true indicates  a delta  deployment.)  

For  example:  

import  com.ibm.broker.config.proxy.*;  

  

public  class  DeployTopology  { 

  public  static  void  main(String[]  args)  { 

    ConfigManagerConnectionParameters  cmcp  = 

            new  MQConfigManagerConnectionParameters  

                ("localhost",  1414,  "QM1");  

    try  { 

      ConfigManagerProxy  cmp = 

            ConfigManagerProxy.getInstance(cmcp);  

      TopologyProxy  t = cmp.getTopology();  

      t.deploy(false); 

    } 

    catch  (ConfigManagerProxyException  e) { 

      e.printStackTrace();  

    } 

  } 

} 

Next:  

Continue  by  checking  the  results  of  the  deployment.  

Deploying a publish/subscribe topics hierarchy 

Before  you  start:  

Make  sure  that  you  have  configured  your  broker  domain.  

The  topic  deployment  overview  explains  when  you  might  want  to deploy  a topic  

hierarchy  and  the  difference  between  a complete  and  delta  deployment.  

There  are  three  ways  to  deploy  a topics  hierarchy:  

v   Using  the  Message  Brokers  Toolkit  

v   Using  the  mqsideploy  command  

v   Using  the  Configuration  Manager  Proxy  API

You  can  configure  the  workbench  preferences  so that  a topics  hierarchy  is 

automatically  deployed  after  a change.  

Using the Message Brokers Toolkit  

Follow  these  steps  to deploy  a topics  hierarchy  using  the  workbench:  

1.   Switch  to  the  Broker  Administration  perspective.  

2.   In  the  Domains  view, expand  the  Domains  from  where  you  want  to perform  

the  deploy.  

3.   Right-click  Topics  hierarchy.  

4.   Click  Deploy  Topics  Configuration. 

 

Deploying  93



5.   Click  Delta  to  deploy  only  the  changed  items,  or  click  Complete  to  deploy  the  

entire  configuration.  

The  topics  hierarchy  is deployed,  and  the  Configuration  Manager  distributes  the  

topics  to  brokers  in  the  domain.  

Next:  

Continue  by  checking  the  results  of the  deployment.  

Using the mqsideploy command 

Follow  these  steps  to  deploy  a topics  hierarchy  using  the  mqsideploy  command:  

1.   Open  a command  window  that  is configured  for  your  environment.  

2.   Using  these  as  examples,  enter  the  appropriate  command,  typed  on  a single  

line:  

On  z/OS:  

/f MQ01CMGR,dp  t=yes  

This  performs  a delta  deployment.  Add  the  m=yes  parameter  to deploy  the  

entire  configuration.  

On  other  platforms:  

mqsideploy  -i ipAddress  -p port  -q qmgr  -t 

This  performs  a delta  deployment.  Add  the  –m  parameter  to  deploy  the  entire  

configuration.  The  -i (IP  address),  -p  (port),  and  -q  (queue  manager)  parameters  

represent  the  connection  details  of  the  queue  manager  workstation.  

Next:  

Continue  by  checking  the  results  of the  deployment.  

Using the Configuration Manager Proxy API 

Use  the  deploy  method  of the  TopicRootProxy  class.  By  default,  the  deploy  method  

performs  a delta  deployment.  To deploy  the  complete  hierarchy,  use  a variant  of  

the  method  that  includes  the  boolean  isDelta  parameter;  setting  this  to  false  

indicates  a complete  deployment.  (Setting  it to  true indicates  a delta  deployment.)  

For  example:  

import  com.ibm.broker.config.proxy.*;  

  

public  class  DeployTopics  { 

  public  static  void  main(String[]  args)  { 

    ConfigManagerConnectionParameters  cmcp  = 

            new  MQConfigManagerConnectionParameters  

                ("localhost",  1414,  "QM1");  

    try  { 

      ConfigManagerProxy  cmp  = 

            ConfigManagerProxy.getInstance(cmcp);  

      TopicRootProxy  t = cmp.getTopicRoot();  

      t.deploy(false); 

    } 

    catch  (ConfigManagerProxyException  e) { 

      e.printStackTrace();  

    } 

  } 

} 

 

94 Message  Flows



Next:  

Continue  by  checking  the  results  of  the  deployment.  

Checking the results of deployment 

After  you  have  made  a deployment,  check  that  the  operation  has  completed  

successfully.  There  are  three  ways  of  checking  the  results  of a deployment:  

v   Using  the  Message  Brokers  Toolkit  

v   Using  the  mqsideploy  command  

v   Using  the  Configuration  Manager  Proxy  API

Also,  check  the  system  log  on  the  target  system  where  the  broker  was  deployed  to  

make  sure  that  the  broker  has  not  reported  any  errors.  

Using the Message Brokers Toolkit  

Follow  these  steps  to check  a deployment  using  the  workbench:  

1.   Switch  to  the  Broker  Administration  perspective.  

2.   Expand  the  Domains  view. 

3.   Double-click  the  Event  Log. 

When  the  deployment  is  initiated,  an  information  message  is displayed,  confirming  

that  the  request  was  received  by  the  Configuration  Manager:  

v   BIP0892I

If the  deployment  completes  successfully,  you  might  also  see  one  or  more  of  these  

additional  messages:  

v   BIP4040I  

v   BIP4045I  

v   BIP2056I

Using the mqsideploy command 

The  command  returns  numerical  values  from  the  Configuration  Manager  and  any  

brokers  affected  by  the  deployment  to  indicate  the  outcome  of  the  deployment.  If it 

completes  successfully,  it returns  0. Refer  to  the  mqsideploy  topic  for  details  of 

other  values  that  you  might  see.  

Using the Configuration Manager Proxy API 

If  you  are  using  a Configuration  Manager  Proxy  application,  you  can  find  out  the  

result  of  a publish/subscribe  topology  deployment  operation,  for  example,  by 

using  code  similar  to this:  

TopologyProxy  t = cmp.getTopology();  

  

boolean  isDelta  = true;  

long  timeToWaitMs  = 10000;  

DeployResult  dr = topology.deploy(isDelta,  timeToWaitMs);  

  

System.out.println("Overall  result  = "+dr.getCompletionCode());  

  

//  Display  overall  log  messages  

Enumeration  logEntries  = dr.getLogEntries();

 

Deploying  95



while  (logEntries.hasMoreElements())  { 

  LogEntry  le = (LogEntry)logEntries.nextElement();  

  System.out.println("General  message:  " + le.getDetail());  

} 

  

// Display  broker  specific  information  

Enumeration  e = dr.getDeployedBrokers();  

while  (e.hasMoreElements())  { 

  

  // Discover  the  broker  

  BrokerProxy  b = (BrokerProxy)e.nextElement();  

  

  // Completion  code  for  broker  

  System.out.println("Result  for broker  "+b+"  = " + 

    dr.getCompletionCodeForBroker(b));  

  

  // Log  entries  for  broker  

  Enumeration  e2 = dr.getLotEntriesForBroker(b);  

  while  (e2.hasMoreElements())  { 

    LogEntry  le = (LogEntry)e2.nextElement();  

    System.out.println("Log  message  for  broker  " + b + 

      le.getDetail()));  

  } 

} 

The  deploy()  method  blocks  until  all  affected  brokers  have  responded  to  the  

deployment  request.  

When  the  method  returns,  the  DeployResult  represents  the  outcome  of  the  

deployment  at  the  time  when  the  method  returned;  the  object  is not  updated  by  

the  Configuration  Manager  Proxy.  

If the  deployment  message  could  not  be  sent  to the  Configuration  Manager,  a 

ConfigManagerProxyLoggedException  is thrown  at the  time  of deployment.  If the  

Configuration  Manager  receives  the  deployment  message,  then  log  messages  for  

the  overall  deployment  are  displayed,  followed  by  completion  codes  specific  to  

each  broker  affected  by  the  deployment.  The  completion  code  is one  of  the  

following  static  instances  from  the  

com.ibm.broker.config.proxy.CompletionCodeType  class:  

 Completion  

code  

Description  

pending  The  deploy  is held  in a batch  and  will  not  be sent  until  you  issue  

ConfigManagerProxy.sendUpdates(). 

submitted  The  deploy  message  was  sent  to the  Configuration  Manager  but  no 

response  was  received  before  the  timeout  occurred.  

initiated  The  Configuration  Manager  replied  stating  that  deployment  has  started,  

but  no broker  responses  were  received  before  the  timeout  occurred.  

successSoFar  The  Configuration  Manager  issued  the  deployment  request  and  some,  

but  not  all, brokers  responded  with  a success  message  before  the  

timeout  period  expired.  No brokers  responded  negatively.  

success  The  Configuration  Manager  issued  the  deployment  request  and  all 

relevant  brokers  responded  successfully  before  the  timeout  period  

expired.  

failure  The  Configuration  Manager  issued  the  deployment  request  and  at least  

one  broker  responded  negatively.  You can  use  getLogEntriesForBroker  for  

more  information  on why  the deployment  failed.  

 

96 Message  Flows



Completion  

code  

Description  

notRequired  A deployment  request  was  submitted  to the  Configuration  Manager  

involved  with  the  supplied  broker,  but the  request  was  not  sent  to the 

broker  because  its configuration  is already  up to date.
  

Canceling a deployment that is in progress 

Before  you  start:  

Canceling  a deployment  should  only  be  a last  resort  if you  are  sure  that  a broker,  

or  several  brokers  in  a domain,  will  never  be  able  to  process  a previous  

deployment  request.  For  this  reason,  make  sure  that  you  understand  the  

implications  of  this  action,  described  in  the  Cancel  deployment  overview  topic.  

It  is  possible  to  cancel  all  outstanding  deployments  in  the  domain,  or  just  those  to 

a particular  broker.  

v   When  canceling  deployment  across  the  domain,  you  must  have  full  access  on  

the  Configuration  Manager.  

v   When  canceling  deployment  to  a specific  broker,  you  must  have  full  access  on  

that  broker.

If you  want  to  ensure  that  previous  deployment  messages  are  not  processed  when  

an  affected  broker  is restarted,  first  remove  any  deployment  messages:  

1.   Stop  the  broker  

2.   Check  the  broker’s  SYSTEM.BROKER.ADMIN.QUEUE  and  

SYSTEM.BROKER.EXECUTIONGROUP.QUEUE,  and  manually  remove  any  

deployment  messages.  

3.   Proceed  to  cancel  the  deployment.

There  are  three  ways  to  cancel  a deployment:  

v   Using  the  Message  Brokers  Toolkit  

v   Using  the  mqsideploy  command  

v   Using  the  Configuration  Manager  Proxy  API

Using the Message Brokers Toolkit  

Follow  these  steps  to cancel  the  deployment  to  a particular  broker  or  all  

outstanding  deployments  in  a domain,  using  the  workbench:  

1.   Switch  to  the  Broker  Administration  perspective.  

2.   In  the  Domains  view, right-click  either  a particular  broker  or  a connected  

domain.  

3.   Click  Cancel  Deployment. 

Deployments  to  the  broker  or  domain  are  canceled.  

Next:  

Continue  by  checking  the  results.  (A  BIP0892I  information  message  is displayed  to  

show  that  the  request  was  received  by  the  Configuration  Manager.)  

 

Deploying  97



Using the mqsideploy command 

Follow  these  steps  to  cancel  a deployment  using  the  mqsideploy  command:  

1.   Open  a command  window  that  is configured  for  your  environment.  

2.   Using  these  as  examples,  enter  the  appropriate  command,  typed  on  a single  

line:  

On  z/OS:  

/f MQ01CMGR,dp  t=yes  b=B1  

This  cancels  deployment  to the  broker  called  B1.  Omit  the  b argument  to cancel  

all  outstanding  deployments  in  the  domain.  

On  other  platforms:  

mqsideploy  -i ipAddress  -p port  -q qmgr  –c –b B1 

This  cancels  deployment  to the  broker  called  B1.  Omit  the  -b  parameter  to 

cancel  all  outstanding  deployments  in  the  domain.  The  -i (IP  address),  -p  (port),  

and  -q  (queue  manager)  parameters  represent  the  connection  details  of  the  

queue  manager  workstation,  and  on  the  z/OS  console,  MQ01CMGR  is  the  

name  of the  Configuration  Manager  component.  

Next:  

Continue  by  checking  the  results.  (A  BIP0892I  information  message  is displayed  to  

show  that  the  request  was  received  by  the  Configuration  Manager.)  

Using the Configuration Manager Proxy API 

To  cancel  all  outstanding  deployments  in  a domain, use  the  cancelDeployment  

method  of  the  ConfigManagerProxy  class.  For  example:  

public  class  CancelAllDeploys  { 

  public  static  void  main(String[]  args)  { 

    ConfigManagerConnectionParameters  cmcp  = 

            new  MQConfigManagerConnectionParameters  

                ("localhost",  1414,  "QM1");  

    try  { 

      ConfigManagerProxy  cmp  = 

            ConfigManagerProxy.getInstance(cmcp);  

      cmp.cancelDeployment(); 

    } 

    catch  (ConfigManagerProxyException  e) { 

      e.printStackTrace();  

    } 

  } 

} 

To  cancel  deployment  to  a specific  broker  in  a domain,  use  the  cancelDeployment  

method  of  the  BrokerProxy  class.  For  example,  to  cancel  deployment  to a broker  

called  B1:  

import  com.ibm.broker.config.proxy.*;  

  

public  class  CancelDeploy  { 

  public  static  void  main(String[]  args)  { 

    ConfigManagerConnectionParameters  cmcp  = 

            new  MQConfigManagerConnectionParameters  

                ("localhost",  1414,  "QM1");  

    try  { 

      ConfigManagerProxy  cmp  = 

            ConfigManagerProxy.getInstance(cmcp);  

      TopologyProxy  t = cmp.getTopology();

 

98 Message  Flows



BrokerProxy  b = t.getBrokerByName("B1");  

      b.cancelDeployment(); 

    } 

    catch  (ConfigManagerProxyException  e) { 

      e.printStackTrace();  

    } 

  } 

} 

Next:  

Continue  by  checking  the  results.  (A  BIP0892I  information  message  is displayed  to  

show  that  the  request  was  received  by  the  Configuration  Manager.)  

Renaming objects that are deployed to execution groups 

You cannot  rename  an  object  while  it  is still  deployed  to an  execution  group.  

Instead,  first  remove  the  deployed  object  from  the  execution  group.  Then,  having  

renamed  it,  deploy  it again.  

Removing a deployed object from an execution group 

There  are  three  ways  of  removing  deployed  objects  from  an  execution  group:  

v   Using  the  Message  Brokers  Toolkit  

v   Using  the  mqsideploy  command  

v   Using  the  Configuration  Manager  Proxy  API

Using the Message Brokers Toolkit  

Follow  these  steps  to remove  an  object  from  an  execution  group  using  the  

workbench:  

1.   Switch  to  the  Broker  Administration  perspective.  

2.   From  the  Domains  view, right-click  the  object  that  you  want  to remove.  

3.   Click  Remove  from  the  pop-up  menu,  and  OK  to  confirm.  

An  automatic  deployment  is performed  for  the  updated  broker  and  a BIP08921  

information  message  is produced,  confirming  that  the  request  was  received  by  the  

Configuration  Manager.  

Using the mqsideploy command 

Follow  these  steps  to remove  an  object  from  an  execution  group  using  the  

mqsideploy  command:  

1.   Open  a command  window  that  is configured  for  your  environment.  

2.   Using  these  as  examples,  enter  the  appropriate  command,  typed  on  a single  

line:  

On  z/OS:  

/f MQ01CMGR,dp  t=yes  b=broker  e=execgp  d=file1.cmf:file2.dictionary:file3.xml  

On  other  platforms:  

mqsideploy  -i ipAddress  -p port  -q qmgr  –b broker  –e execgp  

                      –d file1.cmf:file2.dictionary:file3.xml  

 

Deploying  99



Optionally,  specify  the  -m  option  to clear  the  contents  of the  execution  group.  

This  tells  the  execution  group  to  completely  clear  any  existing  data  before  the  

new  bar  file  is  deployed.  The  -i (IP  address),  -p  (port),  and  -q  (queue  manager)  

parameters  represent  the  connection  details  of  the  queue  manager  workstation,  

and  on  the  z/OS  console,  MQ01CMGR  is the  name  of the  Configuration  

Manager  component.  

The  -d  argument  (or  d=  argument  on  z/OS)  is a colon  separated  list  of files  to  be  

removed  from  the  named  execution  group.  Invoking  the  command  above  causes  

the  deployed  objects  (file1.cmf,  file2.dictionary  and  file3.xml)  to  be  removed  from  

the  specified  execution  group  and  broker.  

The  command  displays  feedback  as responses  are  received  from  the  Configuration  

Manager  and  any  brokers  affected  by  the  deployment.  If the  command  completes  

successfully,  it returns  0.  

Using the Configuration Manager Proxy API 

One  way  of  removing  deployed  objects  using  the  Configuration  Manager  Proxy  

API  is  to  get  a handle  to  the  relevant  ExecutionGroupProxy  object  and  then  invoke  

its  deleteDeployedObjectsByName()  method.  For  example:  

import  com.ibm.broker.config.proxy.*;  

  

public  class  DeleteDeployedObjects  { 

  public  static  void  main(String[]  args)  { 

    ConfigManagerConnectionParameters  cmcp  = 

            new  MQConfigManagerConnectionParameters  

                      ("localhost",  1414,  "QM1");  

    try  { 

      ConfigManagerProxy  cmp  = 

            ConfigManagerProxy.getInstance(cmcp);  

      TopologyProxy  t = cmp.getTopology();  

      BrokerProxy  b = t.getBrokerByName("broker1");  

      ExecutionGroupProxy  e = 

            b.getExecutionGroupByName("default");  

      e.deleteDeployedObjectsByName(  

            new  String[]  { "file1.cmf",  

                           "file2.dictionary",  

                           "file3.xml"  }, 0); 

    } 

    catch  (ConfigManagerProxyException  e) { 

      e.printStackTrace();  

    } 

  } 

} 

 

100 Message  Flows



Part  3. Exploiting  user-defined  extensions  

User-defined  nodes  . . . . . . . . . . . 103 

Installing  a user-defined  node  on  a broker  

domain   . . . . . . . . . . . . . . . 105 

Deleting  a user-defined  node   . . . . . . . 107

 

© Copyright  IBM Corp. 2000, 2006 101



102 Message  Flows



User-defined  nodes  

A  user-defined  node  is a component  that  has  been  designed  and  implemented  by  

WebSphere  Message  Broker  users  or  by  third-party  vendors  to  add  to  the  function  

of  your  implementation  of WebSphere  Event  Broker.  

With  WebSphere  Event  Broker,  you  can  deploy  the  following  types  of user-defined  

extensions:  

v   User-defined  input  nodes  

v   User-defined  message  processing  nodes  

v   User-defined  output  nodes

User-defined  nodes  can  be  used  in  conjunction  with  the  nodes  that  are  supplied  

with  the  product,  and  with  third-party  supplied  nodes.  They  can  interact  with  the  

other  nodes  in  the  message  flow, and  can  have  characteristics  such  as  rollback,  

commit,  accessing  external  databases,  and  accessing  WebSphere  MQ  queues.  

You can  configure  the  terminals  and  properties  on  your  user-defined  nodes,  

according  to  your  system  setup.  However,  you  cannot  change  any  of  the  internals  

of  a user-defined  node.  

User-defined  nodes  can  be  written  in  the  C  or  Java  programming  language.  

User-defined  nodes  written  in  C are  compiled  into  a loadable  implementation  

library,  that  is,  a shared  library  on  Linux  and  UNIX,  or  a Windows  DLL.  

User-defined  nodes  written  in  Java  are  packaged  as a jar  file.  

For  information  on  deploying  or  deleting  user-defined  nodes,  see  the  relevant  

topics  in  this  section  of the  help.  

 

© Copyright  IBM Corp. 2000, 2006 103



104 Message  Flows



Installing  a user-defined  node  on  a broker  domain  

Before  you  start  

You must  have  a compiled  user-defined  extension,  which  has  been  supplied  either  

by  a third  party  vendor,  or  by  a user. 

1.   Put  a copy  of  your  compiled  or  packaged  user-defined  extension  file  on  every  

broker  system  from  which  you  intend  to  use  it.  

Specify  the  directory  in  which  to  put  the  file,  by  using  either  the  

mqsichangebroker  command  or  the  mqsicreatebroker  command.  

Note:   Do  not  save  the  .lil  or  .jar  file  in  the  WebSphere  Event  Broker  install  

directory.  

For  C  user-defined  extensions,  it is recommended  that  the  .pdb  file,  which  

corresponds  to  the  .lil  file,  is also  stored  in  the  chosen  directory.  The  .pdb  file  

provides  symbolic  information  that  is used  by  WebSphere  Event  Broker  when  

displaying  stack  diagnostic  information  in  the  event  of access  violations  or  

other  software  malfunctions.  

2.   Stop  and  start  each  broker.  This  is to  ensure  that  the  existence  of a new  file  is  

detected.  

There  are  two  situations  where  a broker  restart  is not  necessary:  

v   If  you  have  created  an  execution  group  in  the  Toolkit,  and  there  is nothing  

yet  deployed  to it,  you  can  add  the  .lil,  .pdb,  and  .jar  file  to  your  chosen  

directory.  

v   If  something  has  already  been  deployed  to  the  execution  group  you  that  

want  to  use,  add  the  .lil,  .pdb,  and  .jar  file  to your  chosen  directory  and  then  

use  the  mqsireload  command  to  restart  the  group.  It is not  possible  to  

overwrite  an  existing  file  on  the  Windows  platform  when  the  broker  is 

running  because  of the  file  lock  that  is put  in  place  by  the  operating  system.

These  two  situations  should  be  used  with  caution  because  any  execution  group  

that  is connected  to  the  same  broker  will  also  detect  the  new  .lil,  .pdb,  and  .jar  

files  when  that  execution  group  is restarted,  or  when  something  is first  

deployed  to  that  execution  group.  By  using  the  more  conventional  way  of  

restarting  the  broker,  you  ensure  that  anyone  with  an  interest  in  a particular  

execution  group  is made  aware  that  recent  changes  have  been  made  to  the  

broker.  

These  two  situations  assume  that  you  have  already  completed  the  previous  

step,  and  have  therefore  used  either  the  mqsichangebroker  command  or  the  

mqsicreatebroker  command  to  notify  the  broker  of  the  directory  in  which  the  

user-defined  extension  files  have  been  placed.  

When  you  have  installed  a user-defined  node,  it  is referred  to by  its  schema  

and  name,  just  like  a message  flow.

 

© Copyright  IBM Corp. 2000, 2006 105



106 Message  Flows



Deleting  a user-defined  node  

Before  you  start  

You must  have  at  least  one  user-defined  extension  installed  on  your  broker  system.  

On  all  types  of  system,  you  can  remove  a user-defined  node  file  from  the  broker  

by  completing  the  following  steps:  

1.   Stop  the  broker,  using  the  mqsistop  command.  

2.   Delete  the  .lil  or  .jar  file  from  the  appropriate  directory.  

3.   Restart  the  broker  using  the  mqsistart  command.

 

© Copyright  IBM Corp. 2000, 2006 107



108 Message  Flows



Part  4. Reference  

Message  flows   . . . . . . . . . . . . 111 

Message  flow  preferences   . . . . . . . . . 111 

Description  properties  for  a message  flow   . . . . 111 

Guidance  for  defining  keywords   . . . . . . 112 

Built-in  nodes   . . . . . . . . . . . . . 114 

Input  node   . . . . . . . . . . . . . 114 

JMSInput  node   . . . . . . . . . . . . 116 

JMSMQTransform  node   . . . . . . . . . 123 

JMSOutput  node   . . . . . . . . . . . 124  

MQeInput  node   . . . . . . . . . . . 132 

MQeOutput  node   . . . . . . . . . . . 139  

MQInput  node   . . . . . . . . . . . . 142  

MQJMSTransform  node   . . . . . . . . . 148 

MQOptimizedFlow  node   . . . . . . . . 149 

MQOutput  node   . . . . . . . . . . . 151 

Output  node   . . . . . . . . . . . . 156  

Publication  node   . . . . . . . . . . . 158  

Real-timeInput  node   . . . . . . . . . . 160  

Real-timeOptimizedFlow  node   . . . . . . 162  

SCADAInput  node   . . . . . . . . . . 165  

SCADAOutput  node   . . . . . . . . . . 168 

User-defined  nodes   . . . . . . . . . . . 170 

Supported  code  pages   . . . . . . . . . . 171 

Chinese  code  page  GB18030   . . . . . . . 198  

Data  integrity  within  message  flows  . . . . . . 199  

Configurable  message  flow  properties   . . . . . 199  

Message  flow  porting  considerations   . . . . . 200 

Message  flow  accounting  and  statistics  data   . . . 201 

Message  flow  accounting  and  statistics  details  201  

Message  flow  accounting  and  statistics  output  

formats   . . . . . . . . . . . . . . 202  

Example  message  flow  accounting  and  statistics  

data   . . . . . . . . . . . . . . . 213

 

© Copyright  IBM Corp. 2000, 2006 109



110  Message  Flows



Message  flows  

Message  flow  reference  information  is available  for:  

v   “Message  flow  preferences”  

v   “Description  properties  for  a message  flow”  

v   “Built-in  nodes”  on  page  114 

v   “User-defined  nodes”  on  page  170  

v   “Supported  code  pages”  on  page  171  

v   “Data  integrity  within  message  flows”  on  page  199  

v   “Configurable  message  flow  properties”  on  page  199  

v   “Message  flow  porting  considerations”  on  page  200  

v   “Message  flow  accounting  and  statistics  data”  on  page  201

Message flow preferences 

You can  set  Message  flow  preferences  from  Window  → Preferences  then  click  

Message  Flow  in  the  left  pane.  

 Property  Type Meaning  

Default  version  

tag  

String  Provide  the  default  version  information  you  would  like  to be set  in the  message  

flow  Version  property  when  you  create  a new  message  flow.
  

Description properties for a message flow 

 Property  Type Meaning  

Version  String  You can  enter  a version  for the  message  flow  in this  field.  This  allows  the 

version  of the  message  flow  to be displayed  using  the Eclipse  properties  view. 

A default  for  this  field  can  be set in the  messages  flow  preferences.  

Short  

Description  

String  You can  enter  a short  description  of the message  flow  in this  field.  

Long  

Description  

String  You can  add  information  to enhance  the  understanding  of the  message  flow’s  

function  in this  field.  

It is a string  field  and  any  standard  alphanumeric  characters  can  be used.  

You can  also  use  this  field  to define  a keyword  and  its value  that  will  display  for  

the  deployed  message  flow  in the  properties  view  of Eclipse.  An example  is: 

$MQSI  Author=Fred  MQSI$  

When  the  properties  of the  deployed  message  flow  are  displayed,  this  will  add  a 

row  to the display  showing  “Author”  as the property  name  and  “Fred”  as its 

value.  

For  information  on keywords  see  “Guidance  for defining  keywords”  on page  

112.
  

To view  and  edit  the  properties  of a message  flow  click  Flow  → Properties. 

 

© Copyright  IBM Corp. 2000, 2006 111



Guidance for defining keywords 

This  topic  contains  the  rules to  follow  when  defining  keywords.  Keywords  and  

their  values  are  displayed  in  the  properties  view  of  a deployed  object.  

A number  of  objects  in  WebSphere  Event  Broker  can  have  additional  information  

added  to  the  object.  This  information  can  display  information  about  an  object  after  

the  object  has  been  deployed.  The  default  information  that  is displayed  is  the  time  

the  object  was  deployed  and  the  last  time  the  object  was  modified.  

You can  define  custom  keywords  and  their  values  that  the  Configuration  Manager  

will  interpret  as  additional  information  to be  displayed  in the  properties  view. For  

example,  you  can  define  keywords  for  “Author”  and  “Subflow  1 Version”:  

$MQSI  Author=John  Smith  MQSI$  

$MQSI  Subflow  1 Version=v1.3.2  MQSI$  

The  information  the  Configuration  Manager  shows  is:  

 Object  name  

Deployment  Time  28-Aug-2004  15:04  

Modification  Time  28-Aug-2004  14:27  

Version  v1.0  

Author  John  Smith  

Subflow  1 Version  v1.3.2
  

In  this  display  the  version  information  has  also  been  defined  using  the  Version  

property  of  the  object.  If the  version  information  had  not  been  defined  using  the  

property,  it  would  be  omitted  from  this  display.  

The  syntax  for  defining  a keyword  and  its  associated  value  is:  

$MQSI  KeywordName  = KeywordValue  MQSI$  

Where:  

$MQSI  

$MQSI  opens  the  definition.  It can  be  followed  by  an  optional  underscore  

or  white  space  character  that  is ignored.  

KeywordName  

The  name  of  the  keyword  that  you  are  setting  the  value  for. It can  be  made  

up  of  any  sequence  of alphanumeric  characters  apart  from  the  equals  (=)  

sign.  It can  contain  white  space  characters,  but  any  leading  or  trailing  

white  space  characters  will  be  omitted.  

= The  equals  (=)  sign  is the  delimiter  between  the  keyword  and  the  value  

that  you  are  setting  it to.  

KeywordValue  

The  value  that  the  keyword  will  be  set  to.  It can  be  made  up  of any  

sequence  of  alphanumeric  characters.  It can  contain  white  space  characters,  

but  any  leading  or  trailing  white  space  characters  will  be  omitted.  

MQSI$  

MQSI$  closes  the  keyword  definition.

 

112  Message  Flows



Examples 

 Example  definitions  Interpreted  keyword  and  value  Comments  

$MQSIAuthor=JohnMQSI$  or 

$MQSI  Author=John  MQSI$  or 

$MQSI  Author  = John  MQSI$  

Keyword  = ″Author″ 

Value = ″John″ 

Each  of these  is a basic  example  of 

what  can  be set  and  shows  that  the 

leading  and  trailing  white  space  

characters  for the  name  and  value  

parameters  is ignored.  

$MQSI_Author  = John  MQSI$  Keyword  = ″Author″ 

Value = ″John″ 

The  first  character  after  $MQSI  can 

be an underscore  character.  The  

underscore  character  is omitted  in the 

interpreted  keyword.  If a second  

underscore  character  appears,  this  

will form  part  of the keyword  name.  

$MQSI  Flow  designer  = John  Smith  

MQSI$  

Keyword  = ″Flow  designer″ 

Value = ″John  Smith″ 

White  space  characters  are  accepted  

for each  parameter  value.  

$MQSI  bar  = MQSI$  Keyword  = ″bar″  

Value = ″″ 

The  keyword  value  can  be set to an  

empty  (″″)  string.  

$MQSI_mqsitag=$MQSI$MQSI$  Keyword  = ″mqsitag″ 

Value = ″$″  

This  is a poorly  formatted  definition.  

After  defining  the keyword  name  the 

parser  is looking  to find  the 

delimiters  that  form  the  boundary  of 

the  value  to be set. In this  case  the  

only  character  prior  to the  MQSI$  

that  closes  the definition  is a ’$’ and  

that  is set as the  keyword  value.  

$MQSI=barMQSI$  This  pattern  is ignored  because  the  

keyword  name  cannot  be an empty  

string.  

$MQSItagbarMQSI$  This  pattern  is ignored  because  there  

is not  a separator  (=) between  the 

keyword  name  and  the  keyword  

value.
  

Use  of  the  following  keywords  is not  recommended:  

VERSION  

When  you  use  the  Message  Brokers  Toolkit  to  edit  message  flows  and  

dictionaries,  it  is possible  to  set  the  Version  property  in  the  Properties  

pane,  which  you  can  then  view  in  the  Broker  Archive  file  editor.  If you  

were  to  set  this  property,  a keyword  called  VERSION  is added  to  the  

resulting  cmf  or  dictionary  file.  For  this  reason,  adding  

$MQSI_VERSION=...MQSI$  to  these  files  is not  recommended.  

BAR  The  BAR  keyword  is associated  with  each  object  automatically  when  it is 

deployed  and  it contains  the  full  path  name  of  the  broker  archive  file  that  

deployed  the  object.

The  values  of both  keywords  are  defined  programmatically  in  the  class  

com.ibm.broker.config.proxy.DeployedObject. 

 

Message flows 113

|

|
|
|
|
|
|
|

||
|
|

|
|



Built-in nodes 

WebSphere  Event  Broker  supplies  built-in  nodes  that  you  can  use  to define  your  

message  flows.  For  information  about  each  of  these  nodes,  follow  the  appropriate  

link  below.  The  nodes  listed  here  are  grouped  according  to the  function  that  they  

provide.  

Input  and  output  

v   “MQInput  node”  on  page  142  

v   “MQOptimizedFlow  node”  on  page  149  

v   “MQOutput  node”  on  page  151  

v   “Publication  node”  on  page  158  

v   “MQeInput  node”  on  page  132  

v   “MQeOutput  node”  on  page  139  

v   “SCADAInput  node”  on  page  165  

v   “SCADAOutput  node”  on  page  168  

v   “Real-timeInput  node”  on  page  160  

v   “Real-timeOptimizedFlow  node”  on  page  162  

v   “Input  node”  

v   “Output  node”  on  page  156  

v   “JMSInput  node”  on  page  116 

v   “JMSOutput  node”  on  page  124

Message  manipulation  and  transformation  

v   “JMSMQTransform  node”  on  page  123  

v   “MQJMSTransform  node”  on  page  148

Input node 

This  topic  contains  the  following  sections:  

v   “Purpose”  

v   “Configuring  the  Input  node”  on  page  115 

v   “Terminals  and  properties”  on  page  115

Purpose 

The  Input  node  provides  an  in terminal  for  an  embedded  message  flow  (a  

subflow).  You can  use  a subflow  for  a common  task  that  can  be  represented  by  a 

sequence  of message  flow  nodes.  For  example,  you  can  create  a subflow  to 

increment  or  decrement  a loop  counter,  or  to provide  error  processing  that  is  

common  to  a number  of  message  flows.  

You must  use  an  Input  node  to  provide  the  in terminal  to a subflow;  you  cannot  

use  a standard  input  node  (a  built-in  input  node  such  as  MQInput,  or  a 

user-defined  input  node).  

When  you  have  started  your  subflow  with  an  Input  node,  you  can  connect  it to  

any  in  terminal  on  any  message  flow  node,  including  an  Output  node.  

You can  include  one  or  more  Input  nodes  in  a subflow.  Each  one  that  you  include  

provides  a terminal  through  which  you  can  introduce  messages  to the  subflow.  If 

you  include  more  than  one,  the  order  in  which  the  messages  are  processed  through  

the  subflow  cannot  be  predicted.  

The  Input  node  is represented  in  the  workbench  by  the  following  icon:  

 

114  Message  Flows



When  you  select  and  include  a subflow  in a message  flow, it is represented  by the  

icon:  

   

When  you  include  the  subflow  in  a message  flow, this  icon  exhibits  a terminal  for  

each  Input  node  that  you  include  in  the  subflow,  and  the  name  of  the  terminal  

(which  you  can  see  when  you  hover  over  it)  matches  the  name  of  that  instance  of  

the  Input  node.  Give  your  Input  nodes  meaningful  names  that  you  can  easily  

recognize  when  you  use  their  corresponding  terminal  on  the  subflow  node  in  your  

message  flow. 

Configuring the Input node 

When  you  have  put  an  instance  of  the  Input  node  into  a message  flow, you  can  

configure  it  by  giving  it a name.  

Right-click  the  node  in  the  editor  view  and  select  Properties. The  Description  

properties  of  the  node  are  displayed.  

Enter  a short  description,  a long  description,  or  both.  

Click  Apply  to  make  the  changes  to  the  Input  node  without  closing  the  properties  

dialog,  or  click  OK  to  apply  the  changes  and  close  the  properties  dialog.  

Click  Cancel  to  close  the  dialog  and  discard  all  the  changes  that  you  have  made  to  

the  properties.  

Terminals and properties 

The  Input  node  terminals  are  described  in  the  following  table.  

 Terminal  Description  

Out  The  input  terminal  that  delivers  a message  to the  subflow.
  

The  following  table  describes  the  node  properties;  the  column  headed  M  indicates  

whether  the  property  is mandatory  (marked  with  an  asterisk  on  the  properties  

dialog  if you  must  enter  a value  when  no  default  is defined),  the  column  headed  C 

indicates  whether  the  property  is configurable  (you  can  change  the  value  when  you  

add  the  message  flow  to  the  bar  file  to deploy  it).  

The  Input  node  Description  properties  are  described  in  the  following  table.  

 Property  M C Default  Description  

Short  Description  No  No    A brief  description  of the  node.  

Long  Description  No  No    Text that  describes  the  purpose  of the  node  in the 

message  flow.
 

 

Message flows 115



JMSInput node 

This  topic  contains  the  following  sections:  

v   “Purpose”  

v   “Using  the  JMSInput  node  in  a message  flow”  

v   “Making  the  JMS  Provider  client  available  to  the  JMS  Nodes”  

v   “Configuring  the  JMSInput  node”  on  page  117 

v   “Terminals  and  properties”  on  page  122

Purpose 

Use  the  JMSInput  node  to  receive  messages  from  JMS  destinations.  JMS  

destinations  are  accessed  through  a connection  to a JMS  provider.  The  JMSInput  

node  acts  as  a JMS  message  consumer  and  can  receive  all  six  message  types  that  

are  defined  in  the  Java  Message  Service  Specification,  version  1.1.  Messages  are  

received  by  using  method  calls,  which  are  described  in the  JMS  specification.  

The  JMSInput  node  is  represented  in  the  workbench  by  the  following  icon:  

   

Using the JMSInput node in a message flow 

The  JMS  Nodes  sample  sample  contains  a message  flow  in  which  the  JMSInput  

node  is  used.  Refer  to  this  sample  for  an  example  of how  to use  the  JMSInput  

node.  

Message  flows,  which  handle  messages  that  are  received  from  connections  to  JMS  

providers,  must  always  start  with  a JMSInput  node.  If you  include  an  output  node  

in  a message  flow  that  starts  with  an  JMSInput  node,  it can  be  any  of  the  

supported  output  nodes  (including  user-defined  output  nodes);  you  do  not  have  to 

include  an  JMSOutput  node.  However,  if you  do  not  include  a JMSOutput  node,  

you  must  include  the  JMSMQTransform  node  to  transform  the  message  to  the  

format  that  is  expected  by  the  output  node.  

If you  are  propagating  JMS  messages  and  creating  a message  flow  to  use  as  a 

subflow,  you  cannot  use  a standard  input  node;  you  must  use  an  instance  of the  

JMSInput  node  as  the  first  node  in  order  to  create  an  In  terminal  for  the  subflow.  

Restriction:   There  is  currently  a restriction  when  using  the  JMSInput  node  to 

receive  publication  topics.  The  node  internally  restricts  the  message  

flow  property  Additional  Instances  to  zero  to prevent  the  receipt  of 

duplicate  publications.  

Making the JMS Provider client available to the JMS Nodes 

For  distributed  platforms,  copy  the  java  .jar  files  and  any  native  libraries  for  the  

JMS  provider  client  into  a the  broker  shared-classes  directory.  For  example,  on  

Windows  C:\Documents  and  Settings\All  Users\Application  

Data\IBM\MQSI\shared-classes. This  ensures  that  the  java  class  path  for  the  JMS  

nodes  is set  correctly.  

For  z/OS,  there  is  no  shared-classes  directory.  Instead  you  must  specify  each  JMS  

provider  java  .jar  file  in  the  class  path  in  the  BIPPROF  member  of the  broker’s  PDS  

 

116  Message  Flows

http://java.sun.com/products/jms/docs.html
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.jmsnode.res


(Partitioned  Data  Set).  Then  update  the  LIBPATH  with  any  native  libraries,  and  

submit  the  BIPGEN  JCL  job  to  update  the  broker  ENVFILE.  

Configuring the JMSInput node 

When  you  have  put  an  instance  of  the  JMSInput  node  into  a message  flow, you  

can  configure  it.  Right-click  the  node  in  the  editor  view  and  click  Properties. The  

basic  properties  of the  node  are  displayed  in  the  properties  dialog.  

All  mandatory  properties  that  do  not  have  a default  value  defined  are  marked  

with  an  asterisk  on  the  properties  dialog.  

Configure  the  JMSInput  node  as follows:  

1.   Select  Basic  in  the  properties  dialog  navigator  and  complete  the  following  

properties:  

v   Enter  an  Initial  Context  Factory  value.  A JMS  application  uses  the  initial  

context  to  obtain  and  look  up  the  JNDI  administered  objects  for  the  JMS  

provider.  The  default  value  is 

com.sun.jndi.fscontext.RefFSContextFactory, which  defines  the  file-based  

initial  context  factory  for  the  WebSphere  MQ  JMS  provider.  

To identify  the  name  of  the  Initial  Context  Factory  for  the  JMS  provider,  refer  

to  the  JMS  provider  documentation.  

v   Enter  a value  for  the  Location  JNDI  Bindings.  This  value  specifies  either  the  

file  system  path  or  the  LDAP  location  for  the  bindings  file.  The  bindings  file 

contains  definitions  for  the  JNDI  administered  objects  that  are  used  by  the  

JMSInput  node.  

When  you  enter  a value  for  Location  JNDI  Bindings,  ensure  that  it is 

compliant  with  the  following  instructions:  

–   Construct  the  bindings  file  before  you  deploy  a message  flow  that  

contains  a JMSInput  node.  

–   Do  not  include  the  filename  of  the  bindings  file  in  this  field.  

–   If  you  have  specified  an  LDAP  location  that  requires  authentication,  you  

must  configure  separately  both  the  LDAP  principal  (userid)  and  LDAP  

credentials  (password).  These  values  are  configured  at broker  level.  For  

information  on  configuring  these  values,  refer  to  the  mqsicreatebroker  and  

mqsichangebroker  commands.  

–   The  string  value  should  include  the  leading  keyword,  which  is one  of the  

following:  file:/  , iiop:/, or  ldap:/. 

For  information  about  constructing  the  JNDI  administered  objects  bindings  

file,  refer  to  the  documentation  that  is supplied  with  the  JMS  provider.  

v   Enter  a Connection  Factory  Name. The  connection  factory  name  is used  by  the  

JMSInput  node  to  create  a connection  to  the  JMS  provider.  This  name  must  

already  exist  in  the  bindings  file.  

v   Enter  a Backout  Destination  name.  Input  messages  are  sent  to  this  destination  

when  errors  prevent  the  message  flow  from  processing  the  message,  and  the  

message  must  be  removed  from  the  input  destination.  The  backout  

destination  name  must  exist  in  the  bindings  file.  

v   Enter  a value  for  the  Backout  Threshold. This  value  determines  when  an  input  

message  is  put  to the  Backout  Destination. For  example,  if the  value  is  3, the  

JMS  provider  attempts  to  deliver  the  message  to the  input  destination  three  

times.  After  the  third  attempted  delivery,  the  message  is removed  from  the  

input  destination  and  is sent  to  the  backout  destination.  The  default  value  is 

0.

 

Message flows 117



2.   Select  Default  in  the  properties  dialog  navigator  and  set  values  for  the  

properties  that  describe  the  message  domain,  message  set,  message  type,  and  

message  format.  

v   If  you  are  using  the  MRM  or  IDOC  parser,  select  the  correct  message  set  

from  the  drop-down  list  in  Message  Set.  This  list  is populated  with  available  

message  sets  when  you  select  MRM  or  IDOC  as the  domain.  

Leave  Message  Set  blank  for  XML,  XMLNS,  JMS,  , and  BLOB  parsers.  

v   If  you  are  using  the  MRM  parser,  select  the  correct  message  from  the  

drop-down  list  in  Message  Type. This  list  is populated  with  messages  that  are  

defined  in  the  message  set  that  you  have  selected.  

Leave  Message  Type blank  for  XML,  XMLNS,  JMS,  , BLOB,  and  parsers.  

v   If  you  are  using  the  MRM  or  IDOC  parser,  select  the  format  of the  message  

from  the  drop-down  list  in  Message  Format. This  list  includes  all  the  physical  

formats  that  you  have  defined  for  this  message  set.  

Leave  Message  Format  blank  for  XML,  XMLNS,  JMSMap,  JMSStream,  , and  

BLOB  parsers.
3.   If  the  JMSInput  node  is to  be  used  to  subscribe  to  a topic,  select  Pub/Sub  in the  

properties  dialog  navigator.  

v   Enter  the  name  of the  Subscription  Topic. 

–   If  this  property  is configured,  the  node  operates  in the  publish/subscribe  

message  domain  only.  

–   This  property  is mutually  exclusive  with  Source  Queue  in  the  Point  to  Point  

properties  section.  

–   The  Subscription  Topic  name  must  conform  to the  standards  of the  JMS  

provider  that  is being  used  by  the  node.  

v   If  the  node  is to  receive  publications  from  a durable  subscription  topic,  enter  

a Durable  Subscription  ID.  

–   Removing  a durable  subscription  is  a separate  administration  task.  For  

information  on  removing  a durable  subscription,  refer  to the  JMS  provider  

documentation.  

–   This  property  is valid  only  when  a Subscription  Topic  string  has  been  

specified.
4.   If  the  JMSInput  node  is to  be  used  to  receive  point  to  point  messages,  select  

Point  to Point  in  the  properties  dialog  navigator.  

v   Enter  the  Source  Queue  name,  where  the  Source  Queue  is the  JMS  queue  that  is 

listed  in the  bindings  file.
5.   If  filtering  of  messages  is  required,  select  Message  Selectors  in  the  properties  

dialog  navigator.  

v   If  the  JMS  provider  is required  to  filter  messages  based  on  message  

properties  that  are  set  by  the  originating  JMS  client  application,  enter  a value  

for  Application  Property,  specifying  both  the  property  name  and  the  selection  

conditions;  for  example,  OrderValue  > 200. 

Leave  this  property  blank  if you  do  not  want  the  input  node  to  select  based  

upon  application  property.  Refer  to JMS  message  selectors  for  a description  

of  how  to  construct  the  message  selector.  

v   If  the  JMS  provider  is required  to  filter  messages  that  have  been  generated  at  

specific  times,  enter  a value  for  Timestamp,  where  the  value  is  an  unqualified  

Java  millisecond  time;  for  example,  105757642321. Qualify  the  selector  with  

operators  such  as  BETWEEN  or  AND. 

Leave  this  property  blank  if you  do  not  want  the  input  node  to  select  based  

on  JMSTimeStamp.  

 

118  Message  Flows



v   If  the  JMS  provider  is required  to filter  messages  based  on  the  

JMSDeliveryMode  header  value  in  the  JMS  messages,  select  an  option  for  

Delivery  Mode  from  the  drop-down  list.  You can  choose  from:  

–   Non  Persistent  to receive  messages  marked  as  non  persistent  by  the  

originating  JMS  client  application.  This  is the  default  option.  

–   Persistent  to  receive  messages  marked  as  persistent  by  the  originating  JMS  

client  application.
v    If  the  JMS  provider  is required  to filter  messages  based  upon  the  JMSPriority  

header  value  in  the  JMS  message,  enter  a value  for  Priority. 

Valid values  for  message  priority  are  from  0 (lowest)  to 9 (highest).  For  

example,  you  can  enter  5 to  receive  messages  of  priority  5.  You can  also  

qualify  the  selector;  for  example  > 4 to  receive  messages  with  a priority  

greater  than  4,  or  BETWEEN  4 AND  8 to  receive  messages  with  a priority  in the  

range  4 to  8. 

Leave  this  property  blank  if you  do  not  want  the  input  node  to  select  based  

on  JMSPriority.  

v   If  the  JMS  provider  is required  to filter  messages  based  upon  the  

JMSMessageID  header,  enter  a value  for  Message  ID.  

Enter  a specific  Message  ID,  or  enter  a conditional  selector;  for  example,  

enter> WMBRK123456  to return  messages  where  the  Message  ID  is  greater  than  

the  WMBRK123456. 

Leave  this  property  blank  if you  do  not  want  the  input  node  to  make  a 

selection  based  on  JMSMessageID.  

v   If  the  JMS  provider  is required  to filter  messages  based  upon  the  

JMSRedelivered  header,  enter  a value  for  Redelivered. 

Enter  FALSE  if the  input  node  accepts  only  messages  that  have  not  been  

redelivered  by  the  JMS  Provider.  

Enter  TRUE  if the  input  node  accepts  only  messages  that  have  been  

redelivered  by  the  JMS  Provider.  

Leave  this  property  blank  if you  do  not  want  the  input  node  to  select  based  

on  JMSRedelivered.  

v   If  the  JMS  provider  is required  to filter  messages  based  upon  the  

JMSCorrelationID  header,  enter  a value  for  Correlation  ID.  

Enter  a specific  Correlation  ID  or  enter  a conditional  string;  for  example,  

WMBRKABCDEFG  returns  messages  whose  Correlation  ID  matches  this  value.  

Leave  this  property  blank  if you  do  not  want  the  input  node  to  select  based  

on  JMSCorrelationID.
6.   Select  Advanced  in  the  properties  dialog  navigator.  

v   To define  the  transactional  characteristics  of how  the  message  is handled,  

select  from  the  Transaction  Mode  drop-down  list.  You can  choose  one  of  the  

following  options:  

–   Select  none  if the  incoming  message  is to be  treated  as  non  persistent.  If 

you  select  this  value,  the  message  is received  using  a non  transacted  JMS  

Session  that  is created  using  the  Session.AUTO_ACKNOWLEDGE  flag.  

–   Select  local  if the  JMSInput  node  should  coordinate  the  commit  or  roll  back  

of  JMS  messages  received  by  the  node,  along  with  any  other  resources  

such  as  DB2  or  WebSphere  MQ  that  perform  work  within  the  message  

flow. If you  select  this  value,  the  node  uses  a transacted  JMS  Session.  

–   Select  global  if the  JMSInput  node  should  participate  in  a global  message  

flow  transaction  that  will  be  managed  by  the  broker’s  external  syncpoint  

coordinator.  The  syncpoint  coordinator  is  the  broker’s  queue  manager  on  

 

Message flows 119



distributed  platforms  and  RRS  (Resource  Recovery  Services)  on  z/OS.  If 

you  select  this  value,  any  messages  received  by  the  node  are  globally  

coordinated  using  an  XA  JMS  Session.
7.   Select  XMLNSC  Parser  Options  in  the  properties  dialog  navigator.  

If  you  want  to  Use  XMLNSC  Compact  Parser  for  XMLNS  Domain  select  the  check  

box.  

For  Mixed  Content  Retain  Mode, Comments  Retain  Mode, and  Processing  

Instructions  Retain  Mode, the  drop-down  boxes  offer  the  following  choices:  

v   None  

v   All
8.   Select  Description  in the  properties  dialog  navigator  to enter  a short  description,  

a long  description,  or  both.  

9.   Click  Apply  to  make  the  changes  to  the  JMSInput  node  without  closing  the  

properties  dialog.  Click  OK  to  apply  the  changes  and  close  the  properties  

dialog.  

Click  Cancel  to  close  the  dialog  and  discard  all  the  changes  that  you  have  

made  to  the  properties.

Connecting  the  terminals:    

For  each  message  that  is received  successfully,  the  JMSInput  node  routes  the  

message  to  the  out  terminal.  If  this  fails,  the  message  is retried.  If  the  retry  

threshold  is reached,  where  the  threshold  is defined  by  the  BackoutThreshold  

attribute  of  the  node,  the  message  is routed  to  the  failure  terminal.  

You can  connect  nodes  to  the  failure  terminal  to handle  this  condition.  If  you  have  

not  connected  nodes  to  the  failure  terminal,  the  message  is written  to the  backout  

destination.  If a backout  destination  has  not  been  provided,  an  error  message  is 

issued  and  the  node  stops  processing  further  input.  The  error  message  is bip4669. 

If the  message  is  caught  by  the  JMSInput  node  after  an  exception  has  been  thrown  

elsewhere  in  the  message  flow, the  message  is routed  to the  catch  terminal.  If  you  

have  not  connected  nodes  to  the  catch  terminal,  the  node  will  backout  message  for  

re-delivery  until  the  problem  is  resolved  or  the  backout  threshold  is reached.  

You must  define  a backout  destination.  If you  do  not  define  a backout  destination,  

the  node  issues  a bip4669  error  message  and  stops  processing  further  input.  

Configuring  for  coordinated  transactions:    

When  you  include  a JMSInput  node  in a message  flow, the  value  that  you  set  for  

Transaction  Mode  defines  whether  messages  are  received  under  syncpoint.  

v   If  you  set  it to  global, the  message  is received  under  external  syncpoint  

coordination,  that  is,  within  a WebSphere  MQ  unit  of work.  Any  messages  

subsequently  sent  by  an  output  node  in  the  same  instance  of  the  message  flow  

are  put  under  syncpoint,  unless  the  output  node  has  explicitly  overridden  this.  

v   If  you  set  it to  local, the  message  is received  under  the  local  syncpoint  control  

of  the  JMSInput  node.  Any  messages  subsequently  sent  by  an  output  node  in 

the  flow  are  not  put  under  local  syncpoint,  unless  an  individual  output  node  has  

specified  that  the  message  must  be  put  under  local  syncpoint.  

 

120 Message  Flows



v   If  you  set  it to  none, the  message  is not  received  under  syncpoint.  Any  messages  

subsequently  sent  by  an  output  node  in the  flow  are  not  put  under  syncpoint,  

unless  an  individual  output  node  has  specified  that  the  message  must  be  put  

under  syncpoint.

The  JMS  provider  can  supply  additional  jar  files  that  are  required  for  transactional  

support.  Refer  to  the  JMS  provider  documentation.  For  instance,  on  Distributed  

(non  z/OS)  platforms,  the  WebSphere  MQ  JMS  provider  supplies  an  extra  jar  file  

com.ibm,mqetclient.jar. This  jar  must  also  be  added  to  the  broker  shared_classes  

directory.  Refer  to  Making  the  JMS  Provider  client  available  to  the  JMS  Nodes  in  

this  topic.  

When  messages  are  to be  received  under  external  syncpoint,  additional  

configuration  steps  are  required.  These  steps  need  only  be  applied  the  first  time  

that  a JMSOutput  or  JMSInput  is deployed  to  the  Broker  for  a particular  JMS  

provider:  

v   On  distributed  platforms,  the  external  syncpoint  coordinator  for  the  broker  is 

WebSphere  MQ.  Before  you  deploy  a message  flow  in  which  the  Transaction  

Coordination  is set  to  Global, modify  the  queue  manager  .ini  file  to  include  extra  

definitions  for  each  JMS  provider  Resource  Manager  that  participates  in globally  

coordinated  transactions.  

–   On  Windows,  if you  have  WebSphere  MQ  Version  5 installed,  start  

WebSphere  MQ  Services,  right-click  the  queue  manager  name.  Select  

Properties  and  click  the  Resource  properties  tab.  If you  have  WebSphere  MQ  

Version  6 installed,  start  WebSphere  MQ  Explorer,  right-click  the  queue  

manager  name  in  the  left  pane.  Select  Properties  and  select  XA  resource  

managers  in  the  left  pane.  Refer  to  the  WebSphere  MQ  System  Administration  

Guide  for  more  information.  

Set  the  SwitchFile  property  to  the  following  value:  

install_dir/bin/ JMSSwitch.dll  

XAOpenString=Initial Context,location  JNDI,Optional_parms  

ThreadOfControl=THREAD  

–   On  Linux  and  UNIX  platforms,  add  a stanza  to the  queue  manager  ini  file  for  

each  JMS  provider.  Refer  to  the  WebSphere  MQ  System  Administration  Guide  for  

more  information.  

For  example,  

XAResourceManager:  

Name=Jms_Provider_Name  

SwitchFile=/install_dir/bin/ JMSSwitch.so  

XAOpenString=Initial Context,location  JNDI,Optional_parms  

ThreadOfControl=THREAD  

Where:  

Name  is  an  installation  defined  name  that  identifies  a JMS  provider  Resource  

Manager.  

SwitchFile  is  the  file  system  path  to  the  JMSSwitch  library  that  is supplied  in  

the  bin  directory  of  the  broker.  

The  values  for  XAOpenString  are  as  follows:  

-   Initial  Context  is the  value  that  is set  in the  JMSInput  node  basic  property  

Initial  Context  Factory. 

-   location  JNDI  is  the  value  that  is set  in  the  JMSInput  node  basic  property  

Location  of JNDI. This  value  should  include  the  leading  keyword  file:/, 

iiop:/, or  ldap:/  

The  following  parameters  are  optional:  

 

Message flows 121



-   LDAP  Principal  which  matches  the  value  that  is set  for  the  broker  by  using  

the  mqsicreatebroker  or  mqsichangebroker  commands.  

-   LDAP  Credentials  which  matches  the  value  that  is set  for  the  broker  by  

using  the  mqsicreatebroker  or  mqsichangebroker  commands.  

-   Recovery  Connection  Factory  Name  which  is the  JNDI  administered  

connection  factory  that  is defined  in  the  bindings  file.  If a value  is not  

specified,  a default  value  for  recoverXAQCF  must  be  added  to the  bindings  

file.  In  either  case,  the  Recovery  Connection  Factory  should  be  defined  as  

an  XA  Queue  Connection  Factory  for  the  JMS  provider  that  is associated  

with  the  Initial  Context  Factory.  

The  optional  parameters  are  comma  separated  and  are  positional.  Therefore,  

any  parameters  that  are  missing  must  be  represented  by  a comma.  

1.   Update  the  Java  CLASSPATH  environment  variable  for  the  broker’s  queue  

manager  to  include  a reference  to  xarecovery.jar.  For  example,  

install_dir/classes/xarecovery.jar  

2.   Update  the  Java  PATH environment  variable  for  the  broker’s  queue  

manager  to  point  to the  bin  directory,  in which  the  Switch  File  is located.  

For  example:  

install_dir/bin 

XA  cannot  use  the  same  queue  manager  for  both  the  broker  and  the  provider  

until  WebSphere  MQ  Version  5.3,  CSD12  and  WebSphere  MQ  Version  6 

FixPack  1. 

–   On  z/OS,  the  external  syncpoint  manager  is Resource  Recovery  Services  

(RRS).  The  only  JMS  provider  that  is supported  on  z/OS  is WebSphere  MQ  

JMS.  The  only  Transport  option  that  is supported  for  WebSphere  MQ  JMS  on  

z/OS  is  the  Bind  option.  

Syncpoint  control  for  the  JMS  provider  is  managed  with  RRS  syncpoint  

coordination  of  the  queue  manager  of the  broker.  You do  not  need  to modify  

the  .ini  file.

Terminals and properties 

The  terminals  of  the  JMSInput  node  are  described  in  the  following  table.  

 Terminal  Description  

Failure  The  output  terminal  to which  the  message  is routed  if an error  occurs.  Even  if the 

Validation  property  is set, messages  propagated  to this  terminal  are  not  validated.  

Out  The  output  terminal  to which  the  message  is routed  if it is successfully  retrieved  from  

the  WebSphere  MQ  queue.  

Catch  The  output  terminal  to which  the  message  is routed  if an exception  is thrown  

downstream  and  caught  by this  node.
  

The  following  tables  describe  the  node  properties;  the  column  headed  M  indicates  

whether  the  property  is  mandatory  (marked  with  an  asterisk  on  the  properties  

dialog  if you  must  enter  a value  when  no  default  is  defined),  the  column  headed  C 

indicates  whether  the  property  is configurable  (you  can  change  the  value  when  you  

add  the  message  flow  to  the  bar  file  to  deploy  it).  

The  Basic  properties  of the  JMSInput  node  are  described  in  the  following  table.  

 

122 Message  Flows



Property  M C Default  Description  

Initial  Context  Factory  Yes com.sun.jndi.fscontext.RefFSContextFactory  This  is the  starting  point  for  a JNDI  name  space.  A 

JMS  application  uses  the  initial  context  to obtain  and  

look  up the connection  factory  and  queue  or topic  

objects  for the  JMS  provider.  

The  default  value  is that  which  is used  when  

WebSphere  MQ  Java  is used  as the  JMS  provider.  

Location  JNDI  Bindings  Yes The  system  path  or the  LDAP  location  for  the  bindings  

file.  

Connection  Factory  

Name  

Yes The  name  of the  connection  factory  that  is used  by the  

JMSInput  node  to create  a connection  to the  JMS  

provider.  

Backout  Destination  No  The  destination  that  is used  by the  JMSInput  node  

when  a message  cannot  be processed  by the message  

flow  because  of errors  in the  message.  

Backout  Threshold  No  0 The  value  that  controls  when  a re-delivered  message  is 

put  to the  backout  destination.
  

The  Advanced  properties  of the  JMSInput  node  are  described  in  the  following  

table.  

 Property  M C Default  Description  

Transaction  Mode  Yes No  none  This  property  is used  to determine  whether  the 

incoming  message  is received  under  external  syncpoint,  

local  syncpoint,  or out  of syncpoint.  Valid values  are  

none, local, and  global.
  

The  Description  properties  of the  JMSInput  node  are  described  in the  following  

table.  

 Property  M C Default  Description  

Short  Description  No  No    A brief  description  of the  node.  

Long  Description  No  No    Text that  describes  the  purpose  of the  node  in the 

message  flow.
  

JMSMQTransform node 

This  topic  contains  the  following  sections:  

v   “Purpose”  

v   “Using  the  JMSMQTransform  node  in  a message  flow”  on  page  124  

v   “Terminals  and  properties”  on  page  124

Purpose 

Use  the  JMSMQTransform  node  to  transform  a message  with  a JMS  message  tree  

into  a message  that  has  a message  tree  structure  compatible  with  the  format  of 

messages  that  are  produced  by  the  WebSphere  MQ  JMS  provider.  

The  JMSMQTransform  node  can  be  used  to  send  messages  to  legacy  message  flows  

and  to  interoperate  with  WebSphere  MQ  JMS  and  WebSphere  Event  Broker  publish  

subscribe.  

 

Message flows 123



The  JMSMQTransform  node  is represented  in  the  workbench  by  the  following  icon:  

   

Using the JMSMQTransform node in a message flow 

The  JMS  Nodes  sample  sample  contains  a message  flow  in  which  the  

JMSMQTransform  node  is used.  Refer  to  this  sample  for  an  example  of how  to  use  

the  JMSMQTransform  node.  

Terminals and properties 

The  terminals  of  the  JMSMQTransform  node  are  described  in the  following  table:  

 Terminal  Description  

Failure  The  output  terminal  to which  the  message  is routed  if an error  occurs.  Even  if the 

Validation  property  is set, messages  propagated  to this  terminal  are  not  validated.  

Out  The  output  terminal  to which  the  message  is routed  if it is successfully  retrieved  from  

the  JMS  destination.  

In The  input  terminal  that  accepts  a message  for  processing  by the  node.
  

There  are  no  configurable  attributes  for  this  node.  

JMSOutput node 

This  topic  contains  the  following  sections:  

v   “Purpose”  

v   “Using  the  JMSOuput  node  in  a message  flow”  

v   “Making  the  JMS  Provider  client  available  to  the  JMS  Nodes”  on  page  125  

v   “Using  the  Message  Destination  Mode”  on  page  125  

v   “Configuring  the  JMSOutput  node”  on  page  127  

v   “Terminals  and  properties”  on  page  131

Purpose 

Use  the  JMSOutput  node  to send  messages  to  JMS  destinations.  The  JMSOutput  

node  acts  as  a JMS  message  producer  and  can  publish  all  six  message  types  that  

are  defined  in  the  Java  Message  Service  Specification,  version  1.1.  Messages  are  

published  by  using  method  calls,  which  are  described  in  the  JMS  specification.  

The  JMSOutput  node  is represented  in  the  workbench  by  the  following  icon:  

   

Using the JMSOuput node in a message flow 

The  JMS  Nodes  sample  sample  contains  a message  flow  in  which  the  JMSOutput  

node  is  used.  Refer  to  this  sample  for  an  example  of how  to use  the  JMSOutput  

node.  

Message  flows  that  handle  messages  received  from  connections  to  JMS  providers  

must  always  start  with  a JMSInput  node.  If you  include  the  JMSOutput  node  in a 

message  flow, you  do  not  need  to include  a JMSInput  node,  but  if you  do  not  

 

124 Message  Flows

|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.jmsnode.res
http://java.sun.com/products/jms/docs.html
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.jmsnode.res


include  a JMSInput  node,  you  must  include  the  MQJMSTransform  node  to  

transform  the  message  to  the  format  that  is  expected  by  the  JMSOutput  node.  

If  you  are  propagating  JMS  messages  and  creating  a message  flow  to  use  as a 

subflow,  you  must  use  an  instance  of  the  JMSOutput  node  as  the  last  node  in  order  

to  create  an  out  terminal  for  the  subflow.  

Making the JMS Provider client available to the JMS Nodes 

For  distributed  systems,  copy  the  java  .jar  files  and  any  native  libraries  for  the  JMS  

provider  client  into  the  broker  shared-classes  directory.  For  example,  on  Windows,  

C:\Documents  and  Settings\All  Users\Application  Data\IBM\MQSI\shared-
classes.  This  ensures  that  the  java  class  path  for  the  JMS  nodes  is set  correctly.  

For  z/OS,  there  is  no  shared-classes  directory.  Instead,  perform  this  procedure:  

1.   Specify  each  JMS  provider  java  .jar  file  in  the  class  path  in  the  BIPPROF  

member  of  the  broker’s  Partitioned  Data  Set  (PDS).  

2.   Update  the  LIBPATH  with  any  native  libraries.  

3.   Submit  the  BIPGEN  JCL  job  to update  the  broker  ENVFILE.

Using the Message Destination Mode 

The  JMSOutput  node  acts  as  a message  producer  and  supports  the  following  

message  scenarios:  

v   “Sending  a datagram  message”  

v   “Sending  a reply  message”  

v   “Sending  a request  message”  on  page  126

Sending a datagram message 

A  datagram  is a self-contained,  independent  entity  of  data  that  carries  sufficient  

information  to  be  routed  from  the  source  to  the  destination  computer  without  

reliance  on  earlier  exchanges  between  the  source  and  destination  computer  and  the  

transporting  network.  The  following  instructions  describe  how  to  send  a datagram  

message:  

1.   In  the  Request  folder,  set  the  Destination  Mode  attribute  to  Destination  Name.  

2.   Set  the  message  destination  depending  on  the  message  model  that  is  being  

used.  Set  one  of  the  following  attributes  to  a valid  JNDI  administered  object  

name:  

v   The  Publication  Topic in  the  Pub/Sub  folder  

v   The  Destination  Queue  in  the  Point  to Point  folder
3.   Set  the  value  of the  Reply  To Destination  attribute  under  the  Request  folder  to  

blank.

The  node  resolves  the  name  of  the  JNDI  administered  object,  which  is  supplied  in  

either  Publication  Topic or  Destination  Queue,  and  sends  the  message  to that  JMS  

Destination.  

Sending a reply message 

In  some  cases  a message  producer  might  want  the  consumer  to reply  to the  

message.  In  this  case,  the  JMSOutput  message  can  treat  the  outgoing  message  as  a 

 

Message flows 125

|

|
|

|

|

|

|

|
|
|
|
|

|

|
|
|

|

|

|
|

|
|
|

|

|
|



reply,  and  route  it according  to the  value  obtained  from  the  JMSReplyTo  property  

from  the  request  message.  The  following  instructions  describe  how  to send  a reply  

message:  

1.   In  the  Request  folder,  set  the  Destination  Mode  attribute  to Reply  To 

Destination.  

2.   You can  modify  the  value  of the  JMSReplyTo  property  in  the  MbMessage  for  

instances  using  a Compute  node  or  a JavaCompute  node.  This  allows  dynamic  

routing  of  messages  from  the  JMSOutput  node.

The  node  sends  the  message  to  the  JMS  Destination  name  that  is set  in  the  

JMSReplyTo  field  of  the  MbMessage  Tree.  

The  JMSReplyTo  value  in  the  MbMessage  Tree represents  the  name  of  the  JMS  

Destination  that  is resolved  from  JNDI.  For  example:  

queue://QM_mn2/myJMSQueue4  

In  this  case,  the  value  is the  JMS  provider  specific  representation  of  a JMS  

Destination  for  the  WMQSeries  JMS  Provider.  

If you  do  not  want  to  specify  a resolved  JMS  destination  name,  the  JMSOutput  

node  can  also  accept  a JNDI  administered  object  name  in  theJMSReplyTo  field.  

However,  it is  necessary  to  resolve  an  administered  object  name  through  JNDI  

before  the  node  can  route  the  message  to  the  underlying  JMS  Destination.  In  this  

case,  the  value  in  the  JMSReplyTo  field  should  be  prefixed  with  the  string:  jndi:\\;  

for  example:  

jndi:\\jmsQ4  

where  jmsQ4  is  the  name  of the  JNDI  administered  object.  

There  is  a slight  performance  overhead  using  this  method  because  of the  need  to  

look  up  the  administered  object  in  JNDI.  

Sending a request message 

The  JMSOutput  node  can  send  a message  to a JMS  Destination  with  the  

expectation  of  a response  from  the  message  consumer  that  processes  the  request.  

The  following  instructions  describe  how  to  send  a request  message:  

1.   Set  the  message  destination  depending  on  the  message  model  that  is being  

used.  Set  one  of  the  following  attributes  to  a valid  JNDI  administered  object  

name:  

v   The  Publication  Topic in  the  Pub/Sub  folder  

v   The  Destination  Queue  in the  Point  to Point  folder
2.   In  the  Request  folder,  set  the  Destination  Mode  attribute  to Destination  name.  

3.   The  JMSReplyTo  destination  in  the  outgoing  message  can  be  derived  from  the  

JMSReplyTo  field  of the  MbMessage  Tree passed  to  the  node.  Alternatively,  this  

value  can  be  overridden  by  a JNDI  Administered  object  name  set  in  the  Reply  

To Destination  node  attribute.  

If  the  intention  is to  allow  the  JMSOutput  node  to  set  the  JMSReplyTo  property  

dynamically  in  the  outgoing  message,  leave  the  Reply  To Destination  attribute  

blank,  and  set  the  JMSReplyTo  value  in  the  MbMessage  using  a Compute  node  

or  a JavaCompute  node.

The  node  looks  first  for  a value  in  the  JMSReplyTo  field  of  the  MbMessage.  If it  

finds  it,  it passes  this  value  into  the  JMSReplyTo  field  of  the  outgoing  message.  

However,  if the  Reply  To Name  field  of the  Request  folder  has  been  specified,  this  

 

126 Message  Flows

|
|
|

|
|

|
|
|

|
|

|
|

|

|
|

|
|
|
|
|
|

|

|

|
|

|

|
|
|

|
|
|

|

|

|

|
|
|
|

|
|
|
|

|
|
|



value  overrides  anything  that  is set  previously  in the  JMSReplyTo  property  of  the  

outgoing  message,  after  first  resolving  the  name  of  the  JNDI  administered  object  . 

The  node  resolves  the  name  of  the  JNDI  administered  object  that  is supplied  in  

either  Publication  Topic or  Destination  Queue,  and  sends  the  message  to that  JMS  

Destination.  

Configuring the JMSOutput node 

When  you  have  put  an  instance  of  the  JMSOutput  node  into  a message  flow, you  

can  configure  it by  right-clicking  the  node  in  the  editor  view  and  clicking  

Properties. The  node’s  basic  properties  are  displayed  in  the  properties  dialog.  

All  mandatory  properties  that  do  not  have  a default  value  defined  are  marked  

with  an  asterisk  on  the  properties  dialog  box.  

Configure  the  JMSOutput  node  as  follows:  

1.   Select  Basic  in  the  properties  dialog  navigator  and  complete  the  following  

properties:  

v   Enter  an  Initial  Context  Factory  value.  A JMS  application  uses  the  initial  

context  to  obtain  and  look  up  the  JNDI  administered  objects  for  the  JMS  

provider.  The  default  value  is 

com.sun.jndi.fscontext.RefFSContextFactory, which  defines  the  file-based  

initial  context  factory  for  the  WebSphere  MQ  JMS  provider.  

To identify  the  name  of  the  Initial  Context  Factory  for  the  JMS  provider,  refer  

to  the  JMS  provider  documentation.  

v   Enter  a value  for  the  Location  JNDI  Bindings.  This  value  specifies  either  the  

file  system  path  or  the  LDAP  location  for  the  bindings  file.  The  bindings  file 

contains  definitions  for  the  JNDI  administered  objects  that  are  used  by  the  

JMSOutput  node.  

When  you  enter  a value  for  Location  JNDI  Bindings,  ensure  that  it is 

compliant  with  the  following  instructions:  

–   Construct  the  bindings  file  before  you  deploy  a message  flow  that  

contains  a JMSOutput  node.  

–   Do  not  include  the  filename  of  the  bindings  file  in  this  field.  

–   If  you  have  specified  an  LDAP  location  that  requires  authentication,  you  

must  configure  separately  both  the  LDAP  principal  (userid)  and  LDAP  

credentials  (password).  These  values  are  configured  at broker  level.  For  

information  on  configuring  these  values,  refer  to  the  mqsicreatebroker  

and  mqsichangebroker  commands.  

–   The  string  value  should  include  the  leading  keyword,  which  is one  of the  

following:  file:/  , iiop:/, or  ldap:/. 

For  information  about  constructing  the  JNDI  administered  objects  bindings  

file,  refer  to  the  documentation  that  is supplied  with  the  JMS  provider.  

v   Enter  a Connection  Factory  Name. The  connection  factory  name  is used  by  the  

JMSOutput  node  to create  a connection  to the  JMS  provider.  This  name  must  

already  exist  in  the  bindings  file.
2.   If the  JMSOuput  node  is to  be  used  to publish  a topic,  select  Pub/Sub  in  the  

properties  dialog  navigator.  

v   Enter  the  name  of  the  Publisher  Topic. 

–   If  this  property  is configured,  the  node  operates  only  in  the  

publish/subscribe  message  domain.  

 

Message flows 127

|
|

|
|
|

|
|
|
|

|
|

|
|

|

|
|
|
|
|

|
|

|
|

|
|

|

|
|



–   This  property  is mutually  exclusive  with  Destination  Queue  in  the  Point  to  

Point  properties  section.  

–   The  Publisher  Topic  name  must  conform  to  the  standards  of the  JMS  

provider  that  is being  used  by  the  node.
3.   If  the  JMSOutput  node  is to  be  used  to  send  point  to point  messages  then  select  

Point  to Point  in  the  properties  dialog  navigator.  

v   Enter  the  Destination  Queue  name  for  the  JMS  queue  name  that  is listed  in the  

bindings  file.
4.   Select  Request  in the  properties  dialog  navigator  and  complete  the  following  

properties:  

v   Select  an  option  from  the  Destination  Mode  drop-down  list.  

–   The  default  value  is Destination  Name. It  this  is selected,  the  message  is 

treated  as  a request  of a datagram  and  it targets  either  the  Publication  Topic  

or  the  Destination  Queue  . 

–   If  the  message  is to be  treated  as a reply,  select  Reply  Destination  Name. 

The  JMS  provider  is supplied  with  the  JMSReplyTo  value  from  the  

JMSTransport_Header_values  section  of the  message  tree.
v    Enter  a value  for  Reply  To  Destination. You can  enter  a JMS  destination,  which  

can  be  either  a subscription  queue  or  a destination  topic.  The  Reply  To  

Destination  is  the  name  of  the  JMS  destination  to which  the  receiving  

application  should  send  a reply  message.  For  a reply  message  to  be  returned  

to  this  JMS  destination,  the  JMS  destination  name  must  be  known  to the  

domain  of  the  JMS  provider  that  is used  by  the  receiving  client.  

The  default  value  is blank,  in  which  case  the  JMS  output  message  can  be  

regarded  as a datagram.  If the  field  is blank,  the  JMSOutput  node  does  not  

expect  a reply  from  the  receiving  JMS  client.
5.   Select  Advanced  in  the  properties  dialog  navigator.  

v   If  a New  Correlation  ID  is required,  select  the  check  box.  

v   To define  the  transactional  characteristics  of  how  the  message  is handled,  

select  the  Transaction  Mode: 

–   Select  none  if the  outgoing  message  is to be  treated  as  non  persistent.  If 

you  select  this  value,  the  message  is sent  using  a non  transacted  JMS  

Session  that  is  created  using  the  Session.AUTO_ACKNOWLEDGE  flag.  

–   Select  local  if the  input  node  that  received  the  message  should  coordinate  

the  commit  or  roll  back  of  JMS  messages  that  have  been  sent  by  the  

JMSOutput  node,  along  with  any  other  resources  such  as  DB2  or  

WebSphere  MQ  that  perform  work  within  the  message  flow. If you  select  

this  value,  the  node  uses  a transacted  JMS  Session.  

–   Select  global  if the  JMSOutput  node  should  participate  in  a global  message  

flow  transaction  that  is managed  by  the  broker’s  external  syncpoint  

coordinator.  The  syncpoint  coordinator  is the  broker’s  queue  manager  on  

distributed  platforms  and  RRS  (Resource  Recovery  Services)  on  z/OS.  If 

you  select  this  value,  any  messages  received  by  the  node  are  globally  

coordinated  using  an  XA  JMS  Session.
v    You can  set  the  persistence  of  the  outgoing  JMS  message  by  using  the  

Delivery  Mode  property.  Select  and  option  from  the  drop-down  list:  

–   Non  Persistent  to indicate  to  the  JMS  provider  that  the  message  should  be  

treated  as  non  persistent.  

–   Persistent  to  mark  messages  as  persistent  to  the  JMS  provider  and  that  

they  should  be  preserved  until  successfully  delivered  to  a receiving  JMS  

client  application.

 

128 Message  Flows

|
|

|
|



v   Enter  a value  for  Message  Expiration  to  request  that  the  JMS  provider  keeps  

the  output  JMS  message  for  a specified  time.  

Enter  a value  in  milliseconds  to  specify  how  long  the  message  will  be  kept  

by  the  JMS  provider.  The  default  value  0 is used  to  indicate  that  the  message  

should  not  expire.  

v   To assign  a relative  importance  to the  message,  select  an  option  from  the  

Message  Priority  drop-down  list.  This  value  can  be  used  for  message  selection  

by  a receiving  JMS  client  application  or  a JMSOutput  node.  

Enter  a value,  where  valid  values  for  message  priority  are  from  0 (lowest)  to  

9 (highest).  The  default  value  is 4, which  indicates  medium  priority.  Priorities  

in  the  range  0 to  4 relate  to normal  delivery.  Priorities  in  the  range  5 to  9 

relate  to  graduations  of  expedited  delivery.
6.   Select  Description  in  the  properties  dialog  navigator  to  enter  a short  description,  

a long  description,  or  both.  

7.   Click  Apply  to  make  the  changes  to the  JMSOutput  node  without  closing  the  

properties  dialog.  Click  OK  to  apply  the  changes  and  close  the  properties  

dialog.  

Click  Cancel  to  close  the  dialog  box  and  discard  all  the  changes  that  you  have  

made  to  the  properties.

Connecting  the  terminals:    

Connect  the  in  terminal  of the  JMSOutput  node  to  the  node  from  which  outbound  

messages  are  routed.  

Connect  the  out  terminal  of the  JMSOutput  node  to another  node  in  the  message  

flow  if you  want  to  process  the  message  further,  to  process  errors,  or  to send  the  

message  to  an  additional  destination.  

Configuring  for  coordinated  transactions:    

When  you  include  a JMSOutput  node  in  a message  flow, the  value  that  you  set  for  

Transaction  Mode  defines  whether  messages  are  sent  under  syncpoint.  

v   If  you  set  the  Transaction  Mode  to  global, the  message  is sent  under  external  

syncpoint  coordination;  that  is,  within  a WebSphere  MQ  unit  of  work.  Any  

messages  subsequently  sent  by  an  output  node  in  the  same  instance  of  the  

message  flow  are  put  under  syncpoint,  unless  the  output  node  has  explicitly  

overridden  this.  

v   If  you  set  the  Transaction  Mode  to  local, the  message  is sent  under  the  local  

syncpoint  control  of  the  JMSOutput  node.  Any  messages  subsequently  sent  by 

an  output  node  in  the  flow  are  not  put  under  local  syncpoint,  unless  an  

individual  output  node  has  specified  that  the  message  must  be  put  under  local  

syncpoint.  

v   If  you  set  the  Transaction  Mode  to  none, the  message  is not  sent  under  syncpoint.  

Any  messages  subsequently  sent  by  an  output  node  in  the  flow  are  not  put  

under  syncpoint,  unless  an  individual  output  node  has  specified  that  the  

message  must  be  put  under  syncpoint.

The  JMS  provider  can  supply  additional  jar  files  that  are  required  for  transactional  

support.  Refer  to  the  JMS  provider  documentation.  For  instance,  on  distributed  

systems,  the  WebSphere  MQ  JMS  provider  supplies  an  extra  jar  file  

com.ibm,mqetclient.jar, which  must  also  be  added  to the  broker  shared_classes  

directory.  Refer  to  Making  the  JMS  Provider  client  available  to  the  JMS  Nodes  in  

this  topic.  

 

Message flows 129

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|



When  messages  are  to  be  received  under  external  syncpoint,  additional  

configuration  steps  are  required.  These  steps  need  only  be  applied  the  first  time  

that  a JMSOutput  or  JMSInput  is deployed  to the  broker  for  a particular  JMS  

provider:  

v   On  distributed  systems,  the  external  syncpoint  coordinator  for  the  broker  is 

WebSphere  MQ.  Before  you  deploy  a message  flow  where  the  Transaction  

Coordination  is  set  to  Global, modify  the  queue  manager  .ini  file  to include  extra  

definitions  for  each  JMS  provider  Resource  Manager  that  participates  in  globally  

coordinated  transactions.  

–   On  Windows:  

-   If  you  have  WebSphere  MQ  Version  5.0  installed,  start  WebSphere  MQ  

Services  and  right-click  the  queue  manager  name.  Select  Properties  and  

click  the  Resource  properties  tab.  

-   If  you  have  WebSphere  MQ  Version  6.0  installed,  start  WebSphere  MQ  

Explorer  and  right-click  the  queue  manager  name  in  the  left  pane.  Select  

Properties  and  select  XA  resource  managers  in  the  left  pane.  Refer  to  the  

WebSphere  MQ  System  Administration  Guide  for  more  information.  

Set  the  SwitchFile  property  to  the  following  value:  

install_dir/bin/ JMSSwitch.dll  

XAOpenString=Initial Context,location  JNDI,Optional_parms  

ThreadOfControl=THREAD  

–   On  Linux  and  UNIX  systems,  add  a stanza  to the  queue  manager  ini  file  for  

each  JMS  provider.  Refer  to the  WebSphere  MQ  System  Administration  Guide  for  

more  information.  

For  example:  

XAResourceManager:  

Name=Jms_Provider_Name  

SwitchFile=/install_dir/bin/ JMSSwitch.so  

XAOpenString=Initial  Context,location  JNDI,Optional_parms  

ThreadOfControl=THREAD  

Where  

Name  is an  installation  defined  name  that  identifies  a JMS  provider  Resource  

Manager.  

SwitchFile  is the  file  system  path  to  the  JMSSwitch  library  that  is supplied  in  

the  bin  directory  of the  broker.  

The  values  for  XAOpenString  are  as  follows:  

-   Initial  Context  is  the  value  that  is set  in  the  JMSInput  node  basic  property  

Initial  Context  Factory. 

-   location  JNDI  is the  value  that  is set  in the  JMSInput  node  basic  property  

Location  of  JNDI. This  value  should  include  the  leading  keyword  file:/, 

iiop:/  or  ldap:/  

The  following  parameters  are  optional:  

-   LDAP  Principal,  which  matches  the  value  that  is set  for  the  broker  by  using  

the  mqsicreatebroker  or  mqsichangebroker  commands.  

-   LDAP  Credentials, which  matches  the  value  that  is set  for  the  broker  by  

using  the  mqsicreatebroker  or  mqsichangebroker  commands.  

-   Recovery  Connection  Factory  Name, which  is the  JNDI  administered  

connection  factory  that  is defined  in  the  bindings  file.  If a value  is not  

specified,  a default  value  for  recoverXAQCF  must  be  added  to the  bindings  

file.  In  either  case,  the  Recovery  Connection  Factory  should  be  defined  as  

an  XA  Queue  Connection  Factory  for  the  JMS  provider  that  is associated  

with  the  Initial  Context  Factory.

 

130 Message  Flows

|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|

|

|
|
|

|
|
|

|

|
|
|
|
|

|

|
|

|
|

|

|
|

|
|
|

|

|
|

|
|

|
|
|
|
|
|



The  optional  parameters  are  comma  separated  and  are  positional.  Therefore,  

any  parameters  that  are  missing  must  be  represented  by  a comma.  

1.   Update  the  Java  CLASSPATH  environment  variable  for  the  broker’s  queue  

manager  to  include  a reference  to  xarecovery.jar.  For  example,  

<Broker  Installation  Path>/classes/xarecovery.jar  

2.   Update  the  Java  PATH environment  variable  for  the  broker’s  queue  

manager  to  point  to  the  bin  directory,  which  is where  the  switch  file  is 

located.  For  example,  

<Broker  Installation  Path>/bin  

XA  cannot  use  the  same  queue  manager  for  both  the  broker  and  the  provider  

until  WebSphere  MQ  Version  5.3,  CSD12  and  WebSphere  MQ  Version  6.0  Fix  

Pack  1.  

–   On  z/OS,  the  external  syncpoint  manager  is Resource  Recovery  Services  

(RRS).  The  only  JMS  provider  that  is  supported  on  z/OS  is WebSphere  MQ  

JMS.  The  only  Transport  option  that  is supported  for  WebSphere  MQ  JMS  on  

z/OS  is  the  Bind  option.  

Syncpoint  control  for  the  JMS  provider  is managed  with  RRS  syncpoint  

coordination  of  the  queue  manager  of  the  broker.  You do  not  need  to  modify  

the  .ini  file.

Terminals and properties 

The  terminals  of  the  JMSOutput  node  are  described  in the  following  table.  

 Terminal  Description  

Failure  The  output  terminal  to which  the  message  is routed  if an error  occurs.  Even  if the 

Validation  property  is set,  messages  propagated  to  this  terminal  are  not  validated.  

Out  The  output  terminal  to which  the  message  is routed  if it is successfully  retrieved  from  

the  WebSphere  MQ  queue.  

Catch  The  output  terminal  to which  the  message  is routed  if an exception  is thrown  

downstream  and  caught  by this  node.
  

The  following  tables  describe  the  node  properties;  the  column  headed  M  indicates  

whether  the  property  is mandatory  (marked  with  an  asterisk  on  the  properties  

dialog  if you  must  enter  a value  when  no  default  is defined),  the  column  headed  C 

indicates  whether  the  property  is configurable  (you  can  change  the  value  when  you  

add  the  message  flow  to  the  bar  file  to deploy  it).  

The  Basic  properties  of  the  JMSOutput  node  are  described  in  the  following  table.  

 Property  M C Default  Description  

Initial  Context  Factory  Yes com.sun.jndi.fscontext.RefFSContextFactory  This  is the  starting  point  for  a JNDI  name  space.  A 

JMS  application  uses  the  initial  context  to obtain  and  

look  up the connection  factory  and  queue  or topic  

objects  for the  JMS  provider.  

The  default  value  is that  which  is used  when  

WebSphere  MQ  Java  is used  as the  JMS  provider.  

Location  JNDI  Bindings  No  The  system  path  or the  LDAP  location  for  the  bindings  

file.  

Connection  Factory  

Name  

No  The  name  of the  connection  factory  that  is used  by the  

JMSOutput  node  to create  a connection  to the JMS  

provider.

 

Message flows 131

|
|

|
|

|

|
|
|

|

|
|
|

|
|
|
|

|
|
|



The  Advanced  properties  of the  JMSOutput  node  are  described  in  the  following  

table.  

 Property  M C Default  Description  

New  Correlation  ID No  This  property  is selected  if a New  Correlation  ID is 

required.  

Transaction  Mode  Yes No  None  This  property  is to determine  whether  the  incoming  

message  is received  under  syncpoint.  Valid values  are  

None, local, and  global. 

Delivery  Mode  No  Non  

Persistent  

Message  selector  that  will  filter  messages  according  to 

the  message  delivery  mode.  

Message  Expiration  No  0 This  property  value  is to request  that  the JMS  provider  

keeps  the  output  JMS  message  for  a specified  time.  

Values are  in milliseconds  and  the default  value  0 is 

used  to indicate  that  the  message  should  not expire.  

Message  Priority  No  4 This  property  value  assigns  relative  importance  to the 

message.  This  value  can  be used  for  message  selection  

by a receiving  JMS  client  application  or a JMSOutput  

node.
  

The  Description  properties  of  the  JMSOutput  node  are  described  in  the  following  

table.  

 Property  M C Default  Description  

Short  Description  No  No    A brief  description  of the  node.  

Long  Description  No  No    Text that  describes  the purpose  of the  node  in the  

message  flow.
  

MQeInput node 

Attention:   The  use  of message  flows  that  contain  MQeInput  and  MQeOutput  

nodes  in WebSphere  Message  Broker  Version  6.0  is  deprecated.  The  behavior  that  is 

described  here  is intended  only  for  when  you  are  deploying  from  Version  6.0  to  a 

previous  version,  and  to  provide  a route  for  migration.  Redesign  your  flows  to  

remove  the  MQe  nodes  and  replace  them  with  MQ  nodes  that  are  configured  to  

your  own  specifications  and  coordinated  with  your  MQe  Gateway  configuration.  

For  more  details  see  Migrating  a message  flow  that  contains  WebSphere  MQ  

Everyplace  nodes.  

This  topic  contains  the  following  sections:  

v   “Purpose”  

v   “Using  the  MQeInput  node  in  a message  flow”  on  page  133  

v   “WebSphere  MQ  Everyplace  documentation”  on  page  134  

v   “Configuring  the  MQeInput  node”  on  page  134  

v   “Terminals  and  properties”  on  page  137

Purpose 

Use  the  MQeInput  node  to  receive  messages  from  clients  that  connect  to  the  broker  

using  the  WebSphere  MQ  Mobile  Transport  protocol.  

 

132 Message  Flows



The  MQeInput  node  receives  messages  put  to a message  flow  from  a specified  

bridge  queue  on  the  broker’s  WebSphere  MQ  Everyplace  queue  manager.  The  node  

also  establishes  the  processing  environment  for  the  messages.  You must  create  and  

configure  the  WebSphere  MQ  Everyplace  queue  manager  before  you  deploy  a 

message  flow  containing  this  node.  

Message  flows  that  handle  messages  received  across  WebSphere  MQ  Everyplace  

connections  must  always  start  with  an  MQeInput  node.  You can  set  the  MQeInput  

node’s  properties  to  control  the  way  that  messages  are  received.  For  example,  you  

can  indicate  that  a message  is to be  processed  under  transaction  control.  

When  you  deploy  message  flows  containing  WebSphere  MQ  Everyplace  nodes  to  a 

broker,  you  must  deploy  them  to  a single  execution  group,  regardless  of  the  

number  of  message  flows.  The  WebSphere  MQ  Everyplace  nodes  in  the  flows  must  

all  specify  the  same  WebSphere  MQ  Everyplace  queue  manager  name.  You get  an  

error  on  deploy  if you  do  not  meet  this  restriction.  

If  you  include  an  output  node  in  a message  flow  that  starts  with  an  MQeInput  

node,  it can  be  any  of  the  supported  output  nodes,  including  user-defined  output  

nodes;  you  do  not  have  to  include  an  MQeOutput  node.  You can  create  a message  

flow  that  receives  messages  from  WebSphere  MQ  Everyplace  clients  and  generates  

messages  for  clients  that  use  any  of the  supported  transports  to  connect  to the  

broker,  because  you  can  configure  the  message  flow  to  request  the  broker  to  

provide  any  conversion  that  is necessary.  

WebSphere  MQ  Everyplace  Version  1.2.6  is  used  by  WebSphere  Event  Broker.  This  

is  compatible  with  later  versions  of  WebSphere  MQ  Everyplace.  Clients  using  later  

versions  of WebSphere  MQ  Everyplace,  for  example  Version  2.0,  work  correctly  

when  connected  to  this  node,  although  additional  functionality  not  supported  in 

Version  1.2.6  (for  example  JMS  support)  does  not  work.  

Queue  managers  are  not  interchangeable  between  different  versions  of WebSphere  

MQ  Everyplace.  Nodes  must  use  a queue  manager  created  using  Version  1.2.6.  

Similarly,  the  client  must  use  its  level  of  the  code  when  creating  a queue  manager.  

You cannot  use  MQeInput  nodes  in  message  flows  that  you  deploy  to  z/OS  

systems.  

If  you  create  a message  flow  to use  as  a subflow,  you  cannot  use  a standard  input  

node:  you  must  use  an  instance  of  the  Input  node  as  the  first  node  to create  an  in  

terminal  for  the  subflow.  

If  your  message  flow  does  not  receive  messages  across  WebSphere  MQ  

connections,  you  can  choose  one  of  these  other  input  nodes.  

The  MQeInput  node  is represented  in  the  workbench  by  the  following  icon:  

   

Using the MQeInput node in a message flow 

For  an  example  of how  this  node  can  be  used,  consider  a farmer  who  checks  his  

fields  to  see  how  well  they  are  irrigated.  He  is carrying  a PDA  device  with  

WebSphere  MQ  Everyplace  installed.  He  sees  an  area  of  field  requiring  water,  so,  

 

Message flows 133



using  his  PDA  and  a Global  Satellite  Navigation  link,  he  sends  a message  to  an  

MQeInput  node.  A message  is published  by  a Publication  node  so  that  a remote  

SCADA  device  can  pick  up  the  message  and  trigger  the  irrigation  sprinklers.  The  

farmer  can  see  the  water  delivered  to the  field  minutes  after  sending  his  message.  

WebSphere MQ Everyplace documentation 

You can  find  further  information  about  WebSphere  MQ  Everyplace,  and  the  

properties  of  the  node,  in  the  WebSphere  MQ  Everyplace  documentation  on  the  

WebSphere  MQ  Web page.  

Configuring the MQeInput node 

When  you  have  put  an  instance  of the  MQeInput  node  into  a message  flow, you  

can  configure  it.  Right-click  the  node  in  the  editor  view  and  click  Properties. The  

node’s  default  properties  are  displayed  in  the  properties  dialog.  

All  mandatory  properties  for  which  you  must  enter  a value  (those  that  do  not  have  

a default  value  defined)  are  marked  with  an  asterisk  on  the  properties  dialog.  

Configure  the  MQeInput  node  as  follows:  

1.   Select  General  in  the  properties  dialog  navigator  and  complete  the  following  

properties:  

a.   Enter  the  Queue  Name  of the  WebSphere  MQ  Everyplace  bridge  queue  from  

which  this  input  node  retrieves  messages.  If  the  queue  does  not  exist,  it is 

created  for  you  when  the  message  flow  is deployed  to  the  broker.  

b.   Set  the  level  of  Trace  that  you  want  for  this  node.  If trace  is active,  the  trace  

information  is recorded  into  the  file  identified  by  Trace  Filename  (described  

below).  Choose  one  of:  

v   None. This  is the  default  setting.  No  trace  output  is produced,  unless  a 

fatal  error  occurs.  

v   Standard. Minimal  trace  output  is generated  to reflect  the  overall  

operations  of the  node.  

v   Debug. Trace  information  is recorded  at a level  that  helps  you  to  debug  

WebSphere  MQ  Everyplace  programs.  

v   Full. All  available  debug  information  is recorded  to provide  a full  record  

of  the  node  activities.  

If  you  set  the  trace  level  to Debug  or  Full, you  will  impact  the  performance  

of  WebSphere  MQ  Everyplace,  and  significant  trace  files  can  be  generated.  

Use  these  options  for  short  periods  only.  

c.   In  Trace  Filename,  specify  the  name  of  the  file  to which  the  trace  information  

is  to  be  written.  The  directory  structure  in  which  the  file  is specified  must  

already  exist:  it cannot  be  created  during  operation.  

d.   Select  the  Transaction  Mode  to  define  the  transactional  characteristics  of  how  

this  message  is handled:  

v   If  you  select  Automatic, the  incoming  message  is received  under  

syncpoint  if it is marked  persistent;  otherwise  it is not.  The  

transactionality  of  any  derived  messages  subsequently  sent  by  an  output  

node  is  determined  by  the  incoming  persistence  property,  unless  the  

output  node  has  explicitly  overridden  transactionality.  

v   If  you  select  Yes, the  incoming  message  is received  under  syncpoint.  Any  

derived  messages  subsequently  sent  by  an  output  node  in the  same  

 

134 Message  Flows

http://www.ibm.com/software/integration/wmq


instance  of  the  message  flow  are  sent  transactionally,  unless  the  output  

node  has  explicitly  overridden  transactionality.  

v   If  you  select  No,  the  incoming  message  is  not  received  under  syncpoint.  

Any  derived  messages  subsequently  sent  by  an  output  node  in  the  flow  

are  sent  non-transactionally,  unless  the  output  node  has  specified  that  the  

message  must  be  put  under  syncpoint.
e.   The  Use  Config  File  check  box  is not  selected  by  default:  values  for  all  

properties  for  the  MQeInput  node  are  taken  from  the  properties  dialog.  

If  you  select  the  check  box,  the  definition  of all  properties  is extracted  from  

the  file  identified  by  Config  Filename  (described  below)  with  the  exception  of  

the  following:  

v   The  Queue  Name  and  Config  Filename  general  properties  

v   All  default  properties

Use  a configuration  file  only  to  specify  additional  properties  for  the  node.  If 

the  properties  on  the  properties  dialog  are  sufficient  for  your  needs,  do  not  

select  the  Use  Config  File  check  box.  

f.   If  you  have  selected  the  Use  Config  File  check  box,  enter  the  full  path  and  

name  of  the  configuration  file  for  WebSphere  MQ  Everyplace  in  Config  

Filename.  This  file  must  be  installed  on  the  system  that  supports  every  

broker  to  which  this  message  flow  is  deployed.  If the  file  does  not  exist,  an  

error  is  detected  when  you  deploy  the  message  flow. The  default  file  name  

is MQeConfig.ini.  

g.   In  Queue  Manager  Name, specify  the  name  of the  WebSphere  MQ  Everyplace  

queue  manager.  This  is not  related  to  the  queue  manager  of  the  broker  to 

which  you  deploy  the  message  flow  containing  this  node.  

Only  one  WebSphere  MQ  Everyplace  queue  manager  can  be  supported.  

Only  one  execution  group  can  contain  MQeInput  or  MQeOutput  nodes.  

This  property  must  therefore  be  set  to the  same  value  in  every  MQeInput  

node  included  in  every  message  flow  that  you  deploy  to  the  same  broker.
2.   Select  Channel  in  the  properties  dialog  navigator  and  set  the  maximum  number  

of  channels  supported  by  WebSphere  MQ  Everyplace  in  Max  Channels.  The  

default  is  zero,  which  means  that  there  is no  limit.  

3.   Select  Registry  in the  properties  dialog  navigator  and  complete  the  following  

properties:  

a.   Select  the  type  of registry  from  the  drop  down  list  in the  Registry  Type 

property.  You can  choose  one  of the  following:  

v   File  Registry. Registry  and  security  information  is provided  in  the  

Directory  specified  below.  

v   Private  Registry. You create  the  queue  manager  manually  within  

WebSphere  MQ  Everyplace,  specifying  the  security  parameters  that  you  

require.
b.   In  Directory, specify  the  directory  in  which  the  registry  file  is  located.  This  is 

valid  only  if you  have  selected  a Registry  Type of File  Registry. 

c.   If  you  have  selected  a Registry  Type of Private  Registry, complete  the  

following  properties:  

v   Specify  a PIN  for  the  associated  queue  manager.  For  further  details,  refer  

to  the  WebSphere  MQ  Everyplace  documentation.  

v   Specify  a Certificate  Request  PIN  for  authentication  requests.  For  further  

details,  refer  to the  WebSphere  MQ  Everyplace  documentation.  

 

Message flows 135



v   Provide  a Keyring  Password  to  be  used  as  a seed  for  the  generation  of  

crypto  keys.  For  further  details,  refer  to  the  WebSphere  MQ  Everyplace  

documentation.  

v   In  Certificate  Host, specify  the  name  of  the  certificate  server  that  

WebSphere  MQ  Everyplace  uses  for  authentication.  For  further  details,  

refer  to  the  WebSphere  MQ  Everyplace  documentation.  

v   In  Certificate  Port, specify  the  number  of the  port  for  the  certificate  server  

that  WebSphere  MQ  Everyplace  uses  for  authentication.  For  further  

details,  refer  to  the  WebSphere  MQ  Everyplace  documentation.
4.   Select  Listener  in  the  properties  dialog  navigator  and  complete  the  following  

properties  that  define  the  connection  type  for  WebSphere  MQ  Everyplace:  

a.   In  Listener  Type, select  the  adapter  type  that  you  want  to  use  from  the  drop  

down  list.  The  default  is Http; you  can  also  select  Length  or  History.  For  

further  details,  refer  to  the  WebSphere  MQ  Everyplace  documentation.  

b.   In  Hostname, specify  the  hostname  of the  server.  Set  this  to  the  special  value  

localhost  or  to the  TCP/IP  address  127.0.0.1  (the  default  value),  both  of  

which  resolve  correctly  to the  hostname  of  the  server  to  which  the  message  

flow  is  deployed.  You can  also  use  any  valid  hostname  or  TCP/IP  address  

in  your  network,  but  you  must  use  a different  message  flow  for  each  broker  

to  which  you  deploy  it, or  configure  this  property  at deploy  time.  

c.   In  Port, specify  the  port  number  on  which  WebSphere  MQ  Everyplace  is 

listening.  If  more  than  one  MQeInput  node  is included  in  a message  flow  

deployed  to  a single  broker,  each  MQeInput  node  must  specify  a different  

number  for  this  property.  You must  also  ensure  that  the  number  that  you  

specify  does  not  conflict  with  other  listeners  on  the  broker  system,  for  

example,  with  WebSphere  MQ.  The  default  value  is 8081. 

d.   In  Time  Interval, specify  the  timeout  value  in  seconds  before  idle  channels  

are  timed  out.  The  default  value  is 300  seconds.  

Because  channels  are  persistent  logical  entities  that  last  longer  than  a single  

queue  manager  request,  and  can  survive  network  breakages,  it might  be  

necessary  to  time  out  channels  that  have  been  inactive  for  a period  of time.
5.   Select  Description  in  the  properties  dialog  navigator  to enter  a short  

description,  a long  description,  or  both.  

6.   Click  Apply  to  make  the  changes  to  the  MQeInput  node  without  closing  the  

properties  dialog.  Click  OK  to  apply  the  changes  and  close  the  properties  

dialog.  

Click  Cancel  to  close  the  dialog  and  discard  all  the  changes  that  you  have  

made  to  the  properties.

Connecting  the  terminals:    

MQeInput  routes  each  message  that  it retrieves  successfully  to the  out  terminal.  If 

this  fails,  the  message  is retried.  If  the  retry  timeout  expires  (as  defined  by  the  

BackoutThreshold  attribute  of  the  input  queue),  the  message  is routed  to the  failure  

terminal;  you  can  connect  nodes  to this  terminal  to  handle  this  condition.  If  you  

have  not  connected  the  failure  terminal,  the  message  is written  to  the  backout  

queue.  

If the  message  is  caught  by  this  node  after  an  exception  has  been  thrown  further  

on  in  the  message  flow, the  message  is routed  to  the  catch  terminal.  If  you  have  

not  connected  the  catch  terminal,  the  message  loops  continually  through  the  node  

until  the  problem  is  resolved.  You must  define  a backout  queue  or  a dead-letter  

queue  (DLQ)  to  prevent  the  message  looping  continuously  through  the  node.  

 

136 Message  Flows



Configuring  for  coordinated  transactions:    

When  you  include  an  MQeInput  node  in  a message  flow, the  value  that  you  set  for  

the  Transaction  Mode  property  defines  whether  messages  are  received  under  

syncpoint:  

v   If  you  set  it to  Yes  (the  default),  the  message  is received  under  syncpoint  (that  is,  

within  a WebSphere  MQ  unit  of  work).  Any  messages  subsequently  sent  by  an  

output  node  in  the  same  instance  of the  message  flow  are  put  under  syncpoint,  

unless  the  output  node  has  explicitly  overridden  this.  

v   If  you  set  it to  Automatic, the  message  is received  under  syncpoint  if the  

incoming  message  is marked  persistent.  Otherwise,  it is not.  Any  message  

subsequently  sent  by  an  output  node  is put  under  syncpoint,  as  determined  by  

the  incoming  persistence  property,  unless  the  output  node  has  explicitly  

overridden  this.  

v   If  you  set  it to  No,  the  message  is not  received  under  syncpoint.  Any  messages  

subsequently  sent  by  an  output  node  in the  flow  are  not  put  under  syncpoint,  

unless  an  individual  output  node  has  specified  that  the  message  should  be put  

under  syncpoint.

(The  MQOutput  node  is the  only  output  node  that  you  can  configure  to override  

this  option.)  

Terminals and properties 

The  MQeInput  node  terminals  are  described  in  the  following  table.  

 Terminal  Description  

Failure  The  output  terminal  to which  the  message  is routed  if an error  occurs.  

Out  The  output  terminal  to which  the  message  is routed  if it is successfully  retrieved  from  

the  WebSphere  MQ  Everyplace  queue.  

Catch  The  output  terminal  to which  the  message  is routed  if an exception  is thrown  

downstream  and  caught  by this  node.
  

The  following  tables  describe  the  node  properties;  the  column  headed  M  indicates  

whether  the  property  is mandatory  (marked  with  an  asterisk  on  the  properties  

dialog  if you  must  enter  a value  when  no  default  is defined),  the  column  headed  C 

indicates  whether  the  property  is configurable  (you  can  change  the  value  when  you  

add  the  message  flow  to  the  bar  file  to deploy  it).  

The  MQeInput  node  General  properties  are  described  in  the  following  table.  

 Property  M C Default  Description  

Queue  Name  Yes Yes   The  name  of the  WebSphere  MQ  Everyplace  bridge  

queue  from  which  this  node  retrieves  messages  for 

processing  by this  message  flow. 

Trace Yes No  None  The  level  of trace  required  for this  node.  Valid values  

are  None, Standard, Debug, and  Full. 

Trace Filename  Yes Yes \MQeTraceFile.trc  The  name  of the  file  to which  trace  records  are  

written.  

Transaction  Mode  Yes No  Yes  Whether  the  incoming  message  is received  under  

syncpoint.  Valid values  are  Automatic, Yes,  and No. 

Use  Config  File  Yes No  Cleared  Use  a configuration  file  for this  node.  If you  select  

the  check  box,  this  action  is performed.  

 

Message flows 137



Property  M C Default  Description  

Config  Filename  Yes Yes \MQeconfig.ini  The  name  of the  configuration  file  to be used  if the 

Use  Config  File  check  box  is selected.  

Queue  Manager  

Name  

Yes Yes ServerQM1  The  name  of the  WebSphere  MQ  Everyplace  queue  

manager.
  

The  MQeInput  node  Channel  properties  are  described  in  the  following  table.  

 Property  M C Default  Description  

Max  Channels  Yes No  0 The  maximum  number  of channels  supported  by the 

WebSphere  MQ  Everyplace  queue  manager.
  

The  MQeInput  node  Registry  properties  are  described  in  the  following  table.  

 Property  M C Default  Description  

Type Yes Yes File  Registry  The  type  of registry  information  to be used.  Valid 

values  are  File  Registry  and  Private  Registry. 

Directory  Yes Yes \ServerQM1\registry  The  directory  in which  the  registry  file exists  (valid  

only  if File  Registry  is selected).  

PIN  Yes Yes   The  PIN  associated  with  the  WebSphere  MQ  

Everyplace  queue  manager  (valid  only  if Private  

Registry  is selected).  

Certificate  

Request  PIN  

Yes Yes   The  PIN  used  to request  authentication  (valid  only  if 

Private  Registry  is selected).  

Keyring  Password  Yes Yes   The  password  used  to see  crypto  keys  (valid  only  if 

Private  Registry  is selected).  

Certificate  Host  Yes Yes   The  name  of the  certificate  server  (valid  only  if 

Private  Registry  is selected).  

Certificate  Port  Yes Yes   The  port  of the  certificate  server  (valid  only  if 

Private  Registry  is selected).
  

The  MQeInput  node  Listener  properties  are  described  in  the  following  table.  

 Property  M C Default  Description  

Listener  Type Yes Yes Http  The  adapter  type  for  the listener.  Valid values  are  

Http, Length, and  History. 

Hostname  Yes Yes 127.0.0.1  The  hostname  of the  server.  

Port  Yes Yes 8081  The  port  on which  WebSphere  MQ  Everyplace  

listens.  

Time Interval  Yes Yes 300  The  WebSphere  MQ  Everyplace  polling  interval,  

specified  in seconds.
  

The  MQeInput  node  Description  properties  are  described  in  the  following  table.  

 Property  M C Default  Description  

Short  Description  No  No    A brief  description  of the  node.  

Long  Description  No  No    Text that  describes  the purpose  of the  node  in the  

message  flow.
 

 

138 Message  Flows



MQeOutput node 

Attention:   The  use  of  message  flows  that  contain  MQeInput  and  MQeOutput  

nodes  in  WebSphere  Message  Broker  Version  6.0  is deprecated.  The  behavior  that  is 

described  here  is intended  only  for  when  you  are  deploying  from  Version  6.0  to  a 

previous  version,  and  to provide  a route  for  migration.  Redesign  your  flows  to 

remove  the  MQe  nodes  and  replace  them  with  MQ  nodes  that  are  configured  to  

your  own  specifications  and  coordinated  with  your  MQe  Gateway  configuration.  

For  more  details  see  Migrating  a message  flow  that  contains  WebSphere  MQ  

Everyplace  nodes.  

This  topic  contains  the  following  sections:  

v   “Purpose”  

v   “Using  this  node  in a message  flow”  

v   “WebSphere  MQ  Everyplace  documentation”  on  page  140  

v   “Configuring  the  MQeOutput  node”  on  page  140  

v   “Terminals  and  properties”  on  page  141

Purpose 

Use  the  MQeOutput  node  to send  messages  to clients  that  connect  to  the  broker  

using  the  WebSphere  MQ  Mobile  Transport  protocol.  

The  MQeOutput  node  forwards  messages  to WebSphere  MQ  Everyplace  queue  

managers.  If  you  specify  a non-local  destination  queue  manager,  ensure  that  there  

is  either  a route  to  the  queue  manager,  or  store-and-forward  queue  servicing  for  

the  queue  manager  if it exists.  

You cannot  use  the  MQeOutput  node  to  change  the  transactional  characteristics  of 

the  message  flow. The  transactional  characteristics  set  by  the  message  flow’s  input  

node  determine  the  transactional  behavior  of  the  flow. 

You cannot  use  MQeOutput  nodes  in  message  flows  that  you  deploy  to  z/OS  

systems.  

If  you  create  a message  flow  to use  as  a subflow,  you  cannot  use  a standard  output  

node,  you  must  use  an  instance  of  the  Output  node  to create  an  out  terminal  for  

the  subflow  through  to  propagate  which  the  message.  

If  you  do  not  want  your  message  flow  to  send  messages  to a WebSphere  MQ  

Everyplace  queue,  you  can  choose  another  supported  output  node.  

The  MQeOutput  node  is represented  in  the  workbench  by  the  following  icon:  

   

Using this node in a message flow 

For  an  example  of how  this  node  can  be  used,  consider  a farmer  who  checks  his  

fields  to  see  how  well  they  are  irrigated.  He  is carrying  a PDA  device  with  

WebSphere  MQ  Everyplace  installed.  He  sees  that  his  fields  are  not  being  irrigated,  

so  he  uses  his  PDA  and  a Global  Satellite  Navigation  link  to check  the  water  flow  

valve,  and  finds  that  it  is faulty.  This  information  is available  because  the  remote  

SCADA  device  responsible  for  controlling  the  valve  has  published  a diagnostic  

 

Message flows 139



message,  which  was  retrieved  by  the  broker  and  forwarded  to  an  MQeOutput  

node  and  on  to  the  WebSphere  MQ  Everyplace  client  on  his  PDA.  

WebSphere MQ Everyplace documentation 

You can  find  further  information  about  WebSphere  MQ  Everyplace,  and  the  

properties  of  the  node,  in  the  WebSphere  MQ  Everyplace  documentation  on  the  

WebSphere  MQ  Web page.  

Configuring the MQeOutput node 

When  you  have  put  an  instance  of the  MQeOutput  node  into  a message  flow  you  

can  configure  it.  Right-click  the  node  in  the  editor  view  and  click  Properties. The  

node’s  basic  properties  are  displayed.  

All  mandatory  properties  for  which  you  must  enter  a value  (those  that  do  not  have  

a default  value  defined)  are  marked  with  an  asterisk  on  the  properties  dialog.  

Configure  the  MQeOutput  node  as follows:  

1.   Enter  the  Queue  Manager  Name  and  Queue  Name  that  specify  the  destination  for  

the  output  message  if you  select  Queue  Name  in  Destination  Mode  (described  

below).  If  you  select  another  option  for  Destination  Mode, you  do  not  have  to set  

these  properties.  

2.   Select  Advanced  in  the  properties  dialog  navigator  and  select  the  Destination  

Mode  from  the  drop-down  list.  This  identifies  the  queues  to which  to  deliver  

the  output  message.  

v   Queue  Name. The  message  is sent  to the  queue  named  in  the  Queue  Name  

property.  The  properties  Queue  Manager  Name  and  Queue  Name  (on  the  Basic  

tab)  are  mandatory  if you  select  this  option.  This  is the  default.  

v   Reply  To  Queue. The  message  is sent  to  the  queue  named  in  the  ReplyToQ  

field  in  the  MQMD.  

v   Destination  List. The  message  is sent  to the  list  of queues  named  in  the  

LocalEnvironment  (also  known  as  DestinationList)  associated  with  the  

message.
3.   Select  Request  in  the  properties  dialog  navigator  and  set  properties  to  define  

the  characteristics  of  each  output  message  generated.  

a.   Select  the  Request  check  box  to indicate  that  each  output  message  is marked  

in  the  MQMD  as  a request  message  (MQMD_REQUEST),  and  the  message  

identifier  field  cleared  (set  to  MQMI_NONE)  to  ensure  that  WebSphere  MQ  

generates  a new  identifier.  Clear  the  check  box  to  indicate  that  each  output  

message  is  not  marked  as  a request  message.  You cannot  select  this  check  

box  if you  have  selected  a Destination  Mode  of Reply  To  Queue. 

b.   Enter  a WebSphere  MQ  Everyplace  queue  manager  name  in  Reply-to  queue  

manager.  This  is inserted  into  the  MQMD  of  each  output  message  as  the  

reply-to  queue  manager.  This  new  value  overrides  the  current  value  in  the  

MQMD.  

c.   Enter  a WebSphere  MQ  Everyplace  queue  name  in  Reply-to  queue. This  is 

inserted  into  the  MQMD  of each  output  message  as the  reply-to  queue.  This  

new  value  overrides  the  current  value  in  the  MQMD.
4.   Select  Description  in  the  properties  dialog  navigator  to enter  a short  

description,  a long  description,  or  both.  

5.   Click  Apply  to  make  the  changes  to  the  MQeOutput  node  without  closing  the  

properties  dialog.  Click  OK  to  apply  the  changes  and  close  the  properties  

dialog.  

 

140 Message  Flows

http://www.ibm.com/software/integration/wmq


Click  Cancel  to  close  the  dialog  and  discard  all  the  changes  that  you  have  

made  to  the  properties.

Connecting  the  terminals:    

Connect  the  in  terminal  to  the  node  from  which  outbound  messages  bound  are  

routed.  

Connect  the  out  or  failure  terminal  of this  node  to another  node  in  this  message  

flow  if you  want  to  send  the  message  to an  additional  destination.  

Terminals and properties 

The  MQeOutput  node  terminals  are  described  in  the  following  table.  

 Terminal  Description  

In The  input  terminal  that  accepts  a message  for processing  by the node.  

Failure  The  output  terminal  to which  the  message  is routed  if a failure  is detected  when  the 

message  is put  to the  output  queue.  

Out  The  output  terminal  to which  the  message  is routed  if it has  been  successfully  put  to 

the  output  queue,  and  if further  processing  is required  within  this  message  flow.
  

The  following  tables  describe  the  node  properties;  the  column  headed  M  indicates  

whether  the  property  is mandatory  (marked  with  an  asterisk  on  the  properties  

dialog  if you  must  enter  a value  when  no  default  is defined),  the  column  headed  C 

indicates  whether  the  property  is configurable  (you  can  change  the  value  when  you  

add  the  message  flow  to  the  bar  file  to deploy  it).  

The  MQeOutput  node  Basic  properties  are  described  in  the  following  table.  

 Property  M  C Default  Description  

Queue  Manager  

Name  

No  Yes   The  name  of the  WebSphere  MQ  Everyplace  queue  

manager  to which  the output  queue,  specified  in  Queue  

Name, is defined.  

Queue  Name  No  Yes   The  name  of the  WebSphere  MQ  Everyplace  output  

queue  to which  this  node  puts  messages.
  

The  MQeOutput  node  Advanced  property  is  described  in  the  following  table.  

 Property  M C Default  Description  

Destination  Mode  Yes No  Destination  

List  

The  queues  to which  the output  message  is sent.  Valid 

values  are Queue  Name, Reply  To Queue, and  

Destination  List.
  

The  MQeOutput  node  Request  properties  are  described  in  the  following  table.  

 Property  M C Default  Description  

Request  Yes No  Cleared  Whether  each  output  message  is to be generated  as a 

request  message.  If you  select  the check  box,  the action  

is performed.  

Reply-to  queue  

manager  

No  Yes   The  name  of the  queue  manager  to which  the  output  

queue,  specified  in Reply-to  queue, is defined.  

 

Message flows 141



Property  M C Default  Description  

Reply-to  queue  No  Yes   The  name  of the  reply-to  queue  to which  to put  a reply  

to this  request.
  

The  MQeOutput  node  Description  properties  are  described  in  the  following  table.  

 Property  M C Default  Description  

Short  Description  No  No    A brief  description  of the  node.  

Long  Description  No  No    Text that  describes  the purpose  of the  node  in the  

message  flow.
  

MQInput node 

This  topic  contains  the  following  sections:  

v   “Purpose”  

v   “Using  the  MQInput  node  in  a message  flow”  on  page  143  

v   “Configuring  the  MQInput  node”  on  page  143  

v   “Terminals  and  properties”  on  page  147

Purpose 

Use  the  MQInput  node  to receive  messages  from  clients  that  connect  to  the  broker  

using  the  WebSphere  MQ  Enterprise  Transport,  and  that  use  the  MQI  and  AMI  

application  programming  interfaces.  

The  MQInput  node  receives  message  input  to  a message  flow  from  a WebSphere  

MQ  message  queue  defined  on  the  broker’s  queue  manager.  The  node  uses  

MQGET  to  read  a message  from  a specified  queue,  and  establishes  the  processing  

environment  for  the  message.  If appropriate,  you  can  define  the  input  queue  as  a 

WebSphere  MQ  clustered  queue  or  shared  queue.  

Message  flows  that  handle  messages  that  are  received  across  WebSphere  MQ  

connections  must  always  start  with  an  MQInput  node.  You can  set  the  properties  

of  the  MQInput  node  to  control  the  way  that  messages  are  received,  by  causing  

appropriate  MQGET  options  to  be  set.  For  example,  you  can  indicate  that  a 

message  is  to  be  processed  under  transaction  control.  You can  also  request  that  

data  conversion  is  performed  on  receipt  of  every  input  message.  

If you  include  an  output  node  in  a message  flow  that  starts  with  an  MQInput  

node,  it can  be  any  of the  supported  output  nodes,  including  user-defined  output  

nodes;  you  do  not  have  to  include  an  MQOutput  node.  You can  create  a message  

flow  that  receives  messages  from  WebSphere  MQ  clients  and  generates  messages  

for  clients  that  use  any  of the  supported  transports  to connect  to  the  broker,  

because  you  can  configure  the  message  flow  to  request  that  the  broker  provides  

any  conversion  that  is necessary.  

If you  create  a message  flow  to use  as a subflow,  you  cannot  use  a standard  input  

node;  you  must  use  an  instance  of  the  Input  node  as  the  first  node  to  create  an  in  

terminal  for  the  subflow.  

If your  message  flow  does  not  receive  messages  across  WebSphere  MQ  

connections,  you  can  choose  one  of the  supported  input  nodes.  

 

142 Message  Flows



The  MQInput  node  is represented  in  the  workbench  by  the  following  icon:  

   

Using the MQInput node in a message flow 

Look  at  the  following  sample  to  see  how  you  can  use  the  MQInput  node:  

v   Soccer  Results  sample

Configuring the MQInput node 

When  you  have  put  an  instance  of  the  MQInput  node  into  a message  flow, you  can  

configure  it.  Right-click  the  node  in  the  editor  view  and  click  Properties. The  

node’s  basic  properties  are  displayed  in  the  properties  dialog.  

All  mandatory  properties  that  do  not  have  a default  value  defined  are  marked  

with  an  asterisk  on  the  properties  dialog.  

Configure  the  MQInput  node  as  follows:  

1.   Enter  the  name  of  the  queue  from  which  the  message  flow  receives  messages.  

You must  predefine  this  WebSphere  MQ  queue  to  the  queue  manager  that  hosts  

the  broker  to  which  the  message  flow  is deployed.  

2.   Select  Advanced  in  the  properties  dialog  navigator  to  set  properties  that  

determine  how  the  message  is  processed,  for  example  its  transactional  

characteristics.  Many  of  these  properties  map  to options  on  the  MQGET  call.  

v   Select  Transaction  Mode  from  the  drop-down  list  to define  the  transactional  

characteristics  of how  this  message  is handled:  

–   If  you  select  Automatic, the  incoming  message  is received  under  syncpoint  

if it  is  marked  persistent,  otherwise  it is not.  The  transactionality  of any  

derived  messages  subsequently  sent  by  an  output  node  is determined  by  

the  incoming  persistence  property,  unless  the  output  node  has  explicitly  

overridden  transactionality.  

–   If  you  select  Yes, the  incoming  message  is received  under  syncpoint.  Any  

derived  messages  subsequently  sent  by  an  output  node  in the  same  

instance  of  the  message  flow  are  sent  transactionally,  unless  the  output  

node  has  explicitly  overridden  transactionality.  

–   If  you  select  No,  the  incoming  message  is not  received  under  syncpoint.  

Any  derived  messages  subsequently  sent  by  an  output  node  in  the  flow  

are  sent  non-transactionally,  unless  the  output  node  has  specified  that  the  

messages  must  be  put  under  syncpoint.
v    Select  Order  Mode  from  the  drop-down  list  to determine  the  order  in  which  

messages  are  retrieved  from  the  input  queue.  This  property  has  an  effect  

only  if the  message  flow  property  Additional  Instances  is set  to  greater  than  0, 

that  is,  if multiple  threads  read  the  input  queue.  Valid values  are:  

–   Default.  Messages  are  retrieved  in  the  order  defined  by  the  queue  

attributes,  but  this  order  is not  guaranteed  as the  messages  are  processed  

by  the  message  flow. 

–   By  User  ID.  Messages  that  have  the  same  UserIdentifier  in  the  MQMD  are  

retrieved  and  processed  in  the  order  defined  by  the  queue  attributes;  this  

order  is  guaranteed  to  be  preserved  when  the  messages  are  processed.  A 

message  associated  with  a particular  UserIdentifier  that  is being  processed  

by  one  thread  is  completely  processed  before  the  same  thread,  or  another  

 

Message flows 143

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.soccer.res


thread,  can  start  to  process  another  message  with  the  same  UserIdentifier.  

No  other  ordering  is guaranteed  to  be  preserved.  

–   By  Queue  Order. Messages  are  retrieved  and  processed  by  this  node  in the  

order  defined  by  the  queue  attributes;  this  order  is guaranteed  to be  

preserved  when  the  messages  are  processed.  This  behavior  is identical  to  

the  behavior  exhibited  if the  message  flow  property  Additional  Instances  is 

set  to  0. 

See  “Configuring  the  node  to handle  message  groups”  on  page  146  for  more  

details  about  this  option.  

v   Select  the  Logical  Order  check  box  if you  want  to ensure  that  messages  that  

are  part  of  a message  group  are  received  in  the  order  that  has  been  assigned  

by  the  sending  application.  This  option  maps  to the  

MQGMO_LOGICAL_ORDER  option  of  the  MQGMO  of  the  MQI.  

If  you  clear  the  check  box,  messages  sent  as  part  of  a group  are  not  received  

in  a predetermined  order.  If  a broker  expects  to receive  messages  in  groups  

and  this  check  box  is not  selected,  either  the  order  of  the  input  messages  is  

not  significant,  or  the  message  flow  must  be  designed  to  process  them  

appropriately.  

You must  also  select  the  Commit  by  Message  Group  check  box  if you  want  

message  processing  to  be  committed  only  after  the  final  message  of  a group  

has  been  received  and  processed.  

More  information  about  the  options  to  which  this  property  maps  is available  

in  the  WebSphere  MQ  Application  Programming  Reference. 

See  “Configuring  the  node  to handle  message  groups”  on  page  146  for  more  

details  about  this  option.  

v   Select  the  All  Messages  Available  check  box  if you  want  message  retrieval  and  

processing  to  be  done  only  when  all  messages  in  a single  group  are  available.  

This  maps  to  the  MQGMO_ALL_MSGS_AVAILABLE  option  of  the  MQGMO  

of  the  MQI.  Clear  this  check  box  if message  retrieval  does  not  depend  on  all  

messages  in  a group  being  available  before  processing  starts.  

More  information  about  the  options  to  which  this  property  maps  is available  

in  the  WebSphere  MQ  Application  Programming  Reference. 

v   Enter  a message  identifier  in  Match  Message  ID  if you  want  the  input  node  to 

receive  only  messages  that  contain  a matching  message  identifier  value  in the  

MsgId  field  of  the  MQMD.  

Enter  an  even  number  of  hexadecimal  digits  (characters  0 to  9,  A to  F, and  

a to  f are  valid)  up  to  a maximum  of  48  digits.  If  the  ID  that  you  enter  is 

shorter  than  the  size  of  the  MsgId  field,  it is padded  on  the  right  with  X’00’  

characters.  This  maps  to  the  MQMO_MATCH_MSG_ID  option  of the  

MQGMO  of  the  MQI.  

Leave  this  property  blank  if you  do  not  want  the  input  node  to  check  that  

the  message  ID  matches.  

More  information  about  the  options  to  which  this  property  maps  is available  

in  the  WebSphere  MQ  Application  Programming  Reference. 

v   Enter  a message  identifier  in  Match  Correlation  ID  if you  want  the  input  node  

to  receive  only  messages  that  contain  a matching  correlation  identifier  value  

in  the  CorrelId  field  of  the  MQMD.  

Enter  an  even  number  of  hexadecimal  digits  (characters  0 to  9,  A to  F, and  

a to  f are  valid)  up  to  a maximum  of  48  digits.  If  the  ID  that  you  enter  is 

shorter  than  the  size  of  the  CorrelId  field,  it is padded  on  the  right  with  

X’00’  characters.  This  maps  to  the  MQMO_MATCH_CORREL_ID  option  of 

the  MQGMO  of  the  MQI.  

 

144 Message  Flows



Leave  this  property  blank  if you  do  not  want  the  input  node  to  check  that  

the  message  ID  matches.  

More  information  about  the  options  to  which  this  property  maps  is  available  

in  the  WebSphere  MQ  Application  Programming  Reference.  

v   Select  the  Convert  check  box  if you  want  WebSphere  MQ  to  perform  data  

conversion  on  the  message  when  it  is retrieved  from  the  queue.  

WebSphere  MQ  converts  the  incoming  message  to the  encoding  and  coded  

character  set  specified  in  the  MQMD  that  the  input  node  supplies  on  the  

MQGET  call  to  retrieve  the  message  from  the  input  queue.  The  message  flow  

generates  all  its  output  messages  using  these  values,  and  puts  them  to target  

queues  with  these  Encoding  and  CodedCharSetID  values  set  in the  MQMD.  

This  property  maps  to  the  MQGMO_CONVERT  option  of the  MQGMO  of 

the  MQI.  

Clear  the  check  box  if you  do  not  want  WebSphere  MQ  to  convert  the  

message.  

If  you  select  this  box,  you  can  also  specify:  

–   Convert  Encoding.  Enter  the  number  representing  the  encoding  to  which  

you  want  to  convert  numeric  data  in  the  message  body.  Valid values  

include:  

-   546  for  DOS  and  all  Windows  systems  

-   273  for  all  Linux  and  UNIX  systems  

-   785  for  z/OS  systems  

If  you  do  not  specify  a value,  the  value  in  the  incoming  message  MQMD  

is  used.  

If  you  specify  an  invalid  value,  no  conversion  is done.  

–   Convert  Coded  Char  Set  ID.  Enter  the  number  representing  the  character  set  

identifier  to  which  you  want  to  convert  character  data  in the  message  

body.  

If  you  do  not  specify  a value,  the  value  in  the  incoming  message  MQMD  

is  used.  

If  you  specify  an  invalid  value,  no  conversion  is done.  

For  more  information  about  WebSphere  MQ  data  conversion,  and  why  you  

might  choose  to use  this  option,  see  the  WebSphere  MQ  Application  

Programming  Guide. For  further  information  about  the  values  that  you  can  

specify  for  Convert  Encoding  and  Convert  Coded  Char  Set  ID,  see  the  WebSphere  

MQ  Application  Programming  Reference. 

v   Select  the  Commit  by  Message  Group  check  box  if you  want  message  

processing  to  be  committed  only  after  the  final  message  of  a group  has  been  

received  and  processed.  If you  leave  this  check  box  cleared,  a commit  is 

performed  after  each  message  has  been  propagated  completely  through  the  

message  flow. 

This  property  is relevant  only  if you  have  selected  Logical  Order. 

Set  the  Order  Mode  property  to  By  Queue  Order  if the  messages  in  a group  

must  be  retrieved  and  processed  in  the  order  in  which  they  appear  on  the  

queue.  

v   (z/OS  only).  Enter  a serialization  token  in  z/OS  Serialization  Token  if you  want  

to  use  the  serialized  access  to  shared  resources  that  is provided  by  

WebSphere  MQ.  

The  value  that  you  provide  for  the  serialization  token  must  conform  to the  

rules described  in the  WebSphere  MQ  Application  Programming  Reference. 

 

Message flows 145



For  more  information  about  serialization  and  queue  sharing  on  z/OS,  refer  to 

the  WebSphere  MQ  Concepts  and  Planning  Guide.
3.   Select  Description  in  the  properties  dialog  navigator  to enter  a short  

description,  a long  description,  or  both.  

4.   Click  Apply  to  make  the  changes  to  the  MQInput  node  without  closing  the  

properties  dialog.  Click  OK  to  apply  the  changes  and  close  the  properties  

dialog.  

Click  Cancel  to  close  the  dialog  and  discard  all  the  changes  that  you  have  

made  to  the  properties.

Connecting  the  terminals:    

MQInput  routes  each  message  that  it  retrieves  successfully  to the  out  terminal.  If 

this  fails,  the  message  is retried.  If  the  retry  timeout  expires  (as  defined  by  the  

BackoutThreshold  attribute  of  the  input  queue),  the  message  is routed  to the  failure  

terminal;  you  can  connect  nodes  to this  terminal  to  handle  this  condition.  If  you  

have  not  connected  the  failure  terminal,  the  message  is written  to  the  backout  

queue.  

If the  message  is  caught  by  this  node  after  an  exception  has  been  thrown  further  

on  in  the  message  flow, the  message  is routed  to  the  catch  terminal.  If  you  have  

not  connected  the  catch  terminal,  the  message  loops  continually  through  the  node  

until  the  problem  is  resolved.  You must  define  a backout  queue  or  a dead-letter  

queue  (DLQ)  to  prevent  the  message  looping  continuously  through  the  node.  

Configuring  for  coordinated  transactions:    

When  you  include  an  MQInput  node  in  a message  flow, the  value  that  you  set  for  

Transaction  Mode  defines  whether  messages  are  received  under  syncpoint:  

v   If  you  set  it to  Yes  (the  default),  the  message  is received  under  syncpoint  (that  is,  

within  a WebSphere  MQ  unit  of work).  Any  messages  subsequently  sent  by  an 

output  node  in  the  same  instance  of the  message  flow  are  put  under  syncpoint,  

unless  the  output  node  has  explicitly  overridden  this.  

v   If  you  set  it to  Automatic, the  message  is received  under  syncpoint  if the  

incoming  message  is marked  persistent.  Otherwise,  it is  not.  Any  message  

subsequently  sent  by  an  output  node  is put  under  syncpoint,  as  determined  by  

the  incoming  persistence  property,  unless  the  output  node  has  explicitly  

overridden  this.  

v   If  you  set  it to  No,  the  message  is not  received  under  syncpoint.  Any  messages  

subsequently  sent  by  an  output  node  in  the  flow  are  not  put  under  syncpoint,  

unless  an  individual  output  node  has  specified  that  the  message  must  be  put  

under  syncpoint.

(The  MQOutput  node  is the  only  output  node  that  you  can  configure  to override  

this  option.)  

Configuring  the  node  to  handle  message  groups:    

WebSphere  MQ  supports  message  groups;  you  can  specify  that  a message  belongs  

to  a group  and  that  its  processing  and  the  processing  of  all  other  messages  in  the  

group  must  be  handled  as  one  transaction.  That  is,  if the  processing  on  one  

message  in  the  group  fails,  all  messages  in  the  group  are  backed  out.  The  message  

processing  is  committed  when  the  last  message  in  the  group  has  been  processed  

successfully  only  if processing  of  all  messages  has  been  successful.  

 

146 Message  Flows



If  you  include  messages  in  a group,  and  it  is important  that  all  of the  messages  

within  the  group  are  read  from  the  queue  and  processed  in  the  order  in  which  

they  are  defined  in the  group,  you  must  complete  all  the  actions  stated  below:  

v   Select  the  Commit  by  Message  Group  check  box.  

v   Select  the  Logical  Order  check  box.  

v   Set  the  Order  Mode  to  By  Queue  Order  or  set  the  message  flow  property  

Additional  Instances  to 0. (You can  modify  message  flow  properties  when  you  add  

the  message  flow  to  the  bar  file  for  deployment.)  If you  choose  either  of these  

options  (or  both),  the  message  flow  processes  the  messages  on  a single  thread  of  

execution,  and  a message  is processed  to completion  before  the  next  message  is 

retrieved  from  the  queue.  In  all  other  cases,  it is possible  that  multiple  threads  

within  a single  message  flow  are  processing  multiple  messages,  and  there  is no  

guarantee  that  the  final  message  in  a group,  which  prompts  the  commit  or  roll  

back  action,  is  processed  to  completion  after  all  other  messages  in the  group.

You  must  also  ensure  that  you  do  not  have  another  message  flow  that  is retrieving  

messages  from  the  same  input  queue.  If you  do,  there  is no  guarantee  about  the  

order  in  which  the  messages  within  a group  are  processed.  

Terminals and properties 

The  terminals  of  the  MQInput  node  are  described  in  the  following  table.  

 Terminal  Description  

Failure  The  output  terminal  to which  the  message  is routed  if an error  occurs.  Even  if the 

Validation  property  is set,  messages  propagated  to  this  terminal  are  not  validated.  

Out  The  output  terminal  to which  the  message  is routed  if it is successfully  retrieved  from  

the  WebSphere  MQ  queue.  

Catch  The  output  terminal  to which  the  message  is routed  if an exception  is thrown  

downstream  and  caught  by this  node.
  

The  following  tables  describe  the  node  properties;  the  column  headed  M  indicates  

whether  the  property  is mandatory  (marked  with  an  asterisk  on  the  properties  

dialog  if you  must  enter  a value  when  no  default  is defined),  the  column  headed  C 

indicates  whether  the  property  is configurable  (you  can  change  the  value  when  you  

add  the  message  flow  to  the  bar  file  to deploy  it).  

The  Basic  properties  of  the  MQInput  node  are  described  in  the  following  table.  

 Property  M C Default  Description  

Queue  Name  Yes Yes   The  name  of the  WebSphere  MQ  input  queue  from  

which  this  node  retrieves  messages  (using  MQGET)  for 

processing  by this  message  flow.
  

The  Advanced  properties  of the  MQInput  node  are  described  in the  following  

table.  

 Property  M C Default  Description  

Transaction  Mode  Yes No  Yes  Whether  the  incoming  message  is received  under  

syncpoint.  Valid values  are  Automatic, Yes,  and No. 

Order  Mode  Yes No  Default  The  order  in which  messages  are  retrieved  from  the 

input  queue  and  processed.  Valid values  are  Default, 

By User  ID, and  By  Queue  Order. 

 

Message flows 147



Property  M C Default  Description  

Logical  Order  Yes No  Selected  Whether  messages  are  received  in logical  order, as 

defined  by  WebSphere  MQ.  If you  select  the  check  box,  

this  action  is performed.  

All Messages  Available  Yes No  Cleared  If you  select  the check  box,  all messages  in a group  

must  be available  before  retrieval  of a message  is 

possible.  

Match  Message  ID No  No    A message  ID  that  must  match  the  message  ID  in the 

MQMD  of the  incoming  message.  

Match  Correlation  ID No  No    A correlation  ID that  must  match  the  correlation  ID in 

the  MQMD  of the  incoming  message.  

Convert  Yes No  Cleared  Whether  WebSphere  MQ  converts  data  in the  message  

to be received,  in conformance  with  the  

CodedCharSetId  and  Encoding  values  set in the  

MQMD.  If you  select  the  check  box,  this action  is 

performed.  

Convert  Encoding  No  No    The  representation  used  for numeric  values  in the  

message  data,  expressed  as an integer  value.  This  

property  is valid  only  if you  have  selected  the  Convert  

check  box.  

Convert  Coded  

Character  Set  ID 

No  No    The  coded  character  set  identifier  of character  data  in 

the  message  data,  expressed  as an integer  value.  This  

property  is valid  only  if you  have  selected  the  Convert  

check  box.  

Commit  By Message  

Group  

Yes No  Cleared  When  a transaction  is committed  when  processing  

messages  that  are  part  of a message  group.  If you  select  

the  check  box,  the  transaction  is committed  when  the 

message  group  has  been  processed.  

z/OS  Serialization  

Token 

No  No  A user-defined  token  for serialized  application  support.  

The  value  specified  must  conform  to the rules  for  a 

valid  ConnTag  in the  WebSphere  MQ  MQCNO  

structure.  These  rules  are  described  in the  WebSphere  

MQ  Application  Programming  Reference.
  

The  Description  properties  of  the  MQInput  node  are  described  in  the  following  

table.  

 Property  M C Default  Description  

Short  Description  No  No    A brief  description  of the  node.  

Long  Description  No  No    Text that  describes  the purpose  of the  node  in the  

message  flow.
  

MQJMSTransform  node 

This  topic  contains  the  following  sections:  

v   “Purpose”  on  page  149  

v   “Using  the  MQJMSTransform  node  in  a message  flow”  on  page  149  

v   “Terminals  and  properties”  on  page  149

 

148 Message  Flows



Purpose 

Use  the  MQJMSTransform  node  to  receive  messages  that  have  a WebSphere  MQ  

JMS  provider  message  tree  format,  and  transform  them  into  a format  that  is 

compatible  with  messages  that  are  to  be  sent  to  JMS  destinations.  

The  MQJMSTransform  node  can  be  used  to  send  messages  to  legacy  message  flows  

and  to  interoperate  with  WebSphere  MQ  JMS  and  WebSphere  Event  Broker  publish  

subscribe.  

The  MQJMSTransform  node  is represented  in the  workbench  by  the  following  icon:  

   

Using the MQJMSTransform node in a message flow 

The  JMS  Nodes  sample  sample  contains  a message  flow  in  which  the  

MQJMSTransform  node  is  used.  Refer  to  this  sample  for  an  example  of  how  to  use  

the  MQJMSTransform  node.  

Terminals and properties 

The  terminals  of  the  MQJMSTransform  node  are  described  in  the  following  table:  

 Terminal  Description  

Failure  The  output  terminal  to which  the  message  is routed  if an error  occurs.  Even  if the 

Validation  property  is set,  messages  propagated  to  this  terminal  are  not  validated.  

Out  The  output  terminal  to which  the  message  is routed  if it is successfully  retrieved  from  

the  WebSphere  MQ  queue.  

In The  input  terminal  that  accepts  a message  for processing  by the node.
  

There  are  no  configurable  attributes  for  this  node.  

MQOptimizedFlow node 

The  MQOptimizedFlow  node  is a complete  message  flow  that  provides  a 

high-performance  publish/subscribe  message  flow. The  node  supports  publishers  

and  subscribers  that  use  Java  Message  Service  (JMS)  application  programming  

interfaces  and  the  WebSphere® MQ  Enterprise  Transport.  

To take  advantage  of any  performance  gain  that  this  node  can  provide,  you  must  

make  sure  that  you  have  installed  WebSphere  MQ  Version  5.3  Fix  Pack  10  for  

distributed  platforms.  Refer  to  the  memo.ptf  file  for  Fix  Pack  10  for  details  of  the  

JMS  configuration  that  is required.  

Restriction:   The  MQOptimizedFlow  node  cannot  be  used  on  z/OS® platforms.  

This  topic  contains  the  following  sections:  

v   “Purpose”  on  page  150  

This  is a short  introduction  to the  MQOptimizedFlow  node  and  explains  why  

you  might  want  to  use  the  node.  

v   “Using  this  node  in a message  flow”  on  page  150  

This  explains  how  to  use  the  MQOptimizedFlow  node.  

 

Message flows 149

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.jmsnode.res


v   “Configuring  the  MQOptimizedFlow  node”  

This  explains  how  to  configure  an  MQOptimizedFlow  node.  

v   “Terminals  and  properties”  on  page  151  

This  defines  the  terminals  and  the  properties  that  you  can  configure  on  the  

MQOptimizedFlow  node.

Purpose 

Use  the  MQOptimizedFlow  node  to  replace  a publish/subscribe  message  flow  that  

consists  of  an  MQInput  node  connected  to a Publication  node  and  that  uses  the  

JMS  over  WebSphere  MQ  transport.  

Use  the  MQOptimizedFlow  node  to  improve  performance,  particularly  where  a 

single  publisher  produces  a persistent  publication  for  a single  subscriber  

The  MQOptimizedFlow  node  is represented  in  the  workbench  by  the  following  

icon:  

   

Using this node in a message flow 

Use  an  MQOptimizedFlow  node  in  a message  flow  to  publish  a persistent  JMS  

message  to  a single  subscriber.  

Because  the  MQOptimizedFlow  node  has  no  terminals,  it cannot  be  connected  to 

any  other  message  flow  node.  

Configuring the MQOptimizedFlow node 

You must  configure  each  instance  of an  MQOptimizedFlow  node  that  is present  in 

a message  flow. 

To do  this,  right-click  the  node  in the  editor  view  of  the  message  flow  and  click  

Properties. The  Basic  properties  of the  node  are  displayed.  

Specify  in the  Queue  Name  property  the  name  of the  WebSphere  MQ  input  queue  

from  which  messages  are  retrieved.  

Select  Advanced  in  the  properties  dialog  navigator,  and  choose  Yes  as  the  value  of  

the  Transaction  Mode  property.  

Select  Description  in  the  properties  dialog  navigator  if you  want  to  give  a short  

description,  a long  description,  or  both.  

Click  Apply  to  make  the  changes  to  the  MQOptimizedFlow  node  without  closing  

the  properties  dialog.  

Click  OK  to  apply  the  changes  and  close  the  properties  dialog.  

Click  Cancel  to  close  the  properties  dialog  and  discard  all  the  changes  that  you  

have  made  to  the  properties.  

 

150 Message  Flows



Terminals and properties 

The  MQOptimizedFlow  node  has  no  terminals.  It is  a complete  message  flow  and  

cannot  be  connected  to  other  message  flow  nodes  to  extend  the  message  

processing.  

The  following  tables  describe  the  node  properties.  The  column  headed  M  indicates  

whether  the  property  is mandatory;  that  is,  whether  you  must  enter  a value  if no  

default  value  is  defined;  an  asterisk  next  to the  name  of the  property  in  the  

properties  dialog  denotes  this.  The  column  headed  C indicates  whether  the  

property  is  configurable;  that  is,  whether  you  can  change  the  value  in the  bar  file.  

The  Basic  properties  of  the  MQOptimizedFlow  node  are  described  in  the  following  

table:  

 Property  M C Default  Description  

Queue  Name  Yes Yes none  The  name  of the  WebSphere  MQ  input  queue  from  

which  this  node  retrieves  messages  for  processing  

by this  message  flow.
  

The  Advanced  properties  of the  MQOptimizedFlow  node  are  described  in  the  

following  table:  

 Property  M C Default  Description  

Transaction  Mode  Yes No  Yes Whether  the incoming  message  is received  under  

syncpoint.  Valid values  are  Automatic, Yes,  and No.
  

The  Description  properties  of the  MQOptimizedFlow  node  are  described  in  the  

following  table.  

 Property  M C Default  Description  

Short  Description  No  No    A brief  description  of the  node.  

Long  Description  No  No    Text that  describes  the  purpose  of the  node  in the 

message  flow.
  

MQOutput node 

This  topic  contains  the  following  sections:  

v   “Purpose”  

v   “Using  this  node  in a message  flow”  on  page  152  

v   “Configuring  the  MQOutput  node”  on  page  152  

v   “Terminals  and  properties”  on  page  155

Purpose 

Use  the  MQOutput  node  to send  messages  to clients  that  connect  to  the  broker  

using  the  WebSphere  MQ  Enterprise  Transport  and  that  use  the  MQI  and  AMI  

application  programming  interfaces.  

The  MQOutput  node  delivers  an  output  message  from  a message  flow  to  a 

WebSphere  MQ  queue.  The  node  uses  MQPUT  to put  the  message  to  the  

destination  queue  that  you  specify.  

 

Message flows 151



If appropriate,  you  can  define  the  queue  as  a WebSphere  MQ  clustered  queue  or  

shared  queue.  When  using  a WebSphere  MQ  clustered  queue,  leave  the  queue  

manager  name  empty.  

You can  configure  the  MQOutput  node  to  put  a message  to  a specific  WebSphere  

MQ  queue  defined  on  any  queue  manager  accessible  by  the  broker’s  queue  

manager.  

You can  set  other  properties  to control  the  way  in  which  messages  are  sent,  by  

causing  appropriate  MQPUT  options  to  be  set.  For  example,  you  can  request  that  a 

message  is  processed  under  transaction  control.  You can  also  specify  that  

WebSphere  MQ  can,  if appropriate,  break  the  message  into  segments  in  the  queue  

manager.  

If you  create  a message  flow  to use  as a subflow,  you  cannot  use  a standard  output  

node,  you  must  use  an  instance  of  the  Output  node  to  create  an  out  terminal  for  

the  subflow  through  which  to  propagate  the  message.  

If you  do  not  want  your  message  flow  to  send  messages  to  a WebSphere  MQ  

queue,  you  can  choose  another  supported  output  node.  

The  MQOutput  node  is represented  in the  workbench  by  the  following  icon:  

   

Using this node in a message flow 

For  an  example  of  how  you  can  use  this  node,  assume  that  you  have  written  a 

publishing  application  that  publishes  stock  updates  on  a regular  basis.  The  

application  sends  the  messages  to  the  broker  on  an  MQInput  node,  and  the  

message  flow  makes  the  publications  available  to  multiple  subscribers  through  a 

Publication  node.  You include  an  MQOutput  node  to  send  the  message  to an  

application  that  records  each  price  change  that  occurs.  

Configuring the MQOutput node 

When  you  have  put  an  instance  of the  MQOutput  node  into  a message  flow, you  

can  configure  it.  Right-click  the  node  in  the  editor  view  and  click  Properties. The  

node’s  basic  properties  are  displayed.  

All  mandatory  properties  for  which  you  must  enter  a value  (those  that  do  not  have  

a default  value  defined)  are  marked  with  an  asterisk  on  the  properties  dialog.  

Configure  the  MQOutput  node  as  follows:  

1.   If  you  want  to  send  the  output  message  to a single  destination  queue  that  is  

defined  by  this  node,  enter  the  name  of  the  queue  to which  the  message  flow  

sends  messages  in  Queue  Name. Enter  the  name  of  the  queue  manager  to  which  

this  queue  is defined  in  Queue  Manager  Name. You must  set  these  properties  if 

you  set  the  Advanced  property  Destination  Mode  (described  below)  to  Queue  

Name. If you  set  Destination  Mode  to  another  value,  these  properties  are  ignored.  

2.   Select  Advanced  in  the  properties  dialog  navigator.  These  properties  define  the  

transactional  control  for  the  message  and  the  way  that  the  message  is put  to 

the  queue.  Many  of these  properties  map  to  options  on  the  MQPUT  call.  

 

152 Message  Flows



v   Select  the  Destination  Mode  from  the  drop-down  list.  This  identifies  the  

queues  to  which  the  output  message  is put.  

–   Queue  Name. The  message  is sent  to  the  queue  named  in the  Queue  Name  

property.  The  properties  Queue  Manager  Name  and  Queue  Name  (on  the  

Basic  tab)  are  mandatory  if you  select  this  option.  This  is the  default.  

–   Reply  To  Queue. The  message  is sent  to  the  queue  named  in  the  ReplyToQ  

field  in  the  MQMD.
v   Select  the  Transaction  Mode  from  the  drop-down  list  to  determine  how  the  

message  is  put.  

–   If  you  select  Automatic  (the  default),  the  message  transactionality  is 

derived  from  the  way  that  it  was  specified  at  the  input  node.  

–   If  you  select  Yes, the  message  is  put  transactionally.  

–   If  you  select  No,  the  message  is put  non-transactionally.

See  “Configuring  for  coordinated  transactions”  on  page  154  for  more  

information.  

v   Select  the  Persistence  Mode  from  the  drop-down  list  to determine  whether  the  

message  is  put  persistently.  

–   If  you  select  Automatic  (the  default),  the  persistence  is as specified  in the  

incoming  message.  

–   If  you  select  Yes, the  message  is  put  persistently.  

–   If  you  select  No,  the  message  is put  non-persistently.  

–   If  you  select  As  Defined  for  Queue, the  message  persistence  is set  as  

defined  for  the  WebSphere  MQ  queue.
v    Select  the  New  Message  ID  check  box  to generate  a new  message  ID  for  this  

message.  This  maps  to  the  MQPMO_NEW_MSG_ID  option  of the  MQPMO  

of  the  MQI.  

Clear  the  check  box  if you  do  not  want  to  generate  a new  ID.  Note  that  a 

new  message  ID  is still  generated  if you  select  the  Request  check  box  in  the  

Request  panel  of the  properties  dialog.  

More  information  about  the  options  to  which  this  property  maps  is  available  

in  the  WebSphere  MQ  Application  Programming  Reference.  

v   Select  the  New  Correlation  ID  check  box  to  generate  a new  correlation  ID  for  

this  message.  This  maps  to  the  MQPMO_NEW_CORREL_ID  option  of  the  

MQPMO  of the  MQI.  Clear  the  check  box  if you  do  not  want  to generate  a 

new  ID.  

More  information  about  the  options  to  which  this  property  maps  is  available  

in  the  WebSphere  MQ  Application  Programming  Reference.  

v   Select  the  Segmentation  Allowed  check  box  if you  want  WebSphere  MQ  to  

segment  the  message  within  the  queue  manager  when  appropriate.  You must  

also  set  MQMF_SEGMENTATION_ALLOWED  in  the  MsgFlags  field  in  the  MQMD  for  

segmentation  to  occur.  Clear  the  check  box  if you  do  not  want  segmentation.  

More  information  about  the  options  to  which  this  property  maps  is  available  

in  the  WebSphere  MQ  Application  Programming  Reference.  

v   Select  the  Message  Context  to  indicate  how  origin  context  is to  be  handled.  

Choose  one  of the  following  options:  

–   Pass  All  (maps  to the  MQPMO_PASS_ALL_CONTEXT  option  of  the  

MQPMO  of  the  MQI.)  

–   Pass  Identity  (maps  to the  MQPMO_PASS_IDENTITY_CONTEXT  option  

of  the  MQPMO  of  the  MQI.)  

 

Message flows 153



–   Set  All  (maps  to  the  MQPMO_SET_ALL_CONTEXT  option  of the  

MQPMO  of  the  MQI.)  

–   Set  Identity  (maps  to  the  MQPMO_SET_IDENTITY_CONTEXT  option  of 

the  MQPMO  of  the  MQI.)  

–   Default  (maps  to  the  MQPMO_DEFAULT_CONTEXT  option  of  the  

MQPMO  of  the  MQI.)  

–   None  (maps  to  the  MQPMO_NO_CONTEXT  option  of the  MQPMO  of the  

MQI.)  

More  information  about  the  options  to  which  these  properties  map  is 

available  in  the  WebSphere  MQ  Application  Programming  Reference.  

v   Select  the  Alternate  User  Authority  check  box  if you  want  the  

MQOO_ALTERNATE_USER_AUTHORITY  option  set  in  the  open  options  

(MQOO)  of  the  MQI.  If you  select  this  box,  this  option  is specified  when  the  

queue  is  opened  for  output.  The  alternate  user  information  is  retrieved  from  

the  context  information  in the  message.  Clear  the  check  box  if you  do  not  

want  to  specify  alternate  user  authority.  If  you  clear  the  box,  the  broker  

service  user  ID  is used  when  the  message  is put.
3.   Select  Request  in  the  properties  dialog  navigator  and  set  the  properties  to  

define  the  characteristics  of  each  output  message  generated.  

v   Select  the  Request  check  box  to  mark  each  output  message  in  the  MQMD  as a 

request  message  (MQMT_REQUEST),  and  clear  the  message  identifier  field  

(set  to  MQMI_NONE)  to ensure  that  WebSphere  MQ  generates  a new  

identifier.  Clear  the  check  box  to  indicate  that  each  output  message  is  not  

marked  as  a request  message.  You cannot  select  this  check  box  if you  have  

selected  a Destination  Mode  of  Reply  To  Queue. 

Note  that  a new  message  identifier  is generated  even  if the  New  Message  ID  

check  box  is  not  selected  in the  Advanced  panel  of  the  properties  dialog  

navigator.  

v   Enter  a queue  manager  name  in Reply-to  Queue  Manager.  This  is inserted  into  

the  MQMD  of  each  output  message  as  the  reply-to  queue  manager.  

v   Enter  a queue  name  in Reply-to  Queue. This  is inserted  into  the  MQMD  of  

each  output  message  as the  reply-to  queue.
4.   Select  Description  in  the  properties  dialog  navigator  to enter  a short  

description,  a long  description,  or  both.  

5.   Click  Apply  to  make  the  changes  to  the  MQOutput  node  without  closing  the  

properties  dialog.  Click  OK  to  apply  the  changes  and  close  the  properties  

dialog.  

Click  Cancel  to  close  the  dialog  and  discard  all  the  changes  that  you  have  

made  to  the  properties.

Connecting  the  terminals:    

Connect  the  in  terminal  to  the  node  from  which  outbound  messages  bound  are  

routed.  

Connect  the  out  or  failure  terminal  of  this  node  to  another  node  in  this  message  

flow  if you  want  to  send  the  message  to  an  additional  destination.  

Configuring  for  coordinated  transactions:    

When  you  define  an  MQOutput  node,  the  option  that  you  select  for  the  Transaction  

Mode  property  defines  whether  the  message  is written  under  syncpoint:  

 

154 Message  Flows



v   If  Yes, the  message  is written  under  syncpoint  (that  is,  within  a WebSphere  MQ  

unit  of  work).  

v   If  Automatic  (the  default),  the  message  is written  under  syncpoint  if the  

incoming  input  message  is marked  persistent.  

v   If  No,  the  message  is  not  written  under  syncpoint.

Another  property  of the  MQOutput  node,  Persistence  Mode, defines  whether  the  

output  message  is marked  as  persistent  when  it is  put  to  the  output  queue:  

v   If  Yes, the  message  is marked  as  persistent.  

v   If  Automatic  (the  default),  the  message  persistence  is determined  from  the  

properties  of  the  incoming  message,  as  set  in  the  MQMD  (the  WebSphere  MQ  

message  descriptor).  

v   If  No,  the  message  is  not  marked  as  persistent.  

v   If  As  Defined  for  Queue, the  message  persistence  is set  as  defined  in  the  

WebSphere  MQ  queue  by  the  MQOutput  node  specifying  the  

MQPER_PERSISTENCE_AS_Q_DEF  option  in  the  MQMD.

Terminals and properties 

The  MQOutput  node  terminals  are  described  in  the  following  table.  

 Terminal  Description  

In The  input  terminal  that  accepts  a message  for processing  by the node.  

Failure  The  output  terminal  to which  the  message  is routed  if a failure  is detected  when  the 

message  is put  to the  output  queue.  

Out  The  output  terminal  to which  the  message  is routed  if it has  been  successfully  put  to 

the  output  queue,  and  if further  processing  is required  within  this  message  flow.
  

The  following  tables  describe  the  node  properties;  the  column  headed  M  indicates  

whether  the  property  is mandatory  (marked  with  an  asterisk  on  the  properties  

dialog  if you  must  enter  a value  when  no  default  is defined),  the  column  headed  C 

indicates  whether  the  property  is configurable  (you  can  change  the  value  when  you  

add  the  message  flow  to  the  bar  file  to deploy  it).  

The  MQOutput  node  Basic  properties  are  described  in  the  following  table.  

 Property  M C Default  Description  

Queue  Manager  Name  No  Yes   The  name  of the  WebSphere  MQ  queue  manager  to  

which  the  output  queue,  specified  in Queue  Name, is 

defined.  

Queue  Name  No  Yes   The  name  of the  WebSphere  MQ  output  queue  to which  

this  node  puts  messages  (using  MQPUT).
  

The  MQOutput  node  Advanced  properties  are  described  in  the  following  table.  

 Property  M C Default  Description  

Destination  Mode  Yes No  Queue  Name  The  queues  to which  the  output  message  is sent.  Valid 

values  are  , Reply  To  Queue, and  Queue  Name. 

Transaction  Mode  Yes No  Automatic  Whether  the  message  is put  transactionally.  Valid 

values  are  Automatic, Yes,  and  No. 

 

Message flows 155



Property  M C Default  Description  

Persistence  Mode  Yes No  Automatic  Whether  the  message  is put  persistently.  Valid values  

are  Automatic, Yes,  No, and  As Defined  for Queue. 

New  Message  ID Yes No  Cleared  Whether  WebSphere  MQ  generates  a new  message  

identifier  to replace  the  contents  of the  MsgId  field  in 

the  MQMD.  If you  select  the  check  box,  this action  is 

performed.  

New  Correlation  ID Yes No  Cleared  Whether  WebSphere  MQ  generates  a new  correlation  

identifier  to replace  the  contents  of the  CorrelId  field  in 

the  MQMD.  If you  select  the  check  box,  this action  is 

performed.  

Segmentation  Allowed  Yes No  Cleared  If appropriate,  WebSphere  MQ  breaks  the  message  into  

segments  in the queue  manager.  If you  select  the  check  

box,  this  action  is performed.  

Message  Context  Yes No  Pass  All  How  to handle  origin  context.  Valid values  are  Pass  

All,  Pass  Identity, Set All,  Set Identity, and  

Default. 

Alternate  User  

Authority  

Yes No  Cleared  Whether  alternate  authority  is used  when  the  output  

message  is put.  If you  select  the check  box,  this  action  

is performed.
  

The  MQOutput  node  Request  properties  are  described  in  the  following  table.  

 Property  M C Default  Description  

Request  Yes No  Cleared  Whether  to generate  each  output  message  as a request  

message.  If you  select  the check  box,  this  action  is 

performed.  

Reply-to  Queue  

Manager  

No  Yes   The  name  of the WebSphere  MQ  queue  manager  to 

which  the output  queue,  specified  in Reply-to  Queue, is 

defined.  

Reply-to  Queue  No  Yes   The  name  of the WebSphere  MQ  queue  to which  to put  

a reply  to this  request.
  

The  MQOutput  node  Description  properties  are  described  in  the  following  table.  

 Property  M C Default  Description  

Short  Description  No  No    A brief  description  of the  node.  

Long  Description  No  No    Text that  describes  the purpose  of the  node  in the  

message  flow.
  

Output node 

This  topic  contains  the  following  sections:  

v   “Purpose”  on  page  157  

v   “Configuring  the  Output  node”  on  page  157  

v   “Terminals  and  properties”  on  page  157

 

156 Message  Flows



Purpose 

The  Output  node  provides  an  out  terminal  for  an  embedded  message  flow  (a  

subflow).  You can  use  a subflow  to  provide  a common  destination  for  output  

messages.  

You must  use  an  Output  node  to  provide  the  out  terminal  to  a subflow;  you  

cannot  use  a standard  output  node  (a built-in  output  node  such  as  MQOutput,  or  a 

user-defined  output  node).  

You can  include  one  or  more  Output  nodes  in  a subflow.  Each  one  that  you  

include  provides  a terminal  through  which  you  can  propagate  messages  to  

subsequent  nodes  in  the  message  flow  in which  you  include  the  subflow.  

The  Output  node  is represented  in  the  workbench  by  the  following  icon:  

   

When  you  select  and  include  a subflow  in a message  flow, it is represented  by the  

icon:  

   

When  you  include  the  subflow  in  a message  flow, this  icon  exhibits  a terminal  for  

each  Output  node  that  you  included  in  the  subflow,  and  the  name  of  the  terminal  

(which  you  can  see  when  you  hover  over  it)  matches  the  name  of  that  instance  of  

the  Output  node.  Give  your  Output  nodes  meaningful  names,  you  can  easily  

recognize  them  when  you  use  their  corresponding  terminal  on  the  subflow  node  in 

your  message  flow. 

Configuring the Output node 

When  you  have  put  an  instance  of  the  Output  node  into  a message  flow, you  can  

configure  it  by  giving  it a name.  

Right-click  the  node  in  the  editor  view  and  select  Properties. The  Description  

properties  of  the  node  are  displayed.  

Enter  a short  description,  a long  description,  or  both.  

Click  Apply  to  make  the  changes  to  the  Input  node  without  closing  the  properties  

dialog,  or  click  OK  to  apply  the  changes  and  close  the  properties  dialog.  

Click  Cancel  to  close  the  dialog  and  discard  all  the  changes  that  you  have  made  to  

the  properties.  

Terminals and properties 

The  Output  node  terminals  are  described  in  the  following  table.  

 Terminal  Description  

In The  output  terminal  that  defines  an out  terminal  for  the  subflow.
 

 

Message flows 157



The  following  table  describes  the  node  properties;  the  column  headed  M  indicates  

whether  the  property  is  mandatory  (marked  with  an  asterisk  on  the  properties  

dialog  if you  must  enter  a value  when  no  default  is  defined),  the  column  headed  C 

indicates  whether  the  property  is configurable  (you  can  change  the  value  when  you  

add  the  message  flow  to  the  bar  file  to  deploy  it).  

The  Output  node  Description  properties  are  described  in  the  following  table.  

 Property  M C Default  Description  

Short  Description  No  No    A brief  description  of the  node.  

Long  Description  No  No    Text that  describes  the purpose  of the  node  in the  

message  flow.
  

Publication node 

This  topic  contains  the  following  sections:  

v   “Purpose”  

v   “Using  this  node  in  a message  flow”  

v   “Configuring  the  Publication  node”  on  page  159  

v   “Terminals  and  properties”  on  page  159

Purpose 

Use  the  Publication  node  to filter  output  messages  from  a message  flow  and  

transmit  them  to  subscribers  who  have  registered  an  interest  in  a particular  set  of  

topics.  The  Publication  node  must  always  be  an  output  node  of  a message  flow  

and  has  no  output  terminals  of its  own.  

Use  the  Publication  node  (or  a user-defined  node  that  provides  a similar  service)  if 

your  message  flow  supports  publish/subscribe  applications.  Applications  expecting  

to  receive  publications  must  register  a subscription  with  a broker,  and  can  

optionally  qualify  the  publications  that  they  get  by  providing  restrictive  criteria  

(such  as  a specific  publication  topic).  

If your  subscriber  applications  use  the  WebSphere  MQ  Enterprise  Transport  to 

connect  to  the  broker,  you  can  define  the  queues  to  which  messages  are  published  

as  WebSphere  MQ  clustered  queues  or  shared  queues.  

Publications  can  also  be  sent  to subscribers  within  a WebSphere  MQ  cluster  if a 

cluster  queue  is nominated  as  the  subscriber  queue.  In  this  case,  the  subscriber  

should  use  the  name  of an  ″imaginary″ queue  manager  that  is associated  with  the  

cluster,  and  should  ensure  that  a corresponding  blank  queue  manager  alias  

definition  for  this  queue  manager  is made  on  the  broker  that  satisfies  the  

subscription.  

The  Publication  node  is represented  in  the  workbench  by  the  following  icon:  

   

Using this node in a message flow 

Look  at  the  following  sample  to  see  how  you  can  use  this  node:  

v   Soccer  Results  sample

 

158 Message  Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.soccer.res


For  an  example  of how  you  can  use  this  node,  assume  that  you  have  written  a 

publishing  application  that  publishes  stock  updates  on  a regular  basis.  The  

application  sends  the  messages  to  the  broker  on  an  MQInput  node,  and  the  stock  

publications  are  made  available  to  multiple  subscribers  through  a Publication  node.  

Configuring the Publication node 

When  you  have  put  an  instance  of  the  Publication  node  into  a message  flow, you  

can  configure  it.  Right-click  the  node  in  the  editor  view  and  click  Properties. The  

node’s  basic  properties  are  displayed.  

All  mandatory  properties  for  which  you  must  enter  a value  (those  that  do  not  have  

a default  value  defined)  are  marked  with  an  asterisk  on  the  properties  dialog.  

Configure  the  Publication  node  as  follows:  

1.   Select  the  Implicit  Stream  Naming  check  box  to  take  the  name  of  the  WebSphere  

MQ  queue  on  which  the  message  was  received  by  the  message  flow  as  the  

stream  name.  This  property  provides  forward  compatibility  with  WebSphere  

MQ  Publish/Subscribe,  and  applies  to messages  with  an  MQRFH  header  when  

MQPSStream  is not  specified.  

Clear  the  check  box  if you  do  not  want  this  action  to be  taken.  

2.   Specify  the  Subscription  Point  for  this  Publication  node.  If  you  do  not  specify  a 

value  for  this  property,  the  default  subscription  point  is assumed.  This  value  

uniquely  identifies  the  node,  and  can  be  used  by  subscribers  to get  a specific  

publication  (as  described  in  the  example  scenario  above).  

For  more  information,  refer  to  Subscription  points.  

3.   Select  Description  in  the  properties  dialog  navigator  to enter  a short  

description,  a long  description,  or  both.  

4.   Click  Apply  to  make  the  changes  to the  Publication  node  without  closing  the  

properties  dialog.  Click  OK  to  apply  the  changes  and  close  the  properties  

dialog.  

Click  Cancel  to  close  the  dialog  and  discard  all  the  changes  that  you  have  

made  to  the  properties.

Terminals and properties 

The  Publication  node  terminals  are  described  in  the  following  table.  

 Terminal  Description  

In The  input  terminal  that  accepts  a message  for processing  by the node.
  

The  following  tables  describe  the  node  properties;  the  column  headed  M  indicates  

whether  the  property  is mandatory  (marked  with  an  asterisk  on  the  properties  

dialog  if you  must  enter  a value  when  no  default  is defined),  the  column  headed  C 

indicates  whether  the  property  is configurable  (you  can  change  the  value  when  you  

add  the  message  flow  to  the  bar  file  to deploy  it).  

The  Publication  node  Basic  properties  are  described  in  the  following  table.  

 

Message flows 159



Property  M C Default  Description  

Implicit  Stream  

Naming  

Yes No  Cleared  Whether  to take  the  name  of the WebSphere  MQ  queue  

on which  the  input  message  was  received  as  the  stream  

name.  If you  select  the  check  box,  this  action  is 

performed.  

Subscription  Point  No  No    The  subscription  point  value  for  the  node.
  

The  Publication  node  Description  properties  are  described  in the  following  table.  

 Property  M C Default  Description  

Short  Description  No  No    A brief  description  of the  node.  

Long  Description  No  No    Text that  describes  the purpose  of the  node  in the  

message  flow.
  

Real-timeInput node 

This  topic  contains  the  following  sections:  

v   “Purpose”  

v   “Using  this  node  in  a message  flow”  

v   “Configuring  the  Real-timeInput  node”  on  page  161  

v   “Terminals  and  properties”  on  page  162

Purpose 

Use  the  Real-timeInput  node  to  receive  messages,  from  clients  that  connect  to  the  

broker  using  the  WebSphere  MQ  Real-time  Transport  or  the  WebSphere  MQ  

Multicast  Transport  and  that  use  JMS  application  programming  interfaces,  into  a 

message  flow. 

An  output  node  in  a message  flow  that  starts  with  a Real-timeInput  node  can  be  

any  of  the  supported  output  nodes,  including  user-defined  output  nodes.  You can  

create  a message  flow  that  receives  messages  from  real-time  clients  and  generates  

messages  for  clients  that  use  all  supported  transports  to  connect  to  the  broker,  

because  you  can  configure  the  message  flow  to  request  the  broker  to  provide  any  

conversion  that  is necessary.  

If you  are  create  a message  flow  to  use  as  a subflow,  you  cannot  use  a standard  

input  node:  you  must  use  an  instance  of  the  Input  node  as  the  first  node  to create  

an  in  terminal  for  the  subflow.  

If your  message  flow  does  not  receive  messages  from  JMS  applications,  you  can  

choose  one  of  the  supported  input  nodes.  

The  Real-timeInput  node  is  represented  in the  workbench  by  the  following  icon:  

   

Using this node in a message flow 

For  an  example  of  how  to use  this  node,  assume  that  you  have  written  a 

publishing  application  that  publishes  stock  updates  on  a regular  basis.  The  

 

160 Message  Flows



application  sends  the  messages  to  the  broker  on  a Real-timeInput  node,  and  the  

message  flow  makes  the  publications  available  to  multiple  subscribers  through  a 

Publication  node.  

Configuring the Real-timeInput node 

When  you  have  put  an  instance  of  the  Real-timeInput  node  into  a message  flow, 

you  can  configure  it.  Right-click  the  node  in the  editor  view  and  select  Properties. 

The  node’s  basic  properties  are  displayed.  

All  mandatory  properties  for  which  you  must  enter  a value  (those  that  do  not  have  

a default  value  defined)  are  marked  with  an  asterisk  on  the  properties  dialog.  

Configure  the  Real-timeInput  node  as  follows:  

1.   In  Port, identify  the  number  of  the  port  on  which  the  node  listens  for  messages  

from  JMS  applications.  Ensure  that  the  port  number  that  you  specify  does  not  

conflict  with  any  other  listener  service.  There  is no  default  for  this  property;  

you  must  enter  a value.  

2.   If you  want  to  authenticate  users  that  send  messages  on  receipt  of  their  

messages,  select  the  Authentication  check  box.  If you  clear  the  check  box  (the  

default  setting),  users  are  not  authenticated.  

3.   If you  want  clients  to use  HTTP  tunneling,  select  the  Tunnel  through  HTTP  

check  box.  If  you  clear  the  check  box  (the  default  setting),  messages  do  not  use  

HTTP  tunneling.  If  you  set  this  option,  all  client  applications  that  connect  must  

use  this  feature.  If  they  do  not,  their  connection  is rejected.  The  client  

application  cannot  use  this  option  in  conjunction  with  the  connect-via  proxy  

setting,  which  is activated  from  the  client  side.  

4.   In  Read  Threads, enter  the  number  of  threads  that  you  want  the  broker  to 

allocate  to  read  messages.  The  broker  starts  as  many  instances  of the  message  

flow  as are  necessary  to  process  current  messages,  up  to  this  limit.  The  default  

setting  is 10.  

5.   In  Write Threads, enter  the  number  of  threads  that  you  want  the  broker  to 

allocate  to  write  messages.  The  broker  starts  as  many  instances  of  the  message  

flow  as are  necessary  to  process  current  messages,  up  to  this  limit.  The  default  

setting  is 10.  

6.   In  Authentication  Threads, enter  the  number  of threads  that  you  want  the  broker  

to  allocate  to  user  authentication  checks.  The  user  authentication  check  is 

performed  when  a message  is received.  The  broker  starts  as many  instances  of 

the  message  flow  as  are  necessary  to  process  current  messages,  up  to  this  limit.  

The  default  setting  is 10.  

7.   Select  Description  in  the  properties  dialog  navigator  to enter  a short  

description,  a long  description,  or  both.  

8.   Click  Apply  to  make  the  changes  to the  Real-timeInput  node  without  closing  

the  properties  dialog.  Click  OK  to  apply  the  changes  and  close  the  properties  

dialog.  

Click  Cancel  to  close  the  dialog  and  discard  all  the  changes  that  you  have  

made  to  the  properties.

Connecting  the  terminals:    

The  Real-timeInput  node  routes  each  message  that  it retrieves  successfully  to  the  

out  terminal.  If  this  fails,  the  message  is retried.  

 

Message flows 161



Terminals and properties 

The  Real-timeInput  node  terminals  are  described  in  the  following  table.  

 Terminal  Description  

Out  The  output  terminal  to which  the  message  is routed  if it is successfully  retrieved  from  

JMS.
  

The  following  tables  describe  the  node  properties;  the  column  headed  M  indicates  

whether  the  property  is  mandatory  (marked  with  an  asterisk  on  the  properties  

dialog  if you  must  enter  a value  when  no  default  is  defined),  the  column  headed  C 

indicates  whether  the  property  is configurable  (you  can  change  the  value  when  you  

add  the  message  flow  to  the  bar  file  to  deploy  it).  

The  Real-timeInput  node  Basic  properties  are  described  in the  following  table.  

 Property  M C Default  Description  

Port  Yes Yes 0 The  port  number  on which  the  input  node  listens  for 

publish  or subscribe  requests.  

Authentication  Yes No  Cleared  Select  the  check  box  to authenticate  users.  

Tunnel through  HTTP  Yes No  Cleared  Select  the  check  box  to indicate  that  users  use  HTTP  

tunneling.  Clear  the  check  box to indicate  that  HTTP  

tunneling  is not  used.  

Read  Threads  No  Yes 10 The  number  of threads  used  for reading.  

Write Threads  No  Yes 10 The  number  of threads  used  for writing.  

Authentication  Threads  No  Yes 10 The  number  of threads  used  for accepting  connections  

and  authenticating  users.
  

The  properties  of the  General  Message  Options  for  the  Real-timeInput  node  are  

described  in  the  following  table.  

The  Real-timeInput  node  Description  properties  are  described  in  the  following  

table.  

 Property  M C Default  Description  

Short  Description  No  No    A brief  description  of the  node.  

Long  Description  No  No    Text that  describes  the purpose  of the  node  in the  

message  flow.
  

Real-timeOptimizedFlow node 

This  topic  contains  the  following  sections:  

v   “Purpose”  on  page  163  

v   “Using  this  node  in  a message  flow”  on  page  163  

v   “Configuring  the  Real-timeOptimizedFlow  node”  on  page  163  

v   “Terminals  and  properties”  on  page  164

 

162 Message  Flows



Purpose 

Use  the  Real-timeOptimizedFlow  node  to  receive  messages  from  clients  that  

connect  using  the  WebSphere  MQ  Real-time  Transport  or  the  WebSphere  MQ  

Multicast  Transport,  and  that  use  JMS  application  programming  interfaces.  

The  Real-timeOptimizedFlow  node  is a complete  message  flow  that  provides  a 

high  performance  publish/subscribe  message  flow. The  actions  taken  by  this  node  

are  all  internalized;  you  cannot  influence  its  operation  except  by  configuring  its  

properties,  and  you  cannot  connect  it  to  any  other  node.  

This  node  also  supports  publication  to,  or  subscription  from,  standard  WebSphere  

MQ  applications,  but  its  performance  for  these  applications  is  not  as good  as  the  

performance  achieved  for  JMS  applications.  

The  Real-timeOptimizedFlow  node  is represented  in  the  workbench  by  the  

following  icon:  

   

Using this node in a message flow 

Include  the  Real-timeOptimizedFlow  node  in  a message  flow  when  you  want  to  

distribute  messages  through  a broker  to and  from  client  applications  that  use  JMS.  

Configuring the Real-timeOptimizedFlow node 

When  you  have  put  an  instance  of  the  Real-timeOptimizedFlow  node  into  a 

message  flow, you  can  configure  it. Right-click  the  node  in  the  editor  view  and  

select  Properties. The  node’s  basic  properties  are  displayed.  

All  mandatory  properties  for  which  you  must  enter  a value  (those  that  do  not  have  

a default  value  defined)  are  marked  with  an  asterisk  on  the  properties  dialog.  

Configure  the  Real-timeOptimizedFlow  node  as  follows:  

1.   In  Port, identify  the  number  of  the  port  on  which  the  node  listens  for  publish  

or  subscribe  requests  from  JMS  applications.  Ensure  that  the  port  number  that  

you  specify  does  not  conflict  with  any  other  listener  service.  There  is no  default  

for  this  property;  you  must  enter  a value.  

2.   If you  want  users  to  authenticate  that  send  messages  on  receipt  of  their  

messages,  select  the  Authentication  check  box.  If you  clear  the  check  box  (the  

default  setting),  users  are  not  authenticated.  

3.   If you  want  clients  to use  HTTP  tunneling,  select  the  Tunnel  through  HTTP  

check  box.  If  you  clear  the  check  box  (the  default  setting),  messages  do  not  use  

HTTP  tunneling.  If  you  select  the  check  box,  all  client  applications  that  connect  

must  use  this  feature.  If they  do  not,  their  connection  is rejected.  The  client  

application  cannot  use  this  option  in  conjunction  with  the  connect-via  proxy  

setting,  which  is activated  from  the  client  side.  

4.   In  Read  Threads, enter  the  number  of  threads  that  you  want  the  broker  to 

allocate  to  read  messages.  The  broker  starts  as  many  instances  of the  message  

flow  as are  necessary  to  process  current  messages,  up  to  this  limit.  The  default  

setting  is 10.  

 

Message flows 163



5.   In  Write  Threads, enter  the  number  of threads  that  you  want  the  broker  to  

allocate  to  write  messages.  The  broker  starts  as many  instances  of the  message  

flow  as  are  necessary  to  process  current  messages,  up  to this  limit.  The  default  

setting  is  10.  

6.   In  Authentication  Threads, enter  the  number  of  threads  that  you  want  the  broker  

to  allocate  to  user  authentication  checks.  The  user  authentication  check  is 

performed  when  a message  is received.  The  broker  starts  as  many  instances  of  

the  message  flow  as  are  necessary  to  process  current  messages,  up  to  this  limit.  

The  default  setting  is 10.  

7.   Select  Description  in  the  properties  dialog  navigator  to enter  a short  

description,  a long  description,  or  both.  

8.   Click  Apply  to  make  the  changes  to  the  Real-timeOptimizedFlow  node  without  

closing  the  properties  dialog.  Click  OK  to  apply  the  changes  and  close  the  

properties  dialog.  

Click  Cancel  to  close  the  dialog  and  discard  all  the  changes  that  you  have  

made  to  the  properties.

Terminals and properties 

The  Real-timeOptimizedFlow  node  has  no  terminals.  It  is a complete  message  flow  

and  cannot  be  connected  to  other  nodes  to extend  the  message  processing.  

The  following  tables  describe  the  node  properties;  the  column  headed  M  indicates  

whether  the  property  is  mandatory  (marked  with  an  asterisk  on  the  properties  

dialog  if you  must  enter  a value  when  no  default  is  defined),  the  column  headed  C 

indicates  whether  the  property  is configurable  (you  can  change  the  value  when  you  

add  the  message  flow  to  the  bar  file  to  deploy  it).  

The  Real-timeOptimizedFlow  node  Basic  properties  are  described  in  the  following  

table.  

 Property  M C Default  Description  

Port  Yes Yes   The  port  number  on which  the  node  listens  for  publish  or 

subscribe  requests.  You must  provide  a value  for  this  

property.  

Authentication  Yes No  Cleared  Select  the  check  box  to authenticate  users.  

Tunnel through  

HTTP  

Yes No  Cleared  Select  the  check  box  to indicate  that  clients  use  HTTP  

tunneling.  Clear  the  check  box to indicate  that  HTTP  

tunneling  is not  used.  

Read  Threads  No  Yes 10 The  number  of threads  used  for reading.  

Write Threads  No  Yes 10 The  number  of threads  used  for writing.  

Authentication  

Threads  

No  Yes 10 The  number  of threads  used  for accepting  connections  and  

authenticating  users.
  

The  Real-timeOptimizedFlow  node  Description  properties  are  described  in  the  

following  table.  

 Property  M C Default  Description  

Short  Description  No  No    A brief  description  of the  node.  

Long  Description  No  No    Text that  describes  the purpose  of the  node  in the  

message  flow.
 

 

164 Message  Flows



SCADAInput node 

This  topic  contains  the  following  sections:  

v   “Purpose”  

v   “Using  this  node  in a message  flow”  on  page  166  

v   “Configuring  the  SCADAInput  node”  on  page  166  

v   “Terminals  and  properties”  on  page  168

Purpose 

Use  the  SCADAInput  node  to  receive  messages  from  clients  that  connect  to  the  

broker  across  the  WebSphere  MQ  Telemetry  Transport.  SCADA  device  clients  use  

the  MQIsdp  protocol  to send  messages,  which  are  converted  by  the  SCADAInput  

node  into  a format  recognized  by  WebSphere  Event  Broker.  The  node  also  

establishes  the  processing  environment  for  these  messages.  

Message  flows  that  handle  messages  received  from  SCADA  devices  must  always  

start  with  a SCADAInput  node.  Set  the  SCADAInput  node’s  properties  to  control  

the  way  that  messages  are  received:  for  example,  you  can  indicate  that  a message  

is  to  be  processed  under  transaction  control.  

When  you  deploy  message  flows  containing  SCADA  nodes  to  a broker,  you  must  

deploy  them  to  a single  execution  group,  regardless  of  the  number  of  message  

flows.  

Because  SCADA  is primarily  publish/subscribe,  you  typically  include  a Publication  

node  to  terminate  the  flow. In  scenarios  where  you  do  not  want  a Publication  

node,  you  can  include  a SCADAOutput  node.  If you  do  so,  you  must  also  include  

a SCADAInput  node  regardless  of the  source  of  the  messages,  because  the  

SCADAInput  node  provides  the  connectivity  information  required  by  the  

SCADAOutput  node.  

If  you  include  an  output  node  in  a message  flow  that  starts  with  a SCADAInput  

node,  it can  be  any  of  the  supported  output  nodes,  including  user-defined  output  

nodes.  You can  create  a message  flow  that  receives  messages  from  SCADA  devices  

and  generates  messages  for  clients  that  use  all  supported  transports  to  connect  to 

the  broker,  because  you  can  configure  the  message  flow  to  request  the  broker  to  

provide  any  necessary  conversion.  

You can  request  that  the  broker  start  or  stop  a SCADA  listener  by  publishing  

messages  with  a specific  topic.  This  can  be  done  for  all  ports  or  for  a single  port  

identified  in  the  message.  

You cannot  use  SCADAInput  nodes  in  message  flows  that  are  to be  deployed  on  

z/OS  systems.  

If  you  create  a message  flow  to use  as  a subflow,  you  cannot  use  a standard  input  

node,  you  must  use  an  instance  of  the  Input  node  as  the  first  node  to create  an  in  

terminal  for  the  subflow.  

If  your  message  flow  does  not  receive  messages  across  SCADA  connections,  you  

can  choose  one  of  the  supported  input  nodes.  

The  SCADAInput  node  is represented  in  the  workbench  by  the  following  icon:  

 

Message flows 165



Using this node in a message flow 

For  an  example  of  how  to use  this  node,  assume  that  you  create  a message  flow  

with  a SCADAInput  node  that  receives  messages  from  a remote  sensor  when  it 

detects  a change  in its  operating  environment  (for  example,  a drop  in outside  

temperature).  You connect  the  node  to  an  MQOutput  node  that  makes  these  

messages  available  on  a queue  serviced  by  a WebSphere  MQ  application  that  

analyses  and  responds  to the  information  received.  

Configuring the SCADAInput node 

When  you  have  put  an  instance  of the  SCADAInput  node  into  a message  flow, you  

can  configure  it.  Right-click  the  node  in  the  editor  view  and  click  Properties. The  

node’s  basic  properties  are  displayed  in  the  properties  dialog.  

All  mandatory  properties  for  which  you  must  enter  a value  (those  that  do  not  have  

a default  value  defined)  are  marked  with  an  asterisk  on  the  properties  dialog.  

Configure  the  SCADAInput  node  as  follows:  

1.   Set  the  following  basic  properties:  

a.   The  Enable  listener  on  startup  check  box  is  initially  selected.  This  means  that  

the  listener  for  MQIsdp  clients  is initialized  when  the  message  flow  is 

deployed.  

You can  update  the  status  of  the  listener  by  publishing  on  the  control  topic  

$SYS/SCADA/MQIsdpListener/<port_number>  with  the  Payload  part  of  the  

message  set  to  ON  or  OFF. 

b.   Specify  the  Port  number  on  which  the  MQIsdp  server  is to listen.  This  must  

be  a unique  port,  and  must  not  conflict  with  other  listeners  (for  example,  

those  set  up  for  WebSphere  MQ  or  WebSphere  MQ  Everyplace).  The  default  

number  is  1883. 

c.   Set  the  Max  Threads  value  to  indicate  the  maximum  number  of  threads  

available  to  the  MQIsdp  server  to support  clients.  The  default  value  is 500. 

If  you  are  using  DB2  for  your  broker  database,  you  must  specify  a value  

that  is  less  than  or  equal  to the  value  that  you  have  set  for  the  DB2  

configuration  parameters  maxappls  and  maxagents. See  Connecting  to  the  

databases  for  further  information.  

d.   Select  Use  Thread  Pooling  if you  want  the  node  to  use  a pool  of threads  to  

service  clients.  If  you  select  this  option,  the  number  of  threads  available  to  

the  MQIsdp  server  is limited  by  Max  Threads, which  you  are  recommended  

to  set  to  a value  of between  20  and  40.  If you  do  not  select  this  option,  a 

new  thread  is created  for  each  client  that  connects.  The  check  box  is initially  

clear. 

Use  this  option  only  if you  expect  a large  number  of clients  (greater  than  

200)  to  connect.
2.   Select  Advanced  in  the  properties  dialog  navigator  and  set  the  required  value  

for  Transaction  Mode  to define  the  transactional  characteristics  of  how  this  

message  is  handled:  

v   If  you  select  Automatic, the  incoming  message  is received  under  syncpoint  if 

it  is  marked  persistent,  otherwise  it is not.  The  transactionality  of any  

 

166 Message  Flows



derived  messages  subsequently  sent  by  an  output  node  is determined  by  the  

incoming  persistence  property,  unless  the  output  node  has  explicitly  

overridden  transactionality.  

v   If  you  select  Yes, the  incoming  message  is received  under  syncpoint.  Any  

derived  messages  subsequently  sent  by  an  output  node  in  the  same  instance  

of  the  message  flow  are  sent  transactionally,  unless  the  output  node  has  

explicitly  overridden  transactionality.  

v   If  you  select  No,  the  incoming  message  is not  received  under  syncpoint.  Any  

derived  messages  subsequently  sent  by  an  output  node  in  the  flow  are  sent  

non-transactionally,  unless  the  output  node  has  specified  that  the  message  

should  be  put  under  syncpoint.
3.   Select  Description  in  the  properties  dialog  navigator  to enter  a short  

description,  a long  description,  or  both.  

4.   Click  Apply  to  make  the  changes  to the  SCADAInput  node  without  closing  the  

properties  dialog.  Click  OK  to  apply  the  changes  and  close  the  properties  

dialog.  

Click  Cancel  to  close  the  dialog  and  discard  all  the  changes  that  you  have  

made  to  the  properties.

Connecting  the  terminals:    

SCADAInput  routes  each  message  that  it retrieves  successfully  to  the  out  terminal.  

If  this  fails,  the  message  is propagated  to the  failure  terminal;  you  can  connect  

nodes  to  this  terminal  to  handle  this  condition.  If you  have  not  connected  the  

failure  terminal,  the  message  loops  continually  through  the  node  until  the  problem  

is  resolved.  

If  the  message  is  caught  by  this  node  after  an  exception  has  been  thrown  further  

on  in  the  message  flow, the  message  is routed  to  the  catch  terminal.  If  you  have  

not  connected  the  catch  terminal,  the  message  loops  continually  through  the  node  

until  the  problem  is resolved.  Ensure  that  a node  is always  connected  to  this  

terminal  if there  is the  possibility  of  the  message  rolling  back  within  a message  

flow. 

Configuring  for  coordinated  transactions:    

When  you  include  a SCADAInput  node  in a message  flow, the  value  that  you  set  

for  Transaction  Mode  defines  whether  messages  are  received  under  syncpoint:  

v   If  you  set  it to  Yes  (the  default),  the  message  is received  under  syncpoint  (that  is,  

within  a WebSphere  MQ  unit  of  work).  Any  messages  subsequently  sent  by  an  

output  node  in  the  same  instance  of the  message  flow  are  put  under  syncpoint,  

unless  the  output  node  has  explicitly  overridden  this.  

v   If  you  set  it to  Automatic, the  message  is received  under  syncpoint  if the  

incoming  message  is marked  persistent.  Otherwise,  it is not.  Any  message  

subsequently  sent  by  an  output  node  is put  under  syncpoint,  as  determined  by  

the  incoming  persistence  property,  unless  the  output  node  has  explicitly  

overridden  this.  

v   If  you  set  it to  No,  the  message  is not  received  under  syncpoint.  Any  messages  

subsequently  sent  by  an  output  node  in the  flow  are  not  put  under  syncpoint,  

unless  an  individual  output  node  has  specified  that  the  message  should  be put  

under  syncpoint.

(The  MQOutput  node  is the  only  output  node  that  you  can  configure  to override  

this  option.)  

 

Message flows 167



Terminals and properties 

The  SCADAInput  node  terminals  are  described  in  the  following  table.  

 Terminal  Description  

Failure  The  output  terminal  to which  the  message  is routed  if an error  occurs.  

Out  The  output  terminal  to which  the  message  is routed  if it is successfully  retrieved  from  

the  queue.  

Catch  The  output  terminal  to which  the  message  is routed  if an exception  is thrown  

downstream  and  caught  by this  node.
  

The  following  tables  describe  the  node  properties;  the  column  headed  M  indicates  

whether  the  property  is  mandatory  (marked  with  an  asterisk  on  the  properties  

dialog  if you  must  enter  a value  when  no  default  is  defined),  the  column  headed  C 

indicates  whether  the  property  is configurable  (you  can  change  the  value  when  you  

add  the  message  flow  to  the  bar  file  to  deploy  it).  

The  SCADAInput  node  Basic  properties  are  described  in  the  following  table.  

 Property  M C Default  Description  

Enable  listener  on  

startup  

Yes No  Selected  When  the listener  is started.  If you  select  the  check  box,  

the  listener  starts  when  the message  flow  is started  by 

the  broker. If you  clear  the check  box,  the  listener  starts  

on the  arrival  of a message  on the  specified  port.  

Port  Yes Yes 1883  The  port  on which  the SCADA  protocol  is listening.  

Max  Threads  Yes Yes 500  The  maximum  number  of threads  to be started  to 

support  SCADA  devices.  

Use  Thread  Pooling  Yes Yes Cleared  Whether  to use  thread  pooling.  If you  select  the  check  

box,  this  action  is performed.
  

The  SCADAInput  node  Advanced  property  are  described  in  the  following  table.  

 Property  M C Default  Description  

Transaction  Mode  Yes No  Yes  Whether  the incoming  message  is received  under  

syncpoint.  Valid values  are  Automatic, Yes,  and  No.
  

The  Description  properties  of  the  SCADAInput  node  are  described  in  the  following  

table.  

 Property  M C Default  Description  

Short  Description  No  No    A brief  description  of the  node.  

Long  Description  No  No    Text that  describes  the purpose  of the  node  in the  

message  flow.
  

SCADAOutput node 

This  topic  contains  the  following  sections:  

v   “Purpose”  on  page  169  

v   “Using  this  node  in  a message  flow”  on  page  169  

v   “Configuring  the  SCADAOutput  node”  on  page  169  

 

168 Message  Flows



v   “Terminals  and  properties”  on  page  170

Purpose 

Use  the  SCADAOutput  node  to send  a message  to a client  that  connects  to the  

broker  using  the  MQIsdp  protocol  across  the  WebSphere  MQ  Telemetry  Transport.  

You would  typically  use  the  Publication  node  to  send  output  to a SCADA  client.  

The  SCADAOutput  node  lets  you  write  your  own  Publication  node.  

If  you  include  a SCADAOutput  node  in  a message  flow, you  must  also  include  a 

SCADAInput  node,  regardless  of the  source  of the  messages,  because  the  

SCADAInput  node  provides  the  connectivity  information  required  by  the  

SCADAOutput  node.  

When  you  deploy  message  flows  containing  SCADA  nodes  to  a broker,  you  must  

deploy  them  to  a single  execution  group,  regardless  of  the  number  of  message  

flows.  

You cannot  use  the  SCADAOutput  node  to  change  the  transactional  characteristics  

of  the  message  flow. The  transactional  characteristics  set  by  the  message  flow’s  

input  node  determine  the  transactional  behavior  of the  flow. 

You cannot  use  SCADAOutput  nodes  in message  flows  that  you  deploy  to z/OS  

systems.  

If  you  create  a message  flow  to use  as  a subflow,  you  cannot  use  a standard  output  

node;  you  must  use  an  instance  of  the  Output  node  to create  an  out  terminal  for  

the  subflow  through  which  the  message  can  be  propagated.  

If  you  do  not  want  your  message  flow  to  send  messages  to a SCADA  device,  you  

can  choose  another  supported  output  node.  

The  SCADAOutput  node  is represented  in  the  workbench  by  the  following  icon:  

   

Using this node in a message flow 

Use  the  Publication  node  to  publish  messages  for  SCADA  devices.  Use  this  node  if 

you  want  to  process  the  publication  messages  in  a particular  way  for  these  devices.  

Configuring the SCADAOutput node 

When  you  have  put  an  instance  of  the  SCADAOutput  node  into  a message  flow  

you  can  configure  it.  Right-click  the  node  in the  editor  view  and  click  Properties. 

The  node’s  description  properties  are  displayed.  

All  mandatory  properties  for  which  you  must  enter  a value  (those  that  do  not  have  

a default  value  defined)  are  marked  with  an  asterisk  on  the  properties  dialog.  

Configure  the  SCADAOutput  node  as  follows:  

1.   Select  Description  in  the  properties  dialog  navigator  to enter  a short  

description,  a long  description,  or  both.  

 

Message flows 169



2.   Click  Apply  to  make  the  changes  to  the  SCADAOutput  node  without  closing  

the  properties  dialog.  Click  OK  to  apply  the  changes  and  close  the  properties  

dialog.  

Click  Cancel  to  close  the  dialog  and  discard  all  the  changes  that  you  have  

made  to  the  properties.

Now  connect  the  node’s  terminals  to  determine  how  it operates  within  this  

message  flow. 

Connecting  the  terminals:    

Connect  the  in  terminal  to  the  node  from  which  messages  bound  for  SCADA  

destinations  are  routed.  

Connect  the  out  or  failure  terminal  of  this  node  to  another  node  in  this  message  

flow  to  send  the  message  to  an  additional  destination.  

Terminals and properties 

The  SCADAOutput  node  terminals  are  described  in  the  following  table.  

 Terminal  Description  

In The  input  terminal  that  accepts  a message  for  processing  by the  node.  

Failure  The  output  terminal  to which  the  message  is routed  if a failure  is detected  when  the 

message  is put  to the  output  queue.  

Out  The  output  terminal  to which  the  message  is routed  if it has  been  successfully  put  to 

the  output  queue,  and  if further  processing  is required  within  this  message  flow.
  

The  following  table  describes  the  node  properties;  the  column  headed  M  indicates  

whether  the  property  is  mandatory  (marked  with  an  asterisk  on  the  properties  

dialog  if you  must  enter  a value  when  no  default  is  defined),  the  column  headed  C 

indicates  whether  the  property  is configurable  (you  can  change  the  value  when  you  

add  the  message  flow  to  the  bar  file  to  deploy  it).  

The  SCADAOutput  node  Description  properties  are  described  in  the  following  

table.  

 Property  M C Default  Description  

Short  Description  No  No    A brief  description  of the  node.  

Long  Description  No  No    Text that  describes  the purpose  of the  node  in the  

message  flow.
  

User-defined nodes 

You can  deploy  user-defined  nodes  that  are  created  and  supplied  by  WebSphere  

Message  Broker  Version  6.0  users  or  by  independent  software  vendors  and  other  

companies.  Use  these  nodes  in  WebSphere  Event  Broker  message  flows,  to add  to  

the  function  provided  by  the  supplied  or  built-in  nodes.  

WebSphere  Message  Broker  Version  6.0  users  and  other  vendors  can  provide  help  

information  for  user-defined  nodes.  If help  information  has  been  provided,  it is 

displayed  after  this  topic  when  you  install  the  user-defined  node.  

 

170 Message  Flows



Supported code pages 

Application  messages  must  conform  to supported  code  pages.  

The  message  flows  that  you  create,  configure,  and  deploy  to  a broker  can  process  

application  messages  in  any  code  page  listed  in  the  table.  You can  also  generate  a 

new  code  page  converter.  

For  detailed  information  about  Chinese  code  page  GB18030  support,  see  “Chinese  

code  page  GB18030”  on  page  198.  

WebSphere  Event  Broker  supports  the  codepages  given  in  the  following  tables  by  

default.  To find  a code  page  for  a specific  CCSID,  search  for  a internal  converter  

name  in  the  form  ibm-ccsid, where  ccsid  is the  CCSID  you  are  looking  for. 

v   Unicode  converters  

v   European  and  American  language  converters  

v   Asian  language  converters  

v   Windows  US  and  European  converters  

v   MAC  related  converters  

v   Hebrew,  Cyrillic  and  ECMA  language  converters  

v   Indian  language  converters  

v   EBCDIC  converters

Unicode  converters  

 Internal  converter  name  Aliases  

UTF-8  

   UTF-8  

   ibm-1208  

   ibm-1209  

   ibm-5304  

   ibm-5305  

   windows-65001  

   cp1208  

UTF-16  

   UTF-16  

   ISO-10646-UCS-2  

   unicode  

   csUnicode  

   ucs-2  

 

Message flows 171



Internal  converter  name  Aliases  

UTF-16BE  

   UTF-16BE  

   x-utf-16be  

   ibm-1200  

   ibm-1201  

   ibm-5297  

   ibm-13488  

   ibm-17584  

   windows-1201  

   cp1200  

   cp1201  

   UTF16_BigEndian  

UTF-16LE  

   UTF-16LE  

   x-utf-16le  

   ibm-1202  

   ibm-13490  

   ibm-17586  

   UTF16_LittleEndian  

   windows-1200  

UTF-32  

   UTF-32  

   ISO-10646-UCS-4  

   csUCS4  

   ucs-4  

UTF-32BE  

   UTF-32BE  

   UTF32_BigEndian  

   ibm-1232  

   ibm-1233  

UTF-32LE  

   UTF-32LE  

   UTF32_LittleEndian  

   ibm-1234  

UTF16_PlatformEndian  

   UTF16_PlatformEndian  

UTF16_OppositeEndian  

   UTF16_OppositeEndian  

UTF32_PlatformEndian  

   UTF32_PlatformEndian  

UTF32_OppositeEndian  

   UTF32_OppositeEndian  

UTF-7  

   UTF-7  

   windows-65000  

IMAP-mailbox-name  

   IMAP-mailbox-name  

SCSU  

   SCSU  

BOCU-1  

   BOCU-1  

   csBOCU-1  

CESU-8  

   CESU-8
 

 

172 Message  Flows



European  and  American  language  converters  

 Internal  converter  name  Aliases  

ISO-8859-1  

   ISO-8859-1  

   ibm-819  

   IBM819  

   cp819  

   latin1  

   8859_1  

   csISOLatin1  iso-ir-100  

   ISO_8859-1:1987  l1 819  

US-ASCII  

   US-ASCII  

   ASCII  

   ANSI_X3.4-1968  

   ANSI_X3.4-1986  

   ISO_646.irv:1991  

   iso_646.irv:1983  

   ISO646-US  

   us 

   csASCII  

   iso-ir-6  

   cp367  

   ascii7  

   646  

   windows-20127  

gb18030  

   gb18030  

   ibm-1392  

   windows-54936  

ibm-367_P100-1995  

   ibm-367_P100-1995  

   ibm-367  IBM367  

ibm-912_P100-1995  

   ibm-912_P100-1995  

   ibm-912  

   iso-8859-2  

   ISO_8859-2:1987  

   latin2  

   csISOLatin2  

   iso-ir-101  

   l2 

   8859_2  

   cp912  912  

   windows-28592  

 

Message flows 173



Internal  converter  name  Aliases  

ibm-913_P100-2000  

   ibm-913_P100-2000  

   ibm-913  

   iso-8859-3  

   ISO_8859-3:1988  

   latin3  

   csISOLatin3  

   iso-ir-109  

   l3 

   8859_3  

   cp913  

   913  

   windows-28593  

ibm-914_P100-1995  

   ibm-914_P100-1995  

   ibm-914  

   iso-8859-4  

   latin4  

   csISOLatin4  

   iso-ir-110  

   ISO_8859-4:1988  

   l4 

   8859_4  

   cp914  

   914  

   windows-28594  

ibm-915_P100-1995  

   ibm-915_P100-1995  

   ibm-915  

   iso-8859-5  

   cyrillic  

   csISOLatinCyrillic  

   iso-ir-144  

   ISO_8859-5:1988  

   8859_5  

   cp915  

   915  

   windows-28595  

 

174 Message  Flows



Internal  converter  name  Aliases  

ibm-1089_P100-1995  

   ibm-1089_P100-1995  

   ibm-1089  

   iso-8859-6  

   arabic  

   csISOLatinArabic  

   iso-ir-127  

   ISO_8859-6:1987  

   ECMA-114  

   ASMO-708  

   8859_6  

   cp1089  

   1089  

   windows-28596  

   ISO-8859-6-I  

   ISO-8859-6-E  

ibm-813_P100-1995  

   ibm-813_P100-1995  

   ibm-813  

   iso-8859-7  

   greek  

   greek8  

   ELOT_928  

   ECMA-118  

   csISOLatinGreek  

   iso-ir-126  

   ISO_8859-7:1987  

   8859_7  

   cp813  

   813  

   windows-28597  

ibm-916_P100-1995  

   ibm-916_P100-1995  

   ibm-916  iso-8859-8  

   hebrew  

   csISOLatinHebrew  

   iso-ir-138  

   ISO_8859-8:1988  

   ISO-8859-8-I  ISO-8859-8-E  

   8859_8  

   cp916  

   916  

   windows-28598  

 

Message flows 175



Internal  converter  name  Aliases  

ibm-920_P100-1995  

    ibm-920_P100-1995  

   ibm-920  

   iso-8859-9  

   latin5  

   csISOLatin5  

   iso-ir-148  

   ISO_8859-9:1989  

   l5 

   8859_9  

   cp920  

   920  

   windows-28599  

   ECMA-128  

ibm-921_P100-1995  

    ibm-921_P100-1995  

   ibm-921  

   iso-8859-13  

   8859_13  

   cp921  

   921  

ibm-923_P100-1998  

   ibm-923_P100-1998  

   ibm-923  

   iso-8859-15  

   Latin-9  

   l9 

   8859_15  

   latin0  

   csisolatin0  

   csisolatin9  

   iso8859_15_fdis  

   cp923  

   923  

   windows-28605
  

Asian  language  converters  

 Internal  converter  name  Aliases  

ibm-942_P12A-1999  

   ibm-942_P12A-1999  

   ibm-942  

   ibm-932  

   cp932  

   shift_jis78  

   sjis78  ibm-942_VSUB_VPUA  

   ibm-932_VSUB_VPUA  

 

176 Message  Flows



Internal  converter  name  Aliases  

ibm-943_P15A-2003  

   ibm-943_P15A-2003  

   ibm-943  

   Shift_JIS  

   MS_Kanji  

   csShiftJIS  

   windows-31j  

   csWindows31J  

   x-sjis  

   x-ms-cp932  

   cp932  

   windows-932  

   cp943c  

   IBM-943C  

   ms932  

   pck  

   sjis 

   ibm-943_VSUB_VPUA  

ibm-943_P130-1999  

   ibm-943_P130-1999  

   ibm-943  

   Shift_JIS  

   cp943  

   943  

   ibm-943_VASCII_VSUB_VPUA  

ibm-33722_P12A-1999  

   ibm-33722_P12A-1999  

   ibm-33722  

   ibm-5050  

   EUC-JP  

   Extended_UNIX_Code_Packed_Format_for_Japanese  

   csEUCPkdFmtJapanese  

   X-EUC-JP  

   eucjis  

   windows-51932  

   ibm-33722_VPUA  

   IBM-eucJP  

ibm-33722_P120-1999  

   ibm-33722_P120-1999  

   ibm-33722  

   ibm-5050  

   cp33722  

   33722  

   ibm-33722_VASCII_VPUA  

ibm-954_P101-2000  

   ibm-954_P101-2000  

   ibm-954  

   EUC-JP  

 

Message flows 177



Internal  converter  name  Aliases  

ibm-1373_P100-2002  

   ibm-1373_P100-2002  

   ibm-1373  

   windows-950  

windows-950-2000  

   windows-950-2000  

   Big5  

   csBig5  

   windows-950  x-big5  

ibm-950_P110-1999  

   ibm-950_P110-1999  

   ibm-950  

   cp950  

   950  

macos-2566-10.2  

   macos-2566-10.2  

   Big5-HKSCS  

   big5hk  

   HKSCS-BIG5  

ibm-1375_P100-2003  

   ibm-1375_P100-2003  

   ibm-1375  

   Big5-HKSCS  

ibm-1386_P100-2002  

   ibm-1386_P100-2002  

   ibm-1386  

   cp1386  

   windows-936  

   ibm-1386_VSUB_VPUA  

windows-936-2000  

   windows-936-2000  

   GBK  

   CP936  

   MS936  

   windows-936  

ibm-1383_P110-1999  

   ibm-1383_P110-1999  

   ibm-1383  

   GB2312  

   csGB2312  

   EUC-CN  

   ibm-eucCN  

   hp15CN  

   cp1383  

   1383  

   ibm-1383_VPUA  

 

178 Message  Flows



Internal  converter  name  Aliases  

ibm-5478_P100-1995  

   ibm-5478_P100-1995  

   ibm-5478  

   GB_2312-80  

   chinese  

   iso-ir-58  

   csISO58GB231280  

   gb2312-1980  

   GB2312.1980-0  

ibm-964_P110-1999  

   ibm-964_P110-1999  

   ibm-964  

   EUC-TW  

   ibm-eucTW  

   cns11643  

   cp964  

   964  

   ibm-964_VPUA  

ibm-949_P110-1999  

   ibm-949_P110-1999  

   ibm-949  

   cp949  

   949  

   ibm-949_VASCII_VSUB_VPUA  

ibm-949_P11A-1999  

   ibm-949_P11A-1999  

   ibm-949  

   cp949c  

   ibm-949_VSUB_VPUA  

ibm-970_P110-1995  

   ibm-970_P110-1995  

   ibm-970  EUC-KR  

   KS_C_5601-1987  

   windows-51949  

   csEUCKR  

   ibm-eucKR  

   KSC_5601  

   5601  

   ibm-970_VPUA  

ibm-971_P100-1995  

   ibm-971_P100-1995  

   ibm-971  

   ibm-971_VPUA  

 

Message flows 179



Internal  converter  name  Aliases  

ibm-1363_P11B-1998  

   ibm-1363_P11B-1998  

   ibm-1363  

   KS_C_5601-1987  

   KS_C_5601-1989  

   KSC_5601  

   csKSC56011987  

   korean  

   iso-ir-149  

   5601  

   cp1363  

   ksc  

   windows-949  

   ibm-1363_VSUB_VPUA  

ibm-1363_P110-1997  

   ibm-1363_P110-1997  

   ibm-1363  

   ibm-1363_VASCII_VSUB_VPUA  

windows-949-2000  

   windows-949-2000  

   windows-949  

   KS_C_5601-1987  

   KS_C_5601-1989  

   KSC_5601  

   csKSC56011987  

   korean  

   iso-ir-149  

   ms949  

ibm-1162_P100-1999  

   ibm-1162_P100-1999  

   ibm-1162  

ibm-874_P100-1995  

   ibm-874_P100-1995  

   ibm-874  

   ibm-9066  

   cp874  

   TIS-620  

   tis620.2533  

   eucTH  

   cp9066  

windows-874-2000  

   windows-874-2000  

   TIS-620  

   windows-874  

   MS874
  

Windows  US  and  European  converters  

 

180 Message  Flows



Internal  converter  name  Aliases  

ibm-437_P100-1995  

   ibm-437_P100-1995  

   ibm-437  

   IBM437  

   cp437  

   437  

   csPC8CodePage437  

   windows-437  

ibm-850_P100-1995  

   ibm-850_P100-1995  

   ibm-850  IBM850  

   cp850  

   850  

   csPC850Multilingual  

   windows-850  

ibm-851_P100-1995  

   ibm-851_P100-1995  

   ibm-851  

   IBM851  

   cp851  

   851  

   csPC851  

ibm-852_P100-1995  

   ibm-852_P100-1995  

   ibm-852  

   IBM852  

   cp852  

   852  

   csPCp852  

   windows-852  

ibm-855_P100-1995  

   ibm-855_P100-1995  

   ibm-855  

   IBM855  

   cp855  

   855  

   csIBM855  

   csPCp855  

ibm-856_P100-1995  

   ibm-856_P100-1995  

   ibm-856  

   cp856  

   856  

ibm-857_P100-1995  

   ibm-857_P100-1995  

   ibm-857  

   IBM857  

   cp857  

   857  

   csIBM857  

   windows-857  

 

Message flows 181



Internal  converter  name  Aliases  

ibm-858_P100-1997  

   ibm-858_P100-1997  

   ibm-858  

   IBM00858  

   CCSID00858  

   CP00858  

   PC-Multilingual-850+euro  cp858  

ibm-860_P100-1995  

   ibm-860_P100-1995  

   ibm-860  

   IBM860  

   cp860  

   860  

   csIBM860  

ibm-861_P100-1995  

   ibm-861_P100-1995  

   ibm-861  

   IBM861  

   cp861  

   861  

   cp-is  

   csIBM861  

   windows-861  

ibm-862_P100-1995  

   ibm-862_P100-1995  

   ibm-862  

   IBM862  

   cp862  

   862  

   csPC862LatinHebrew  

   DOS-862  

   windows-862  

ibm-863_P100-1995  

   ibm-863_P100-1995  

   ibm-863  

   IBM863  

   cp863  

   863  

   csIBM863  

ibm-864_X110-1999  

   ibm-864_X110-1999  

   ibm-864  

   IBM864  

   cp864  

   csIBM864  

 

182 Message  Flows



Internal  converter  name  Aliases  

ibm-865_P100-1995  

   ibm-865_P100-1995  

   ibm-865  

   IBM865  

   cp865  

   865  

   csIBM865  

ibm-866_P100-1995  

   ibm-866_P100-1995  

   ibm-866  

   IBM866  

   cp866  

   866  

   csIBM866  

   windows-866  

ibm-867_P100-1998  

   ibm-867_P100-1998  

   ibm-867  

   cp867  

ibm-868_P100-1995  

   ibm-868_P100-1995  

   ibm-868  

   IBM868  

   cp868  

   868  

   csIBM868  

   cp-ar  

ibm-869_P100-1995  

   ibm-869_P100-1995  

   ibm-869  

   IBM869  

   cp869  

   869  

   cp-gr  

   csIBM869  

   windows-869  

ibm-878_P100-1996  

   ibm-878_P100-1996  

   ibm-878  

   KOI8-R  

   koi8  

   csKOI8R  

   cp878  

ibm-901_P100-1999  

   ibm-901_P100-1999  

   ibm-901_P100-1999  

   ibm-901  

ibm-902_P100-1999  

   ibm-902_P100-1999  

   ibm-902  

 

Message flows 183



Internal  converter  name  Aliases  

ibm-922_P100-1999  

   ibm-922_P100-1999  

   ibm-922  

   cp922  

   922  

ibm-4909_P100-1999  

   ibm-4909_P100-1999  

   ibm-4909  

ibm-5346_P100-1998  

    ibm-5346_P100-1998  

   ibm-5346  

   windows-1250  

   cp1250  

ibm-5347_P100-1998  

   ibm-5347_P100-1998  

   ibm-5347  

   windows-1251  

   cp1251  

ibm-5348_P100-1997  

   ibm-5348_P100-1997  

   ibm-5348  

   windows-1252  

   cp1252  

ibm-5349_P100-1998  

   ibm-5349_P100-1998  

   ibm-5349  

   windows-1253  

   cp1253  

ibm-5350_P100-1998  

    ibm-5350_P100-1998  

   ibm-5350  

   windows-1254  

   cp1254  

ibm-9447_P100-2002  

   ibm-9447_P100-2002  

   ibm-9447  

   windows-1255  

   cp1255  

windows-1256-2000  

   windows-1256-2000  

   windows-1256  

   cp1256  

ibm-9449_P100-2002  

    ibm-9449_P100-2002  

   ibm-9449  

   windows-1257  

   cp1257  

ibm-5354_P100-1998  

   ibm-5354_P100-1998  

   ibm-5354  

   windows-1258  

   cp1258  

 

184 Message  Flows



Internal  converter  name  Aliases  

ibm-1250_P100-1995  

   ibm-1250_P100-1995  

   ibm-1250  

   windows-1250  

ibm-1251_P100-1995  

   ibm-1251_P100-1995  

   ibm-1251  

   windows-1251  

ibm-1252_P100-2000  

   ibm-1252_P100-2000  

   ibm-1252  

   windows-1252  

ibm-1253_P100-1995  

   ibm-1253_P100-1995  

   ibm-1253  

   windows-1253  

ibm-1254_P100-1995  

   ibm-1254_P100-1995  

   ibm-1254  

   windows-1254  

ibm-1255_P100-1995  

   ibm-1255_P100-1995  

   ibm-1255  

ibm-5351_P100-1998  

   ibm-5351_P100-1998  

   ibm-5351  

   windows-1255  

ibm-1256_P110-1997  

   ibm-1256_P110-1997  

   ibm-1256  

ibm-5352_P100-1998  

   ibm-5352_P100-1998  

   ibm-5352  

   windows-1256  

ibm-1257_P100-1995  

   ibm-1257_P100-1995  

   ibm-1257  

ibm-5353_P100-1998  

   ibm-5353_P100-1998  

   ibm-5353  

   windows-1257  

ibm-1258_P100-1997  

   ibm-1258_P100-1997  

   ibm-1258  

   windows-1258
  

MAC  related  converters  

 Internal  converter  name  Aliases  

macos-0_2-10.2  

   macos-0_2-10.2  

   macintosh  

   mac  

   csMacintosh  

   windows-10000  

 

Message flows 185



Internal  converter  name  Aliases  

macos-6-10.2  

   macos-6-10.2  

   x-mac-greek  

   windows-10006  

   macgr  

macos-7_3-10.2  

   macos-7_3-10.2  

   x-mac-cyrillic  

   windows-10007  

   maccy  

macos-29-10.2  

    macos-29-10.2  

   x-mac-centraleurroman  

   windows-10029  

   x-mac-ce  macce  

macos-35-10.2  

   macos-35-10.2  

   x-mac-turkish  

   windows-10081  

   mactr  

ibm-1051_P100-1995  

   ibm-1051_P100-1995  

   ibm-1051  

   hp-roman8  

   roman8  

   r8 

   csHPRoman8  

ibm-1276_P100-1995  

   ibm-1276_P100-1995  

   ibm-1276  

   Adobe-Standard-Encoding  

   csAdobeStandardEncoding  

ibm-1277_P100-1995  

   ibm-1277_P100-1995  

   ibm-1277  

   Adobe-Latin1-Encoding
  

Hebrew,  Cyrillic,  and  ECMA  language  converters  

 Internal  converter  name  Aliases  

ibm-1006_P100-1995  

   ibm-1006_P100-1995  

   ibm-1006  

   cp1006  

   1006  

ibm-1098_P100-1995  

   ibm-1098_P100-1995  

   ibm-1098  

   cp1098  

   1098  

 

186 Message  Flows



Internal  converter  name  Aliases  

ibm-1124_P100-1996  

   ibm-1124_P100-1996  

   ibm-1124  

   cp1124  

   1124 

ibm-1125_P100-1997  

   ibm-1125_P100-1997  

   ibm-1125  cp1125  

ibm-1129_P100-1997  

   ibm-1129_P100-1997  

   ibm-1129  

ibm-1131_P100-1997  

   ibm-1131_P100-1997  

   ibm-1131  

   cp1131  

ibm-1133_P100-1997  

   ibm-1133_P100-1997  

   ibm-1133  

ibm-1381_P110-1999  

   ibm-1381_P110-1999  

   ibm-1381  

   cp1381  

   1381  

ISO_2022,locale=ja,version=0  

   ISO_2022,locale=ja,version=0  

   ISO-2022-JP  

   csISO2022JP  

ISO_2022,locale=ja,version=1  

   ISO_2022,locale=ja,version=1  

   ISO-2022-JP-1  

   JIS 

   JIS_Encoding  

ISO_2022,locale=ja,version=2  

   ISO_2022,locale=ja,version=2  

   ISO-2022-JP-2  

   csISO2022JP2  

ISO_2022,locale=ja,version=3  

   ISO_2022,locale=ja,version=3  

   JIS7  

   csJISEncoding  

ISO_2022,locale=ja,version=4  

   ISO_2022,locale=ja,version=4  

   JIS8  

ISO_2022,locale=ko,version=0  

   ISO_2022,locale=ko,version=0  

   ISO-2022-KR  

   csISO2022KR  

ISO_2022,locale=ko,version=1  

   ISO_2022,locale=ko,version=1  

   ibm-25546  

ISO_2022,locale=zh,version=0  

   ISO_2022,locale=zh,version=0  

   ISO-2022-CN  

ISO_2022,locale=zh,version=1  

   ISO_2022,locale=zh,version=1  

   ISO-2022-CN-EXT  

 

Message flows 187



Internal  converter  name  Aliases  

HZ  

   HZ  

   HZ-GB-2312  

ibm-897_P100-1995  

   ibm-897_P100-1995  

   ibm-897  

   JIS_X0201  

   X0201  

   csHalfWidthKatakana
  

Indian  language  converters  

 Internal  converter  name  Aliases  

ISCII,version=0  ISCII,version=0  

   x-iscii-de  

   windows-57002  

   iscii-dev  

ISCII,version=1  ISCII,version=1  

   x-iscii-be  

   windows-57003  

   iscii-bng  

   windows-57006  

   x-iscii-as  

ISCII,version=2  ISCII,version=2  

   x-iscii-pa  

   windows-57011  

   iscii-gur  

ISCII,version=3  ISCII,version=3  

   x-iscii-gu  

   windows-57010  

   iscii-guj  

ISCII,version=4  ISCII,version=4  

   x-iscii-or  

   windows-57007  

   iscii-ori  

ISCII,version=5  ISCII,version=5  

   x-iscii-ta  

   windows-57004  

   iscii-tml  

ISCII,version=6  ISCII,version=6  

   x-iscii-te  

   windows-57005  

   iscii-tlg  

ISCII,version=7  ISCII,version=7  

   x-iscii-ka  

   windows-57008  

   iscii-knd  

ISCII,version=8  ISCII,version=8  

   x-iscii-ma  

   windows-57009  

   iscii-mlm
  

EBCDIC  converters  

 

188 Message  Flows



Internal  converter  name  Aliases  

LMBCS-1  

   LMBCS-1  

   lmbcs  

LMBCS-2  

   LMBCS-2  

LMBCS-3  

   LMBCS-3  

LMBCS-4  

   LMBCS-4  

LMBCS-5  

   LMBCS-5  

LMBCS-6  

   LMBCS-6  

LMBCS-8  

   LMBCS-8  

LMBCS-11  

   LMBCS-11  

LMBCS-16  

   LMBCS-16  

LMBCS-17  

   LMBCS-17  

LMBCS-18  

   LMBCS-18  

LMBCS-19  

   LMBCS-19  

ibm-37_P100-1995  

   ibm-37_P100-1995  

   ibm-37  

   IBM037  

   ibm-037  

   ebcdic-cp-us  

   ebcdic-cp-ca  

   ebcdic-cp-wt  

   ebcdic-cp-nl  

   csIBM037  

   cp037  

   037  

   cpibm37  

   cp37  

ibm-273_P100-1995  

   ibm-273_P100-1995  

   ibm-273  

   IBM273  

   CP273  

   csIBM273  

   ebcdic-de  

   cpibm273  

   273  

 

Message flows 189



Internal  converter  name  Aliases  

ibm-277_P100-1995  

   ibm-277_P100-1995  

   ibm-277  

   IBM277  

   cp277  

   EBCDIC-CP-DK  

   EBCDIC-CP-NO  

   csIBM277  

   ebcdic-dk  

   cpibm277  

   277  

ibm-278_P100-1995  

   ibm-278_P100-1995  

   ibm-278  

   IBM278  

   cp278  

   ebcdic-cp-fi  

   ebcdic-cp-se  

   csIBM278  

   ebcdic-sv  

   cpibm278  

   278  

ibm-280_P100-1995  

   ibm-280_P100-1995  

   ibm-280  

   IBM280  

   CP280  

   ebcdic-cp-it  

   csIBM280  

   cpibm280  

   280  

ibm-284_P100-1995  

   ibm-284_P100-1995  

   ibm-284  

   IBM284  

   CP284  

   ebcdic-cp-es  

   csIBM284  

   cpibm284  

   284  

ibm-285_P100-1995  

   ibm-285_P100-1995  

   ibm-285  

   IBM285  

   CP285  

   ebcdic-cp-gb  

   csIBM285  

   ebcdic-gb  

   cpibm285  

   285  

 

190 Message  Flows



Internal  converter  name  Aliases  

ibm-290_P100-1995  

   ibm-290_P100-1995  

   ibm-290  

   IBM290  

   cp290  

   EBCDIC-JP-kana  

   csIBM290  

ibm-297_P100-1995  

   ibm-297_P100-1995  

   ibm-297  

   IBM297  

   cp297  

   ebcdic-cp-fr  

   csIBM297  

   cpibm297  

   297  

ibm-420_X120-1999  

   ibm-420_X120-1999  

   IBM420  

   cp420  

   ebcdic-cp-ar1  

   csIBM420  420  

ibm-424_P100-1995  

   ibm-424_P100-1995  

   ibm-424  

   IBM424  

   cp424  

   ebcdic-cp-he  

   csIBM424  

   424  

ibm-500_P100-1995  

   ibm-500_P100-1995  

   ibm-500  

   IBM500  

   CP500  

   ebcdic-cp-be  

   csIBM500  

   ebcdic-cp-ch  

   cpibm500  

   500  

ibm-803_P100-1999  

   ibm-803_P100-1999  

   ibm-803  

   cp803  

 

Message flows 191



Internal  converter  name  Aliases  

ibm-838_P100-1995  

   ibm-838_P100-1995  

   ibm-838  

   IBM-Thai  

   csIBMThai  

   cp838  

   838  

   ibm-9030  

ibm-870_P100-1995  

   ibm-870_P100-1995  

   ibm-870  

   IBM870  

   CP870  

   ebcdic-cp-roece  

   ebcdic-cp-yu  

   csIBM870  

ibm-871_P100-1995  

   ibm-871_P100-1995  

   ibm-871  

   IBM871  

   ebcdic-cp-is  

   csIBM871  

   CP871  

   ebcdic-is  

   cpibm871  

   871  

ibm-875_P100-1995  

   ibm-875_P100-1995  

   ibm-875  

   IBM875  

   cp875  

   875  

ibm-918_P100-1995  

   ibm-918_P100-1995  

   ibm-918  

   IBM918  

   CP918  

   ebcdic-cp-ar2  

   csIBM918  

ibm-930_P120-1999  

   ibm-930_P120-1999  

   ibm-930  

   ibm-5026  

   cp930  

   cpibm930  

   930  

 

192 Message  Flows



Internal  converter  name  Aliases  

ibm-933_P110-1995  

   ibm-933_P110-1995  

   ibm-933  

   cp933  

   cpibm933  

   933  

ibm-935_P110-1999  

   ibm-935_P110-1999  

   ibm-935  

   cp935  

   cpibm935  

   935  

ibm-937_P110-1999  

   ibm-937_P110-1999  

   ibm-937  

   cp937  

   cpibm937  

   937  

ibm-939_P120-1999  

   ibm-939_P120-1999  

   ibm-939  

   ibm-931  

   ibm-5035  

   cp939  

   939  

ibm-1025_P100-1995  

   ibm-1025_P100-1995  

   ibm-1025  

   cp1025  

   1025  

ibm-1026_P100-1995  

   ibm-1026_P100-1995  

   ibm-1026  

   IBM1026  

   CP1026  

   csIBM1026  

   1026  

ibm-1047_P100-1995  

   ibm-1047_P100-1995  

   ibm-1047  

   IBM1047  

   cpibm1047  

ibm-1097_P100-1995  

   ibm-1097_P100-1995  

   ibm-1097  

   cp1097  

   1097  

ibm-1112_P100-1995  

   ibm-1112_P100-1995  

   ibm-1112  

   cp1112 

   1112 

 

Message flows 193



Internal  converter  name  Aliases  

ibm-1122_P100-1999  

   ibm-1122_P100-1999  

   ibm-1122  

   cp1122  

   1122 

ibm-1123_P100-1995  

   ibm-1123_P100-1995  

   ibm-1123  

   cp1123  

   1123 

   cpibm1123  

ibm-1130_P100-1997  

   ibm-1130_P100-1997  

   ibm-1130  

ibm-1132_P100-1998  

   ibm-1132_P100-1998  

   ibm-1132  

ibm-1140_P100-1997  

   ibm-1140_P100-1997  

   ibm-1140  

   IBM01140  

   CCSID01140  

   CP01140  

   cp1140  

   cpibm1140  

   ebcdic-us-37+euro  

ibm-1141_P100-1997  

   ibm-1141_P100-1997  

   ibm-1141  

   IBM01141  

   CCSID01141  

   CP01141  

   cp1141  

   cpibm1141  

   ebcdic-de-273+euro  

ibm-1142_P100-1997  

   ibm-1142_P100-1997  

   ibm-1142  

   IBM01142  

   CCSID01142  

   CP01142  

   cp1142  

   cpibm1142  

   ebcdic-dk-277+euro  

   ebcdic-no-277+euro  

 

194 Message  Flows



Internal  converter  name  Aliases  

ibm-1143_P100-1997  

   ibm-1143_P100-1997  

   ibm-1143  

   IBM01143  

   CCSID01143  

   CP01143  

   cp1143  

   cpibm1143  

   ebcdic-fi-278+euro  

   ebcdic-se-278+euro  

ibm-1144_P100-1997  

   ibm-1144_P100-1997  

   ibm-1144  

   IBM01144  

   CCSID01144  

   CP01144  

   cp1144  

   cpibm1144  

   ebcdic-it-280+euro  

ibm-1145_P100-1997  

   ibm-1145_P100-1997  

   ibm-1145  

   IBM01145  

   CCSID01145  

   CP01145  

   cp1145  

   cpibm1145  

   ebcdic-es-284+euro  

ibm-1146_P100-1997  

   ibm-1146_P100-1997  

   ibm-1146  

   IBM01146  

   CCSID01146  

   CP01146  

   cp1146  

   cpibm1146  

   ebcdic-gb-285+euro  

ibm-1147_P100-1997  

   ibm-1147_P100-1997  

   ibm-1147  

   IBM01147  

   CCSID01147  

   CP01147  

   cp1147  

   cpibm1147  

   ebcdic-fr-297+euro  

 

Message flows 195



Internal  converter  name  Aliases  

ibm-1148_P100-1997  

   ibm-1148_P100-1997  

   ibm-1148  

   IBM01148  

   CCSID01148  

   CP01148  

   cp1148  

   cpibm1148  

   ebcdic-international-500+euro  

ibm-1149_P100-1997  

   ibm-1149_P100-1997  

   ibm-1149  

   IBM01149  

   CCSID01149  

   CP01149  

   cp1149  

   cpibm1149  

   ebcdic-is-871+euro  

ibm-1153_P100-1999  

   ibm-1153_P100-1999  

   ibm-1153  

   cpibm1153  

ibm-1154_P100-1999  

   ibm-1154_P100-1999  

   ibm-1154  

   cpibm1154  

ibm-1155_P100-1999  

   ibm-1155_P100-1999  

   ibm-1155  

   cpibm1155  

ibm-1156_P100-1999  

   ibm-1156_P100-1999  

   ibm-1156  

   cpibm1156  

ibm-1157_P100-1999  

   ibm-1157_P100-1999  

   ibm-1157  

   cpibm1157  

ibm-1158_P100-1999  

   ibm-1158_P100-1999  

   ibm-1158  

   cpibm1158  

ibm-1160_P100-1999  

   ibm-1160_P100-1999  

   ibm-1160  

   cpibm1160  

ibm-1164_P100-1999  

   ibm-1164_P100-1999  

   ibm-1164  

   cpibm1164  

ibm-1364_P110-1997  

   ibm-1364_P110-1997  

   ibm-1364  

   cp1364  

 

196 Message  Flows



Internal  converter  name  Aliases  

ibm-1371_P100-1999  

   ibm-1371_P100-1999  

   ibm-1371  

   cpibm1371  

ibm-1388_P103-2001  

   ibm-1388_P103-2001  

   ibm-1388  

   ibm-9580  

ibm-1390_P110-2003  

   ibm-1390_P110-2003  

   ibm-1390  

   cpibm1390  

ibm-1399_P110-2003  

   ibm-1399_P110-2003  

   ibm-1399  

ibm-16684_P110-2003  

   ibm-16684_P110-2003  

   ibm-16684  

ibm-4899_P100-1998  

   ibm-4899_P100-1998  

   ibm-4899  

   cpibm4899  

ibm-4971_P100-1999  

   ibm-4971_P100-1999  

   ibm-4971  

   cpibm4971  

ibm-12712_P100-1998  

   ibm-12712_P100-1998  

   ibm-12712  

   cpibm12712  

   ebcdic-he  

ibm-16804_X110-1999  

   ibm-16804_X110-1999  

   ibm-16804  

   cpibm16804  

   ebcdic-ar  

ibm-1137_P100-1999  

   ibm-1137_P100-1999  

   ibm-1137  

ibm-5123_P100-1999  

   ibm-5123_P100-1999  

   ibm-5123  

ibm-8482_P100-1999  

   ibm-8482_P100-1999  

   ibm-8482  

ibm-37_P100-1995,swaplfnl  

   ibm-37_P100-1995,swaplfnl  

   ibm-37-s390  

   ibm037-s390  

ibm-1047_P100-1995,swaplfnl  

   ibm-1047_P100-1995,swaplfnl  

   ibm-1047-s390  

ibm-1140_P100-1997,swaplfnl  

   ibm-1140_P100-1997,swaplfnl  

   ibm-1140-s390  

 

Message flows 197



Internal  converter  name  Aliases  

ibm-1142_P100-1997,swaplfnl  

   ibm-1142_P100-1997,swaplfnl  

   ibm-1142-s390  

ibm-1143_P100-1997,swaplfnl  

   ibm-1143_P100-1997,swaplfnl  

   ibm-1143-s390  

ibm-1144_P100-1997,swaplfnl  

   ibm-1144_P100-1997,swaplfnl  

   ibm-1144-s390  

ibm-1145_P100-1997,swaplfnl  

   ibm-1145_P100-1997,swaplfnl  

   ibm-1145-s390  

ibm-1146_P100-1997,swaplfnl  

   ibm-1146_P100-1997,swaplfnl  

   ibm-1146-s390  

ibm-1147_P100-1997,swaplfnl  

   ibm-1147_P100-1997,swaplfnl  

   ibm-1147-s390  

ibm-1148_P100-1997,swaplfnl  

   ibm-1148_P100-1997,swaplfnl  

   ibm-1148-s390  

ibm-1149_P100-1997,swaplfnl  

   ibm-1149_P100-1997,swaplfnl  

   ibm-1149-s390  

ibm-1153_P100-1999,swaplfnl  

   ibm-1153_P100-1999,swaplfnl  

   ibm-1153-s390  

ibm-12712_P100-1998,swaplfnl  

   ibm-12712_P100-1998,swaplfnl  

   ibm-12712-s390  

ibm-16804_X110-1999,swaplfnl  

   ibm-16804_X110-1999,swaplfnl  

   ibm-16804-s390  

ebcdic-xml-us  

   ebcdic-xml-us
  

Chinese code page GB18030 

There  are  some  restrictions  if you  are  working  with  messages  in  Chinese  code  page  

GB18030.  

The  broker  can  input  and  output  application  messages  encoded  in code  page  

IBM-5488  (GB18030  support)  with  the  following  restrictions:  

v   To enable  support  for  GB18030  in  the  workbench  and  Configuration  Manager:  

–   If you  run a workbench  or  Configuration  Manager  that  requires  GB18030  

support  on  a Windows  2000  system,  apply  the  GB18030  patch  supplied  by  

Microsoft.  This  support  is included  in  Windows  XP.  

–   Create  the  Configuration  Manager  configuration  repository  with  a code  set  of  

UTF-8. 

–   Change  the  text  font  preference  in  the  workbench  to  use  GB18030:  

-   Select  Preferences  in the  Window  menu.  

-   Expand  the  Workbench  item  on  the  left  side  of the  Preferences  dialog  (click  

the  plus  sign)  and  select  Fonts. 

-   In  the  Fonts  display,  select  Text Font.  Click  Change, and  select  the  correct  

values  in  the  Fonts  selection  dialog.  

 

198 Message  Flows



-   Click  OK  to  confirm  the  selection  and  close  the  dialog.  

-   Click  Apply  to  apply  the  change,  then  OK  to  close  the  Preference  dialog.

Data integrity within message flows 

Code  pages  in  which  data  is manipulated  must  be  compatible  between  brokers  and  

databases.  

Subscription  data  retrieved  from  client  applications  (for  example,  topics  from  

publishers  and  subscribers,  and  content  filters  from  subscribers)  and  the  character  

data  entered  through  the  workbench  (for  example,  message  flow  names)  are  stored  

in  the  configuration  repository.  This  data  is translated  from  its  originating  code  

page  to  the  code  page  of  the  process  in which  the  broker  or  Configuration  

Manager  is  running,  and  then  by  the  database  manager  to  the  code  page  in  which  

the  database  or  databases  were  created.  

To preserve  data  consistency  and  integrity,  ensure  that  all  this  subscription  data  

and  workbench  character  data  is originated  in  a compatible  code  page  to  the  two  

code  pages  to  which  it is translated.  If  you  do  not  do  so,  you  might  get  

unpredictable  results  and  lose  data.  

Data  stored  in  the  broker  database  is not  affected  in  this  way.  

Configurable message flow properties 

When  you  add  a message  flow  to  a broker  archive  (bar)  file  in  preparation  for  

deploying  it to  a broker,  you  can  set  additional  properties  that  influence  its  

runtime  operation.  These  properties  are  available  for  review  and  update  when  you  

select  the  Configure  tab  for  the  broker  archive  file.  

Additional  Instances  

Specifies  the  number  of  additional  threads  that  the  broker  can  use  to  

service  the  message  flow. These  additional  threads  are  created  only  if there  

are  sufficient  input  messages.  You can  have  up  to  256  threads.  The  default  

value  is  0. Additional  threads  can  increase  the  throughput  of  a message  

flow  but  you  should  consider  the  potential  impact  on  message  order.  

 If  the  message  flow  processes  WebSphere  MQ  messages,  you  can  configure  

the  message  flow  to control  the  message  order.  Set  the  Order  Mode  property  

on  the  MQInput  node  accordingly.  You might  also  need  to  set  the  Commit  

by  Message  Group  and  Logical  Order  properties.  

 The  broker  opens  the  input  queue  as  shared  (using  the  

MQOO_INPUT_SHARED  option),  so  you  must  ensure  that  the  input  

queue  has  been  defined  with  the  SHARE  property  to  enable  multiple  

broker  threads  to  read  from  the  same  input  queue.  

 For  more  information  about  the  node  properties,  refer  to the  “MQInput  

node”  on  page  142.  

Commit  Count  

Specifies  how  many  input  WebSphere  MQ  messages  are  processed  by  a 

message  flow  before  a syncpoint  is taken  (by  issuing  an  MQCMIT).  

 Set  this  property  only  if you  have  set  Additional  Instances  to  0.  

 

Message flows 199



The  default  value  of 1 is also  the  minimum  permitted  value.  Change  this  

property  to  avoid  frequent  MQCMIT  calls  when  messages  are  being  

processed  quickly  and  the  lack  of  an  immediate  commit  can  be  tolerated  

by  the  receiving  application.  

 Use  the  Commit  Interval  to ensure  that  a commit  is performed  periodically  

when  not  enough  messages  are  received  to  fulfill  the  Commit  Count. 

 This  property  has  no  effect  if the  message  flow  does  not  process  

WebSphere  MQ  messages.  

Commit  Interval  

For  WebSphere  MQ  messages,  specifies  a time  interval  at which  a commit  

is  taken  when  the  Commit  Count  property  is  greater  than  1 (that  is, where  

the  message  flow  is batching  messages),  but  the  number  of  messages  

processed  has  not  reached  the  value  of the  Commit  Count  property.  It 

ensures  that  a commit  is performed  periodically  when  not  enough  

messages  are  received  to  fulfill  the  Commit  Count. 

 The  time  interval  is specified  in  seconds  , as  a decimal  number  with  a 

maximum  of 3 decimal  places  (millisecond  granularity).  The  value  must  be  

in  the  range  0.000  through  60.000.  The  default  value  is 0.  

 Set  this  property  only  if you  have  set  Additional  Instances  to  0. 

 This  property  has  no  effect  if the  message  flow  does  not  process  

WebSphere  MQ  messages.

You  can  view  and  update  other  configurable  properties  for  the  message  flow. The  

properties  that  are  displayed  depend  on  the  nodes  within  the  message  flow;  some  

have  no  configurable  properties  to  display.  The  node  properties  that  are  

configurable  are  predominantly  system-related  properties  that  are  likely  to change  

for  each  broker  to  which  the  message  flow  is  deployed.  These  properties  include  

the  names  of  WebSphere  MQ  queues  and  queue  managers.  For  full  details  of 

configurable  properties  for  a node,  see  the  appropriate  node  description.  

Message flow porting considerations 

If you  have  configured  a message  flow  that  runs on  a broker  on  a distributed  

system,  and  you  now  want  to  deploy  it to a broker  that  runs on  z/OS,  be  aware  of  

the  following:  

WebSphere  MQ  queue  manager  and  queue  names  

There  are  restrictions  on  WebSphere  MQ  resource  names  on  z/OS:  

v   The  queue  manager  name  cannot  be  greater  than  four  characters.  

v   All  queue  names  must  be  in  uppercase.  Although  using  quotation  marks  

preserves  the  case,  certain  WebSphere  MQ  activities  on  z/OS  cannot  find  

the  queue  names  being  referenced.

For  more  information  about  configuring  on  z/OS,  refer  to  the  WebSphere  

MQ  for  z/OS  Concepts  and  Planning  Guide. 

File  system  references  

File  system  references  must  reflect  a UNIX  file  path.  If  you  deploy  a 

message  flow  to  z/OS  that  you  have  previously  run on  Windows,  you  

might  have  to  make  changes.  If  you  have  previously  deployed  the  message  

flow  to  a UNIX  system  (AIX,  Linux,  Solaris,  or  HP-UX),  you  do  not  have  

to  make  any  changes.

 

200 Message  Flows



Message flow accounting and statistics data 

This  section  provides  information  for  message  flow  accounting  and  statistics  data.  

Details  of  the  information  that  is collected,  and  the  output  formats  in  which  it can  

be  recorded,  are  provided:  

v   Statistics  details  

v   Data  formats  

v   Example  output

You can  also  find  information  on  how  to use  accounting  and  statistics  data  to  

improve  the  performance  of  a message  flow  in  this  developerWorks  article  on  

message  flow  performance.  

Message flow accounting and statistics details 

This  topic  identifies  the  statistics  that  are  collected  for  message  flows.  

The  details  that  are  available  are:  

Message  flow  statistics  

One  record  is  created  for  each  message  flow  in  an  execution  group.  Each  

record  contains  the  following  details:  

v   Message  flow  name  and  UUID  

v   Execution  group  name  and  UUID  

v   Broker  name  and  UUID  

v   Start  and  end  times  for  data  collection  

v   Type of data  collected  (snapshot  or  archive)  

v   CPU  and  elapsed  time  spent  processing  messages  

v   CPU  and  elapsed  time  spent  waiting  for  input  

v   Number  of  messages  processed  

v   Minimum,  maximum,  and  average  message  sizes  

v   Number  of  threads  available  and  maximum  assigned  at any  time  

v   Number  of  messages  committed  and  backed  out  

v   Accounting  origin

Thread  statistics  

One  record  is  created  for  each  thread  assigned  to the  message  flow. Each  

record  contains  the  following  details:  

v   Thread  number  (this  has  no  significance  and  is for  identification  only)  

v   CPU  and  elapsed  time  spent  processing  messages  

v   CPU  and  elapsed  time  spent  waiting  for  input  

v   Number  of  messages  processed  

v   Minimum,  maximum,  and  average  message  sizes

Node  statistics  

One  record  is  created  for  each  node  in  the  message  flow. Each  record  

contains  the  following  details:  

v   Node  name  

v   Node  type  (for  example  MQInput)  

v   CPU  time  spent  processing  messages  

v   Elapsed  time  spent  processing  messages  

v   Number  of  times  that  the  node  is invoked  

v   Number  of  messages  processed  

v   Minimum,  maximum,  and  average  message  sizes

 

Message flows 201

http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html


Terminal  statistics  

One  record  is created  for  each  terminal  on  a node.  Each  record  contains  the  

following  details:  

v   Terminal  name  

v   Terminal  type  (input  or  output)  

v   Number  of times  that  a message  is propagated  through  this  terminal

For  further  details  about  specific  output  formats,  see  the  following  topics:  

v   “User  trace  entries  for  message  flow  accounting  and  statistics  data”  on  page  206  

v   “XML  publication  for  message  flow  accounting  and  statistics  data”  

v   “z/OS  SMF  records  for  message  flow  accounting  and  statistics  data”  on  page  

209

Message flow accounting and statistics output formats 

The  message  flow  accounting  and  statistics  data  is  written  in  one  of three  formats:  

v   User  trace  entries  

v   XML  publication  

v   z/OS  SMF  records

XML publication for message flow accounting and statistics data 

This  topic  describe  the  information  that  is  written  to  the  XML  publication  for  

message  flow  accounting  and  statistics  data.  The  data  is created  within  the  folder  

WMQIStatisticsAccounting,  which  contains  subfolders  that  provide  more  detailed  

information.  All  folders  are  present  within  the  publication  even  if you  set  current  

data  collection  parameters  to  specify  that  the  relevant  data  is not  collected.  

Snapshot  data  is used  for  performance  analysis,  and  is published  as retained  and  

non-persistent.  Archive  data  is used  for  accounting  where  an  audit  trail  might  be 

required,  and  is published  as  retained  and  persistent.  All  publications  are  global  

and  can  be  collected  by  a subscriber  that  has  registered  anywhere  in  the  network.  

They  can  also  be  collected  by  more  than  one  subscriber.  

One  XML  publication  is generated  for  each  message  flow  that  is  producing  data  

for  the  time  period  you  have  chosen.  For  example,  if MessageFlowA  and  

MessageFlowB,  are  both  producing  archive  data  over  a period  of 60  minutes,  both  

MessageFlowA  and  MessageFlowB  will  produce  an  XML  publication  every  60 

minutes.  

If you  are  concerned  about  the  safe  delivery  of  these  messages,  for  example  for  

charging  purposes,  use  a secure  delivery  mechanism  such  as  WebSphere  MQ.  

The  folders  and  subfolders  in  the  XML  publication  have  the  following  identifiers:  

v   WMQIStatisticsAccounting  

v   MessageFlow  

v   Threads  

v   ThreadStatistics  

v   Nodes  

v   NodesStatistics  

v   TerminalStatistics

The  tables  provided  here  describe  the  contents  of each  of these  folders  in  the  order  

listed  above.  

 

202 Message  Flows



The  table  below  describes  the  general  accounting  and  statistics  information,  created  

in  folder  WMQIStatisticsAccounting.  

 Field  Data  type  Details  

RecordType  Character  Type of output,  one  of: 

v   Archive  

v   Snapshot  

RecordCode  Character  Reason  for output,  one  of: 

v   MajorInterval  

v   Snapshot  

v   Shutdown  

v   ReDeploy  

v   StatsSettingsModified
  

The  table  below  describes  the  message  flow  statistics  information,  created  in folder  

MessageFlow.  

 Field  Data  type  Details  

BrokerLabel  Character  

(maximum  32) 

Broker  name  

BrokerUUID  Character  

(maximum  32) 

Broker  universal  unique  

identifier  

ExecutionGroupName  Character  

(maximum  32) 

Execution  group  name  

ExecutionGroupUUID  Character  

(maximum  32) 

Execution  group  universal  

unique  identifier  

MessageFlowName  Character  

(maximum  32) 

Message  flow  name  

StartDate  Character  Interval  start  date  

(YYYY-MM-DD)  

StartTime  Character  Interval  start  time  

(HH:MM:SS:NNNNNN)  

EndDate  Character  Interval  end  date  

(YYYY-MM-DD)  

EndTime  Character  Interval  end  time  

(HH:MM:SS:NNNNNN)  

TotalElapsedTime  Numeric  Total elapsed  time  spent  

processing  input  messages  

(microseconds)  

MaximumElapsedTime  Numeric  Maximum  elapsed  time  spent  

processing  an input  message  

(microseconds)  

MinimumElapsedTime  Numeric  Minimum  elapsed  time  spent  

processing  an input  message  

(microseconds)  

TotalCPUTime  Numeric  Total CPU  time  spent  

processing  input  messages  

(microseconds)  

MaximumCPUTime  Numeric  Maximum  CPU  time  spent  

processing  an input  message  

(microseconds)  

 

Message flows 203



Field  Data  type  Details  

MinimumCPUTime  Numeric  Minimum  CPU  time  spent  

processing  an input  message  

(microseconds)  

CPUTimeWaitingForInputMessage  Numeric  Total CPU  time  spent  waiting  

for input  messages  

(microseconds)  

ElapsedTimeWaitingForInputMessage  Numeric  Total elapsed  time  spent  

waiting  for  input  messages  

(microseconds)  

TotalInputMessages  Numeric  Total number  of messages  

processed  

TotalSizeOfInputMessages  Numeric  Total size  of input  messages  

(bytes)  

MaximumSizeOfInputMessages  Numeric  Maximum  input  message  

size  (bytes)  

MinimumSizeOfInputMessages  Numeric  Minimum  message  input  size  

(bytes)  

NumberOfThreadsInPool  Numeric  Number  of threads  in pool  

TimesMaximumNumberofThreadsReached  Numeric  Number  of times  the  

maximum  number  of threads  

is reached  

TotalNumberOfMQErrors1 Numeric  Number  of MQGET  errors  

(MQInput  node)  

TotalNumberOfMessagesWithErrors2 Numeric  Number  of messages  that  

contain  errors  

TotalNumberOfErrorsProcessingMessages  Numeric  Number  of errors  processing  

a message  

TotalNumberOfTimeOutsWaitingForRepliesToAggregateMessages  Numeric  Number  of timeouts  

processing  a message  

(AggregateReply  node  only)  

TotalNumberOfCommits  Numeric  Number  of transaction  

commits  

TotalNumberOfBackouts  Numeric  Number  of transaction  

backouts  

AccountingOrigin  Character  

(maximum  32) 

Accounting  origin  

Notes:   

1.   For  example,  a conversion  error  occurs  when  the  message  is got  from  the  queue.  

2.   These  include  exceptions  that  are  thrown  downstream  of the  input  node,  and  errors  detected  by  the  input  node  

after  it has  successfully  retrieved  the  message  from  the  queue  but  before  it has  propagated  it to the  out  terminal  

(for  example,  a format  error).
  

The  table  below  describes  the  thread  statistics  information,  created  in  folder  

Threads.  

 Field  Data  type  Details  

Number  Numeric  Number  of thread  statistics  subfolders  within  Threads  

folder
 

 

204 Message  Flows



The  table  below  describes  the  thread  statistics  information  for  each  individual  

thread,  created  in  folder  ThreadStatistics,  a subfolder  of  Threads.  

 Field  Data  type  Details  

Number  Numeric  Relative  thread  number  in  pool  

TotalNumberOfInputMessages  Numeric  Total number  of messages  processed  by 

thread  

TotalElapsedTime  Numeric  Total elapsed  time  spent  processing  input  

messages  (microseconds)  

TotalCUPTime  Numeric  Total CPU  time  spent  processing  input  

messages  (microseconds)  

CPUTimeWaitingForInputMessage  Numeric  Total CPU  time  spent  waiting  for  input  

messages  (microseconds)  

ElapsedTimeWaitingForInputMessage  Numeric  Total elapsed  time  spent  waiting  for input  

messages  (microseconds)  

TotalSizeOfInputMessages  Numeric  Total size  of input  messages  (bytes)  

MaximumSizeOfInputMessages  Numeric  Maximum  size  of input  messages  (bytes)  

MinimumSizeOfInputMessages  Numeric  Minimum  size  of input  messages  (bytes)
  

The  table  below  describes  the  node  statistics  information,  created  in  folder  Nodes.  

 Field  Data  type  Details  

Number  Numeric  Number  of node  statistics  subfolders  within  Nodes  

folder
  

The  table  below  describes  the  node  statistics  information  for  each  individual  node,  

created  in  folder  NodesStatistics,  a subfolder  of  Nodes.  

 Field  Data  type  Details  

Label  Character  Name  of node  (Label)  

Type Character  Type of node  

TotalElapsedTime  Numeric  Total elapsed  time  spent  processing  input  

messages  (microseconds)  

MaximumElapsedTime  Numeric  Maximum  elapsed  time  spent  processing  input  

messages  (microseconds)  

MinimumElapsedTime  Numeric  Minimum  elapsed  time  spent  processing  input  

messages  (microseconds)  

TotalCPUTime  Numeric  Total CPU  time  spent  processing  input  messages  

(microseconds)  

MaximumCPUTime  Numeric  Maximum  CPU  time  spent  processing  input  

messages  (microseconds)  

MinimumCPUTime  Numeric  Minimum  CPU  time  spent  processing  input  

messages  (microseconds)  

CountOfInvocations  Numeric  Total number  of messages  processed  by this  node  

NumberOfInputTerminals  Numeric  Number  of input  terminals  

NumberOfOutputTerminals  Numeric  Number  of output  terminals
 

 

Message flows 205



The  table  below  describes  the  terminal  statistics  information,  created  in  folder  

TerminalStatistics.  

 Field  Data  type  Details  

Label  Character  Name  of terminal  

Type Character  Type of terminal,  one  of: 

v   Input  

v   Output  

CountOfInvocations  Numeric  Total number  of invocations
  

User trace entries for message flow accounting and statistics 

data 

This  topic  describes  the  information  that  is  written  to  the  user  trace  log  for  

message  flow  accounting  and  statistics  data.  

The  data  records  are  identified  by  the  following  message  numbers:  

v   BIP2380I  

v   BIP2381I  

v   BIP2382I  

v   BIP2383I

The  inserts  for  each  message  are  described  in  the  following  tables,  in  the  order  

shown  above.  

The  following  table  describes  the  inserts  in  message  BIP2380I.  One  message  is 

written  for  the  message  flow. 

 Field  Data  type  Details  

ProcessID  Numeric  Process  ID  

Key  Numeric  Key  used  to associate  related  

accounting  and  statistics  BIP  

messages  

Type Character  Type of output,  one  of: 

v   Archive  

v   Snapshot  

Reason  Character  Reason  for  output,  one  of: 

v   MajorInterval  

v   Snapshot  

v   Shutdown  

v   ReDeploy  

v   StatsSettingsModified  

BrokerLabel  Character  

(maximum  32) 

Broker  name  

BrokerUUID  Character  

(maximum  32) 

Broker  universal  unique  

identifier  

ExecutionGroupName  Character  

(maximum  32) 

Execution  group  name  

ExecutionGroupUUID  Character  

(maximum  32) 

Execution  group  universal  

unique  identifier  

MessageFlowName  Character  

(maximum  32) 

Message  flow  name  

 

206 Message  Flows



Field  Data  type  Details  

StartDate  Character  Interval  start  date  

(YYYY-MM-DD)  

StartTime  Character  Interval  start  time  

(HH:MM:SS:NNNNNN)  

EndDate  Character  Interval  end  date  

(YYYY-MM-DD)  

EndTime  Character  Interval  end  time  

(HH:MM:SS:NNNNNN)  

TotalElapsedTime  Numeric  Total elapsed  time  spent  

processing  input  messages  

(microseconds)  

MaximumElapsedTime  Numeric  Maximum  elapsed  time  spent  

processing  an input  message  

(microseconds)  

MinimumElapsedTime  Numeric  Minimum  elapsed  time  spent  

processing  an input  message  

(microseconds)  

TotalCPUTime  Numeric  Total CPU  time  spent  

processing  input  messages  

(microseconds)  

MaximumCPUTime  Numeric  Maximum  CPU  time  spent  

processing  an input  message  

(microseconds)  

MinimumCPUTime  Numeric  Minimum  CPU  time  spent  

processing  an input  message  

(microseconds)  

CPUTimeWaitingForInputMessage  Numeric  Total CPU  time  spent  waiting  

for  input  messages  

(microseconds)  

ElapsedTimeWaitingForInputMessage  Numeric  Total elapsed  time  spent  

waiting  for  input  messages  

(microseconds)  

TotalInputMessages  Numeric  Total number  of messages  

processed  

TotalSizeOfInputMessages  Numeric  Total size  of input  messages  

(bytes)  

MaximumSizeOfInputMessages  Numeric  Maximum  input  message  

size  (bytes)  

MinimumSizeOfInputMessages  Numeric  Minimum  input  message  size 

(bytes)  

NumberOfThreadsInPool  Numeric  Number  of threads  in pool  

TimesMaximumNumberofThreadsReached  Numeric  Number  of times  the 

maximum  number  of threads  

is reached  

TotalNumberOfMQErrors1 Numeric  Number  of MQGET  errors  

(MQInput  node)  

TotalNumberOfMessagesWithErrors2 Numeric  Number  of messages  that 

contain  errors  

TotalNumberOfErrorsProcessingMessages  Numeric  Number  of errors  processing  

a message  

 

Message flows 207



Field  Data  type  Details  

TotalNumberOfTimeOutsWaitingForRepliesToAggregateMessages  Numeric  Number  of timeouts  

processing  a message  

(AggregateReply  node  only)  

TotalNumberOfCommits  Numeric  Number  of transaction  

commits  

TotalNumberOfBackouts  Numeric  Number  of transaction  

backouts  

AccountingOrigin  Character  

(maximum  32) 

Accounting  origin  

Notes:   

1.   For  example,  a conversion  error  occurs  when  the  message  is got  from  the  queue.  

2.   These  include  exceptions  that  are  thrown  downstream  of the  input  node,  and  errors  detected  by  the  input  node  

after  it has  successfully  retrieved  the  message  from  the  queue  (for  example,  a format  error).
  

The  following  table  describes  the  inserts  in  message  BIP2381I.  One  message  is 

written  for  each  thread.  

 Field  Data  type  Details  

ProcessID  Numeric  Process  ID  

Key  Numeric  Key  used  to associate  related  accounting  and  

statistics  BIP  messages  

Number  Numeric  Relative  thread  number  in pool  

TotalNumberOfInputMessages  Numeric  Total number  of messages  processed  by 

thread  

TotalElapsedTime  Numeric  Total elapsed  time  spent  processing  input  

messages  (microseconds)  

TotalCUPTime  Numeric  Total CPU  time  spent  processing  input  

messages  (microseconds)  

CPUTimeWaitingForInputMessage  Numeric  Total CPU  time  spent  waiting  for  input  

messages  (microseconds)  

ElapsedTimeWaitingForInputMessage  Numeric  Total elapsed  time  spent  waiting  for input  

messages  (microseconds)  

TotalSizeOfInputMessages  Numeric  Total size  of input  messages  (bytes)  

MaximumSizeOfInputMessages  Numeric  Maximum  size  of input  messages  (bytes)  

MinimumSizeOfInputMessages  Numeric  Minimum  size  of input  messages  (bytes)
  

The  following  table  describes  the  inserts  in  message  BIP2382I.  One  message  is 

written  for  each  node.  

 Field  Data  type  Details  

ProcessID  Numeric  Process  ID 

Key  Numeric  Key  used  to associate  related  accounting  and  

statistics  BIP  messages  

Label  Character  Name  of node  (Label)  

Type Character  Type of node  

TotalElapsedTime  Numeric  Total elapsed  time  spent  processing  input  

messages  (microseconds)  

 

208 Message  Flows



Field  Data  type  Details  

MaximumElapsedTime  Numeric  Maximum  elapsed  time  spent  processing  input  

messages  (microseconds)  

MinimumElapsedTime  Numeric  Minimum  elapsed  time  spent  processing  input  

messages  (microseconds)  

TotalCPUTime  Numeric  Total CPU  time  spent  processing  input  messages  

(microseconds)  

MaximumCPUTime  Numeric  Maximum  CPU  time  spent  processing  input  

messages  (microseconds)  

MinimumCPUTime  Numeric  Minimum  CPU  time  spent  processing  input  

messages  (microseconds)  

CountOfInvocations  Numeric  Total number  of messages  processed  by this  node  

NumberOfInputTerminals  Numeric  Number  of input  terminals  

NumberOfOutputTerminals  Numeric  Number  of output  terminals
  

The  following  table  describes  the  inserts  in message  BIP2383I.  One  message  is 

written  for  each  terminal  on  each  node.  

 Field  Data  type  Details  

ProcessID  Numeric  Process  ID  

Key  Numeric  Key  used  to associate  related  accounting  and  

statistics  BIP  messages  

Label  Character  Name  of terminal  

Type Character  Type of terminal,  one  of: 

v   Input  

v   Output  

CountOfInvocations  Numeric  Total number  of invocations
  

z/OS SMF records for message flow accounting and statistics 

data 

This  topic  describes  the  information  that  is written  to  z/OS  SMF  records  for  

message  flow  accounting  and  statistics  data.  

The  data  records  are  type  117 records  with  the  following  identifiers:  

v   BipSMFDate  

v   BipSMFRecordHdr  

v   BipSMFTriplet  

v   BipSMFMessageFlow  

v   BipSMFThread  

v   BipSMFNode  

v   BipSMFTerminal

The  following  tables  describe  the  contents  of each  of  these  records  in the  order  

listed  above.  

The  following  table  describes  the  contents  of the  BipSMFDate  record.  

 Field  Data  type  Details  

YYYY  signed  short  int 2 byte  year  

 

Message flows 209



Field  Data  type  Details  

MM  char  1 byte  month  

DD  char  1 byte  day
  

The  following  table  describes  the  contents  of  the  BipSMFRecordHdr  record.  

 Field  Data  type  Details  

SM117LEN  unsigned  short  int  SMF  record  length  

SM117SEG  unsigned  short  int  System  reserved  

SM117FLG  char  System  indicator  

SM117RTY  char  Record  type  117 (x’75’)  

SM117TME  unsigned  int  Time when  SMF  moved  the  record  (time  since  

midnight  in hundredths  of a second)  

SM117DTE  unsigned  int  Date  when  SMF  moved  the  record  in packed  decimal  

form  0cyydddF  where:  

 c is 0 (19xx)  or 1 (20xx)  

yy is the  current  year  (0-99)  

ddd  is the current  day  (1-366)  

F is the  sign  

SM117SID  unsigned  int  System  ID 

SM117SSI  unsigned  int  Subsystem  ID 

SM117STY  unsigned  short  int  Record  subtype,  one  of : 

v   1 (only  message  flow  or threads  data  is being  

collected)  

v   2 (node  data  is being  collected)1 

SM117TCT  unsigned  int  Count  of triplets  

SM117SRT  unsigned  char  Record  type,  one  of: 

v   Archive  

v   Snapshot  

SM117SRC  unsigned  char  Record  code,  one  of: 

v   00 = None  

v   01 = Major  Interval  

v   02 = Snapshot  

v   03 = Shutdown  

v   04 = Redeploy  

v   05 = Stats  Settings  Modified  

SM117RSQ  unsigned  short  int  Sequence  number  of the record  when  multiple  records  

are  written  for  a collection  interval.  

SM117NOR  unsigned  short  int  Total number  of related  records  in a collection  interval.  

Note:   

1.   When  only  nodes  data  is being  collected,  a single  subtype  2 record  is written.  If nodes  and  terminals  data  is 

being  collected,  multiple  subtype  2 records  are  written.
  

The  following  table  describes  the  contents  of  the  BipSMFTriplet  record.  

 Field  Data  type  Details  

TRPLTOSE  signed  int  Offset  of record  from  start  of SMF  record  

TRPLTDLE  signed  short  int  Length  of data  type  

 

210 Message  Flows



Field  Data  type  Details  

TRPLTNDR  signed  short  int Number  of data  types  in SMF  record
  

The  following  table  describes  the  contents  of the  BipSMFMessageFlow  record.  

 Field  Data  type  Details  

IMFLID  short  int  Control  block  hex  ID (BipSMFMessageFlow_ID)  

IMFLLEN  short  int  Length  of control  block  

IMFLEYE  char[4]  Eyecatcher  (IMFL)  

IMFLVER  int  Version  number  (BipSMFRecordVersion)  

IMFLBKNM  char32]  Broker  name  

IMFLBKID  char[36]  Broker  universal  unique  identifier  

IMFLEXNM  char[32]  Execution  group  name  

IMFLEXID  char[36]  Execution  group  universal  unique  identifier  

IMFLMFNM  char[32]  Message  flow  name  

IMFLSTDT  BipSMFDate  Interval  start  date  

IMFLSTTM  unsigned  int  Interval  start  time  (format  as for SM117TME)  

IMFLENDT  BipSMFDate  Interval  end  date  

IMFLENTM  unsigned  int  Interval  end  time  (format  as for  SM117TME)  

IMFLTPTM  long  long  int Total elapsed  time  spent  processing  input  messages  (8 

bytes  binary,  microseconds)  

IMFLMXTM  long  long  int Maximum  elapsed  time  spent  processing  an  input  

message  (8 bytes  binary,  microseconds)  

IMFLMNTM  long  long  int Minimum  elapsed  time  spent  processing  an input  

message  (8 bytes  binary,  microseconds)  

IMFLTPCP  long  long  int Total CPU  time  spent  processing  input  messages  (8 

bytes  binary,  microseconds)  

IMFLMXCP  long  long  int Maximum  CPU  time  spent  processing  an input  

message  (8 bytes  binary,  microseconds)  

IMFLMNCP  long  long  int Minimum  CPU  time  spent  processing  an input  message  

(8 bytes  binary,  microseconds)  

IMFLWTCP  long  long  int Total CPU  time  spent  waiting  for  input  messages  (8  

bytes  binary,  microseconds)  

IMFLWTIN  long  long  int Total elapsed  time  spent  waiting  for input  messages  (8 

bytes  binary,  microseconds)  

IMFLTPMG  unsigned  int  Total number  of messages  processed  

IMFLTSMG  long  long  int Total size  of input  messages  (bytes)  

IMFLMXMG  long  long  int Maximum  input  message  size  (bytes)  

IMFLMNMG  long  long  int Minimum  input  message  size  (bytes)  

IMFLTHDP  unsigned  int  Number  of threads  in pool  

IMFLTHDM  unsigned  int  Number  of times  the  maximum  number  of threads  is 

reached  

IMFLERMQ1 unsigned  int  Number  of MQGET  errors  (MQInput  node)  

IMFLERMG2 unsigned  int  Number  of messages  that  contain  errors  

IMFLERPR  unsigned  int  Number  of errors  processing  a message  

 

Message flows 211



Field  Data  type  Details  

IMFLTMOU  unsigned  int Number  of timeouts  processing  a message  

(AggregateReply  node  only)  

IMFLCMIT  unsigned  int Number  of transaction  commits  

IMFLBKOU  unsigned  int Number  of transaction  backouts  

IMFLACCT  char[32]  Accounting  origin  

Notes:   

1.   For  example,  a conversion  error  occurs  when  the  message  is got  from  the  queue.  

2.   These  include  exceptions  that  are  thrown  downstream  of the  input  node,  and  errors  detected  by  the  input  node  

after  it has  successfully  retrieved  the  message  from  the  queue  (for  example,  a format  error).
  

The  following  table  describes  the  contents  of  the  BipSMFThread  record.  

 Field  Data  type  Details  

ITHDID  short  int  Control  block  hex  ID (BipSMFThread_ID)  

ITHDLEN  short  int  Length  of control  block  

ITHDEYE  char[4]  Eyecatcher  (ITHD)  

ITHDVER  int Version  number  (BipSMFRecordVersion)  

ITHDNBR  unsigned  int  Relative  thread  number  in pool  

ITHDTPMG  unsigned  int  Total number  of messages  processed  by thread  

ITHDTPTM  long  long  int  Total elapsed  time  spent  processing  input  messages  (8 bytes  

binary,  microseconds)  

ITHDTPCP  long  long  int  Total CPU  time  spent  processing  input  messages  (8 bytes  

binary,  microseconds)  

ITHDWTCP  long  long  int  Total CPU  time  spent  waiting  for  input  messages  (8 bytes  

binary,  microseconds)  

ITHDWTIN  long  long  int  Total elapsed  time  spent  waiting  for input  messages  (8 

bytes  binary,  microseconds)  

ITHDTSMG  long  long  int  Total size  of input  messages  (bytes)  

ITHDMXMG  long  long  int  Maximum  size  of input  messages  (bytes)  

ITHDMNMG  long  long  int  Minimum  size  of input  messages  (bytes)
  

The  following  table  describes  the  contents  of  the  BipSMFNode  record.  

 Field  Data  type  Details  

INODID  short  int  Control  block  hex  ID (BipSMFNode_ID)  

INODLEN  short  int  Length  of control  block  

INODEYE  char[4]  Eyecatcher  (INOD)  

INODVER  int  Version  number  (BipSMFRecordVersion)  

INODNDNM  char[32]  Name  of node  (Label)  

INODTYPE  char[32]  Type of node  

INODTPTM  long  long  int  Total elapsed  time  spent  processing  input  messages  (8 

bytes  binary,  microseconds)  

INODMXTM  long  long  int  Maximum  elapsed  time  spent  processing  input  messages  

(8 bytes  binary,  microseconds)  

 

212 Message  Flows



Field  Data  type  Details  

INODMNTM  long  long  int Minimum  elapsed  time  spent  processing  input  messages  

(8 bytes  binary,  microseconds)  

INODTPCP  long  long  int Total CPU  time  spent  processing  input  messages  (8 bytes  

binary,  microseconds)  

INODMXCP  long  long  int Maximum  CPU  time  spent  processing  input  messages  (8 

bytes  binary,  microseconds)  

INODMNCP  long  long  int Minimum  CPU  time  spent  processing  input  messages  (8 

bytes  binary,  microseconds)  

INODTPMG  unsigned  int  Total number  of messages  processed  by this  node  

INODNITL  unsigned  int  Number  of input  terminals  

INODNOTL  unsigned  int  Number  of output  terminals
  

The  following  table  describes  the  contents  of the  BipSMFTerminal  record.  

 Field  Data  type  Details  

ITRMID  short  int  Control  block  hex  ID (BipSMFTerminal_ID)  

ITRMLEN  short  int  Length  of control  block  

ITRMEYE  char[4]  Eyecatcher  (ITRM)  

ITRMVER  int  Version  number  (BipSMFRecordVersion)  

ITRMTLNM  char[32]  Name  of terminal  

ITRMTYPE  char[8]  Type of terminal,  one  of: 

v   Input  

v   Output  

ITRMTINV  unsigned  int Total number  of invocations
  

Example message flow accounting and statistics data 

The  following  topics  give  example  output  in  two  formats:  

v   XML  publication  

v   User  trace  entries

An  example  is  not  provided  for  z/OS  SMF  records,  because  these  contain  

hexadecimal  data  and  are  not  easily  viewed  in  that  form.  To view  SMF  records,  use  

any  available  utility  program  that  processes  SMF  records.  For  example,  you  can  

download  WebSphere  MQ  SupportPac  IS11,  which  generates  formatted  SMF  

records  that  are  very  similar  to  formatted  user  trace  entries.  

Example of an XML publication for message flow accounting and 

statistics 

This  topic  shows  an  XML  publication  that  contains  message  flow  accounting  and  

statistics  data.  

The  following  example  shows  the  output  generated  for  a snapshot  report.  The  

content  of this  publication  message  shows  that  the  message  flow  is called  

XMLflow,  and  that  it is  running  in  an  execution  group  named  default  on  broker  

MQ02BRK.  The  message  flow  contains  the  following  nodes:  

v   An  MQInput  node  called  INQueue3  

v   An  MQOutput  node  called  OUTQueue  

 

Message flows 213



v   An  MQOutput  node  called  FAILQueue

The  MQInput  node  out  terminal  is connected  to  the  OUTQueue  node.  The  

MQInput  node  failure  terminal  is connected  to  the  FAILQueue  node.  

During  the  interval  for  which  statistics  have  been  collected,  this  message  flow  

processed  no  messages.  

A publication  generated  for  this  data  always  includes  the  appropriate  folders,  even  

if there  is no  current  data.  

The  following  command  has  been  issued  to achieve  these  results:  

mqsichangeflowstats  MQ02BRK  -s -c  active  -e default  -f XMLFlow  -n advanced  -t basic  -b basic  -o xml  

Blank  lines  have  been  added  between  folders  to  improve  readability.  

The  following  example  is the  subscription  message.  The  <psc>  and  <mcd>  elements  

are  part  of  the  RFH  header,  and  the  <WMQIStatisticsAccounting>  element  is the  

message  body.  

<psc>  

  <Command>Publish</Command>  

  <PubOpt>RetainPub</PubOpt>  

  <Topic>$SYS/Broker/MQ02BRK/StatisticsAccounting/SnapShot/default/XMLflow  

  </Topic>  

</psc>  

  

  

<mcd>  

  <Msd>xml</Msd>  

</mcd>  

  

  

<WMQIStatisticsAccounting  RecordType="SnapShot"  RecordCode="Snapshot">  

The  following  example  is the  publication  that  the  broker  generates:  

<MessageFlow  BrokerLabel="MQ02BRK"  

 BrokerUUID="7d951e31-f200-0000-0080-efe1b9d849dc"  

 ExecutionGroupName="default"  

 ExecutionGroupUUID="77cf1e31-f200-0000-0080-efe1b9d849dc"  

 MessageFlowName="XMLflow"  StartDate="2003-01-17"  

 StartTime="14:44:34.581320"  EndDate="2003-01-17"  EndTime="14:44:44.582926"  

 TotalElapsedTime="0"  

 MaximumElapsedTime="0"  MinimumElapsedTime="0"  TotalCPUTime="0"  

 MaximumCPUTime="0"MinimumCPUTime="0"  CPUTimeWaitingForInputMessage="685"  

 ElapsedTimeWaitingForInputMessage="10001425"  TotalInputMessages="0"  

 TotalSizeOfInputMessages="0"  MaximumSizeOfInputMessages="0"  

 MinimumSizeOfInputMessages="0"  NumberOfThreadsInPool="1"  

 TimesMaximumNumberOfThreadsReached="0"  TotalNumberOfMQErrors="0"  

 TotalNumberOfMessagesWithErrors="0"  TotalNumberOfErrorsProcessingMessages="0"  

 TotalNumberOfTimeOutsWaitingForRepliesToAggregateMessages="0"  

 TotalNumberOfCommits="0"  TotalNumberOfBackouts="0"  AccoutingOrigin="Anonymous"/>  

  

  

<Threads  Number="1">  

<ThreadStatistics  Number="5"  TotalNumberOfInputMessages="0"  

TotalElapsedTime="0"  TotalCPUTime="0"  CPUTimeWaitingForInputMessage="685"  

ElapsedTimeWaitingForInputMessage="10001425"  TotalSizeOfInputMessages="0"  

MaximumSizeOfInputMessages="0"  MinimumSizeOfInputMessages="0"/>  

</Threads>  

  

  

<Nodes  Number="3">

 

214 Message  Flows



<NodeStatistics  Label="FAILQueue"  Type="MQOutput"  TotalElapsedTime="0"  

    MaximumElapsedTime="0"  MinimumElapsedTime="0"  TotalCPUTime="0"  

    MaximumCPUTime="0"  MinimumCPUTime="0"  CountOfInvocations="0"  

    NumberOfInputTerminals="1"  NumberOfOutputTerminals="2">  

   <TerminalStatistics  Label="failure"  Type="Output"  CountOfInvocations="0"/>  

   <TerminalStatistics  Label="in"  Type="Input"  CountOfInvocations="0"/>  

   <TerminalStatistics  Label="out"  Type="Output"  CountOfInvocations="0"/>  

  </NodeStatistics>  

  

  

  <NodeStatistics  Label="INQueue3"  Type="MQInput"  TotalElapsedTime="0"  

    MaximumElapsedTime="0"  MinimumElapsedTime="0"  TotalCPUTime="0"  

    MaximumCPUTime="0"  MinimumCPUTime="0"CountOfInvocations="0"  

    NumberOfInputTerminals="0"  NumberOfOutputTerminals="3">  

   <TerminalStatistics  Label="catch"  Type="Output"  CountOfInvocations="0"/>  

   <TerminalStatistics  Label="failure"  Type="Output"  CountOfInvocations="0"/>  

   <TerminalStatistics  Label="out"  Type="Output"  CountOfInvocations="0"/>  

  </NodeStatistics>  

  

  

  <NodeStatistics  Label="OUTQueue"  Type="MQOutput"  TotalElapsedTime="0"  

    MaximumElapsedTime="0"  MinimumElapsedTime="0"  TotalCPUTime="0"  

    MaximumCPUTime="0"  MinimumCPUTime="0"  CountOfInvocations="0"  

    NumberOfInputTerminals="1"  NumberOfOutputTerminals="2">  

    <TerminalStatistics  Label="failure"  Type="Output"  CountOfInvocations="0"/>  

    <TerminalStatistics  Label="in"  Type="Input"  CountOfInvocations="0"/>  

    <TerminalStatistics  Label="out"  Type="Output"  CountOfInvocations="0"/>  

   </NodeStatistics>  

  

  

 </Nodes>  

  

  

</WMQIStatisticsAccounting>  

Example of user trace entries for message flow accounting and 

statistics 

This  topic  shows  a user  trace  that  contains  message  flow  accounting  and  statistics  

data.  

The  following  example  shows  the  output  generated  for  a snapshot  report.  The  

messages  written  to  the  trace  show  that  the  message  flow  is  called  

myExampleFlow,  and  that  it is running  in  an  execution  group  named  default  on  

broker  MQ01BRK.  The  message  flow  contains  the  following  nodes:  

v   An  MQInput  node  called  inNode  

v   An  MQOutput  node  called  outNode

The  nodes  are  connected  together  (out  terminal  to  in  terminal  for  each  connection).  

During  the  interval  for  which  statistics  have  been  collected,  this  message  flow  

processed  150  input  messages.  

The  records  show  that  there  are  two  threads  assigned  to  this  message  flow. One  

thread  is assigned  when  the  message  flow  is deployed  (this  is the  default  number);  

an  additional  thread  (thread  0)  listens  on  the  input  queue.  The  listening  thread  

starts  additional  threads  to process  input  messages  dependent  on  the  number  of  

instances  that  you  have  configured  for  the  message  flow, and  the  rate  of  arrival  of 

the  input  messages  on  the  input  queue.  

 

Message flows 215



The  following  command  has  been  issued  to achieve  these  results:  

mqsichangeflowstats  MQ01BRK  -s -c  active  -e default  -f myExampleFlow  -n  advanced  -t basic  -b basic  

The  trace  entries  have  been  retrieved  with  the  mqsireadlog  command  and  

formatted  using  the  mqsiformatlog  command.  The  output  from  mqsiformatlog  is 

shown  below.  Line  breaks  have  been  added  to aid  readability.  

BIP2380I:  WMQI  message  flow  statistics.  ProcessID=’328467’,  Key=’6’,  Type=’SnapShot’,  Reason=’Snapshot’,  

BrokerLabel=’MQ01BRK’,  BrokerUUID=’18792e66-e100-0000-0080-f197e5ed81bd’,  

ExecutionGroupName=’default’,  ExecutionGroupUUID=’15d4314a-3607-11d4-8000-09140f7b0000’,  

MessageFlowName=’myExampleFlow’,  

StartDate=’2003-05-20’,  StartTime=’13:44:31.885862’,  

EndDate=’2003-05-20’,  EndTime=’13:44:51.310080’,  

TotalElapsedTime=’9414843’,  MaximumElapsedTime=’1143442’,  MinimumElapsedTime=’35154’,  

TotalCPUTime=’760147’,  MaximumCPUTime=’70729’,  MinimumCPUTime=’3124’,  

CPUTimeWaitingForInputMessage=’45501’,  ElapsedTimeWaitingForInputMessage=’11106438’,  

TotalInputMessages=’150’,  TotalSizeOfInputMessages=’437250’,  

MaximumSizeOfInputMessages=’2915’,  MinimumSizeOfInputMessages=’2915’,  

NumberOfThreadsInPool=’1’,  TimesMaximumNumberOfThreadsReached=’150’,  

TotalNumberOfMQErrors=’0’,  TotalNumberOfMessagesWithErrors=’0’,  

TotalNumberOfErrorsProcessingMessages=’0’,  TotalNumberOfTimeOuts=’0’,  

TotalNumberOfCommits=’150’,  TotalNumberOfBackouts=’0’,  AccountingOrigin="Anonymous".  

Statistical  information  for  message  flow  ’myExampleFlow’  in broker  ’MQ01BRK’.  

This  is an information  message  produced  by WMQI  statistics.  

  

BIP2381I:  WMQI  thread  statistics.  ProcessID=’328467’,  Key=’6’,  Number=’0’,  

TotalNumberOfInputMessages=’0’,  

TotalElapsedTime=’0’,  TotalCPUTime=’0’,  CPUTimeWaitingForInputMessage=’110’,  

ElapsedTimeWaitingForInputMessage=’5000529’,  TotalSizeOfInputMessages=’0’,  

MaximumSizeOfInputMessages=’0’,  MinimumSizeOfInputMessages=’0’.  

Statistical  information  for  thread  ’0’.  

This  is an information  message  produced  by WMQI  statistics.  

  

BIP2381I:  WMQI  thread  statistics.  ProcessID=’328467’,  Key=’6’,  Number=’18’,  

TotalNumberOfInputMessages=’150’,  

TotalElapsedTime=’9414843’,  TotalCPUTime=’760147’,  CPUTimeWaitingForInputMessage=’45391’,  

ElapsedTimeWaitingForInputMessage=’6105909’,  TotalSizeOfInputMessages=’437250’,  

MaximumSizeOfInputMessages=’2915’,  MinimumSizeOfInputMessages=’2915’.  

Statistical  information  for  thread  ’18’.  

This  is an information  message  produced  by WMQI  statistics.  

BIP2382I:  WMQI  node  statistics.  ProcessID=’328467’,  Key=’6’,  

Label=’inNode’,  Type=’MQInputNode’,  

TotalElapsedTime=’1813446’,  MaximumElapsedTime=’1040209’,  MinimumElapsedTime=’1767’,  

TotalCPUTime=’70565’,  MaximumCPUTime=’686’,  MinimumCPUTime=’451’,  

CountOfInvocations=’150’,  NumberOfInputTerminals=’0’,  NumberOfOutputTerminals=’3’.  

Statistical  information  for  node  ’inNode’.  

This  is an information  message  produced  by WMQI  statistics.  

  

BIP2383I:  WMQI  terminal  statistics.  ProcessID=’328467’,  Key=’6’,  

Label=’catch’,  Type=’Output’,  CountOfInvocations=’0’,  

Statistical  information  for  terminal  ’catch’.  

This  is an information  message  produced  by WMQI  statistics.  

  

BIP2383I:  WMQI  terminal  statistics.  ProcessID=’328467’,  Key=’6’,  

Label=’failure’,  Type=’Output’,  CountOfInvocations=’0’,  

Statistical  information  for  terminal  ’failure’.  

This  is an information  message  produced  by WMQI  statistics.  

  

BIP2383I:  WMQI  terminal  statistics.  ProcessID=’328467’,  Key=’6’,  

Label=’out’,  Type=’Output’,  CountOfInvocations=’150’,  

Statistical  information  for  terminal  ’out’.  

This  is an information  message  produced  by WMQI  statistics.  

  

BIP2382I:  WMQI  node  statistics.  ProcessID=’328467’,  Key=’6’,  

Label=’outNode’,  Type=’MQOutputNode’,  

TotalElapsedTime=’1172582’,  MaximumElapsedTime=’177516’,  MinimumElapsedTime=’3339’,

 

216 Message  Flows



TotalCPUTime=’85522’,  MaximumCPUTime=’762’,  MinimumCPUTime=’536’,  

CountOfInvocations=’150’,  NumberOfInputTerminals=’1’,  NumberOfOutputTerminals=’2’.  

Statistical  information  for  node  ’outNode’.  

This  is  an  information  message  produced  by WMQI  statistics.  

  

BIP2383I:  WMQI  terminal  statistics.  ProcessID=’328467’,  Key=’6’,  

Label=’failure’,  Type=’Output’,  CountOfInvocations=’0’,  

Statistical  information  for  terminal  ’failure’.  

This  is  an  information  message  produced  by WMQI  statistics.  

  

BIP2383I:  WMQI  terminal  statistics.  ProcessID=’328467’,  Key=’6’,  

Label=’in’,  Type=’Input’,  CountOfInvocations=’150’,  

Statistical  information  for  terminal  ’in’.  

This  is  an  information  message  produced  by WMQI  statistics.  

  

BIP2383I:  WMQI  terminal  statistics.  ProcessID=’328467’,  Key=’6’,  

Label=’out’,  Type=’Output’,  CountOfInvocations=’0’,  

Statistical  information  for  terminal  ’out’.  

This  is  an  information  message  produced  by WMQI  statistics.  

 

Message flows 217



218 Message  Flows



Part  5. Appendixes  

 

© Copyright  IBM Corp. 2000, 2006 219



220 Message  Flows



Appendix.  Notices  

This  information  was  developed  for  products  and  services  offered  in the  U.S.A.  

IBM  may  not  offer  the  products,  services,  or  features  discussed  in  this  information  

in  other  countries.  Consult  your  local  IBM  representative  for  information  on  the  

products  and  services  currently  available  in  your  area.  Any  reference  to an  IBM  

product,  program,  or  service  is  not  intended  to state  or  imply  that  only  that  IBM  

product,  program,  or  service  may  be  used.  Any  functionally  equivalent  product,  

program,  or  service  that  does  not  infringe  any  IBM  intellectual  property  right  may  

be  used  instead.  However,  it is the  user’s  responsibility  to  evaluate  and  verify  the  

operation  of  any  non-IBM  product,  program,  or  service.  

IBM  may  have  patents  or  pending  patent  applications  covering  subject  matter  

described  in  this  information.  The  furnishing  of  this  information  does  not  give  you  

any  license  to  these  patents.  You can  send  license  inquiries,  in  writing,  to:  

IBM  Director  of  Licensing  

IBM  Corporation  

North  Castle  Drive  

Armonk,  NY  10504-1785  

U.S.A.  

For  license  inquiries  regarding  double-byte  (DBCS)  information,  contact  the  IBM  

Intellectual  Property  Department  in  your  country  or  send  inquiries,  in  writing,  to:  

IBM  World  Trade  Asia  Corporation  

Licensing  

2-31  Roppongi  3-chome,   Minato-ku  

Tokyo  106-0032,  

Japan  

The  following  paragraph  does  not  apply  to  the  United  Kingdom  or  any  other  

country  where  such  provisions  are  inconsistent  with  local  law:  

INTERNATIONAL  BUSINESS  MACHINES  CORPORATION  PROVIDES  THIS  

PUBLICATION  ″AS  IS″  WITHOUT  WARRANTY  OF  ANY  KIND,  EITHER  

EXPRESS  OR  IMPLIED,  INCLUDING,  BUT  NOT  LIMITED  TO,  THE  IMPLIED  

WARRANTIES  OF  NON-INFRINGEMENT,  MERCHANTABILITY  OR  FITNESS  

FOR  A PARTICULAR  PURPOSE.  Some  states  do  not  allow  disclaimer  of express  or  

implied  warranties  in certain  transactions,  therefore,  this  statement  may  not  apply  

to  you.  

This  information  could  include  technical  inaccuracies  or  typographical  errors.  

Changes  are  periodically  made  to  the  information  herein;  these  changes  will  be 

incorporated  in  new  editions  of  the  information.  IBM  may  make  improvements  

and/or  changes  in the  product(s)  and/or  the  program(s)  described  in  this  

information  at  any  time  without  notice.  

Any  references  in  this  information  to  non-IBM  Web sites  are  provided  for  

convenience  only  and  do  not  in  any  manner  serve  as  an  endorsement  of  those  Web 

sites.  The  materials  at those  Web sites  are  not  part  of the  materials  for  this  IBM  

product  and  use  of those  Web sites  is  at your  own  risk.  

 

© Copyright  IBM Corp. 2000, 2006 221



IBM  may  use  or  distribute  any  of  the  information  you  supply  in  any  way  it  

believes  appropriate  without  incurring  any  obligation  to you.  

Licensees  of  this  program  who  wish  to have  information  about  it for  the  purpose  

of  enabling:  (i)  the  exchange  of information  between  independently  created  

programs  and  other  programs  (including  this  one)  and  (ii)  the  mutual  use  of the  

information  which  has  been  exchanged,  should  contact:  

IBM  United  Kingdom  Laboratories,  

Mail  Point  151,  

Hursley  Park,  

Winchester,  

Hampshire,  

England  

SO21  2JN  

Such  information  may  be  available,  subject  to  appropriate  terms  and  conditions,  

including  in  some  cases,  payment  of a fee.  

The  licensed  program  described  in  this  information  and  all  licensed  material  

available  for  it are  provided  by  IBM  under  terms  of the  IBM  Customer  Agreement,  

IBM  International  Programming  License  Agreement,  or  any  equivalent  agreement  

between  us.  

Any  performance  data  contained  herein  was  determined  in  a controlled  

environment.  Therefore,  the  results  obtained  in  other  operating  environments  may  

vary  significantly.  Some  measurements  may  have  been  made  on  development-level  

systems  and  there  is  no  guarantee  that  these  measurements  will  be  the  same  on  

generally  available  systems.  Furthermore,  some  measurements  may  have  been  

estimated  through  extrapolation.  Actual  results  may  vary.  Users  of  this  document  

should  verify  the  applicable  data  for  their  specific  environment.  

Information  concerning  non-IBM  products  was  obtained  from  the  suppliers  of  

those  products,  their  published  announcements  or  other  publicly  available  sources.  

IBM  has  not  tested  those  products  and  cannot  confirm  the  accuracy  of 

performance,  compatibility  or  any  other  claims  related  to non-IBM  products.  

Questions  on  the  capabilities  of  non-IBM  products  should  be  addressed  to  the  

suppliers  of those  products.  

All  statements  regarding  IBM’s  future  direction  or  intent  are  subject  to change  or  

withdrawal  without  notice,  and  represent  goals  and  objectives  only.  

This  information  includes  examples  of  data  and  reports  used  in  daily  business  

operations.  To illustrate  them  as  completely  as  possible,  the  examples  include  the  

names  of  individuals,  companies,  brands,  and  products.  All  of  these  names  are  

fictitious  and  any  similarity  to  the  names  and  addresses  used  by  an  actual  business  

enterprise  is  entirely  coincidental.  

COPYRIGHT  LICENSE:  

This  information  contains  sample  application  programs  in  source  language,  which  

illustrate  programming  techniques  on  various  operating  platforms.  You may  copy,  

modify,  and  distribute  these  sample  programs  in  any  form  without  payment  to 

IBM,  for  the  purposes  of developing,  using,  marketing  or  distributing  application  

programs  conforming  to  the  application  programming  interface  for  the  operating  

platform  for  which  the  sample  programs  are  written.  These  examples  have  not  

 

222 Message  Flows



been  thoroughly  tested  under  all  conditions.  IBM,  therefore,  cannot  guarantee  or  

imply  reliability,  serviceability,  or  function  of  these  programs.  

Each  copy  or  any  portion  of these  sample  programs  or  any  derivative  work,  must  

include  a copyright  notice  as  follows:  

(C)  (your  company  name) (year). Portions  of  this  code  are  derived  from  IBM  Corp.  

Sample  Programs.  © Copyright  IBM  Corp.  _enter  the  year  or years_. All  rights  

reserved.  

Trademarks  

The  following  terms  are  trademarks  of International  Business  Machines  

Corporation  in the  United  States,  other  countries,  or  both:  

 AIX  CICS  Cloudscape  

DB2  DB2  Connect  DB2  Universal  Database  

developerWorks  Domino  

Everyplace  FFST  First  Failure  Support  

Technology  

IBM  IBMLink  IMS  

IMS/ESA  iSeries  Language  Environment  

Lotus  MQSeries  MVS  

NetView  OS/400  OS/390  

POWER  pSeries  RACF  

Rational  Redbooks  RETAIN 

RS/6000  SupportPac  S/390  

Tivoli  VisualAge  WebSphere  

xSeries  z/OS  zSeries
  

Java  and  all  Java-based  trademarks  and  logos  are  trademarks  of  Sun  Microsystems,  

Inc.  in  the  United  States,  other  countries,  or  both.  

Microsoft,  Windows,  Windows  NT, and  the  Windows  logo  are  trademarks  of 

Microsoft  Corporation  in the  United  States,  other  countries,  or  both.  

Intel  and  Pentium  are  trademarks  or  registered  trademark  of Intel  Corporation  or  

its  subsidiaries  in  the  United  States  and  other  countries.  

UNIX  is  a registered  trademark  of  The  Open  Group  in  the  United  States  and  other  

countries.  

Linux  is  a trademark  of  Linus  Torvalds  in  the  United  States,  other  countries,  or  

both.  

Other  company,  product,  or  service  names  may  be  trademarks  or  service  marks  of  

others.  

 

Appendix.  Notices  223



224 Message  Flows



Index  

A
accounting  and statistics  data 9 

accounting  origin  11  

collecting  67 

collection  options  10 

details 201 

example  output  213 

output  data formats  202 

output  formats  11 

parameters,  modifying  70 

parameters,  viewing  70 

resetting  archive  data 71 

setting accounting  origin  69 

starting 67 

stopping  69 

accounting  origin 11 

setting 69 

alignment,  nodes 55 

archive  data 10 

resetting  71 

B
bar files 79 

creating 85 

deploying  88 

editing
manually  87 

properties 87 

message  flows, adding  86 

bend  points  7 

adding  53 

removing  54 

broker archive  79 

configurable  properties 79 

deployment  78 

broker archive  files
creating  85 

deploying  88 

editing
manually  87 

properties 87 

message  flows, adding  86 

broker configuration  deployment  80 

broker configuration,  deploying  90 

broker schema 8 

creating 37 

brokers
cancel deployment  82 

C
cancel  deployment  82 

cluster  queues  21 

code pages
conversion  22 

complete  broker archive  deployment  78 

complete  topics deployment  82 

complete  topology  deployment  81 

configurable  properties, broker  

archive 79 

configurable  properties, message  

flow 199 

connections  7 

creating with the mouse 51 

creating with the Terminal  Selection  

dialog box 52 

removing 53 

D
data conversion  22 

configuring  message flows 24 

databases
code page support 199 

datagram  message, sending 124 

delta topics deployment  82 

delta topology  deployment  81 

deployment  75 

broker archive (bar) files 88 

broker configuration  90 

canceling  97 

checking  results 95 

complete  75 

delta 75 

message  flow application  84 

message  flows 75 

overview  75 

broker archive (bar) files 79 

broker configuration  80 

cancel 82 

configurable  properties 79 

message  flow applications  78 

topics 82 

topology  81 

publish/subscribe  topics 

hierarchy 93 

publish/subscribe  topology  91 

domains
cancel deployment  82 

E
encoding  22 

errors
connecting  failure terminals  29 

handling  27 

input node 29 

MQInput  node 31 

errors, from saving 45 

execution  groups
message  flows, removing 99 

F
failure terminals,  connecting  29 

I
incremental broker archive 

deployment  78 

Input node 114  

J
JMSInput  node 116 

JMSMQTransform  node 123 

JMSOutput  node 124 

K
keywords 112 

description  properties 111 

displaying  42 

subflows  18 

L
lost messages, avoiding  25 

M
message  destination  mode 124 

message  flow  application,  deploying  84 

message  flow  nodes 114 

Input 114 

JMSInput  116 

JMSMQTransform  123 

JMSOutput  124 

MQeInput  132 

MQeOutput  139 

MQInput  142 

MQJMSTransform  148 

MQOptimizedFlow  149 

MQOutput  151 

Output  156 

Publication  158 

Real-timeInput  160 

Real-timeOptimizedFlow  162 

SCADAInput  165 

SCADAOutput  168 

message  flows 4 

accounting  and statistics  data 9 

accounting  origin 11 

collecting  67 

collection  options 10 

details 201 

example output 213 

output  data formats 202 

output  formats 11 

parameters,  modifying  70 

parameters,  viewing  70 

resetting archive  data 71 

setting accounting  origin 69 

starting 67 

stopping  69 

bend points 7 

 

© Copyright  IBM Corp. 2000, 2006 225



message  flows (continued)
adding 53 

removing  54 

broker archive  (bar) file, adding  

to 86 

broker schemas
creating 37 

deleting 42 

built-in  nodes 114  

Chinese  code page GB18030  198 

cluster  queues  21 

code page support  171 

configurable  properties 199 

Additional  Instances  199 

Commit  Count  199 

Commit  Interval  199 

Coordinated Transaction 199 

connections  7 

adding  with the mouse  51 

adding  with the Terminal  Selection  

dialog  52 

removing  53 

copying  39 

correcting save errors 45 

creating 37 

data conversion  24 

data integrity  199 

default  version  111  

defining  content  45 

deleting  41 

deploying  75 

description  properties 111  

keywords 111  

designing  13 

errors 27 

connecting  failure  terminals  29 

input node 29 

MQInput  node  31 

input nodes
using  more  than one 16 

keywords
description  properties 111  

guidance  112  

lost messages,  avoiding  25 

moving  40 

nodes  5 

adding  with the GUI 46 

adding  with the keyboard 47 

aligning  55 

arranging  55 

configuring  49 

connecting  with the mouse  51 

connecting  with the Terminal  

Selection  dialog 52 

deciding  which to use 14 

removing  50 

renaming  48 

opening  38 

porting  considerations  200 

preferences 111  

projects 4 

creating 34 

deleting 36 

managing  34 

promoted properties 8 

converging 64 

promoting 57 

message  flows (continued)
promoted properties (continued)

removing  62 

renaming  61 

properties 7 

removing from an execution  

group 99 

renaming 39 

response time, optimizing  18 

restrictions for code page 

GB18030  198 

save  errors, correcting 45 

saving  43 

saving  as 44 

shared queues 22 

subflows  5 

adding 47 

configuring  49 

keywords 18 

removing  50 

renaming  48 

using 17 

supported  code sets 171 

system  considerations  19 

terminals  7 

user-defined nodes  170 

version  and keywords 6 

version  and keywords, displaying  42 

MQeInput  node 132 

MQeOutput  node 139 

MQInput  node 142 

MQJMSTransform  node 148 

MQOptimizedFlow  node 149 

MQOutput  node 151 

N
numeric  order in data conversion  22 

O
object  keyword 79 

object  version 79 

Output  node 156 

P
performance

message  flow response time 18 

projects
message  flows 4 

promoted properties 8 

converging 64 

promoting 57 

removing 62 

renaming 61 

properties, message  flow 7 

Publication  node 158 

Q
queues

cluster 21 

shared 22 

R
Real-timeInput  node 160 

Real-timeOptimizedFlow  node 162 

renaming deployed  objects 99 

reply message, sending 124 

request message,  sending  124 

S
SCADAInput  node 165 

SCADAOutput  node 168 

schemas,  broker 8 

server project, creating 85 

setting  accounting  origin 69 

shared queues 22 

snapshot  data 10 

statistics  and accounting  data 9 

accounting  origin  11 

collecting  67 

collection  options 10 

output formats 11 

parameters,  modifying  70 

parameters,  viewing  70 

resetting archive  data 71 

setting accounting  origin 69 

starting 67 

stopping  69 

subflows  5 

adding 47 

configuring  49 

keywords 18 

removing 50 

renaming 48 

using 17 

T
terminals,  message flows 7 

topics
deployment  82 

topics hierarchy, deploying  93 

topology
deploying  91 

deployment  81 

trademarks  223 

U
user-defined nodes 170 

V
version

default value 111  

displaying  42 

version and keywords, message  flows 6

 

226 Message  Flows





����

  

Printed in USA 

 

 

 

 


	Contents
	About this topic collection
	Part 1. Developing message flows
	Developing message flows
	Message flows overview
	Message flow projects
	Message flow nodes
	Message flow version and keywords
	Message flow connections
	Properties
	Broker schemas
	Message flow accounting and statistics data

	Designing a message flow
	Deciding which nodes to use
	Using more than one input node
	Using subflows
	Optimizing message flow response times
	System considerations for message flow development
	Using WebSphere MQ cluster queues for input and output
	Using WebSphere MQ shared queues for input and output (z/OS)
	Converting data with message flows
	Configuring message flows for data conversion
	Ensuring that messages are not lost
	Handling errors in message flows

	Managing message flows
	Creating a message flow project
	Deleting a message flow project
	Creating a broker schema
	Creating a message flow
	Opening an existing message flow
	Copying a message flow using copy
	Renaming a message flow
	Moving a message flow
	Deleting a message flow
	Deleting a broker schema
	Viewing version and keyword information for deployable objects
	Saving a message flow

	Defining message flow content
	Adding a message flow node
	Adding a subflow
	Renaming a message flow node
	Configuring a message flow node
	Removing a message flow node
	Connecting message flow nodes
	Removing a node connection
	Adding a bend point
	Removing a bend point
	Aligning and arranging nodes

	Defining a promoted property
	Promoting a property
	Renaming a promoted property
	Removing a promoted property
	Converging multiple properties

	Collecting message flow accounting and statistics data
	Starting to collect message flow accounting and statistics data
	Stopping message flow accounting and statistics data collection
	Viewing message flow accounting and statistics data collection parameters
	Modifying message flow accounting and statistics data collection parameters
	Resetting message flow accounting and statistics archive data


	Part 2. Deploying
	Deploying
	Deployment overview
	Deployment environments
	Types of deployment
	Message flow application deployment
	Broker configuration deployment
	Publish/subscribe topology deployment
	Publish/subscribe topics hierarchy deployment
	Cancel deployment

	Deploying a message flow application
	Creating a server project
	Creating a broker archive
	Adding files to a broker archive
	Deploying a broker archive file

	Deploying a broker configuration
	Using the Message Brokers Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy API

	Deploying a publish/subscribe topology
	Using the Message Brokers Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy API

	Deploying a publish/subscribe topics hierarchy
	Using the Message Brokers Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy API

	Checking the results of deployment
	Using the Message Brokers Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy API

	Canceling a deployment that is in progress
	Using the Message Brokers Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy API

	Renaming objects that are deployed to execution groups
	Removing a deployed object from an execution group
	Using the Message Brokers Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy API


	Part 3. Exploiting user-defined extensions
	User-defined nodes
	Installing a user-defined node on a broker domain
	Deleting a user-defined node
	Part 4. Reference
	Message flows
	Message flow preferences
	Description properties for a message flow
	Guidance for defining keywords

	Built-in nodes
	Input node
	JMSInput node
	JMSMQTransform node
	JMSOutput node
	MQeInput node
	MQeOutput node
	MQInput node
	MQJMSTransform node
	MQOptimizedFlow node
	MQOutput node
	Output node
	Publication node
	Real-timeInput node
	Real-timeOptimizedFlow node
	SCADAInput node
	SCADAOutput node

	User-defined nodes
	Supported code pages
	Chinese code page GB18030

	Data integrity within message flows
	Configurable message flow properties
	Message flow porting considerations
	Message flow accounting and statistics data
	Message flow accounting and statistics details
	Message flow accounting and statistics output formats
	Example message flow accounting and statistics data


	Part 5. Appendixes
	Appendix. Notices
	Trademarks

	Index

