
WebSphere Message Broker

Publish/Subscribe

Version 6 Release 0

���

WebSphere Message Broker

Publish/Subscribe

Version 6 Release 0

���

Note

Before using this information and the product it supports, read the information in the Notices appendix.

Fourth Edition (July 2006)

This edition applies to IBM® WebSphere® Message Broker Version 6.0 and to all subsequent releases and

modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this topic collection v

Part 1. Configuring a

publish/subscribe topology 1

Configuring a publish/subscribe

topology 3

Setting up the broker domain for publish/subscribe 3

Operating a publish/subscribe domain 18

Part 2. Developing

publish/subscribe applications . . . 21

Developing publish/subscribe

applications 23

How publications and subscriptions flow through

the network 23

MQ Subscribers and Publishers 23

Real-time Transport Subscribers and Publishers . . 23

Publish/Subscribe 24

Publishing 36

Using retained publications 36

Subscribing 38

Deregistering a subscription 39

Generating statistics reports 40

Subscribing to statistics reports 40

Subscribing to multicast statistics reports 41

Part 3. Reference 43

Publish/subscribe 45

Special characters in topics 45

Topic semantics and usage 46

Sample authentication exchanges 47

Statistics reports 48

Multicast statistics reports 50

WebSphere MQ Publish/Subscribe 52

MQRFH2 header 66

Command messages 72

Part 4. Appendixes 97

Appendix. Notices 99

Trademarks 101

Index 103

© Copyright IBM Corp. 2000, 2006 iii

iv Publish/Subscribe

About this topic collection

This PDF has been created from the WebSphere Message Broker Version 6.0 (Fix

Pack 2 update, July 2006) information center topics. Always refer to the WebSphere

Message Broker online information center to access the most current information.

The information center is periodically updated on the document update site and

this PDF and others that you can download from that Web site might not contain

the most current information.

The topic content included in the PDF does not include the ″Related Links″

sections provided in the online topics. Links within the topic content itself are

included, but are active only if they link to another topic in the same PDF

collection. Links to topics outside this topic collection are also shown, but these

attempt to link to a PDF that is called after the topic identifier (for example,

ac12340_.pdf) and therefore fail. Use the online information to navigate freely

between topics.

Feedback: do not provide feedback on this PDF. Refer to the online information to

ensure that you have access to the most current information, and use the Feedback

link that appears at the end of each topic to report any errors or suggestions for

improvement. Using the Feedback link provides precise information about the

location of your comment.

The content of these topics is created for viewing online; you might find that the

formatting and presentation of some figures, tables, examples, and so on are not

optimized for the printed page. Text highlighting might also have a different

appearance.

© Copyright IBM Corp. 2000, 2006 v

ftp://ftp.software.ibm.com/software/integration/wbibrokers/docs

vi Publish/Subscribe

Part 1. Configuring a publish/subscribe topology

Configuring a publish/subscribe topology . . . 3

Setting up the broker domain for publish/subscribe 3

Publish/subscribe topologies 3

Changing Broker Topology editor properties . . . 8

Connecting brokers in a collective 8

Deleting a collective 8

Connecting a broker to a collective 9

Removing a broker from a collective 9

Setting up a multicast broker 10

Setting up cloned brokers 16

Adding a cloned broker 17

Deleting a cloned broker 17

Operating a publish/subscribe domain 18

Adding a new topic 18

Deleting a topic 19

Querying subscriptions 19

© Copyright IBM Corp. 2000, 2006 1

2 Publish/Subscribe

Configuring a publish/subscribe topology

To configure a publish/subscribe topology, you need to do the following things:

1. Design and configure your broker domain.

For further information, refer to Designing a broker domain and Configuring

broker domain components

2. Define the topic trees that you require.

For further information, refer to “Topics” on page 25 and “Adding a new topic”

on page 18.

3. Decide which security options to use.

For further information, refer to Publish/subscribe security and Securing the

publish/subscribe domain.

Setting up the broker domain for publish/subscribe

Refer to the following topics:

 Creating a broker

 Modifying a broker

 Adding a broker to a broker domain

 Configuring broker domain components

Publish/subscribe topologies

A publish/subscribe topology consists of the brokers, the collectives, and the

connections between them, that support publish/subscribe applications in the

broker domain.

A publish/subscribe application can consist of a network of brokers connected

together. The brokers can all be on the same physical system, or they can be

distributed over several physical systems. By connecting brokers together,

publications can be received by a client on any broker in the network.

This provides the following benefits:

v Client applications can communicate with a nearby broker rather than with a

distant broker, thereby getting better response times.

v By using more than one broker, more subscribers can be supported.

Publications are sent only to brokers that have subscribers that have expressed an

interest in the topics being published. This helps to optimize network traffic.

Broker networks

There are three ways of connecting brokers together to make a broker domain:

v Brokers can be simply joined together.

v Brokers can be grouped together into collectives, where a collective is a set of

one or more brokers that are directly connected to each other.

v Collectives can be joined together; this is a combination of the previous two

ways of grouping brokers together.

The following diagram shows a network of six collectives.

© Copyright IBM Corp. 2000, 2006 3

Collectives

A collective is a set of brokers that are fully interconnected and form part of a

multi-broker network for publish/subscribe applications.

A broker cannot belong to more than one collective. Brokers within the same

collective can exist on physically separate computers. However, a collective cannot

span more than one broker domain.

Each pair of broker queue managers must be connected together by a pair of

WebSphere MQ channels.

The following figure shows a simple collective of three brokers:

A collective provides the following benefits:

Broker A

Queue manager A

Broker B

Queue manager B

Broker C

Queue manager C

Collective

4 Publish/Subscribe

v Messages destined for a specific broker in the same collective are transported

directly to that broker and do not need to pass through an intermediate broker.

This improves broker performance and optimizes inter-broker publish/subscribe

traffic, in comparison with a hierarchical tree configuration.

v If your clients are geographically dispersed, you can set up a collective in each

location, and connect the collectives (by joining a single broker in each

collective) to optimize the flow of publications and subscription registrations

through the network.

v You can group clients according to the shared topics that they publish and to

which they subscribe.

Clients that share common topics can connect to brokers within a collective. The

common publications are transported efficiently within the collective, because

they pass through only brokers that have at least one client with an interest in

those common topics.

v A client can connect to its nearest broker, to improve its own performance. The

broker receives all messages that match the subscription registration of the client

from all brokers within the collective.

The performance of a client application is also improved for other services that

are requested from this broker, or from this broker’s queue manager. A client

application can use both publish/subscribe and point-to-point messaging.

v The number of clients per broker can be reduced by adding more brokers to the

collective to share workload within that collective.

When you create a collective, the workbench ensures that the connections that you

make to other collectives and brokers are valid. You are prevented from making

connections that would cause messages to cycle forever within the network. You

are also prevented from creating a collective of brokers that does not have the

required WebSphere MQ connections already defined.

The queue manager of each broker in a collective must connect to every other

queue manager in the collective by a pair of WebSphere MQ channels.

Each broker in the collective maintains a list of its neighbors.

A neighbor can be one of the following:

v a broker in the same collective

v a broker outside its collective to which it has an explicit connection; that is, for

which it is acting as a gateway

The complete list of neighboring brokers forms a broker’s neighborhood.

Multicast publish/subscribe

In a publish/subscribe system there are client applications, some of which are

publishers and some of which are subscribers, that are connected to a network of

message brokers that receive publications on a number of topics, and send the

publications on to the subscribers for those topics.

Normally, a separate message is sent to each subscriber of a publication. However,

with multicast, regardless of how many subscribers to a topic there are on a subnet,

only one message is sent. This improves network utilization.

The more subscribers there are in your publish/subscribe system, the greater the

improvement to network utilization there might be if you use multicast.

Configuring a publish/subscribe topology 5

The subscriber must be a JMS client if you want to use Multicast

publish/subscribe.

To use multicast, you must change some of the properties of the broker. Some of

these properties apply to specific topics, but some properties apply to all Multicast

messages that are controlled by that broker.

For each topic, you can define whether the topic can be multicast, and the IP

address to which Multicast messages are sent.

You can also change those properties in the broker that define, for example, the

following things:

v The multicast protocol type

v The port that is used for Multicast messages

v A ’Time To Live (TTL)’ setting that determines how far from its source a

Multicast packet can be sent

v The size of a Multicast packet

v Whether there is a maximum transmission rate and, if there is, its value

v What interface to use for Multicast transmissions

These properties apply to all Multicast messages.

Cloned brokers

A cloned broker is a broker for which you have defined one or more clones; the

subscription table of a cloned broker is replicated to all other brokers with which it

is cloned.

When a subscriber requests a subscription from a cloned broker, the subscription is

also sent to each of the clones of that broker.

Use cloned brokers to improve the availability of your publish/subscribe system.

By defining cloned brokers on different computers, you make sure that a

publication is delivered to a subscriber even when one of the computers is

unavailable.

The diagram shows what happens when Subscriber 1 sends a subscription to

Broker 1, but Broker 1 becomes unavailable; because Broker 1 and Broker 2 have

been defined as clones, the subscription is redirected to Broker 2 and Subscriber 1

gets the publication from Broker 2 instead of Broker 1.

6 Publish/Subscribe

If two brokers are clones within a collective, duplicate messages might be sent to

subscribers that are registered with brokers inside that collective.

Use the mqsichangeproperties command to define cloned brokers; the property

clonedPubSubBrokerList is used to do this.

Migrated topologies

If you have a WebSphere MQ Publish/Subscribe broker network, you can continue

to use this network unchanged. The introduction of WebSphere Message Broker to

your environment, and the creation of brokers in that broker domain, does not

affect your WebSphere MQ Publish/Subscribe broker domain until you take

specific action to connect the two networks.

If you want to have two separate, independent networks, you do not have to do

anything. You can retain your existing WebSphere MQ Publish/Subscribe network,

and install and configure a WebSphere Message Broker network, without any

interaction.

Heterogeneous networks: A heterogeneous network is a network of brokers, some

of which form a WebSphere MQ Publish/Subscribe network and some of which

belong to the WebSphere Message Broker product.

With the WebSphere Message Broker product, there are two ways in which a

broker can be joined to the WebSphere MQ Publish/Subscribe network; it can be

joined as a leaf node or as a parent node.

Leaf node: When a broker is joined as a leaf node, it is joined as a child broker of

another broker in the WebSphere MQ Publish/Subscribe network.

Adding the broker as a leaf node rather than as a parent node causes the new

broker to receive only some of the WebSphere MQ Publish/Subscribe message

traffic that is directed to the brokers for which this new broker is a child broker.

Parent node: When a broker is joined as a parent node, it is joined as a parent

broker of one or more brokers in the WebSphere MQ Publish/Subscribe network.

Adding the broker as a parent node rather than as a leaf node causes the new

broker to receive all the WebSphere MQ Publish/Subscribe message traffic that is

directed to the child brokers for which this new broker is the parent broker.

Publisher

Subscriber 1

Broker 1
Broker 2

(Clone of Broker 1)
Redirected
subscription

Configuring a publish/subscribe topology 7

Changing Broker Topology editor properties

After you have launched the Broker Topology editor in the editor area, you can

change or remove the default background image displayed in the editor area.

The following steps show you how to change the properties of the Broker

Topology editor.

1. Switch to the Broker Administration perspective.

2. In the Domains view, expand the appropriate broker domain to display its

contents.

3. Double-click Broker Topology to launch the Broker Topology editor.

4. Right-click the editor, then click Properties to display the Broker Topology

editor properties.

5. On the Editor page, you can change the background image file, and modify its

scale factor in a range of 1 to 5. The default value is 3. Alternatively, you can

choose to not display a background image.

6. Optional: On the Description page, you can provide a description for the

background image file.

7. Click OK to save your changes and close the Properties dialog.

Any changes you made to the background image are displayed when the

Properties dialog closes.

Connecting brokers in a collective

A collective is a set of brokers that are fully interconnected and form part of a

multi-broker network for publish/subscribe applications.

You connect brokers in a collective by using either the Message Brokers Toolkit or

the Configuration Manager Proxy Java API. This topic describes how to use the

Message Brokers Toolkit.

For information about how to use the Configuration Manager Proxy (CMP), see

Developing applications using the CMP and Class

com.ibm.broker.config.proxy.CollectiveProxy.

To following steps show you how to connect brokers in a collective.

1. Define the WebSphere MQ channels between the queue managers of each pair

of the brokers in the collective; use the standard WebSphere MQ facilities (for

example, WebSphere MQ Explorer).

2. Assign the brokers as members of the collective using the Broker Topology

editor in the workbench; the brokers do not have to be connected together

using the connect function.

Tip: Compare the use of collectives with the use of WebSphere MQ cluster queues,

as described in Developing applications using the CMP.

Deleting a collective

You can delete a collective by using either the Message Brokers Toolkit or the

Configuration Manager Proxy Java API. This topic describes how to use the

Message Brokers Toolkit.

8 Publish/Subscribe

For information about how to use the Configuration Manager Proxy (CMP), see

Developing applications using the CMP and Class

com.ibm.broker.config.proxy.CollectiveProxy.

The following steps show you how to delete a collective.

1. Switch to the Broker Administration perspective.

2. In the Domains view, expand the appropriate broker domain.

3. Double-click the Topology item to open the Broker Topology editor.

4. Right-click the collective that is to be deleted and select Delete, or select the

collective that is to be deleted and press the Delete key, or select Delete from

the Edit menu.

The collective is deleted locally, but the delete operation is not completed until

you save or close the editor.

Connecting a broker to a collective

You can connect a broker to a collective using either the Message Brokers Toolkit

or the Configuration Manager Proxy Java API. This topic describes how to use the

Message Brokers Toolkit.

For information about how to use the Configuration Manager Proxy (CMP), see

Developing applications using the CMP and Class

com.ibm.broker.config.proxy.CollectiveProxy.

The following steps show you how to connect a broker to a collective.

1. Switch to the Broker Administration perspective.

2. In the Domains view, expand the appropriate broker domain.

3. Double-click the Topology item to open the Broker Topology editor.

4. In the Broker Topology editor, click the Connection tool.

5. Click the broker to be connected and then click the collective that you want to

connect the broker to.

The connection is added locally, but the connection is only effective after you

have saved, or closed the editor.

Removing a broker from a collective

You can remove a broker from a collective using either the Message Brokers Toolkit

or the Configuration Manager Proxy Java API. This topic describes how to use the

Message Brokers Toolkit.

For information about how to use the Configuration Manager Proxy (CMP), see

Developing applications using the CMP and Class

com.ibm.broker.config.proxy.CollectiveProxy.

To following steps show you how to remove a broker from a collective.

1. Switch to the Broker Administration perspective.

2. In the Domains view, expand the appropriate broker domain.

3. Double-click the Topology item to open the Broker Topology Editor.

4. Right-click the connection that you want to delete and select Delete.

Configuring a publish/subscribe topology 9

Setting up a multicast broker

You can set up a multicast broker by either using the Message Brokers Toolkit or

by using the Configuration Manager Proxy Java API. This topic describes how to

use the Message Brokers Toolkit. For information about how to use the

Configuration Manager Proxy (CMP), see Developing applications using the CMP

and Class com.ibm.broker.config.proxy.BrokerProxy.MulticastParameterSet.

To make a broker capable of handling multicast requests:

 1. Switch to the Broker Administration perspective.

 2. In the Domains view, expand the appropriate broker domain.

 3. Double-click the Topology item to open the Broker Topology editor.

 4. In the Broker Topology editor, right-click the broker that you want to modify,

and select Properties.

 5. In the left panel of the properties window, select Multicast.

 6. Select the Multicast Enabled check box.

 7. Optional: Modify the properties that are listed below; any properties that are

not modified take the default value.

Protocol Type

The multicast protocol type.

 Valid values are ″PTL″, ″PGM/IP″, and ″UDP encapsulated PGM″.

The default value is ″PTL″.

 See “Multicast protocol types” on page 15 for an explanation of these

multicast protocol types.

Min Address

The lowest IP address that the broker can use for its multicast

transmissions.

 This must be in the range 224.0.0.0 through 239.255.255.255. The

default value is 239.255.0.0.

Max Address

The highest IP address that the broker can use for its multicast

transmissions.

 This must be in the range 224.0.0.0 through 239.255.255.255, and must

not be lower than the value of Min Address. The default value is

239.255.255.255.

Data Port

The UDP data port through which multicast packets are sent and

received.

 The default value is 34343.

Broker Packet Size

The size, in bytes, of multicast packets.

 This can be in the range 500 through 32000. The default value is 7000.

Broker Heartbeat Timeout

The broker sends a control packet periodically, approximately every

second, to each client. This packet is used to send various control

information, and to keep the heartbeat. The heartbeat timeout value is

made known to the clients to help the clients detect a transmitter or

network failure. If a control packet does not arrive within a number,

10 Publish/Subscribe

defined as twice the value specified by this property, of seconds of the

previous control packet’s arrival, a client can suspect that there has

been a transmitter failure or a network failure.

 The default value is 20.

Broker Multicast TTL

The maximum number of hops that a multicast packet can make

between the client and the broker. This value is one more than the

maximum number of routers that there can be between the client and

the broker.

 The default value is 1, which means that the multicast packet must

remain local to its originator and does not pass through any routers.

The maximum value is 255.

 Do not use a value of 0. In some operating systems, this might have

the effect of preventing messages from being received, but in other

operating systems (for example, Windows 2000, Windows XP, and

Linux), a value of 0 does not have this effect.

Broker Network Interface

The name of the network interface over which multicast packets are

transmitted. This is only relevant when the broker is running on a

host with more than one network interface.

 This can be a host name or an IP address. The default is ’None’. If the

default value is chosen, the network interface that is used is operating

system dependent.

Overlapping Multicast Topic Behavior

Choose Accept, Reject, or Revert.

 The Overlapping Multicast Topic Behavior property controls the

behavior of the broker when a client requests a multicast subscription

for a topic that is part of a topic hierarchy containing topics that are

explicitly disabled for multicast.

 For example, consider a topic hierarchy where multicast is a topic

with two children, foo that is enabled for multicast, and bar that is not

enabled for multicast.

 The three possible settings are:

Accept

A matching multicast subscription is accepted and all

publications matching the topic, except those that are

specifically excluded, are multicast. In the example shown

above, a multicast subscription to multicast/# receives messages

published on foo over multicast, but does not receive any

messages published on bar.

Reject A multicast subscription to a topic with children that are

disabled for Multicast is rejected by the broker. Subscriptions

to multicast/# are rejected.

Revert Subscriptions to a topic that is disabled for multicast, or has

children that are disabled for multicast, result in unicast

transmission. A multicast subscription to multicast/# receives

messages published on foo and bar, but the messages are sent

unicast rather than multicast.

Configuring a publish/subscribe topology 11

The default value is Accept.

Maximum Key Age

The maximum age, in minutes, of a topic encryption key before it

must be redefined.

 The default value is 360.
 8. Optional: Click the + next to Multicast and click Advanced. You can now

modify the following additional properties:

Broker Transmission Rate Limit Activation

Use the Broker Transmission Rate Limit Activation property in

conjunction with Broker Transmission Rate Limit Value to control

network congestion. Choose one of the following values from the

drop-down menu:

Disabled

Multicast data is transmitted as fast as possible. If the rate at

which messages are submitted to be multicast exceeds the

machine or network limits (that is, the speed of Ethernet or

the host CPU becomes the bottleneck), these limits define the

maximum transmission rate, and message submissions are

stopped until all previously submitted messages have been

sent.

Static The transmission rate is limited by the value that is specified

in Broker Transmission Rate Limit Value.

Dynamic

The limit on the transmission rate can vary during run time,

depending on congestion conditions and data losses reported

by clients. But the rate never exceeds the Broker Transmission

Rate Limit Value.

The default is Disabled. If you choose Static, you can also choose a

value for the property Broker Transmission Rate Limit Value.

Broker Transmission Rate Limit Value

This limits the overall transmission rate, in kilobits per second, of

multicast packets. This parameter is effective only if the Broker

Transmission Rate Limit Activation property is Static. This property

must not exceed the capabilities of the machine or network.

 This value can be in the range 10 through 1,000,000.

Client NACK Back Off Time

The maximum time, in milliseconds, that a client listens for another’s

NACKs before sending its own NACK.

 This value can be in the range 0 through 1000. The default value is

100.

Client NACK Check Period

The time, in milliseconds, between periodic checks of reception status

and sequence gap detection for NACK building.

 This value can be in the range 10 through 1000. The default value is

300.

Client Packet Buffer Number

The number of memory buffers that are created at startup for packet

reception. Having a high number of buffers available improves the

reception performance and minimizes packet loss at high delivery

12 Publish/Subscribe

rates, but requires increased memory use. Each buffer is 33 KB; having

500 buffers (the default value) uses approximately 15 MB of main

memory.

 If memory use is important, try using different values for this

property and look at the effect on the overall performance of your

application when transmission rates are high.

 This value can be in the range 1 through 5000. The default value is

500.

Client Socket Buffer Size

The size, in kilobytes, of the client’s socket receiver buffer. Increasing

this value reduces the number of data packets that might be dropped

by the client receiver.

 This value can be in the range 65 through 10000. The default value is

3000.

Broker History Cleaning Time

The time, in seconds, that is defined for cleaning the retransmission

buffer.

 This value can be in the range 1 through 20. The default value is 7.

Note: This property is not used in Version 6.

Broker Minimal History Size

The minimum size, in kilobytes, of a buffer that is allocated as an

archive for all transmitted packets. This buffer is shared by all reliable

topics, and can be used to recover lost packets.

 This value can be in the range 1000 through 1,000,000. The default

value is 60,000.

Broker NACK Accumulation Time

The time, in milliseconds, that NACKs are aggregated in the broker

before recovered packets are sent.

 This value can be in the range 50 through 1000. The default value is

500.

Maximum Client Memory Size

The maximum amount of memory, in kilobytes, that can be used by

reception buffers in the client.

 This property is applicable only to PGM multicast protocols. The

default value is 262,144 which represents 256 MB.

Important: Be aware that by increasing the values of properties such as

Broker Minimal History Size you increase the amount of memory

that is required by the Java Virtual Machine (JVM). This might

cause a ″JVM Out of Memory″ error when a subscription to the

broker is attempted for the first time after this change. If this error

occurs, either increase your JVM heap size or reduce the value of

the property (such as Broker Minimal History Size) that you have

just increased.

 9. Click OK.

10. Restart the broker; you must do this for the changes that you have made to

take affect.

Configuring a publish/subscribe topology 13

Before you can use multicast, you must define some topics as capable of being

multicast.

The recommended way of changing the broker’s multicast configuration is to use

the workbench. However, you can also use the command mqsichangeproperties to

change the broker’s properties.

The following table relates the properties described above to the corresponding

names of the parameters on the mqsichangeproperties command that support

multicast. Full details of the mqsichangeproperties command is in

mqsichangeproperties command.

 Property name mqsichangeproperties parameter

Multicast Enabled multicastEnabled

Protocol Type multicastProtocolType

Min Address multicastAddressRangeMin

Max Address multicastAddressRangeMax

Data Port multicastDataPort

Broker Packet Size multicastPacketSizeBytes

Broker Heartbeat Timeout multicastHeartbeatTimeoutSec

Broker Multicast TTL multicastMCastSocketTTL

Broker Network Interface multicastMulticastInterface

Overlapping Multicast Topic Behavior multicastOverlappingTopicBehavior

Maximum Key Age multicastMaxKeyAge

Broker Transmission Rate Limit Activation multicastLimitTransRate

Broker Transmission Rate Limit Value multicastTransRateLimitKbps

Client NACK Back Off Time multicastBackoffTimeMillis

Client NACK Check Period multicastNackCheckPeriodMillis

Client Packet Buffer Number multicastPacketBuffers

Client Socket Buffer Size multicastSocketBufferSizeKbytes

Broker History Cleaning Time (deprecated in

V6)

N/A

Broker Minimal History Size multicastMinimalHistoryKBytes

Broker NACK Accumulation Time multicastNackAccumulationTimeMillis

Maximum Client Memory Size, multicastMaxMemoryAllowedKBytes

To enable multicast for the broker WBRK_BROKER use the following command:

 mqsichangeproperties WBRK_BROKER -o DynamicSubscriptionEngine -n multicastEnabled -v true

This enables the broker for multicast, but does not change any other properties of

the broker.

To enable multicast for the broker WBRK_BROKER, and to restrict the transmission

rate to 50,000 kilobits per second, use the following command:

 mqsichangeproperties WBRK_BROKER -o DynamicSubscriptionEngine -n multicastEnabled,

 multicastLimitTransRate,multicastTransRateLimitKbps -v true,Static,50000

None of the other properties of the broker are changed.

14 Publish/Subscribe

Note the use of commas to separate the properties that are being changed, and also

their values.

For the changes to be effective, you must restart the broker.

Warning: Any changes to the broker configuration made using

mqsichangeproperties are overwritten with the configuration that is held in the

Configuration Manager whenever the broker configuration is deployed.

Multicast protocol types

WebSphere Message Broker supports three different types of multicast protocol:

v PTL (Packet Transfer Layer)

v PGM/IP

v PGM UDP encapsulated

PTL provides backward compatibility with WebSphere Business Integration

Message Broker Version 5.0, where it is the only multicast protocol that is

supported. For new multicast deployments, use one of the two PGM multicast

protocols.

The broker supports two implementations of the PGM multicast protocol, PGM/IP

and PGM UDP encapsulated. Which of the two PGM protocol types that you

should choose, depends on the complexity of your network topology.

If your network topology consists of two or more subnets with many receiver

clients in each subnet, use PGM/IP. PGM/IP takes advantage of PGM router assist

support.

For a simpler network topology, use the PGM UDP encapsulated implementation,

which does not use PGM router assist.

Important: To use PGM/IP, both the broker and the client applications must run

with superuser authority. Because of the security risks that are

associated with running with superuser authority, it is recommended

that no other work should be run on the broker.

Making topics multicast

To make individual topics, or groups of topics, capable of being multicast you need

to make changes to the topic hierarchy:

 1. Switch to the Broker Administration perspective.

 2. In the Domains view, expand the appropriate broker domain.

 3. Double-click on the Topics item to open the Topics Hierarchy editor.

 4. In the Topics Hierarchy editor, right-click the topic, or group of topics, that

you want to make capable of being multicast, and select properties.

 5. In the left panel of the properties window, select Multicast.

 6. Choose the Multicast Enabled required.

For the topic root, the choice is either Enabled or Disabled. The default is

Disabled.

For a child topic root, the choice can be Inherit, Enabled, or Disabled. The

default is Inherit.

 7. Check the Automatic Multicast Address box, or type in the name of the MC

Group Address.

Configuring a publish/subscribe topology 15

8. Choose the Quality of Service required. The choice is between Reliable or

Unreliable. The default is Reliable.

 9. Optional: Select the Encrypted check box.

10. Click OK.

Handling high-volume publish/subscribe activity on z/OS

Brokers that handle large numbers of retained subscriptions or publications can use

up all the IRLM storage that is allocated by default for DB2 locks. This might

cause problems when you try to restart the broker.

The following actions might help stop this happening.

1. Tune the publish/subscribe topology:

a. Balance execution groups across more brokers; this means that fewer

execution groups need to start at the same time and have concurrent locks

for the same DB2 subsystem.

b. Put the brokers in publish/subscribe collectives; this reduces the number of

subscriptions in a single broker table and reduces the amount of concurrent

access to DB2. See “Publish/subscribe topologies” on page 3 for more

information about this.
2. Increase the IRLM storage that is available:

a. Set the value of MAXCSA so high that the ECSA that is required by the

IRLM never reaches this value. Because IRLM gets storage only when it

needs it, choose a value that is higher than you expect IRLM to need.

b. If you are unable to choose a value of MAXCSA sufficiently high that it

cannot be exceeded by the ECSA that is required by the IRLM, use the

option PC=YES on the START irlmproc command. This causes the IRLM to

place in its private address space the control block structures that relate to

locking. There is more information about this in the DB2 Redbook DB2 UDB

for OS/390 Version 7 Performance Topics, SG24-5351.

Note: There might be a slight (approximately 1 to 2 percent) performance

degradation when you run with PC=YES. See DB2 Universal Database for

OS/390 and z/OS Version 7 Administration Guide, SC26-9931 for more

information.

Setting up cloned brokers

Each broker that is to be cloned with other brokers must be told which brokers are

to be its clones.

To set up three brokers (broker1 with queue manager QM1, broker2 with queue

manager QM2, and broker3 with queue manager QM3) to be clones of each other,

as shown in the diagram below, use the mqsichangeproperties command for each

of the brokers:

1. mqsichangeproperties broker1 -e default -o DynamicSubscriptionEngine -n

clonedPubSubBrokerList -v \"broker2,QM2,broker3,QM3\"

2. mqsichangeproperties broker2 -e default -o DynamicSubscriptionEngine -n

clonedPubSubBrokerList -v \"broker1,QM1,broker3,QM3\"

3. mqsichangeproperties broker3 -e default -o DynamicSubscriptionEngine -n

clonedPubSubBrokerList -v \"broker1,QM1,broker2,QM2\"

16 Publish/Subscribe

Adding a cloned broker

To add a broker to a set of cloned brokers, use the mqsichangeproperties

command to define the brokers that are its clones, and to tell each of the other

brokers that it has a new clone.

To add broker4 (with queue manager QM4) to a set of three cloned brokers

(broker1 with queue manager QM1, broker2 with queue manager QM2, and

broker3 with queue manager QM3), use the following mqsichangeproperties

commands:

1. mqsichangeproperties broker4 -e default -o DynamicSubscriptionEngine -n

clonedPubSubBrokerList -v \"broker1,QM1,broker2,QM2,broker3,QM3\"

2. mqsichangeproperties broker1 -e default -o DynamicSubscriptionEngine -n

clonedPubSubBrokerList -v \"+broker4,QM4\"

3. mqsichangeproperties broker2 -e default -o DynamicSubscriptionEngine -n

clonedPubSubBrokerList -v \"+broker4,QM4\"

4. mqsichangeproperties broker3 -e default -o DynamicSubscriptionEngine -n

clonedPubSubBrokerList -v \"+broker4,QM4\"

Deleting a cloned broker

To delete a broker from a set of cloned brokers, use the mqsichangeproperties

command to delete the brokers that were its clones, and to tell each of the other

brokers that one of its clones has been deleted.

To delete broker3 from a set of three cloned brokers (broker1 with queue manager

QM1, broker2 with queue manager QM2, and broker3 with queue manager QM3),

as shown in the diagram below, use the following mqsichangeproperties

commands:

1. mqsichangeproperties broker1 -e default -o DynamicSubscriptionEngine -n

clonedPubSubBrokerList -v \"-broker3\"

2. mqsichangeproperties broker2 -e default -o DynamicSubscriptionEngine -n

clonedPubSubBrokerList -v \"-broker3\"

3. mqsichangeproperties broker3 -e default -o DynamicSubscriptionEngine -n

clonedPubSubBrokerList -v \"\"

Broker 1,
QM1

Broker 3,
QM3

Broker 2,
QM2

Configuring a publish/subscribe topology 17

Operating a publish/subscribe domain

After you have set up your publish/subscribe broker domain, you might want to

create or delete topics, or view the current status of your subscriptions.

For information about how to do this, refer to the following topics:

v “Adding a new topic”

v “Deleting a topic” on page 19

v “Querying subscriptions” on page 19

Adding a new topic

You can define a new topic explicitly by using either the Message Brokers Toolkit

or the Configuration Manager Proxy Java API. This topic describes how to use the

Message Brokers Toolkit.

For information about how to use the Configuration Manager Proxy (CMP), see

Developing applications using the CMP and Class

com.ibm.broker.config.proxy.TopicProxy.

You can define a new topic implicitly by sending to the message broker a Publish

command that specifies the new topic.

However, to define a new topic explicitly, do the following:

 1. Switch to the Broker Administration perspective.

 2. In the Domains view, expand the appropriate broker domain.

 3. Double-click on the Topics item to open the Topics Hierarchy editor.

 4. Right-click Topics in the topics hierarchy that is displayed by the Topics

Hierarchy Editor.

 5. From the menu shown, click Create Topic; a topic window opens that shows

the topic hierarchy.

 6. In the topic hierarchy, select the topic that you want to be the parent topic of

the topic that you are creating. In the lower pane of the topic window, type

the name of your new topic.

 7. Click Next; the next wizard page opens. The pane on the left of this window

shows all the principals (groups and users) that are defined.

 8. Select the groups and users that you want to relate to your new topic and

click the > icon between the two panes of the window; the pane on the right

of the window is updated with the groups and users that you have chosen.

Broker 1,
QM1

Broker 3,
QM3

Broker 2,
QM2

18 Publish/Subscribe

9. For each principal selected in the right-hand pane, you can set Publish,

Subscribe, and Persistent attributes by choosing a value from the

corresponding list.

By selecting more than one principal, you can choose values for a set of

principals.

10. Click Finish to insert the topic into the topic hierarchy and update the access

control list (ACL) for the topic. The ACL is in a table with four columns that

are entitled Principal, Publish, Subscribe, and Persistent. The rows of the table

show the properties of each principal that is relevant to the topic.

The topic is created locally, but the change is not effective until you have

saved or closed the editor.

When saving or closing the editor, you might be prompted to deploy the new

topics hierarchy or the deployment might be automatic, depending on the

Perform topics deploy after change preference.

Deleting a topic

You can delete a topic by either using the Message Brokers Toolkit or by using the

Configuration Manager Proxy Java API. This topic describes how to use the

Message Brokers Toolkit. For information about how to use the Configuration

Manager Proxy (CMP), see Developing applications using the CMP and Class

com.ibm.broker.config.proxy.TopicProxy.

To delete a topic:

1. Switch to the Broker Administration perspective.

2. In the Domains view, expand the appropriate broker domain.

3. Double-click Topics to open the Topics Hierarchy Editor.

4. In the Topics Hierarchy editor, right-click the topic that you want to delete, and

select Delete; alternatively, select the topic that you want to delete and press

the Delete key, or select Delete from the Edit menu.

The topic is deleted locally, but the delete is not effective until you do a save.

Querying subscriptions

You can query a subscription either by using the Message Brokers Toolkit or by

using the Configuration Manager Proxy Java API. This topic describes how to use

the Message Brokers Toolkit. For information about how to use the Configuration

Manager Proxy (CMP), see Developing applications using the CMP and Class

com.ibm.broker.config.proxy.TopicProxy.

To query a subscription:

1. Switch to the Broker Administration perspective.

2. In the Domains view, click Subscriptions from the list of domain objects

shown; the Subscriptions Query Editor opens in the workbench.

You can also open the editor by double-clicking the Subscriptions item in the

tree, or by right-clicking the Subscriptions item and clicking Open, or by

clicking the Subscriptions item and clicking Enter.

3. Fill in the fields that are required to generate your subscriptions query.

To generate your query, you might not need to fill in all the fields shown.

4. Click Query. The results of your query are displayed in the lower part of the

edit window.

Configuring a publish/subscribe topology 19

20 Publish/Subscribe

Part 2. Developing publish/subscribe applications

Developing publish/subscribe applications . . . 23

How publications and subscriptions flow through

the network 23

MQ Subscribers and Publishers 23

Real-time Transport Subscribers and Publishers . . 23

Publish/Subscribe 24

Topics 25

Publishers 26

Publications 26

Subscribers 27

Subscriptions 28

Filters 28

Subscription points 29

Publish/subscribe statistics reports 30

Performance considerations for Real-time

transport 30

WebSphere MQ Publish/Subscribe 31

Publishing 36

Using retained publications 36

Subscribing 38

Local subscriptions 39

Retained publications 39

Deregistering a subscription 39

Generating statistics reports 40

Subscribing to statistics reports 40

Subscribing to multicast statistics reports 41

© Copyright IBM Corp. 2000, 2006 21

22 Publish/Subscribe

Developing publish/subscribe applications

The following information shows you how publications and subscriptions flow

through the network and tells you about different subscribers and publishers.

How publications and subscriptions flow through the network

The transport mechanism that you choose determines how publications and

subscriptions flow through a network. The transports that are available are

described in End-user application support

MQ Subscribers and Publishers

When a client registers a subscription, the broker registers a matching subscription

with its neighbors. This is called a ’proxy subscription’. If an identical subscription

has already been registered, the broker does not register again; only one proxy

subscription is in effect at any one time. Similarly, when a client deregisters a

subscription from a broker, the broker deregisters the proxy subscription from its

neighbors, if the client is the only client for which the broker is holding the proxy.

Content-based filters are not included in proxy subscriptions. A super-set of

messages might be received by the broker to which a subscriber that specified a

content filter is registered, but a message is not passed on to that subscriber by its

local broker unless there is a content match.

All proxy subscriptions are made with the PersistenceAsPublisher option. This

results in messages being delivered to neighboring brokers with the persistence

specified by the publisher. Client subscription persistence options only take effect

at the local broker; that is, at the broker with which the clients have registered.

A subscriber that requests persistent delivery always receives a persistent message

for matching publications. However, the message might be delivered through the

broker network as a nonpersistent message if this was specified by the publisher. If

a problem occurs during the transmission of a message between publisher and

subscriber, the subscriber might never get the message despite specifying persistent

delivery as an option on subscription registration.

Real-time Transport Subscribers and Publishers

When two neighboring brokers contain a message flow that has either a

Real-timeInput node or a Real-timeOptimizedFlow node, a connection is made

between the two brokers using the broker host and broker port parameters that are

configured as part of the broker.

Subscriptions and ’proxy subscriptions’ are not forwarded to neighboring brokers

for clients that subscribe using Real-time Transport.

Real-time Transport publication messages are forwarded to all neighboring brokers,

even if there are no Real-time Transport subscriptions there to match.

© Copyright IBM Corp. 2000, 2006 23

“Multicast publish/subscribe” on page 5 can be used to improve network

utilization.

Publish/Subscribe

Publish/subscribe is a style of messaging application in which the providers of

information (publishers) are decoupled from the consumers of that information

(subscribers) using a broker.

In a publish/subscribe system, a publisher does not need to know who uses the

information (publication) that it provides, and a subscriber does not need to know

who provides the information that it receives as the result of a subscription.

Compare this with a point-to-point style of messaging application, in which the

application that sends messages needs to know the destinations of the messages

that it sends.

Message brokers make sure that messages arrive at the correct destinations, and

are transformed to the format required at each destination.

The following figure shows the simplest publish/subscribe application. There is

one publisher, one broker, and one subscriber. A publication is sent from the

publisher to the broker, a subscription is sent from the subscriber to the broker,

and the publication is then sent from the broker to the subscriber.

 However, a typical publish/subscribe system has more than one publisher and

more than one subscriber, and often more than one broker. An application can be

both a publisher and a subscriber.

The publisher generates a message that it wants to publish and defines the topic of

the message. A message flow running in the broker retrieves the message from its

input node and passes the message to a Publication node for distribution to all

subscribers that have registered an interest in the topic.

The input node might be one of the following built-in nodes:

v An MQInput node which represents a WebSphere MQ queue

v A Real-timeInput node which receives messages from a JMS application using

WebSphere MQ Real-time Transport

v SCADAInput which represents a SCADA input port

A subscriber registers a request for a publication by specifying one of the following

items:

v The topic, or topics, of the published messages that it is interested in.

v The subscription point from which it wants to receive publications.

v The content filter that should be applied to the published message.

v The name of the queue (known as the subscriber queue) on which publications

that match the criteria selected should be placed. This can be the name of a

cluster queue so that publications can be distributed to clustered subscribers.

Publication

Publication

Subscription
Broker SubscriberPublisher

24 Publish/Subscribe

Refer to Quick Tour for an illustration of how a publish/subscribe system works.

Topics

A topic is a character string that describes the nature of the data that is published

in a publish/subscribe system.

Topics are key to the successful delivery of messages in a publish/subscribe

system. Instead of including a specific destination address in each message, a

publisher assigns a topic to the message. The message broker matches the topic

with a list of clients (subscribers) who have subscribed to that topic, and delivers

the message to each of those clients.

Note that a publisher can control which subscribers can receive a publication by

choosing carefully the topic that is specified in the message.

Topics can be defined by a system administrator using the workbench. However,

the topic of a message does not have to be defined before a publisher can use it; a

topic can also be defined when it is specified in a publication for the first time.

More than one topic can be specified for a publication.

A topic string can include any character from the Unicode character set, including

the space character. However, there are three characters that have special

meanings. These characters (″/″, ″#″, and ″+″) are described in “Special characters

in topics” on page 45.

Although a null character does not cause an error, do not use null characters in

your topic strings.

Topic trees

Although you can use any name for a topic, choose a name that fits into a

hierarchical tree structure. Thoughtful design of topic names and topic trees can

help you with the following operations:

v Subscribing to multiple topics.

v Establishing security policies.

v Automatically reacting to messages on a specific topic; for example, by sending

an alert to a manager’s pager.

Each topic that you define is an element, or node, in the topic tree. The topic tree

can either start empty or contain topics that have been defined by a system

administrator using the workbench. You can define a new topic either by using the

workbench or by specifying the topic for the first time in a publication.

Although you can construct a topic tree as a flat, linear structure, it is better to

build a topic tree in a hierarchical structure with one or more root topics.

The following figure shows an example of a topic tree with one root topic:

Developing publish/subscribe applications 25

Each character string in the figure represents a node in the topic tree. A complete

topic name is created by aggregating nodes from one or more levels in the topic

tree. Levels are separated by the ″/″ character. The format of a fully specified topic

name is: ″root/level2/level3″.

The valid topics in the topic tree shown above are:

 ″USA″

 ″USA/Alabama″

 ″USA/Alaska″

 ″USA/Alabama/Auburn″

 ″USA/Alabama/Mobile″

 ″USA/Alabama/Montgomery″

 ″USA/Alaska/Juneau″

When you design topic names and topic trees, remember that the message broker

does not interpret, or attempt to derive meaning from, the topic name itself. It uses

the topic name only to send related messages to clients who have subscribed to

that topic.

Publishers

A publisher is an application that makes information about a specified topic

available to a broker in a publish/subscribe system.

In a publish/subscribe system, an application, known as the publisher, can send a

message to a message queue or port that is associated with an input node in a

message flow that contains a Publication node. Depending on the transport used

by the publisher, this input node might be an MQInput node, a SCADAInput

node, or a Real-timeInput node.

Another application, known as the subscriber, can send a subscription request to

the broker, which then sends relevant publication messages to the subscriber’s

message queue or port.

A published message can be requested by more than one subscriber, and a

subscriber can request messages, on the same or different topics, from more than

one publisher.

Publications

A publication is a piece of information about a specified topic that is available to a

broker in a publish/subscribe system.

Typically, a broker distributes a publication that it receives to all applications that

are connected to it and that have registered a subscription for the publication. The

USA

Alabama Alaska

Auburn Mobile Montgomery Juneau

26 Publish/Subscribe

broker also distributes the publication to all other brokers connected to it, either

directly or through a network of brokers that have subscribers for the publication.

Local publications

Publishers can restrict access to their publications to only those subscribers that are

registered to the same broker as the publisher. This publication is known as a local

publication. Local publications are not forwarded to other brokers.

Global publications

A publication whose distribution is not restricted to only those subscribers that are

registered to the same broker as the publisher is known as global publication. A

global publication is forwarded to all brokers, connected either directly or through

a network of brokers, that have one or more subscribers for the publication.

Retained publications

Typically, a broker discards a publication after it has been sent. However, a

publisher can specify (in the case of the Publish message, by specifying the

RetainPub option) that it wants the broker to keep a copy of the publication, which

is then called a retained publication.

If a retained publication has been published, new subscribers to that publication

receive the publication without having to wait for it to be published again.

For example, a subscriber that registers a subscription for a stock price receives the

latest published stock price immediately, and does not have to wait for the stock

price to be republished.

A broker retains only one publication for each combination of topic and

subscription point.

State and event information

Information being published can be categorized either as state information or as

event information.

State information is information about the current state of something. The current

price of stock or the current score in a soccer match are both examples of state

information.

Event information is information about an individual event that occurs. A change

in the price of stock or the scoring of a particular goal in a soccer match are both

examples of event information.

When an event occurs, the current state information is no longer required and is

superseded by new state information.

If a publication contains state information, it is often published as a retained

publication. A new subscriber typically wants the current information immediately;

the subscriber does not want to wait for an event that causes the information to be

republished.

Subscribers

A subscriber is an application that requests information about a specified topic from

a publish/subscribe broker.

The subscribing application might be a WebSphere MQ, WebSphere Message

Broker, WebSphere MQ Everyplace, SCADA, or JMS/IP application.

Developing publish/subscribe applications 27

The subscriber sends a subscription request to a broker, specifying which

publications it wants to receive. The request defines the topic, the filter, and the

subscription point of each publication, and also specifies the name of a queue to

which the publications should be sent. This queue is known as the subscriber

queue.

Messages that are published by a publisher can be received by more than one

subscriber, and a subscriber can receive messages, on the same or different topics,

from more than one publisher.

Subscriptions

A subscription is a record that contains the information that a subscriber passes to

its local broker to describe the publications that it wants to receive.

A subscription consists of the following information:

v One or more topics; wildcard characters can be used.

v An optional subscription point.

v An optional filter on the contents of the publication message.

v A subscriber queue, queue manager, and optional CorrelId.

Subscribers issue subscription registration requests to their local broker when they

want to receive published messages. All the information associated with the

subscription is recorded by the broker in the broker’s subscription table.

When the broker receives a publication, it scans its subscription table to determine

whether there is a subscription request that matches the topics, subscription point,

and filter, of the publication. For each subscription request that matches, the broker

forwards the publication to the subscriber queue that is specified, unless the

subscriber has requested, by specifying the PubOnReqOnly option on its request,

that it only wants publications that are newly published.

A subscription is removed from the subscription table only when one of the

following events occurs:

v The subscriber deregisters the subscription.

v The subscription expires in the transports supported.

v The subscriber application ends.

v The subscription is deleted by the system administrator using the workbench.

v A temporary dynamic queue that is specified by the subscriber as the queue to

which publications should be sent, is deleted.

Filters

A filter is an expression, which might include wildcard characters, that is applied

to the content of a publication message to determine whether it matches a

subscription.

When you register a subscription, in addition to specifying a topic and

subscription point, you can specify a filter to select publications according to their

contents. WebSphere Message Broker needs to know how to parse the contents of

the message correctly. This can be achieved in a number of ways:

v The message is a self-defining XML message.

v The message template is defined in the MQRFH2 header.

28 Publish/Subscribe

If the message has an MQRFH header, the message set and type are taken from

that header. Otherwise, the message is assumed to be as defined in the

properties (domain, set, type and format) of the input node.

The filter itself is entered as an SQL-like expression; for example:

 Body.Name LIKE ’Smit%’

This means that the contents of a field called Name in the body of a publication

message are extracted and compared with the string given in the expression. If the

string in the message starts with the characters ″Smit″, the expression evaluates to

TRUE and the publication is sent to the subscriber.

If you want to select publications using filters only, without specifying a topic, you

can register a subscription with the required filter and a topic of ″#″ (all topics).

You then receive publications on only those topics for which you have access

authority.

This subscription results in all publications from all connected brokers being sent

to the broker that is local to the subscriber. Therefore, for performance reasons, if

you have set up a network of brokers, you are advised to not use this technique.

Subscription points

A subscription point is the name that a subscriber uses to request publications from

a particular set of Publication nodes. It is the property of a Publication node that

differentiates that Publication node from other Publication nodes in the same

message flow.

A subscriber that registers a subscription without specifying a subscription point

receives publications from any unnamed Publication node in the message flow,

provided that there is a match with the topic and filter specified by the subscriber.

This applies to all message flows running in all brokers connected in the same

network, unless the local has been specified when registering the subscription.

Using subscription points

If you have more than one Publication node in a message flow, you can

differentiate between them by specifying subscription points. Choose values that

indicate the type of message that is routed to each Publication node.

Example

Consider an application that publishes stock prices. The prices that are available

from the first Publication node in the message flow are in dollars. This Publication

node uses the default subscription point.

You can define a second path through the message flow that takes the price in

dollars, and converts this using a defined conversion value, to produce the same

message but with the stock price in pounds. These messages are published at a

second Publication node that has its subscription point property set to ″Pounds″.

You might have another message flow, in the same broker or a connected broker,

that publishes stock prices in pounds on the same topic. Make sure that it uses the

″Pounds″ subscription point, and that all other message flows that publish their

stock prices in dollars use the default subscription point.

Developing publish/subscribe applications 29

Subscribers specifying the relevant topic (for example, ″stock″) can then choose

whether to receive the information in dollars or in pounds, by using the default

subscription point or the ″Pounds″ subscription point when they subscribe.

Publish/subscribe statistics reports

You can generate statistics reports that provide information about the performance

of your publish/subscribe brokers. These reports are not the same as the message

flow accounting and statistics reports that you can generate. The publish/subscribe

statistics provide information about the performance of brokers, and the

throughput between the broker and clients that are connected to the broker.

Message flow accounting and statistics reports provide information about the

performance and operating details of a message flow execution.

Use publish/subscribe statistics reports to show you where there are performance

problems in your broker network. You can then change the properties of the

brokers that might affect performance. These properties are described in

“Performance considerations for Real-time transport.”

The statistics report is published as a JMS Bytes Message in XML format.

Subscribers receive statistics reports only from those brokers that have been

enabled to produce statistics.

When statistics reporting is enabled for a broker, the broker publishes a statistics

report at regular intervals (as determined by the value specified for the

statsInterval property of the broker).

There is a small performance overhead when statistics reporting is enabled; the

smaller the time interval specified, the larger the performance overhead.

Performance considerations for Real-time transport

A broker that is configured to use Real-time transport has several properties that

can be changed to affect the behavior of the broker. These properties are:

brokerInputQueues

This property defines how many queues are available to store incoming

messages; the higher the number of queues, the higher the potential rate of

accepting incoming messages by the broker.

 The default value is 1.

brokerInputQueueLength

This property defines the maximum number of messages that can be stored

in each input queue; the higher the value, the higher the number of input

messages that can be stored in each input queue; however, be aware that

the higher the value of this property, the larger the amount of memory that

the broker requires for each queue.

 The default value is 99.

maxBrokerQueueSize

This property defines the maximum size of the broker’s output queues. If

this maximum is exceeded, the broker deletes all messages queued to that

broker, except the latest message, any high-priority messages, and any

response messages. If this property is set to 0, the broker does not impose

any limit on the number of bytes that can be queued to another broker.

 The default value is 1000000 bytes.

30 Publish/Subscribe

brokerPingInterval

This property defines the time in milliseconds between broker-initiated

ping messages on broker-broker connections. Ping messages are used to

confirm that communications are still open between both sides of the

connection. If the value is 0, no ping messages are sent by the broker.

 The default value is 5000 milliseconds.

maxMessageSize

This property defines the maximum size of message that can be received

by the broker. If the broker receives a message that is bigger than this, the

broker disconnects the client that sent the message.

 The default value is 100000 bytes.

Use the mqsichangeproperties command to define new values for these properties

if you don’t want to use the default values.

WebSphere MQ Publish/Subscribe

WebSphere MQ Publish/Subscribe provides publish/subscribe application support

for WebSphere MQ applications.

Before Fix Pack 8 of WebSphere MQ Version 5.3, this support was only available by

using SupportPac MA0C, details of which can be found at the following web site:

WebSphere MQ (MQSeries) Publish/Subscribe.

More information about WebSphere MQ publish/subscribe support is given at

“WebSphere MQ Publish/Subscribe” on page 52.

Streams

A stream is a method of topic partitioning used by WebSphere MQ

Publish/Subscribe applications. Sets of related topics are grouped together into

separate streams.

By using streams, different security controls can be applied to different groups of

topics, and the publishing workload of the broker can be better balanced.

Although WebSphere Message Broker provides other ways for an application to

achieve both of these behaviors, the concept of streams is supported for

compatibility with MQRFH applications.

WebSphere Message Broker allows MQRFH client applications to specify an

MQPSStreamName command parameter in their subscriptions and publications.

However, the stream name is used only to modify the topic to preserve the

partitioning characteristic of WebSphere MQ Publish/Subscribe.

If the name of a stream associated with a message is not

SYSTEM.BROKER.DEFAULT.STREAM, the message is processed as if the topic, or

topics, mentioned within the message had been prefixed with the string

″$SYS/STREAM/<streamname>/″. For example, a subscription to Topic1 that

specifies a stream name of StreamX is processed as if the subscription had been

made to topic ″$SYS/STREAM/StreamX/Topic1″.

MQRFH2 publishing and subscribing applications can also target stream-related

topics, even though they themselves cannot specify a stream name in the messages

they send to the WebSphere Message Broker broker. To do this, they must prefix

the topics with the appropriate stream prefix.

Developing publish/subscribe applications 31

http://www.ibm.com/support/docview.wss?uid=swg24000643

For example, an MQRFH2 subscriber must specify topic ″$SYS/STREAM/
STOCK.STREAM/IBM/Latest″ to subscribe to topic ″IBM/Latest″ that is published

on stream STOCK.STREAM within the WebSphere MQ Publish/Subscribe network.

WebSphere MQ Publish/Subscribe allows a stream-related publication to be sent

only to a queue having the same name as the stream. However, WebSphere

Message Broker allows publishing clients to send their publications to any input

queue in a message flow. MQRFH applications choosing explicitly to specify a

stream name parameter within a publication can send it to any publication queue

being serviced by the WebSphere Message Broker broker. The name of the queue

does not have to be the same as the name of the stream. However, this behavior

might affect the order in which publications are received. Consider whether this is

important for your applications.

Each Publication node has an Implicit Stream Naming property that defaults to true.

This default option results in behavior that is identical to that in WebSphere MQ

Publish/Subscribe when an MQRFH publication does not contain an explicit

stream name. If this property is false, and the publication contains no explicit

stream name, SYSTEM.BROKER.DEFAULT.STREAM is assumed.

The options that are available to both MQRFH and MQRFH2 client applications

that publish messages are shown in the following table; the table shows the

options for both the default stream and an example stream name of StreamX.

 MQRFH publisher MQRFH2 publisher

 default stream StreamX default stream StreamX

MQRFH subscriber S1,P1 S2,P2 S1,P3 S2,P4

MQRFH2 subscriber S3,P1 S4,P2 S3,P3 S4,P4

Subscriber notes

S1 Subscriber subscribes either without a stream name or with stream name

″SYSTEM.BROKER.DEFAULT.STREAM″.

S2 Subscriber subscribes with stream name ″StreamX″.

S3 Subscriber subscribes on topic without adding ″$SYS/STREAM/
<streamname>/″.

S4 Subscriber subscribes prefixes topic with ″$SYS/STREAM/StreamX/″.

Publisher notes

P1 Publisher publishes on any queue specifying stream name

″SYSTEM.BROKER.DEFAULT.STREAM″, or publishes without specifying a

stream name on any queue with the Implicit Stream Naming property set to

false.

P2 Publisher publishes on any queue specifying stream name ″StreamX″, or

publishes without specifying a stream name on queue ″StreamX″ with the

Implicit Stream Naming property set to true.

P3 Publisher publishes on any queue without adding the prefix

″$SYS/STREAM/<Stream>/″ to the topic.

P4 Publisher publishes on any queue and adds the prefix

″$SYS/STREAM/StreamX/″ to the topic.

Note: The ″$SYS/STREAM/<streamname>/″ prefix is removed from all topics in

an MQRFH2 publication when it is delivered to an MQRFH subscriber.

32 Publish/Subscribe

Streams and neighboring brokers: In a WebSphere MQ Publish/Subscribe

network, a broker does not have to support the same set of streams as its

neighbors. If a broker does not support a stream that is supported by one of its

neighboring brokers, publications associated with that stream are not available to

clients at that broker.

When an WebSphere Message Broker broker joins the network, it supports all the

streams of its neighboring WebSphere MQ Publish/Subscribe brokers. This means

that clients of the WebSphere Message Broker broker can target publications for

any stream supported by any of its WebSphere MQ Publish/Subscribe neighbors.

However, to make these publications available, you must define the stream queues,

and define and deploy the message flows that support them, to the WebSphere

Message Broker broker.

The effects of adding an WebSphere Message Broker broker into a multi-stream

WebSphere MQ Publish/Subscribe environment are illustrated in the following

figure. The WebSphere Message Broker broker, NEWBROKER, has been used to

join WebSphere MQ Publish/Subscribe brokers, BROKERA, and BROKERB.

The default stream queue SYSTEM.BROKER.DEFAULT.STREAM is always

supported by every broker in an WebSphere MQ Publish/Subscribe network, and

must be defined at every WebSphere Message Broker broker in a heterogeneous

network. At each broker, you must define and deploy a message flow to service

this queue.

When a WebSphere Message Broker broker is integrated into an WebSphere MQ

Publish/Subscribe network, and links two or more WebSphere MQ

Publish/Subscribe brokers that share common streams, you must define the

common stream queues, and define and deploy the message flows that service

them, to the WebSphere Message Broker broker.

For example, the WebSphere Message Broker broker NEWBROKER must have a

stream queue defined for BULLETIN.STREAM. It must also have a message flow

defined and deployed to provide a publication service for that queue.

You need to define stream queues and associated message flows to the WebSphere

Message Broker broker for other streams shown in the figure only if one of its

WebSphere MQ Publish/Subscribe neighbors can send a message to one of these

queues. A message is sent if one of the following events occurs:

1. A subscription to a publication on one of these streams is registered by a client

of the WebSphere Message Broker broker.

2. A DeletePublication command for the stream is issued by a client anywhere

within the broker network.

A heterogeneous network

BROKERBBROKERA

Streams:
BULLETIN.STREAM
RESULTS.STREAM
STOCK.STREAM
SYSTEM.BROKER.DEFAULT.STREAM

Streams:
BULLETIN.STREAM
SYSTEM.BROKER.DEFAULT.STREAM
WEATHER.STREAM

NEWBROKER

Developing publish/subscribe applications 33

If you are unsure about whether the above cases might occur, create stream queues

and message flows in the WebSphere Message Broker broker for every stream that

is supported by an WebSphere MQ Publish/Subscribe neighbor. If you do not do

this, the following might happen:

v Messages sent from WebSphere MQ Publish/Subscribe brokers are put on the

dead-letter queue (DLQ) of the WebSphere Message Broker broker if the stream

queue does not exist on that broker.

v Messages build up on stream queues on the WebSphere Message Broker broker

if the stream queue exists but no message flow is deployed to service it.

Streams and migration: When an WebSphere MQ Publish/Subscribe broker is

migrated to an WebSphere Message Broker broker (using the migmqbrk

command), the streams supported at the time of the migration are replicated

exactly in the WebSphere Message Broker broker. No changes can be made

subsequently; that is, no streams can be added to, or removed from, this replicated

set. The migration is not complete until you have created and deployed message

flows that process all these streams.

Stream authority

In WebSphere MQ Publish/Subscribe, all publish and subscribe authority checks

are performed against the stream queue. Publishing applications need authority to

put messages to the stream queue. The WebSphere MQ Publish/Subscribe broker

also checks the authority of subscribing applications which require browse

authority on the stream queue. A subscribing application also needs to have put

authority for the queue that it nominates to receive its publications.

A similar check is made by WebSphere Message Broker brokers, but there is no

checking for subscribe, or browse, authority. Instead, WebSphere Message Broker

uses Access Control Lists (ACLs), which you can create using the workbench, to

provide the required authorities for individual topics. For more information about

ACLs, see Authorization to access runtime resources.

Before you migrate an WebSphere MQ Publish/Subscribe broker to WebSphere

Message Broker, or migrate your WebSphere MQ Publish/Subscribe applications to

run on a WebSphere Message Broker, you must consider the following security

implications:

v Publishing applications are subject to the same checks even if your broker is not

running with topic security enabled, because the authority to put a message to

the stream or publication queue continues to be checked by WebSphere MQ.

However, stream publications can be processed by WebSphere Message Broker

on any input queue, because publishers no longer need to put to a queue with

the same name as the stream. Therefore, set up equivalent ACLs for all streams

using their corresponding topic level qualifiers

v The WebSphere Message Broker broker does not check that subscribing

applications have browse authority on the stream queue. Instead, WebSphere

Message Broker models streams by prefixing all topics that aren’t part of the

default stream with a unique prefix, $SYS/STREAM/<streamname>/. This

maintains the partitioning characteristics of streams and also allows

stream-specific ACLs to be set up. Because topics in the default stream are not

altered by the broker, the root topic can be used to specify authorities for default

stream topics.

34 Publish/Subscribe

The figure shows the stream authorities that are required. This example assumes

that you have updated the default ACL on the topic root for principal PublicGroup

with authority for publish, subscribe, and persistent delivery all set to deny.

Using this example, assume that the following groups are defined:

 PDefault: the group of users authorized to publish on the default stream

 SDefault: the group of users authorized to subscribe to the default stream

 PStreamX: the group of users authorized to publish on StreamX

 SStreamX: the group of users authorized to subscribe to StreamX

 PStreamY: the group of users authorized to publish on StreamY

 SStreamY: the group of users authorized to subscribe to StreamY

You must grant and deny authorities by setting up ACLs as follows:

1. PDefault must be granted publish authority on the root, and SDefault must be

granted subscribe authority on the root.

2. PDefault must be denied publish authority on $SYS/STREAM/, and SDefault

must be denied subscribe authority on $SYS/STREAM/.

These settings ensure that publishers and subscribers on the default stream are

unable to publish on, or subscribe to, other streams without an explicit ACL

that overrides the relevant setting.

3. PStreamX must be granted publish authority on $SYS/STREAM/StreamX/, and

SStreamX must be granted subscribe authority on $SYS/STREAM/StreamX/.

These settings override any setting on parent topics and limit publish and

subscribe activity to users within these specific groups.

4. PStreamY must be granted publish authority on $SYS/STREAM/StreamY/, and

SStreamY must be granted subscribe authority on $SYS/STREAM/StreamY/.

These settings override any setting on parent topics and limit publish and

subscribe activity to users within these specific groups.

If you want to set up exceptions to this situation, you can do so by introducing an

ACL at the appropriate point. For example, if you wanted to grant authority to

publishers to the default stream, PDefault, to publish on StreamX, you must create

an explicit ACL at point (3) to grant that authority; this overrides the denial of

authority at point (2). In this scenario, users in PDefault would still be unable to

publish on StreamY.

Stream authorities

(2) "$SYS/STREAM/"

(3) "$SYS/STREAM/StreamX/" (4) "$SYS/STREAM/StreamY/"

(1) " " (root topic)

Developing publish/subscribe applications 35

Publishing

The publisher sends a Publish command message to the input node of a message

flow that contains a Publication node. The publisher must have the necessary

access authority, set by the WebSphere Message Broker system administrator, to

publish on the topic or topics that are specified for this publication.

Using retained publications

By default, a broker discards a publication after it has sent that publication to all

interested subscribers. However, a publisher can specify that it wants the broker to

keep a copy of a publication, which is then called a retained publication.

A copy of a retained publication is sent by the broker to all subscribers who

register an interest in the topic of the publication. This means that a new

subscriber does not have to wait for information to be published again before they

receive it.

For example, a subscriber that registers a subscription to a stock price receives the

most recently published price straightaway, without having to wait for the stock

price to change and be republished.

If RetainPub is specified as a publication option in the Publish message, the

publication is retained by the broker and replaces any previously retained

publication for that topic.

Because the broker retains only one publication for each topic and subscription

point, the old publication is deleted when a new publication arrives.

When deciding whether to use retained publications, consider the following

questions.

v Do your publications contain state information or event information?

Typically, event information is not retained, but state information is retained.

However, if all the subscriptions to a topic are in place before any publications

are made on that topic, and if no new subscriptions are expected, there is no

need to retain publications, even for state information, because the publications

are delivered to all subscribers as soon as they are published.

Publications that contain state information might also not need to be retained if

they are published very frequently (for example, every second). With this

frequency of publishing, any new subscriber (or a subscriber recovering from a

failure) receives the current state almost immediately after it subscribes.

v Do you want to receive publications only when you request them?

If you use retained publications, subscribers can register using the

PubOnReqOnly option of the Register Subscriber message. This means that the

broker sends publications to a subscriber only when that subscriber requests an

update. The broker then sends to the subscriber the current retained publication

that matches the subscription.

v Can retained publications be mixed with non-retained publications on the same

topic?

This is not recommended. If you have a retained publication, and then publish a

non-retained publication on the same topic, the existing retained publication is

still retained. It is not updated by the non-retained publication. If a subscriber

registers using the PubOnReqOnly option of the Register Subscriber message, it

36 Publish/Subscribe

cannot access any non-retained publications. The broker sends only the current

retained publication in response to a request for an update.

v Can you have more than one application publishing retained publications on the

same topic?

You are recommended to not have more than one application publishing

retained publications on the same topic. If you do, and the timing is close to

simultaneous, it is indeterminate which publication is retained. If the publishers

use different brokers, different retained publications for the same topic might be

held at each broker.

v How does the subscriber application recover from failure?

If the publisher does not use retained publications, the subscriber application

might need to store its current state locally. If the publisher uses retained

publications, the subscriber can request an update to refresh its state information

after a restart.

The broker continues to send publications to a registered subscriber even if that

subscriber is not running. This can lead to a buildup of messages on the

subscriber queue. This buildup can be avoided if the subscriber registers with

the PubOnReqOnly option of the Register Subscriber message. The subscriber

must then refresh its state periodically either by requesting an update or by

using a temporary dynamic queue.

v What are the performance implications of retaining publications?

The broker needs to store retained publications in a database. This reduces

throughput. If the publications are very large, a considerable amount of disk

space is needed to store the retained publication of each topic. In a multi-broker

environment, retained publications are stored by all other connected brokers that

have a matching subscription.

Use the Expiry field of the message descriptor (MQMD) to set an expiry interval

for a retained publication.

The sample verification applications that are shipped with WebSphere Message

Broker include the Soccer Results service. This sample uses retained publications to

record the latest score in each soccer match that it is monitoring. The sample code

illustrates the programming that is required to support this option.

Not all applications can publish retained publications, and not all retained

publications can have expiry dates applied to them. The following table shows

which applications can publish retained publications and whether the retained

publications can have an expiry date:

 MQ SCADA JMS/IP

Retained YES YES NO

Expiry Date YES NO NO

The columns in the table indicate three types of application. The first row indicates

whether a publication can be a retained publication, and the second row indicates

whether an expiry date can be applied to the publication.

Developing publish/subscribe applications 37

Subscribing

A subscriber registers a request for a publication by specifying the following

elements.

v The topic, or topics, of the published messages that it is interested in.

Wildcard characters can be used when subscribing to topics, and can be used at

any level in the topic name string. By creating your applications so that topics

are defined in well-structured topic trees, the applications can subscribe to

sub-trees by placing the multilevel wild card ″#″ at the end of a topic.

Note that, although the single-level wild card is accepted anywhere in the topic

name, performance is better when it is placed at the end of the string.

You can specify more than one wildcard character within a subscription. For

example, ″+/Alabama/#″ is a valid topic.

Note that, if you subscribe with topic ″#″, you receive all publications from all

connected brokers. This might result in a very overloaded broker network.

v The subscription point from which it wants to receive publications.

This value should match the subscription point property that is set for at least

one publication node defined in this broker. If the value does not match any

existing subscription point, the subscriber does not receive any publications,

unless a publication node is defined subsequently with this subscription point

name.

If you do not specify a subscription point, the default description point is

assumed. You receive all publications that have matching topics and filters.

For SCADA applications, the SCADA connection port is the implied subscription

point.

v The content filter that should be applied to the published message.

This information is optional. If you do not specify a content filter, all published

messages with matching subscription points and topics are received.

Content filters cannot be used with SCADA messages.

v The name of the queue (known as the subscriber queue) on which publications

that match the criteria selected should be placed. This queue must exist if the

subscription is to be satisfied.

For SCADA applications, the SCADA port receives the publications. You do not

have to explicitly specify the port.

When the publication node receives a message, it checks the subscription table to

determine whether there are any subscription requests that either specify this

particular node’s subscription point, or match the content or topic, or both, of the

message received.

For every match found, the node delivers the published message on the subscriber

queue, using the optional CorrelId, if specified. If no CorrelId is specified, a fixed

value is used. Each subscriber receives just one copy of each publication regardless

of how many matching subscriptions that the client has.

SCADA applications use the SCADA port to publish and subscribe, and CorrelId is

not applicable.

When the node has sent the publication to any subscribers that have a matching

subscription, the publication is discarded, unless it is a retained publication.

38 Publish/Subscribe

Local subscriptions

Subscribers can specify a local option on registration. If they do so, their

subscription registration is not forwarded to other brokers, but is held by the local

broker. Any message that is published at this broker and matches the subscription

is received by this subscriber, but messages published to other brokers are not

normally available, unless the subscriber has also registered a global subscription

with an overlapping topic and the same subscription point.

Retained publications

If retained publications are used, the subscriber can specify the following options

when it registers a subscription.

v Publish on request only

If the Publish on Request Only option is used, the broker does not send

publications to the subscriber until the subscriber sends a Request Update

message to the broker. The broker then sends any current retained publication

that matches the subscription.

v New publications only

Normally the broker sends the current retained publication that matches the

subscription when a subscriber registers that subscription. If the subscriber uses

the New Publications Only option, the broker waits until a new publication is

received before sending it to the subscriber.

v Message persistence

Send all subscription registration messages as persistent messages. All

subscriptions are maintained persistently by the broker.

Brokers maintain the persistence of publications as set by the publisher, unless

changed by options specified when the subscription is registered. These options

are:

– Nonpersistent

– Persistent

– Persistence as queue

– Persistence as publisher (the default)
The system administrator decides which users are allowed to have publications

sent persistently.

Deregistering a subscription

One or more subscriptions for a particular subscriber can be deregistered using the

Deregister Subscriber command message. This is sent to the broker control queue,

SYSTEM.BROKER.CONTROL.QUEUE. The message must be sent by the subscriber

that registered the subscription in the first place.

There are other ways in which a subscription can be deregistered; these are listed

below.

v The subscription expires because the expiry time has passed.

v A system administrator deregisters the subscription.

v If the subscriber queue is a temporary dynamic queue, and the queue is deleted

(for example, when the subscriber disconnects from the queue manager), the

broker deregisters the subscription automatically.

Automatic deregistration does not occur if:

Developing publish/subscribe applications 39

– The temporary dynamic queue is not local (that is, it is not on the same

queue manager on which the broker is running).

– The subscriber has named a queue that is an alias of a local temporary

dynamic queue.

When a subscriber application sends a message to deregister a subscription, and

receives a response message to say that this has been done successfully, some

publications might subsequently reach the subscriber queue if they were being

processed by the broker at the same time as the deregistration. This might result in

a buildup of unprocessed messages on the subscriber queue. The application can

clear these unprocessed messages from the queue by repeatedly sleeping and

sending an MQGET call with the appropriate CorrelId.

Similarly, if the subscriber uses a permanent dynamic queue and, when

terminating, it deregisters and closes the queue with the PurgeandDelete option,

the queue might not be empty. This is because publications from the broker might

not yet be committed at the time that the queue was deleted. In this case, a

Q_NOT_EMPTY return code is issued by the MQCLOSE call. The application can

avoid this problem by repeatedly sleeping and reissuing the MQCLOSE call.

Generating statistics reports

You can generate statistics reports that provide information about the performance

of your brokers.

Use these statistics reports to show you where there are performance problems in

your broker network. You can then change the properties of the brokers that might

affect performance. These properties are described in “Performance considerations

for Real-time transport” on page 30.

By default, statistics reporting is disabled. To enable statistics reporting:

1. Use the property statsInterval of the mqsichangeproperties command:

mqsichangeproperties <broker name> -e <execution group> -o DynamicSubscriptionEngine

 -n statsInterval -v <time interval>

where <broker name> is the name of the broker whose statistics you want to be

reported, <execution group> is the name of the execution group deployed to

the broker, and <time interval> is the number of milliseconds that should

separate statistics reports.

There is a small performance overhead when statistics reporting is enabled; the

smaller the time interval specified, the larger the performance overhead.

2. Restart the broker.

To disable statistics reporting, use the same procedure, but set the value of the

statsInterval property to 0.

Subscribing to statistics reports

When statistics reporting is enabled for a broker, the broker publishes a statistics

report at regular intervals (as determined by the value specified for the

statsInterval property of the broker). The statistics reported is distributed, as a

publication, to all subscribers that subscribed to the topic

$SYS/Broker/broker name/ExecutionGroup/execution group/Statistics

40 Publish/Subscribe

where broker name is the name of the broker, and execution group is the name of the

execution group that is deployed to that broker.

You can use wild cards when you subscribe to statistics reports. For example, to

receive statistics reports for all brokers and all execution groups, subscribe to the

topic

$SYS/Broker/+/ExecutionGroup/+/Statistics

Subscribers receive statistics reports only from those brokers that have been

enabled to produce statistics.

The publication is a JMS Bytes Message that contains the statistics report in XML

format.

Subscribing to multicast statistics reports

When statistics reporting is enabled for a broker that is enabled for multicast, the

broker publishes statistics reports at regular intervals (as determined by the value

specified for the statsInterval property of the broker). The statistics reports are

distributed, as publications, to all subscribers that subscribed to the following

topics:

$SYS/Broker/broker name/ExecutionGroup/execution group/Statistics/Multicast/Topics

$SYS/Broker/broker name/ExecutionGroup/execution group/Statistics/Multicast/Groups

$SYS/Broker/broker name/ExecutionGroup/execution group/Statistics/Multicast/Summary

where broker name is the name of the broker, and execution group is the name of the

execution group that is deployed to that broker.

Subscribers receive statistics reports only from those brokers that have been

enabled to produce statistics.

The publications are JMS Bytes Messages that contain the statistics reports in XML

format.

Developing publish/subscribe applications 41

42 Publish/Subscribe

Part 3. Reference

Publish/subscribe 45

Special characters in topics 45

The topic level separator 45

The multilevel wild card 45

The single-level wild card 46

When wild cards are not wild 46

Topic semantics and usage 46

Sample authentication exchanges 47

Simple telnet-like password authentication . . . 47

Simple mutual challenge-response password

authentication 47

Statistics reports 48

Multicast statistics reports 50

Summary report 50

Report by multicast group 51

Report by multicast topic 51

WebSphere MQ Publish/Subscribe 52

Product differences 52

MQRFH2 header 66

Multiple MQRFH2 headers 67

MQRFH2 structure 67

Message service folders 70

Command messages 72

Delete Publication message 73

Deregister Subscriber message 74

Publish message 78

Register Subscriber message 81

Request Update message 86

Broker Response message 88

Reason codes 90

MQMD settings in command messages to the

broker 92

MQMD settings for publications forwarded by a

broker 93

MQMD settings in broker response messages . . 94

© Copyright IBM Corp. 2000, 2006 43

44 Publish/Subscribe

Publish/subscribe

Publish/subscribe reference information is available for the following topics:

v “Special characters in topics”

v “Topic semantics and usage” on page 46

v “Sample authentication exchanges” on page 47

v “Statistics reports” on page 48

v “Multicast statistics reports” on page 50

v “WebSphere MQ Publish/Subscribe” on page 52

v “MQRFH2 header” on page 66

v “Command messages” on page 72

Special characters in topics

A topic can contain any character in the Unicode character set. However, the

following three characters have a special meaning:

 The topic level separator ″/″.

 The multilevel wild card ″#″.

 The single-level wild card ″+″.

The topic level separator is used to introduce structure into the topic, and can

therefore be specified within the topic for that purpose.

The multilevel wild card and single-level wild card can be used for subscriptions,

but they cannot be used within a topic by the publisher of a message.

However, if a publisher uses the characters ″+″ or ″#″ together with other

characters in any topic level within a topic, these characters are not treated as wild

cards, and they do not have any special meaning.

The topic level separator

The topic level separator character ″/″ is used to provide a hierarchical structure to

the topic space. It must be used by applications to separate levels within a topic

tree. The use of the topic level separator is significant when the two wildcard

characters are encountered in topics specified by subscribers.

Topic hierarchy is important in the administration of access control.

The multilevel wild card

The multilevel wildcard character ″#″ is used to match any number of levels within

a topic. For example, using the example topic tree shown above, if you subscribe to

″USA/Alaska/#″, you receive messages on topics ″USA/Alaska″ and

″USA/Alaska/Juneau″.

The multilevel wild card can represent zero or more levels. Therefore, ″USA/#″ can

also match the singular ″USA″, where # represents zero levels. The topic level

separator is meaningless in this context, because there are no levels to separate.

The multilevel wild card can be specified only on its own or next to the topic level

separator character. Therefore, ″#″ and ″USA/#″ are valid topics where the ″#″

© Copyright IBM Corp. 2000, 2006 45

character is treated as a wild card. However, although ″USA#″ is also a valid topic,

the ″#″ character is not regarded as a wild card and does not have any special

meaning. See “When wild cards are not wild” for more information.

The single-level wild card

The single-level wildcard character ″+″ matches one, and only one, topic level. For

example, ″USA/+″ matches ″USA/Alabama″, but not ″USA/Alabama/Auburn″.

Also, because the single-level wild card matches only a single level, ″USA/+″ does

not match ″USA″.

The single-level wild card can be used at any level in the topic tree, and in

conjunction with the multilevel wild card. The single-level wild card must be

specified next to the topic level separator, except when it is specified on its own.

Therefore, ″+″ and ″USA/+″ are valid topics where the ″+″ character is treated as a

wild card. However, although ″USA+″ is also a valid topic, the ″+″ character is not

regarded as a wild card and does not have any special meaning. See “When wild

cards are not wild” for more information.

When wild cards are not wild

The wildcard characters ″+″ and ″#″ have no special meaning when they are mixed

with other characters (including themselves) in a topic level.

This means that topics that contain ″+″ or ″#″ together with other characters in a

topic level can be published.

For example, consider the following two topics:

1. level0/level1/+/level4/#

2. level0/level1/#+/level4/level#

In the first example, the characters ″+″ and ″#″ are treated as wild cards and are

therefore not valid in a topic that is to be published.

In the second example, the characters ″+″ and ″#″ are not treated as wild cards and

therefore the topic can be both published and subscribed to.

Topic semantics and usage

When you build an application, the design of the topic tree should take into

account the following principles of topic name syntax and semantics:

v Topic names are case sensitive.

For example, ″ACCOUNTS″ and ″Accounts″ are two different topics.

v Topic names can include the space character.

For example, ″Accounts payable″ is a valid topic.

v A leading ″/″ creates a distinct topic.

For example, ″/USA″ is different from ″USA″ and ″/USA’ matches ″+/+″ and

″/+″, but not ″+″.

v A topic name that contains ’//’ is not a valid name. An attempt to subscribe to a

topic with such a name causes an error.

v Do not include the null character (Unicode \x0000) in any topic.

46 Publish/Subscribe

v The wildcard characters ″+″ and ″#″ are not treated as wild cards if they are

mixed with any other characters (including themselves but excluding the topic

level separator ″/″) within a topic level.

The following principles apply to the construction and content of a topic tree:

v There is no limit to the number of levels in a topic tree.

v There is no limit to the length of the name of a level in a topic tree.

v There can be any number of ″root″ nodes; that is, there can be any number of

topic trees. These are defined below the root ″″, which is the root of all root

nodes. It is referred to as ″topicRoot″, although there is no corresponding topic

name. Applications cannot publish or subscribe to this virtual root.

v The topic trees with roots of ″$SYS″ and ″$ISYS″ are reserved for use by

WebSphere Message Broker only.

If you are using topic-based security, only brokers can publish messages on these

topics, and only brokers can subscribe to messages with a topic of ″$ISYS″,

regardless of the content of the topic Access Control Lists (ACLs) that are

defined.

For more details about topic-based security and ACLs, see Topic-based security.

Sample authentication exchanges

Look at “Simple telnet-like password authentication” and “Simple mutual

challenge-response password authentication” for examples of authentication

exchanges.

Simple telnet-like password authentication

Simple mutual challenge-response password authentication

Client Server

Hello

"Send UserId, Password"

"Okay"
Userid, Password

This diagram shows the following exchange of messages between a client and a server in a

simple telnet-like password authentication.

1. The client sends ″Hello″.

2. The server replies ″Send UserId, Password″.

3. The client sends a user ID and password.

4. The server concludes the exchange of messages with ″Okay″.

Publish/subscribe 47

Statistics reports

The statistics data is published by the broker in XML format.

The report is split into three sections:

v Broker

v Client

v Neighbor

The content of each section is described below.

Broker Statistics are:

Broker

The name of the broker that generated the statistics report.

Execution Group

The name of the execution group running on the broker.

Client Count

The total number of clients that are connected to the broker.

Neighbor Count

The total number of neighbor brokers that are connected to the broker.

Subscription Count

The number of subscriptions held by the broker.

Time Stamp

The time when the statistics report was sent.

Client Statistics, which consists of data about message throughput between the

broker and the clients that are connected to the broker, are:

Bytes Queued

The number of bytes of data that are currently queued by the broker for

delivery to clients.

Messages Sent

The total number of messages that the broker has delivered to its clients.

Bytes Sent

The total number of bytes that the broker has delivered to its clients.

Bytes Cut Through

The total number of bytes of data that were sent immediately to clients,

without being queued internally by the broker.

Client Server

Hello

Challenge (Incorporating ServerId)

Response

Response-and-Counter-Challange
(Incorporating Client's UserId)

48 Publish/Subscribe

Messages Received

The total number of messages that have been received by the broker from

its clients.

Bytes Received

The total number of bytes that have been received by the broker from its

clients.

Messages Dropped

The number of messages that have been dropped due to queue overflow,

where the client was not subsequently disconnected from the broker.

Bytes Dropped

The number of bytes that have been dropped due to queue overflow,

where the client was not subsequently disconnected from the broker.

Disconnect Messages Dropped

The number of messages that have been dropped due to queue overflow,

where the client was subsequently disconnected from the broker.

Disconnect Bytes Dropped

The number of bytes that have been dropped due to queue overflow,

where the client was subsequently disconnected from the broker.

Neighbor Statistics, which consists of data about the message throughput between

the broker and any other brokers with which it has been configured as a neighbor,

are:

Bytes Queued

The number of bytes of data that are currently queued by the broker for

delivery to neighboring brokers.

Messages Sent

The total number of messages that the broker has delivered to neighboring

brokers.

Bytes Sent

The number of bytes that the broker has delivered to neighboring brokers.

Bytes Cut Through

The total number of bytes of data that were sent immediately to

neighboring brokers, without being queued internally by the broker.

Messages Received

The total number of messages that have been received by the broker from

neighboring brokers.

Bytes Received

The total number of bytes that have been received by the broker from

neighboring brokers.

Messages Dropped

The number of messages dropped due to queue overflow, where the

neighboring broker was not subsequently disconnected from the broker.

Bytes Dropped

The number of bytes dropped due to queue overflow, where the

neighboring broker was not subsequently disconnected from the broker.

Disconnect Messages Dropped

The number of messages dropped due to queue overflow, where the

neighboring broker was subsequently disconnected from the broker.

Publish/subscribe 49

Disconnect Bytes Dropped

The number of bytes dropped due to queue overflow, where the

neighboring broker was subsequently disconnected from the broker.

Multicast statistics reports

Multicast statistics data is published by the broker in XML format.

The multicast reports contain the following fields:

msgsSent

The total number of multicast messages that have been sent by the broker

since it was started.

bytesSent

The total number of bytes in multicast messages that have been sent by the

broker since it was started.

queueDepth

The total number of bytes of data that are currently queued by the broker

for multicast delivery.

bytesResent

The total number of bytes that have been resent in multicast messages

since the broker was started.

The content of the three multicast reports is described below.

Summary report

The subscription was to topic

$SYS/Broker/<broker name>/ExecutionGroup/<execution group>/Statistics/Multicast/Summary

Broker

The name of the broker that generated the statistics report.

Execution Group

The name of the execution group running on the broker.

Time Stamp

The time when the statistics report was sent.

Topic Name

The value of this field is the wildcard character ″#″.

Messages Sent

The total number of multicast messages that have been sent by the broker

since it was started.

Bytes Sent

The total number of bytes in multicast messages that have been sent by the

broker since it was started.

Bytes Queued

The total number of bytes of data that are currently queued by the broker

for multicast delivery.

Bytes Resent

The total number of bytes that have been resent in multicast messages

since the broker was started.

50 Publish/Subscribe

Group Address

The value of this field is the wildcard character ″*″.

Report by multicast group

If the subscription was to topic

$SYS/Broker/<broker name>/ExecutionGroup/<execution group>/Statistics/Multicast/Groups

Broker

The name of the broker that generated the statistics report.

Execution Group

The name of the execution group running on the broker.

Time Stamp

The time when the statistics report was sent.

Group Name

The name of a multicast group.

Group Address

The internet address of the multicast group.

Messages Sent

The total number of multicast messages that have been sent by the broker

since it was started, for the multicast group named.

Bytes Sent

The total number of bytes in multicast messages that have been sent by the

broker since it was started, for the multicast group named.

Bytes Queued

The total number of bytes of data that are currently queued by the broker

for multicast delivery, for the multicast group named.

Bytes Resent

The total number of bytes that have been resent in multicast messages

since the broker was started, for the multicast group named.

The last six fields listed above are repeated for each multicast group currently

being used.

Report by multicast topic

If the subscription was to topic

$SYS/Broker/<broker name>/ExecutionGroup/<execution group>/Statistics/Multicast/Topics

Broker

The name of the broker that generated the statistics report.

Execution Group

The name of the execution group running on the broker.

Time Stamp

The time when the statistics report was sent.

Topic name

The name of the multicast topic.

Messages Sent

The total number of multicast messages that have been sent by the broker

since it was started, for the multicast group named.

Publish/subscribe 51

Bytes Sent

The total number of bytes in multicast messages that have been sent by the

broker since it was started, for the multicast group named.

Bytes Queued

The total number of bytes of data that are currently queued by the broker

for multicast delivery, for the multicast group named.

Bytes Resent

The total number of bytes that have been resent in multicast messages,

since the broker was started, for the multicast group named.

Group Name

The name of the multicast group that contains the topic.

The last six fields listed above are repeated for each multicast topic currently being

used.

WebSphere MQ Publish/Subscribe

WebSphere MQ Publish/Subscribe application support differs in some way from

the publish/subscribe application support provided by WebSphere Message Broker.

These differences are described in “Product differences.”

Product differences

The differences in the publish/subscribe support provided by WebSphere MQ and

WebSphere Message Broker are described in the following topics:

v “Message formats”

v “Streams” on page 56

v “Stream authority” on page 59

v “Topics” on page 61

v “Wildcard characters” on page 61

v “Default topic routing” on page 63

v “Retained publications” on page 63

v “Metatopics” on page 63

v “Subscription points” on page 64

v “Content-based filtering” on page 65

v “Throughput” on page 65

Message formats

Client applications that are developed for WebSphere Message Broker should use

the MQRFH2 message header. These applications can then use all the function

provided by WebSphere Message Broker.

Existing WebSphere MQ Publish/Subscribe applications that use the MQRFH

message header are also supported by WebSphere Message Broker, but function is

limited to that provided by WebSphere MQ Publish/Subscribe.

WebSphere MQ Publish/Subscribe does not support the MQRFH2 format. Clients

that are connected to WebSphere MQ Publish/Subscribe brokers must use the

MQRFH format.

52 Publish/Subscribe

However, client applications that need to communicate with one another using

publish/subscribe can do so regardless of the message format that they use.

WebSphere Message Broker provides automatic conversion to ensure that a

subscriber receives messages in the correct format.

The following table shows the mapping between equivalent fields in the MQRFH

and MQRFH2 message headers:

 MQRFH field name MQRFH2 field name

MQPSCommand Command

MQPSDelOpts DelOpt

MQPSPubOpts PubOpt

MQPSPubTime PubTime

MQPSQMgrName QMgrName

MQPSQName QName

MQPSRegOpts RegOpt

MQPSSeqNum SeqNum

MQPSTopic Topic

All the MQRFH2 fields that are shown in the table are contained in a <psc> folder.

Field names that are not shown in the table do not have a common meaning, or

are valid in only one of the two header formats. Field names that are not

recognized, or not appropriate to the other format, are not copied. For example, the

following name-value area of an MQRFH:

MQPSCommand Publish

MQPSPubOpts RetainPub

MQPSStreamName SAMPLE.BROKER.RESULTS.STREAM

MQPSTopic "Sport/Soccer/State/LatestScore/Team1 Team2"

is converted to this MQRFH2 folder:

<psc>

<Command>Publish</Command>

<PubOpt>RetainPub</PubOpt>

<Topic>Sport/Soccer/State/LatestScore/Team1 Team2</Topic>

</psc>

Using these mapping rules, WebSphere Message Broker makes sure that MQRFH2

publications can still be received by MQRFH subscribers, and that MQRFH

publications can be received by MQRFH2 subscribers.

Content filters can be specified by MQRFH2 subscribers even if the topic that they

are subscribing to is one that is published in MQRFH format by an WebSphere MQ

Publish/Subscribe client, although there is some limit to compatibility. These

limitations are described later in this topic.

The next table summarizes the valid options for clients that use the different

message formats.

Publish/subscribe 53

Message Option Name Option Value Support

 All requests

(client to broker)

 MQPSCommand DeletePub

DeregPub

DeregSub

Publish

RegPub

RegSub

ReqUpdate

 yes

yes1

yes

yes

yes1

yes

yes

 MQMD.Format MQFMT_PCF

MQFMT_RF_HEADER

 no

yes

 MQMD.Report MQRO_PAN

MQRO_NAN

 yes

yes

 MQMD.MsgType MQMT_REQUEST

MQMT_DATAGRAM

 yes

yes

 MQMD.MsgId yes

 MQMD.CorrelId yes4

 MQMD.ReplyToQ yes

 MQMD.ReplyToQMgr yes

 MQPSStreamName prefixed on topic3

 MQPSTopic yes

 All requests except

Delete Publication

 MQPSQMgrName yes

 MQPSQName yes

 MQPSRegOpts CorrelAsId yes

 Delete Publication MQPSDelOpts Local yes5

 Deregister Publisher1

 MQPSRegOpts DeregAll yes

 Deregister Subscriber MQPSRegOpts DeregAll yes

54 Publish/Subscribe

Message Option Name Option Value Support

 Publish MQMD fields As specified by MQPS2

 yes

 MQPSRegOpts Anon yes7

 Local yes5

 DirectReq yes1

 MQPSPubOpts NoReg yes1

 RetainPub yes (set by publisher)

 IsRetainedPub yes (set by broker)

 OtherSubsOnly yes

 MQPSPubTime yes

 MQPSSeqNum yes

 MQPSStringData1

 yes

 MQPSIntData1

 yes

 Register Publisher1

 MQPSRegOpts Anon yes7

 Local yes5

 DirectReq yes1

 Register Subscriber MQPSRegOpts Anon yes7

 Local yes5

 NewPubsOnly yes

 PubOnReqOnly yes

 InclStreamName no3

 InformIfRet yes

Publish/subscribe 55

Message Option Name Option Value Support

 All responses

(broker to client)

 MQPSCompCode new values added6

 MQPSReason new values added6

 MQPSReasonText new values added6

 MQPSCommand command to which this is

a response

Notes:

1. This option is supported for migration purposes.

2. MQPS is WebSphere MQ Publish/Subscribe.

3. The stream name parameter is effectively prefixed on the topic. The

stream name can be deduced from the queue name if the property

implicitStreamNaming of the Publication node is set.

4. The client identity is determined as the concatenation of the queue

manager name, the queue name, and optionally the correlation id

(when the correlation ID as identity option is set). The application

identifier is thus ″MQPSQMgrName:MQPSQName[:correlId]″. The

default values specified by WebSphere MQ Publish/Subscribe are used

if these values are not present in a message.

5. The behavior of this option differs.

6. New values have been added.

7. Ignored by WebSphere Message Broker.

Streams

WebSphere MQ Publish/Subscribe uses streams primarily as a way of partitioning

the topic name space. Sets of related topics can be grouped together into separate

streams, allowing different security controls to be applied to different streams, and

the publishing work load of the broker to be better balanced.

However, WebSphere Message Broker provides more flexible controls to achieve

both of these behaviors. Therefore, the concept of a stream is supported only for

MQRFH application compatibility.

The security controls of WebSphere Message Broker allow authorization to be

applied to an individual topic level. Also, the publishing workload of the broker

can be more easily controlled by creating additional instances of publication

message flows that can serve either the same or different input queues.

WebSphere Message Broker still allows MQRFH client applications to specify an

MQPSStreamName command parameter in their subscriptions and publications.

However, the stream name is only used to modify the topic to preserve the

partitioning characteristic of WebSphere MQ Publish/Subscribe.

When the stream name associated with a message is set to something other than

SYSTEM.BROKER.DEFAULT.STREAM, the message is processed as if the topic, or

topics, mentioned within the message had been prefixed with the string

56 Publish/Subscribe

″$SYS/STREAM/<streamname>/″. That is, a subscription to Topic1 that specifies a

stream name of StreamX is processed as if the subscription had been made to topic

″$SYS/STREAM/StreamX/Topic1″.

MQRFH2 publishing and subscribing applications can still target stream-related

topics, even though they themselves are not allowed to specify a stream name in

the messages that they send to the WebSphere Message Broker broker. To do this,

they must prefix the topics with the appropriate stream prefix.

For example, to subscribe to topic ″IBM/Latest″ that is published on stream

STOCK.STREAM within the WebSphere MQ Publish/Subscribe network, an

MQRFH2 subscriber must specify topic ″$SYS/STREAM/STOCK.STREAM/IBM/
Latest″.

WebSphere MQ Publish/Subscribe allows a stream-related publication to be sent

only to a queue that has the same name as the stream. However, WebSphere

Message Broker allows publishing clients to send their publications to any input

queue in a message flow.

MQRFH applications that explicitly specify a stream name parameter within a

publication can send it to any publication queue that is serviced by the WebSphere

Message Broker broker. The queue does not need to have the same name as the

stream.

Be aware that the order in which publications are received might be different from

what you might expect.

Each Publication node has an Implicit Stream Naming property whose default

value is true. This default option results in behavior that is identical to that in

WebSphere MQ Publish/Subscribe when an MQRFH publication does not contain

an explicit stream name. If this property is false, and the publication does not

contain an explicit stream name, SYSTEM.BROKER.DEFAULT.STREAM is

assumed.

The next table summarizes the options that are available to both MQRFH and

MQRFH2 client applications that publish messages, either to the default stream or

to a specific WebSphere MQ Publish/Subscribe stream. The stream name StreamX

is used to illustrate the options.

 MQRFH

publisher

 MQRFH2

publisher

 default stream StreamX default stream StreamX

MQRFH subscriber S1,P1 S2,P2 S1,P3 S2,P4

MQRFH2 subscriber S3,P1 S4,P2 S3,P3 S4,P4

Subscriber notes:

v S1 Subscriber subscribes either without a stream name or with stream name

″SYSTEM.BROKER.DEFAULT.STREAM″.

v S2 Subscriber subscribes with stream name ″StreamX″.

v S3 Subscriber subscribes on topic without adding ″$SYS/STREAM/<streamname>/″.

v S4 Subscriber subscribes on topic prefixed with ″$SYS/STREAM/StreamX/″.

Publish/subscribe 57

MQRFH

publisher

 MQRFH2

publisher

Publisher notes:

v P1 Publisher publishes on any queue specifying stream name

″SYSTEM.BROKER.DEFAULT.STREAM″. or publishes without specifying a stream name

on any queue with the Implicit Stream Naming property set to false.

v P2 Publisher publishes on any queue specifying stream name ″StreamX″, or publishes

without specifying a stream name on queue ″StreamX″ with the Implicit Stream Naming

property set to true.

v P3 Publisher publishes on any queue without adding the prefix ″$SYS/STREAM/
<Stream>/″ to the topic.

v P4 Publisher publishes on any queue and adds the prefix ″$SYS/STREAM/StreamX/″ to

the topic.

Note: The ″$SYS/STREAM/<streamname>/″ prefix is removed from all topics in

an MQRFH2 publication when it is delivered to an MQRFH subscriber.

Streams and neighboring brokers:

In an WebSphere MQ Publish/Subscribe network a broker might not support the

same set of streams as its neighbors. If a broker does not support a stream that is

supported by one of its neighboring brokers, publications associated with that

stream are not available to clients at that broker.

When a WebSphere Message Broker broker is added to the network, it supports all

the streams that are supported by its neighboring WebSphere MQ

Publish/Subscribe brokers. This means that clients of the WebSphere Message

Broker broker can target publications for any stream supported by any of its

WebSphere MQ Publish/Subscribe neighbors.

However, to make these publications available, you must define the stream queues,

and define and deploy the message flows that support them, to the WebSphere

Message Broker broker.

The effects of adding a WebSphere Message Broker broker into a multi-stream

WebSphere MQ Publish/Subscribe environment are shown in the following

example:

 The WebSphere Message Broker broker, NEWBROKER, has been used to join

WebSphere MQ Publish/Subscribe brokers, BROKERA, and BROKERB.

The default stream queue SYSTEM.BROKER.DEFAULT.STREAM is always

supported by every broker in a WebSphere MQ Publish/Subscribe network, and

must be defined for every WebSphere Message Broker broker in a heterogeneous

network. At each broker, you must also define and deploy a message flow to

service this queue.

BROKERBBROKERA

Streams:
BULLETIN.STREAM
RESULTS.STREAM
STOCK.STREAM
SYSTEM.BROKER.DEFAULT.STREAM

Streams:
BULLETIN.STREAM
SYSTEM.BROKER.DEFAULT.STREAM
WEATHER.STREAM

NEWBROKER

58 Publish/Subscribe

When a WebSphere Message Broker broker is integrated into a WebSphere MQ

Publish/Subscribe network, and links two or more WebSphere MQ

Publish/Subscribe brokers that share common streams, you must define the

common stream queues, and define and deploy the message flows that service

them, to the WebSphere Message Broker broker.

For example, the WebSphere Message Broker broker NEWBROKER shown in the

previous figure must have a stream queue defined for BULLETIN.STREAM. It

must also have a message flow defined and deployed to provide a publication

service for that queue.

You need to define stream queues and associated message flows to the WebSphere

Message Broker broker for the other streams shown in the figure only if one of its

WebSphere MQ Publish/Subscribe neighbors might send a message to one of these

queues. A message is sent if one of the following events occur:

1. A subscription to a publication on one of these streams is registered by a client

of the WebSphere Message Broker broker.

2. A DeletePublication command for the stream is issued by a client anywhere

within the broker network.

If you are not sure whether the above cases might occur, create stream queues and

message flows in the WebSphere Message Broker broker for every stream that is

supported by a WebSphere MQ Publish/Subscribe neighbor. If you do not do this,

you might see the following results:

v Messages sent from WebSphere MQ Publish/Subscribe brokers are put to the

dead-letter queue (DLQ) of the WebSphere Message Broker broker if the stream

queue does not exist on that broker.

v Messages build up on stream queues on the WebSphere Message Broker broker

if the stream queue exists but no message flow is deployed to service it.

Streams and migration:

When a WebSphere MQ Publish/Subscribe broker is migrated to a WebSphere

Message Broker broker (using the migmqbrk command), the streams that are

supported at the time of the migration are exactly replicated in the WebSphere

Message Broker broker.

No changes can be made subsequently; that is, no streams can be added or

removed from this replicated set.

Migration is not complete until you have created and deployed message flows that

process all these streams.

Stream authority

In WebSphere MQ Publish/Subscribe, all publish and subscribe authority checks

are performed against the stream queue:

v Publishing applications require the authority to put messages to the stream

queue.

v The WebSphere MQ Publish/Subscribe broker checks the authority of

subscribing applications that want to browse the stream queue.

v Subscribing applications require the authority to put messages to the queue that

it nominated to receive its publications.

Publish/subscribe 59

The same check is made by WebSphere Message Broker brokers, but the subscribe

authority (browse) is no longer checked.

Instead, WebSphere Message Broker allows both publish and subscribe access to be

defined in a hierarchical manner right down to an individual topic level. To do

this, use the workbench to create access control lists (ACLs).

Before you migrate a WebSphere MQ Publish/Subscribe broker to a replacement

WebSphere Message Broker broker, or before you migrate your WebSphere MQ

Publish/Subscribe applications to run on WebSphere Message Broker, you must

consider the security implications:

v Publishing applications are subject to the same checks even if your broker is not

running with topic security enabled, because the authority to put a message to

the stream or publication queue continues to be checked by WebSphere MQ.

However, stream publications can be processed by WebSphere Message Broker

on any input queue, because publishers no longer need to put to a queue with

the same name as the stream. You should therefore set up equivalent ACLs for

all streams using their corresponding topic level qualifiers

v The WebSphere Message Broker broker does not check that subscribing

applications have the authority to browse the stream queue. Instead, WebSphere

Message Broker models streams by prefixing all topics that are not part of the

default stream with the unique prefix, $SYS/STREAM/<streamname>/. This

maintains the partitioning characteristics of streams and allows stream-specific

ACLs to be set up. Topics in the default stream are not altered by the broker.

Therefore, the root topic can be used to specify the authorities for default stream

topics.

The diagram below shows the stream authorities that are required. The example

assumes that you have updated the default ACL on the topic root for principal

PublicGroup with authority for publish, subscribe, and persistent delivery all set to

deny.

Using this example, assume that the following groups are defined:

v PDefault: the group of users authorized to publish on the default stream

v SDefault: the group of users authorized to subscribe to the default stream

v PStreamX: the group of users authorized to publish on StreamX

v SStreamX: the group of users authorized to subscribe to StreamX

v PStreamY: the group of users authorized to publish on StreamY

v SStreamY: the group of users authorized to subscribe to StreamY

(2) "$SYS/STREAM/"

(3) "$SYS/STREAM/StreamX/" (4) "$SYS/STREAM/StreamY/"

(1) " " (root topic)

60 Publish/Subscribe

You must grant and deny authorities by setting up ACLs as follows:

1. PDefault must be granted publish authority on the root; SDefault must be

granted subscribe authority on the root.

2. PDefault must be denied publish authority on $SYS/STREAM/; SDefault must

be denied subscribe authority on $SYS/STREAM/.

These settings ensure that publishers and subscribers on the default stream

cannot automatically publish on, or subscribe to, other streams; an ACL must

be defined that explicitly overrides that setting.

3. PStreamX must be granted publish authority on $SYS/STREAM/StreamX/,

SStreamX must be granted subscribe authority on $SYS/STREAM/StreamX/.

These settings override any setting on parent topics and limit publish and

subscribe activity to users within these specific groups.

4. PStreamY must be granted publish authority on $SYS/STREAM/StreamY/,

SStreamY must be granted subscribe authority on $SYS/STREAM/StreamY/.

These settings override any setting on parent topics and limit publish and

subscribe activity to users within these specific groups.

If you want to set up exceptions to this situation, you need to introducing an ACL

at the appropriate point. For example, if you wanted to grant authority to

publishers to the default stream (PDefault) to publish on StreamX, you must create

an explicit ACL at point (3) to grant that authority, thus overriding the denial at

point (2). In this scenario, users in PDefault still could not publish on StreamY.

Topics

In WebSphere MQ Publish/Subscribe, all publications must be tagged with an

arbitrary character string called a topic. This defines the subject matter of the

publication.

WebSphere MQ Publish/Subscribe recommends, though this is not enforced, that

topic strings are structured into a number of fields or levels using the forward

slash, ″/″, as a delimiter.

WebSphere Message Broker publications also have a topic associated with them,

and the topic structure is delimited by the forward slash character.

Therefore, if your existing applications follow the WebSphere MQ

Publish/Subscribe recommendation, they are better positioned to exploit the

function provided by WebSphere Message Broker, which allows the structure of the

topic to be externalized.

WebSphere Message Broker allows you to control users’ authority to publish on,

and subscribe to, any topic at any level within the topic structure.

Wildcard characters

Wildcard characters can be used by subscribing applications to broaden the scope

of publications that they register an interest in. By specifying a wildcard character,

the subscriber is specifying a general pattern of the topics they are interested in,

rather than an explicit topic.

Wildcard characters are used by both WebSphere MQ Publish/Subscribe and

WebSphere Message Broker. However, WebSphere Message Broker provides a

different set of wildcard characters that allow a more extensive and flexible use of

wildcard characters by subscribers.

Publish/subscribe 61

v WebSphere MQ Publish/Subscribe wildcard characters are:

– An asterisk (*); this matches zero or more characters.

– A question mark (?); this matches exactly one character.

– The percent sign (%); this can be used as an escape character to use an ″*″, a

″?″, or a ″%″ character within a topic.
v WebSphere Message Broker wildcard characters are:

– The multilevel wild card (the character #); this matches any number of levels

at the start or end of the topic.

– The single-level wild card (the character +); this matches a single level within

the topic.
The characters used are:

The full range of function of the WebSphere Message Broker wildcard characters is

only available to MQRFH2 clients. Subscriptions that are made by MQRFH clients

to WebSphere Message Broker brokers for topics that contain either of the

WebSphere Message Broker wildcard characters are rejected with the reason code

MQRCCF_TOPIC_ERROR.

Applications that use MQRFH and connect to WebSphere MQ Publish/Subscribe

brokers in a heterogeneous network should therefore not publish on, or subscribe

to, topics that contain either the multilevel wild card (#) or single-level wild card

(+) characters. WebSphere MQ Publish/Subscribe brokers do not police this; if your

applications specify any WebSphere Message Broker wildcard characters in topics

when they publish or register a subscription in a heterogeneous broker network,

these publications and subscriptions are ignored by WebSphere Message Broker

brokers within the network. You are therefore strongly advised to review and if

necessary change the topics being used within a WebSphere MQ Publish/Subscribe

implementation before adding a WebSphere Message Broker broker to the network.

When applications that use MQRFH2 use the WebSphere Message Broker wildcard

characters to target multiple publications from within the WebSphere MQ

Publish/Subscribe network, wildcard mapping is performed. In most cases, the

broker replaces both the multilevel wild card and the single-level wild card

characters with an asterisk. This does not provide an exact match for either of the

WebSphere Message Broker wildcard characters, but ensures that a superset of the

required publications are sent to the WebSphere Message Broker broker. The

WebSphere Message Broker broker evaluates the ″#″ and ″+″ wildcard characters to

match the correct publications.

For example, the topic ″employee/+/development″ is propagated as

″employee/*/development″ to a WebSphere MQ Publish/Subscribe neighbor. This

might cause redundant publications to be sent to the WebSphere Message Broker

broker from its WebSphere MQ Publish/Subscribe neighbor. However, none of

these would be sent to the original client when the WebSphere Message Broker

evaluates the original subscription.

The exception to this is a subscription to the topic ″+″ which is never propagated;

it cannot be represented as an ″*″ because this is the topic that is propagated if a

subscription to topic ″#″ is made at the WebSphere Message Broker broker.

Do not specify WebSphere MQ Publish/Subscribe wildcard characters in MQRFH2

client subscriptions. If you do specify one or more, they are assumed by

62 Publish/Subscribe

WebSphere Message Broker to be part of the topic, and are therefore prefixed by

the escape character (%) before the subscription is sent on to a WebSphere MQ

Publish/Subscribe neighbor.

For example, if your MQRFH2 client subscribes with a topic of

″USA/Alaska*/Juneau?″, this is modified and passed to a WebSphere MQ

Publish/Subscribe broker neighbor as ″USA/Alaska%*/Juneau%?″.

If an application using MQRFH connects to a WebSphere Message Broker broker,

WebSphere Message Broker emulates the behavior of the WebSphere MQ

Publish/Subscribe wildcard characters * and ? using a mixture of its own wildcard

characters and filter expressions. Existing MQRFH applications that subscribe to a

WebSphere Message Broker broker therefore receive the same publications as they

would receive if they subscribe to a WebSphere MQ Publish/Subscribe broker.

Default topic routing

In WebSphere Message Broker, the Topic property of the MQInput node can be

used to route messages that do not contain publish/subscribe parameters. This

feature does not apply to MQRFH subscribers.

MQRFH subscribers expect to receive publications, with a well-formed MQRFH

header, from both WebSphere MQ Publish/Subscribe and WebSphere Message

Broker clients.

In the latter case, the original MQRFH2 header is converted as described earlier in

this topic. However, if the message does not contain publish/subscribe information

in either an MQRFH or an MQRFH2 header, the default topic is not used to send

publications to an MQRFH subscriber.

Retained publications

In WebSphere MQ Publish/Subscribe, retained publications are stored on the

queue manager with the same persistence as the input message. This means that

when the queue manager is restarted, nonpersistent retained publications are

deleted and persistent publications are retained.

In WebSphere Message Broker, retained publications are held in a database and are

always preserved across restarts of any of the resources, regardless of whether the

input publication is persistent.

Metatopics

WebSphere MQ Publish/Subscribe brokers provide information about publishers

and subscribers via a special set of topics called metatopics. Metatopics start with

the ″MQ/S/″ or ″MQ/SA/″ prefix, and are subscribed to by two categories of

applications, administration programs and clients.

WebSphere Message Broker does not provide equivalent metatopics, and therefore

a program (administration or client) that subscribes to WebSphere MQ

Publish/Subscribe metatopics cannot work with a WebSphere Message Broker

broker. However, WebSphere Message Broker does publish information about

subscription events using its own set of system topics.

The following considerations apply to the two categories of application in the

WebSphere Message Broker environment.

Publish/subscribe 63

Administration programs (for example, the amqspsd sample) use WebSphere MQ

Publish/Subscribe metatopics to display subscription information. This information

is provided by WebSphere Message Broker in the workbench, which allows

subscriptions to be viewed and deleted throughout the broker network.

Applications use messages published on WebSphere MQ Publish/Subscribe

metatopics to, for example, request information about their own current

subscriptions.

A client program can subscribe to WebSphere Message Broker system topics and

process the event publications.

WebSphere Message Broker does not provide a topic that reports all the current

subscriptions for a particular topic or client, but does publish whenever

subscriptions are added or removed. This information is published as event

information whereas WebSphere MQ Publish/Subscribe metatopics are published

as state information.

Subscription points

Subscriptions points are a feature provided by WebSphere Message Broker that can

be used to make information associated with a particular topic available in a

number of different formats.

For example, stock prices might be published with a default currency of dollars,

but might be required by subscribers expressed in other currencies.

This can be achieved by defining additional paths through the message flow that

take each publication and convert the dollar stock price into another currency (for

example, euros), before it is passed to its Publication node.

Each additional currency must be associated with a different subscription point

and therefore a Publication node. The original publication in dollars is associated

with the default subscription point.

Subscribers can then subscribe to stock prices using a combination of topic and the

subscription point that provides the data in the correct currency.

Subscription points are not supported by WebSphere MQ Publish/Subscribe. You

must therefore be careful if you use them in a heterogeneous network. In

particular, be aware that publications can only pass between WebSphere Message

Broker and WebSphere MQ Publish/Subscribe brokers on the default subscription

point.

All topics that are published in a WebSphere MQ Publish/Subscribe broker

domain are on the default subscription point. These topics are only available to

MQRFH2 subscribers that subscribe to the topics without specifying a subscription

point (that is, are using the default subscription point).

Similarly, clients at WebSphere MQ Publish/Subscribe brokers can only subscribe

to topics that are published on the default subscription point at WebSphere

Message Broker brokers (at Publication nodes that do not have a subscription point

set).

64 Publish/Subscribe

Content-based filtering

WebSphere Message Broker supports content-based filtering of publications. This

allows an MQRFH2 subscriber to restrict the messages that it wants to receive.

When an MQRFH2 client registers a subscription with the local broker, it can

specify a filter to be applied to the content of fields within each publication

message.

When an MQRFH2 subscriber subscribes to MQRFH publications within the

WebSphere MQ Publish/Subscribe part of a mixed broker network, all MQRFH

publications are converted to MQRFH2 format by the broker before delivery to the

MQRFH2 client

An MQRFH2 subscriber can also request that some content-based filtering is

performed on the MQRFH publications that they are subscribing to. This can be

done only if the body of the publication is in a format that can be parsed by the

broker; that is, if it can be interpreted by one of the broker’s default parsers. For

example, messages in XML or MQPCF format can be processed in this way.

If you want to make full use of content-based filtering, you must convert

publications into MQRFH2 format. Then all messages that are defined in the

message repository can be interpreted by the brokers’ parsers.

MQRFH clients cannot specify a content filter.

Throughput

In WebSphere MQ Publish/Subscribe, a single thread processes publications on

each of the stream queues. This guarantees the order in which publications are

processed from the queue.

When you consider throughput for publications in a WebSphere Message Broker

broker domain, you must also consider the importance of the order in which

messages are published. Techniques that increase throughput do not necessarily

guarantee order.

WebSphere Message Broker supports two options that increase throughput:

1. You can configure the message flow with additional threads by setting the

Additional Instances property of the MQInput node. This property causes the

broker to schedule additional threads to read messages from the input queue,

thus allowing publications from that queue to be processed concurrently by the

broker. You must ensure that the stream (input) queue has the share attribute

set (WebSphere MQ Publish/Subscribe required stream queues to have noshare

set).

If multiple threads process messages from a single queue, publications are not

guaranteed to be delivered to subscribers in the order in which they are placed

on the input queue. However, WebSphere Message Broker provides a method

of allowing publications to be processed concurrently, while still maintaining

the required sequence.

Set the Order Mode property of the MQInput node to the value By User ID.

This ensures the order of delivery of publications sent to the broker by a given

user. When this property is set, the processing of messages that carry a given

Publish/subscribe 65

UserIdentifier field in the MQMD is held up if any other thread servicing that

message flow is currently processing a message that carries the same

UserIdentifier.

The benefits of running additional instances of the message flow are negated if

all publishing applications are running under the same user ID. This might be

the case for publishing applications connected to a queue manager remote to

the broker’s queue manager. Messages from these remote publishers arrive at

the broker on a channel that might have been set up to insert the channel

program’s user ID instead of the originating client’s user ID. Refer to the

WebSphere MQ Intercommunications book for more information about how to set

the PUTAUT channel attribute to change the default channel behavior.

2. You can configure one or more additional message flows (not instances) that

read publications from different queues. You must also update some of your

publishing applications to publish to the new queue (or queues). This has the

effect of splitting the stream, and therefore spreading the workload.

If you decide to increase throughput using this method, you must consider the

impact this has on the order in which publications are delivered. In particular,

you must ensure that the publisher applications are split with respect to the

topics they are publishing to ensure that order can be maintained for each

topic, if this is important. If your applications publish to different queues

(message flows) on the same topic, order cannot be guaranteed.

If you update the publisher applications to send publications to a new queue

that has a name different from the stream on which they are publishing, you

must also update these applications to explicitly include the stream name

within their publications using the MQPSStreamName parameter.

Publishing applications that specify a stream parameter do not need to be

modified, as this parameter takes precedence. However, if publishing

applications do not specify the stream parameter, the behavior is determined by

the setting of the Implicit Stream Naming property of the publication node in

the message flow:

v If the property is set to false, the default stream is assumed.

v If the property is set to true, the stream name is assumed to be the same as

the name of the stream input queue.

MQRFH2 header

The MQRFH2 header is used to pass messages to and from a message broker

belonging to WebSphere Message Broker. In a message, the MQRFH2 header

follows the WebSphere MQ message descriptor (MQMD) and precedes the message

body, if present.

Other headers, such as the IMS/ESA or CICS bridge headers, are allowed either

before or after the MQRFH2 header, but before the message body.

If you are using the Message Queuing Interface (MQI) to write application

programs you need to understand the structure and content of the MQRFH2

header.

For more information, refer to:

v “MQRFH2 structure” on page 67

v “Message service folders” on page 70

66 Publish/Subscribe

Multiple MQRFH2 headers

A message can have more than one MQRFH2 header.

For example, if an application forwards a message, including its header, to another

application, a second MQRFH2 header precedes the header in the message being

forwarded.

v Attributes that describe the body of the message, such as the domain, set, type,

and format, or the character set ID and encoding, are taken from the last

MQRFH2 header, which is immediately in front of the body of the message.

v Anything else, such as the topic for a publish/subscribe message, is taken from

the first MQRFH2 header.

MQRFH2 structure

The MQRFH2 header contains information about the structure of a message, and

its intended consumers, to enable a message broker to process the message and

deliver or publish the message to those consumers.

The value ’MQRFH2 ’ should be put in the Format field of the preceding header

(usually the MQMD). The constant MQFMT_RF_HEADER_2 is defined with this

value.

For the C programming language, the constant MQFMT_RF_HEADER_2_ARRAY is

also defined. This constant has the same value as MQFMT_RF_HEADER_2, but it

is an array of characters, not a character string.

The character set and encoding of the fields in the MQRFH2 header are as follows:

v Fields other than NameValueData are in the character set and encoding defined

by the fields CodedCharSetId and Encoding in the header structure that

precedes the MQRFH2 header, or by the same fields in the MQMD structure if

the MQRFH2 header is at the start of the application message data. The

character set should be one that has single-byte characters for the characters that

are valid in queue names.

v NameValueData is in the character set defined by the NameValueCCSID field.

Note that not all Unicode character sets are valid for NameValueCCSID; see the

description of NameValueCCSID for details.

Some character sets have a representation that is dependent on the encoding. If

NameValueCCSID defines one of these character sets, NameValueData must be

in the same encoding as the other fields in the MQRFH2 header.

v The user data (if any) that follows NameValueData can be in any supported

character set (single-byte, double-byte, or multi-byte), and in any supported

encoding.

Publish/subscribe 67

The MQRFH2 header contains the following fields:

 Field Name Description Details

StrucId Structure identifier The value must be MQRFH_STRUC_ID, which is the

identifier for the rules and formatting header

structure,.

For the C programming language, the constant

MQRFH_STRUC_ID_ARRAY is also defined; this

constant has the same value as MQRFH_STRUC_ID,

but it is an array of characters, not a character

string.

Version Structure version

number

The value must be MQRFH_VERSION_2, which is

the Version-2 rules and formatting header

structure.

Struclength Total length of

MQRFH2

(including

NameValueData)

The initial value of this field is

MQRFH_STRUC_LENGTH_FIXED_2, which is the

length of the fixed part of the MQRFH2 header

structure.

This is the length in bytes of the MQRFH2

header structure, including any

NameValueLength and NameValueData fields

at the end of the structure.

There might be more than one pair of these

fields at the end of the structure, in the

sequence: length1, data1, length2, data2,

The length of any user data that follows the last

NameValueData field at the end of the

structure is not included in StrucLength.

Note: If Struclength is not a multiple of four,

problems might occur with the data conversion

of user data in some operating system

environments.

Encoding Numeric encoding

of data that follows

NameValueData

The initial value of this field is MQENC_NATIVE.

This field specifies how numeric values in any

data that follows the last NameValueData field

are represented. This applies to binary integer

data, packed decimal integer data and

floating-point data.

CodedCharSetId Character set

identifier of data

that follows

NameValueData

The initial value of this field is MQCCSI_INHERIT,

which means that the character set identifier is

the same as that of the current structure.

This field identifies the coded character set for

any character strings in the data that follows

the last NameValueData field.

68 Publish/Subscribe

Field Name Description Details

Format Format name of

data that follows

NameValueData

The initial value of this field is

MQFMT_NONE.

This field specifies the format name of any data

that follows the last NameValueData field. The

name should be padded with blanks to the

length of the field.

Note: Do not use a null character to terminate

the name before the end of the field; the queue

manager does not change to a blank character

the null character, or any characters that follow

the null character, in the MQRFH2 header.

Note: Do not specify a name with leading or

embedded blank characters.

Flags Flags The initial value of this field is MQRFH_NONE,

which means that there are no flags.

NameValueCCSID Character set

identifier of

NameValueData

The initial value of this field is 1208, which

means that the UTF-8 coded character set is

used.

This field identifies the coded character set for

data in the NameValueData field. This is

different from the character set for other

character strings in the MQRFH2 header

structure, and might be different from the

character set for any character data that follows

the last NameValueData field.

NameValueCCSID must have one of the

following values:

1200: UCS-2 open-ended

1208: UTF-8

13488: UCS-2 2.0 subset

17584: UCS-2 2.1 subset (includes the euro

symbol €)

For the UCS-2 character sets, the encoding (byte

order) of the NameValueData field must be the

same as the encoding of the other fields in the

MQRFH2 header structure.

Note: Surrogate characters (X’D800’ thru

X’DFFF’) are not supported.

The following two fields are optional, but if present they must occur as a pair. They can be

repeated as a pair as many times as required.

If these fields occur more than once, they must occur in the sequence length1, data1,

length2, data2,

NameValueLength Length of

NameValueData

This field specifies the length, in bytes, of the

NameValueData field that follows this field.

Note: If NameValueLength is not a multiple of

four, there might be a problem with the

conversion of the data that follows the

NameValueData field.

Publish/subscribe 69

Field Name Description Details

NameValueData This is a

variable-length

character string

containing data that

is encoded using an

XML-like structure

The length, in bytes, of this string is given by

the NameValueLength field that precedes this

NameValueData field.

To avoid the problem described in the note

accompanying the description of the

NameValueLength field, either extend this field

with blanks so that its length is a multiple of

four, or terminate the field with a null

character.

C programming language definition

The following structure is defined in the cmqc.h header file that is supplied with

WebSphere MQ. The constants that are used within the NameValueData field are

defined in the BipRfc.h header file that is supplied with WebSphere Message

Broker.

typedef struct tagMQRFH2 {

 MQCHAR4 StrucId; /* Structure identifier */

 MQLONG Version; /* Structure version number */

 MQLONG StrucLength; /* Total length of MQRFH2 including

 NameValueData */

 MQLONG Encoding; /* Numeric encoding of data that follows

 NameValueData */

 MQLONG CodedCharSetId; /* Character set identifier of data that

 follows NameValueData */

 MQCHAR8 Format; /* Format name of data that follows

 NameValueData */

 MQLONG Flags; /* Flags */

 MQLONG NameValueCCSID; /* Character set identifier of NameValueData */

 } MQRFH2;

Message service folders

The following folder names are defined for use by WebSphere MQ products:

<mcd>

Message content descriptor

<psc> Publish/subscribe command

<pscr>

Publish/subscribe command response

<usr> Application (user) defined properties

Each folder is contained in a separate NameValueData field, each of which is

preceded by a NameValueLength field.

Independent software vendors can choose other names for their folders. However,

you can prefix your chosen folder name with their internet domain name to avoid

naming conflicts and problems. For example, a vendor with domain name

ourcompany.com might name its folders:

com.ourcompany.xxx or com.ourcompany.ourData

The mcd folder

The <mcd> folder can contain the following elements that describe the structure of

the message data in a WebSphere MQ message. They are all character strings, and

are case-sensitive.

70 Publish/Subscribe

<Msd> Message service domain

 Valid values are:

mrm WebSphere Message Broker MRM-managed messages.

xml The message is treated as a self-defining XML message.

xmlns The message is treated as a self-defining XML message. If your

messages use XML namespaces, use xmlns in preference to xml.

xmlnsc

The message is treated as a self-defining XML message. If your

messages use XML with namespaces, use xmlnsc in preference to

xmlns or xml, to take advantage of the compact trees that this

parser produces.

mime The message uses the MIME standard for multipart messages.

idoc The message is treated as an SAP IDoc message.

none The message is treated as an opaque blob, and delivered to the

recipient as is.

<Set> Message set

<Type> The name of the message type, within the specified message set, to which

this message corresponds.

Note: In Version 2.1 this specifies an identifier, rather than a name, for the

message type.

<Fmt> The name of the MRM physical format, within the specified message set, to

which this message corresponds.

Note: In Version 2.1 this specifies an identifier, rather than a name, for the

MRM physical format.

Note: The <Set>, <Type>, and <Fmt> elements are only used when <Msd> is either

mrm or idoc.

The psc folder

The <psc> folder is used to convey publish/subscribe command messages to the

broker.

Only one psc folder is allowed in the NameValueData field.

See “Command messages” on page 72 for full details.

The pscr folder

The <pscr> folder is used to contain information from the broker, in response to

publish/subscribe command messages.

There is only one pscr folder in a response message.

See “Broker Response message” on page 88 for full details.

The broker ignores this folder in messages that it receives from publish/subscribe

applications.

The usr folder

The content model of the <usr> folder is as follows:

Publish/subscribe 71

v Any valid XML name can be used as an element name, providing that it doesn’t

contain a colon

v Only simple elements, not groups, are allowed

v All elements take the default type of string, unless modified by a dt=″xxx″

attribute

v All elements are optional, but should occur no more than once in a folder

v An MQRFH2 instance can contain no more than one <usr> folder

Command messages

The following command messages can be sent to WebSphere Message Broker in a

publish/subscribe application:

v “Delete Publication message” on page 73

v “Deregister Subscriber message” on page 74

v “Publish message” on page 78

v “Register Subscriber message” on page 81

v “Request Update message” on page 86

If you are using the Message Queue Interface (MQI) to write applications that use

the publish/subscribe model, you need to understand these messages, the Broker

Response message, and the message descriptor (MQMD). Refer to:

v “Broker Response message” on page 88

v “MQMD settings in command messages to the broker” on page 92

v “MQMD settings for publications forwarded by a broker” on page 93

v “MQMD settings in broker response messages” on page 94

The commands are contained in a <psc> folder in the NameValueData field of the

MQRFH2 header.

The message that can be sent by a broker in response to a command message is

contained in a <pscr> folder.

Refer to “Message service folders” on page 70 for details about the message service

folders.

The descriptions of each command list the properties that can be contained in a

folder. Unless otherwise specified, the properties are optional and can occur no

more than once.

Names of properties are shown as <Command>.

Values must be in string format, for example: Publish.

A string constant representing the value of a property is shown in parentheses, for

example: (MQPSC_PUBLISH).

String constants are defined in the header file BipRfc.h which is supplied with

WebSphere Message Broker.

72 Publish/Subscribe

Delete Publication message

The Delete Publication command message is sent to a broker from a publisher, or

from another broker, to tell the broker to delete any retained publications for the

specified topics.

This message is sent to the input queue of a message flow that contains a

Publication node. You must have the authority to put a message onto this queue,

and to publish on the topic, or topics, that are specified in the message.

The input queue should be the queue that the original publication was sent to.

If you have the authority for some, but not all, of the topics that are specified in

the Delete Publication command message, only those topics are deleted. A Broker

Response message indicates which topics are not deleted.

Similarly, if a Publish command contains more than one topic, a Delete Publication

command matching some, but not all, of those topics deletes only the publications

for the topics that are specified in the Delete Publication command.

See “MQMD settings in command messages to the broker” on page 92 for details

of the message descriptor (MQMD) parameters that are needed when sending a

command message to the broker.

Properties

<Command> (MQPSC_COMMAND)

The value is DeletePub(MQPSC_DELETE_PUBLICATION).

 This property must be specified.

<Topic> (MQPSC_TOPIC)

The value is a string that contains a topic for which retained publications are

to be deleted. Wildcard characters can be included in the string to delete

publications on more than one topic.

 This property must be specified; it can be repeated for as many topics as

needed.

<DelOpt> (MQPSC_DELETE_OPTION)

The delete options property can take one of the following values:

 Local (MQPSC_LOCAL)

 All retained publications for the specified topics are deleted at the local

broker (that is, the broker to which this message is sent), whether they

were published with the Local option or not.

 Publications at other brokers are not affected.

None (MQPSC_NONE)

 All options take their default values. This has the same effect as

omitting the DelOpt property. If other options are specified at the same

time, None is ignored.

 The default if this property is omitted is that all retained publications for the

specified topics are deleted at all brokers in the network, regardless of whether

they were published with the Local option.

Publish/subscribe 73

Example

Here is an example of NameValueData for a Delete Publication command

message. This is used by the sample application to delete, at the local broker, the

retained publication that contains the latest score in the match between Team1 and

Team2.

 <psc>

 <Command>DeletePub</Command>

 <Topic>Sport/Soccer/State/LatestScore/Team1 Team2</Topic>

 <DelOpt>Local</DelOpt>

 </psc>

Deregister Subscriber message

The Deregister Subscriber command message is sent to a broker from a subscriber,

or to another application on a subscriber’s behalf, to indicate that it no longer

wants to receive messages matching the given parameters.

This message is sent to SYSTEM.BROKER.CONTROL.QUEUE, the broker’s control

queue. The user must have the necessary authority to put a message onto this

queue.

See “MQMD settings in command messages to the broker” on page 92 for details

of the message descriptor (MQMD) parameters that are needed when sending a

command message to the broker.

An individual subscription can be deregistered by specifying the corresponding

topic, subscription point and filter values of the original subscription. If any of the

values were not specified (that is, they took the default values) in the original

subscription, they should be omitted when the subscription is deregistered.

All subscriptions for a subscriber, or a group of subscribers, can be deregistered by

using the DeregAll option. For example, if DeregAll is specified, together with a

subscription point (but no topic or filter), then all subscriptions for the subscriber

on the specified subscription point are deregistered, regardless of the topic and

filter. Any combination of topic, filter and subscription point is allowed; if all three

are specified only one subscription can match, and the DeregAll option is ignored.

The message must be sent by the subscriber that registered the subscription; this is

confirmed by checking the subscriber’s user ID.

Subscriptions can also be deregistered by a system administrator. However, the

subscriptions registered with a temporary dynamic queue are associated with the

queue, not just the queue name. If the queue is deleted, either explicitly, or by the

application disconnecting from the queue manager, it is no longer possible to use

the Deregister Subscriber command to deregister the subscriptions for that queue.

The subscriptions can be deregistered using the workbench, and they are removed

automatically by the broker the next time that it matches a publication to the

subscription, or the next time the broker restarts. Under normal circumstances,

applications should deregister their subscriptions before deleting the queue, or

disconnecting from the queue manager.

If a subscriber sends a message to deregister a subscription, and receives a

response message to say that this was processed successfully, some publications

might still reach the subscriber queue if they were being processed by the broker at

the same time as the subscription was being deregistered. If the messages are not

74 Publish/Subscribe

removed from the queue, there might be a buildup of unprocessed messages on

the subscriber queue. If the application executes a loop that includes an MQGET

call with the appropriate CorrelId after sleeping for a while, these messages are

cleared off the queue. If you are using the SCADA Device Protocol there is an

option of clean start and finish. This means that the messages are cleared away for

the client.

Similarly, if the subscriber uses a permanent dynamic queue, and deregisters and

closes the queue with the MQCO_DELETE_PURGE option on an MQCLOSE call,

the queue might not be empty. If any publications from the broker are not yet be

committed when the queue is deleted, an MQRC_Q_NOT_EMPTY return code is

issued by the MQCLOSE call. The application can avoid this problem by sleeping

and reissuing the MQCLOSE call from time to time.

Properties

<Command> (MQPSC_COMMAND)

The value is DeregSub (MQPSC_DEREGISTER_SUBSCRIBER).

 This property must be specified.

<Topic> (MQPSC_TOPIC)

The value is a string that contains the topic to be deregistered.

 This property can, optionally, be repeated if multiple topics are to be

deregistered. It can be omitted if DeregAll is specified in <RegOpt>.

 The topics that are specified can be a subset of those that are registered if the

subscriber wants to retain subscriptions for other topics. Wildcard characters

are allowed, but a topic string that contains wildcard characters must exactly

match the corresponding string that was specified in the Register Subscriber

command message.

<SubPoint> (MQPSC_SUBSCRIPTION_POINT)

The value is a string that specifies the subscription point from which the

subscription is to be detached.

 This property must not be repeated. It can be omitted if a <Topic> is specified,

or if DeregAll is specified in <RegOpt>. If you omit this property, the

following happens:

v If you do not specify DeregAll, subscriptions matching the <Topic> property

(and the <Filter> property, if present) are deregistered from the default

subscription point.

v If you specify DeregAll, all subscriptions (matching the <Topic> and <Filter>

properties if present) are deregistered from all subscription points.

 Note that you cannot specify the default subscription point explicitly.

Therefore, there is no way of deregistering all subscriptions from this

subscription point only; you must specify the topics.

<SubIdentity> (MQPSC_SUBSCRIPTION_IDENTITY)

This is a variable-length string with a maximum length of 64 characters. It is

used to represent an application with an interest in a subscription. The broker

maintains a set of subscriber identities for each subscription. Each subscription

can allow its identity set to hold only a single identity, or an unlimited number

of identities.

 If the SubIdentity is in the identity set for the subscription then it is removed

from the set. If the identity set becomes empty as a result of this, the

subscription is removed from the broker, unless LeaveOnly is specified as a

Publish/subscribe 75

value of the RegOpt property. If the identity set still contains other identities

then the subscription is not removed from the broker, and publication flow is

not interrupted.

 If SubIdentity is specified, but the SubIdentity is not in the identity set for the

subscription, then the Deregister Subscriber command fails with the return

code MQRCCF_SUB_IDENTITY_ERROR.

<Filter> (MQPSC_FILTER)

The value is a string specifying the filter to be deregistered. It must match

exactly, including case and any spaces, a subscription filter that has been

previously registered.

 This property can, optionally, be repeated if more than one filter is to be

deregistered. It can be omitted if a <Topic> is specified, or if DeregAll is

specified in <RegOpt>.

 The filters specified can be a subset of those registered if the subscriber wants

to retain subscriptions for other filters.

<RegOpt> (MQPSC_REGISTRATION_OPTION)

The registration options property can take the following values:

 DeregAll

(MQPSC_DEREGISTER_ALL)

 All matching subscriptions registered for this subscriber are to be

deregistered.

 If you specify DeregAll:

v <Topic>, <SubPoint>, and <Filter> can be omitted.

v <Topic> and <Filter> can be repeated, if required.

v <SubPoint> must not be repeated.

 If you do not specify DeregAll:

v <Topic> must be specified, and can be repeated if required.

v <SubPoint> and <Filter> can be omitted.

v <SubPoint> must not be repeated.

v <Filter> can be repeated, if required.

CorrelAsId

(MQPSC_CORREL_ID_AS_IDENTITY)

 The CorrelId in the message descriptor (MQMD), which must not be

zero, is used to identify the subscriber. It must match the CorrelId used

in the original subscription.

FullResp

()

 WhenFullResp is specified all attributes of the subscription are

returned in the response message, if the command does not fail.

 When FullResp is specified DeregAll is not permitted in the Deregister

Subscriber command. It is also not possible to specify multiple topics.

The command fails with return code

MQRCCF_REG_OPTIONS_ERROR, in both cases.

LeaveOnly

(MQPSC_LEAVE_ONLY)

 When you specify this with a SubIdentity which is in the identity set

for the subscription the SubIdentity is removed from the identity set

76 Publish/Subscribe

for the subscription. The subscription is not removed from the broker,

even if the resulting identity set is empty. If the SubIdentity value is

not in the identity set the command fails with return code

MQRCCF_SUB_IDENTITY_ERROR.

 If LeaveOnly is specified with no SubIdentity, the command fails with

return code MQRCCF_REG_OPTIONS_ERROR.

 If neither LeaveOnly nor a SubIdentity are specified, then the

subscription is removed regardless of the contents of the identity set

for the subscription.

None

(MQPSC_NONE)

 All options take their default values. This has the same effect as

omitting the registration options property. If other options are specified

at the same time, None is ignored.

VariableUserId

(MQPSC_VARIABLE_USER_ID)

 When specified the identity of the subscriber (queue, queue manager

and correlid) is not restricted to a single userid. This differs from the

existing behavior of the broker that associates the userid of the original

registration message with the subscriber’s identity and from then on

prevents any other user using that identity. If a new subscriber tries to

use the same identity, the return code

MQRCCF_DUPLICATE_SUBSCRIPTION is returned.

 Any user can modify or deregister the subscription when they have

suitable authority, avoiding the existing check that the userid must

match that of the original subscriber.

 To add this option to an existing subscription the command must come

from the same userid as the original subscription itself.

 If the subscription to be deregistered has VariableUserId set this must

be set at deregister time to indicate which subscription is being

deregistered. Otherwise, the userid of the Deregister Subscriber

command is used to identify the subscription. This is overridden, along

with the other subscriber identifiers, if a subscription name is supplied.

 The default, if this property is omitted, is that no registration options are set.

<QMgrName> (MQPSC_Q_MGR_NAME)

The value is the queue manager name for the subscriber queue. It must match

the QMgrName used in the original subscription.

 If this property is omitted, the default is the ReplyToQMgr name in the

message descriptor (MQMD). If the resulting name is blank, it defaults to the

name of the broker’s queue manager.

<QName> (MQPSC_Q_NAME)

The value is the name of the subscriber queue. It must match the QName used

in the original subscription.

 If this property is omitted, the default is the ReplyToQ name in the message

descriptor (MQMD), which must not be blank.

<SubName> (MQPSC_SUBSCRIPTION_NAME)

If you specify SubName on a Deregister Subscriber command the SubName

value takes precedence over all other identifier fields except the userid, unless

Publish/subscribe 77

VariableUserId is set on the subscription itself. If VariableUserId is not set, the

Deregister Subscriber command succeeds only if the userid of the command

message matches that of the subscription, if not the command fails with return

code MQRCCF_DUPLICATE_IDENTITY.

 If a subscription exists that matches the traditional identity of this command

but has no SubName the Deregister Subscriber command fails with return

code MQRCCF_SUB_NAME_ERROR. If an attempt is made to deregister a

subscription that has a SubName using a command message that matches the

traditional identity but with no SubName specified the command succeeds.

<SubUserData> (MQPSC_SUBSCRIPTION_USER_DATA)

This is a variable-length text string. The value is stored by the broker with the

subscription but has no influence on the delivery of the publication to the

subscriber. The value can be altered by re-registering to the same subscription

with a new value. This attribute is there for the use of the application.

 The SubUserData is returned in the Metatopic information

(MQCACF_REG_SUB_USER_DATA) for a subscription if present.

Example

Here is an example of NameValueData for a Deregister Subscriber command

message. In this example, the sample application is deregistering its subscription to

the topics which contain the latest score for all matches. The subscriber’s identity,

including the CorrelId, is taken from the defaults in the MQMD.

 <psc>

 <Command>DeregSub</Command>

 <RegOpt>CorrelAsId</RegOpt>

 <Topic>Sport/Soccer/State/LatestScore/#</Topic>

 </psc>

Publish message

The Publish command message is sent from a publisher to a broker, or from a

broker to a subscriber, to publish information on a specified topic or topics.

This message is sent to the input queue of a message flow that contains a

Publication node. Authority to put a message onto this queue, and to publish on

the specified topic or topics, is necessary.

If the user has authority on some, but not all, topics, only those topics are

published; a warning response indicates which topics are not published.

If a subscriber has any matching subscriptions, the broker forwards the Publish

message to the subscriber queues defined in the corresponding Register Subscriber

command messages.

See “Broker Response message” on page 88 for details of the message descriptor

(MQMD) parameters needed when sending a command message to the broker, and

used when a broker forwards a publication to a subscriber.

The broker forwards the Publish message to other brokers in the network that have

matching subscriptions, unless it is a local publication.

Publication data, if any, is included in the body of the message. The data can be

described in an <mcd> folder in the NameValueData field of the MQRFH2 header.

78 Publish/Subscribe

Properties

<Command> (MQPSC_COMMAND)

The value is Publish(MQPSC_PUBLISH).

 This property must be specified.

<Topic> (MQPSC_TOPIC)

The value is a string that contains a topic that categorizes this publication. No

wildcard characters are allowed.

 This property must be specified, and can optionally be repeated for as many

topics as needed.

<SubPoint> (MQPSC_SUBSCRIPTION_POINT)

The subscription point on which the publication is published.

 This property should not be included in a publication message sent to the

broker but is added automatically to publication messages by the broker before

those messages are sent to any appropriate subscribers. The value of the

<SubPoint> property is the value of the Subscription Point attribute of the

Publication node that is handling the publishing.

<PubOpt> (MQPSC_PUBLICATION_OPTION)

The publication options property can take the following values:

 RetainPub

(MQPSC_RETAIN_PUB)

 The broker is to retain a copy of the publication. If this option is not

set, the publication is deleted as soon as the broker has sent the

publication to all its current subscribers.

IsRetainedPub

(MQPSC_IS_RETAINED_PUB)

 (Can only be set by a broker.) This publication has been retained by the

broker. The broker sets this option to notify a subscriber that this

publication was published earlier and has been retained, provided that

the subscription has been registered with the InformIfRetained option.

It is set only in response to a Register Subscriber or Request Update

command message. Retained publications that are sent directly to

subscribers do not have this option set.

Local

(MQPSC_LOCAL)

 This option tells the broker that this publication should not be sent to

other brokers. All subscribers that registered at this broker receive this

publication if they have matching subscriptions.

OtherSubsOnly

(MQPSC_OTHER_SUBS_ONLY)

 This option allows simpler processing of conference-type applications,

where a publisher is also a subscriber to the same topic. It tells the

broker not to send the publication to the publisher’s subscriber queue

even if it has a matching subscription. The publisher’s subscriber

queue consists of its QMgrName, QName, and optional CorrelId, as

described below.

CorrelAsId

(MQPSC_CORREL_ID_AS_IDENTITY)

Publish/subscribe 79

The CorrelId in the MQMD (which must not be zero) is part of the

publisher’s subscriber queue, in applications where the publisher is

also a subscriber.

None

(MQPSC_NONE)

 All options take their default values. This has the same effect as

omitting the publication options property. If other options are specified

at the same time, None is ignored.

 The default, if this property is omitted, is that no publication options are set.

<PubTime> (MQPSC_PUBLISH_TIMESTAMP)

The value is an optional publication timestamp set by the publisher. It is 16

characters long with format:

 YYYYMMDDHHMMSSTH

using Universal Time. This information is not checked by the broker before

being sent to the subscribers.

<SeqNum> (MQPSC_SEQUENCE_NUMBER)

The value is an optional sequence number set by the publisher.

 It should be incremented by 1 with each publication. However, this is not

checked by the broker, which merely transmits this information to subscribers.

 If publications on the same topic are published to different interconnected

brokers, it is the responsibility of the publishers to ensure that sequence

numbers, if used, are meaningful.

<QMgrName> (MQPSC_Q_MGR_NAME)

The value is a string containing the name of the queue manager for the

publisher’s subscriber queue, in applications where the publisher is also a

subscriber (see OtherSubsOnly).

 If this property is omitted, the default is the ReplyToQMgr name in the

message descriptor (MQMD). If the resulting name is blank, it defaults to the

name of the broker’s queue manager.

<QName> (MQPSC_Q_NAME)

The value is a string containing the name of the publisher’s subscriber queue,

in applications where the publisher is also a subscriber (see OtherSubsOnly).

 If this property is omitted, the default is the ReplyToQ name in the message

descriptor (MQMD), which must not be blank if OtherSubsOnly is set.

Example

Here are some examples of NameValueData for a Publish command message.

The first example is for a publication sent by the match simulator in the sample

application to indicate that a match has started.

 <psc>

 <Command>Publish</Command>

 <Topic>Sport/Soccer/Event/MatchStarted</Topic>

 </psc>

The second example is for a retained publication. The latest score in the match

between Team1 and Team2 is published.

80 Publish/Subscribe

<psc>

 <Command>Publish</Command>

 <PubOpt>RetainPub</PubOpt>

 <Topic>Sport/Soccer/State/LatestScore/Team1 Team2</Topic>

 </psc>

Register Subscriber message

The Register Subscriber command message is sent to a broker by a subscriber, or by

another application on behalf of a subscriber, to indicate that it wants to subscribe

to one or more topics at a subscription point. A message content filter can also be

specified.

In publish/subscribe filter expressions, nesting parentheses causes performance to

decrease exponentially. In practice, avoid nesting parentheses to a depth greater

than about 6.

The message is sent to SYSTEM.BROKER.CONTROL.QUEUE, which is the broker’s

control queue. Authority to put a message to this queue is required, in addition to

access authority (set by the broker’s system administrator) for the topic, or topics,

in the subscription.

If the user has authority on some, but not all, topics, only those with authority are

registered; a warning response indicates those that are not registered.

See “Broker Response message” on page 88 for details of the message descriptor

(MQMD) parameters that are needed when sending a command message to the

broker.

If the queue is a temporary dynamic queue, the subscription is deregistered

automatically by the broker when the queue is closed.

Properties

<Command> (MQPSC_COMMAND)

The value is RegSub (MQPSC_REGISTER_SUBSCRIBER). This property must

be specified.

<Topic> (MQPSC_TOPIC)

The topic for which the subscriber wants to receive publications. Wildcard

characters can be specified as part of the topic.

 This property is required, and can optionally be repeated for as many topics as

needed.

<SubPoint> (MQPSC_SUBSCRIPTION_POINT)

The value is the subscription point to which the subscription is attached.

 If this property is omitted, the default subscription point is used.

<Filter> (MQPSC_FILTER)

The value is an SQL expression that is used as a filter on the contents of

publication messages. If a publication on the specified topic matches the filter,

it is sent to the subscriber.

 If this property is omitted, no content filtering takes place.

<RegOpt> (MQPSC_REGISTRATION_OPTION)

This Registration Options property can take the following values:

Publish/subscribe 81

AddName

(MQPSC_ADD_NAME)

 When specified for an existing subscription that matches the traditional

identity of this Register Subscription command, but with no current

SubName value, the SubName specified in this command is added to

the subscription.

 If AddName is specified the SubName field is mandatory, otherwise

MQRCCF_REG_OPTIONS_ERROR is returned.

CorrelAsId

(MQPSC_CORREL_ID_AS_IDENTITY)

 The CorrelId in the message descriptor (MQMD) is used when sending

matching publications to the subscriber queue. The CorrelId must not

be zero,

FullResp

(MQPSC_FULL_RESPONSE)

 When specified all attributes of the subscription are returned in the

response message, if the command does not fail.

 FullResp is valid only when the command message refers to a single

subscription. Therefore, only one topic is permitted in the command;

otherwise the command fails with return code

MQRCCF_REG_OPTIONS_ERROR.

InformIfRet

(MQPSC_INFORM_IF_RETAINED)

 The broker informs the subscriber if a publication is retained when it

sends a Publish message in response to a Register Subscriber or

Request Update command message. The broker does this by including

the IsRetainedPub publication option in the message.

JoinExcl

(MQPSC_JOIN_EXCLUSIVE)

 This option indicates that the specified SubIdentity should be added

as the exclusive member of the identity set for the subscription, and

that no other identities can be added to the set.

 If the identity has already joined ’shared’ and is the sole entry in the

set, the set is changed to an exclusive lock held by this identity.

Otherwise, if the subscription currently has other identities in the

identity set (with shared access) the command fails with return code

MQRCCF_SUBSCRIPTION_IN_USE.

JoinShared

(MQPSC_JOIN_SHARED)

 This option indicates that the specified SubIdentity should be added

to the identity set for the subscription.

 If the subscription is currently locked exclusively (using the JoinExcl

option), the command fails with return code

MQRCCF_SUBSCRIPTION_LOCKED, unless the identity that has the

subscription locked is the same identity as that in this command

message. In this case the lock is automatically modified to a shared

lock.

82 Publish/Subscribe

Local

(MQPSC_LOCAL)

 The subscription is local and is not distributed to other brokers in the

network. Publications made at other brokers are not delivered to this

subscriber, unless it also has a corresponding global subscription.

NewPubsOnly

(MQPSC_NEW_PUBS_ONLY)

 Retained publications that exist at the time the subscription is

registered are not sent to the subscriber; only new publications are

sent.

 If a subscriber re-registers and changes this option so that it is no

longer set, a publication that has already been sent to it might be sent

again.

NoAlter

(MQPSC_NO_ALTER)

 The attributes of an existing matching subscription is not changed.

 When a subscription is being created, this option is ignored. All other

options specified apply to the new subscription.

 If a SubIdentity also has one of the join options (JoinExcl or

JoinShared) specified, the identity is added to the identity set

regardless of whether NoAlter is specified.

None

(MQPSC_NONE)

 All registration options take their default values.

 If the subscriber is already registered, its options are reset to their

default values (note that this does not have the same affect as omitting

the registration options property), and the subscription expiry is

updated from the MQMD of the Register Subscriber message.

 If other registration options are specified at the same time, None is

ignored.

NonPers

(MQPSC_NON_PERSISTENT)

 Publications matching this subscription are delivered to the subscriber

as non-persistent messages.

Pers (MQPSC_PERSISTENT)

 Publications matching this subscription are delivered to the subscriber

as persistent messages.

PersAsPub

(MQPSC_PERSISTENT_AS_PUBLISH)

 Publications matching this subscription are delivered to the subscriber

with the persistence specified by the publisher. This is the default

behavior.

PersAsQueue

(MQPSC_PERSISTENT_AS_Q)

 Publications matching this subscription are delivered to the subscriber

with the persistence specified on the subscriber queue.

Publish/subscribe 83

PubOnReqOnly

(MQPSC_PUB_ON_REQUEST_ONLY)

 The broker does not send publications to the subscriber, except in

response to a Request Update command message.

VariableUserId

(MQPSC_VARIABLE_USER_ID)

 When specified the identity of the subscriber (queue, queue manager

and correlid) is not restricted to a single userid. This differs from the

existing behavior of the broker that associates the userid of the original

registration message with the subscriber’s identity and from then on

prevents any other user using that identity. If a new subscriber tries to

use the same identity MQRCCF_DUPLICATE_SUBSCRIPTION is

returned.

 This allows any user to modify or deregister the subscription if the

user has suitable authority. There is therefore no need to check that the

userid matches that of the original subscriber.

 To add this option to an existing subscription the command must come

from the same userid as the original subscription itself.

 If the subscription of the request update command has VariableUserId

set, this must be set at request update time to indicate which

subscription is referred to. Otherwise, the userid of the request update

command is used to identify the subscription. This is overridden, along

with the other subscriber identifiers, if a subscription name is supplied.

 If a Register Subscriber command message without this option set

refers to an existing subscription which has this option set, the option

is removed from this subscription and the userid of the subscription is

now fixed. If there already exists a subscriber which has the same

identity (queue, qmgr and correlid) but with a different userid

associated to it, the command fails with return code

MQRCCF_DUPLICATE_IDENTITY because there can only be one

userid associated with a subscriber identity.

 If the registration options property is omitted and the subscriber is already

registered, its registration options are not changed and the subscription expiry

is updated from the MQMD of the Register Subscriber message.

 If the subscriber is not already registered, a new subscription is created with all

registration options taking their default values.

 The default values are PersAsPub and no other options set.

<QMgrName> (MQPSC_Q_MGR_NAME)

The value is the name of the queue manager for the subscriber queue, to which

matching publications are sent by the broker.

 If this property is omitted, the default is the ReplyToQMgr name in the

message descriptor (MQMD). If the resulting name is blank, it defaults to the

broker’s QMgrName.

<QName> (MQPSC_Q_NAME)

The value is the name of the subscriber queue, to which matching publications

are sent by the broker.

84 Publish/Subscribe

If this property is omitted, the default is the ReplyToQ name in the message

descriptor (MQMD), which must not be blank in this case.

 If the queue is a temporary dynamic queue, nonpersistent delivery of

publications (NonPers) must be specified in the <RegOpt> property.

 If the queue is a temporary dynamic queue, the subscription is deregistered

automatically by the broker when the queue is closed.

<SubName> (MQPSC_SUBSCRIPTION_NAME)

This is a name given to a particular subscription. You can use it instead of the

queue manager, queue and optional correlId to refer to a subscription.

 If a subscription already exists with this SubName, any other attributes of the

subscription (Topic, QMgrName, QName, CorrelId, UserId, RegOpts,

UserSubData, and Expiry) are overridden with the attributes, if specified, that

are passed in the new Register Subscriber command message. However, if

SubName is used with no QName field specified, and a ReplyToQ is specified

in the MQMD header, the subscriber queue is changed to be the ReplyToQ.

 If a subscription that matches the traditional identity of this command already

exists, but has no SubName, the Registration command fails with return code

MQRCCF_DUPLICATE_SUBSCRIPTION, unless the AddName option is

specified.

 If you try to alter an existing named subscription by using another Register

Subscriber command that specifies the same SubName, and the values of

Topic, QMgrName, QName, and CorrelId in the new command match a

different existing subscription, with or without a SubName defined, the

command fails with return code MQRCCF_DUPLICATE_SUBSCRIPTION. This

prevents two subscription names referring to the same subscription.

<SubIdentity> (MQPSC_SUBSCRIPTION_IDENTITY)

This string is used to represent an application with an interest in a

subscription. It is a variable-length character string whose maximum length is

64 characters, and is optional. The broker maintains a set of subscriber

identities for each subscription. Each subscription can allow its identity set to

contain only one identity, or an unlimited number of identities (see the

JoinShared and JoinExcl options).

 A subscribe command that specifies the JoinShared or JoinExcl option adds

the SubIdentity to the subscription’s identity set, if it is not already there and

if the existing set of identities allows such an action; that is, no other

subscriber has joined exclusively or the identity set is empty.

 Any alteration of the subscription’s attributes as the result of a Register

Subscriber command in which a SubIdentity is specified, only succeeds if it

would be the only member of the set of identities for this subscription.

Otherwise the command fails with return code

MQRCCF_SUBSCRIPTION_IN_USE. This prevents a subscription’s attributes

from changing without other interested subscribers being aware.

 If you specify a character string that is longer than 64 characters, the command

fails with return code MQRCCF_SUB_IDENTITY_ERROR.

<SubUserData> (MQPSC_SUBSCRIPTION_USER_DATA)

This is a variable-length text string. The value is stored by the broker with the

subscription, but has no influence on publication delivery to the subscriber.

The value can be altered by re-registering to the same subscription with a new

value. This attribute is there for the use of the application.

Publish/subscribe 85

The SubUserData is returned in the Metatopic information

(MQCACF_REG_SUB_USER_DATA) for a subscription if present.

If you specify more than one of the registration option values NonPers, PersAsPub,

PersAsQueue, and Pers, then only the last one is used. You cannot combine these

options in an individual subscription.

Example

Here is an example of NameValueData for a Register Subscriber command

message. In the sample application, the results service uses this message to register

a subscription to the topics containing the latest scores in all matches, with the

’Publish on Request Only’ option set. The subscriber’s identity, including the

CorrelId, is taken from the defaults in the MQMD.

 <psc>

 <Command>RegSub</Command>

 <RegOpt>PubOnReqOnly</RegOpt>

 <RegOpt>CorrelAsId</RegOpt>

 <Topic>Sport/Soccer/State/LatestScore/#</Topic>

 </psc>

Request Update message

The Request Update command message is sent from a subscriber to a broker, to

request the current retained publications for the specified topic and subscription

point that match the given (optional) filter.

This message is sent to SYSTEM.BROKER.CONTROL.QUEUE, the broker’s control

queue. Authority to put a message to this queue is required, in addition to access

authority for the topic in the request update; this is set by the broker’s system

administrator.

This command is normally used if the subscriber specified the option

PubOnReqOnly when it registered. If the broker has any matching retained

publications, they are sent to the subscriber. If the broker has no matching retained

publications, the request fails with return code MQRCCF_NO_RETAINED_MSG.

The requester must have previously registered a subscription with the same Topic,

SubPoint, and Filter values.

Properties

<Command> (MQPSC_COMMAND)

The value is ReqUpdate (MQPSC_REQUEST_UPDATE). This property must be

specified.

<Topic> (MQPSC_TOPIC)

The value is the topic that the subscriber is requesting; wildcard characters are

allowed.

 This property must be specified, but only one occurrence is allowed in this

message.

<SubPoint> (MQPSC_SUBSCRIPTION_POINT)

The value is the subscription point to which the subscription is attached.

 If this property is omitted, the default subscription point is used.

86 Publish/Subscribe

<Filter> (MQPSC_FILTER)

The value is an ESQL expression that is used as a filter on the contents of

publication messages. If a publication on the specified topic matches the filter,

it is sent to the subscriber.

 The <Filter> property should have the same value as that specified on the

original subscription for which you are now requesting an update.

 If this property is omitted, no content filtering takes place.

<RegOpt> (MQPSC_REGISTRATION_OPTION)

The registration options property can take the following value:

 CorrelAsId

(MQPSC_CORREL_ID_AS_IDENTITY)

 The CorrelId in the message descriptor (MQMD), which must not be

zero, is used when sending matching publications to the subscriber

queue.

None

(MQPSC_NONE)

 All options take their default values. This has the same effect as

omitting the <RegOpt> property. If other options are specified at the

same time, None is ignored.

VariableUserId

(MQPSC_VARIABLE_USER_ID)

 When specified the identity of the subscriber (queue, queue manager,

and correlid) is not restricted to a single userid. This differs from the

existing behavior of the broker that associates the userid of the original

registration message with the subscriber’s identity and from then on

prevents any other user using that identity. If a new subscriber tries to

use the same identity, the command fails with return code

MQRCCF_DUPLICATE_SUBSCRIPTION.

 This allows any user to modify or deregister the subscription when

they have suitable authority. Therefore, there is no need to check that

the userid matches that of the original subscriber.

 To add this option to an existing subscription, the command must

come from the same userid as the original subscription.

 If the subscription of the Request Update command has

VariableUserId set, this must be set at request update time to indicate

which subscription is referred to. Otherwise, the userid of the Request

Update command is used to identify the subscription. This is

overridden, along with the other subscriber identifiers, if a subscription

name is supplied.

 The default, if this property is omitted, is that no registration options are set.

<QMgrName> (MQPSC_Q_MGR_NAME)

The value is the name of the queue manager for the subscriber queue, to which

the matching retained publication is sent by the broker.

 If this property is omitted, the default is the ReplyToQMgr name in the

message descriptor (MQMD). If the resulting name is blank, it defaults to the

broker’s QMgrName.

Publish/subscribe 87

<QName> (MQPSC_Q_NAME)

The value is the name of the subscriber queue, to which the matching retained

publication is sent by the broker.

 If this property is omitted, the default is the ReplyToQ name in the message

descriptor (MQMD), which must not be blank in this case.

<SubName> (MQPSC_SUBSCRIPTION_NAME)

This is a name given to a particular subscription. If specified on a Request

Update command the SubName value takes precedence over all other

identifier fields except the userid, unless VariableUserId is set on the

subscription itself. If VariableUserId is not set, the Request Update command

succeeds only if the userid of the command message matches that of the

subscription. If the userid of the command message does not match that of the

subscription, the command fails with return code

MQRCCF_DUPLICATE_IDENTITY.

 If VariableUserId is set, and the userid differs from that of the subscription,

the command succeeds if the userid of the new command message has

authority to browse the stream queue and put to the subscriber queue of the

subscription. Otherwise, the command fails with return code

MQRCCF_NOT_AUTHORIZED.

 If a subscription exists that matches the traditional identity of this command,

but has no SubName, theRequest Update command fails with return code

MQRCCF_SUB_NAME_ERROR.

 If an attempt is made to request an update for a subscription that has a

SubName using a command message that matches the traditional identity, but

with no SubName specified, the command succeeds.

Example

Here is an example of NameValueData for a Request Update command message.

In the sample application, the results service uses this message to request retained

publications containing the latest scores for all teams. The subscriber’s identity,

including the CorrelId, is taken from the defaults in the MQMD.

 <psc>

 <Command>ReqUpdate</Command>

 <RegOpt>CorrelAsId</RegOpt>

 <Topic>Sport/Soccer/State/LatestScore/#</Topic>

 </psc>

Broker Response message

A Broker Response message is sent from a broker to the ReplyToQ of a publisher or

a subscriber, to indicate the success or failure of a command message received by

the broker if the command message descriptor specified that a response is

required.

The response message is contained within the NameValueData field of the

MQRFH2 header, in a <pscr> folder.

In the case of a warning or error, the response message contains the <psc> folder

from the command message as well as the <pscr> folder. The message data, if any,

is not contained in the broker response message. In the case of an error, none of

the message that caused an error has been processed; in the case of a warning,

some of the message might have been processed successfully.

88 Publish/Subscribe

If there is a failure sending a response:

v For publication messages, the broker tries to send the response to the WebSphere

MQ dead-letter queue if the MQPUT fails. This allows the publication to be sent

to subscribers even if the response cannot be sent back to the publisher.

v For other messages, or if the publication response cannot be sent to the

dead-letter queue, an error is logged and the command message is normally

rolled back. Whether this happens depends on how the MQInput node has been

configured.

Properties

<Completion> (MQPSCR_COMPLETION)

The completion code, which can take one of three values:

ok Command completed successfully

warning

Command completed but with warning

error Command failed

<Response> (MQPSCR_RESPONSE)

The response to a command message, if that command produced a completion

code of warning or error. It contains a <Reason> property, and might contain

other properties that indicate the cause of the warning or error.

 In the case of one or more errors, there is only one response folder, indicating

the cause of the first error only. In the case of one or more warnings, there is a

response folder for each warning.

<Reason> (MQPSCR_REASON)

The reason code qualifying the completion code, if the completion code is a

warning or error. It is set to one of the error codes listed below. The <Reason>

property is contained within a <Response> folder. The reason code can be

followed by any valid property from the <psc> folder (for example, a topic

name), indicating the cause of the error or warning.

Examples

Here are some examples of NameValueData in a Broker Response message. A

successful response might be the following:

 <pscr>

 <Completion>ok</Completion>

 </pscr>

Here is an example of a failure response; the failure is a filter error. The first

NameValueData string contains the response; the second contains the original

command.

 <pscr>

 <Completion>error</Completion>

 <Response>

 <Reason>3150</Reason>

 </Reponse>

 </pscr>

 <psc>

 ...

 command message (to which

 the broker is responding)

 ...

 </psc>

Publish/subscribe 89

Here is an example of a warning response (due to unauthorized topics). The first

NameValueData string contains the response; the second NameValueData string

contains the original command.

 <pscr>

 <Completion>warning</Completion>

 <Response>

 <Reason>3081</Reason>

 <Topic>topic1</Topic>

 </Reponse>

 <Response>

 <Reason>3081</Reason>

 <Topic>topic2</Topic>

 </Reponse>

 </pscr>

 <psc>

 ...

 command message (to which

 the broker is responding)

 ...

 </psc>

Reason codes

The following reason codes might be returned in the Reason field of a

publish/subscribe response <pscr> folder. Constants that can be used to represent

these codes in the C or C++ programming languages are also given. The MQRC_

constants require the WebSphere MQ cmqc.h header file. The MQRCCF_ constants

require the WebSphere MQ cmqcfc.h header file (apart from

MQRCCF_FILTER_ERROR and MQRCCF_WRONG_USER, which require the

WebSphere Message Broker BipRfc.h header file).

 Reason code and text Explanation Issued by

2336

MQRC_RFH_COMMAND_ERROR

Valid values for the <Command> field

of a <psc> folder are: RegSub,

DeregSub, Publish, DeletePub, and

ReqUpdate. Any other values result in

this error code being issued.

Any command

2337

MQRC_RFH_ PARM_ERROR

The <psc> and <mcd> folders both have

a set of valid parameters that can be

specified within them. Check the

descriptions of these folders and ensure

that you have not specified incorrect

parameters.

Any command

2338

MQRC_RFH_DUPLICATE_PARM

Some parameters (for example, Topic)

within a <psc> folder can be repeated,

but others (for example, Command)

cannot be repeated. Check that you

have not duplicated a non-repeatable

parameter.

Any command

2339

MQRC_RFH_PARM_MISSING

Some parameters within <psc> or <mcd>

folders are optional and can be omitted;

some are mandatory and must not be

omitted. Check that you have included

all mandatory parameters within your

<psc> and <mcd> folders.

Any command

90 Publish/Subscribe

Reason code and text Explanation Issued by

3008

MQRCCF_COMMAND_FAILED

An internal error occurred which

prevented the command from executing

correctly. The error might occur if the

command is reissued. The system event

log for the broker contains information

which should be used when reporting

the problem to IBM.

Any command

3072

MQRCCF_TOPIC_ERROR

One or more of the values you supplied

for the Topic parameter are incorrect.

Check that your values for Topic

conform to the specified restrictions.

Any command

3073

MQRCCF_NOT_REGISTERED

The combination of SubPoint, Topic,

and Filter that you specified on your

DeregSub or ReqUpdate command was

either not a combination with which

you had previously registered or, for

the DeregSub command if the DeregAll

option was specified, one of the

SubPoint, Topic, or Filter properties was

not used to deregister any subscription.

Deregister Subscriber

and Request Update

commands

3074

MQRCCF_Q_MGR_NAME_ERROR

The specified queue manager was not

valid, or the queue manager was not

available or did not exist.

Deregister Subscriber,

Publish, Register

Subscriber, and Request

Update commands

3076

MQRCCF_Q_NAME_ERROR

The specified queue name was not

valid, or the queue did not exist on the

specified queue manager.

Deregister Subscriber,

Publish, Register

Subscriber, and Request

Update commands

3077

MQRCCF_NO_RETAINED_MSG

There were no retained messages for

the topic you specified. This might or

might not be an error, depending on the

design of your application program.

Request Update

command

3079

MQRCCF_INCORRECT_Q

RegSub, DeregSub, and ReqUpdate

commands are always sent to the

SYSTEM.BROKER.CONTROL.QUEUE

queue of the broker for which they are

intended. Publish and Delete

Publication commands are sent to the

input queue for the particular

publish/subscribe message flow for

which they are intended; this is

determined when the message flow is

designed. This error code is returned if

a command is sent to the wrong queue.

Any command

3080

MQRCCF_CORREL_ID_ERROR

You have specified CorrelAsId as one of

your RegOpt parameters. However, the

CorrelId field of the MQMD does not

contain a valid correlation identifier

(that is, it is set to MQCI_NONE).

Deregister Subscriber

and Register Subscriber

commands

3081

MQRCCF_NOT_AUTHORIZED

You are not authorized to perform the

requested action. Authorization settings

for the broker are handled by the

system administrator using the Topics

Hierarchy editor.

Publish and Register

Subscriber commands

Publish/subscribe 91

Reason code and text Explanation Issued by

3083

MQRCCF_REG_OPTIONS_ERROR

You have specified an unrecognized

RegOpt parameter in the <psc> folder

that contains your RegSub or DeregSub

command.

Deregister Subscriber

and Register Subscriber

commands

3084

MQRCCF_PUB_OPTIONS_ERROR

You have specified an unrecognized

PubOpt parameter in the <psc> folder

that contains your Publish command.

Publish command

3087

MQRCCF_DEL_OPTIONS_ERROR

You have specified an unrecognized

DelOpt parameter in the <psc> folder

that contains your DeletePub command.

Delete Publication

command

3150

MQRCCF_FILTER_ERROR

The value specified for the Filter

parameter is not valid. Check the

section that describes the valid syntax

for filter expressions and ensure that

your expression conforms.

Deregister Subscriber,

Register Subscriber, and

Request Update

commands

3151

MQRCCF_WRONG_USER

A subscription that matches the one

specified already exists; however, it was

registered by a different user. A

subscription can only be changed or

deregistered by the user who originally

registered it.

Deregister Subscriber,

Register Subscriber, and

Request Update

commands

3152

MQRCCF_DUPLICATE_SUBSCRIPTION

A matching subscription already exists

with a different subscription name.

3153

MQRCCF_SUB_NAME_ERROR

Either the format of the subscription

name is not valid, or a matching

subscription already exists with no

subscription name.

3154

MQRCCF_SUB_IDENTITY_ERROR

The subscription identity parameter is

in error. Either the supplied value

exceeds the maximum length allowed,

or the subscription identity is not

currently a member of the

subscription’s identity set and a Join

registration option was not specified.

3155

MQRCCF_SUBSCRIPTION_IN_USE

An attempt to modify or deregister a

subscription was attempted by a

member of the identity set when it was

not the only member of this set.

3156

MQRCCF_SUBSCRIPTION_LOCKED

The subscription is currently exclusively

locked by another identity.

3157

MQRCCF_ALREADY_JOINED

A Join registration option was specified

but the subscriber identity was already

a member of the subscription’s identity

set.

MQMD settings in command messages to the broker

Applications that send command messages to the broker use the following settings

of fields in the message descriptor (MQMD). Fields that are left as the default

value, or can be set to any valid value in the usual way, are not listed here.

92 Publish/Subscribe

Report

See MsgType and CorrelId (below).

MsgType

MsgType should be set to MQMT_REQUEST for a command message if a

response is always required. The MQRO_PAN and MQRO_NAN flags in the

Report field are not significant in this case.

 If MsgType is set to MQMT_DATAGRAM, responses depend on the setting of

the MQRO_PAN and MQRO_NAN flags in the Report field:

v MQRO_PAN alone means that the broker sends a response only if the

command succeeds.

v MQRO_NAN alone means that the broker sends a response only if the

command fails.

v If a command completes with a warning, a response is sent if either

MQRO_PAN or MQRO_NAN is set.

v MQRO_PAN + MQRO_NAN means that the broker sends a response

whether the command succeeds or fails. This has the same effect from the

broker’s perspective as setting MsgType to MQMT_REQUEST.

v If neither MQRO_PAN nor MQRO_NAN is set, no response is ever sent.

Format

Set to MQFMT_RF_HEADER_2

MsgId

This field is normally set to MQMI_NONE, so that the queue manager

generates a unique value.

CorrelId

This field can be set to any value. If the sender’s identity includes a CorrelId,

specify this value, together with MQRO_PASS_CORREL_ID in the Report field,

to ensure that it is set in all response messages sent by the broker to the

sender.

ReplyToQ

This field defines the queue to which responses, if any, are to be sent. This

might be the sender’s queue; this has the advantage that the QName parameter

can be omitted from the message. If, however, responses are to be sent to a

different queue, the QName parameter is needed.

ReplyToQMgr

This field defines the queue manager for responses. If you leave this field

blank (the default value), the local queue manager puts its own name in this

field.

MQMD settings for publications forwarded by a broker

A broker uses the following settings of fields in the message descriptor (MQMD)

when it sends a publication to a subscriber. All other fields in the MQMD are set

to their default values.

Report

Report is set to MQRO_NONE.

MsgType

MsgType is set to MQMT_DATAGRAM.

Expiry

Expiry is set to the value in the Publish message received from the publisher.

Publish/subscribe 93

In the case of a retained message, the time outstanding is reduced by the

approximate time that the message has been at the broker.

Format

Format is set to MQFMT_RF_HEADER_2

MsgId

MsgId is set to a unique value.

CorrelId

If CorrelId is part of the subscriber’s identity, this is the value specified by the

subscriber when registering. Otherwise, it is a non-zero value chosen by the

broker.

Priority

Priority takes the value set by the publisher, or as resolved if the publisher

specified MQPRI_PRIORITY_AS_Q_DEF.

Persistence

Persistence takes the value set by the publisher, or as resolved if the publisher

specified MQPER_PERSISTENCE_AS_Q_DEF, unless specified otherwise in the

Register Subscriber message for the subscriber to which this publication is

being sent.

ReplyToQ

ReplyToQ is set to blanks.

ReplyToQMgr

ReplyToQMgr is set to the name of the broker’s queue manager.

UserIdentifier

UserIdentifier is the subscriber’s user identifier, as set when the subscriber

registered.

AccountingToken

AccountingToken is the subscriber’s accounting token, as set when the

subscriber first registered.

ApplIdentityData

ApplIdentityData is the subscriber’s application identity data, as set when the

subscriber first registered.

PutApplType

PutApplType is set to MQAT_BROKER.

PutApplName

PutApplName is set to the first 28 characters of the name of the broker’s queue

manager.

PutDate

PutDate is the timestamp when the broker puts the message.

PutTime

PutTime is the timestamp when the broker puts the message.

ApplOriginData

ApplOriginData is set to blanks.

MQMD settings in broker response messages

A broker uses the following settings of fields in the message descriptor (MQMD)

when sending a reply to a publication message. All other fields in the MQMD are

set to their default values.

94 Publish/Subscribe

Report

Report is set to all zeroes.

MsgType

MsgType is set to MQMT_REPLY.

Format

Format is set to MQFMT_RF_HEADER_2

MsgId

The setting of MsgId depends on the Report options in the original command

message. By default, it is set to MQMI_NONE, so that the queue manager

generates a unique value.

CorrelId

The setting of CorrelId depends on the Report options in the original

command message. By default, this means that the CorrelId is set to the same

value as the MsgId of the command message. This can be used to correlate

commands with their responses.

Priority

Priorityis set to the same value as in the original command message.

Persistence

Persistence is set to the value set in the original command message.

Expiry

Expiry is set to the same value as in the original command message received

by the broker.

PutApplType

PutApplType is set to MQAT_BROKER.

PutApplName

PutApplName is set to the first 28 characters of name of the queue manager.

Other context fields are set as if generated with

MQPMO_PASS_IDENTITY_CONTEXT.

Publish/subscribe 95

96 Publish/Subscribe

Part 4. Appendixes

© Copyright IBM Corp. 2000, 2006 97

98 Publish/Subscribe

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this information

in other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this information. The furnishing of this information does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032,

Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the information. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2000, 2006 99

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM United Kingdom Laboratories,

Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England

SO21 2JN

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Programming License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information includes examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

100 Publish/Subscribe

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

 AIX CICS Cloudscape

DB2 DB2 Connect DB2 Universal Database

developerWorks Domino

Everyplace FFST First Failure Support

Technology

IBM IBMLink IMS

IMS/ESA iSeries Language Environment

Lotus MQSeries MVS

NetView OS/400 OS/390

POWER pSeries RACF

Rational Redbooks RETAIN

RS/6000 SupportPac S/390

Tivoli VisualAge WebSphere

xSeries z/OS zSeries

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel and Pentium are trademarks or registered trademark of Intel Corporation or

its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix. Notices 101

102 Publish/Subscribe

Index

B
broker networks 3

heterogeneous 7

migrated 7

Broker Response message 88

message descriptor 94

Broker Topology editor
changing properties 8

brokers
cloned 6

connecting in a collective 8

C
cloned brokers 6

adding 17

defining 16

deleting 17

collectives 4

adding a broker 9

creating 8

deleting 8

removing a broker 9

command messages 72

Delete Publication 73

Deregister Subscriber 74

message descriptor 92

Publish 78

Register Subscriber 81

Request Update 86

commands
migmqbrk 31

configuration
publish/subscribe topology 3

content-based filtering 65

D
Delete Publication command

message 73

Deregister Subscriber command

message 74

E
error codes 90

F
filtering, content-based 65

filters 28

G
global publications 26

H
high-volume publish/subscribe on

z/OS 16

L
leaf nodes 7

local publications 26

local subscriptions 38

M
mcd folder 70

message descriptor
Broker Response message 94

command messages 92

publications 93

message formats 52

message routing, using topics for 63

message service folders 70

message throughput 65

messages
Broker Response 88

metatopics 63

MQ subscribers and publishers 23

MQMD (message descriptor)
Broker Response message 94

command messages 92

publications 93

MQRFH2 header 66

definition in C 67

structure 67

multicast brokers
choosing a protocol 15

mqsisetproperties command 10

setup parameters 10

multicast protocols 15

multicast publish/subscribe 5

multicast statistics reports, subscribing

to 41

multicast topics 15

multilevel wild cards 45

P
parent nodes 7

performance
Real-time transport 30

psc folder 70

pscr folder 70

publications 26

message descriptor 93

Publish command message 78

publish/subscribe 24

adding a topic 18

applications
developing 23

configuring a topology 3

deleting a topic 19

publish/subscribe (continued)
multicast 5

querying a subscription 19

Real-time transport 23

statistics reports 30

topic trees 25

topics 25

topologies 3

publishers 26

publishing 36

R
reason codes 90

Register Subscriber command

message 81

Request Update command message 86

retained publications 26

publishing 36

subscribing 38

S
samples

mutual challenge-response password

authentication 47

telnet-like password

authentication 47

single-level wild cards 45

special characters 45

topic level separators 45

wild cards 45

statistics reports 48

creating 40

multicast 50

publish/subscribe 30

subscribing to 40

stream authorities 34

streams 31

migration 59

subscribers 27

subscribing 38

multicast statistics reports 41

statistics reports 40

subscription points 29

default 29

subscriptions 28

deregistering 39

local 38

T
throughput 65

topic level separators 45

topics
making multicast 15

topics, semantics of 46

trademarks 101

© Copyright IBM Corp. 2000, 2006 103

U
usr folder 70

W
WebSphere MQ Publish/Subscribe 31

retained publications 63

stream authorities 59

streams 56

subscription points 64

topics 61

wild cards 61

wild cards
multilevel 45

single-level 45

subscribing 38

104 Publish/Subscribe

����

Printed in USA

	Contents
	About this topic collection
	Part 1. Configuring a publish/subscribe topology
	Configuring a publish/subscribe topology
	Setting up the broker domain for publish/subscribe
	Publish/subscribe topologies
	Changing Broker Topology editor properties
	Connecting brokers in a collective
	Deleting a collective
	Connecting a broker to a collective
	Removing a broker from a collective
	Setting up a multicast broker
	Setting up cloned brokers
	Adding a cloned broker
	Deleting a cloned broker

	Operating a publish/subscribe domain
	Adding a new topic
	Deleting a topic
	Querying subscriptions

	Part 2. Developing publish/subscribe applications
	Developing publish/subscribe applications
	How publications and subscriptions flow through the network
	MQ Subscribers and Publishers
	Real-time Transport Subscribers and Publishers
	Publish/Subscribe
	Topics
	Publishers
	Publications
	Subscribers
	Subscriptions
	Filters
	Subscription points
	Publish/subscribe statistics reports
	Performance considerations for Real-time transport
	WebSphere MQ Publish/Subscribe

	Publishing
	Using retained publications
	Subscribing
	Local subscriptions
	Retained publications

	Deregistering a subscription
	Generating statistics reports
	Subscribing to statistics reports
	Subscribing to multicast statistics reports

	Part 3. Reference
	Publish/subscribe
	Special characters in topics
	The topic level separator
	The multilevel wild card
	The single-level wild card
	When wild cards are not wild

	Topic semantics and usage
	Sample authentication exchanges
	Simple telnet-like password authentication
	Simple mutual challenge-response password authentication

	Statistics reports
	Multicast statistics reports
	Summary report
	Report by multicast group
	Report by multicast topic

	WebSphere MQ Publish/Subscribe
	Product differences

	MQRFH2 header
	Multiple MQRFH2 headers
	MQRFH2 structure
	Message service folders

	Command messages
	Delete Publication message
	Deregister Subscriber message
	Publish message
	Register Subscriber message
	Request Update message
	Broker Response message
	Reason codes
	MQMD settings in command messages to the broker
	MQMD settings for publications forwarded by a broker
	MQMD settings in broker response messages

	Part 4. Appendixes
	Appendix. Notices
	Trademarks

	Index

