
WebSphere Message Broker

CMP Programming

Version 6 Release 0

���

WebSphere Message Broker

CMP Programming

Version 6 Release 0

���

Note

Before using this information and the product it supports, read the information in the Notices appendix.

Fifth Edition (December 2006)

This edition applies to IBM® WebSphere® Message Broker Version 6.0 and to all subsequent releases and

modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this topic collection v

Part 1. Developing applications

using the CMP 1

Developing applications that use the

Configuration Manager Proxy Java API . 3

Configuration Manager Proxy 3

The Configuration Manager Proxy samples 5

Configuring an environment for developing and

running Configuration Manager Proxy applications . 12

Connecting to a Configuration Manager using the

Configuration Manager Proxy 14

Navigating broker domains using the Configuration

Manager Proxy 16

Using the Configuration Manager Proxy API to

deploy 22

Managing broker domains using the Configuration

Manager Proxy 25

Advanced features of the Configuration Manager

Proxy 35

Part 2. Appendixes 39

Appendix. Notices 41

Trademarks 43

Index 45

© Copyright IBM Corp. 2000, 2006 iii

iv CMP Programming

About this topic collection

This PDF has been created from the WebSphere Message Broker Version 6.0.0.3

(with Message Brokers Toolkit Version 6.0.2.0 update, December 2006) information

center topics. Always refer to the WebSphere Message Broker online information

center to access the most current information. The information center is

periodically updated on the document update site and this PDF and others that

you can download from that Web site might not contain the most current

information.

The topic content included in the PDF does not include the ″Related Links″

sections provided in the online topics. Links within the topic content itself are

included, but are active only if they link to another topic in the same PDF

collection. Links to topics outside this topic collection are also shown, but these

attempt to link to a PDF that is called after the topic identifier (for example,

ac12340_.pdf) and therefore fail. Use the online information to navigate freely

between topics.

Feedback: do not provide feedback on this PDF. Refer to the online information to

ensure that you have access to the most current information, and use the Feedback

link that appears at the end of each topic to report any errors or suggestions for

improvement. Using the Feedback link provides precise information about the

location of your comment.

The content of these topics is created for viewing online; you might find that the

formatting and presentation of some figures, tables, examples, and so on are not

optimized for the printed page. Text highlighting might also have a different

appearance.

© Copyright IBM Corp. 2000, 2006 v

ftp://ftp.software.ibm.com/software/integration/wbibrokers/docs

vi CMP Programming

Part 1. Developing applications using the CMP

Developing applications that use the

Configuration Manager Proxy Java API 3

Configuration Manager Proxy 3

The Configuration Manager Proxy samples 5

Running the Deploy BAR sample 5

Running the broker domain management sample 6

Running the Configuration Manager Proxy API

Exerciser sample 7

Modifying the Configuration Manager Proxy

samples 11

Configuring an environment for developing and

running Configuration Manager Proxy applications . 12

Configuring the Windows command-line

environment 12

Configuring Linux, UNIX, and z/OS

command-line environments 12

Configuring the Eclipse environment 13

Configuring environments without the broker

component installed 13

Connecting to a Configuration Manager using the

Configuration Manager Proxy 14

Navigating broker domains using the Configuration

Manager Proxy 16

Using the Configuration Manager Proxy API to

deploy 22

Configuration Manager Proxy Exerciser 23

Checking the results of deployment using the

Configuration Manager Proxy API 23

Managing broker domains using the Configuration

Manager Proxy 25

Checking the results of broker domain

management using the Configuration Manager

Proxy 27

Creating domain objects using the Configuration

Manager Proxy 33

Advanced features of the Configuration Manager

Proxy 35

The Configuration Manager Proxy subscriptions

API 35

Submitting batch requests using the

Configuration Manager Proxy 37

© Copyright IBM Corp. 2000, 2006 1

2 CMP Programming

Developing applications that use the Configuration Manager

Proxy Java API

There are many tasks involved in developing applications that use the

Configuration Manager Proxy (CMP):

v Configuring an environment for developing and running CMP applications

v Connecting to a Configuration Manager using the CMP

v Navigating broker domains using the CMP

v Managing broker domains using the CMP

A number of samples are provided to demonstrate simple CMP scenarios. Run and

explore the samples to learn about what you can do with the CMP; see “The

Configuration Manager Proxy samples” on page 5.

When you have finished:

v You can debug your message flow using the flow debugger. For more details,

see Testing and debugging message flow applications.

v You can deploy your message flow to one or more production brokers. See

Deploying for further information.

Configuration Manager Proxy

The Configuration Manager Proxy (CMP) is an application programming interface

that your applications can use to control broker domains through a remote

interface to the Configuration Manager.

Your applications have complete access to the Configuration Manager functions

and resources through the set of Java classes that constitute the CMP. For example,

you can use the CMP to interact with the Configuration Manager to:

v Deploy BAR files, Publish/Subscribe topology, topic trees and broker

configuration.

v Modify the Publish/Subscribe topology; add and remove brokers, broker

connections and collectives.

v Create, modify, and delete execution groups

v Enquire and set status of objects in the domain, for example, run state, and be

informed if status changes.

v Manipulate the topics hierarchy.

v View the broker event log and active subscriptions table.

v Modify domain Access Control Lists, when connected to Version 6.0

Configuration Managers only.

The CMP is a set of Java classes that sit logically between the user application and

the Configuration Manager, inside the Java Virtual Machine (JVM) of the user

application. It requires the WebSphere MQ Classes for Java in order to function, as

shown below.

© Copyright IBM Corp. 2000, 2006 3

The CMP application can be on the same physical machine as the Configuration

Manager, connected by a JNI (Java Native Interface) connection to the queue

manager using the WebSphere MQ Java Bindings transport, or distributed over a

TCP/IP network, and connected to the queue manager by a WebSphere MQ

SVRCONN channel using the WebSphere MQ Java Client transport.

You cannot use the CMP to communicate with multiple Configuration Managers

from within the same application:

Using the API you can connect to and manipulate Configuration Managers of the

following products:

v WebSphere Business Integration Event Broker Version 5.0

v WebSphere Business Integration Message Broker Version 5.0

v WebSphere Business Integration Message Broker with Rules and Formatter

Extension Version 5.0

v WebSphere Event Broker Version 6.0

v WebSphere Message Broker Version 6.0

A domain controlled by a Version 5.0 Configuration Manager can consist of Version

2.1 and Version 5.0 brokers, to which either version can be deployed by the CMP.

Although you can run only one Version 5.0 Configuration Manager on each

physical machine, a single CMP application can still connect to multiple Version 5.0

Configuration Managers.

JVM

Configuration
Manager

User
Application

Config
Manager
Proxy

MQ
Classes
for Java

SVRCONN

SVRCONN

SVRCONN

JNI

JVM CM

CM

CM

CM

User
Application

Config
Manager
Proxy

MQ
Classes
for Java

4 CMP Programming

The Configuration Manager Proxy samples

Through using the Configuration Manager Proxy (CMP) samples, you can deploy a

BAR file, manage a broker domain, or use the CMP API Exerciser to perform

various tasks. The CMP samples introduce you, at a basic level, to the features

available with the CMP.

Deploy BAR

The Deploy BAR sample attempts to deploy a BAR file to an execution group, and

displays the outcome, see “Running the Deploy BAR sample.”

Managing a broker domain

The broker domain management sample uses the CMP to display to the screen the

complete run state of the domain, see “Running the broker domain management

sample” on page 6.

Using the Configuration Manager Proxy API Exerciser

The CMP API Exerciser sample uses the API Exerciser to view and manage a

Configuration Manager, customize the API Exerciser, or record and play back

configuration scripts, see “Running the Configuration Manager Proxy API Exerciser

sample” on page 7.

Modifying a CMP sample

You can modify the CMP samples and change various parameters, which will

effect how the sample runs, see “Modifying the Configuration Manager Proxy

samples” on page 11.

Running the Deploy BAR sample

Before you start:

The Deploy BAR sample is one of the Configuration Manager Proxy (CMP)

samples. The CMP samples can be run as they are shipped, or they can be

modified.

v If the Deploy BAR sample has no modifications, there are no prerequisite tasks.

v If the Deploy BAR sample has been modified, the environment must be setup

before the sample is run, see “Modifying the Configuration Manager Proxy

samples” on page 11.

The source file for this sample is located in the following directory:

INST_DIR/sample/ConfigManagerProxy/cmp/DeployBar.java

Where INST_DIR is the installation directory.

The Deploy BAR sample attempts to deploy a BAR file to an execution group and

display the outcome. The BAR file, execution group name, and other connection

details are hard coded into the application.

Run the Deploy BAR sample.

Developing applications that use the Configuration Manager Proxy Java API 5

v On Windows, use the Command Console to execute the following command

from the installation directory:

INST_DIR\sample\ConfigManagerProxy\StartDeployBAR.bat

v On other platforms, execute the following shell script from the installation

directory:

INST_DIR\sample\ConfigManagerProxy\StartDeployBAR

Where INST_DIR is the installation directory.

The default connection parameters used by the sample follow:

 Connection parameter Description

"localhost" Host name of the Configuration Manager.

1414 Port of the Configuration Manager.

"BROKER" Queue manager name of the Configuration Manager.

"BROKER" Name of the broker.

"default" Name of the execution group.

"c://mybar.bar" BAR file name to deploy.

The CMP connects to the Configuration Manager running on machine, localhost,

on port, 1414, with queue manager, BROKER. Next, the CMP attempts to deploy the

file, mybar.bar, to the predefined execution group, default, on broker, BROKER.

Note: The constants that represent the default connection parameters for this

sample can be modified, see “Modifying the Configuration Manager Proxy

samples” on page 11.

Running the broker domain management sample

Before you start:

The broker domain management sample is one of the Configuration Manager

Proxy (CMP) samples. The CMP samples can be run as they are, or they can be

modified.

v If the broker domain management sample has no modifications, there are no

prerequisite tasks.

v If the broker domain management sample has been modified, the environment

must be setup before the sample is run, see “Modifying the Configuration

Manager Proxy samples” on page 11.

The source file for this sample is located in the following directory:

INST_DIR/sample/ConfigManagerProxy/cmp/DomainInfo.java

Where INST_DIR is the installation directory.

The broker domain management sample uses the CMP to display to the screen the

complete run state of the domain.

Run the broker domain management sample.

6 CMP Programming

v On Windows, use the Command Console to execute the following command

from the installation directory, specifying an additional parameter that indicates

the Configuration Manager whose domain is to be iterated:

INST_DIR\sample\ConfigManagerProxy\StartDomainInfo.bat

CONFIG_MANAGER

Where INST_DIR is the installation directory, and CONFIG_MANAGER is the

full file path to a Configuration Manager file (with extension .configmgr).

v On other platforms, execute the following shell script from the installation

directory, specifying an additional parameter that indicates the Configuration

Manager whose domain is to be iterated:

INST_DIR\sample\ConfigManagerProxy\StartDomainInfoCONFIG_MANAGER

Where INST_DIR is the installation directory, and CONFIG_MANAGER is the

full file path to a Configuration Manager file (with extension .configmgr).

v An alternative is to run the sample in interactive mode. This causes the sample

to listen for changes to the domain.

To run the sample in interactive mode, specify the -i option. For example,

\sample\ConfigManagerProxy\StartDomainInfo.bat c:\myConfigMgr.configmgr

-i.

To stop the sample when running interactively, forcibly terminate it using

CTRL+C.

The complete run state of the domain is displayed. For example, the following

output could be displayed:

(13/08/04 15:47:37) Connecting. Please wait...

(13/08/04 15:47:38) Successfully connected to the Configuration Manager’s

 Queue Manager.

(13/08/04 15:47:39) Successfully connected to the Configuration Manager.

(13/08/04 15:47:41) Broker ’BROKER’ is running.

(13/08/04 15:47:42) Execution group ’default’ on ’BROKER’ is running.

(13/08/04 15:47:43) Message flow ’flow1’ on ’default’ on ’BROKER’ is

 running.

(13/08/04 15:47:44) Disconnected.

In addition, if running in interactive mode, the following output could be

displayed:

(13/08/04 15:53:46) Listening for changes to the domain...

Running the Configuration Manager Proxy API Exerciser

sample

Before you start:

The Configuration Manager Proxy API Exerciser sample is one of the

Configuration Manager Proxy (CMP) samples. The CMP samples can be run as

they are shipped, or they can be modified.

v If the CMP API Exerciser sample has no modifications, there are no prerequisite

tasks.

v If the CMP API Exerciser sample has been modified, the environment must be

setup before the sample is run, see “Modifying the Configuration Manager

Proxy samples” on page 11.

Developing applications that use the Configuration Manager Proxy Java API 7

The source files for this sample is located in the following directory:

INST_DIR/sample/ConfigManagerProxy/cmp/exerciser

Where INST_DIR is the installation directory.

In this sample you can use the API Exerciser to view and manage a Configuration

Manager, customize the API Exerciser, or record and play back configuration

scripts. See the following topics:

v “Viewing and managing a broker domain using the Configuration Manager

Proxy API Exerciser”

v “Customizing the Configuration Manager Proxy API Exerciser” on page 9

v “Recording and playing back configuration scripts using the Configuration

Manager Proxy API Exerciser” on page 10

Viewing and managing a broker domain using the Configuration

Manager Proxy API Exerciser

The Configuration Manager Proxy API Exerciser sample can be used to view and

manipulate a broker domain using the CMP. To view and manage a broker domain

using the CMP, perform the following steps:

1. Start the Configuration Manager Proxy API Exerciser.

v On Windows, click Start → IBM WebSphere Message Brokers 6.0 → Java

Programming APIs → Configuration Manager Proxy API Exerciser.

v On other platforms, run the following shell script from the installation

directory:

INST_DIR\sample\ConfigManagerProxy\StartConfigManagerProxyExerciser

Where INST_DIR is the installation directory.

The Configuration Manager Proxy API Exerciser window is displayed.

2. Connect to a running Configuration Manager by clicking File → Connect to

Configuration Manager...

The Connect to a Configuration Manager... dialog is displayed.

3. Enter the connection parameters to the Configuration Manager, then click

Submit.

broker domain information is retrieved and displayed in the Configuration

Manager Proxy API Exerciser window. You have now connected to the

Configuration Manager using the Configuration Manager Proxy API Exerciser.

The top left of the screen contains a hierarchical representation of the broker

domain to which you are connected. Selecting objects in the tree causes the

table on its right to change, reflecting the attributes of the selected object. The

Method column names CMP methods that can be invoked in your own Java

applications, and the Result column indicates the data that would be returned

by calling the CMP method on the selected object.

4. Execute a CMP method against a broker object. CMP methods are used to

manage objects in a broker domain.

a. In the navigation tree view, right-click a broker.

A context-sensitive menu is displayed that shows all the available CMP

methods.

b. Select List connections.

Information is displayed in the log view of the Configuration Manager

Proxy API Exerciser window. For example, the following output could be

displayed

8 CMP Programming

(12/08/04 18:24:45) ----> cmp.exerciser.ClassTesterForBrokerProxy.

 testListConnections(<B1>)

(12/08/04 18:24:45) There are no connections defined.

(12/08/04 18:24:45) <---- cmp.exerciser.ClassTesterForBrokerProxy.

 testListConnections

The first line indicates that the method

cmp.exerciser.ClassTesterForBrokerProxy.testListConnections() was

invoked with the parameter of the AdministeredObject representing the

broker, B1. The second line is some output from the method, and the third

line indicates that the method completed.

The available CMP methods are used to manage the broker domain.

During these steps you connected to a broker domain, viewed the domain

information, and performed a management task using the Configuration Manager

Proxy API Exerciser.

Customizing the Configuration Manager Proxy API Exerciser

To customize the Configuration Manager Proxy API Exerciser, perform the

following steps:

1. Start the Configuration Manager Proxy API Exerciser.

v On Windows, click Start → IBM WebSphere Message Brokers 6.0 → Java

Programming APIs → Configuration Manager Proxy API Exerciser.

v On other platforms, run the following shell script from the installation

directory:

INST_DIR\sample\ConfigManagerProxy\StartConfigManagerProxyExerciser

Where INST_DIR is the installation directory.

The Configuration Manager Proxy API Exerciser window is displayed.

2. Customize the Configuration Manager Proxy API Exerciser by selecting any of

the following options from the File menu.

a. Optional: Click File → Discover Subcomponent Tree Recursively

Clicking Discover Subcomponent Tree Recursively enables or disables this

option.

v If enabled, when the Configuration Manager Proxy API Exerciser

connects to a Configuration Manager it will discover as many domain

objects as possible.

v If disabled, only the top level objects are discovered, and you will need to

select the context-sensitive option, Discover subcomponents, in order to

iterate down the tree.
b. Optional: Click File → Use Incremental Deployment

Clicking Use Incremental Deployment enables or disables this option.

If enabled, all deploy operations will cause a delta or incremental deploy

where relevant.

c. Optional: Click File → Show Advanced Properties

Clicking Show Advanced Properties enables or disables this option.

v If enabled, output from all available methods is displayed in the right

hand pane of the Configuration Manager Proxy API Exerciser.

v If disabled, output from a subset of the available methods is displayed in

the right hand pane of the Configuration Manager Proxy API Exerciser.
d. Optional: Click File → Connect Using .configmgr Properties File

Developing applications that use the Configuration Manager Proxy Java API 9

Clicking Connect Using .configmgr Properties File enables or disables this

option.

If enabled, when you connect to a Configuration Manager a file dialog is

displayed instead of a prompt for the queue manager parameters, security

exit parameters, hostname, and port. The file dialog allows you to navigate

to a file with a configmgr extension which provides the connection

parameters to the Configuration Manager.

e. Optional: Click File → Enable MQ Java Client Service Trace

Clicking Enable MQ Java Client Service Trace enables or disables this

option.

v If enabled, a level 5 service trace of the MQ Classes for Java runs.

Initially, a dialog is displayed which allows you to provide a file name to

which trace is to be sent.

v If disabled, level 5 service tracing of the MQ Classes for Java is disabled.
f. Optional: Click File → Enable Config Manager Proxy Service Trace

Clicking Enable Config Manager Proxy Service Trace enables or disables

this option.

v If enabled, a service trace of the CMP run. Initially, a dialog is displayed

which allows you to provide a file name to which trace is to be sent.

v If disabled, service tracing of the CMP is disabled.
g. Optional: Click File → Set Timeout Characteristics...

Specify the time, in seconds, that the Configuration Manager Proxy API

Exerciser will wait for responses from the Configuration Manager and

brokers. The default is 6 seconds.

Recording and playing back configuration scripts using the

Configuration Manager Proxy API Exerciser

The Configuration Manager Proxy API Exerciser sample can be used to record and

play back configuration scripts. To record and play back configuration scripts using

the Configuration Manager Proxy API Exerciser, perform the following steps:

1. Start the Configuration Manager Proxy API Exerciser.

v On Windows, click Start → IBM WebSphere Message Brokers 6.0 → Java

Programming APIs → Configuration Manager Proxy API Exerciser.

v On other platforms, run the following shell script from the installation

directory:

INST_DIR\sample\ConfigManagerProxy\StartConfigManagerProxyExerciser

Where INST_DIR is the installation directory.

The Configuration Manager Proxy API Exerciser window is displayed.

2. Start recording a script by clicking Scripting → Record New Script....

The Save dialog is displayed.

3. Type a name for the script file and select an appropriate file location, then click

Save.

4. Perform a number of actions on a Configuration Manager using the

Configuration Manager Proxy API Exerciser.

In this case the first action performed will be connecting to a Configuration

Manager, however you can start recording a script at any point during the

management of a Configuration Manager.

10 CMP Programming

Note: If the script is to be invoked from the command line, a shell window, or

a batch file, ensure the fist action performed in the script is connecting to

a Configuration Manager.

5. Optional: Insert a pause by clicking Scripting → Insert a pause...

A pause causes the Configuration Manager Proxy API Exerciser to wait for a

period of time so that responses can be returned before the next action is

issued. This is important in order to remove naming conflicts if you are

deleting and recreating objects of the same name.

The Insert a pause... dialog is displayed, which allows you to specify the

duration of the pause.

6. Stop recording the script by clicking Scripting → Stop Recording.

Information relating to the actions preformed are saved to the script file.

7. To replay the script file, click Scripting → Play Back Recorded Script....

The Open dialog is displayed.

8. Select the appropriate script file, then click Open.

The script file is replayed.

Note: You can execute a script file from the command line, a shell window, or

from a batch file.

Modifying the Configuration Manager Proxy samples

You can modify the Configuration Manager Proxy (CMP) samples to change

various parameters. Once recompiled this will effect how the sample runs.

The constants used in the samples can represent various attributes of the sample,

for example the default connection parameters. By modifying them, you can

change how the sample runs.

To modify a sample, perform the following steps:

1. Set up the environment, as described in “Configuring an environment for

developing and running Configuration Manager Proxy applications” on page

12.

2. Locate the sample source file.

The source files for the CMP samples are located in the following directories:

Deploy BAR sample

INST_DIR/sample/ConfigManagerProxy/cmp/DeployBAR.java

broker domain management sample

INST_DIR/sample/ConfigManagerProxy/cmp/DomainInfo.java

Configuration Manager Proxy API Exerciser sample

INST_DIR/sample/ConfigManagerProxy/cmp/exerciser

Where INST_DIR is the installation directory.

3. Open the source file, and modify the appropriate parameters.

4. Recompile the source file.

The sample is now modified, and can be run.

Developing applications that use the Configuration Manager Proxy Java API 11

Configuring an environment for developing and running Configuration

Manager Proxy applications

Before you start:

The Configuration Manager Proxy (CMP) is a set of Java classes that are packaged

in a single JAR file. To run or develop Java applications that use the CMP (CMP

applications) the following prerequisites are required in your environment:

v The WebSphere MQ Classes for Java.

These classes provide the internal wire protocol for communicating with the

Configuration Manager.

v A JDK at a supported Java level. Java support is defined in Additional software

requirements.

To set up a computer in preparation for building and running CMP applications,

you must configure your CLASSPATH so that it includes the WebSphere MQ

Classes for Java and the CMP files.

Follow the instructions provided for the appropriate environment:

v “Configuring the Windows command-line environment”

v “Configuring Linux, UNIX, and z/OS command-line environments”

v “Configuring the Eclipse environment” on page 13

You can run CMP applications and, therefore, control Configuration Managers on

machines that do not have a WebSphere Message Broker product installed. For

more information, see “Configuring environments without the broker component

installed” on page 13.

ConfigManagerProxy.jar contains the English message catalog for displaying broker

(BIP) messages from the event log of the Configuration Manager. If you want a

CMP application to display broker messages in a language other than English, you

also need to add the directory that contains the localized message catalogs to your

CLASSPATH, for example, C:\Program Files\IBM\MQSI\6.0\messages.

Configuring the Windows command-line environment

To configure the CLASSPATH:

1. Add the WebSphere MQ Classes for Java JARs to your CLASSPATH. (Refer to

the WebSphere MQ Classes for Java documentation for information on how to do

this.)

2. Add the Configuration Manager Proxy (CMP) JAR to your CLASSPATH:

set CLASSPATH = %CLASSPATH%;%installdir%/classes/ConfigManagerProxy.jar

where %installdir% specifies the installation directory of the product.

3. Add your Java development directory to the CLASSPATH in the same way.

Configuring Linux, UNIX, and z/OS command-line

environments

To configure the CLASSPATH:

12 CMP Programming

1. Add the WebSphere MQ Classes for Java JARs to your CLASSPATH. See the

WebSphere MQ Classes for Java documentation for information on how to do

this.

2. Add the Configuration Manager Proxy (CMP) JAR to your CLASSPATH:

export CLASSPATH = $CLASSPATH%;$installdir/classes/ConfigManagerProxy.jar

where %installdir% specifies the installation directory of the product.

3. Add your Java development directory to the CLASSPATH in the same way.

Configuring the Eclipse environment

To configure the CLASSPATH:

1. Select File → New → Project → Java → Java Project. Click Next.

2. Enter the project name. Click Next.

3. In the Libraries tab, click Add External Jars....

4. Navigate to, and add, the WebSphere MQ JARs to the build path:

v com.ibm.mq.jar

v jms.jar

v jta.jar

v connector.jar

a. Import mqii.properties into your project to suppress the ″Message Catalog

not found″ error that the WebSphere MQ classes generate.

b. If you want to connect to a Configuration Manager that is running on the

local machine and you want to use the WebSphere MQ Java Bindings to set

up this connection, you must also add the bindings shared library (for

example, mqjbnd02.dll or wmqjbnd.so) to your project.
5. Navigate to and add the Configuration Manager Proxy (CMP) JAR to the build

path (ConfigManagerProxy.jar).

6. Click OK.

Configuring environments without the broker component

installed

You can run a set of Java applications that use the Configuration Manager Proxy

(CMP applications) in environments that do not have the broker component

installed. This set of CMP applications includes user-written applications and the

following command utilities:

v mqsicreateexecutiongroup

v mqsideleteexecutiongroup

v mqsistartmsgflow

v mqsistopmsgflow

v mqsideploy

WebSphere Message Broker for Windows provides two variants of the

mqsideploy command, mqsideploy.bat and mqsideploy.exe. Only

mqsideploy.bat can be used in environments that do not have the broker

component installed.

To install CMP applications in an environment that does not have the broker

component installed, perform the following steps:

Developing applications that use the Configuration Manager Proxy Java API 13

1. Ensure that the computer that does not have the broker component installed,

the target computer, has a compatible Java Runtime Environment (JRE). Java

support is defined in Additional software requirements.

2. Copy the following set of files from a computer that has the broker component

installed to the target computer:

a. ConfigManagerProxy.jar from the classes directory.

b. The WebSphere MQ Classes for Java.

v On Windows, these classes are located in com.ibm.mq.jar.

v On other platforms, these are located in the component’s installation

image.
c. Your CMP application and any configuration files, for example *.configmgr

files.

d. If you want to run any of the available broker utilities on the target

computer, perform the following steps:

1) Copy ConfigUtil.jar from the classes directory.

2) Copy the required utility bat files, or shell scripts, from the bin directory.

Copy one or more of the following bat files:

v mqsicreateexecutiongroup.bat

v mqsideleteexecutiongroup.bat

v mqsistartmsgflow.bat

v mqsistopmsgflow.bat

v mqsideploy.bat

e. If you want to display broker (BIP) messages in English environments other

than US English, copy all BIPv600*.properties files from the messages

directory.
3. On the target computer, update the CLASSPATH environment variable to

include the following files:

v The CMP classes, ConfigManagerProxy.jar.

v The user-supplied applications that import the CMP classes.

v The WebSphere MQ Classes for Java, com.ibm.mq.jar, and any additional

JARs required by this package.

v Any other required JARs and directories. For example, if you require any of

the available command utilities on the target computer, include

ConfigUtil.jar; if you require the broker (BIP) messages to be displayed in

environments other than US English, include a directory that contains

BIPv600*.properties.
4. Ensure that the user ID that the target computer uses has the following

authorities:

v Authority to connect to the queue manager that the Configuration Manager

uses.

v Authority to manipulate broker domain objects.

You can now run user-written CMP applications, and the specified command

utilities, on the target computer.

Connecting to a Configuration Manager using the Configuration

Manager Proxy

Before you start

14 CMP Programming

Before starting this step, you must have completed “Configuring an environment

for developing and running Configuration Manager Proxy applications” on page

12.

Consider the following program ConnectToConfigManager.java; it attempts to

connect to a Configuration Manager running on the default queue manager of the

local machine.

import com.ibm.broker.config.proxy.*;

public class ConfigManagerRunStateChecker {

 public static void main(String[] args) {

 displayConfigManagerRunState("localhost", 1414, "");

 }

 public static void displayConfigManagerRunState(String hostname,

 int port,

 String qmgr) {

 ConfigManagerProxy cmp = null;

 try {

 ConfigManagerConnectionParameters cmcp =

 new MQConfigManagerConnectionParameters(hostname, port, qmgr);

 cmp = ConfigManagerProxy.getInstance(cmcp);

 String configManagerName = cmp.getName();

 System.out.println("Configuration Manager ‘"+configManagerName+

 "’ is available!");

 cmp.disconnect();

 } catch (ConfigManagerProxyException ex) {

 System.out.println("Configuration Manager is NOT available"+

 " because "+ex);

 }

 }

}

The first line of the program requests Java to import the CMP classes. All CMP

classes are in the com.ibm.broker.config.proxy package.

The first line inside the try block of the displayConfigManagerRunState() method

instantiates a ConfigManagerConnectionParameters object. This is an interface

which states that implementing classes are able to provide the parameters to

connect to a Configuration Manager.

The only class that implements this interface is

MQConfigManagerConnectionParameters, which defines a set of

WebSphere MQ-based connection parameters. The constructor used here takes

three parameters:

1. The host name of the Configuration Manager machine

2. The port on which the Configuration Manager’s WebSphere MQ listener

service is listening

3. the name of the Configuration Manager’s WebSphere MQ queue manager

Once you have defined this object, an attempt can be made to connect to the

Configuration Manager’s queue manager with those characteristics. This is

achieved by the static getInstance() factory method just inside the try block.

Once a valid handle to the Configuration Manager is obtained, the application

attempts to discover the name of the Configuration Manager (cmp.getName()) and

display it.

Developing applications that use the Configuration Manager Proxy Java API 15

Note: getName() - and other methods that request information from the

Configuration Manager - block until the information is supplied, or a

timeout occurs.

This means that if the Configuration Manager is not running, the application

hangs for a period. It is possible to control the timeout period by using the

ConfigManagerProxy.setRetryCharacteristics() method. Generally,

however, blocking only occurs when a given resource is accessed for the first

time within an application.

Finally, the disconnect() method is called. This method frees up resources

associated with the connection in both the CMP and Configuration Manager.

Note: When a ConfigManagerProxy handle is first returned from the getInstance()

method, the Configuration Manager service is not necessarily running. It is

only when the application attempts to make use of the handle (by calling

getName() in this example) that the application can be assured that a

two-way connection with the Configuration Manager is active

Navigating broker domains using the Configuration Manager Proxy

Before you start

Before starting this step, you must have completed “Connecting to a Configuration

Manager using the Configuration Manager Proxy” on page 14.

Each domain object that is controllable from the Configuration Manager is

represented as a single object in the Configuration Manager Proxy (CMP) and this

includes:

v Brokers

v Execution groups

v Deployed message flows

v Topics

v Collectives

v Subscriptions

v Publish/Subscribe topology

v Broker event log

The CMP also handles deployed message sets, although these are handled as

attributes of deployed execution groups.

Collectively known as administered objects these objects provide the bulk of the

interface to the Configuration Manager, and as such are fundamental to

understanding the Configuration Manager Proxy API.

Each administered object is an instance of a Java class that describes the

underlying type of object in the Configuration Manager. The possible Java classes

follow:

 Java class Class function

TopologyProxy Describes the pub/sub topology.

CollectiveProxy Describes pub/sub collectives.

16 CMP Programming

Java class Class function

BrokerProxy Describes brokers.

ExecutionGroupProxy Describes execution groups.

MessageFlowProxy Describes message flows that have already been deployed to

execution groups; does NOT describe message flows in the Broker

Application Development perspective of the toolkit.

TopicProxy Describes topics.

TopicRootProxy Describes the root of the topic hierarchy.

LogProxy Describes the broker’s event log for the current user.

SubscriptionsProxy Describes a subset of the active subscriptions.

ConfigManagerProxy Describes the Configuration Manager itself.

Each administered object describes a single object that is controllable from the

Configuration Manager. For example, every broker within a broker domain will

have one BrokerProxy instance that represents it within the CMP application, and

so on.

Declared in each administered object is a set of public methods that programs can

use to enquire and manipulate properties of the underlying Configuration Manager

object to which the instance refers. For example, on a BrokerProxy object that refers

to broker B1, it is possible to invoke methods that cause the broker to reveal its

run-state, or cause it to start all its message flows and so on.

To access an administered object, and make use of its API, it is necessary to first

request a handle to it from the object that logically owns it. For example, as

brokers logically own execution groups, in order to gain a handle to execution

group EG1 running on broker B1 the application needs to ask the BrokerProxy

object represented by B1 for a handle to the ExecutionGroupProxy object

represented by EG1.

In the ConnectToConfigManager example a handle is gained to the

ConfigManagerProxy object. The ConfigManagerProxy is logically the root of the

administered object tree, which means that all other objects in the Configuration

Manager are directly, or indirectly, accessible from it. The Configuration Manager

directly owns the Publish/Subscribe topology and so there is a method that

applications can invoke from ConfigManagerProxy in order to gain a handle to the

TopologyProxy object. Similarly, the topology logically contains the set of all

brokers and so it is possible to call methods on the TopologyProxy object to access

the BrokerProxy objects. The complete hierarchy of these access relationships is

shown below:

Developing applications that use the Configuration Manager Proxy Java API 17

Using the ConnectToConfigManager example as a starting point, the following

program traverses the administered object hierarchy to discover the run state of a

deployed message flow. Note that the program assumes that message flow MF1 is

deployed to EG1 on broker B1, although it is possible to substitute these values in

the code for any that are valid in the domain.

import com.ibm.broker.config.proxy.*;

public class GetMessageFlowRunState {

 public static void main(String[] args) {

 ConfigManagerProxy cmp = null;

 try {

 ConfigManagerConnectionParameters cmcp =

 new MQConfigManagerConnectionParameters(

 "localhost",

 1414,

 "");

 cmp = ConfigManagerProxy.getInstance(cmcp);

 } catch (ConfigManagerProxyException cmpex) {

 System.out.println("Error connecting: "+cmpex);

 }

 if (cmp != null) {

 System.out.println("Connected to Config Manager!");

 displayMessageFlowRunState(cmp, "B1", "EG1", "MF1");

 cmp.disconnect();

 }

 }

 private static void displayMessageFlowRunState(

 ConfigManagerProxy cmp,

 String brokerName,

Config
Manager

Proxy

Log Proxy Topology
Proxy

Collective
Proxy

Subscriptions
Proxy

Broker
Proxy

Execution
Group
Proxy

Message
Flow
Proxy

Topic Root
Proxy

Topic
Proxy

18 CMP Programming

String egName,

 String flowName) {

 try {

 TopologyProxy topology = cmp.getTopology();

 if (topology != null) {

 BrokerProxy b = topology.getBrokerByName(brokerName);

 if (b != null) {

 ExecutionGroupProxy eg =

 b.getExecutionGroupByName(egName);

 if (eg != null) {

 MessageFlowProxy mf =

 eg.getMessageFlowByName(flowName);

 if (mf != null) {

 boolean isRunning = mf.isRunning();

 System.out.print("Flow "+flowName+" on " +

 egName+" on "+brokerName+" is ");

 if (isRunning) {

 System.out.println("running");

 } else {

 System.out.println("stopped");

 }

 } else {

 System.err.println("No such flow "+flowName);

 }

 } else {

 System.err.println("No such exegrp "+egName+"!");

 }

 } else {

 System.err.println("No such broker "+brokerName);

 }

 } else {

 System.err.println("Topology not available!");

 }

 } catch(ConfigManagerProxyPropertyNotInitializedException

 ex) {

 System.err.println("Comms problem! "+ex);

 }

 }

}

The method that does most of the work is displayMessageFlowRunState(). This

method takes the valid ConfigManagerProxy handle gained previously and

discovers the run-state of the message flow as follows:

1. The ConfigManagerProxy instance is used to gain a handle to the TopologyProxy.

As there is only ever one topology per Configuration Manager, the

getTopology() method does not need qualifying with an identifier.

2. If a valid topology is returned, the TopologyProxy instance is used to gain a

handle to its BrokerProxy object with the name described by the string

brokerName.

3. If a valid broker is returned, the BrokerProxy instance is used to gain a handle

to its ExecutionGroupProxy object with the name described by the string egName.

4. If a valid execution group is returned, the ExecutionGroupProxy instance is used

to gain a handle to its MessageFlowProxy object with the name described by the

string flowName.

5. If a valid message flow is returned, the run-state of the MessageFlowProxy object

is queried and the result is displayed.

Developing applications that use the Configuration Manager Proxy Java API 19

It is not necessary to know the names of objects that you intend to manipulate.

Each administered object contains methods to return sets of objects that it logically

owns. The following example demonstrates this by looking up the names of all

brokers within the domain:

import java.util.Enumeration;

import com.ibm.broker.config.proxy.*;

public class DisplayBrokerNames {

 public static void main(String[] args) {

 ConfigManagerProxy cmp = null;

 try {

 ConfigManagerConnectionParameters cmcp =

 new MQConfigManagerConnectionParameters(

 "localhost",

 1414,

 "");

 cmp = ConfigManagerProxy.getInstance(cmcp);

 } catch (ConfigManagerProxyException cmpex) {

 System.out.println("Error connecting: "+cmpex);

 }

 if (cmp != null) {

 System.out.println("Connected to Config Manager!");

 displayBrokerNames(cmp);

 cmp.disconnect();

 }

 }

 private static void displayBrokerNames(ConfigManagerProxy cmp)

 {

 try {

 TopologyProxy topology = cmp.getTopology();

 if (topology != null) {

 Enumeration allBrokers = topology.getBrokers(null);

 while (allBrokers.hasMoreElements()) {

 BrokerProxy thisBroker =

 (BrokerProxy) allBrokers.nextElement();

 System.out.println("Broker "+thisBroker.getName());

 }

 }

 } catch(ConfigManagerProxyPropertyNotInitializedException

 ex) {

 System.err.println("Comms problem! "+ex);

 }

 }

}

The key method is TopologyProxy.getBrokers(Properties). When supplied with a

null argument, it returns an Enumeration of all the BrokerProxy objects in the

domain. The program uses this method to look at each BrokerProxy in turn and

display its name.

The Properties argument of TopologyProxy.getBrokers(Properties) can be used to

exactly specify the characteristics of the brokers that are sought. It is possible to do

this for nearly all of the methods that return administered objects, and is a

powerful way of filtering those objects with which the program needs to work.

Examples of those characteristics that can be used to filter object look ups are the

run-state and short description, as well as more obvious properties such as the

20 CMP Programming

name and UUID. In order to write logic to achieve this, it is necessary for you to

understand how each administered object stores its information.

The properties of each administered object are stored locally inside the object using

a hash table, where each property is represented as a {key, value} tuple. Each key

is the name of an attribute (for example, name) and each value is the value (for

example, BROKER1).

Each key name must be expressed using a constant from the AttributeConstants

class (com.ibm.broker.config.proxy). A complete set of keys and possible values

for each administered object is described in the Java documentation for the

AttributesConstant class, or by using the Show raw property table for this

object function in the Configuration Manager Proxy API Exerciser sample

program. The latter displays the complete list of {key, value} pairs for each

administered object.

The Properties argument supplied to the look up methods is a set of those {key,

value} pairs that must exist in each administered object in the returned

enumeration. To demonstrate this, consider the following code fragment:

Properties p = new Properties();

p.setProperty(AttributeConstants.OBJECT_RUNSTATE_PROPERTY,

 AttributeConstants.OBJECT_RUNSTATE_RUNNING);

Enumeration e = executionGroup.getMessageFlows(p);

Providing that the variable executionGroup is a valid ExecutionGroupProxy object,

the returned enumeration only contains running message flows

(OBJECT_RUN_STATE_PROPERTY equal to OBJECT_RUNSTATE_RUNNING).

When property filtering is applied to a method that returns a single administered

object rather than an enumeration of objects, only the first result is returned (which

is non deterministic if more than one match applies). This means that:

Properties p = new Properties();

p.setProperty(AttributeConstants.NAME_PROPERTY,

 "shares");

TopicProxy t = topicProxy.getTopic(p);

is an alternative to:

TopicProxy t = topicProxy.getTopicByName("shares");

If multiple {key, value} pairs are added to a property filter, all properties must be

present in the child object in order for an object to match. It is not possible to

perform a logical OR, or a logical NOT, on a filter without writing specific

application code to do this.

When AdministeredObjects are first instantiated in an application, the CMP asks

the Configuration Manager for the current set of properties for that object. This

happens asynchronously, which means that the first time a property is requested

there may be a pause while the CMP waits for the information to be supplied by

the Configuration Manager. If the information does not arrive within a certain time

(for example, if the Configuration Manager is not running), a

ConfigManagerProxyPropertyNotInitializedException is thrown. The maximum

time that the CMP waits is determined by the

ConfigManagerProxy.setRetryCharacteristics() method.

Developing applications that use the Configuration Manager Proxy Java API 21

Using the Configuration Manager Proxy API to deploy

You can use the Configuration Manager Proxy API for all possible types of

deployment:

 Deployment type Description

TopologyProxy.deploy() Deploys the publish/subscribe topology to

all affected brokers.

BrokerProxy.deploy() Deploys the broker configuration.

ExecutionGroupProxy.deploy() Deploys a BAR file to an execution group.

TopicRootProxy.deploy() Deploys the topic hierarchy to all brokers.

ConfigManagerProxy.cancelDeployment() Cancels all outstanding deploys in the

domain.

BrokerProxy.cancelDeployment() Cancels any outstanding deploy to a specific

broker.

The Configuration Manager Proxy API has more information about each of these

methods and you can find an example of the code you might use for each type of

deployment in the appropriate topic in the Deploying section.

You can also check the result of a deployment using the Configuration Manager

Proxy API.

An example

Here is one example that adds a broker called B2 that is running on queue

manager QMB2 to the domain and associates with it an execution group called

’default’. This configuration is then deployed to the broker.

For this example to work successfully, the broker B2 has been created on the

machine running queue manager QMB2, and it has not already been deployed to

by another Configuration Manager.

import com.ibm.broker.config.proxy.*;

public class AddBroker {

 public static void main(String[] args) {

 ConfigManagerProxy cmp = null;

 try {

 ConfigManagerConnectionParameters cmcp =

 new MQConfigManagerConnectionParameters(

 "localhost",

 1414,

 "");

 cmp = ConfigManagerProxy.getInstance(cmcp);

 }

 catch (ConfigManagerProxyException cmpex) {

 System.out.println("Error connecting: "+cmpex);

 }

 if (cmp !=null) {

 System.out.println("Connected to Config Manager");

 addBroker(cmp, "B2", "QMB2", "default");

 cmp.disconnect();

 }

 }

 private static void addBroker(ConfigManagerProxy cmp,

22 CMP Programming

String bName,

 String bQMgr,

 String egName) {

 TopologyProxy topology = null;

 try {

 topology = cmp.getTopology();

 }

 catch(ConfigManagerProxyPropertyNotInitializedException ex) {

 System.err.println("Comms problem! "+ex);

 }

 if (topology != null) {

 try {

 BrokerProxy b2 = topology.createBroker(bName, bQMgr);

 ExecutionGroupProxy e = b2.createExecutionGroup(egName);

 b2.deploy();

 }

 catch (ConfigManagerProxyException ex) {

 System.err.println("Could not perform an action: "+ex);

 }

 }

 }

}

Configuration Manager Proxy Exerciser

You can also use the Configuration Manager Proxy Exerciser to deploy. The

exerciser is a graphical interface to the Configuration Manager Proxy that allows

you to view and manipulate Configuration Manager domains. For example:

1. Connect to the Configuration Manager: File → Connect to Configuration

Manager. This opens the Connect to Configuration Manager dialog.

2. Enter the relevant connection parameters in the dialog. A hierarchical

representation of the domain is displayed.

3. You can perform a number of operations. For example:

v Click an object in the tree to display the attributes of that object.

v Right-click an object in the tree to invoke Configuration Manager Proxy

methods that manipulate that object. For example, right-clicking a broker

opens a drop-down menu that has items such as ’start user trace’, ’deploy

broker configuration’ and ’cancel all outstanding deploys to this broker’.

v Use the log pane at the bottom of the screen to view useful information

relating to the operation being performed.

Checking the results of deployment using the Configuration

Manager Proxy API

If you are using a Configuration Manager Proxy application, you can find out the

result of a publish/subscribe topology deployment operation, for example, by

using code similar to this:

TopologyProxy t = cmp.getTopology();

boolean isDelta = true;

long timeToWaitMs = 10000;

DeployResult dr = topology.deploy(isDelta, timeToWaitMs);

System.out.println("Overall result = "+dr.getCompletionCode());

// Display overall log messages

Enumeration logEntries = dr.getLogEntries();

while (logEntries.hasMoreElements()) {

 LogEntry le = (LogEntry)logEntries.nextElement();

Developing applications that use the Configuration Manager Proxy Java API 23

System.out.println("General message: " + le.getDetail());

}

// Display broker specific information

Enumeration e = dr.getDeployedBrokers();

while (e.hasMoreElements()) {

 // Discover the broker

 BrokerProxy b = (BrokerProxy)e.nextElement();

 // Completion code for broker

 System.out.println("Result for broker "+b+" = " +

 dr.getCompletionCodeForBroker(b));

 // Log entries for broker

 Enumeration e2 = dr.getLotEntriesForBroker(b);

 while (e2.hasMoreElements()) {

 LogEntry le = (LogEntry)e2.nextElement();

 System.out.println("Log message for broker " + b +

 le.getDetail()));

 }

}

The deploy() method blocks until all affected brokers have responded to the

deployment request.

When the method returns, the DeployResult represents the outcome of the

deployment at the time when the method returned; the object is not updated by

the Configuration Manager Proxy.

If the deployment message could not be sent to the Configuration Manager, a

ConfigManagerProxyLoggedException is thrown at the time of deployment. If the

Configuration Manager receives the deployment message, then log messages for

the overall deployment are displayed, followed by completion codes specific to

each broker affected by the deployment. The completion code is one of the

following static instances from the

com.ibm.broker.config.proxy.CompletionCodeType class:

 Completion

code

Description

pending The deploy is held in a batch and will not be sent until you issue

ConfigManagerProxy.sendUpdates().

submitted The deploy message was sent to the Configuration Manager but no

response was received before the timeout occurred.

initiated The Configuration Manager replied stating that deployment has started,

but no broker responses were received before the timeout occurred.

successSoFar The Configuration Manager issued the deployment request and some,

but not all, brokers responded with a success message before the

timeout period expired. No brokers responded negatively.

success The Configuration Manager issued the deployment request and all

relevant brokers responded successfully before the timeout period

expired.

failure The Configuration Manager issued the deployment request and at least

one broker responded negatively. You can use getLogEntriesForBroker for

more information on why the deployment failed.

notRequired A deployment request was submitted to the Configuration Manager

involved with the supplied broker, but the request was not sent to the

broker because its configuration is already up to date.

24 CMP Programming

Managing broker domains using the Configuration Manager Proxy

Before you start

Before starting this topic, you must have completed “Connecting to a

Configuration Manager using the Configuration Manager Proxy” on page 14.

Using the CMP it is possible to change the state of objects in the domain– that is,

create, delete, modify, and deploy objects stored within the Configuration Manager.

The following example attempts to set the long description field of a broker

called B1:

import com.ibm.broker.config.proxy.*;

public class SetLongDescription {

 public static void main(String[] args) {

 ConfigManagerProxy cmp = null;

 try {

 ConfigManagerConnectionParameters cmcp =

 new MQConfigManagerConnectionParameters(

 "localhost",

 1414,

 "");

 cmp = ConfigManagerProxy.getInstance(cmcp);

 } catch (ConfigManagerProxyException cmpex) {

 System.out.println("Error connecting: "+cmpex);

 }

 if (cmp != null) {

 System.out.println("Connected to Config Manager!");

 describeBroker(cmp, "B1", "this is my broker");

 cmp.disconnect();

 }

 }

 private static void describeBroker(ConfigManagerProxy cmp,

 String brokerName,

 String newDesc)

 {

 BrokerProxy b = null;

 try {

 TopologyProxy topology = cmp.getTopology();

 if (topology != null) {

 b = topology.getBrokerByName(brokerName);

 }

 } catch(ConfigManagerProxyPropertyNotInitializedException

 ex) {

 System.err.println("Comms problem! "+ex);

 }

 if (b != null) {

 try {

 b.setLongDescription(newDesc);

 } catch (ConfigManagerProxyException ex) {

 System.err.println("Could not send request to CM: "+ex);

 }

 } else {

 System.err.println("Broker "+brokerName+" not found");

 }

 }

}

Developing applications that use the Configuration Manager Proxy Java API 25

The setLongDescription() method works by asking the Configuration Manager to

modify a (key, value) property of the broker B1, where the key name represents

the long description tag, and the value is the new long description. So an

alternative to calling setLongDescription() is:

Properties p = new Properties();

p.setProperty(AttributeConstants.LONG_DESCRIPTION_PROPERTY,

 newDesc);

b.setProperties(p);

When the request to change properties is sent to the Configuration Manager, The

CMP’s internal properties tables are not updated until the Configuration Manager

reports that its copy of the attributes has been changed successfully. This is done in

order to keep all copies of the information consistent. This process is shown below.

Note, that if the current user does not have the necessary permissions, as

SetLongDescription.java works it is not possible to determine if the request gets

rejected by the Configuration Manager. The CMP method to set the long

description field throws a ConfigManagerProxyException if, and only if, the

message to perform the operation can not be sent to the Configuration Manager.

This means that output from the program is exactly the same, even if the

Configuration Manager can not change the required property.

The reason for this is that the Configuration Manager processes requests from the

CMP asynchronously, and so it could theoretically be a considerable time until the

action is performed at the Configuration Manager. If methods such as the one

described within this topic did not return control to the program until the

completion codes became available, the performance of the CMP application would

be wholly dependent on the performance of the Configuration Manager.

Next:

The design of most state-changing CMP methods is to return immediately without

informing the calling application of the outcome of the request. To discover this

information refer to “Checking the results of broker domain management using the

Configuration Manager Proxy” on page 27

Config Manager Proxy Config Manager

Update API called - e.g. Request received.

Update object.

Notify Config
Manager Proxy

Applications

Update local properties
table

setLongDescription()

26 CMP Programming

Checking the results of broker domain management using the

Configuration Manager Proxy

This is part of the larger task of developing Configuration Manager Proxy (CMP)

applications.

There are three ways of determining the outcome of requests to manipulate, that is,

create, delete, modify, and deploy Configuration Manager objects:

v For deployment methods only, it is possible to use the return code from the

deployment API; see “Checking the results of broker domain management using

the Configuration Manager Proxy with return codes”

v By using an API to query an object’s last completion code; see “Checking the

results of broker domain management using the Configuration Manager Proxy

with the last completion code” on page 29

v By using the administered object notification mechanism which is the

recommended approach; see “Checking the results of broker domain

management using the Configuration Manager Proxy with object notification”

on page 30

Checking the results of broker domain management using the

Configuration Manager Proxy with return codes

This is part of the larger task of developing Configuration Manager Proxy (CMP)

applications.

The only state-changing methods that supply a return code representing the

outcome of the request are the deploy() methods. The following sample of code

shows how to discover the outcome of a topology deploy operation using the

returned DeployResult object:

...

TopologyProxy t = cmp.getTopology();

boolean isDelta = true;

long timeToWaitMs = 10000;

DeployResult dr = topology.deploy(isDelta, timeToWaitMs);

System.out.println("Overall result = "+dr.getCompletionCode());

// Display overall log messages

Enumeration logEntries = dr.getLogEntries();

while (logEntries.hasMoreElements()) {

 LogEntry le = (LogEntry)logEntries.nextElement();

 System.out.println("General message: " + le.getDetail());

}

// Display broker specific information

Enumeration e = dr.getDeployedBrokers();

while (e.hasMoreElements()) {

 // Discover the broker

 BrokerProxy b = (BrokerProxy)e.nextElement();

 // Completion code for broker

 System.out.println("Result for broker "+b+" = " +

 dr.getCompletionCodeForBroker(b));

 // Log entries for broker

 Enumeration e2 = dr.getLogEntriesForBroker(b);

 while (e2.hasMoreElements()) {

Developing applications that use the Configuration Manager Proxy Java API 27

LogEntry le = (LogEntry)e2.nextElement();

 System.out.println("Log message for broker " + b +

 le.getDetail()));

 }

}

In this code the deploy() method is blocked until all affected brokers have

responded to the deployment request. However, the method includes a long

parameter that describes the maximum length of time the CMP waits for the

responses to arrive.

Note that when the method finally returns, the DeployResult represents the

outcome of the deployment at the time the method returned. In other words, once

returned to the application, the object is not updated by the CMP.

After the deploy() method completes, the example interrogates the returned

DeployResult and displays the overall completion code for the deploy operation.

This takes one of the following values:

(com.ibm.broker.config.proxy.)CompletionCodeType.pending

Means that the deploy is held in a batch and is not sent until you issue

ConfigManagerProxy.sendUpdates(). Note that if this message applies it is

returned immediately – that is, without waiting for the timeout period to

expire.

CompletionCodeType.submitted

Means that the deploy message was sent to the Configuration Manager but

no response was received before the timeout occurred. Note that if the

deployment message can not be sent to the Configuration Manager, a

ConfigManagerProxyLoggedException is thrown at deploy time instead.

CompletionCodeType.initiated

Means that the Configuration Manager replied stating that deployment has

started, but no broker responses were received before the timeout occurred.

CompletionCodeType.successSoFar

Means that the Configuration Manager issued the deployment request and

some, but not all, brokers responded with a ″success″ message before the

timeout period expired. No brokers responded negatively.

CompletionCodeType.success

Means that the Configuration Manager issued the deployment request, and

all relevant brokers responded successfully before the timeout period

expired. This message is sent as soon as all relevant brokers have

responded successfully.

CompletionCodeType.failure

Means that the Configuration Manager issued the deployment request, and

at least one broker responded negatively.

Note, that not all completion codes apply to all deploys. For example, deploying to

a single specific broker cannot result in a completion code of ’successSoFar’.

The example next displays any log messages from the deployment that can not be

attributed to any specific broker. On a successful deploy, these messages always

include a ″deploy initiated″ log entry originating from the Configuration Manager,

even if the deployment subsequently completed.

28 CMP Programming

Finally, the example displays the completion code and any log messages specific to

each broker affected by the deployment. Note that on a topology or topic tree

deploy, this is every broker in the domain.

The set of completion codes applicable to a response from a specific broker are:

CompletionCodeType.pending

Means that the deploy is held in a batch and is not sent until you issue

ConfigManagerProxy.sendUpdates().

CompletionCodeType.submitted

Means that the deploy message was sent but no response has yet been

received from the Configuration Manager stating that deployment has been

initiated.

CompletionCodeType.initiated

Means that the Configuration Manager has replied, stating that

deployment has started, but no reply has yet been returned from the

broker.

CompletionCodeType.success

Means that the Configuration Manager issued the deployment request, and

the broker successfully applied the deployment changes.

CompletionCodeType.failure

Means that the Configuration Manager issued the deployment request, and

the broker responded by stating that the deployment was not successful.

Use getLogEntriesForBroker() for more information on why the

deployment failed.

CompletionCodeType.notRequired

Means that a deployment request was submitted to the Configuration

Manager that involved the supplied broker, but the broker was not sent the

request because its configuration is already up to date.

See “Running the Deploy BAR sample” on page 5 or “Running the broker domain

management sample” on page 6 CMPAPIExerciser.reportDeployResult() method

for examples of how to parse DeployResult objects.

Checking the results of broker domain management using the

Configuration Manager Proxy with the last completion code

This is part of the larger task of developing Configuration Manager Proxy (CMP)

applications.

Most state-changing methods in the CMP do not make use of the return code in

this way. For such methods, discovering the outcome of an action can be slightly

more complicated. Assuming that administered objects are not shared across

threads, the following code fragment can be used to discover the outcome of a

request to modify a broker’s LongDescription, where b is an instance of

BrokerProxy:

GregorianCalendar oldCCTime =

 b.getTimeOfLastCompletionCode();

b.setLongDescription(newDesc);

GregorianCalendar newCCTime = oldCCTime;

while ((newCCTime == null) || (newCCTime.equals(oldCCTime))) {

 newCCTime = b.getTimeOfLastCompletionCode());

 Thread.sleep(1000);

}

Developing applications that use the Configuration Manager Proxy Java API 29

CompletionCodeType ccType = b.getLastCompletionCode();

if (ccType == CompletionCodeType.success) {

 // etc.

}

In this example, the application initially determines when an action on the broker

was last completed, using the getTimeOfLastCompletionCode() method. This

method returns the time that the topology last received a completion code or, if no

return codes have been received, a null value. The application attempts to update

the broker’s LongDescription and then continually monitors the topology waiting

for the results of the setLongDescription() command to be returned to the CMP.

When this occurs, control breaks out of the while loop and the last completion

code is determined.

As well as being unsuitable for a multi-threaded application, this algorithm for

determining the outcome of commands is inefficient as it causes the CMP

application to wait while the Configuration Manager processes the request.

A better way of doing this is to make use of administered object notifications; see

“Checking the results of broker domain management using the Configuration

Manager Proxy with object notification.”

Checking the results of broker domain management using the

Configuration Manager Proxy with object notification

This is part of the larger task of developing Configuration Manager Proxy (CMP)

applications.

It is possible to notify applications whenever commands complete, or whenever

changes occur to administered objects. By making use of the OBSERVER design

pattern, it is possible to supply the CMP with a handle to a user-supplied object

that has a specific method invoked if an object is modified, deleted, or whenever a

response to a previously submitted action is returned from the Configuration

Manager.

The user-supplied code must implement the AdministeredObjectListener interface.

It defines methods that are invoked by the CMP when an event occurs on an

administered object to which the listener is registered. These methods are:

v processModify(...)

v processDelete(...)

v processActionResponse(...)

processModify(...) is invoked whenever the administered object to which the

listener is registered has one or more of its attributes modified by the

Configuration Manager. Information supplied on this notification, through the use

of the processModify() method arguments are a:

1. Handle to the AdministeredObject to which the notification refers.

2. List of strings containing the key names that have been changed.

3. List of strings describing any new subcomponents that have just been created

for the object, for example, new execution groups in a broker.

4. List of strings describing any subcomponents that have just been removed for

the object.

30 CMP Programming

The format of the strings passed to the final two parameters is an internal

representation of the administered object. It is possible to turn this representation

into an administered object type by using the getSubcomponentFromString()

method.

Note:

1. Strings are passed within these lists to enhance performance; the CMP

does not use resource instantiating administered objects unless they are

specifically requested by the calling application.

2. The first time you call the processModify() method for a listener, the

changed attributes parameter can include a complete set of attribute

names for the object, if the application is using a batch method, or if the

CMP is experiencing communication problems with the Configuration

Manager.

processDelete(...) is invoked if the object with which the listener is registered is

completely removed from the Configuration Manager. Supplied to

processDelete(...) is one parameter – a handle to the administered object that

has been deleted; once this method returns, the administered object handle might

no longer be valid. Around the same time that a processDelete(...) event occurs,

a processModify(...) event is sent to listeners of the deleted object’s parent, to

announce a change in the parent’s list of subcomponents.

 processActionResponse(...) is the event that informs the application that a

previous action submitted by that application is complete, and there is only one

processActionResponse(...) event received for each state-changing operation

issued by the CMP application. Supplied to this event are the following pieces of

information:

1. A handle to the administered object for which a request was submitted.

2. The completion code of the request.

3. A set of zero, or more, informational (BIP) messages associated with the result.

4. A set of (key, value) pairs that describes the submitted request in more detail.

Consult the Configuration Manager Proxy API Reference for information on parsing

the pairs in the last parameter.

In order to register a listener, each administered object has a registerListener()

method that is used to tell the CMP to call the supplied code whenever an event

occurs on that object. It is possible to register the same

AdministeredObjectListener for notifications from multiple administered objects.

In addition, it is possible to register multiple AdministeredObjectListeners against

the same administered object.

The following example demonstrates this by registering a listener on the topology

object and displaying a message whenever it is modified:

import com.ibm.broker.config.proxy.*;

import com.ibm.broker.config.common.CompletionCodeType;

import java.util.List;

import java.util.ListIterator;

import java.util.Properties;

public class MonitorTopology implements AdministeredObjectListener {

 public static void main(String[] args) {

 ConfigManagerProxy cmp = null;

 try {

Developing applications that use the Configuration Manager Proxy Java API 31

ConfigManagerConnectionParameters cmcp =

 new MQConfigManagerConnectionParameters(

 "localhost",

 1414,

 "");

 cmp = ConfigManagerProxy.getInstance(cmcp);

 } catch (ConfigManagerProxyException cmpex) {

 System.out.println("Error connecting: "+cmpex);

 }

 if (cmp != null) {

 System.out.println("Connected to Config Manager!");

 TopologyProxy topology = cmp.getTopology();

 listenForChanges(topology);

 cmp.disconnect();

 }

 }

 private static void listenForChanges(AdministeredObject obj)

 {

 try {

 if (obj != null) {

 obj.registerListener(new MonitorTopology());

 while(true) {

 // thread could do something else here instead

 try {

 Thread.sleep(10000);

 } catch (InterruptedException ex) {

 // ignore

 }

 }

 }

 } catch(ConfigManagerProxyPropertyNotInitializedException

 ex) {

 System.err.println("Comms problem! "+ex);

 }

 }

 public void processActionResponse(AdministeredObject obj,

 CompletionCodeType cc,

 List bipMessages,

 Properties refProperties) {

 // Event ignored in this example

 }

 public void processDelete(AdministeredObject deletedObject) {

 // Event ignored in this example

 }

 public void processModify(AdministeredObject affectedObject,

 List changedAttributes,

 List newChildren,

 List removedChildren) {

 System.out.println(affectedObject+" has changed:");

 ListIterator e = changedAttributes.listIterator();

 while (e.hasNext()) {

 String changedAttribute = (String) e.next();

 System.out.println("Changed: "+changedAttribute);

 }

 ListIterator e2 = newChildren.listIterator();

 while (e2.hasNext()) {

 String newChildStr = (String) e2.next();

 AdministeredObject newChild =

 affectedObject.getSubcomponentFromString(newChildStr);

 System.out.println("New child: "+newChild);

 }

32 CMP Programming

ListIterator e3 = removedChildren.listIterator();

 while (e3.hasNext()) {

 String remChildStr = (String) e3.next();

 AdministeredObject removedChild =

 affectedObject.getSubcomponentFromString(remChildStr);

 System.out.println("Removed child: "+removedChild);

 }

 }

}

The listenForChanges() method attempts to register an instance of the

MonitorTopology class for notifications of topology changes. If successful, the main

thread pauses indefinitely to prevent the application from exiting once the method

returns. Once the listener is registered, whenever the topology changes - for

example, if a broker is added - the processModify() method is called. This displays

details of each notification on the screen.

There are three ways to stop receiving notifications:

v AdministeredObject.deregisterListener(AdministeredObjectListener)

v ConfigManagerProxy.deregisterListeners()

v ConfigManagerProxy.disconnect()

The first method de-registers a single listener from a single administered object; the

other two methods deregister all listeners connected with that ConfigManagerProxy

instance. In addition, the final method shows that all listeners are implicitly

removed when connection to the Configuration Manager is stopped.

Note: You can also implement the AdvancedAdministeredObjectListener interface

which, when registered, yields additional information to applications.

Creating domain objects using the Configuration Manager

Proxy

This is part of the larger task of developing Configuration Manager Proxy (CMP)

applications.

The following example adds a broker called B2, that is running on queue manager

QMB2, to the domain and associates with it an execution group called default.

Finally, this configuration is deployed to the broker.

In order for this example to work successfully, the broker B2 must already exist on

the machine running queue manager QMB2, and another Configuration Manager

must not have deployed to it previously.

import com.ibm.broker.config.proxy.*;

public class AddBroker {

 public static void main(String[] args) {

 ConfigManagerProxy cmp = null;

 try {

 ConfigManagerConnectionParameters cmcp =

 new MQConfigManagerConnectionParameters(

 "localhost",

 1414,

 "");

 cmp = ConfigManagerProxy.getInstance(cmcp);

Developing applications that use the Configuration Manager Proxy Java API 33

} catch (ConfigManagerProxyException cmpex) {

 System.out.println("Error connecting: "+cmpex);

 }

 if (cmp != null) {

 System.out.println("Connected to Config Manager!");

 addBroker(cmp, "B2", "QMB2", "default");

 cmp.disconnect();

 }

 }

 private static void addBroker(ConfigManagerProxy cmp,

 String bName,

 String bQMgr,

 String egName)

 {

 TopologyProxy topology = null;

 try {

 topology = cmp.getTopology();

 } catch(ConfigManagerProxyPropertyNotInitializedException

 ex) {

 System.err.println("Comms problem! "+ex);

 }

 if (topology != null) {

 try {

 BrokerProxy b2 = topology.createBroker(bName, bQMgr);

 ExecutionGroupProxy e = b2.createExecutionGroup(egName);

 b2.deploy();

 } catch (ConfigManagerProxyException ex) {

 System.err.println("Could not perform an action: "+ex);

 }

 }

 }

}

The critical statements in this example are the three lines inside the try block

towards the end of the addBroker() method. The first statement attempts to add

the broker to the Configuration Manager’s topology, the second attempts to create

the default execution group, and the third attempts to deploy the configuration

(that is, the new execution group) to the broker.

Note that the createBroker() method assumes that the ″physical″ broker

component has already been created using the mqsicreatebroker command.

Because requests are processed asynchronously by the Configuration Manager, the

BrokerProxy object that is returned from the createBroker() method is a ″skeleton″

object when returned to your application, as it refers to an object that may not yet

exist on the Configuration Manager.

This is also true of the ExecutionGroupProxy object e returned from the

createExecutionGroup() method. In both cases, the object can be manipulated by

the application as if it existed on the Configuration Manager, although the actual

creation of the underlying object might not happen for some time.

Once the object represented by the skeleton is created in the Configuration

Manager, any requests that refer to it can be processed. In this example, once the

broker has actually been added to the topology in the Configuration Manager, the

Configuration Manager can honor the request to create the execution group.

If, for any reason the request to create the object described by the skeleton fails,

any requests that use the skeleton also fails. So, if broker B2 can not be created, any

requests involving the skeleton BrokerProxy object b2, that is,

34 CMP Programming

b2.createExecutionGroup() and b2.deploy() also fail. However, the CMP

application works, as in the successful case, as no exception is thrown. See

“Checking the results of broker domain management using the Configuration

Manager Proxy” on page 27 for further information on how to detect problems

such as these.

Advanced features of the Configuration Manager Proxy

This is part of the larger task of developing Configuration Manager Proxy (CMP)

applications and introduces the advanced features of the CMP.

Follow the link for the advanced feature that you require:

v “The Configuration Manager Proxy subscriptions API”

v “Submitting batch requests using the Configuration Manager Proxy” on page 37

The Configuration Manager Proxy subscriptions API

This is part of the larger task of developing Configuration Manager Proxy (CMP)

applications and is one of the advanced features of the CMP.

You can use the CMP to show and delete the set of active subscriptions in the

domain. The following example gives information on all subscriptions to topics

with names that begin with the string ″shares″.

import java.util.Enumeration;

import com.ibm.broker.config.proxy.*;

public class QuerySubscriptions {

 public static void main(String[] args) {

 ConfigManagerProxy cmp = null;

 try {

 ConfigManagerConnectionParameters cmcp =

 new MQConfigManagerConnectionParameters(

 "localhost",

 1414,

 "");

 cmp = ConfigManagerProxy.getInstance(cmcp);

 } catch (ConfigManagerProxyException cmpex) {

 System.out.println("Error connecting: "+cmpex);

 }

 if (cmp != null) {

 System.out.println("Connected to Config Manager!");

 querySubscriptionsByTopic(cmp, "shares%");

 cmp.disconnect();

 }

 }

 private static void querySubscriptionsByTopic(

 ConfigManagerProxy cmp,

 String topic)

 {

 try {

 SubscriptionsProxy matchingSubscriptions =

 cmp.getSubscriptions(topic, // filter by topic

 null, // don’t filter by broker

 null, // don’t filter by username

 null, // don’t filter by sub point

 null, // no start date,

Developing applications that use the Configuration Manager Proxy Java API 35

null); // no end date

 Enumeration e = matchingSubscriptions.elements();

 int matches = matchingSubscriptions.getSize();

 System.out.println("Found "+matches+" matches:");

 while (e.hasMoreElements()) {

 Subscription thisSub = (Subscription)e.nextElement();

 System.out.println("-----");

 System.out.println("Broker="+thisSub.getBroker());

 System.out.println("Topic="+thisSub.getTopicName());

 System.out.println("Client="+thisSub.getClient());

 System.out.println("Filter="+thisSub.getFilter());

 System.out.println("Reg date="

 +thisSub.getRegistrationDate());

 System.out.println("User="+thisSub.getUser());

 System.out.println("Sub point="

 +thisSub.getSubscriptionPoint());

 }

 } catch (ConfigManagerProxyException e) {

 e.printStackTrace();

 }

 }

}

The method that queries the set of active subscriptions is

ConfigManagerProxy.getSubscriptions(), which defines the query used to filter

the subscriptions. The topic, broker, user ID, and subscriptionPoint parameters

are strings which can include the % character to denote wild card characters.

The startDate and endDate parameters are of type GregorianCalendar, which can

be used to constrain the registration time of the matching subscriptions. For all

parameters to this method, a null value or, in the case of the string arguments, an

empty value means ″do not filter by this attribute″.

In the preceding example, the only non-null parameter that is supplied to this

method is the topic string shares%, that tells the CMP to return all subscriptions

whose topic name begins with ″shares″.

Returned from this method is an instance of SubscriptionsProxy which represents

the results of the query. As this class inherits from AdministeredObject, the

attributes of this object are supplied asynchronously from the Configuration

Manager and so the methods that interrogate its attributes can block temporarily

while the CMP waits for the information to arrive.

Note that the Subscription object, which represents an individual match from the

query, is a small data structure used for convenience by the SubscriptionsProxy

and as such does not block or throw exceptions.

Despite being of AdministeredObject type, SubscriptionsProxy objects cannot have

AdministeredObjectListeners registered against them. This means that once the results

of a query are returned from the Configuration Manager, you are not notified if the

set of matching subscriptions changes, unless you resubmit the query. The

consequence of this behavior is that the results of subscriptions queries are

guaranteed correct only at the time the original query was made.

It is possible to delete subscriptions using the

SubscriptionsProxy.deleteSubscriptions() method. As SubscriptionsProxy

objects cannot have AdministeredObjectListeners, the outcome of such an action

is published to listeners of the ConfigManagerProxy object.

36 CMP Programming

Submitting batch requests using the Configuration Manager

Proxy

This is part of the larger task of developing Configuration Manager Proxy (CMP)

applications and is one of the advanced features of the CMP.

Using the CMP it is possible to group multiple requests destined for the same

Configuration Manager together and submit them as a single unit of work.

To start a batch the application must call the beginUpdates() method on the

ConfigManagerProxy handle. This tells the CMP to hold back from submitting any

state-changing requests to the Configuration Manager until it is told otherwise. The

sendUpdates() method tells the CMP to submit as a batch any requests received

since the last beginUpdates() call, and clearUpdates() can be used to discard a

batch without submitting it to the Configuration Manager. It is possible to

determine whether a batch is currently in progress by using the isBatching()

method. Note that there can only be one batch in progress for each CMP handle.

One advantage of using a batch method is that it provides an assurance that no

other applications can have messages processed by the Configuration Manager

during the batch. When a Configuration Manager receives a batch of requests, it

processes each request in the batch in the order it was added to the batch (FIFO),

and requests from no other CMP application are processed until the entire batch is

completed.

To illustrate this, consider the following sequence of commands:

BrokerProxy b2 = topology.createBroker("B2", "QMB2");

ExecutionGroupProxy e = b2.createExecutionGroup("default");

b2.deploy();

Without using a batch method it is not possible to guarantee the success of these

actions. For example, even if each command would otherwise succeed, it is

possible for a second (possibly remote) application to delete the broker B2 after it

has been created by the first application, but before the other two commands are

processed.

If the sequence is extended to use a batch method, the Configuration Manager is

now guaranteed to process all the commands together, meaning that no other

application can disturb the logic intended by the application.

cmp.startUpdates();

BrokerProxy b2 = topology.createBroker("B2", "QMB2");

ExecutionGroupProxy e = b2.createExecutionGroup("default");

b2.deploy();

cmp.sendUpdates();

Another advantage of using a batch method is performance. The CMP typically

sends one WebSphere MQ message to the Configuration Manager for each request.

In a situation that requires lots of requests to be sent in quick succession – the

creation of a topic hierarchy, for example, a batch method has a significant impact

on performance in terms of both time taken to process the requests and memory.

Each batch of requests is sent in a single WebSphere MQ message and so the

overhead for each method is drastically reduced.

Batch mode does not provide transactional (commit and backout) capability; it is

possible that some requests in a batch succeed and others fail. If the Configuration

Manager processes a request in a batch that fails, it continues to process the next

Developing applications that use the Configuration Manager Proxy Java API 37

request in the batch regardless.

38 CMP Programming

Part 2. Appendixes

© Copyright IBM Corp. 2000, 2006 39

40 CMP Programming

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this information

in other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this information. The furnishing of this information does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032,

Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the information. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2000, 2006 41

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM United Kingdom Laboratories,

Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England

SO21 2JN

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Programming License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information includes examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

42 CMP Programming

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

 AIX CICS Cloudscape

DB2 DB2 Connect DB2 Universal Database

developerWorks Domino

Everyplace FFST First Failure Support

Technology

IBM IBMLink IMS

IMS/ESA iSeries Language Environment

Lotus MQSeries MVS

NetView OS/400 OS/390

POWER pSeries RACF

Rational Redbooks RETAIN

RS/6000 SupportPac S/390

Tivoli VisualAge WebSphere

xSeries z/OS zSeries

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel and Pentium are trademarks or registered trademark of Intel Corporation or

its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix. Notices 43

44 CMP Programming

Index

C
CMP

advanced features 35

batch requests 37

Broker domain
managing 25

navigating 16

Configuration Manager,

connecting 14

configuring environment 12

Linux, UNIX, and z/OS 12

Windows 12

with brokers 13

without brokers 13

creating domain objects 33

overview 3

subscriptions API 35

D
deployment

checking results using CMP 23

using the CMP 22

T
trademarks 43

© Copyright IBM Corp. 2000, 2006 45

46 CMP Programming

����

Printed in USA

	Contents
	About this topic collection
	Part 1. Developing applications using the CMP
	Developing applications that use the Configuration Manager Proxy Java API
	Configuration Manager Proxy
	The Configuration Manager Proxy samples
	Running the Deploy BAR sample
	Running the broker domain management sample
	Running the Configuration Manager Proxy API Exerciser sample
	Modifying the Configuration Manager Proxy samples

	Configuring an environment for developing and running Configuration Manager Proxy applications
	Configuring the Windows command-line environment
	Configuring Linux, UNIX, and z/OS command-line environments
	Configuring the Eclipse environment
	Configuring environments without the broker component installed

	Connecting to a Configuration Manager using the Configuration Manager Proxy
	Navigating broker domains using the Configuration Manager Proxy
	Using the Configuration Manager Proxy API to deploy
	Configuration Manager Proxy Exerciser
	Checking the results of deployment using the Configuration Manager Proxy API

	Managing broker domains using the Configuration Manager Proxy
	Checking the results of broker domain management using the Configuration Manager Proxy
	Creating domain objects using the Configuration Manager Proxy

	Advanced features of the Configuration Manager Proxy
	The Configuration Manager Proxy subscriptions API
	Submitting batch requests using the Configuration Manager Proxy

	Part 2. Appendixes
	Appendix. Notices
	Trademarks

	Index

