
WebSphere Message Broker

End user Application Support

Version 6 Release 0

���

WebSphere Message Broker

End user Application Support

Version 6 Release 0

���

Note

Before you use this information and the product that it supports, read the information in the Notices appendix.

This edition applies to version 6, release 0, modification 0, fix pack 7 of IBM WebSphere Message Broker, and to all

subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this topic collection v

Part 1. End user Application Support 1

Supporting end-user applications 3

End-user application support 3

Enabling WebSphere MQ applications 21

Enabling WebSphere MQ Everyplace applications . 24

Enabling WebSphere MQ Telemetry Transport

applications 24

Working with Web service applications 27

Part 2. Reference 53

End-user application support 55

Application transports 55

Part 3. Appendixes 107

Appendix. Notices for WebSphere

Message Broker 109

Trademarks in the WebSphere Message Broker

information center 111

Index 113

© Copyright IBM Corp. 2000, 2008 iii

iv End user Application Support

About this topic collection

This PDF has been created from the WebSphere Message Broker Version 6.0 (Fix

Pack 7 update, March 2008) information center topics. Always refer to the

WebSphere Message Broker online information center to access the most current

information. The information center is periodically updated on the document

update site and this PDF and others that you can download from that Web site

might not contain the most current information.

The topic content included in the PDF does not include the ″Related Links″

sections provided in the online topics. Links within the topic content itself are

included, but are active only if they link to another topic in the same PDF

collection. Links to topics outside this topic collection are also shown, but these

attempt to link to a PDF that is called after the topic identifier (for example,

ac12340_.pdf) and therefore fail. Use the online information to navigate freely

between topics.

Feedback: do not provide feedback on this PDF. Refer to the online information to

ensure that you have access to the most current information, and use the Feedback

link that appears at the end of each topic to report any errors or suggestions for

improvement. Using the Feedback link provides precise information about the

location of your comment.

The content of these topics is created for viewing online; you might find that the

formatting and presentation of some figures, tables, examples, and so on are not

optimized for the printed page. Text highlighting might also have a different

appearance.

© Copyright IBM Corp. 2000, 2008 v

ftp://ftp.software.ibm.com/software/integration/wbibrokers/docs
ftp://ftp.software.ibm.com/software/integration/wbibrokers/docs

vi End user Application Support

Part 1. End user Application Support

Supporting end-user applications 3

End-user application support 3

Application communication models 4

Application programming interfaces 7

Application transports 9

Enabling WebSphere MQ applications 21

Defining WebSphere MQ resources 21

Securing WebSphere MQ resources 22

Enabling WebSphere MQ Everyplace applications . 24

Enabling WebSphere MQ Telemetry Transport

applications 24

Designing Telemetry applications 25

An example message flow to support Telemetry

clients 26

Working with Web service applications 27

XML domain message flows 28

Working with HTTP flows 33

Web services scenarios 36

© Copyright IBM Corp. 2000, 2008 1

||

2 End user Application Support

Supporting end-user applications

Your end-user applications can connect to the broker using one of the following

transports:

v WebSphere® MQ clients connect using the WebSphere MQ Enterprise Transport.

SAP clients also use this transport.

v WebSphere MQ Everyplace™ clients connect using the WebSphere MQ Mobile

Transport.

v Multicast JMS clients connect using the WebSphere MQ Multicast Transport.

v Real-time JMS clients connect using the WebSphere MQ Real-time Transport.

v SCADA clients connect using the WebSphere MQ Telemetry Transport.

v Web services clients connect using the WebSphere MQ Web Services Transport.

v JMS clients connect using the WebSphere Broker JMS Transport.

v Additional clients can connect using alternative transports if you have installed

user-defined nodes and parsers that support them.

The topics in this section provide further information for particular clients

including special tasks that you must take to enable end-user applications and

WebSphere Message Broker brokers to communicate, and examples of supported

scenarios and configurations.

v “End-user application support”

v “Enabling WebSphere MQ applications” on page 21

v “Enabling WebSphere MQ Everyplace applications” on page 24

v “Enabling WebSphere MQ Telemetry Transport applications” on page 24

v “Working with Web service applications” on page 27

End-user application support

You can connect a variety of end-user applications to the WebSphere Message

Broker brokers, and take advantage of the routing, aggregation, and transformation

facilities that it provides.

WebSphere Message Broker supports two application communication models:

1. Point-to-point

2. Publish/subscribe

These are defined in “Application communication models” on page 4.

Applications that use these models can connect to the broker using the following

transports and protocols:

v “WebSphere MQ Enterprise Transport” on page 10

v “WebSphere MQ Mobile Transport” on page 10

v “WebSphere MQ Multicast Transport” on page 10

v “WebSphere MQ Real-time Transport” on page 11

v “WebSphere MQ Telemetry Transport” on page 11

v “WebSphere MQ Web Services Transport” on page 12

v “WebSphere Broker JMS Transport” on page 16

You can configure message flows to support these communication models and

clients connecting over any one of these transports. Your message flows can be

specific to one protocol, or can receive messages from applications communicating

across one protocol and deliver messages to applications connecting across any one

or more alternative protocols, with the broker providing automatic conversion

© Copyright IBM Corp. 2000, 2008 3

between these protocols. You can also provide point-to-point and

publish/subscribe support in a single message flow.

All message flows can support messages crossing from all transports to all other

supported transports, Therefore if you start the message flow with an input node

that supports messages from clients that connect through one transport, you can

end it with any of the supported output nodes (including user-defined output

nodes); you do not have to include the complementary output node.

For example, you can design the flow to receive WebSphere MQ messages and

generate output messages to SCADA devices, or to receive messages from SCADA

devices and generate output messages for real-time or multicast application clients.

However, certain restrictions do apply depending on the transport being used: for

example, messages published persistently through an MQInput node are not

guaranteed to be delivered to the subscribers over WebSphere MQ Real-time

Transport, because this transport does not support assured delivery.

For example, you can create a message flow that receives a message from a

WebSphere MQ application. The message flow constructs a publication message

from its contents, and publishes the message through a Publication node from

where real-time subscribers that use JMS can register their interest in the

publications. The message flow can also include an MQReply or MQOutput node

to provide a confirmation message that indicates to another application that the

publication has been implemented.

Application communication models

Applications can use the services of a broker by sending messages to it and

receiving messages from it, across one of the supported transport protocols.

The way that they do this depends on the protocol itself, the programming

interface that they use, and the communication model that they adopt.

WebSphere Message Broker supports two end-user application communication

models:

1. “Point-to-point”

2. “Publish/subscribe” on page 6

A single application can mix the two styles, if appropriate. In a mixed scenario, the

message flow that processes the messages for this application contains at least one

output node and at least one publication node, in addition to one or more input

nodes.

The programming interfaces that you can code in your applications are described

in “Application programming interfaces” on page 7.

Point-to-point

Point-to-point applications use a request/reply or client/server model, or broadcast

a message to many target applications using distribution lists. Other applications

send one-way send-and-forget or datagram traffic. They exchange information with

known partners. Each application is aware of the identity of the one or more

applications with which it is communicating. You can create and configure

message flows to process both send-and-forget and request/reply messages, and

deploy them to your brokers.

4 End user Application Support

The text and diagrams below illustrate the send-and-forget and request/reply

models. The diagrams assume that the applications are using the WebSphere MQ

Enterprise Transport protocol. The model is identical for other protocols, although

the resource through which a message is sent or received will not be a

WebSphere MQ queue.

In the send-and-forget model, an application sends a message but does not expect

a reply. Another application might optionally receive a message as a result of the

message sent by the first application. It is possible that no message is sent by the

message flow (for example, if the sending message just requested a database

update). In the diagram, the sender puts a message onto the input queue of a

message flow at the broker (1). The output from the message flow is put onto the

receiver’s queue (2), from where the receiver can get it (3).

With request/reply messaging, after the receiver receives a request message it

sends a reply back to the sender. The request message is handled as described for

send-and-forget messages. There are two possibilities for the reply:

1. The receiver sends the reply message directly back to the sender, without

involving the broker. The message is sent to the ReplyToQ in the message

descriptor (MQMD) of the request message, which is passed unchanged by the

broker. (If your applications are not using WebSphere MQ, you must use some

other technique to determine the reply destination.)

In the diagram below, the sender puts a message onto the input queue of a

message flow at the broker (1). The output from the message flow is put onto

the receiver’s queue (2), from where the receiver gets it (3). The receiver sends

the reply directly to the ReplyToQ of the sender (4), from where the sender can

get it (5).

Receiver

Sender

Broker

1 2

3

Receiver
queue

Input
queue 1

Sender
Input

queue 1

Receiver

Receiver
queue

ReplyToQ

Broker

1 2

3

4

5

Supporting end-user applications 5

2. The receiver sends the reply message to a reply message flow in the broker, so

that it can be processed before reaching the sender. In this case, the broker

must replace the sender’s ReplyToQ in the MQMD of the request message with

the input queue name of the reply message flow.

The output of this reply message flow must go to the sender’s ReplyToQ. If the

name is fixed, there is no problem; if it is not, some means of associating this

queue with the reply message is needed.

You can do this, for example, by including a Database or DataInsert node in the

first message flow that stores the reply destination information, which can be

retrieved by the second message flow.

Alternatively, the relevant details in the message descriptor can be copied into a

folder in the MQRFH2 header, and carried with the message.

In the diagram below, the sender puts a message onto the input queue of the

first message flow at the broker (1). The output from the message flow is put

onto the receiver’s queue (2), from where the receiver gets it (3). The receiver

sends the reply to the input queue of the second message flow at the broker

(4). After processing the reply, the broker sends it to the ReplyToQ of the

sender (5), from where the sender can get it (6). (In this case, the output node

of the second message flow needs to know the ReplyToQ of the sender.)

Existing applications that you have written using the point-to-point model can run

unchanged in a WebSphere Message Broker environment if they use one of the

supported protocols to communicate with the broker.

You can enhance and extend your existing application function by using the

facilities of the broker to include additional partners. For example, an application

that handles similar data but in a different format can participate because the

original message can be transformed by a message flow in the broker into the

expected format, without the need to change the sending or receiving application.

If you identify a message that needs additional application processing, you can

create another copy of the message in the message flow, and send it to a new

application developed to provide that processing. The original applications are

unaware of the new action on the message and continue to work unchanged.

Publish/subscribe

The publish/subscribe application communication model involves applications

known as publishers and applications known as subscribers. Publishers make

Sender

Broker

Input
queue 1

Input
queue 2

Receiver

Receiver
queue

ReplyToQ

6

1 2

3

45

6 End user Application Support

messages available by publishing on specific topics. Subscribers receive messages

by subscribing to topics. An individual application can be both a publisher and a

subscriber.

Messages published by any one publisher can be received by any number of

subscribers. Subscribers might also receive messages, on the same or different

topics, from any number of publishers.

In the diagram below, the publisher can send Publish or Delete Publication

messages to the broker. The broker forwards the Publish message to subscribers

that have a matching subscription. The subscriber can send Register Subscriber,

Deregister Subscriber, or Request Update messages to the broker. Optional

Response messages from the broker are sent to the publisher and subscriber.

If you have existing end-user applications that are written to the publish/subscribe

model, for example using the MQI or AMI, you can probably integrate these

applications into a WebSphere Message Broker broker domain without change.

You can also modify these applications, or write new ones, to take advantage of

the sophisticated publish/subscribe processing that is provided, particularly for

subscribers.

The publish/subscribe model, and the processing provided by WebSphere Message

Broker, is described fully in further topics available through the related links listed

below.

Application programming interfaces

WebSphere Message Broker supports several programming interfaces that are in

use by messaging applications today; it does not provide any unique programming

interfaces.

v Message Queue Interface (MQI)

The MQI provides a small number of calls that allow an application to interact

with other applications across a WebSphere MQ network of queue managers.

The calls support a large range of parameters that allow a rich choice of

processing options for each and every message.

Client applications using the MQI can run on any supported WebSphere MQ

operating system, and therefore any limitations as to language or function are

defined by the relevant product for that operating system.

The MQI is described in the Application Programming Reference and

Application Programming Guide sections in the WebSphere MQ Version 6

information center online or (for WebSphere MQ Version 5.3) the WebSphere MQ

Application Programming Guide and WebSphere MQ Application Programming

Broker

Publisher

Publish
Delete Publication

Response
Subscriber

Publish

Register Subscriber
Deregister Subscriber

Request Update

Response

Supporting end-user applications 7

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

Reference manual from the WebSphere MQ library Web page. Details are also

provided of the programming language and operating system support available

for clients that use this interface.

v Application Messaging Interface (AMI)

The AMI is designed to simplify the application programmer’s task by

centralizing the selection of optional parameters outside the application

program. It also provides support for the more advanced functions available

from the message broker. The AMI is designed for general messaging

applications with and without a broker.

The principal functions of the AMI are administrator-defined packets of options

known as policies and services. An application specifies a service to determine

the underlying messaging support required, and associates a policy with sending

or receiving a message to control attributes for message processing, such as

priority.

The policies and services mean that the application does not have to understand

details of the MQRFH2 header and the MQI interface.

Client applications using the AMI are restricted to the operating systems and

programming languages supported by this interface. The AMI is defined in the

WebSphere MQ Application Messaging Interface book available from the WebSphere

MQ library Web page. See also the Publish/Subscribe User’s Guide section in

the WebSphere MQ Version 6 information center online.

v Java™ Message Service (JMS)

The JMS is an application programming interface that provides Java language

functions for handling messages. Developed by messaging vendors, including

IBM® in partnership with Sun Microsystems, Inc., the JMS API provides a

common interface to access different enterprise messaging systems, including

WebSphere MQ. This interface is appropriate for point-to-point and

publish/subscribe applications.

Messaging clients in JMS are called JMS clients, and the messaging system is

called the JMS provider. A JMS application is a business system that comprises

JMS clients and at least one JMS provider. Client applications using the JMS

interface are written in the Java programming language, and are therefore

restricted to the levels of JVM that are supported on the operating system in

question.

For more information, see the Using Java section in the WebSphere MQ Version

6 information center online or (for WebSphere MQ Version 5.3) the

WebSphere MQ Using Java book from the WebSphere MQ library Web page.

v WebSphere MQ Everyplace programming calls

These calls are described in “WebSphere MQ Mobile Transport” on page 56.

v SCADA device protocol publication messages.

These messages are described in “WebSphere MQ Telemetry Transport” on page

58.

If you have existing end-user applications that are written to these interfaces, they

can typically run unchanged in a broker environment. You must create the message

flows to interact with these applications across the supported protocols, using the

appropriate input and output nodes. WebSphere Message Broker provides built-in

input and output nodes for its supported protocols and you can create your own

user-defined nodes to support additional protocols if you choose.

You can also create new end-user applications to interact with the broker.

8 End user Application Support

http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/

Message headers

WebSphere Message Broker provides parsers for a large number of WebSphere MQ

headers, and can therefore accept messages that contain these headers across the

WebSphere MQ Enterprise Transport, WebSphere MQ Mobile Transport, and

WebSphere MQ Telemetry Transport protocols.

Messages must include a WebSphere MQ Message Descriptor (MQMD) as the first

header, which must precede user or application data in every message. The

MQMD contains basic control information that must travel with the message,

including:

v The message identifier

v The destination of the reply, if one is to be sent

v Reply and report options (for example, confirm on delivery report)

v The format of any following data in the message

When a message is processed by a WebSphere Message Broker broker, it typically

(but not necessarily) has one or more additional headers. The header following the

MQMD is always identified in the format field within the MQMD, and itself

contains another format field to identify either the header that follows, or the

format of the user data.

The additional headers can include:

MQRFH

The Rules and Formatting header is used by WebSphere MQ

Publish/Subscribe.

MQRFH2

The MQRFH2 is an updated version of MQRFH and allows Unicode

strings to be transported without translation, and it can carry numeric data

types. The MQRFH2 header carries a description of the message contents,

so that WebSphere Message Broker can select the correct message parser

when content-based processing is carried out on the message. In addition,

this header contains publish/subscribe command messages. Messages

created by the SCADAInput node always include and MQRFH2 header.

 Use the MQRFH2 header in all new applications written for the WebSphere

Message Broker environment that use a supported protocol based on

WebSphere MQ technology. The MQRFH2 header should be immediately

before the body of the message (that is, the last header).

If an MQRFH2 header is not included (which is normally the case of the

application uses a supported protocol that is not based on WebSphere MQ

technology), you must configure the message flow that processes its

messages to specify the message characteristics (by setting the input node

properties).

Application transports

This section covers the following topics:

v “WebSphere MQ Enterprise Transport” on page 10

v “WebSphere MQ Mobile Transport” on page 10

v “WebSphere MQ Multicast Transport” on page 10

v “WebSphere MQ Real-time Transport” on page 11

v “WebSphere MQ Telemetry Transport” on page 11

v “WebSphere MQ Web Services Transport” on page 12

v “WebSphere Broker JMS Transport” on page 16

Supporting end-user applications 9

WebSphere MQ Enterprise Transport

WebSphere MQ Enterprise Transport is a service that connects applications to

messaging middleware.

This transport is used by WebSphere MQ clients or application programs that are

written to the Application Messaging Interface (AMI) or Message Queue Interface

(MQI). The client uses the services provided by the message flows deployed within

one or more brokers in the broker domain by interacting with the queues serviced

by those message flows.

Application clients can use one of two techniques for gaining access to a broker’s

services:

v An application can use a WebSphere MQ client connection. The application can

be running on the same system as the queue manager to which it connects, or

on a different system. It can connect to a queue manager supporting a broker, or

to any other queue manager in the WebSphere MQ network that has a defined

path to the broker’s queue manager.

You can use all of the WebSphere MQ clients supported by WebSphere MQ

Version 6.0, giving you the freedom to connect applications running in a wide

variety of environments into your broker domain.

v An application can use a local connection to a queue manager. If it uses this

method, the client must execute on the same system. It can connect to a queue

manager supporting a broker, or to any other queue manager in the

WebSphere MQ network that has a defined path to the broker’s queue manager.

(This is not possible on z/OS, where clients are not supported.)

WebSphere MQ Mobile Transport

WebSphere MQ Mobile Transport is a service that connects mobile and wireless

applications that use WebSphere MQ Everyplace.

The operation of WebSphere MQ Everyplace is different from that of WebSphere

Message Broker, which means that there are different concepts involved in using a

broker to operate with WebSphere MQ Everyplace. In particular, the message

format is different, and messages must be converted.

This transport cannot be used directly with the broker, instead WebSphere MQ

Everyplace is installed separately, and an MQe Gateway configured on it that acts

as an intermediary between MQe devices and the broker.

For more details on how to do this, see “Enabling WebSphere MQ Everyplace

applications” on page 24.

For help with configuring WebSphere MQ Everyplace, see the documentation

supplied with that product.

If you have message flows containing MQe nodes from a previous version broker

and you want to use them, see how to migrate them in Migrating a message flow

that contains WebSphere MQ Everyplace nodes.

WebSphere MQ Multicast Transport

WebSphere MQ Multicast Transport is a service that connects dedicated JMS

application clients and is optimized for high volume, one-to-many

publish/subscribe topologies.

10 End user Application Support

WebSphere Message Broker provides support to allow these clients to communicate

with other applications through message flows in a broker.

The ability to communicate with a broker means that JMS application multicast

clients can communicate with applications that use other supported protocols and

transports.

WebSphere MQ Real-time Transport

WebSphere MQ Real-time Transport is a service that connects dedicated JMS

application clients.

These clients participate in publish/subscribe scenarios, sending messages across

IP connections to other internet and intranet applications. WebSphere Message

Broker provides support to allow these clients to communicate with other

applications through message flows in a broker.

The ability to communicate with a broker means that JMS application clients can

communicate with applications that use other supported protocols and transports.

WebSphere MQ Telemetry Transport

WebSphere MQ Telemetry Transport is a lightweight publish/subscribe protocol

flowing over TCP/IP for remote sensors and control devices through low

bandwidth communications.

This protocol is used by specialized applications on small footprint devices that

require a low bandwidth communication, typically for remote data acquisition and

process control.

A typical system might comprise several hundred client devices communicating

with a single WebSphere Message Broker, where each client is identified by a

unique ID. A single broker can manage a maximum of approximately 2000 clients.

WebSphere Message Broker uses the SCADAInput node to receive messages from

WebSphere MQ Telemetry Transport client applications. The node interacts with a

TCP/IP port to receive the messages.

Output is typically returned to the client application using a Publication node

which embeds a SCADAOutput node. The Publication node filters and sends

output from a message flow to subscribers who have registered an interest in a

particular set of topics. If an application is using WebSphere MQ, the Publication

node puts the message to the WebSphere MQ queue on the queue manager. For

WebSphere MQ Telemetry Transport applications, the embedded SCADAOutput

node routes the message to a subscribing WebSphere MQ Telemetry Transport

client using a TCP/IP port.

z/OS

SCADAInput nodes are available on all platforms except z/OS®.

It is unlikely that you will use the SCADAOutput node directly, unless you write

your own publication node for advanced applications.

Unlike WebSphere MQ and WebSphere MQ Everyplace, WebSphere MQ Telemetry

Transport does not provide any security, although you can encrypt data, if

required.

Supporting end-user applications 11

Quality of Service: You can specify a maximum Quality of Service (QoS) in a

WebSphere MQ Telemetry Transport subscription message. QoS is similar to

persistence in WebSphere MQ. There are three levels of QoS:

QoS0 ″At most once″ delivery. Delivery is not assured; acknowledgment is not

expected.

QoS1 ″At least once″ delivery. Successful delivery is assured and an

acknowledgment sent.

QoS2 ″Exactly once″ delivery. Similar to QoS1, but the message is assured not to

be duplicated.

 For further information about QoS see Quality of Service levels and flows

WebSphere MQ Web Services Transport

WebSphere MQ Web Services Transport connects Web services and clients that use

the HTTP and SOAP protocols for messaging.

WebSphere Message Broker allows Web service providers and their clients to

communicate with:

v each other

v other applications using different protocols

through message flows in a broker. The following topics describe the WebSphere

MQ Web Services Transport. Web service applications can also use other transports;

see “XML domain message flows” on page 28.

Tip: You can create your own WSDL files, or generate WSDL files from message

set definitions that you have created in the Message Brokers Toolkit, and use

these files with tools such as Rational® Application Developer or Microsoft

Visual Studio .NET to build Web services applications that connect to

WebSphere Message Broker. When you generate the WSDL file, you can

specify one or more of the following bindings to be created:

v SOAP over HTTP (using WebSphere MQ Web Services Transport)

v SOAP over JMS (using WebSphere MQ Real-time Transport)

For more information about WebSphere MQ Web Services Transport, see the

following topics:

v “Web services message format”

v “Web services headers” on page 13

v “Web services example messages” on page 15

For more information, follow the Web services link on the developerWorks® Web

site.

For help with using HTTPS see Implementing SSL authentication.

Web services message format:

Messages that pass across this transport have an XML format that provides

platform-independence. The XML content that defines specific operations, and

error situations (SOAP Fault), is defined by the SOAP standard. Because delivery is

not guaranteed, applications must provide recovery in the event of system or

network failures.

 A message contains components that are appropriate to its type.

12 End user Application Support

|
|

http://www.ibm.com/developerworks

Command string

A request message contains the command POST followed by a URL. The

command string ends with HTTP/1.0.

Status line

A response message contains a status line that starts with HTTP/1.0 , and

indicates the success or failure of the request with a code and text, for

example 200 OK, 404 Not Found, 500 Server Error.

Headers

The headers used by the Web services protocol are HTTP headers that

consist of a name followed by the characters colon and (optionally) a

space, followed by the value (contents) of the header. Each header is

followed by the characters <CR><LF>. The final header is followed by

<CR><LF><CR><LF>, which creates a blank line. Data following this line

is interpreted as message body data. Headers are described in “Web

services headers.”

Body The message body is the data following the headers in the message (that

is, following the characters <CR><LF><CR><LF>). For an inbound

message received by the HTTPInput or HTTPRequest node, this data is

typically parsed according to the settings of the message properties in the

node. For outbound messages, the data is typically parsed according to the

settings of the message properties in the Properties folder received by the

HTTPReply or HTTPRequest node that parses the message from message

tree to bit stream.

 In most cases, the body of a message is XML. However, an inbound

message can contain a different format if the receiving node is configured

to handle that format and the appropriate parsers are available. An

outbound message can contain a body of any format that is accepted by

the Web service to which it is sent.

An error that is generated by a component other than a Web service (for

example, 404 Not Found) might result in a message that is in HTML

format.

 The bit stream containing headers and body is parsed and represented within the

message tree when an input request is received by an HTTPInput node, or when a

response from a Web service is received by the HTTPRequest node. A bit stream is

created by parsers from the appropriate parts of the message tree when a reply is

sent to the client by the HTTPReply node, and when a request is sent to a Web

service by the HTTPRequest node. For further details about these actions, see the

individual node descriptions.

Web services headers:

When a message is received from a Web service client or Web server, the

HTTPInput or HTTPRequest node that receives that message must parse the HTTP

headers to create elements in the message tree. When an HTTPReply or

HTTPRequest message sends a message to a Web service client or Web server, it

parses the HTTP headers from the message tree into a bit stream.

 The HTTP headers in a message depend on the type of message that is processed.

There are four message types recognized in a message flow, and a parser is

associated with each of these.

1. Input. An input message is received by the HTTPInput node from a Web

service client. The HTTP headers in the input message (data up to and

Supporting end-user applications 13

including the CRLFCRLF) are parsed by the HTTPInput parser and are

included in the message tree under the correlation name HTTPInput. The

headers shown in the following table are expected in an input message; others

might also be present.

 Header Content Example

Host The hostname to which the client issued

the message.

localhost

Content-
Length

The length of the body of the input

message in decimal (that follows the

CRLFCRLF after the last header).

520

Content-Type The type of the body data. text/xml; charset=utf-8

SOAPAction ″″ (empty string)

2. Reply. A reply message is sent by the HTTPReply node to the Web service

client that sent the corresponding input message. The Web service headers in

the reply message are created in the message tree under the correlation name

HTTPReply, which is also the name of the parser used to parse that part of the

message tree to a bit stream. You can choose to create your own HTTPReply

header in a Compute node, or you can configure the HTTPReply node to create

it using default values, or values taken from the HTTPReply or HTTPResponse

trees in the input message, or both. If the HTTPReply node creates a default

HTTPReply header, it contains the Web service headers and values shown in

the following table.

 Header Value

Content-Length (if

present in the input

message)

The calculated length of the reply message body in decimal.

Content-Type text/xml; charset=utf-8

3. Request. A request message is sent to a Web server by the HTTPRequest node.

The HTTP headers in this message must be created in the message tree under

the correlation name HTTPRequest, and are parsed by the HTTPRequest parser

when the message tree is parsed to a bit stream. You can choose to create your

own HTTPRequest header in a Compute node, or you can configure the

HTTPRequest node to create it using default values, or values taken from the

HTTPInput or HTTPRequest trees in the input message, or both. If the

HTTPRequest node creates a default HTTPRequest header, it contains the Web

service headers and values shown in the following table.

 Header Value

Host Value set in the Default Web Service URL property.

Content-Length The calculated length of the request message body in decimal.

Content-Type text/xml; charset=utf-8

SOAPAction ″″ (empty string)

4. Response. A response message is received by the HTTPRequest node from the

Web server to which the corresponding request message was sent. The HTTP

headers in the response message (data up to and including the CRLFCRLF) are

parsed by the HTTPResponse parser and are included in the message tree

under the correlation name HTTPResponse. The header shown in the following

table is expected in a response message (though not required); others might

14 End user Application Support

also be present.

 Header Content Example

Content-
Length

The length of the response message body

in decimal.

1585

“Web services example messages” provides example messages that include these

headers.

Web services example messages:

Examples of complete HTTP messages.

 The following message provides an example of a request sent by an HTTPRequest

node to a Web service that provides a look-up service:

 The Cookie is an example of a value which can be retrieved from the HTTPRequest

tree.

The following message is an example of the response that might be returned to the

HTTPRequest node:

POST /greenpages/servlet/rpcrouter HTTP/1.0

Host: localhost

Content-Type: text/xml; charset=utf-8

Content-Length: 520

SOAP Action: ""

Cookie: JSESSIONID=0000B5OSLFIUDMQZFAUXKHD5ZDQ:-1

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schema.xmlsoap.org.soap/envelope/"

 xmlns:xsi="http://www.w3/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3/2001/XMLSchema">

<SOAP-ENV:Body>

<ns1:getUserByName xmlns:ns1="http://tempuri.org/imb.GreenPages"

 SOAP-ENV:encodingStyle="http:/schemas.xmlsoap.org/soap/encoding/">

<nameField xsl:type="xsd:string">bloggs, joe</nameField>

</ns1:getUserByName>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Supporting end-user applications 15

|

For more information about HTTP return codes, see HTTP Response codes.

WebSphere Broker JMS Transport

The WebSphere Broker JMS Transport uses JMS as the connection protocol for

sending and receiving messages in a Java environment.

The WebSphere Broker JMS Transport can be used to support the following

operations:

v Receive a JMS message as input.

v Create a JMS message for output.

v Inter-operate with message flows that do not expect JMS messages.

The exchange of JMS messages is implemented by two built-in nodes, the

JMSInput node and the JMSOutput node. These two nodes allow a message flow

to receive messages from JMS destinations, or to send messages to JMS

destinations. These destinations are accessible through connection to a JMS

provider.

Two transformation nodes allow the JMSInput and JMSOutput nodes to

inter-operate with nodes that expect a propagated message to contain an MQMD

(and MQRFH2) header. These nodes are the JMSMQTransform node and the

MQJMSTransform node:

v The JMSMQTransform node takes the output of the JMSInput node and

produces a message that can be handled by an MQOutput node.

v The MQJMSTransform node transforms a message with an MQMD (and optional

MQRFH2) header into a message that is expected by the JMSOutput node.

You can include JMS nodes in applications where messages are produced and

consumed from a variety of JMS destinations. In sending and receiving messages,

the JMS nodes behave like JMS clients.

The JMS nodes work with the WebSphere MQ JMS provider, WebSphere

Application Server Version 6.0, the IBM Service Integration Bus, and any JMS

provider that conforms to the Java Message Service Specification, version 1.1.

WebSphere Message Broker supports Java Version 1.4.2 (the default version) and

HTTP/1.0 200 OK

Server: WebSphere Application Server/4.0

Content-Type: text/xml; charset=utf-8

Content-Length: 1585

Content-Language: en

Connection: close

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schema.xmlsoap.org.soap/envelope/"

 xmlns:xsi="http://www.w3/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3/2001/XMLSchema">

<SOAP-ENV:Body>

<ns1:getUserByNameResponse xmlns:ns1="http://tempuri.org/imb.GreenPages"

 SOAP-ENV:encodingStyle="http:/schemas.xmlsoap.org/soap/encoding/">

<return xmlns:ns2="http://www.greenpages.com/schemas/GreenPagesRemoteInterface"

 xsi:type="ns2:imb.UserRecord">

<fullName xsi:type="xsd:string">Joseph Bloggs</fullName>

<empNum xsi:type="xsd:int">65874</empNum>

<deskPhone xsi:type="xsd:string">(718)545-3623</deskPhone>

</return>

</ns1:getUserByNameResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

16 End user Application Support

http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html#sec6
http://java.sun.com/products/jms/docs.html

Java 5 (also known as Java 1.5). If you want to use Java 5, configure your

environment as described in Setting up a command environment (for distributed

systems) or Customizing the level of Java on z/OS.

The following sample is provided to help you start using the WebSphere Broker

JMS Transport.

v JMS Nodes sample

You can view samples only when you use the information center that is integrated

with the Message Brokers Toolkit.

Support for JMS messages:

In previous versions of WebSphere Message Broker, the support for JMS messages

extended only to JMS provision. In WebSphere Message Broker Version 6.0,

brokering value has been added to enable the broker to behave like a JMS client.

 JMS provision

In previous versions of WebSphere Message Broker, the WebSphere MQ Real-time

Transport enabled support for JMS provision; the built in nodes, Real-timeInput

node, Real-timeOptimizedFlow node, and Publication node, allow JMS applications

to communicate with applications that use other supported protocols and

transports.

In this implementation, the Real-time node acts as a server for a JMS client, where

the client can be WebSphere MQ.

JMS brokering

WebSphere Message Broker Version 6.0 adds brokering value to a JMS network.

Four new built-in nodes, JMSInput node, JMSOutput node, JMSMQTransform

node, and MQJMSTransform node, provide support for the broker to act like a JMS

client. JMS messages can be sent and received, and can be transformed into other

message formats.

Simplified JMS message representation: At the JMSInput node, a message is

received as a Java object and not as a bit stream wire format (as would be the case

with an MQInput node). The message does not populate an MQMD and RFH2

header, but instead populates a new message tree that represents a JMS message in

a more native way.

To represent a JMS message in a message tree, a new canonical form has been

created. This new message tree allows for representation of JMS message header

data, and message properties. The JMS message tree is in a format that is

recognizable to Java programmers.

Supporting end-user applications 17

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.jmsnode.res

Root

Properties

Message
_MetaData

JMS Transport

Transport_Folders

Application
_Properties

Provider
_Properties

Standard
_Properties

Header
_Values

JMSDestination
JMSDeliveryMode
JMSExpiration
JMSPriority
JMSTimeStamp
JMSMessageID
JMSCorrelationID
JMSReplyTo
JMSType
JMSRedelivered

Variable by
Application

Variable by
JMS Provider
All begin with
JMS_<Vendor Name>

JMSXUserID
JMSXAppID
JMSXDeliveryCount
JMSXGroupID
JMSXGroupSeq

Payload
Type

One of:

BLOB
XML
XMLNS
XMLNSC
MRM
jms.map
jms.stream
MIME
IDOC

Body
(last child of root)

For details about the structure and content of the JMS message tree, see

“Representation of messages across the JMS Transport” on page 90.

JMS message transformation:

The JMSInput and JMSOutput nodes expect JMS messages, and therefore expect a

native JMS message tree representation.

 You can use the following nodes to transform messages between a WebSphere MQ

JMS message tree and a JMS message tree:

v JMSMQTransform node

v MQJMSTransform node

These nodes do not have any configurable properties. The JMSMQTransform node

transforms a native JMS message tree to a WebSphere MQ JMS message tree, and

the MQJMSTransform node performs the transformation in the opposite direction.

The following diagram provides an overview of the mapping scheme that is used:

18 End user Application Support

JMS Message
Tree

MQMD / RFH2
Message Tree

Header MQMD

Properties Data

Data Buffer

RFH2

User Data

Map

Copy

This mapping diagram uses the same scheme as the WebSphere MQ JMS provider

to convert between a JMS message and an MQMD or MQRFH2 message.

When transforming between a WebSphere MQ message tree and a native JMS

message tree, the transformation nodes copy elements from different parts of a

message tree:

v The following fields are copied from the JMS message to the MQMD, if they

exist in the incoming JMS message:

 JMS field MQMD field

JMSMessageID MsgId

JMSCorrelationID CorrelId

JMSPriority Priority

JMSDeliveryMode Persistence

JMSQApplid PutApplName

JMSUser UserIdentifier

JMSXDeliveryCount BackoutCount - 1

JMSTimeStamp PutDate, PutTime

v The following fields are copied from the JMS message to the MQRFH2 JMS

folder:

 JMS field MQRFH2 JMS field

JMSDestination Dst

JMSDeliveryMode Dlv

JMSExpiration Exp

JMSPriority Pri

JMSTimestamp Tms

JMSCorrelationID Cid

JMSReplyTo Rto

v The following fields are copied from the MQMD to the JMS message:

 MQMD field JMS field

Expiry JMSExpiration

Supporting end-user applications 19

|
|

|||

||

||

||

||

||

||

||

||
|

|
|

|||

||

||

||

||

||

||

||
|

|

|||

||

MQMD field JMS field

Persistence JMSDeliveryMode

Priority JMSPriority

MsgId JMSMessageID

CorrelId JMSCorrelationID

BackoutCount = 0 JMSRedelivered = false

BackoutCount > 0 JMSRedelivered = true

GroupId JMSGroupid

MsgSeqNumber JMSGroupseq

UserIdentifier JMSUser

PutApplName JMSApplid

PutDate, PutTime JMSTimeStamp

v The following fields are copied from the MQRFH2 JMS folder to the JMS

message:

 MQRFH2 JMS field JMS field

Dst JMSDestination

Dlv JMSDeliveryMode

Pri JMSPriority

Cid JMSCorrelationID

Rto JMSReplyTo

Example message flow scenario: JMSInput node to MQOutput node

JMSInput
Node

JMSMQTransform
Node

MQOutput
Node

1. A JMSInput node is configured to subscribe to topic ABC.

2. An application that is connected to the JMS server publishes on topic ABC.

3. A publication is received at the JMSInput node.

4. The node extracts data from the JMS message.

5. The JMS message is passed to the JMSMQTransform node where the message is

converted to a WebSphere MQ message.

6. The MQOutput node receives the WebSphere MQ message, and publishes the

message on a WebSphere MQ queue.

The final destination is a WebSphere MQ queue, therefore the message must pass

through a JMSMQTransform node to convert the message tree to a WebSphere MQ

JMS format before it reaches the MQOutput node.

20 End user Application Support

||

||

||

||

||

||

||

||

||

||

||

||
|

|
|

|||

||

||

||

||

||
|

|

Example message flow scenario: MQInput node to JMSOutput node

MQInput
Node

MQJMSTransform
Node

JMSOutput
Node

1. An MQInput node receives a message from a WebSphere MQ queue.

2. The MQInput node creates a WebSphere MQ message.

3. The MQ message is passed to the MQJMSTransform node where the message

tree is converted to a JMS format.

4. The JMSOutput node receives the JMS message and publishes the JMS message

on topic XYZ.

Additional examples

The two examples shown here are not exclusive, but demonstrate the range of

solutions that you can achieve when you use the JMS Transport. For example,

although it is not shown here, the message can be passed to a Compute node or a

JavaCompute node and the contents can be modified as required.

Look at the following sample for examples of the JMS nodes being used in

message flows:

v JMS Nodes sample

You can view samples only when you use the information center that is integrated

with the Message Brokers Toolkit.

Connection to different JMS providers: The JMSInput and JMSOutput nodes are

compatible with, and work with, any JMS provider that conforms to the Java

Message Service Specification, version 1.1. If you want these nodes to participate in

coordinated transactions, the JMS provider must support the XAResource interface

as defined in the Java Message Service Specification, version 1.1.

Enabling WebSphere MQ applications

If you want to connect WebSphere MQ client applications to the broker, you must

define and secure the required resources. If you are connecting SAP clients, you

must create metadata files to support their use.

v “Defining WebSphere MQ resources”

v “Securing WebSphere MQ resources” on page 22

Defining WebSphere MQ resources

An application client can run on a system anywhere in the WebSphere MQ

network. Because WebSphere Message Broker clients must use WebSphere MQ

facilities to connect to the broker, and to interact with it (using the MQI and AMI),

the setup of clients for WebSphere Message Broker is identical to that for clients for

an WebSphere MQ server.

Supporting end-user applications 21

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.jmsnode.res
http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html

To support client connections to a broker:

1. If the application runs on the same system as the broker, it can establish a local

connection with the broker’s queue manager using MQCONN, and you do not

have to define any WebSphere MQ resources to support it.

2. If the application runs on the same system as another queue manager in the

broker network, it can establish a local connection to that queue manager. In

this scenario, you must define the appropriate resource to support

communications between the queue manager to which the client has connected

and the queue manager that hosts the broker that provides the required service.

3. If the application runs on a system that does not support a queue manager, it

must make a client connection to a queue manager on another system. The

queue manager to which it connects can be one of the following:

v The broker’s queue manager

You must set up the appropriate client connection and server connection

definitions to support this option.

v Another queue manager in the network

You must set up the appropriate client connection and server connection

definitions to support this option, and ensure that definitions are in place to

support communications between the queue manager to which the client has

connected and the queue manager that hosts the broker that provides the

required service.

An application can only get messages from queues owned by the queue manager

to which it is connected (this is true for all WebSphere MQ applications).

Therefore, if an application expects to receive messages from a queue populated by

a service within a particular broker and owned by that broker’s queue manager, it

must connect to that broker’s queue manager (using a local or WebSphere MQ

client connection).

An application that puts messages, however, can be connected to any queue

manager in the network, as long as the queue manager can resolve the target

destination in some way. In all cases, the queue manager to which the client

application is connected must know the location of the queue or queues to which

the application puts messages (for example using remote queue definitions).

When you define a WebSphere MQ queue as a node for a message flow, you must

not give it a name that starts with SYSTEM_BROKER. This is reserved for queues

defined for internal use by WebSphere Message Broker.

If your application is a subscriber, receiving messages published by other

applications, it can specify a temporary dynamic queue as its subscriber queue. If it

does so, the broker automatically deregisters the subscription when the queue is

deleted.

For more details about applications, putting and getting messages, and the use of

WebSphere MQ clients, see WebSphere MQ Clients and the WebSphere MQ

Application Programming Guide.

Securing WebSphere MQ resources

Secure the WebSphere MQ resources that your configuration requires.

This section does not apply to z/OS.

22 End user Application Support

WebSphere Message Broker depends on a number of WebSphere MQ resources to

operate successfully. You must control access to these resources to ensure that the

product components can access the resources on which they depend, and that

these same resources are protected from other users.

Some authorizations are granted on your behalf when commands are issued.

Others depend on the configuration of your broker domain.

v When you issue the command mqsicreatebroker, it grants put and get authority

on your behalf to the group mqbrkrs for the following queues:

– SYSTEM.BROKER.ADMIN.QUEUE

– SYSTEM.BROKER.CONTROL.QUEUE

– SYSTEM.BROKER.EXECUTIONGROUP.QUEUE

– SYSTEM.BROKER.EXECUTIONGROUP.REPLY

– SYSTEM.BROKER.INTERBROKER.QUEUE

– SYSTEM.BROKER.MODEL.QUEUE
v When you issue the command mqsicreateconfigmgr it grants put and get

authority on your behalf to the group mqbrkrs for the following queues:

– SYSTEM.BROKER.CONFIG.QUEUE

– SYSTEM.BROKER.CONFIG.REPLY

– SYSTEM.BROKER.ADMIN.REPLY

– SYSTEM.BROKER.SECURITY.REPLY

– SYSTEM.BROKER.MODEL.QUEUE
v When you issue the command mqsicreateusernameserver, it grants put and get

authority on your behalf to the group mqbrkrs for the following queues:

– SYSTEM.BROKER.SECURITY.QUEUE

– SYSTEM.BROKER.MODEL.QUEUE
v When you issue the command mqsicreateaclentry, it grants put and get authority

on your behalf to the resource or user that you have specified for the command

parameters -p or -u for the following queues:

– SYSTEM.BROKER.CONFIG.QUEUE

– SYSTEM.BROKER.CONFIG.REPLY
v If you have created WebSphere Message Broker components to run on different

queue managers, the transmission queues that you define to handle the message

traffic between the queue managers must have put and setall authority granted

to the local mqbrkrs group, or to the service user ID of the component

supported by the queue manager on which the transmission queue is defined.

v When you start the workbench, it connects to the Configuration Manager using

a WebSphere MQ client/server connection. For details of WebSphere MQ

channel security refer to ″Setting up WebSphere MQ client security″ in the

WebSphere MQ Clients book.

v When you create and deploy a message flow, grant:

1. get and inq authority to each input queue identified in an MQInput node, for

the broker’s ServiceUserID.

2. put and inq authority to each output queue identified in an MQOutput node,

or by an MQReply node, for the broker’s ServiceUserID.

3. get authority to each output queue identified in an MQOutput node or an

MQReply node to the user ID under which a receiving or subscribing client

application runs.

4. put authority to each input queue identified in an MQInput node to the user

ID under which a sending or publishing client application runs.

Supporting end-user applications 23

Enabling WebSphere MQ Everyplace applications

WebSphere MQ Mobile Transport is a service that connects mobile and wireless

applications that use WebSphere MQ Everyplace.

WebSphere MQ Everyplace is an application designed primarily for messaging to,

from, and between pervasive devices. These are typically small, handheld devices,

such as mobile phones and PDAs.

The operation of WebSphere MQ Everyplace is different from that of WebSphere

Message Broker, which means that there are different concepts involved in using a

broker to operate with WebSphere MQ Everyplace. In particular, the message

format is different, and messages must be converted.

Communication between WebSphere MQ Everyplace and a broker is achieved

through the use of an external MQe Gateway (also called a bridge-queue-manager).

WebSphere MQ Everyplace must be installed separately, and its MQe Gateway

configured appropriately. Your flows use MQInput and MQOutput nodes to

communicate with the gateway using MQ format messages. The gateway then

communicates with MQe devices using MQe format messages.

The following diagram illustrates this visually:

MQe device

MQ
format

messages

MQe
format

messages

(Bridge queue manager)
MQInput

MQOutput

MQe gateway Broker

For help with configuring WebSphere MQ Everyplace, see the documentation

supplied with that product.

If you have message flows containing MQe nodes from a previous version broker

and you want to use them, see how to migrate them in Migrating a message flow

that contains WebSphere MQ Everyplace nodes.

Enabling WebSphere MQ Telemetry Transport applications

If you want to connect WebSphere MQ Telemetry Transport client applications to

the broker, review the following guidance information:

v Designing applications

v An example message flow

The following SupportPacs are available from the WebSphere MQ SupportPacs

Web page, and provide additional information to help you develop WebSphere MQ

Telemetry Transport applications:

v IA92 Java implementation of WebSphere MQ Telemetry Transport

v IA93 C implementation of WebSphere MQ Telemetry Transport

24 End user Application Support

http://www.ibm.com/software/integration/support/supportpacs
http://www.ibm.com/software/integration/support/supportpacs

Designing Telemetry applications

When you create a message flow to receive messages from Telemetry clients, you

must include at least one SCADAInput node. Configure the node’s properties to

define the port on which it listens for new messages. If your message flow sends

messages to Telemetry clients, you must include either a Publication node, or a

SCADAOutput node (the Publication node includes an embedded SCADAOutput

node).

You must deploy message flows that contain SCADAInput and SCADAOutput

nodes to a single execution group within a broker. If you send messages to

Telemetry clients through a Publication node, the message flow that contains that

node must also be in the same execution group as a SCADAInput node, even if

you do not have a message flow that receives messages from Telemetry clients.

This is because the properties of the SCADAInput node identify the TCP/IP port

that is used for communication with the clients, and the characteristics of how

messages are handled.

Starting and stopping listeners

Start and stop a WebSphere MQ Telemetry Transport listener using a publish

message with the topic $SYS/SCADA/MQIsdpListener/<port_number>. Set the Payload

part of the message set to ON or OFF. Replace <port_number> with the single port

that you want to start or stop, or with all to start or stop all ports on the system

that are designated as SCADA ports.

Improving message handling

The number of messages that are handled by a message flow depends both on

message throughput and on response times. Review the guidance in Optimizing

message flow response times and Optimizing message flow throughput. In

addition, you must consider the Quality of Service that you choose for messages

received from, or published to, Telemetry clients. This is described in “Choosing

Quality of Service.”

Choosing Quality of Service

Quality of Service determines the reliability of message delivery. Review the

circumstances of the messages that are processed; in some situations, message loss

might be acceptable. For other scenarios, message delivery might need to be

guaranteed. The Quality of Service options, QoS0, QoS1, and QoS2, are described

in “WebSphere MQ Telemetry Transport Quality of Service levels and flows” on

page 58.

If you choose to guarantee message delivery, the broker must take additional

actions to preserve the message until it is certain that it has been delivered. This

affects broker and client performance, so you must balance the need for speed of

message processing with the need to ensure message delivery.

If you choose QoS1 or QoS2, which indicates the message must be delivered at

least, or only, once, the broker and client must provide a certain level of

acknowledgment. The broker must store the message so that it can resend it if the

appropriate acknowledgments are not received.

The broker stores messages in its database. This can affect message handling if the

broker is unable to complete input to or output from the database when required;

Supporting end-user applications 25

the broker might stop processing messages if this happens. If your broker database

is DB2, turn off DB2 next key locking to avoid these deadlock problems. Issue the

following command in a DB2 command window to make this change:

db2set DB2_RR_TO_RS=YES_OVERRIDE_RI

Restart the DB2 database manager for this change to take effect.

If you choose QoS0, message delivery is not guaranteed. The broker does not store

the messages.

An example message flow to support Telemetry clients

This example message flow includes two SCADAInput nodes configured to listen

on different TCP/IP ports. When a message is received without error, the input

node propagates it to a Compute node that manipulates the input message content

and generates a number of output messages. The Compute node propagates the

output messages to a Publication node which publishes them to registered

subscribers that use the WebSphere MQ protocol. Any errors in the flow are

propagated to an MQOutput node, which records the error messages on a queue to

be processed later.

The Telemetry clients generate events, for example to indicate a change of state, or

to confirm that they are still active. The clients are programmed to batch up events

and send them to the broker every 15 minutes. The message flow is designed to

extract individual event messages from the batch message and publish these.

The Compute node has been configured with ESQL that splits the batched input

message into individual event messages. A WHILE loop iterates over each message

in the batch. The MQMD is copied from the input message to each output

message. Relevant fields are copied from the input tree to the output tree. Each

output message is a JMSText message which is built by setting the User properties

in the usr folder within the MQRFH2 header. Each message is passed to the

Publication node by a PROPAGATE statement.

Here is an example input batch message that contains two events:

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited by Mary Bright -->

<events d_tstamp="20040417103118">

 <StateChange topic="LCUnit/12345/StateChange"

 d_tstamp="20040417104439" i_state="1" i_old_state="0">

 <![CDATA[Changing state from ’Starting’ to ’Payload’ because

 ’The startup routine is complete’]]>

 </StateChange>

 <Heartbeat topic="LCUnit/12345/Heartbeat"

 d_tstamp="20040417105126" i_state="1">

26 End user Application Support

<d_tstamp>20040417104948</d_tstamp>

 <i_state>1</i_state>

 </Heartbeat>

</events>

The ESQL module that processes messages of this format is shown below:

CREATE COMPUTE MODULE messageflow_Compute

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 DECLARE BatchTime CHAR;

 SET BatchTime = InputRoot.XMLNS.events.d_tstamp;

 DECLARE Count INTEGER CARDINALITY(InputRoot.XMLNS.events.*[]);

 DECLARE I INTEGER 2;

 WHILE I <= Count DO

 SET OutputRoot.Properties.MessageDomain = ’XMLNS’;

 SET OutputRoot.XMLNS = NULL;

 SET OutputRoot.MQMD = InputRoot.MQMD;

 SET OutputRoot.MQRFH2.CodedCharSetId = 1208;

 SET OutputRoot.MQRFH2.(MQRFH2.Field)Format = ’MQSTR ’;

 SET OutputRoot.MQRFH2.(MQRFH2.Field)NameValueCCSID = 1208;

 SET OutputRoot.MQRFH2.psc.Topic = InputRoot.XMLNS.events.*[I].topic;

 SET OutputRoot.MQRFH2.usr.*[] = InputRoot.XMLNS.events.*[I].(XML.Attribute)*[];

 SET OutputRoot.MQRFH2.usr.b_time = BatchTime;

 SET OutputRoot.XMLNS.Body.Text = InputRoot.XMLNS.events.*[I].(XML.CDataSection)*’

 SET I = I + 1;

 PROPAGATE;

 END WHILE;

 RETURN FALSE;

 END;

END MODULE;

The message flow has two input nodes to increase the message handling capability.

You can use any number of input nodes. You can also change the message flow

property Additional Instances to increase the number of processes that service the

message flow. If you have many hundreds of clients, you might find that you have

to handle a high message load on two or more brokers. Use one or more of these

techniques to find an acceptable level of message processing.

This example shows only one way in which Telemetry client messages can be

handled. Change this message flow, or create a new one, to meet your own

Telemetry requirements.

Working with Web service applications

A Web service is defined by a WSDL definition, which describes both the logical

interface of the service and its physical binding.

The broker can act as any of:

v Web service provider

v Web service client

v Intermediary

and typically sends and receives SOAP messages at runtime.

This section provides a brief overview of Web services and then describes how the

broker can work with the related SOAP and WSDL technologies to interact with

Web services.

Supporting end-user applications 27

This section covers the following topics:

v “XML domain message flows”

v “Working with HTTP flows” on page 33

v “Web services scenarios” on page 36

XML domain message flows

If you are not using the SOAP domain then your message flow needs to take

account of the actual bitstream format of the Web service messages you are

working with. A different logical tree format is used by each domain.

If the messages are SOAP then you can use either the XMLNSC domain or the

MRM XML domain. Both domains offer validation. The XMLNSC domain is more

efficient, whilst the MRM XML domain can be useful if you have specific message

transformation requirements, for example, if your message flow also uses binary

data formats.

If the messages use MIME (for example, SOAP with Attachments or MTOM) you

can use the MIME domain. In this case your message flow will probably also need

to identify at least the MIME part corresponding to the SOAP payload and then

explicitly parse this using the XMLNSC or MRM domain as above.

In the SOAP domain, WSDL is used to automatically configure your nodes with

the appropriate endpoint information. If you are not using the SOAP domain, then

you must select and configure the transport nodes manually. Typical WSDL

bindings would be:

v SOAP/HTTP, in which case implement a flow using HTTP nodes. Use the

HTTPInput and HTTPReply nodes if a flow implements a Web service, or use

the HTTPRequest node if a flow invokes a Web service.

v SOAP/JMS, where you implement a flow using JMS or MQ nodes.

You can configure message flows that receive input messages from clients using

one transport, and interact with a Web service or legacy application using another.

You can propagate a message to more than one location. For example, the Web

service response to be returned to a client by an HTTPReply node might first be

sent to an auditing application using an MQOutput node, after making any

required adjustments to the message headers.

Nodes are used together in the following basic patterns, using HTTP nodes as

example transports:

v As a Web service provider, for example

v As a Web service consumer, for example:

28 End user Application Support

v As a Web service facade, for example:

If required, the SOAPExtract and SOAPEnvelope nodes can be used in conjunction

with these patterns to respectively extract the SOAP payload and rebuild a SOAP

Envelope.

If you want your message flow to validate messages, then an appropriate message

set must be deployed with the flow. An appropriate message set is created either

by importing existing WSDL or by generating WSDL from an existing message set.

For details about importing existing WSDL, see Importing from WSDL. For details

about generating WSDL from an existing message set, see WSDL generation.

You can also create a new message set and flow based on existing WSDL or XSD

files. For details, see Creating an application based on WSDL or XSD files

The generated message set will contain message definitions for the relevant SOAP

Envelope version and for the XML payload data defined by the WSDL. In the

XMLNSC or MRM XML domains, messages can be validated against the message

set. For details, see Validating messages.

SOAP

SOAP is an XML based language defined by the World Wide Web Consortium

(W3C) for sending data between applications. SOAP is transport and platform

neutral.

SOAP message

A SOAP message comprises an envelope containing:

v An optional header (containing one or more header blocks).

v A mandatory body.

The content of the header and body is typically defined by WSDL.

SOAP style

SOAP defines two types of style:

RPC The SOAP body corresponds to a method call.

document

The SOAP body is typically a coarser-grained XML document and is

defined explicitly by XML Schema.

SOAP encodings

SOAP defines two types of encoding:

SOAP encoding

With SOAP encoding the content is defined using an encoding scheme

which implies a specific mapping to language-specific types.

Supporting end-user applications 29

literal With literal encoding the SOAP content is defined explicitly by some

schema (generally XML Schema).

SOAP style and encoding combinations

Three of the four possible SOAP style and encoding combinations are supported

by the WSDL importer and the WSDL generator:

v RPC and SOAP encoded (supported for the WSDL importer only).

v RPC and literal.

v Document and literal.

SOAP versions

Two versions of SOAP are available:

v SOAP 1.1

v SOAP 1.2

SOAP 1.1 has some interoperability issues, mainly concerned with the use of SOAP

encoding, which are addressed by a separate standard: the WS-I Basic Profile.

Further information

For more information about WSDL 1.1 refer to the World Wide Web Consortium

(W3C), and in particular the SOAP 1.1 and SOAP 1.2 documents at:

v http://www.w3.org

v http://www.w3.org/TR/soap

For more information about the WS-I Basic Profile refer to the WS-I, and in

particular the WS-I Basic Profile document:

v http://www.ws-i.org/

v http://www.ws-i.org/deliverables

What is WSDL?

WSDL is an XML notation for describing a Web service. A WSDL definition tells a

client how to compose a Web services request and describes the interface that is

provided by the Web service provider.

Service

The WSDL document defines a service in terms of a number of:

v ports (WSDL 1.1)

v endpoints (WSDL 1.2)

These define where the service is available.

Ports (WSDL 1.1) or endpoints (WSDL 1.2)

Each named port or endpoint also defines a mechanism for accessing it: a binding.

Each supported protocol has a separate binding. For example, SOAP over HTTP.

Each binding refers to a named:

v portType (WSDL 1.1)

v interface (WSDL 1.2)

30 End user Application Support

http://www.w3.org
http://www.w3.org/TR/soap
http://www.ws-i.org/
http://www.ws-i.org/deliverables

Bindings and portTypes (WSDL 1.1) or interfaces (WSDL 1.2)

v A binding defines the message wire format and transport details.

v A portType or interface is the logical interface to the Web service.

Both binding and portType or interface define operations.

Operations

Each operation comprises input and output elements that are defined in terms of

messages or message parts.

The optional parameterOrder attribute is only applicable for RPC-style WSDL. The

value of the parameterOrder attribute is an ordered list of WSDL message parts

providing a hint to a Web service provider about how the parts map to a method

signature.

Message elements

The message elements define a logical message in terms of one or more parts. Each

part might correspond to a parameter on a method call.

A part is defined either as an XML Schema element or as an XML Schema type.

These elements and types are fully defined by either or both of the following:

v A WSDL <types> section.

v Imported schema (.xsd) files that provide the definitions for the WSDL part

definitions.

Further information

For more information about WSDL 1.1 refer to the World Wide Web Consortium

(W3C), and in particular the WSDL 1.1 document:

v http://www.w3.org

v http://www.w3.org/TR/wsdl

For more information about the WS-I Basic Profile refer to the WS-I, and in

particular the WS-I Basic Profile document:

v http://www.ws-i.org/

v http://www.ws-i.org/deliverables

WSDL operation types:

A WSDL operation type defines the expected use of the WSDL input, output, and

fault elements in the WSDL definition.

 Operation types fall into two categories:

v Request-style.

v Solicit-style - this type is not widely used and is not WS-I compliant.

Input and output messages:

v An input message is always the one being sent to the Web service.

v An output message is always the one returned from the Web service.

Supporting end-user applications 31

http://www.w3.org
http://www.w3.org/TR/wsdl
http://www.ws-i.org/
http://www.ws-i.org/deliverables

The effect of styles on input and output:

v Request-style: the input message is sent first; that is, the interaction is initiated

by the client.

v Solicit-style: the output message is sent first; that is, the interaction is initiated

by the Web service.

The operation type does impose various requirements on the flow, for example,

whether the broker is initiating the interaction or listening. You must construct an

appropriate flow for the operation type.

The presence and ordering of input and output messages implicitly defines the

operation type in WSDL 1.1. For example, a WSDL operation defining a single

wsdl:input followed by a single wsdl:output implies that the operation type is

request-response. Zero or more (*) wsdl:fault definitions can also be displayed, and

the Web service returns either the expected output message or one of the defined

faults messages. Refer to the following table for more information about the WSDL

1.1 operation types.

 Operation Type Description Analogous to... Order of Messages

request-response client calls Web

service – response

expected

method call Input output fault*

solicit-response Web service solicits

client – response

expected

callback output input fault*

one-way client calls Web

service – no response

expected

procedure – no

return

input

notification Web service calls

client – no response

expected

signal – no response output

WSDL validation:

The WS-I Validator can be used to check your WSDL definitions against the Basic

Profile.

 The World Wide Web Consortium (W3C) standards for Web services allow more

than one interpretation, and the Web services Interoperability Organization (WS-I)

introduced a separate standard, called the Basic Profile, to tighten up the use of

Web services. For example, the WS-I Basic Profile does not allow the use of SOAP

encoding.

For more information about the WS-I Basic Profile refer to the WS-I, and in

particular the WS-I Basic Profile document:

v Web Services Interoperability Organization (WS-I)

v WS-I deliverables index

You can use the WS-I Validator to check your WSDL definitions against the Basic

Profile. You can run the validator in either of the following ways:

v Manually against a specific .wsdl resource in the workbench.

This option enables you to investigate and fix any WS-I compliance problems.

Any validation issues are displayed as task list errors and warnings.

32 End user Application Support

http://www.ws-i.org
http://www.ws-i.org/deliverables

The behavior of the validator can be controlled under Preferences → Web

services → WS-I Compliance.

v Automatically by using either of the following methods:

– Importing a WSDL definition using either the WSDL Importer wizard or the

mqsicreatemsgdefsfromwsdl command.

– Generating the WSDL definition using the WSDL Generator wizard. In this

case errors are displayed and also written to a report file.

You can set a validation failure action to control the outcome of the validation by

using the following settings:

ignore Warnings from the WS-I validator are written to the log file as

informational. You must view the log file to retrieve the messages. You can

continue with the process.

warn Warnings from the WS-I validator are written to the log file as warnings.

Any messages that generate a warning are highlighted with yellow

symbols on the next panel of the wizard. You can continue with the

process.

fail Warnings from the WS-I validator are written to the log file as errors. Any

messages that generate an error are highlighted with red symbols on the

next panel of the wizard. You cannot continue with the process until the

errors in the original WSDL definition are corrected and the WSDL

definition is revalidated.

Note: You must set the failure action to warn or ignore if you want to use features

which are not WS-I compliant such as SOAP encoding.

Working with HTTP flows

Read this information if you are using HTTP message flows to interact with Web

services. You might find it useful to read this in conjunction with the subsequent

“Web services scenarios” on page 36 section.

HTTPS

For help with using HTTPS see Implementing SSL authentication.

Setting the HTTP Status Code for a reply

The default HTTP Status Code is 200, which indicates success. If you want

a different status code to be returned, take one of the following actions:

v Set your status code in the field Destination.HTTP.ReplyStatusCode in

the LocalEnvironment tree (correlation name OutputLocalEnvironment).

This field overrides any status code that is set in an

HTTPResponseHeader header. This action is the preferred option,

because it provides the greatest flexibility.

v Set your status code in the field X-Original-HTTP-Status-Code in the

HTTPReplyHeader header.

v Set your status code in the field X-Original-HTTP-Status-Code in the

HTTPResponseHeader header. This option is typically useful if you

include an HTTPRequest node before the HTTPReply node in your flow,

because the HTTPResponseHeader header is created for you. In this

scenario, an HTTPResponseHeader header has been created in the

logical tree, representing the HTTP headers in the response from another

Web service. If you have selected the Generate default HTTP headers

Supporting end-user applications 33

from reply or response property in the HTTPReply node, values for the

response header are set as default values when the reply message is

created.

Using LocalEnvironment.Destination.HTTP.RequestIdentifier

When the HTTPInput node receives an input request message, it sets the

LocalEnvironment field Destination.HTTP.RequestIdentifier to a unique

value that identifies the Web service client that sent the request. You can

refer to this value, and you can save it to another location if appropriate.

 For example, if you design a pair of message flows that interact with an

existing WebSphere MQ application (as described in “Broker calls existing

Web service” on page 37), you can save the identifier value in the request

flow, and restore it in the reply flow, to ensure that the correct client

receives the reply. If you use this technique, you must not change the data

and you must retain the data as a BLOB.

The HTTPReply node extracts the identifier value from the

LocalEnvironment tree and sets up the reply so that it is sent to the specific

client. However, if you are using an HTTPReply node in a flow that does

not have an HTTPInput node, and this field has been deleted or set

incorrectly, message BIP3143S is issued.

If you design a message flow that includes both an HTTPInput and an

HTTPReply node, the identifier value is set into the LocalEnvironment by

the HTTPInput node, but the HTTPReply node does not use it. Therefore,

if your message flow includes both nodes and a Compute node in the

same flow, you do not have to include the LocalEnvironment tree when

you specify which components of the message tree are copied from input

message to output message by the Compute node (the Compute mode

property).

Setting the HTTPRequest node URL dynamically

You can set the property Default Web service URL on the HTTPRequest

node to determine the destination URL for a Web service request. You can

configure a Compute node before the HTTPRequest node within the

message flow to override the value set in the property. Code ESQL that

stores a URL string in LocalEnvironment.Destination.HTTP.RequestURL;

the HTTPRequest node retrieves and uses the URL string in place of the

node property value.

 Although you can also set the request URL in the special header

X-Original-HTTP-URL in the HTTPRequestHeader header section of the

request message (which overrides all other settings) in a Compute node,

use the LocalEnvironment tree content for this purpose for greater

flexibility.

Setting Generate default HTTP headers from reply or response for the

HTTPReply node

If you select Generate default HTTP headers from reply or response in the

HTTPReply node properties, the node includes a minimum set of headers

in the response that is sent to the Web service client.

 To set any headers explicitly, create them in an HTTPReplyHeader header.

For example, a Compute node propagates a message in the XMLNS

domain and modifies the Content-Type as follows:

CALL CopyMessageHeaders();

SET OutputRoot.HTTPReplyHeader."Content-Type" = ’text/xml’;

SET OutputRoot.XMLNS = InputRoot.XMLNS;

34 End user Application Support

Do not use the ContentType property to set the Content-Type unless you

are working in the MIME domain. The ContentType property is specifically

intended to set the value of Content-Type used in MIME.

The full set of HTTP headers used in the request is built by selecting the

headers using the algorithm defined in the following steps:

1. Select any headers in an HTTPReplyHeader header.

2. If no Content-Type header is yet defined, create one using any

non-empty value in the ContentType property.

3. Select any headers in an HTTPResponseHeader header (an

HTTPResponseHeader header is propagated on return from an

HTTPRequest node).

4. If no Content-Type header is yet defined, create one with the default

value text/xml; charset=utf-8.

5. Create or overwrite the Content-Length header.

Attention: The HTTPReply node always rewrites the Content-Length

header, even if you have cleared Generate default HTTP

headers from reply or response. This action ensures that the

content is correct.

If an HTTPReplyHeader header section existed in the message received by

the HTTPReply node, and the Output terminal of the HTTPReply node is

connected, the HTTPReplyHeader header section is updated with any

changed or added values.

Setting Generate default HTTP headers from input for the HTTPRequest node

If you select Generate default HTTP headers from input in the

HTTPRequest node properties, the node includes a minimum set of

headers in the request that is sent to the server.

 To explicitly set headers , create them in an HTTPRequestHeader header.

For example, a Compute node propagating a message in the XMLNS

domain can modify the Content-Type as follows:

CALL CopyMessageHeaders();

SET OutputRoot.HTTPRequestHeader."Content-Type" = ’text/xml’;

SET OutputRoot.XMLNS = InputRoot.XMLNS;

Do not use the ContentType property to set the Content-Type unless you

are working in the MIME domain. The ContentType property is specifically

intended to set the value of Content-Type used in MIME.

The full set of HTTP headers used in the request is built by selecting the

headers using the algorithm defined in the following steps:

1. Set the Host header, based on either the request URL or the incoming

HTTPRequestHeader header section of the message.

2. Select any headers in an HTTPRequestHeader header.

3. If no Content-Type header is yet defined, create one using any

non-empty value in the ContentType property.

4. Select any headers in an HTTPInputHeader header (an

HTTPInputHeader header is created automatically by an HTTPInput

node).

5. If no Content-Type header is yet defined, create one with the default

value text/xml; charset=utf-8

6. If no SOAPAction header is yet defined, create one with the default

value ’’.

Supporting end-user applications 35

7. Create or overwrite the Content-Length header.

Attention: The HTTPRequest node always rewrites the Content-Length

header, even if you have cleared Generate default HTTP

headers from input or request. This action ensures that the

content is correct.

If an HTTPRequestHeader header exists in the received message, the

HTTPRequestHeader header is updated with any changed or added

values.

Collecting HTTPListener trace if you have problems with HTTP

If you have problems with HTTP, you can trace the HTTPListener:

1. Use the mqsichangetrace command to start trace with the following

options:

mqsichangetrace component -t -b

where component is the broker name.

2. Retrieve the HTTPListener trace log using the mqsireadlog command

with the HTTPListener qualifier for the -b parameter.

3. Format the trace log using the mqsiformatlog command so that you

can view its contents.

Web services scenarios

This topic describes some common Web services scenarios. It is organized

according to the role played by the broker.

A key consideration is whether a WSDL description for the Web service already

exists.

In the first two scenarios below, the WSDL description exists and is imported and

used by the message flow.

In the remaining two scenarios, the WSDL description is generated in an existing

message set. Again, the WSDL is used by the message flow and may also be

exported for use by an external client.

These are generic scenarios and can be implemented using the SOAP domain, or

by using an appropriate non-SOAP domain (XMLNSC, MRM, MIME) and basic

transport nodes. If you need to use WS-Addressing or WS-Security for a particular

implementation, you must use the SOAP domain.

You want the broker to invoke an existing Web service:

See “Broker calls existing Web service” on page 37

You want the broker to expose an application as a previously defined Web

service:

See “Broker implements existing Web service interface” on page 46

You want the broker to expose an application as a new Web service:

See “Broker implements new Web service interface” on page 41

You want the broker to expose a Web service to a non-Web service client:

See “Broker implements non-Web-service interface to new Web service” on

page 50

36 End user Application Support

|

|
|

|
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|

|
|
|

Broker calls existing Web service

In this scenario, the broker invokes an existing Web service implementation. .

WSDL
Web

Service

Message Set

deploy

import

Message Broker

Key to symbols:

Message setFileExecutable Message flow

run time interaction.
For example,

message exchange

design time action.
For example,

import or deploy

design time action
involving an external
toolkit. For example,

generating a
Web service client.

association

Possible uses

v You want to call a Web service to do some processing as part of your message

flow.

v You have an existing Web service and you want to provide a different interface

to it. This could be an alternative Web services interface or a WebSphere MQ

interface.

v You have an existing Web service and you want to change its implementation in

some way without changing its interface; that is, the broker acts as an

intermediary to the Web service. For instance a message flow could be used to

enable auditing, or to transparently propagate the Web service response to

another application.

Design steps

1. Import WSDL to create a message set containing definitions for the SOAP

messages described by the WSDL.

2. Create a message flow to invoke the Web service. If the Web service transport is

HTTP, then an HTTPrequest node would be used. If the Web service transport

is JMS then appropriate JMS or WebSphere MQ nodes are used.

Supporting end-user applications 37

|
|

|

|

|

|

|
|

|
|
|

|
|
|
|
|

|

|
|

|
|
|

Runtime

Your message flow creates an appropriately formatted Web service request, invokes

the Web service, and parses the Web service response.

Example 1

In this example the broker acts as an intermediary to the Web service.

1. Create a message flow with nodes: HTTPInput, HTTPRequest, and HTTPReply.

2. The Web service client generates a Web service request. This is directed to the

HTTPInput node by the broker.

3. The message flow processes the message in some way.

4. The HTTPRequest node sends a request to the original Web service and

receives the response.

5. The flow generates a Web service response and puts it to the HTTPReply node.

The response might be based in full or in part on the response received by the

HTTPRequest node.

6. The broker sends the response to the Web service client.

If another application enabled for WebSphere MQ required the information in a

different format then the message flow could arrange for the message to be

propagated first to an MQOutput node for transmission to this application before

continuing on to the end of the flow and the HTTPReply node which sends the

expected Web service response. Appropriate Compute nodes would be required to

transform the message (if required) and to manipulate the message headers (e.g.

adding an MQMD header).

Example 2

In this example the broker provides auditing for a Web service.

1. You design a message flow that includes an HTTPInput node connected to a

Warehouse node.

2. The input message received from the Web service client is stored in the

database by the Warehouse node.

3. The Warehouse node passes the message on to an HTTPRequest node, which

interacts with the Web service.

4. When the response is received, the HTTPRequest node propagates the response

to the HTTPReply node.

5. The HTTPReply node generates the response for the Web service client.

Example 3

The WebSphere MQ flow interacts with a Web service

You design a WebSphere MQ message flow that accesses a Web service

across an HTTP connection. For example, you create a message flow that

supports a process for the Human Resource department of your company.

The process must retrieve employee ID numbers and enhance the message

with this information. Employee IDs are maintained in the company’s

employee directory which is accessed through a Web service.

38 End user Application Support

|

|
|

|

|

|

|
|

|

|
|

|
|
|

|

|
|
|
|
|
|
|

|

|

|
|

|
|

|
|

|
|

|

|

|
|
|
|
|
|
|

Compute1MQInput MQOutputHTTPRequest

HTTP Connection

Corporate Directory Server

Compute2

In this scenario, you typically clear the Replace input message with Web

service response check box in the HTTPRequest node properties, and place

the response from the corporate directory server in a temporary location in

the message tree specified in the Response message location in tree property

in the same node. In Compute2, you code ESQL to unpack the result, and

augment the final message as appropriate.

Example 4

The message flow acts as a Web service intermediary

You design a message flow that interacts with a Web service that has

updated its interface on behalf of Web service clients that are not aware of

the new interface. This new message flow allows older clients to access the

server using the new interfaces without updating their own interfaces.

Compute1HTTPInput HTTPReplyHTTPRequest

HTTP Connection

Corporate Directory Server

Compute2

Code ESQL in Compute1 to map the client request to a server request, and

in Compute2 to map the server response to the client reply. You could

define these request, reply, and response messages in the MRM domain to

simplify the transformation from one format to another.

You can configure the HTTPRequest node to generate HTTP headers from

the headers that are received by the HTTPInput node, which allows for

cookies and other application-specific headers to be passed through. The

HTTPReply node can provide an equivalent task to extract headers from

the response from the Web service to return to the originating client. If you

want this to be done, select the appropriate Generate default HTTP headers

from..... check box on both the HTTPRequest and HTTPReply nodes.

In most scenarios, the original request is of no value, and you need only

the response from the service to be able to generate the client reply

message. If so, select the property Replace input message with Web service

response on the HTTPRequest node. If you do want to preserve any data

from the input request, you can store this in the LocalEnvironment in

Compute1 and retrieve it in Compute2 for inclusion in the reply.

Broker calls existing Web service - detail:

Supporting end-user applications 39

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|

This is an overview of a typical end-to-end scenario where the broker invokes a

Web service.

There are two basic business propositions:

v You want to make an existing Web service available via a different interface.

This could be an alternative Web services interface or an interface to WebSphere

MQ.

v You want to incorporate the Web service into your business logic.

It is reasonable to assume that a WSDL definition is available for the Web service.

1. Import the WSDL definition for the Web service to create a message model for

the payload data (see Importing data structures).

2. The WSDL import step will result in the appropriate SOAP mxsds being

automatically included in the message set. Specifically this includes the SOAP

envelope mxsd and – if required – the SOAP encoding mxsd.

3. Implement a message flow to make the Web service request – i.e. to act as the

Web services client. The endpoint nodes might be MQ for integration with an

existing system. The flow includes an HTTPRequest node to emit the Web

service request and receive the response. The user must create the required

SOAP content by populating a SOAP envelope instance. This might be done via

a mapping node or created directly in ESQL:

 DECLARE SOAPENV NAMESPACE ’http://schemas.xmlsoap.org/soap/envelope/’;

 SET OutputRoot.Properties.MessageSet = ’soap1’;

 SET OutputRoot.Properties.MessageType = ’Envelope’;

 SET OutputRoot.Properties.MessageFormat = ’XML1’;

 SET OutputRoot.MRM.SOAPENV:Body.addEntryResponse.cid = ’abc123’;

 .

 .

4. The HTTPRequest node properties related to the request are:

v domain: ″MRM″

v set: the message set containing the SOAP Envelope definition

v type: ″Envelope″

v format: ″XML1″

v whether the Web service request is to consist of the whole input message or

just part of it
5. The HTTPRequest node properties related to the response are:

v option to automatically redirect for HTTP status codes 300-399

v whether a valid Web service response replaces the input message in the tree

(default) or is attached at a specific location in the original tree

v likewise, whether a Web service error replaces the input message in the tree

(default) or is attached at a specific location in the original tree

v the domain, set, type, and format (as in step 4 above). Used by the broker to

create the logical tree (portion) from the bit stream
6. Once the response is available in the tree, you can process it using a mapping

node or using ESQL. If the actual name of the response message is unknown (it

isn’t defined in the WSDL and appending Response to the request name is only

a convention) then the user could write ESQL to check the children of the

(arbitrarily named) response element.

40 End user Application Support

|
|

|

|
|
|

|

|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|
|

|

|

|
|

|
|

|
|

|
|
|
|
|

Broker implements new Web service interface

In this Web service scenario, the broker provides a Web service interface to an

existing non-Web-service application.

Existing
non-Web-service

interface

Existing
non-Web-service

application

Message set

deploy

generate

import

WSDL

Web service
client Broker

Key to symbols:

Message setFileExecutable Message flow

run time interaction.
For example,

message exchange

design time action.
For example,

import or deploy

design time action
involving an external
toolkit. For example,

generating a
Web service client.

association

This scenario is sometimes referred to as a Web service facade. The design of the

Web service interface typically involves some regrouping, restriction, or

enhancement of the existing interface, and is not constrained by an existing WSDL

definition.

Possible uses

v The broker provides a Web services interface to an existing application,

optionally providing other mix-in capabilities such as auditing the requests

made.

v Over time the implementation can be changed without affecting the interface

presented to the Web services client.

Design steps

1. Create a message set for the business messages, possibly by importing an

existing interface definition such as a C header file or COBOL copybook.

2. Generate a WSDL definition from the message set.

Supporting end-user applications 41

|
|
|

|

|

|

|
|
|
|

|

|
|
|

|
|

|

|
|

|

3. Use a SOAP toolkit such as Rational Application Developer to create a suitable

Web services client based on the WSDL.

4. Develop a message flow to implement the Web service.

Runtime

Your message flow receives a Web service request, converts it into a form expected

by the existing application and invokes the existing application. The response from

the existing application is converted into a valid Web service response.

Example 1

An existing CICS® application has a COBOL copybook interface.

1. Import the COBOL copybook to create a message model.

2. Create a message flow with nodes: HTTPInput, HTTPReply and CICS.

3. Use the HTTPInput and HTTPReply nodes to provide the Web service facade.

4. Use the CICS node to invoke the original CICS implementation.

Example 2

The message flow is invoked as a Web service

You modify the design of an existing message flow to interact with Web

service clients across HTTP. The existing message flow takes a well-defined

input message, and the client can use WSDL exported from the WebSphere

Message Broker tools in invoking the message flow.

 Most message flows that currently use WebSphere MQ for input or output

can be adapted to use HTTP as a replacement or additional protocol.

You can model the input message in the MRM domain and generate

WSDL from the model, or you can process a generic XMLNS domain

message. If you have defined the message in the MRM domain, you can

configure the HTTPInput node to validate the input message. The node

generates an exception if the message does not conform to the model.

You can configure the HTTPReply node to generate a set of default HTTP

headers for the reply message sent to the client. Generate a set of default

HTTP headers reduces the modifications that you must make to convert

the message flow from one that processes WebSphere MQ messages to a

flow that processes HTTP messages.

Example 3

The message flow provides access to a WebSphere MQ application

You design two message flows that receive requests from and send replies

to Web service clients, and interact with an existing WebSphere MQ

application that has not been adapted to communicate across HTTP.

 The first message flow receives inbound requests from Web service clients

in an HTTPInput node. It includes a Compute node to transform the

request in some way and an MQOutput node to send the modified request

to the WebSphere MQ application.

42 End user Application Support

|
|

|

|

|
|
|

|

|

|

|

|

|

|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

|
|
|
|

The second message flow receives the response from that application in an

MQInput node. The message is passed to a Compute node that transforms

the message and propagates it to an HTTPReply node that sends it as a

reply to the original Web service client.

Although the transformations completed by each Compute node might be

trivial, the ESQL code in the first Compute node must save HTTP state

information that is retrieved by the second Compute node to ensure that

the replies from the WebSphere MQ application are returned to the client

that sent the original request.

Compute1 MQOutputHTTPInput

HTTPReply

Existing WebSphere MQ
Application

Compute2 MQInput

The first message flow receives the message, does whatever

transformations are needed, and encodes the HTTP request identifier in the

outbound message. (The request identifier can also be stored in a database

if you prefer). The HTTPInput node provides the request identifier as a

field in the LocalEnvironment tree called

Destination.HTTP.RequestIdentifier and the Compute1 node can read and

store this value.

The second message flow receives the reply message and transforms it

back into the client message format. The Compute2 node reads the HTTP

request identifier from the message, and sets

LocalEnvironment.Destination.HTTP.RequestIdentifier using this value. The

HTTPReply node uses the request identifier to ensure that the message

reaches the correct HTTP client.

The implementation of this scenario requires correct handling of the

MQMD. Messages that come into a message flow across HTTP must have

an MQMD added before they are sent to an MQOutput node. Also, any

messages coming in across WebSphere MQ must have the MQMD

removed before being sent into an HTTPReply or HTTPRequest node

(unless including an MQMD in the HTTP stream is desired).

In the ESQL module for the Compute1 node, include a code statement

similar to the following statement:

SET OutputRoot.XMLNS.A.MessageID =

 CAST(InputLocalEnvironment.Destination.HTTP.RequestIdentifier AS CHARACTER);

In the ESQL module for the Compute2 node, include a code statement

similar to the following statement:

SET OutputLocalEnvironment.Destination.HTTP.RequestIdentifier =

 CAST(InputRoot.XMLNS.A.MessageID AS BLOB);

Detail of how the broker implements a new Web service:

This topic provides an overview of a typical end-to-end scenario where the broker

implements a Web service.

Supporting end-user applications 43

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

|

|
|

An existing C or COBOL based system offers some business logic which can

usefully be exposed as a Web service.

The broker can start the operation on the existing system, that is, the system

exposes an interface to the broker. Typically the existing system is enabled for

WebSphere MQ, meaning that it receives MQ messages containing application

data, dispatches these to the underlying implementation and then packages the

return values as an MQ response. The data structures supplied to, and returned by,

these existing operations are defined in a C header file or COBOL copybook.

The Web service offers an interface based on the operations already exposed by the

existing system. This interface might comprise all of the existing operations, or a

subset of the existing operations or composite operations, or both.

To define your interface:

1. Look at the business function offered by the existing system.

2. Select the subset of this business function to be exposed.

3. Decide how to represent the subset in the interface, that is, as many discrete

operations, or as fewer multipurpose operations.

You must decide whether you want the Web service interface to be RPC-style or

document-style. For more information about Web services, WSDL and message

flows, see Relationship of WSDL to Message Model.

v An RPC-style interface is generally designed to map on to an underlying set of

operations provided by some API, and the individual operations (method calls)

have relatively small payloads.

v A document-style interface might have fewer operations each with a larger

payload, for instance this might be a document representing a loan request.

The WS-I (see http://www.ws-i.org/) recommend the use only of document-style

WSDL, but many older Web services use RPC-style.

To implement the scenario:

1. Import the existing API data structures, for example using the C importer. If

document-style WSDL is to be used, you must use the importer wizard to

create the required global elements in the broker model. The WS-I recommends

that the Web service payload must be namespace qualified, therefore the user

must specify the target namespace on the import.

You now have a message model for the data to be used to start the existing

operations.

2. Generate the WSDL definition. Unless you have already created the required

Message Categories, create a Message Category for each Web services operation

to be exposed and associate the existing broker messages with the appropriate

SOAP roles (input, output or fault). For more information, see Working with a

message category file.

v If you choose document-style WSDL, the message set itself is not modified.

v If you choose RPC-style WSDL, messages corresponding to the request and

response for each WSDL operation are created and added to the message set

automatically.
3. The WSDL generation step results in the appropriate SOAP mxsds (message

definition files), which includes the SOAP envelope mxsd and (if the WSDL

style is RPC-encoded) the SOAP encoding mxsd, being automatically included

in the message set.

44 End user Application Support

|
|

|
|
|
|
|
|

|
|
|

|

|

|

|
|

|
|
|

|
|
|

|
|

|
|

|

|
|
|
|
|

|
|

|
|
|
|
|

|

|
|
|

|
|
|
|

http://www.ws-i.org/

4. If you want to create a new Web services client, use the generated WSDL with

your chosen Web services client technology. Use a tool other than WebSphere

Message Broker, for example, you can use Rational Application Developer or

.NET.

5. Implement a message flow to receive the Web service request, that is, to act as

the Web services provider. The endpoint nodes are HTTP or MQ depending on

the transport used by the client. The input node properties are:

v Message Domain: MRM

v Message Set: the message set containing the SOAP Envelope definition

v Message Type: Envelope

v Message Format: XML1
6. When the parser is started by the flow the parser creates a logical tree

comprising the SOAP envelope as defined by the pre-canned SOAP mxsd.

Parsing continues automatically at the attachment points within the SOAP

envelope (SOAP body and header), attempting to match against other message

definitions in the message set. You can apply validation at the input node if

you require.

You now have a logical tree, but you do not know which SOAP payload has

been received. Check the HTTP SOAPAction action field to determine the likely

content, but this check works only for HTTP. (Use of SOAPAction is not

recommended by the WS-I.)

7. You can provide mapping from the allowed payload messages to the required

messages from the existing system. For example, you can have a single

mapping definition with messages message1a and message1b both mapped to

the same target message2.

Alternatively you can provide separate mappings for each message type, or for

groups of related message types. This approach might result in more

manageable and reusable mapping definitions. The disadvantage is that you

must determine which payload has been received before you can apply the

mapping. You can determine which payload has been received by using ESQL

as follows:

 DECLARE SOAPENV NAMESPACE ’http://schemas.xmlsoap.org/soap/envelope/’;

 SET contentType = FIELDNAME(InputBody.SOAPENV:Body.*[<]);

 IF (contentType = ‘foo’) ...

or you can use a field reference, for example:

 DECLARE R REFERENCE TO InputRoot.MRM.SOAPENV:Body.*[<];

 IF (FIELDNAME(R) = “foo”) ...

When you have determined the payload, you can map the flow to branch

appropriately (for example, using a RouteToLabel node) with each branch

having either a content-specific Mapping node or Compute node, or both. For

simple flows all the logic can be kept in a single Compute node if required.

Now start the existing system (typically over WebSphere MQ), retrieve any

expected response, and propagate the Web service reply. The dataflow designer

must account for the possibility that the business application does not send the

expected response in a reasonable period of time.

For a similar scenario, see the following sample:

v Web Service Host sample

Supporting end-user applications 45

|
|
|
|

|
|
|

|

|

|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|

|
|
|

|
|
|
|

|
|
|
|

|

|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.wshost.res

You can view samples only when you use the information center that is integrated

with the Message Brokers Toolkit.

Broker implements existing Web service interface

In this Web service scenario, the broker provides a Web services interface to an

existing non-web-service application. The Web service is constrained to an existing

WSDL definition.

Message Set

deploy

importimport

WSDL

(Existing)
Web Service

Client Message Broker

Existing
non-web-service

Interface

Existing
non-web-service

Application

Key to symbols:

Message setFileExecutable Message flow

run time interaction.
For example,

message exchange

design time action.
For example,

import or deploy

design time action
involving an external
toolkit. For example,

generating a
Web service client.

association

Possible uses

v The broker provides a Web service implementation with a different quality of

service from existing implementations.

v The broker provides a migration strategy for the existing implementation.

Design steps

1. Import WSDL to create a message set containing definitions for the SOAP

messages described by the WSDL.

2. Adapt the message set for the required existing interface, possibly by importing

an existing interface definition such as a C header file or COBOL copybook.

3. Develop a message flow to implement the Web service.

46 End user Application Support

|
|

|
|
|
|

|

|

|

|

|
|

|

|

|
|

|
|

|

Runtime

Your message flow receives a Web service request, converts it into a form expected

by the existing application and invokes the existing application. The response from

the existing application is converted into a valid Web service response.

Example 1

In this example, an existing HTTP Web service client provides information on a

given subject (stock prices or exchange rates, for example). You want to replace this

service with an inhouse database lookup solution, but want to make no changes to

the clients because these are widely deployed.

1. Create a message flow including an HTTPInput node that receives requests

from your clients.

2. The HTTPInput node connects to a Compute node that retrieves the required

information from the database and generates a new output message, in the

form of a Web service response including this new data.

3. The Compute node propagates the message to the HTTPReply node, which

generates the response for the Web service client.

Example 2

In this example, an existing, C or Cobol based, system can usefully be exposed as a

Web service. There is also a constraint on what the Web service must look like –

we already have the WSDL definition for a widely distributed Web services client

which gives your users access to a particular business capability. The role of the

broker will be to offer the same interface to a new implementation based on the

existing system. Perhaps the original Web services provider offers a different

quality of service or is to be discontinued for some reason.

1. Import the existing application interface.

2. Import an existing WSDL definition for the client.

3. Create a flow to implement the Web service interface and mediate with the

existing application.

(See Importing from WSDL).

Broker implements existing Web service interface - detail:

This is an overview of a typical end-to-end scenario where you have a Web service

client and you want the broker to make some existing non-web-service

functionality available to it.

An existing C or Cobol based system offers some business logic which can usefully

be exposed as a Web service.

Like the previous example (“Detail of how the broker implements a new Web

service” on page 43), there is some mechanism for the broker to invoke operations

on the existing system (i.e. the system exposes an interface to the broker). Typically

the existing system would be enabled for WebSphere MQ, meaning that it receives

MQ messages containing application data, dispatches these to the underlying

implementation and then packages the return values as an MQ response. The data

structures supplied to and returned by these existing operations are defined in a C

header file or Cobol copybook.

Supporting end-user applications 47

|

|
|
|

|

|
|
|
|

|
|

|
|
|

|
|

|

|
|
|
|
|
|
|

|

|

|
|

|

|

|
|
|

|
|

|
|
|
|
|
|
|
|

However in this example there is also a constraint on what the Web service must

look like, that is, we already have the WSDL definition for the Web services client.

A possible scenario would be that a widely distributed Web services client already

gives users access to a particular business capability and the role of the broker will

be to offer the same interface to a new implementation based on the existing

system. Perhaps the original Web services provider offers a different quality of

service or is to be discontinued for some reason.

As before, the broker can invoke the existing system function over WebSphere MQ.

To implement the scenario:

1. Import the existing API data structures – for example using the C importer. If

document-style WSDL is to be used, you must have the importer wizard create

the required global elements in the broker model. The WS-I (see

http://www.ws-i.org/) recommends that the Web service payload be

namespace qualified, so the user should specify the target namespace on the

import.

At this stage you have a message model for the data to be used in invoking the

existing operations.

2. Import the existing WSDL file to create the appropriate message model for the

expected instance documents (see Importing data structures). The flow will

parse the corresponding SOAP request and will need to transform to and from

the required existing data format. You can inspect the imported message

definitions and use the ESQL and/or Mapping editors to help create the flow.

You do not create category files or generate WSDL from the broker model.

3. The WSDL import step will result in the appropriate SOAP mxsds being

automatically included in the message set. Specifically this includes the SOAP

envelope mxsd and – if required – the SOAP encoding mxsd.

4. Implement a message flow to receive the Web service request, that is, to act as

the Web services provider. The endpoint nodes are HTTP or MQ depending on

the transport used by the client. The input node properties are:

v domain: ″MRM″

v set: the message set containing the SOAP Envelope definition

v type: ″Envelope″

v format ″XML1″

5. When invoked by the flow, the parser creates a logical tree comprising the

SOAP envelope as defined by the pre-canned SOAP mxsd. Parsing continues

automatically at the attachment points within the SOAP envelope (SOAP body

and header), attempting to match against other message definitions in the

message set. Apply validation at the input node if required.

At this stage you have a logical tree, but you do not know which SOAP

payload has been received. You could check the HTTP SOAPAction/action field

to determine the likely content but this only works for HTTP. (Use of

SOAPAction is not recommended by the WS-I.)

6. You can provide a single mapping from the allowed payload messages to the

required messages from the existing system. For example a single mapping

definition could map messages message1a and message1b to the same target

message2.

Alternatively, separate mappings could be provided for each message type – or

for groups of related message types. This approach may result in more

manageable and reusable mapping definitions. The disadvantage is that the

48 End user Application Support

|
|

|
|
|
|
|

|

|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|

|

|

|

|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

http://www.ws-i.org/

user has to determine which payload they have received before they can apply

the mapping. This can be done in ESQL as follows:

 DECLARE SOAPENV NAMESPACE ’http://schemas.xmlsoap.org/soap/envelope/’;

 SET contentType = FIELDNAME(InputBody.SOAPENV:Body.*[<]);

 IF (contentType = ‘foo’) ...

or using a field reference, for example:

 DECLARE R REFERENCE TO InputRoot.MRM.SOAPENV:Body.*[<];

 IF (FIELDNAME(R) = “foo”) ...

Once the content is known, the flow could branch appropriately (e.g.

RouteToLabel) with each branch having content-specific Mapping and/or

Compute nodes. For simple flows all the logic could be kept in a single

Compute node if required.

Now invoke the existing system (typically over WebSphere MQ), retrieve any

expected response, and propagate the Web service reply. This is like the

previous scenario (“Detail of how the broker implements a new Web service”

on page 43), except that the dataflow must also map between the data format

used by the Web service client and the format used by the existing system

enabled for WebSphere MQ. The dataflow designer must account for the

possibility that the business application does not send the expected response in

a reasonable period of time.

SOAP over JMS using MQGet node:

This topic is an overview of implementing a SOAP/JMS Web service using the

MQGet node and describes the costs and benefits of this approach.

 When you use a synchronous request-reply pattern, the request message is sent

using an MQOutput node and the reply is received inline with an MQGet node.

A flow, such as the one in the following simplified diagram, enables synchronous

SOAP-over-HTTP to SOAP-over-JMS translation:

HTTP
Input
Node

HTTP
Reply
Node

MQ
Output
Node

MQGet
Node

Compute
Node 2

Compute
Node 1

The preceding flow provides a simple mechanism to implement a synchronous

translation of HTTP to SOAP-over-JMS in which each incoming HTTP request is

fully processed and responded to before moving onto the next HTTP request. To

avoid the failure of the SOAP-over-JMS service, set a timeout on the MQGet node.

An advantage of this flow model is that the whole request-reply translation is

handled in a single transaction enabling simple rollback and recovery.

This synchronous flow might not be appropriate in cases where the

SOAP-over-JMS processing are long running, because the processing of other

incoming HTTP requests cannot be initiated until the current request is completed.

In this situation the Message Flow must be designed asynchronously, with separate

request and reply flows, with any required correlation context being saved to a

storage medium in the request flow and restored during the reply flow. A solution

Supporting end-user applications 49

|
|

|
|
|
|

|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|

|
|

|
|

|
|

|

|
|
|
|
|
|

|
|
|
|
|
|

is to use a queue to store the required correlation context and use an MQGet node

in the reply flow to retrieve it. This flow design allows the HTTP requests to be

dispatched to the SOAP-over-JMS service as they are received and replies are

delivered back to HTTP in the order that they are received. This prevents, for

example, fast running enquiry requests being blocked by a longer running update

request.

For more information about the asynchronous request-reply scenario, see A

request-response scenario using an MQGet node.

The asynchronous request-reply scenario is also detailed in the following sample

which can be adapted for Web service usage:

v Coordinated Request Reply sample

Another Web services scenario is described in the sample:

v Web Service Host sample

You can view samples only when you use the information center that is integrated

with the Message Brokers Toolkit.

Broker implements non-Web-service interface to new Web

service

In this Web service scenario, the broker provides compatibility with earlier versions

for existing non-Web-service clients to invoke a new Web services implementation

provided by a SOAP toolkit.

Message set

deploy

import

generate

generate
WSDL

Web service
Broker

Existing
non-Web-service

interface

Existing
non-Web-service

client

Key to symbols:

50 End user Application Support

|
|
|
|
|
|

|
|

|
|

|

|

|

|
|

|
|
|
|
|

|

|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.coordinated_request_reply.res
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.wshost.res

Message setFileExecutable Message flow

run time interaction.
For example,

message exchange

design time action.
For example,

import or deploy

design time action
involving an external
toolkit. For example,

generating a
Web service client.

association

Possible uses

You want to migrate an application to a Web service implementation, for example

an EJB implementation hosted by an application server to offer better scalability.

However, a significant number of your users have existing clients that cannot be

immediately replaced. Existing clients can use the broker to use the new Web

service implementation.

Design steps

1. Create a message set for the business messages, for example, by importing an

existing interface definition such as a C header file or COBOL copybook.

2. Generate a WSDL definition from the message set.

3. Use a SOAP toolkit or application server to create a suitable Web services

implementation based on the WSDL.

4. Develop a message flow to mediate between the original existing client and the

new Web service.

Runtime

Your message flow receives a request from the existing client, converts it into a

Web services request and invokes the Web service. The response from the Web

service is converted into a form understood by the existing client.

Supporting end-user applications 51

|

|

|
|

|
|
|

|

|
|

|

|
|

|
|

|

|
|
|

52 End user Application Support

Part 2. Reference

End-user application support 55

Application transports 55

WebSphere MQ Enterprise Transport 55

WebSphere MQ Mobile Transport 56

WebSphere MQ Multicast Transport 56

WebSphere MQ Real-time Transport 57

WebSphere MQ Telemetry Transport 58

WebSphere MQ Web Services Transport 85

WebSphere Broker JMS Transport 86

© Copyright IBM Corp. 2000, 2008 53

54 End user Application Support

End-user application support

The following reference information helps you to enable your end-user

applications for use with WebSphere Message Broker:

v “WebSphere MQ Enterprise Transport”

v “WebSphere MQ Mobile Transport” on page 56

v “WebSphere MQ Multicast Transport” on page 56

v “WebSphere MQ Real-time Transport” on page 57

v “WebSphere MQ Telemetry Transport” on page 58

v “WebSphere MQ Web Services Transport” on page 85

v “WebSphere Broker JMS Transport” on page 86

For information about application compiler support, and connectivity between

applications and brokers, refer to the relevant information for your operating

system. For WebSphere MQ applications, further information is provided in the

WebSphere MQ Quick Beginnings book for that system.

Application transports

This section covers the following topics:

v “WebSphere MQ Enterprise Transport”

v “WebSphere MQ Mobile Transport” on page 56

v “WebSphere MQ Multicast Transport” on page 56

v “WebSphere MQ Real-time Transport” on page 57

v “WebSphere MQ Telemetry Transport” on page 58

v “WebSphere MQ Web Services Transport” on page 85

v “WebSphere Broker JMS Transport” on page 86

WebSphere MQ Enterprise Transport

The WebSphere MQ Enterprise Transport is the transport used by WebSphere MQ.

The WebSphere MQ Enterprise Transport supports WebSphere MQ applications

that connect to WebSphere Message Broker to benefit from message routing and

transformation options.

The WebSphere MQ Enterprise Transport provides all the reliable messaging

features available in WebSphere MQ. This transport provides persistent and

non-persistent messaging and supports transactions. To use the WebSphere MQ

Enterprise Transport, you must deploy a message flow that contains an MQInput

node to your broker. If this message flow sends output messages to other

WebSphere MQ applications, it must also include an MQOutput, MQReply, or

Publication Node.

The queue specified in the MQInput node determines the queue on which the

broker receives publications from publishing applications. Subscribers connect to

the broker by sending a registration request to the broker’s

SYSTEM.BROKER.CONTROL.QUEUE. The subscriber specifies a queue on which

they want to receive any publications on the registered topic in the registration

request.

The WebSphere MQ Enterprise Transport is a queued transport, applications

communicate with the broker by writing data to and reading data from message

© Copyright IBM Corp. 2000, 2008 55

queues. Use the WebSphere MQ Enterprise Transport when you require assured

delivery of messages or need to use transactional support. There are overheads

involved in using the WebSphere MQ Enterprise Transport, therefore it does not

offer the same levels of performance and scalability as the WebSphere MQ

Real-time Transport.

All WebSphere Message Broker applications, like WebSphere MQ applications, can

use all the supported WebSphere MQ interfaces to put messages to the message

flow queues. In fact, every WebSphere MQ application is a potential WebSphere

Message Broker application.

These applications use one of two techniques to gain access to the broker’s

services:

v An application can use a WebSphere MQ client connection. You can use all the

WebSphere MQ clients supported by Version 5.1 or later. This allows you to

connect applications running in a wide variety of environments into your broker

domain. An application running on the same system as the queue manager to

which it connects can also use a client connection.

v An application running on the same system as a broker can use a local

connection to the queue manager that hosts that broker.

Receiving applications can get the messages put to the output queue or queues of

a message flow when they have been processed by that message flow. The

applications must be connected, either by a client/server connection, or via a local

connection, to the queue manager that owns the queue or queues defined as the

target for their messages. If the message flow provides a publish/subscribe service,

the publication node puts the messages to the queue specified by the subscriber as

its local receiver queue.

Applications that connect using WebSphere MQ Enterprise Transport use a mixture

of point-to point and publish/subscribe models.

The following built-in nodes are provided to support this protocol:

v MQInput

v MQOutput

v MQReply

v Publication

WebSphere MQ Mobile Transport

WebSphere MQ Mobile Transport is used exclusively by WebSphere MQ

Everyplace clients.

This transport cannot be used directly with the broker, instead WebSphere MQ

Everyplace is installed separately, and an MQe Gateway configured on it that acts

as an intermediary between MQe devices and the broker.

For more details on how to do this, see “Enabling WebSphere MQ Everyplace

applications” on page 24.

WebSphere MQ Multicast Transport

Applications that connect using WebSphere MQ Multicast Transport and the JMS

API use predominantly the publish/subscribe model. The applications must be

multicast-enabled to use this protocol.

56 End user Application Support

To use the WebSphere MQ Multicast Transport, you must deploy a message flow

that contains a Real-timeOptimizedFlow node or a Real-timeInput node to your

broker. The message flow can send output messages to other real-time applications,

using either the Real-timeOptimizedFlow or the Publication node.

This protocol is a non-queued transport: applications communicate with the broker

by writing data directly to TCP/IP ports and the input nodes are configured with

a TCP/IP port number on which the broker listens for incoming connections.

Client applications that use the WebSphere MQ Multicast Transport connect to this

port.

The following built-in nodes are provided to support this protocol:

v Real-timeInput

v Real-timeOptimizedFlow

v Publication

WebSphere MQ Real-time Transport

WebSphere MQ Real-time Transport is a lightweight protocol optimized for use

with nonpersistent messaging. It is used exclusively by Java Message Service (JMS)

clients, and provides high levels of scalability and message throughput.

WebSphere MQ Real-time Transport is suited for applications and environments

where you need to send large numbers of messages, or where messages are to be

sent to large numbers of client applications. Use this protocol for applications that

must rely on the quality of service provided by TCP/IP but do not need persistent

delivery. For example, you can use this protocol in situations where a piece of data

is updated very frequently, such as updating a scoreboard for a sporting event or

updating a share price on a stock ticker. Because this is a lightweight protocol, it

offers higher levels of performance for nonpersistent messaging than WebSphere

MQ Enterprise Transport. The WebSphere MQ Real-time Transport does not

provide any facilities for persistent messaging or durable subscriptions.

To use the WebSphere MQ Real-time Transport, you deploy a message flow that

contains a Real-timeOptimizedFlow node or a Real-timeInput node to your broker.

(The Real-timeInput node is an input node and the Real-timeOptimizedFlow node

is a complete message flow that provides a high performance publish/subscribe

message flow.) The message flow can send output messages to other real-time

applications, using either the Real-timeOptimizedFlow or the Publication node.

This protocol is a non-queued transport: applications communicate with the broker

by writing data directly to TCP/IP ports, and the input nodes are configured with

a TCP/IP port number on which the broker listens for incoming connections.

Client applications that use the WebSphere MQ Real-time Transport connect to this

port.

You can generate WSDL files from message set definitions that you have created in

the workbench, and use these files with tools such as WebSphere Studio

Application Developer Integration Edition or Microsoft® Visual Studio.NET to

build JMS client applications that connect to WebSphere Message Broker. When

you generate the WSDL file, you can specify one or more of the following bindings

to be created:

v SOAP over HTTP

v SOAP over JMS

v JMS TextMessage

End-user application support 57

The first of these is supported using the WebSphere MQ Web Services Transport.

The other two are supported using the WebSphere MQ Real-time Transport.

Applications that connect using WebSphere MQ Real-time Transport and the JMS

API use predominantly the publish/subscribe model.

The following built-in nodes support this protocol:

v Real-timeInput

v Real-timeOptimizedFlow

v Publication

WebSphere MQ Telemetry Transport

Client applications use WebSphere MQ Telemetry Transport to send messages to

SCADAInput nodes and receive message from Publication or SCADAOutput nodes

in a message flow.

The transport is described in the following topics:

v Quality of Service levels and flows

v Message format

v Command messages

WebSphere MQ Telemetry Transport Quality of Service levels and

flows

WebSphere MQ Telemetry Transport delivers messages according to the levels

defined in a Quality of Service (QoS). The levels are described below:

QoS level 0 At most once delivery

The message is delivered according to the best efforts of the underlying

TCP/IP network. A response is not expected and no retry semantics are

defined in the protocol. The message arrives at the broker either once or

not at all.

 The table below shows the QoS level 0 protocol flow.

 Client Message and direction Broker

QoS = 0

 PUBLISH

---------->

Action: Publish message to subscribers

QoS level 1 At least once delivery

The receipt of a message by the broker is acknowledged by a PUBACK

message. If there is an identified failure of either the communications link

or the sending device, or the acknowledgment message is not received

after a specified period of time, the sender resends the message with the

DUP bit set in the message header. The message arrives at the broker at

least once. Both SUBSCRIBE and UNSUBSCRIBE messages use QoS level 1.

 A message with QoS level 1 has a Message ID in the message header.

The table below shows the QoS level 1 protocol flow.

58 End user Application Support

Client Message and direction Broker

 QoS = 1

DUP = 0

Message ID = x

 PUBLISH

---------->

Actions:

v Store message in database

v Publish message to subscribers

Action: Discard

message

 PUBACK

<----------

If the client does not receive a PUBACK message (either within a time

period defined in the application, or if a failure is detected and the

communications session is restarted), the client resends the PUBLISH

message with the DUP flag set.

When it receives a duplicate message from the client, the broker

republishes the message to the subscribers, and sends another PUBACK

message.

QoS level 2 Exactly once delivery

Additional protocol flows above QoS level 1 ensure that duplicate

messages are not delivered to the receiving application. This is the highest

level of delivery, for use when duplicate messages are not acceptable.

There is an increase in network traffic, but it is usually acceptable because

of the importance of the message content.

 A message with QoS level 2 has a Message ID in the message header.

The table below shows the QoS level 2 protocol flow.

 Client Message and direction Broker

 QoS = 2

DUP = 0

Message ID = x

 PUBLISH

---------->

Action: Store message in database

 PUBREC

<----------

Message ID = x

Message ID = x

 PUBREL

---------->

Actions:

v Update database

v Publish message to subscribers

Action: Discard message

 PUBCOMP

<----------

Message ID = x

If a failure is detected, or after a defined time period, each part of the

protocol flow is retried with the DUP bit set. The additional protocol flows

ensure that the message is delivered to subscribers once only.

Because QoS1 and QoS2 indicate that messages must be delivered, the broker

stores messages in a database. If the broker has problems accessing this data,

messages might be lost. For more details, and actions you can take to reduce these

problems, see “Designing Telemetry applications” on page 25.

Assumptions for QoS levels 1 and 2:

End-user application support 59

In any network, it is possible for devices or communication links to fail. If this

happens, one end of the link might not know what is happening at the other end;

these are known as in doubt windows. In these scenarios assumptions have to be

made about the reliability of the devices and networks involved in message

delivery.

WebSphere MQ Telemetry Transport assumes that the client and broker are

generally reliable, and that the communications channel is more likely to be

unreliable. If the client device fails, it is typically a catastrophic failure, rather than

a transient one. The possibility of recovering data from the device is low. Some

devices have non-volatile storage, for example flash ROM. The provision of more

persistent storage on the client device protects the most critical data from some

modes of failure.

Beyond the basic failure of the communications link, the failure mode matrix

becomes complex, resulting in more scenarios than the specification for WebSphere

MQ Telemetry Transport can handle.

The time delay (retry interval) before resending a message that has not been

acknowledged is specific to the application, and is not defined by the protocol

specification.

WebSphere MQ Telemetry Transport message format

The message header for each WebSphere MQ Telemetry Transport command

message contains a fixed header. Some messages also require a variable header and

a payload. The format for each part of the message header is described in the

following topics:

v Fixed header

v Payload

v Variable header

WebSphere MQ Telemetry Transport fixed header:

The message header for each WebSphere MQ Telemetry Transport command

message contains a fixed header. The table below shows the fixed header format.

 bit 7 6 5 4 3 2 1 0

byte 1 Message Type DUP flag QoS level RETAIN

byte 2 Remaining Length

Byte 1

 Contains the Message Type and Flags (Dup, QoS level, and RETAIN)

fields.

Byte 2

 (At least one byte) contains the Remaining Length field.

The fields are described in the following sections. All data values are in big-endian

order: higher order bytes precede lower order bytes. A 16-bit word is presented on

the wire as Most Significant Byte (MSB), followed by Least Significant Byte (LSB).

Message Type:

Position: byte 1, bits 7-4.

60 End user Application Support

Represented as a 4-bit unsigned value. The enumerations for this version of the

protocol are shown in the table below.

 Mnemonic Enumeration Description

Reserved 0 Reserved

CONNECT 1 Client request to connect to Broker

CONNACK 2 Connect Acknowledgment

PUBLISH 3 Publish message

PUBACK 4 Publish Acknowledgment

PUBREC 5 Publish Received (assured delivery part 1)

PUBREL 6 Publish Release (assured delivery part 2)

PUBCOMP 7 Publish Complete (assured delivery part 3)

SUBSCRIBE 8 Client Subscribe request

SUBACK 9 Subscribe Acknowledgment

UNSUBSCRIBE 10 Client Unsubscribe request

UNSUBACK 11 Unsubscribe Acknowledgment

PINGREQ 12 PING Request

PINGRESP 13 PING Response

DISCONNECT 14 Client is Disconnecting

Reserved 15 Reserved

Flags:

The remaining bits of byte 1 contain the fields DUP, QoS, and RETAIN. The bit

positions are encoded to represent the flags as shown in the table below.

 Bit position Name Description

3 DUP Duplicate delivery

2-1 QoS Quality of Service

0 RETAIN RETAIN flag

DUP

 Position: byte 1, bit 3.

This flag is set when the client or broker attempts to re-deliver a PUBLISH

message. This applies to messages where the value of QoS is greater than

zero (0), and an acknowledgment is required. When the DUP bit is set, the

variable header includes a Message ID.

QoS

 Position: byte 1, bits 2-1.

This flag indicates the level of assurance for delivery of a PUBLISH

message. The QoS levels are shown in the table below.

 QoS value bit 2 bit 1 Description

0 0 0 At most once Fire and Forget <=1

1 0 1 At least once Acknowledged

delivery

>=1

End-user application support 61

QoS value bit 2 bit 1 Description

2 1 0 Exactly once Assured delivery =1

3 1 1 Reserved

RETAIN

 Position: byte 1, bit 0.

When set, the Retain flag indicates that the broker holds the message, and

sends it as an initial message to new subscribers to this topic. This means

that a new client connecting to the broker can quickly establish the current

number of topics. This is useful where publishers send messages on a

″report by exception″ basis, and it might be some time before a new

subscriber receives data on a particular topic. The data has a value of

retained or Last Known Good (LKG).

After sending a SUBSCRIBE message to one or more topics, a subscriber receives a

SUBACK message, followed by one message for each newly subscribed topic that

has a retained value. The retained value is published from the broker to the

subscriber with the Retain flag set and with the same QoS with which it was

originally published, and is therefore subject to the usual QoS delivery assurances.

The Retain flag is set in the message to the subscribers, to distinguish it from ″live″

data so that it is handled appropriately by the subscriber.

Because a broker might no longer hold a previously Retained PUBLISH message,

there is no guarantee that the subscriber will receive an initial Retained PUBLISH

message on a topic.

Remaining Length:

Position: byte 2.

Represents the number of bytes remaining within the current message, including

data in the variable header and the payload.

The variable length encoding scheme uses a single byte for messages up to 127

bytes long. Longer messages are handled as follows. Seven bits of each byte

encode the Remaining Length data, and the eighth bit indicates any following

bytes in the representation. Each byte encodes 128 values and a ″continuation bit″.

For example, the number 64 decimal is encoded as a single byte, decimal value 64,

hex 0x40. The number 321 decimal (=128x2 + 65) is encoded as two bytes, least

significant first. The first byte is 2+128 = 130. Note that the top bit is set to indicate

at least one following byte. The second byte is 65.

The protocol limits the number of bytes in the representation to a maximum of

four. This allows applications to send messages of up to 268 435 455 (256 MB).

The representation of this number on the wire is: 0xFF, 0xFF, 0xFF, 0x7F.

The table below shows the Remaining Length values represented by increasing

numbers of bytes.

 Digits From To

1 0 (0x00) 127 (0x7F)

2 128 (0x80, 0x01) 16 383 (0xFF, 0x7F)

3 16 384 (0x80, 0x80, 0x01) 2 097 151 (0xFF, 0xFF, 0x7F)

62 End user Application Support

Digits From To

4 2 097 152 (0x80, 0x80, 0x80, 0x01) 268 435 455 (0xFF, 0xFF, 0xFF, 0x7F)

The algorithm for encoding a decimal number (X) into the variable length

encoding scheme is as follows:

do

 digit = X MOD 128

 x = X DIV 128

 // if there are more digits to encode, set the top bit of this digit

 if (X> 0)

 digit = digit OR 0x80

 endif

 ’output’ digit

while (X> 0)

where MOD is the modulo operator (% in C), DIV is integer division (/ in C), and OR

is bit-wise or (| in C).

The algorithm for decoding the Remaining Length field is as follows:

multiplier = 1

 value = 0

 do

 digit = ’next digit from stream’

 value += (digit AND 127) * multiplier;

 multiplier *= 128;

 while ((digit AND 128) != 0);

where AND is the bit-wise and operator (& in C).

When this algorithm terminates, value contains the Remaining Length in bytes.

Remaining Length encoding is not part of the variable header. The number of

bytes used to encode the Remaining Length does not contribute to the value of the

Remaining Length. The variable length ″extension bytes″ are part of the fixed

header, not the variable header.

WebSphere MQ Telemetry Transport payload:

The following types of WebSphere MQ Telemetry Transport command message

have a payload in the message header:

CONNECT

The payload contains one or three UTF-8 encoded strings. The first string

uniquely identifies the client to the broker. The second string is the Will

topic, and the third string is the Will message. The second and third strings

are present only if the Will flag is set in the CONNECT Flags byte.

SUBSCRIBE

The payload contains a list of topic names to which the client can

subscribe, and the QoS level. These strings are UTF-encoded.

SUBACK

The payload contains a list of granted QoS levels. These are the QoS levels

at which the administrators for the broker have permitted the client to

subscribe to a particular Topic Name. Granted QoS levels are listed in the

same order as the topic names in the corresponding SUBSCRIBE message.

End-user application support 63

The payload part of a PUBLISH message contains application-specific data only.

No assumptions are made about the nature or content of the data, and this part of

the message is treated as a BLOB.

If you want an application to apply compression to the payload data, you need to

define in the application the appropriate payload flag fields to handle the

compression details. You cannot define application-specific flags in the fixed or

variable headers.

WebSphere MQ Telemetry Transport variable header:

The message header for some types of WebSphere MQ Telemetry Transport

command message contains a variable header. It resides between the fixed header

and the payload.

The format of the variable header fields are described in the following topics, in

the order in which they must appear in the header:

The variable length Remaining Length field is not part of the variable header. The

bytes of the Remaining Length field do not contribute to the byte count of the

Remaining Length value. This value only takes account of the variable header and

the payload. See Fixed header for more information.

v Protocol name

v Protocol version

v Connect flags

v Keep Alive timer

v Connect return code

v Topic name

v Message identifier

WebSphere MQ Telemetry Transport protocol name:

The protocol name is present in the variable header of a WebSphere MQ Telemetry

Transport CONNECT message. This field is a UTF-encoded string that represents

the protocol name MQIsdp, capitalized as shown.

WebSphere MQ Telemetry Transport protocol version:

The protocol version is present in the variable header of a CONNECT message.

The field is an 8-bit unsigned value that represents the revision level of the

protocol used by the client. The value of the Protocol version field for the current

version of the protocol, 3 (0x03), is shown in the table below.

 bit 7 6 5 4 3 2 1 0

Protocol Version

0 0 0 0 0 0 1 1

WebSphere MQ Telemetry Transport connect flags:

The Clean start, Will, Will QoS, and Retain flags are present in the variable header

of a CONNECT message.

Clean start flag:

64 End user Application Support

Position: bit 1 of the Connect flags byte.

Returns the client to a known, ″clean″ state with the broker. If the flag is set, the

broker discards any outstanding messages, deletes all subscriptions for the client,

and resets the Message ID to 1. The client proceeds without the risk of any data

from previous connections interfering with the current connection. The format of

the Clean start flag is shown in the table below.

 bit 7 6 5 4 3 2 1 0

Reserved Reserved Will Retain Will QoS Will

Flag

Clean

Start

Reserved

x x x x x x x

Bits 7, 6, and 0 of this byte are not used in the current version of the protocol.

They are reserved for future use.

Will flag:

Position: bit 2 of the Connect flags byte.

The Will message defines that a message is published on behalf of the client by the

broker when either an I/O error is encountered by the broker during

communication with the client, or the client fails to communicate within the Keep

Alive timer schedule. Sending a Will message is not triggered by the broker

receiving a DISCONNECT message from the client.

If the Will flag is set, the Will QoS and Will Retain fields must be present in the

Connect flags byte, and the Will Topic and Will Message fields must be present in

the payload.

The format of the Will flag is shown in the table below.

 bit 7 6 5 4 3 2 1 0

Reserved Reserved Will Retain Will QoS Will Flag Clean Start Reserved

x x x x x x x

Bits 7, 6, and 0 of this byte are not used in the current version of the protocol.

They are reserved for future use.

Will QoS:

Position: bits 4 and 3 of the Connect flags byte.

A connecting client specifies the QoS level in the Will QoS field for a Will message

that is sent in the event that the client is disconnected involuntarily. The Will

message is defined in the payload of a CONNECT message.

If the Will flag is set, the Will QoS field is mandatory, otherwise its value is

disregarded.

The value of Will QoS is 0 (0x00), 1 (0x01), or 2 (0x02). The Will QoS flag is shown

in the table below.

End-user application support 65

bit 7 6 5 4 3 2 1 0

Reserved Reserved Will Retain Will QoS Will Flag Clean Start Reserved

x x x 1 x x

Bits 7, 6, and 0 of this byte are not used in the current version of the protocol.

They are reserved for future use.

Will Retain flag:

Position: bit 5 of the Connect flags byte.

The Will Retain flag indicates whether or not broker should retain the Will

message which is published by the broker on behalf of the client in the event that

the client is disconnected unexpectedly.

The Will Retain flag is mandatory if the Will flag is set, otherwise, it is

disregarded. The format of the Will Retain flag is shown in the table below.

 bit 7 6 5 4 3 2 1 0

Reserved Reserved Will Retain Will QoS Will Flag Clean Start Reserved

x x x x 1 x x

Bits 7, 6, and 0 of this byte are not used in the current version of the protocol.

They are reserved for future use.

WebSphere MQ Telemetry Transport Keep Alive timer:

The Keep Alive timer is present in the variable header of a WebSphere MQ

Telemetry Transport CONNECT message.

The Keep Alive timer, measured in seconds, defines the maximum time interval

between messages received from a client. It enables the broker to detect that the

network connection to a client has dropped, without having to wait for the long

TCP/IP timeout. The client has a responsibility to send a message within each

Keep Alive time period. In the absence of a data-related message during the time

period, the client sends a PINGREQ message, which the broker acknowledges with

a PINGRESP message.

If the broker does not receive a message from the client within one and a half

times the Keep Alive time period (the client is allowed ″grace″ of half a time

period), it disconnects the client as if the client had sent a DISCONNECT message.

This action does not impact any of the client’s subscriptions. See “DISCONNECT

Disconnect notification” on page 71 for more details.

The Keep Alive timer is a 16-bit value that represents the number of seconds for

the time period. The actual value is application-specific, but a typical value is a

few minutes. The maximum value is approximately 18 hours. A value of zero (0)

means the client is not disconnected.

The format of the Keep Alive timer is shown in the table below. The ordering of

the 2 bytes of the Keep Alive Timer is MSB, then LSB (big-endian).

66 End user Application Support

bit 7 6 5 4 3 2 1 0

Keep Alive MSB

Keep Alive LSB

WebSphere MQ Telemetry Transport connect return code:

The connect return code is resent in the variable header of a WebSphere MQ

Telemetry Transport CONNACK message.

This field defines a one byte unsigned return code. The meanings of the values,

shown in the tables below, are specific to the message type. A return code of zero

(0) usually indicates success.

 Enumeration HEX Meaning

0 0x00 Connection Accepted

1 0x01 Connection Refused: unacceptable protocol version

2 0x02 Connection Refused: identifier rejected

3 0x03 Connection Refused: broker unavailable

4-255 Reserved for future use

 bit 7 6 5 4 3 2 1 0

Return Code

WebSphere MQ Telemetry Transport topic name:

The topic name is present in the variable header of a WebSphere MQ Telemetry

Transport PUBLISH message.

The topic name is the key that identifies the information channel to which payload

data is published. Subscribers use the key to identify the information channels on

which they want to receive published information.

The topic name is a UTF-encoded string. See “WebSphere MQ Telemetry Transport

and UTF-8” on page 84 for more information. Topic name has an upper length

limit of 32,767 characters.

WebSphere MQ Telemetry Transport message identifier:

The message identifier is present in the variable header of the following

WebSphere MQ Telemetry Transport messages: PUBLISH, PUBACK, PUBREC,

PUBREL, PUBCOMP, SUBSCRIBE, SUBACK, UNSUBSCRIBE, UNSUBACK.

The Message Identifier (Message ID) field is only present in messages where the

QoS bits in the fixed header indicate QoS levels 1 or 2. See Quality of Service

levels and flows for more information.

The Message ID is a 16-bit unsigned integer. It typically increases by exactly one

from one message to the next, but is not required to do so. This assumes that there

are never more than 65,535 messages ″in flight″ between one particular

client-broker pair at any time.

End-user application support 67

The ordering of the two bytes of the Message Identifier is MSB, then LSB

(big-endian).

Do not use Message ID 0. It is reserved as an invalid Message ID.

 bit 7 6 5 4 3 2 1 0

Message Identifier MSB

Message Identifier LSB

WebSphere MQ Telemetry Transport command messages

Follow the links below for details of the supported WebSphere MQ Telemetry

Transport command messages.

v “CONNACK Acknowledge connection request”

v “CONNECT Client requests a connection to a broker” on page 69

v “DISCONNECT Disconnect notification” on page 71

v “PINGREQ PING request” on page 71

v “PINGRESP PING response” on page 72

v “PUBACK Publish acknowledgment” on page 73

v “PUBCOMP Assured publish complete (part 3)” on page 73

v “PUBLISH Publish message” on page 74

v “PUBREC Assured publish received (part 1)” on page 76

v “PUBREL Assured Publish Release (part 2)” on page 77

v “SUBACK Subscription acknowledgment” on page 78

v “SUBSCRIBE Subscribe to named topics” on page 80

v “UNSUBACK Unsubscribe acknowledgment” on page 82

v “UNSUBSCRIBE Unsubscribe from named topics” on page 83

CONNACK Acknowledge connection request:

The CONNACK message is the message sent by the broker in response to a

CONNECT request from a client.

Fixed header:

The fixed header format is shown in the table below.

 bit 7 6 5 4 3 2 1 0

byte 1 Message type (2) DUP flag QoS flags RETAIN

0 0 1 0 x x x x

byte 2 Remaining Length (2)

0 0 0 0 0 0 1 0

The DUP, QoS and RETAIN flags are not used in the CONNACK message.

Variable header:

The variable header format is shown in the table below.

 Description 7 6 5 4 3 2 1 0

Topic Name Compression Response

68 End user Application Support

Description 7 6 5 4 3 2 1 0

byte 1 Reserved values.

Not used.

x x x x x x x x

Connect Return Code

byte 2 Return Code

The values for the one byte unsigned Connect return code field are shown in the

table below.

 Enumeration HEX Meaning

0 0x00 Connection Accepted

1 0x01 Connection Refused: unacceptable protocol version

2 0x02 Connection Refused: identifier rejected

3 0x03 Connection Refused: broker unavailable

4-255 Reserved for future use

Return code 2 (identifier rejected) is sent if the unique client identifier is not

between 1 and 23 characters in length.

Payload:

There is no payload.

CONNECT Client requests a connection to a broker:

When a TCP/IP socket connection is established between the client and the broker,

a protocol level session is required. It is assumed that the direction of connection is

client to broker, and that the client supports broker listener functionality.

Fixed header:

The fixed header format is shown in the table below.

 bit 7 6 5 4 3 2 1 0

byte 1 Message Type (1) DUP flag QoS level RETAIN

0 0 0 1 x x x x

byte 2 Remaining Length

The DUP, QoS, and RETAIN flags are not used in the CONNECT message.

Remaining Length is the length of the variable header (12 bytes) and the length of

the Payload. This can be a multibyte field.

Variable header:

An example of the format of the variable header is shown in the table below.

 Description 7 6 5 4 3 2 1 0

Protocol Name

End-user application support 69

Description 7 6 5 4 3 2 1 0

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (6) 0 0 0 0 0 1 1 0

byte 3 ’M’ 0 1 0 0 1 1 0 1

byte 4 ’Q’ 0 1 0 1 0 0 0 1

byte 5 ’I’ 0 1 0 0 1 0 0 1

byte 6 ’s’ 0 1 1 1 0 0 1 1

byte 7 ’d’ 0 1 1 0 0 1 0 0

byte 8 ’p’ 0 1 1 1 0 0 0 0

Protocol Version Number

byte 9 Version (3) 0 0 0 0 0 0 1 1

Connect Flags

byte 10 Will RETAIN (0)

Will QoS (01)

Will flag (1)

Clean Start (1)

x x 0 0 1 1 1 x

Keep Alive timer

byte 11 Keep Alive MSB (0) 0 0 0 0 0 0 0 0

byte 12 Keep Alive LSB (10) 0 0 0 0 1 0 1 0

Clean Start flag

Set (1).

Keep Alive timer

Set to 10 seconds (0x000A).

Will message

v Will flag is set (1)

v Will QoS field is 1

v Will RETAIN flag is clear (0)

Payload:

The payload of the CONNECT message contains one or three UTF-encoded

strings. If the Will flag is set in the Connect flags byte in the variable header, the

payload must contain all three UTF-encoded strings:

Client Identifier

 The first UTF-encoded string. The Client Identifier (Client ID) is between 1

and 23 characters long, and uniquely identifies the client to the broker. It

must be unique across all clients connecting to a single broker, and is the

key in handling Message IDs messages with QoS levels 1 and 2. If the

Client ID contains more than 23 characters, the broker responds to the

CONNECT message with a CONNACK return code 2: Identifier Rejected.

Will Topic

 The second UTF-encoded string. The Will Message is published to the Will

Topic. The QoS level is defined by the Will QoS field, and the RETAIN

status is defined by the Will RETAIN flag in the variable header.

Will Message

70 End user Application Support

The third UTF-encoded string. The Will Message defines the content of the

message that is published to the Will Topic if the client is unexpectedly

disconnected.

Although the Will Message is UTF-encoded in the CONNECT message,

when it is published to the Will Topic only the bytes of the message are

sent, not the first two length bytes. The message sent when the broker

executes the Will Message is raw ASCII, not UTF-encoded.

Response:

The broker sends a CONNACK message in response to a CONNECT message

from a client.

If the client does not receive a CONNACK message from the broker within a

″reasonable″ amount of time, the client closes the TCP/IP socket connection, and

restarts the session by opening a socket to the broker and issuing a CONNECT

message. A ″reasonable″ amount of time depends on the type of application and

the communications infrastructure.

DISCONNECT Disconnect notification:

The DISCONNECT message is sent from the client to the broker to indicate that it

is about to close its TCP/IP connection. This allows for a clean disconnection,

rather than just dropping the line.

Sending the DISCONNECT message does not affect existing subscriptions. They

are persistent until they either explicitly unsubscribed, or if there is a clean start.

The broker retains QoS 1 and QoS 1 messages for topics to which the client is

unsubscribed until the client reconnects. QoS 0 messages are not retained, since

they are delivered on a best efforts basis.

Fixed header:

The fixed header format is shown in the table below.

 bit 7 6 5 4 3 2 1 0

byte 1 Message Type (14) DUP flag QoS level RETAIN

1 1 1 0 x x x x

byte 2 Remaining Length (0)

0 0 0 0 0 0 0 0

The DUP, QoS, and RETAIN flags are not used in the DISCONNECT message.

Payload:

There is no payload.

Variable header:

There is no variable header.

PINGREQ PING request:

End-user application support 71

The PINGREQ message is an ″are you alive″ message that is sent from or received

by a connected client.

Fixed header:

The table below shows the fixed header format.

 bit 7 6 5 4 3 2 1 0

byte 1 Message Type (12) DUP flag QoS level RETAIN

1 1 0 0 x x x x

byte 2 Remaining Length (0)

0 0 0 0 0 0 0 0

The DUP, QoS, and RETAIN flags are not used.

Variable Header:

There is no variable header.

Payload:

There is no payload.

Response:

The response to a PINGREQ message is a PINGRESP message.

PINGRESP PING response:

A PINGRESP message is the response to a PINGREQ message and means ″yes I

am alive″. Keep Alive messages flow in either direction, sent either by a connected

client or the broker.

Fixed header:

The table below shows the fixed header format:

 bit 7 6 5 4 3 2 1 0

byte 1 Message Type (13) DUP flag QoS level RETAIN

1 1 0 1 x x x x

byte 2 Remaining Length (0)

0 0 0 0 0 0 0 0

The DUP, QoS, and RETAIN flags are not used.

Payload:

There is no payload.

Variable header:

There is no variable header.

72 End user Application Support

PUBACK Publish acknowledgment:

A PUBACK message is the response to a PUBLISH message with QoS level 1. A

PUBACK message is sent by a broker in response to a PUBLISH message from a

publishing client, and by a subscriber in response to a PUBLISH message from the

broker.

Fixed header:

The table below shows the format of the fixed header.

 bit 7 6 5 4 3 2 1 0

byte 1 Message Type (4) DUP flag QoS level RETAIN

0 1 0 0 x x x x

byte 2 Remaining Length (2)

0 0 0 0 0 0 1 0

QoS level

Not used.

DUP flag

Not used.

RETAIN flag

Not used.

Remaining Length field

This is the length of the variable header (2 bytes). It can be a multibyte

field.

Variable header:

Contains the Message Identifier (Message ID) for the PUBLISH message that is

being acknowledged. The table below shows the format of the variable header.

 bit 7 6 5 4 3 2 1 0

byte 1 Message ID MSB

byte 2 Message ID LSB

Payload:

There is no payload.

Actions:

When the client receives the PUBACK message, it discards the original message,

because it is also received (and logged) by the broker.

PUBCOMP Assured publish complete (part 3):

This message is either the response from the broker to a PUBREL message from a

publisher, or the response from a subscriber to a PUBREL message from the broker.

It is the fourth and last message in the QoS 2 protocol flow.

Fixed header:

End-user application support 73

The table below shows the fixed header format.

 bit 7 6 5 4 3 2 1 0

byte 1 Message Type (7) DUP flag QoS level RETAIN

0 1 1 1 x x x x

byte 2 Remaining Length (2)

0 0 0 0 0 0 1 0

QoS level

Not used.

DUP flag

Not used.

RETAIN flag

Not used.

Remaining Length field

The length of the variable header (2 bytes). It can be a multibyte field.

Variable header:

The variable header contains the same Message ID as the acknowledged PUBREL

message.

 bit 7 6 5 4 3 2 1 0

byte 1 Message ID MSB

byte 2 Message ID LSB

Payload:

There is no payload.

Actions:

When the client receives a PUBCOMP message, it discards the original message

because it has been delivered, exactly once, to the broker.

PUBLISH Publish message:

A PUBLISH message is sent by a client to a broker for distribution to interested

subscribers. Each PUBLISH message is associated with a topic name (also known

as the Subject or Channel). This is a hierarchical name space that defines a

taxonomy of information sources for which subscribers can register an interest. A

message that is published to a specific topic name is delivered to connected

subscribers for that topic.

To maintain symmetry, if a client subscribes to one or more topics, any message

published to those topics are sent by the broker to the client as a PUBLISH

message.

Fixed header:

The table below shows the fixed header format.

74 End user Application Support

bit 7 6 5 4 3 2 1 0

byte 1 Message type (3) DUP flag QoS level RETAIN

0 0 1 1 0 0 1 0

byte 2 Remaining Length

QoS level

Set to 1.

DUP flag

Set to zero (0). This means that the message is being sent for the first time.

 For messages with QoS level 1 or level 2 that are being re-sent because a

failure has been detected, the DUP bit is set to 1. This indicates to the

broker that the message might duplicate a message that has already been

received. The significance of this information to the broker depends upon

the QoS level. The DUP bit is not used for messages with QoS level 0.

RETAIN flag

Set to zero. This means do not retain.

Remaining Length field

The length of the variable header plus the length of the payload. It can be

a multibyte field.

Variable header:

The variable header contains the following fields:

Topic name

A UTF-encoded string.

Message ID

Present for messages with QoS level 1 and QoS level 2.

 Typically, the protocol library is responsible for generating the Message ID

and passing it back to the publishing application, possibly as a return

handle. This approach avoids the risk of multiple applications, or

publishing threads, running on a single client generating duplicate

Message IDs.

A Message ID must not be used in the variable header for messages with

QoS level 0.

The Message ID is a 16-bit unsigned integer, which typically increases by

exactly one from one message to the next, but is not required to do so. The

ordering of the 2 bytes of the Message Identifier is MSB, then LSB

(big-endian).

Message ID 0 (that is, 0x0000) is reserved as an invalid Message ID, and

must not be used.

The table below shows an example variable header for a PUBLISH message.

 Field Value

Topic Name: ″a/b″

QoS level 1

Message ID: 10

End-user application support 75

The format of the variable header in this case is shown in the table below.

 Description 7 6 5 4 3 2 1 0

Topic Name

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (3) 0 0 0 0 0 0 1 1

byte 3 ’a’ (0x61) 0 1 1 0 0 0 0 1

byte 4 ’/’ (0x2F) 0 0 1 0 1 1 1 1

byte 5 ’b’ (0x62) 0 1 1 0 0 0 1 0

Message Identifier

byte 6 Message ID MSB (0) 0 0 0 0 0 0 0 0

byte 7 Message ID LSB (10) 0 0 0 0 1 0 1 0

Payload:

Contains the data for publishing. The content and format of the data is application

specific. The Remaining Length field in the fixed header includes both the variable

header length and the payload length.

Response:

The response to a PUBLISH message depends on the QoS level. The table below

shows the expected responses.

 QoS Level Expected response

QoS 0 None

QoS 1 PUBACK

QoS 2 PUBREC

Actions:

PUBLISH messages can be sent either from a publisher to the broker, or from the

broker to a subscriber. The action of the recipient when it receives a message

depends on the QoS level of the message:

QoS 0 Make the message available to any interested parties.

QoS 1 Log the message to persistent storage, make it available to any interested

parties, and return a PUBACK message to the sender.

QoS 2 Log the message to persistent storage, do not make it available to

interested parties yet, and return a PUBREC message to the sender.

If the broker receives the message, interested parties means subscribers to the topic

of the PUBLISH message. If a subscriber receives the message, interested parties

means the application on the client which has subscribed to one or more topics,

and is waiting for a message from the broker.

PUBREC Assured publish received (part 1):

A PUBREC message is the response to a PUBLISH message with QoS level 2. It is

the second message of the QoS level 2 protocol flow. A PUBREC message is sent

76 End user Application Support

by the broker in response to a PUBLISH message from a publishing client, or by a

subscriber in response to a PUBLISH message from the broker.

Fixed header:

The table below shows the fixed header format.

 bit 7 6 5 4 3 2 1 0

byte 1 Message Type (5) DUP flag QoS level RETAIN

0 1 0 1 x x x x

byte 2 Remaining Length (2)

0 0 0 0 0 0 1 0

QoS level

Not used.

DUP flag

Not used.

RETAIN flag

Not used.

Remaining Length field

The length of the variable header (2 bytes). It can be a multibyte field.

Variable header:

The variable header contains the Message ID for the acknowledged PUBLISH. The

table below shows the format of the variable header.

 bit 7 6 5 4 3 2 1 0

byte 1 Message ID MSB

byte 2 Message ID LSB

Payload:

There is no payload.

Actions:

When it receives a PUBREC message, the recipient sends a PUBREL message to the

sender with the same Message ID as the PUBREC message.

PUBREL Assured Publish Release (part 2):

A PUBREL message is the response either from a publisher to a PUBREC message

from the broker, or from the broker to a PUBREC message from a subscriber. It is

the third message in the QoS 2 protocol flow.

Fixed header:

The table below shows the fixed header format.

 bit 7 6 5 4 3 2 1 0

byte 1 Message Type (6) DUP flag QoS level RETAIN

End-user application support 77

bit 7 6 5 4 3 2 1 0

0 1 1 0 x x x x

byte 2 Remaining Length (2)

0 0 0 0 0 0 1 0

QoS level

Not used.

DUP flag

Not used.

RETAIN flag

Not used.

Remaining Length field

The length of the variable header (2 bytes). It can be a multibyte field.

Variable header:

The variable header contains the same Message ID as the PUBREC message that is

being acknowledged. The table below shows the format of the variable header.

 bit 7 6 5 4 3 2 1 0

byte 1 Message ID MSB

byte 2 Message ID LSB

Payload:

There is no payload.

Actions:

When the broker receives a PUBREL message from a publisher, the broker makes

the original message available to interested subscribers, and sends a PUBCOMP

message with the same Message ID to the publisher. When a subscriber receives a

PUBREL message from the broker, the subscriber makes the message available to

the subscribing application and sends a PUBCOMP message to the broker.

SUBACK Subscription acknowledgment:

A SUBACK message is sent by the broker to the client to confirm receipt of a

SUBSCRIBE message.

A SUBACK message contains a list of granted QoS levels. These are the levels at

which the administrators for the broker permit the client to subscribe to a specific

topic name. In the current version of the protocol, the broker always grants the

QoS level requested by the subscriber. The order of granted QoS levels in the

SUBACK message matches the order of the topic Nnames in the corresponding

SUBSCRIBE message.

Fixed header:

The table below shows the format of the fixed header.

78 End user Application Support

bit 7 6 5 4 3 2 1 0

byte 1 Message Type (9) DUP flag QoS level RETAIN

1 0 0 1 x x x x

byte 2 Remaining Length

QoS level

Not used.

DUP flag

Not used.

RETAIN flag

Not used.

Remaining Length field

The length of the variable header. It can be a multibyte field.

Variable header:

The variable header contains the Message ID for the SUBSCRIBE message that is

being acknowledged. The table below shows the format of the variable header.

 bit 7 6 5 4 3 2 1 0

byte 1 Message ID MSB

byte 2 Message ID LSB

Payload:

The payload contains a vector of granted QoS levels. Each level corresponds to a

topic name in the corresponding SUBSCRIBE message. The order of QoS levels in

the SUBACK message matches the order of topic name and Requested QoS pairs

in the SUBSCRIBE message. The Message ID in the variable header enables you to

match SUBACK messages with the corresponding SUBSCRIBE messages.

The table below shows the Granted QoS field encoded in a byte.

 bit 7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved QoS level

x x x x x x

The upper 6 bits of this byte are not used in the current version of the protocol.

They are reserved for future use.

The table below shows an example payload.

 Granted QoS 0

Granted QoS 2

The table below shows the format of this payload.

 Description 7 6 5 4 3 2 1 0

Requested QoS

End-user application support 79

Description 7 6 5 4 3 2 1 0

byte 1 Granted QoS (0) x x x x x x 0 0

Granted QoS

byte 2 Granted QoS (2) x x x x x x 1 0

SUBSCRIBE Subscribe to named topics:

The SUBSCRIBE message allows a client to register an interest in one or more topic

names with the broker. Messages published to these topics are delivered from the

broker to the client as PUBLISH messages. The SUBSCRIBE message also specifies

the QoS level at which the subscriber wants to receive published messages.

Fixed header:

The table below shows the fixed header format.

 bit 7 6 5 4 3 2 1 0

byte 1 Message Type (8) DUP flag QoS level RETAIN

1 0 0 0 0 0 1 x

byte 2 Remaining Length

QoS level

SUBSCRIBE messages use QoS level 1 to acknowledge multiple

subscription requests. The corresponding SUBACK message is identified by

matching the Message ID. This also handles SUBSCRIBE messages retries

in the same way as PUBLISH messages.

DUP flag

In this example the DUP flag is set to zero (0) to indicate that the message

is being sent for the first time. If this message is being re-sent because a

SUBACK message has not arrived after a specified timeout period, the

DUP bit is set to indicate to the broker that it might be a duplicate of a

message already received.

RETAIN flag

Not used.

Remaining Length field

The length of the payload. It can be a multibyte field.

Variable header:

The variable header contains a Message ID because a SUBSCRIBE message has a

QoS level of 1.

Typically, the protocol library generates the Message ID, and passes it back to the

publishing application, for example as a return handle. This prevents multiple

applications, or multiple publishing threads, running on a single client from

generating duplicate Message IDs.

Message ID 0 (0x0000) is reserved as an invalid Message ID, and must not be used.

The Message ID is a 16-bit unsigned integer, which typically increases by exactly

one from one message to the next, but is not required to do so. The two bytes of

the Message ID are ordered as MSB, followed by LSB (big-endian).

80 End user Application Support

The table below shows an example format for the variable header with a Message

ID of 10.

 Description 7 6 5 4 3 2 1 0

Message Identifier

byte 1 Message ID MSB (0) 0 0 0 0 0 0 0 0

byte 2 Message ID LSB (10) 0 0 0 0 1 0 1 0

Payload:

The payload of a SUBSCRIBE message contains a list of topic names to which the

client wants to subscribe, and the QoS level at which the client wants to receive the

messages. The strings are UTF-encoded, and the QoS level occupies 2 bits of a

single byte. These topic/QoS pairs are packed contiguously as shown in the

example payload in the table below.

 Topic name ″a/b″

Requested QoS 1

Topic name ″c/d″

Requested QoS 2

Topic names in a SUBSCRIBE message are not compressed.

The format of the example payload is shown in the table below.

 Description 7 6 5 4 3 2 1 0

Topic name

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (3) 0 0 0 0 0 0 1 1

byte 3 ’a’ (0x61) 0 1 1 0 0 0 0 1

byte 4 ’/’ (0x2F) 0 0 1 0 1 1 1 1

byte 5 ’b’ (0x62) 0 1 1 0 0 0 1 0

Requested QoS

byte 6 Requested QoS (1) x x x x x x 0 1

Topic Name

byte 7 Length MSB (0) 0 0 0 0 0 0 0 0

byte 8 Length LSB (3) 0 0 0 0 0 0 1 1

byte 9 ’c’ (0x63) 0 1 1 0 0 0 1 1

byte 10 ’/’ (0x2F) 0 0 1 0 1 1 1 1

byte 11 ’d’ (0x64) 0 1 1 0 0 1 0 0

Requested QoS

byte 12 Requested QoS (2) x x x x x x 1 0

Assuming that the requested QoS level is granted, the client receives PUBLISH

messages at less than or equal to this level, depending on the QoS level of the

original message from the publisher. For example, if a client has a QoS level 1

subscription to a particular topic, then a QoS level 0 PUBLISH message to that

End-user application support 81

topic is delivered to the client at QoS level 0. A QoS level 2 PUBLISH message to

the same topic is downgraded to QoS level 1 for delivery to the client.

A corollary to this is that subscribing to a topic at QoS level 2 is equivalent to

saying ″I would like to receive messages on this topic at the QoS at which they are

published″.

The Requested QoS field is encoded in the byte following each UTF-encoded topic

name as shown in the table below.

 bit 7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved QoS level

x x x x x x

The upper 6 bits of this byte are not used in the current version of the protocol.

They are reserved for future use.

Response:

When it receives a SUBSCRIBE message from a client, the broker responds with a

SUBACK message.

UNSUBACK Unsubscribe acknowledgment:

The UNSUBACK message is sent by the broker to the client to confirm receipt of

an UNSUBSCRIBE message.

Fixed header:

The table below shows the fixed header format.

 bit 7 6 5 4 3 2 1 0

byte 1 Message Type (11) DUP flag QoS level RETAIN

1 0 1 1 x x x x

byte 2 Remaining length (2)

0 0 0 0 0 0 1 0

QoS level

Not used.

DUP flag

Not used.

RETAIN flag

Not used.

Remaining Length

The length of the Variable Header (2 bytes).

Variable header:

The variable header contains the Message ID for the UNSUBSCRIBE message that

is being acknowledged. The table below shows the format of the variable header.

82 End user Application Support

bit 7 6 5 4 3 2 1 0

byte 1 Message ID MSB

byte 2 Message ID LSB

Payload:

There is no payload.

UNSUBSCRIBE Unsubscribe from named topics:

An UNSUBSCRIBE message is sent by the client to the broker to unsubscribe from

named topics.

Fixed header:

The table below shows an example fixed header format.

 bit 7 6 5 4 3 2 1 0

byte 1 Message Type (10) DUP flag QoS level RETAIN

1 0 1 0 0 0 1 x

byte 2 Remaining Length

QoS level

The level of QoS is 1 to acknowledge multiple unsubscribe requests. The

corresponding UNSUBACK message is identified by the Message ID.

Retries are handled in the same way as PUBLISH messages.

DUP flag

In this example the DUP flag is set to zero (0) to indicate that the message

is being sent for the first time.

 If this message is being re-sent because a SUBACK message has not

arrived after a specified timeout period, the DUP bit is set to indicate to

the broker that it might be a duplicate of a message already received.

RETAIN flag

Not used.

Remaining Length

This is the length of the Payload. It can be a multibyte field.

Variable header:

The variable header contains a Message ID because an UNSUBSCRIBE message

has a QoS level of 1.

Typically, the protocol library generates the Message ID, and passes it back to the

publishing application, for example as a return handle. This prevents multiple

applications, or multiple publishing threads, running on a single client from

generating duplicate Message IDs.

Message ID 0 (0x0000) is reserved as an invalid Message ID, and must not be used.

The Message ID is a 16-bit unsigned integer, which typically increases by exactly

one from one message to the next, but is not required to do so. The two bytes of

the Message ID are ordered as MSB, followed by LSB (big-endian).

End-user application support 83

The table below shows an example format for the variable header with a Message

ID of 10.

 Description 7 6 5 4 3 2 1 0

Message Identifier

byte 1 Message ID MSB (0) 0 0 0 0 0 0 0 0

byte 2 Message ID LSB (10) 0 0 0 0 1 0 1 0

Payload:

The client unsubscribes from the list of topics named in the payload. The strings

are UTF-encoded and are packed contiguously. Topic names in a UNSUBSCRIBE

message are not compressed. The table below shows an example payload.

 Topic Name ″a/b″

Topic Name ″c/d″

The table below shows the format of this payload.

 Description 7 6 5 4 3 2 1 0

Topic Name

byte 1 Length MSB (0) 0 0 0 0 0 0 0 0

byte 2 Length LSB (3) 0 0 0 0 0 0 1 1

byte 3 ’a’ (0x61) 0 1 1 0 0 0 0 1

byte 4 ’/’ (0x2F) 0 0 1 0 1 1 1 1

byte 5 ’b’ (0x62) 0 1 1 0 0 0 1 0

Topic Name

byte 6 Length MSB (0) 0 0 0 0 0 0 0 0

byte 7 Length LSB (3) 0 0 0 0 0 0 1 1

byte 8 ’c’ (0x63) 0 1 1 0 0 0 1 1

byte 9 ’/’ (0x2F) 0 0 1 0 1 1 1 1

byte 10 ’d’ (0x64) 0 1 1 0 0 1 0 0

Response:

The broker sends an UNSUBACK to a client in response to an UNSUBSCRIBE

message.

WebSphere MQ Telemetry Transport and UTF-8

UTF-8 is an efficient encoding of Unicode character-strings that optimizes the

encoding of ASCII characters in support of text-based communications.

The WebSphere MQ Telemetry Transport protocol uses a subset of UTF-8. Only

single byte (non-extended) characters are supported.

The UTF string format is shown in the table below.

84 End user Application Support

bit 7 6 5 4 3 2 1 0

byte 1 Message Length MSB

byte 2 Message Length LSB

bytes 3 ... Encoded Character Data

Message Length is the number of bytes of encoded string characters, not the

number of characters. For ASCII strings, however, these are the same. The format

of encoded characters for ASCII codes 0x01 to 0x7F are shown in the table below.

 bit 7 6 5 4 3 2 1 0

0 ASCII code of character

For example, the ASCII text string OTWP is encoded in UTF-8 as shown in the

table below.

 bit 7 6 5 4 3 2 1 0

byte 1 Message Length MSB (0x00)

0 0 0 0 0 0 0 0

byte 2 Message Length LSB (0x04)

0 0 0 0 0 1 0 0

byte 3 ’O’ (0x4F)

0 1 0 0 1 1 1 1

byte 4 ’T’ (0x54)

0 1 0 1 0 1 0 0

byte 5 ’W’ (0x57)

0 1 0 1 0 1 1 1

byte 6 ’P’ (0x50)

0 1 0 1 0 0 0 0

The Java writeUTF() and readUTF() data stream methods use this format.

WebSphere MQ Web Services Transport

Clients that use the WebSphere MQ Web Services Transport define messages in

XML and use the standardized HTTP protocol running over TCP/IP.

To use the WebSphere MQ Web Services Transport, you must deploy a message

flow that contains an HTTPInput, HTTPRequest, SOAPInput, or SOAPRequest

node, or a SOAPAsyncRequest and SOAPAsyncResponse node pair to your broker.

If this message flow sends output messages to other WebSphere MQ Web Services

Transport applications, it must also include a HTTPReply or SOAPReply node.

Applications that connect using WebSphere MQ Web Services Transport and HTTP

use predominantly the point-to-point model.

The following built-in nodes are provided to support this protocol:

v HTTPInput

v HTTPReply

End-user application support 85

v HTTPRequest

v SOAPInput

v SOAPReply

v SOAPRequest

v SOAPAsyncRequest

v SOAPAsyncResponse

WebSphere Broker JMS Transport

Use the WebSphere Broker JMS Transport to send and receive JMS messages.

The JMS messages must conform to the Java Message Service Specification, version

1.1.

To use the WebSphere Broker JMS Transport, you must deploy a message flow that

contains a JMSInput node or a JMSOutput node. You can also include a

JMSMQTransform node or an MQJMSTransform node.

The following topics contain information about JMS, JMS messages, and JMS

messages in WebSphere Message Broker:

v “JMS message structure” on page 87

v “JMS message types” on page 88

v “Representation of messages across the JMS Transport” on page 90

v “JMS message as input” on page 91

v “JMS message for output” on page 96

v “JNDI administered objects” on page 97

For information about the JMS transport, configurable properties for the JMS

nodes, and troubleshooting, look at the following topics:

v “JMS provision” on page 98

v “JMS brokering” on page 98

– “JMS Transactionality” on page 98

– “JMS message selector” on page 100

– “JMS properties for application communication models” on page 101

– “JMS message domain properties” on page 102
v “Troubleshooting JMS nodes” on page 102

The following sample is provided to help you start using the WebSphere Broker

JMS Transport:

v JMS Nodes sample

You can view samples only when you use the information center that is integrated

with the Message Brokers Toolkit.

86 End user Application Support

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.jmsnode.res

JMS message structure

The following figure depicts the JMS message structure:

Header

Properties

Payload

JMSDestination
JMSDeliveryMode
JMSMessageID
JMSTimestamp
JMSExpiration
JMSRedelivered
JMSPriority
JMSReplyTo
JMSCorrelationID
JMSType

Header

A header must be present in every JMS message, and it is assigned automatically.

Most of the values in the header are set by the JMS provider when the message is

put to a JMS destination. Some values can be declared by the JMS client when it

creates a JMS session, or when it creates the message consumer or producer; for

example, JMSDeliveryMode, JMSExpiration, JMSReplyTo, and JMSCorrelationID are

created when the JMS client creates a JMS session or creates the message consumer

or producer.

The data elements of each header comprise name-value pairs and they can be any

of the Java following types: Boolean, byte, short, char, long, int, float, double,

string or byte[].

Properties

The properties are optional and can be divided into the following subsections:

Application related
properties

JMS provider related
properties

Standard properties

v Application related properties

End-user application support 87

A Java application can assign application related properties, and these are set

before the message is delivered. The property names of the application are

meaningful only to the sending and receiving applications.

v Provider related properties

Every JMS provider can define proprietary properties that can be set either by

the client or automatically by the provider. Provider related properties are

prefixed with JMS_ followed by the vendor name and the specific property

name. For example, the WebSphere MQ JMS client sets the provider property to

be JMS_IBM_MsgType.

v Standard properties

These properties are set by the JMS provider when a message is sent. The JMS

provider vendor can choose to not support any standard properties, to support

some standard properties, or to support all standard properties. Standard

property names start with JMSX; for example: JMSXUserid or

JMSXDeliveryCount.

The properties are handled as name-value pairs and they can be any of the Java

following types: Boolean, byte, short, char, long, int, float, double, string or byte[].

Payload

The payload type defines the JMS message. It can be one of the six JMS message

types that are described in “JMS message types.”

JMS does not define a wire format. The Java Message Service Specification, version

1.1 describes the physical representation of how a message is structured.

JMS message types

JMS defines six message interface types; a base message type and five subtypes.

The message types are defined according to the type of the message payload, where

the payload is the body of a message that holds the content. JMS specifies only the

interface and does not specify the implementation. This allows for vendor specific

implementation and transportation of messages while using a common interface.

The following table describes the six message types:

 Message type Description

Message The base class. This message type is used for event notification and does

not have a payload.

BytesMessage The payload is stored as an array of bytes. This message type is useful for

exchanging data in an application’s native format and when JMS is used

as a transport between two systems, where the JMS client does not know

the message payload type.

TextMessage Data is stored as a string. This message type is useful for exchanging

simple text messages and for more complex character data, such as XML

documents.

88 End user Application Support

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html

StreamMessage A Stream message is a sequence of primitive Java types. The message

object keeps track of the order and the types of these primitives within

the stream. Formal conversion rules apply; for example, an exception is

thrown if a JMS application tries to read a double value as a short value.

Refer to the Java Message Service Specification, version 1.1 for a full list

of the conversion rules.

21ABCDEFGH32.345 is an example of a StreamMessage payload. It consists

of the following three fields:

v an Integer, 21

v a String, ABCDEFGH

v a Float, 32.345

If the data structure is unknown, the generic method readObject() can be

used to return the next object in the stream. If the structure of the data is

known, the JMS client can be specific about the type of object being

accessed.

MapMessage The payload of a MapMessage is stored as a set of name-value pairs. The

name is defined as a string and the value is typed. The MapMessage is

useful for delivering keyed data that can change from one message to the

next.

NumberOfCopies:5 is an example of a MapMessage payload, where

NumberOfCopies is the key and 5 is the value.

Data can be accessed by using getMapNames(), which returns a Java

Enumeration object. It is possible to iterate through the MapMessage by

using hasMoreElements() to retrieve the mapped name-value pairs.

ObjectMessage The Object message carries a serializable Java Object as its payload. It is

useful for exchanging Java objects.

End-user application support 89

http://java.sun.com/products/jms/docs.html

Representation of messages across the JMS Transport

The following figure depicts the JMS message tree that is used by the JMSInput

and JMSOutput nodes:

Root

Properties

Message
_MetaData

JMS Transport

Transport_Folders

Application
_Properties

Provider
_Properties

Standard
_Properties

Header
_Values

JMSDestination
JMSDeliveryMode
JMSExpiration
JMSPriority
JMSTimeStamp
JMSMessageID
JMSCorrelationID
JMSReplyTo
JMSType
JMSRedelivered

Variable by
Application

Variable by
JMS Provider
All begin with
JMS_<Vendor Name>

JMSXUserID
JMSXAppID
JMSXDeliveryCount
JMSXGroupID
JMSXGroupSeq

Payload
Type

One of:

BLOB
XML
XMLNS
XMLNSC
MRM
jms.map
jms.stream
MIME
IDOC

Body
(last child of root)

JMSTransport

v Header_Values subfolder:

This subfolder is mandatory and is always created.

JMS message properties are optional. If they are present in input messages, they

are stored in the appropriate property subfolder.

v Properties subfolders:

JMS message properties are optional. If present in the message, they are stored

in the appropriate properties subfolder.

v Message_MetaData subfolder:

This subfolder is included in order to preserve the payload type of the JMS

message. It is used by the JMSOutput node when creating a JMS message. The

payload type can be one of the following values:

 Message type Payload values

Base JMS message with no payload jms_none

TextMessage jms_text

BytesMessage jms_bytes

MapMessage jms_map

StreamMessage jms_stream

ObjectMessage jms_object

Body

90 End user Application Support

The message payload is stored in the body folder, which is the last child of Root.

The payload is transferred by using one of the following message domain parsers:

v XML

v XMLNS

v XMLNSC

v BLOB

v JMSMap

v JMSStream

v MRM

v MIME

v IDOC

JMS message as input

The JMS message is a Java object and therefore it is not possible to parse the

message as a bit stream. When the message is received, the header data, property

data, and payload data are extracted by using the JMS API. For information on the

header, properties, and payload of JMS messages, refer to “JMS message structure”

on page 87.

The following topics describe how the different parts of the JMS message are

obtained, and how the message is parsed:

v “JMS input message header and property data”

v “JMS Message payload” on page 93

v “JMS message payload and appropriate parser” on page 94

v “Order of precedence for deriving the message domain” on page 95

JMS input message header and property data:

Header data

This section describes how the JMSInput node obtains header and property data

from JMS messages.

The JMSInput node extracts header data from messages by using JMS API

methods. Header data is stored as name-value pairs in the Header_Values folder.

The API methods return the value; for example, to get the value for the header

field JMSTimestamp, the JMSInput node uses the getJMSTimestamp() method. A

similar method is provided for each of the following fixed header fields:

v JMSDestination

v JMSDeliveryMode

v JMSExpiration

v JMSPriority

v JMSTimeStamp

v JMSMessageID

v JMSCorrelationID

v JMSReplyTo

v JMSType

v JMSRedelivered

Property data

In a similar way to how the header data is obtained, the JMSInput node extracts

property data from messages by using JMS API methods. Property data is stored

End-user application support 91

as name-value pairs in the properties folders. The API method returns a value for

every property name with which it is supplied.

XML representation of header and property data

The JMSInput node uses the header and property data to create an XML

representation of the JMSTransport folders. The node passes the XML data to the

JMSTransport parser as a byte array. The byte array is then used to populate or to

refresh the elements in the message tree. The JMSTransport parser is a new parser

type.

Preservation of Java type

A scheme is not required to preserve knowledge of the Java type because the

header value Java types are fixed and known. The JMS message properties are

optional, therefore a scheme is required to preserve the Java type of the property

values. The scheme used is that which is implemented by the WebSphere MQ JMS

client and the Real-timeInput node.

Java type information is represented as a metadata in the form of a keyword

dt=’DataType’where Datatype is a string. The Java type is passed in the XML as

part of the element name <ElementName dt=’DataType’>Value</ElementName>.

Datatype can be any of the following values:

 Datatype value Definition

String Any sequence of characters, excluding < and &

Boolean The character 0 or 1, where 1 is equal to ″true″

bin.hex Hexadecimal digits representing octets

I1 A number, expressed using the digits 0..9, with optional sign (no

fractions or exponent).

Must lie in the range -128 to 127 inclusive.

I2 A number, expressed using the digits 0..9, with optional sign (no

fractions or exponent).

Must lie in the range -32768 to 32767 inclusive.

I4 A number, expressed using the digits 0..9, with optional sign (no

fractions or exponent).

Must lie in the range -2147483648 to 2147483647 inclusive.

I8 A number, expressed using the digits 0..9, with optional sign (no

fractions or exponent).

Must lie in the range -9223372036854775808 to 92233720368547750807

inclusive.

int A number, expressed using the digits 0..9, with optional sign (no

fractions or exponent).

Must lie in the same range as the datatype valueI8.

This number can be used in place of one of the I* types if the sender

does not want to associate a particular precision with the property.

R4 A floating point number, expressed using the digits 0..9, optional

sign, optional fractional digits, optional exponent.

Magnitude <= 3.40282347E+38, and>= 1.175E-37

92 End user Application Support

R8 A floating point number, expressed using the digits 0..9, optional

sign, optional fractional digits, optional exponent.

Magnitude <= 1.7976931348623E+308, and>= 2.225E-307

JMS Message payload:

How payload is extracted from the JMS message for each of the JMS Message

types.

 The payload for some of the JMS message types can be extracted as a whole from

the message object by using the JMS API. The payload is passed as a bit stream to

a broker parser. This is true for the following message types:

v BytesMessage

v TextMessage

v ObjectMessage

Additional processing is required to deal with the ObjectMessage payload

because the JMS ObjectMessage payload is a serialized Java Object.

The JMSInput node obtains the payload by calling getObject() on the message.

getObject() returns a de-serialized object of the original class. This class

definition must be made available to the JMSInput node, and you should ensure

that it is accessible through the broker’s Java class path. (The class path is

defined in the mqsiprofile batch file, which is in the broker’s executable

directory; for example, on Windows®, this is mqsiprofile.cmd in the

install_dir/bin directory.) The JMSInput node invokes the BLOB parser, which

creates the message body by using a bit stream that is created from the object.

The Java Object can be subsequently re-serialized in a JavaCompute node or a

user-defined extension, and is updated by using its method calls.

The payload for MapMessage and StreamMessage can be extracted only as

individual elements and must be reformatted by the JMSInput node before it can

be used to create the message body.

v MapMessage payload

The JMSMap domain is a synonym for the broker XML parser, which expects a

stream of XML data. MapMessage payload data however, is extracted as sets of

name-value pairs from the message object. The JMS API is used to obtain the

name-value pairs.

The JMSInput node appends each name-value pair to a bit stream as an XML

element and value, and preserves the type of the value by using the dt=

attribute.

The following example shows the XML that is generated by the JMSInput node

for the MapMessage payload:

 <map>

 <Item_8_of_10_Char dt=’char’>A</Item_8_of_10_Char>

 <Item_5_of_10_Double dt=’r8’>999999.0</Item_5_of_10_Double>

 <Item_10_of_10_String>Last Map Item</Item_10_of_10_String>

 <Item_9_of_10_Boolean dt=’boolean’>0</Item_9_of_10_Boolean>

 <Item_2_of_10_Integrer dt=’i4’>999</Item_2_of_10_Integrer>

 <Item_3_of_10_Short dt=’i2’>9999</Item_3_of_10_Short>

 <Item_7_of_10_Byte dt=’i1’>9</Item_7_of_10_Byte>

 <Item_6_of_10_Float dt=’r4’>2.24</Item_6_of_10_Float>

 <Item_1_of_10_String>P2P Map Msg Number:1</Item_1_of_10_String>

 <Item_4_of_10_Long dt=’i8’>99999</Item_4_of_10_Long>

 </map>

End-user application support 93

In this example, the message contains 10 fields. The field names have been

generated by a JMS Client application, and take the form item_n_of_x_t, where:

– n is the sequence number in which the item was added to the message,

– x is the total number of items in the map,

– t is the type of the value.

The map data is not returned from the JMS API the order in which it was

received.

v StreamMessage payload

The StreamMessage payload data is a sequence of fields, where each field has a

specific type. The fields do not have associated names and so a default element

name elt is used to generate the XML elements. Similar to the MapMessage, the

JMS API allows for fields only to be retrieved individually. The JMSInput node

extracts fields from the JMS message and appends each to a bit stream in XML

format.

The following is an example of the XML that is generated by the JMSInput node

for the StreamMessage payload:

<stream>

 <elt>P2P Stream Message Number :7</elt>

 <elt dt=’i4’>999</elt>

 <elt dt=’i2’>9999</elt>

 <elt dt=’i8’>99999</elt>

 <elt dt=’r8’>999999.0</elt>

 <elt dt=’r4’>2.24</elt>

 <elt dt=’i1’>9</elt>

 <elt dt=’char’>A</elt>

 <elt dt=’boolean’>0</elt>

 <elt>Last Stream Item</elt>

</stream>

In this example, 10 typed values are added to the StreamMessage by a JMS

client application.

JMS message payload and appropriate parser:

Configure the JMSInput node properties to specify the type of JMS message that

the node expects to receive.

 When the JMSInput node creates a message body from the JMS message payload,

the appropriate parser for that payload is determined. Therefore, the JMSInput

node must know the type of JMS message that it expects to receive. A JMS

message is defined by the payload type, and the JMSInput node extracts the

payload from the JMS message by using the JMS API.

The following JMSInput node properties allow you to specify the type of JMS

message that the node expects to receive:

v Message Domain

v Message Set

v Message Type

v Message Format

The Message Domain can be set to one of the following values:

 Domain Usage

94 End user Application Support

blank This corresponds to the blank domain in an MQInput node.

The node derives the Message Domain from the JMSType header

field providing that the value conforms to a proprietary URI

format, see “Order of precedence for deriving the message

domain.” If the JMSType value is blank or does not match this

URI format, the node sets the Message Domain according to the

JMS Message Java Class type.

Refer to “Order of precedence for deriving the message domain”

for more information.

BLOB The node expects bit stream data from ByteMessage,

ObjectMessage, or TextMessage.

XML The node expects a TextMessage with an XML payload.

XMLNS The node expects a TextMessage with an XMLNS payload.

XMLNSC The node expects a TextMessage with an XMLNSC payload.

MRM The node expects to receive a TextMessage or ByteMessage. If the

message set, type, and format are not supplied in the JMSInput

node then the JMSType header field must be set.

JMSMap The node expects to receive a MapMessage only.

JMSStream The node expects to receive a StreamMessage only.

MIME The node expects a TextMessage or ByteMessage with a MIME

(Multipurpose Internet Mail Extension).

IDOC The node expects a TextMessage or ByteMessage with an IDOC

payload.

Order of precedence for deriving the message domain:

How the JMSInput node derives the message domain and JMS message type.

 When a JMS message is received by the JMSInput node, the message domain is

derived according to the following criteria and in the following order of

precedence:

1. The Message Domain property is set to a specific domain type.

In this case, the node expects to receive only the following JMS message types:

 Message

domain

Valid JMS message types

BytesMessage TextMessage MapMessage StreamMessage ObjectMessage

BLOB X X X

XML X

XMLNS X

XMLNSC X

MRM X X

JMSMap X

JMSStream X

MIME X X

IDOC X X

End-user application support 95

If a JMS message type is received, which is not valid for the message domain

that is configured in the JMSInput node, the node issues a warning and backs

out the message either to the source JMS provider destination, or to the backout

destination.

2. The Message domain property is left blank (default). The JMSType header

value from the JMS input message is set according to the URI format shown

below. The domain in the mcd: string can be upper case or lower case.

 JMSType Broker domain

mcd://MRM/[set]/[type]/[?format=fmt] MRM

mcd://XML XML

mcd://XMLNS XMLNS

mcd://XMLNSC/[set] XMLNSC

mcd://IDOC/[set]/[?format=fmt] IDOC

mcd://MIME MIME

If a JMS message type is received, which is not valid for the message domain

configured in the JMSType header, the node issues a warning and backs out the

message either to the source JMS provider destination, or to the backout

destination.

Messages received in the MRM domain

Messages that are received in the MRM domain must have a JMSType header

field that is set in accordance with the following format (which is also used in

JMS provision):

mcd://MRM/[set]/[type]/[?format=fmt]

For example,

mcd://MRM/SWIFTXML2005/{http://SWIFT/2005}:Document/?format=SWIFT

If the JMSType field does not conform to this format, the message is handled in

the BLOB domain.

3. The Message Domain property is left blank (default) and the JMSType header

value from the JMS input message is also left blank.

The message domain is set according to the JMS message Java Class as follows:

 JMS message type Message domain

TextMessage XML

BytesMessage BLOB

MapMessage JMSMap

StreamMessage JMSStream

ObjectMessage BLOB

JMS message for output

When the JMSOutput node receives a JMS message, it invokes the JMSTransport

parser to return an XML bit stream containing the JMSTransport section of the

message. The node extracts the Message_MetaData and obtains the payload type

information to identify which JMS message type to create for output. If the

Message_MetaData folder is not present, the output node creates a BytesMessage by

default.

96 End user Application Support

Header data

The JMSOutput node extracts the JMS header data from the XML string and uses

this data to populate the values for the JMS header fields in the message.

Property data

The JMSOutput node extracts the property values from the XML string. The XML

elements contain type information that identifies which Java Object type to create

for each property value.

Message payload

The message payload is obtained from the JMS message as a bit stream. For

TextMessage and BytesMessage payloads, the bit stream can be passed to the JMS

API directly to create the appropriate payload.

For MapMessage and StreamMessage payloads, the individual elements must be

extracted from the XML bit stream. The output node calls the appropriate JMS API

method to create the map or stream fields in the message.

For an ObjectMessage payload, the JMSOutput node re-serializes the bit stream

payload by using the object class. The object class must be available in the broker’s

Java class path. The class path is defined in the mqsiprofile batch file, which is in

the broker’s executable directory; for example, on Windows, this is mqsiprofile.cmd

in the install_dir/bin directory.

Sending JMS messages

JMSOutput node produces and supports:

Sending a datagram message

A message with sufficient information to reach its destination, but without

an expectation of there being a response as defined in the node attributes.

Sending a Reply message

The message is treated as a reply as defined by the JMSReplyTo property

value.

Sending a Request message

The JMSOutput node sends a message to a defined JMS destination with

the expectation of a response from the recipient.

Message publication

The message is published to the JMS destination that has been specified as an

attribute of the JMSOutput node. However, if the JMSReplyTo header field is set in

the JMS message, the JMSOutput node treats the message as a reply to a previous

request, and publishes the message to the JMS destination of the previous request.

JNDI administered objects

JNDI (Java Naming and Directory Interface) is a standard Java extension that

provides a uniform API for accessing a variety of directory and naming services.

JMS clients use JNDI to browse a naming service in order to obtain references to

administered objects. Administered objects are JMS connection factory and JMS

End-user application support 97

|

|
|
|

|
|
|

|
|
|

destination objects, where JMS destination objects are topics and queues.

Administered objects are created and configured by a system administrator.

To create and configure JNDI administered objects, refer to the JMS provider

documentation. If you are using the WebSphere MQ JMS provider, see the sample

JMSAdmin definitions file that is included with WebSphere MQ and refer to the

WebSphere MQ Using Java book.

Location of JNDI administered objects

JNDI administered objects are stored in the bindings. This can be either file system

based or LDAP based. LDAP (Lightweight Directory Access Protocol) is a software

protocol that enables anyone to locate organizations, individuals, and other

resources; for example, locating files and devices in a network, either on the public

Internet or on a corporate intranet.

LDAP is part of X.500, which is a standard for directory services in a network.

Naming service

A naming service associates names with distributed objects so that the

administered objects are located by using names and not complex network

addresses. JNDI provides an abstraction that hides the specifics of the naming

service, which makes client applications more portable.

A JMS client specifies a JNDI InitialContext to obtain a JNDI connection to the JMS

messaging server. The InitialContext is the starting point in any JNDI lookup and

acts like the root of a file system. The JMS directory service that is being used

determines the properties that are used to create an InitialContext.

JMS provision

For information about JMS provision in WebSphere Message Broker, refer to the

WebSphere MQ Real-time Transport, and the Real-timeInput, Real-
timeOptimizedFlow, and Publication nodes.

v “Support for JMS messages” on page 17

v Real-timeInput node

v Real-timeOptimizedFlow node

v Publication node

v “WebSphere MQ Real-time Transport” on page 11

JMS brokering

This section contains information to help you configure the properties on the

JMSInput and JMSOutput nodes.

The two transformation nodes, JMSMQTransform and MQJMSTransform do not

have configurable properties.

v “JMS Transactionality”

v “JMS message selector” on page 100

v “JMS properties for application communication models” on page 101

v “JMS message domain properties” on page 102

JMS Transactionality: JMS destinations that supply messages to a JMSInput node,

or receive messages from a JMSOutput node, can be syncpoint coordinated as part

of a message flow global transaction.

98 End user Application Support

Transactions involving the Syncpoint coordinator

JMS
Queue

Topic

consumes
messages

start / end / commit or rollback
transactions

xa/open calls
for prepare/commit

or rollback

produces
messages

MSG MSG

JMSINPUT
NODE

JMSOUTPUT
NODE

WBI MESSAGE FLOW

JMS SESSION JMS SESSION

JMS PROVIDER

JMS Server

S
Y

N
C

P
O

IN
T

C
O

O
R

D
IN

A
TO

R

 In this diagram, messages are consumed from a topic by a JMSInput node, and are

produced to a JMS queue by a JMSOutput node. The nodes are connected to, and

are in session with, a JMS provider. Any message flow input node can inform the

external Syncpoint Coordinator when a message flow transaction starts and ends,

and whether any resources that have been affected by the flow should be

committed or rolled back.

The Syncpoint Coordinator sends XA/Open compliant requests to all participating

resource managers to inform them to prepare. Any changes are either committed

or rolled back. Resource managers, for example, WebSphere MQ, DB2® and any

XA compliant JMS provider can participate in a global transaction.

The external Syncpoint Coordinator is WebSphere MQ on platforms other than

z/OS, and RRS (Resource Recovery Services) on z/OS.

The JMSInput node and JMSOutput node can participate in a global transaction

only if the JMS provider to which they connect supports the XA/Open interface

through the JMS XAResource Class. An example JMS provider is the WebSphere

MQ Java Client.

You can specify a generic connection factory (recoverXAQCF) for recovery of XA

coordinated transactions.

End-user application support 99

|
|

In-doubt transactions

In-doubt transactions can occur when a resource manager does not reply to a call

from the Syncpoint manager, where the call is to commit or to rollback resources.

During start up of the broker’s WebSphere MQ queue manager, an initial recovery

step is taken to ensure that any in-doubt transactions are resolved before the

broker message flows start to process new input. A JMS provider that participates

in broker global transactions is included in this recovery step.

On platforms other than z/OS, WebSphere MQ requires an administration task to

be carried out prior to deployment. This task registers a broker component, which

is a shared library, with the queue manager by referring the shared library to a

switch file.

When the broker’s WebSphere MQ queue manager starts up, it loads the switch

file. The switch file forwards XA/Open transaction calls from the Syncpoint

Coordinator to the JMS Provider. This ensures that the JMS resources that

participate in the transaction can be coordinated in synchronization with other

resource managers that are involved in the same transaction.

Additional configuration is required to enable global transaction support for the

JMSInput and JMSOutput nodes; see Configuring JMSInput and JMSOutput nodes to

support global transactions.

JMS message selector:

A message selector allows a JMS consumer to be more selective about the messages

that it receives from a particular topic or queue.

 A message selector uses message properties and headers as criteria in conditional

expressions. These expressions use Boolean logic to declare which messages should

be delivered to a client, such as the JMSInput node.

The following table demonstrates the construction of a message selector. It

comprises an identifier, such as the JMSPriority header, or an application controlled

property myProperty1. The selector string must specify an operator followed by a

literal.

 Element Valid values

Identifiers v Property or header field reference (such as

JMSPriority, myProperty1)

v The following values are not possible:

NULL, TRUE, FALSE, NOT, AND, OR,

BETWEEN, LIKE, IN, IS

Operators AND, OR, LIKE, BETWEEN, =, <>, <,>, <=,

>=, IS NULL, IS NOT NULL

Literals v The two Boolean literals, TRUE and

FALSE

v Exact number literals that have no

decimal point; for example, +25, -399, 40

v Approximate number literals. These

literals can use scientific notation or

decimal; for example, -21.4E4, 5E2,

+34.4928

100 End user Application Support

The JMSInput node provides a free format string PropertySelector, to specify

selectors that filter or include application properties. The node also has properties

for specific header properties, where the identifier is implicit and is generated by

the node. For the header selectors, the operator and literal part of the string must

be specified.

If more than one selector is specified the node generates a composite selector

string, where the individual selector strings are concatenated with the AND operator,

and each selector string part is wrapped with parentheses.

The following are examples for each of the selector properties:

 Selector property Description

PropertySelector OrderValue> 100.00

This string is used directly as shown.

TimeStamp BETWEEN 1057576423231 AND 10575788993265

Messages that are put between these two Java times only

(where Java time is milliseconds since 01 Jan 1970) is delivered

to the JMSInput node. In this case, the string generated is

prefixed with the identifier JMSTimestamp.

Delivery Mode PERSISTENT

This setting means that only messages marked by the sender as

being PERSISTENT should be delivered to the JMSInput node. In

this case, the string that is generated is prefixed with the

identifier JMSDeliveryMode.

Priority >= 5 AND <= 8

This setting means that only messages marked by the sender as

having a priority 5, 6, 7, or 8 should be delivered to the

JMSInput node. In this case, the string generated is prefixed

with the identifier JMSPriority.

Message ID > WMBRK123456

This setting returns messages with a Message ID that is greater

than the value specified. In this case, the string generated is

prefixed with the identifier JMSMessageID.

Redelivered FALSE

This setting means that messages that have not been

redelivered should be received by the node. In this case, the

string generated is prefixed with the identifier JMSRedlivered.

Correlation ID = WMBRKABCDEFG

This setting returns messages whose Correlation ID is equal to

the value WMBRKBABCDEFG. In this case, the string generated is

prefixed with the identifier JMSCorrelationID.

JMS properties for application communication models:

JMS clients can operate with both publish/subscribe and point-to-point messages.

The publish/subscribe and point-to-point application communication models use

virtual channels called destinations. In the publish/subscribe model, the

destinations are topics. For the point-to-point model, the destinations are known as

queues.

End-user application support 101

The following application communication model properties can be configured for

JMSInput and JMSOutput nodes:

 Property Description

Connection Factory

Name

A string name that is passed to JNDI to look up the administered

connection factory object. The connection factory object is used to

create a connection to the JMS destination.

v For a client operating as a publish/subscribe client, the connection

factory name will be for a TopicConnectionFactory.

v For a client operating as a point-to-point client, the connection

factory name will be for a QueueConnectionFactory.

Subscription Topic The string name that is passed to JNDI to look up the JMS topic

destination. The topic is used to create a JMS session when the node

is being used to process publish/subscribe messages.

Durable

Subscription ID

This is a JMSInput node property only. It is a string identifier that is

specified if the node is to subscribe to a durable subscription topic.

A durable subscription is one that outlasts the client’s connection to a

message server. When a durable subscriber is disconnected from the

server, it is the responsibility of the server to store messages that are

published. Therefore, when the durable subscriber reconnects, the

message server sends all the unexpired messages.

Durable subscriptions cannot be unsubscribed from a message flow. It

requires a separate administration task to unsubscribe a previously

registered durable subscription. Some JMS providers supply an

administration tool to perform this action.

Source Queue The string name that will be passed to JNDI to look up the JMS queue

destination. The queue is used to create a JMS session when the node

is being used to process point-to-point messages.

The Subscription Topic and Source Queue properties are mutually exclusive

because they configure the node to work with either the Publish/Subscribe

message model or the Point-To-Point message model.

ADurable subscription ID is not valid without a Subscriber Topic property.

JMS message domain properties:

The JMSInput node can receive message payloads that correspond to all of the JMS

message types that are specified in the Java Message Service Specification, version

1.1. For more information, see “JMS message types” on page 88.

Set the JMSInput node properties to specify how the message payload is to be

parsed. For more information, see JMSInput node and “Order of precedence for

deriving the message domain” on page 95.

The JMSOutput node does not have any message domain properties.

Troubleshooting JMS nodes

Review possible problems with JMS nodes.

The following errors might occur:

v “Managing badly formed messages” on page 103

102 End user Application Support

|
|
|

|
|
|

|

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html

v “Diagnosing problems when using globally coordinated transactions:”

v “Problems with JNDI Administered Objects” on page 104

In all cases of error, if the underlying cause is a JMSException that has been

thrown by the JMS provider, the broker bip event message includes the text

message from the JMSException to help your diagnosis.

Managing badly formed messages:

If a message cannot be processed by the JMSInput node, or has been rolled back as

part of a global transaction, the message is backed out to the source destination.

The message is then redelivered to the JMSInput node.

To prevent badly formed messages from interrupting the processing of valid

messages, the node properties can be configured as follows:

 Backout Destination This property specifies a JMS destination

where backed out messages are routed if the

JMS message property JMSX_DeliveryCount,

which is set by the JMS provider, exceeds

the backout threshold.

The JMS destination must be applicable to

the message model being used by the node;

for example, if a subscription topic has been

configured on the node, the JMS destination

must also be a topic.

Backout Threshold This property specifies the integer value that

controls a message is sent to the backout

destination. A threshold value of 3 means

that, if the JMSInput node receives a

Message where the value of the

JMSX_DeliveryCount property exceeds 3, the

message is sent to the backout destination

and is removed from the source destination.

Diagnosing problems when using globally coordinated transactions::

In addition to the broker service trace, another trace log is provided to diagnose

problems that could occur when a JMSInput or JMSOutput node participates in a

global message flow transaction. That is, at least one JMSInput or JMSOutput node

in the message flow has the Transaction Mode property set to global and the

message flow property Coordinated Transaction set to yes.

To capture the trace log, complete the following steps:

1. Define an environment variable called XAJMS_TRACEFILE that is available to

the broker queue manager.

2. Set the value of the environment variable. This value must be a character string

that represents the location and file name of the trace log. For example, on

Windows, the variable could be configured as follows:

XAJMS_TRACEFILE = c:\JMSSwitchLog

3. When the broker queue manager starts, it performs a recovery step to resolve

any previous broker transactions that the JMS provider considers to be

in-doubt. This queue manager process writes to two trace logs during this

stage. The two trace logs are:

End-user application support 103

v XAJMS_TRACEFILE valuePID.txt, where PID is the process ID of the queue

manager start process. This file is produced from the broker’s JMSSwitch

library; see “JMS Transactionality” on page 98 for more information.

Using the above example value for the variable produces a file called

JMSSwitchLog2596.txt, where the queue manager start up process ID was

2596.

v XAJMS_TRACEFILEXARecoveryTrace.txt which is produced by the broker’s

recovery component that connects to the JMS provider.
4. After the broker’s queue manager has completed recovery, the broker starts

and creates a file called XAJMS_TRACEFILE valuePID.txt, where PID is the

process ID of the queue manager start process. This file is produced from the

broker’s JMSSwitch library, see “JMS Transactionality” on page 98 for more

information.

Neither of these trace files require extra formatting.

This problem is not applicable on z/OS.

Problems with JNDI Administered Objects:

Description of problem: The JMSInput or JMSOutput node is unable to obtain the

Initial Context Factory or a JNDI administered object such as the Connection

Factory or JMS destination, and a BIP4640 message is issued.

Corrective action

1. Verify that the JNDI bindings have been correctly built, and can be reached at

the location specified in the node.

2. Check that the values specified in the node for the Initial Context, Connection

Factory Name, and Source Queue or Destination Queue exist in the JNDI

bindings.

3. Ensure that the correct keyword is used to match the location of the bindings:

v file:/ when the administered objects have been created in a .bindings file

v ldap:/ when the administered objects exist in an LDAP directory

v iiop:/ when corba is used to access the administered objects
4. When the bindings are file based do not specify the .bindings filename in the

node property.

5. Ensure that the Initial Context Factory name does not include a filepath.

6. Ensure that a JMS destination (Topic or Source Queue or Destination Queue)

specified in the node property exists in the JNDI administered objects.

7. Ensure that the JMS Provider Java .jar files have been placed into the broker

shared-classes directory on distributed platforms, or on z/OS that these .jar

files have been defined to the broker CLASSPATH and any native libraries

defined in the broker LIBPATH.

The JMS Nodes continue to attempt to obtain the JNDI administered objects.

Correct any problems and rebuild the bindings. The JMS node should

automatically detect the changes and attempt to start.

Description of problem: A JMSInput or JMSOutput node is unable to connect for a

JMS provider and issues a BIP4648 message.

Corrective action:

1. Verify that the JMS Provider server is running. If it is offline, start the server.

104 End user Application Support

2. Verify that the JMS Provider server is available from the broker environment.

3. Ensure that the JMS Provider Java .jar files have been placed into the broker

shared-classes directory on distributed platforms, or that on z/OS, that these

.jar files have been defined to the broker CLASSPATH and any native libraries

defined in the broker LIBPATH.

The JMS nodes continue to attempt to connect to the JMS provider. Correct any

problems and the JMS node should automatically detect the changes and attempt

to connect to the provider.

Description of problem: A JMSInput or JMSOutput node is unable to obtain a JMS

destination and issues a BIP4642 message.

Corrective action

1. Investigate the cause of the problem described by the JMS exception message

that might be included in the BIP event message.

2. Check that the name of the JMS destination that is defined in the relevant node

property (Topic or Source Queue or Destination Queue) has been correctly

defined in the JNDI administered objects.

3. Verify that the underlying system resource used by the JMS provider for the

JMS destination has been configured correctly

End-user application support 105

106 End user Application Support

Part 3. Appendixes

© Copyright IBM Corp. 2000, 2008 107

108 End user Application Support

Appendix. Notices for WebSphere Message Broker

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this information

in other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this information. The furnishing of this information does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032,

Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the information. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2000, 2008 109

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM United Kingdom Laboratories,

Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England

SO21 2JN

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Programming License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information includes examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

110 End user Application Support

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks in the WebSphere Message Broker information center

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

 AIX CICS DB2

DB2 Connect DB2 Universal Database developerWorks

Domino Everyplace

FFST First Failure Support

Technology

IBM

IBMLink IMS IMS/ESA

Informix iSeries i5/OS

Language Environment Lotus MQSeries

MVS NetView OS/400

OS/390 Passport Advantage POWER

pSeries RACF Rational

Redbooks RETAIN RS/6000

SupportPac System i S/390

Tivoli VisualAge WebSphere

xSeries z/OS zSeries

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered

trademarks or trademarks of Adobe Systems Incorporated in the United States,

and/or other countries.

Intel and Pentium are trademarks or registered trademark of Intel Corporation or

its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix. Notices for WebSphere Message Broker 111

112 End user Application Support

Index

A
APIs 7

application clients 3

multicast 10

real-time (JMS) 11

supporting 3

telemetry (SCADA) 11

command messages 68

designing applications 25

example message flow 26

message format 60

Quality of Service 58

UTF-8 84

variable header contents 64

Web services 12

applications 27

call existing 37

existing as new Web service 44

existing to existing Web

service 47

existing Web service 39

HTTP flows 33

implement existing interface 46

implement existing interface to

new 50

implement new 41

message flows 28

scenarios 36

SOAP applications 29

SOAP over JMS 49

WSDL 28

WSDL applications 30

WSDL operation types 31

WebSphere Broker JMS Transport 16

WebSphere MQ 10

defining 21

securing 22

WebSphere MQ Everyplace 10

Application Messaging Interface

(AMI) 7

application programming interfaces 7

Application Messaging Interface

(AMI) 7

Java Message Service (JMS) 7

Message Queue Interface (MQI) 7

application transports 9

C
configuration, transactionality 98

E
end-user applications 3

communication models 4

supporting 3

J
Java Message Service (JMS) 7

JMS 98

broker domain configuration 102

brokering 98

connecting providers 21

JMS providers 21

message representation 17

support for JMS messages 17

transforming messages 18

brokering and provision 16

configuration, broker domain 102

configuration, message model 101

configuration, message selector 100

creating a message for output 96

deriving the parser 94

header and property data 91

JNDI administered objects 97

message as input 91

message domain 95

order of precedence 95

message model configuration 101

message selector configuration 100

message structure 87

message types 88

output message 96

parser 94

payload processing 93

preservation of Java type 91

provision 98

receiving a message 91

representation of messages 90

troubleshooting 102

JNDI administered objects 97

M
message definitions

importing from WSDL
WSDL validation 32

message headers 7

Message Queue Interface (MQI) 7

messages
headers

MQRFH 7

MQRFH2 7

P
point-to-point communication model 4

publish/subscribe communication

model 4

Q
Quality of Service 11

T
trademarks 111

transactionality configuration 98

W
Web services

example messages 15

headers 13

message format 12

WebSphere MQ Enterprise Transport 10

WebSphere MQ Everyplace 10

WebSphere MQ Mobile Transport 10

WebSphere MQ Multicast Transport 10

WebSphere MQ Real-time Transport 11

WebSphere MQ Telemetry Transport 11

WebSphere MQ Web Services

Transport 12

WSDL
validation 32

© Copyright IBM Corp. 2000, 2008 113

114 End user Application Support

����

Printed in USA

	Contents
	About this topic collection
	Part 1. End user Application Support
	Supporting end-user applications
	End-user application support
	Application communication models
	Application programming interfaces
	Application transports

	Enabling WebSphere MQ applications
	Defining WebSphere MQ resources
	Securing WebSphere MQ resources

	Enabling WebSphere MQ Everyplace applications
	Enabling WebSphere MQ Telemetry Transport applications
	Designing Telemetry applications
	An example message flow to support Telemetry clients

	Working with Web service applications
	XML domain message flows
	Working with HTTP flows
	Web services scenarios

	Part 2. Reference
	End-user application support
	Application transports
	WebSphere MQ Enterprise Transport
	WebSphere MQ Mobile Transport
	WebSphere MQ Multicast Transport
	WebSphere MQ Real-time Transport
	WebSphere MQ Telemetry Transport
	WebSphere MQ Web Services Transport
	WebSphere Broker JMS Transport

	Part 3. Appendixes
	Appendix. Notices for WebSphere Message Broker
	Trademarks in the WebSphere Message Broker information center

	Index

