
WebSphere Message Broker

User-defined Extensions
Version 6 Release 0

���

WebSphere Message Broker

User-defined Extensions
Version 6 Release 0

���

Note
Before you use this information and the product that it supports, read the information in the Notices appendix.

This edition applies to version 6, release 0, modification 0, fix pack 9 of IBM WebSphere Message Broker and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this topic collection. v

Part 1. Developing user-defined
extensions 1

Developing user-defined extensions . . 3
User-defined extensions overview 4
Implementing the supplied user-defined extension
samples 29
Creating user-defined extensions 30
Testing a user-defined node 85
Packaging and distributing user-defined extensions 87

Part 2. Reference 103

User-defined extensions. 105
Sample node files 105
Sample parser files 107
C Header files 107
C language user-defined node API 108

C language user-defined parser API 179
C user exit API 235
C common API 249
C skeleton code 280
Utility function return codes and values 283
Available parsers 285
XML, MRM, and XMLNSC parser constants . . . 286
Trace logging from a user-defined C extension . . 288
Multicultural support considerations for message
catalogs 289

Part 3. Appendixes 293

Appendix. Notices for WebSphere
Message Broker 295
Trademarks in the WebSphere Message Broker
information center 297

Index 299

© Copyright IBM Corp. 2000, 2009 iii

iv User-defined Extensions

About this topic collection

This PDF file has been created from the WebSphere Message Broker Version 6.0
(March 2009) information center topics. Always refer to the WebSphere Message
Broker online information center to access the most current information. The
information center is periodically updated on the document update site and this
PDF and others that you can download from that Web site might not contain the
most current information.

The topic content included in the PDF does not include the ″Related Links″
sections provided in the online topics. Links within the topic content itself are
included, but are active only if they link to another topic in the same PDF
collection. Links to topics outside this topic collection are also shown, but result in
a "file not found "error message. Use the online information to navigate freely
between topics.

Feedback: do not provide feedback on this PDF. Refer to the online information to
ensure that you have access to the most current information, and use the Feedback
link that appears at the end of each topic to report any errors or suggestions for
improvement. Using the Feedback link provides precise information about the
location of your comment.

The content of these topics is created for viewing online; you might find that the
formatting and presentation of some figures, tables, examples, and so on are not
optimized for the printed page. Text highlighting might also have a different
appearance.

© Copyright IBM Corp. 2000, 2009 v

ftp://ftp.software.ibm.com/software/integration/wbibrokers/docs

vi User-defined Extensions

Part 1. Developing user-defined extensions

Developing user-defined extensions. 3
User-defined extensions overview 4

Planning user-defined extensions 5
User-defined extensions in the runtime
environment 6
Designing user-defined extensions 8
Node and parser factory behavior 12
User-defined input nodes. 13
User-defined message processing nodes 18
User-defined output nodes 25
User-defined parsers 26

Implementing the supplied user-defined extension
samples 29
Creating user-defined extensions 30

Creating a user-defined extension in C 31
Creating a user-defined extension in Java . . . 59
Creating the user interface representation of a
user-defined node in the workbench 79

Testing a user-defined node 85
Enabling PDE runtime capabilities. 87

Packaging and distributing user-defined extensions 87
Installing user-defined extension runtime files on
a broker 88
Packaging a user-defined node workbench
project 89
Installing a user-defined extension to current and
past versions of the broker 91
Updating a user-defined extension. 97
Deleting a user-defined extension from the
broker 97
Using event logging from a user-defined
extension 98

© Copyright IBM Corp. 2000, 2009 1

2 User-defined Extensions

Developing user-defined extensions

This section contains details on how to implement a user-defined node or parser to
enhance the functionality of WebSphere® Message Broker.

You can write user-defined nodes in C or Java. You can write user-defined parsers
only in C. For a general introduction on user-defined extensions, read
“User-defined extensions overview” on page 4. For information about designing
and creating user-defined nodes and user-defined parsers, see the following topics:
v “Designing user-defined extensions” on page 8
v “Creating user-defined extensions” on page 30

When you have created a user-defined node, you can test it; this task is described
in “Testing a user-defined node” on page 85. If you want to test or use
user-defined nodes or parsers on multiple computers, follow the instructions given
in “Packaging and distributing user-defined extensions” on page 87.

Consider the following restrictions and factors when developing user-defined
extensions:
v Interfacing a C user-defined node to Java and providing a JNI wrapper is not

supported. This restriction exists because the broker internally initializes a JVM,
which is not available through the user-defined extension interface. The JVM
initializes with various parameters that are specific to the broker’s requirements.
Because there is only one JVM in a process, whoever initializes it first specifies
these parameters. If a user-defined node uses Java, and the broker is initialized
first, these parameters might not be suitable for the user-defined node. If the
user-defined node creates the JVM before the broker starts, the broker might not
function correctly.

v User-defined nodes can be deployed in WebSphere Event Broker. When creating
user-defined nodes for WebSphere Event Broker users, you must ensure that you
do not expose users to the ability to evaluate ESQL code. For example, nodes
that expose the input to MbSQLStatement as a node property would effectively
be emulating a Compute node. Use of ESQL in WebSphere Event Broker is not
supported.

v User-defined input nodes can only support XML, BLOB, and the MQ parsers.
v Avoid using operating system specific functions. If you code in this way, your

user-defined extensions can work on a variety of platforms without requiring
changes to the source code.

The following table shows the topics that you must read based on the type of
user-defined extension that you want to create.

Action Topics to view

To use one of the Java
sample nodes:

1. “Compiling a Java user-defined node” on page 74

2. “Installing user-defined extension runtime files on a
broker” on page 88

3. “Creating the user interface representation of a
user-defined node in the workbench” on page 79

4. “Testing a user-defined node” on page 85

© Copyright IBM Corp. 2000, 2009 3

Action Topics to view

To use one of the C sample
nodes:

1. “Compiling a C user-defined extension” on page 53

2. “Installing user-defined extension runtime files on a
broker” on page 88

3. “Creating the user interface representation of a
user-defined node in the workbench” on page 79

4. “Testing a user-defined node” on page 85

To use the sample parser: 1. “Compiling a C user-defined extension” on page 53

2. “Installing user-defined extension runtime files on a
broker” on page 88

To create your own Java
node using the workbench:

1. “Creating an input node in Java” on page 60 or “Creating
a message processing or output node in Java” on page 65

2. “Using event logging from a user-defined extension” on
page 98

3. “Compiling a Java user-defined node” on page 74

4. “Testing a user-defined node” on page 85

5. “Packaging a user-defined node workbench project” on
page 89

6. “Installing a user-defined extension to current and past
versions of the broker” on page 91

To create your own C node: 1. “Creating an input node in C” on page 31 or “Creating a
message processing or output node in C” on page 39

2. “Using event logging from a user-defined extension” on
page 98

3. “Compiling a C user-defined extension” on page 53

4. “Installing user-defined extension runtime files on a
broker” on page 88

5. “Creating the user interface representation of a
user-defined node in the workbench” on page 79

6. “Testing a user-defined node” on page 85

7. “Packaging a user-defined node workbench project” on
page 89

8. “Installing a user-defined extension to current and past
versions of the broker” on page 91

To create your own parser: 1. “Creating a user-defined parser” on page 47

2. “Using event logging from a user-defined extension” on
page 98

3. “Compiling a C user-defined extension” on page 53

4. “Installing user-defined extension runtime files on a
broker” on page 88

User-defined extensions overview
A user-defined extension is an optional component that you design and create to
extend the functionality of WebSphere Message Broker. A user-defined extension
can be either a node or a parser.

You can create the following types of user-defined extension:
v Input nodes

4 User-defined Extensions

v Message processing nodes
v Output nodes
v Parsers
v User exits

The user-defined nodes and parsers that you create can be used with the nodes
and parsers supplied with the product, and with nodes and parsers that are
supplied by other vendors. You can configure a user-defined node to use a
user-defined parser.

You can write user-defined exits and parsers only in the C programming language.
You can write user-defined nodes in the C or the Java™ programming languages.
You must compile user-defined nodes and parsers that are written in C into a
loadable implementation library (LIL), and user exits that are written in C into a
loadable exit library (LEL): that is, a shared library on Linux® and UNIX® systems,
or a dynamic link library (DLL) on Windows® systems. You must package
user-defined nodes that are written in Java as a JAR file. You must import any
user-defined nodes that you create into the workbench before you can use them.

The samples gallery on the start screen of the workbench has examples of
user-defined nodes and parsers. Look at the following sample for an example of
how a node is created and used.
v User-defined Extension sample

You can view samples only when you use the information center that is integrated
with the Message Brokers Toolkit.

To achieve platform independence, use the ANSI standard C or Java programming
languages, and avoid platform-specific code in your user-defined extension.

If you create user-defined nodes for WebSphere Event Broker users, ensure that
you do not make it possible for users to evaluate ESQL code. For example, nodes
that expose the input to MbSQLStatement as a node attribute are effectively
emulating a Compute node. Use of ESQL in WebSphere Event Broker is not
supported.

WebSphere Event Broker is not shipped with the MRM parser, and user-defined
parsers are not supported. User-defined input nodes can support only XML, BLOB,
and the WebSphere MQ parsers.

The related links help you to understand how your user-defined extensions
interact with other components of WebSphere Message Broker, such as message
flows and execution groups. A good understanding of the broker architecture helps
you to plan and construct user-defined extensions more effectively.

Planning user-defined extensions
Before you start to create your user-defined extension, be clear about what you
want it for. Most tasks can be performed using the functions already provided with
WebSphere Message Broker, so it might not be necessary to create a user-defined
extension for your particular task.

To write user-defined extensions you need to be a skilled programmer, with some
knowledge of WebSphere Message Broker and its architecture, so make sure you
have the skills and knowledge required. You also need the time to test and debug
your user-defined node or parser, and a safe environment in which to do this.

Developing user-defined extensions 5

|
|
|
|
|
|
|
|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.ude.res

Also bear in mind that the maintenance and servicing of your own user-defined
extensions is your responsibility. You should ensure that there will be someone
available who can perform future updates or fixes.

A user-defined extension might be appropriate in the following situations:
v When you cannot manipulate the supplied nodes or parsers to perform the

function you require. For example, you might want to connect to another
software component in your message flow outside of WebSphere MQ. If there is
no supplied node for doing this, you would need to create your own.

v When you can improve performance, ease of use, or reliability by using your
own user-defined extensions in place of the supplied nodes or parsers.

v If the available choices are not appropriate for your requirement. You can create
user-defined extensions to handle internal, customer-specific, or generic
commercial messages formats.

There are a number of general design and development considerations that you
should consider and understand when you are planning or writing a user-defined
node or parser, and considerations that are specific to the type of user-defined
extension you want to create. You should be familiar with the concepts covered in
the topics below before designing a user-defined extension.
v General design considerations

– “Errors and exception handling” on page 8
– “Storage management in user-defined nodes” on page 10
– “String handling in user-defined nodes” on page 11
– “Threading considerations for user-defined extensions” on page 11

v Specific design considerations
– “Planning user-defined input nodes” on page 16
– “Planning user-defined message processing nodes” on page 21
– “Planning user-defined output nodes” on page 25
– “Planning user-defined parsers” on page 28

User-defined extensions in the runtime environment
Before you design and implement user-defined extensions, familiarize yourself
with the core components, and ensure that you understand the basic WebSphere
Message Broker runtime architecture.

Ensure that you are familiar with the following runtime components and concepts:
v Runtime environment
v Broker domains
v Configuration Manager
v Brokers
v Execution groups
v “User-defined extensions execution model” on page 7

Also make sure you understand the following concepts:
v Message flows overview

When you have gained an understanding of the runtime environment, read the
following topics to help you understand how your user-defined extension interacts
with the runtime components.

6 User-defined Extensions

v “C user-defined input node life cycle” on page 13
v “Java user-defined input node life cycle” on page 15
v “C user-defined message processing nodes life cycle” on page 18
v “Java user-defined message processing nodes life cycle” on page 20
v “User-defined output node life cycle” on page 25
v “User-defined parser life cycle” on page 26

User-defined extensions execution model
The execution model is the system used to start message flows through a series of
nodes.

When an execution group is initialized, the appropriate loadable implementation
library (LIL) files and Plug-in Archive (PAR) files are made available to the
runtime environment. The execution group runtime process starts, and creates a
dedicated configuration thread. You are responsible for ensuring that a
user-defined node is thread-safe. If a node updates a variable across multiple
threads then appropriate locking must be in place. Do not compromise this
threading model in your implementation of user-defined nodes. Consider the
following points:
v An input message sent to a message flow is processed only by the thread that

received it.
v A single instance of a user-defined extension might be invoked on several

threads concurrently.
v The message flow execution environment is conceptually similar to procedural

programming. Nodes that you insert into a message flow are similar to
subroutines called using a function call interface. However, rather than a
call-return interface, in which parameters are passed in the form of input
message data, the execution model is referred to as a propagation-and-return
model.

As an example, consider a message flow in which you use both user-defined nodes
and parsers. You use a user-defined node to process messages, and a user-defined
parser to parse messages; both the node and parser contain implementation
functions. The broker calls the implementation functions, or callback functions,
when certain events occur:
v When an input message is received by the message flow and is propagated to

the user-defined node:
– For C nodes, the broker calls the cniEvaluate function for the user-defined

node. See “cniEvaluate” on page 143.
– For Java nodes, the broker calls the evaluate method that is implemented by

the user-defined node.
v If the user-defined node wants to query the message to decide what to do with

it, the node calls a C utility function or a Java method, as appropriate for the
language in which the node is written.

The broker invokes the user-defined parser on one of its implementation functions,
for example cpiParseFirstChild. This function instructs the parser to build the parse
tree. The parser builds the tree by invoking utility functions that create elements in
the parse tree, for example cpiCreateElement. The parser can be called many times
by the broker.

Developing user-defined extensions 7

Designing user-defined extensions
How you design user-defined extensions is influenced by language and system
considerations.

The design issues that you might need to consider are covered in the topics in this
section.

The topics in this section deal mainly with design issues that you must consider
when developing user-defined extensions in the C programming language. If you
are developing user-defined extensions in the Java programming language,
consider these factors in the same way as you would when developing other Java
applications.

Errors and exception handling
This topic deals with issues relating to errors and exception handling that you
need to consider when developing user-defined extensions for WebSphere Message
Broker in the C programming language. If you are developing user-defined
extensions using the Java programming language, you can use standard Java error
and exception handling methods. If, for example, WebSphere Message Broker
throws an exception internally, a Java exception of class MbException is made
available.

Correct handling of errors and exceptions is important for correct broker operation.
You should be aware of this, and understand how and when your user-defined
extension needs to handle errors and exceptions.

The message broker generates C++ exceptions to handle error conditions. These
exceptions are caught in the relevant software layers in the broker and handled
accordingly. However, programs written in C cannot catch C++ exceptions, and
any exceptions thrown, by default, bypass any C user-defined extension code and
be caught in a higher layer of the message broker.

Utility functions, by convention, normally use the return value to pass back
requested data; for example, the address or handle of a broker object. The return
value sometimes indicates that a failure has occurred. For example, if the address
or handle of a broker object could not be retrieved, then zero (CCI_NULL_ADDR)
is returned. Additionally, the reason for an error condition is stored in the return
code output parameter, which is, by convention, part of the function prototype of
all utility functions. If the utility function completed successfully and returnCode
was not null, returnCode contains CCI_SUCCESS. Otherwise, it contains one of the
return codes described below. The value of returnCode can always be tested safely
to determine whether a utility function was successful.

If the invocation of a utility function causes the broker to generate an exception,
this is visible to the user-defined extension only if it specified a value for the
returnCode parameter to that utility function. If a null value was specified for
returnCode, and an exception occurs:
v The user-defined extension is not be aware of that exception
v The utility function does not return to the user-defined extension
v Execution control passes to higher layers in the broker stack to process the

exception

This means that a user-defined extension would be unable to perform any of its
own error recovery. If, however, the returnCode parameter is specified, and an
exception occurs, a return code of CCI_EXCEPTION is returned. In this case,

8 User-defined Extensions

cciGetLastExceptionData or cciGetLastExceptionDataW (the difference being that
cciGetLastExceptionDataW returns a CCI_EXCEPTION_WIDE_ST which can
contain Unicode trace text) can be used to obtain diagnostic information on the
type of exception that occurred. The data is returned in the CCI_EXCEPTION_ST
or CCI_EXCEPTION_WIDE_ST structure.

If there are no resources to be released, you should not set the returnCode
argument in your user-defined extension. Not setting this argument allows
exceptions to bypass your user-defined extensions. These exceptions can then be
handled higher up the WebSphere Message Broker stack, by the broker.

Message inserts can be returned in the CCI_STRING_ST members of the
CCI_EXCEPTION_ST structure. The CCI_STRING_ST allows the user-defined
extension to provide a buffer to receive any required inserts. The broker copies the
data into this buffer and returns the number of bytes output and the actual length
of the data. If the buffer is not large enough, no data is copied and the
″dataLength″ member can be used to increase the size of the buffer, if needed.

The user-defined extension can perform its own error recovery, if required, by
setting a non-null value for returnCode. The utility function calls return to the
user-defined extension and pass their status through returnCode. All exceptions
occurring in any utility function must be passed back to the message broker for
additional error recovery to be performed, that is, when CCI_EXCEPTION is
returned in returnCode. You do this by invoking cciRethrowLastException, after the
user-defined extension has completed its own error processing. Calling
cciRethrowLastException causes the C interface to re-throw the last exception so
that it can be handled by other layers in the message broker. Note that, similar to a
C exit call, cciRethrowLastException does not return in this case.

If an exception occurs and is caught by a user-defined extension, the extension
must not call any utility functions except cciGetLastExceptionData,
cciGetLastExceptionDataW, or cciRethrowLastException. An attempt to call other
utility functions results in unpredictable behavior that can compromise the
integrity of the broker.

If a user-defined extension encounters a serious error, cciThrowException or
cciThrowExceptionW can be used to generate an exception that is processed by the
message broker in the correct manner. The generation of such an exception causes
the supplied information to be written to the system log (syslog or Eventviewer) if
the exception is not handled. The information is also written to Broker trace if trace
is active.

Types of exception and broker behavior: The broker generates a set of exceptions
that can be passed to a user-defined extension. These exceptions can also be
generated by a user-defined extension when an error condition is encountered. The
exception classes are:

Fatal Fatal exceptions are generated when a condition occurs that prevents the
broker process from continuing execution safely, or where it is broker
policy to terminate the process. Examples of fatal exceptions are a failure
to acquire a critical system resource, or an internally-caught severe
software error. The broker process terminates following the throwing of a
fatal exception.

Recoverable
These are generated for errors which, although not terminal in nature,
mean that the processing of the current message flow has to be ended.

Developing user-defined extensions 9

Examples of recoverable exceptions are invalid data in the content of a
message, or a failure to write a message to an output node. When a
recoverable exception is thrown, the processing of the current message is
aborted on that thread, but the thread recommences execution at its input
node.

Configuration
Configuration exceptions are generated when a configuration request fails.
This can be because of an error in the format of the configuration request,
or an error in the data. When a configuration exception is thrown, the
request is rejected and an error response message is returned.

Parser These are generated by message parsers for errors which prevent the
parsing of the message content or creating a bit stream. A parser exception
is treated as a recoverable exception by the broker.

Conversion
These are generated by the broker character conversion functions if invalid
data is found when trying to convert to another data type. A conversion
exception is treated as a recoverable exception by the broker.

User These are generated when a Throw node throws a user-defined exception.

Database
These are generated when a database management system reports an error
during broker operation. A database exception is treated as a recoverable
exception by the broker.

Storage management in user-defined nodes
Consider issues that relate to storage management when you develop user-defined
extensions in the C programming language.

If you are developing user-defined extensions using the Java programming
language, you can use standard Java string handling methods.

All memory that is allocated by a user-defined extension must be released by the
user-defined extension. The construction of a node at run time causes the
cniCreateNodeContext function to be invoked, which allows the user-defined
extension to allocate node instance specific data areas to store a context. The
address of the context is returned to the broker, and is passed back from the broker
when an internal method causes a user-defined extension function to be invoked;
thus, the C user-defined extension can locate and use the correct context for the
function processing.

The broker passes addresses of C++ objects to the user-defined extension, which
are used as handles to be passed back on subsequent function calls. Your C
user-defined extension must not manipulate or use these pointers in any way, for
example, by trying to release storage using the free function. Such actions cause
unpredictable behavior in the broker.

The cniCreateNodeContext implementation function is invoked whenever the
underlying node object has been constructed internally. It is called when a broker
is defined with a message flow that uses a user-defined node. This activity is not
necessarily the same as creating (or reusing) a thread to execute a message flow
instance that contains the node. The cniCreateNodeContext function is called only
once, during the configuration of the message flow, regardless of how many
threads are executing the message flow.

10 User-defined Extensions

Similar considerations apply to user-defined parsers, and the corresponding
implementation function cpiCreateContext.

String handling in user-defined nodes
Consider issues that relate to string handling when you develop user-defined
extensions in the C programming language.

If you are developing user-defined extensions using the Java programming
language, you can use standard Java string handling methods.

To enable a broker to handle messages in all languages at the same time, text
processing within the broker is done in UCS-2 Unicode. UCS-2 Unicode character
strings are also used across the Java and C language user-defined extension APIs
to pass and return character data. Attributes are received in XML configuration
messages as character strings, regardless of data type. If the true data type of an
attribute is not a string, the cniSetAttribute function must perform the necessary
verification and conversion before storing the attribute value. Similarly, when an
attribute value is retrieved using cniGetAttribute2, conversion must be performed
to a UCS-2 Unicode character string before returning the result.

CciChar defines a 16-bit character with UCS-2 Unicode representation. A CciChar*
is a string of such characters terminated with a CciChar of 0. By default, a CciChar
is represented by type wchar_t. However, some platforms do not have a convenient
way of representing UCS-2 constants in source code, typically because of 4-byte
wchar_t or EBCDIC representation. For example, a source-code constant such as
L″ABC″ expands to 12 bytes on Solaris.

For this reason, WebSphere Message Broker provides the utility functions
cciMbsToUcs and cciUcsToMbs. Use these functions, where appropriate, to ensure
portability of your user-defined nodes.

Threading considerations for user-defined extensions
Message processing nodes and parsers must work in a multi-instance,
multithreaded environment. Many node objects or parser objects are available, each
with several syntax elements, and many threads can be executing methods on
these objects.

An instance of a message flow processing node is shared and used by all the
threads that service the message flow in which the node is defined. Parsers are
invoked on the same thread as the nodes, therefore, if the flow is using multiple
threads then the parsers are as well.

A user-defined extension must use this model. If a user-defined node requires
global data or resources, then you must protect the global data or resources by
using semaphores to serialize access across threads. However, such serialization
can result in performance bottlenecks. Avoid using global data and resources to
create a more scalable solution.

The functions implemented by user-defined extensions must be reentrant, and any
functions that they invoke must also be reentrant. All user-defined extension utility
functions are fully reentrant.

Although a user-defined extension can create additional threads if required, all C
utility functions and Java methods must be invoked on the same thread that called
the cniEvaluate function in C or the evaluate method in Java, as appropriate for
the language in which the node is written. If the same thread is not used, your

Developing user-defined extensions 11

code might compromise the integrity of the broker and cause unpredictable
behavior. Any additional threads must not call the user-defined extension API. The
API must only be used from the main thread that is invoked by the Broker.

For information about the cniEvaluate function see “cniEvaluate” on page 143.

ODBC restrictions for user-defined nodes
The ODBC environment cannot be accessed using the Java or C language
user-defined extension API.

Database access must be performed using the supplied processing nodes, or by
using the following implementation functions supplied for that purpose:
v “cniSqlCreateStatement” on page 172
v “cniSqlExecute” on page 175
v “cniSqlSelect” on page 177
v “cniSqlDeleteStatement” on page 174

Java Database Connectivity

Types 2 and 4 JDBC drivers are supported, but are not provided with the broker.

Node and parser factory behavior
The node factory and the parser factory assume roles in declaring a node to the
broker or defining a parser.

Each loadable implementation library (LIL) has one node factory, or one parser
factory, or has both. A node factory can identify many nodes, and a parser factory
can identify many parsers.

When the broker loads the LIL, it calls the following functions:
v bipGetMessageflowNodeFactory

After the operating system has loaded and initialized the LIL, the broker calls
initialization function bipGetMessageflowNodeFactory. The
bipGetMessageflowNodeFactory function calls the utility function
cniCreateNodeFactory, which passes back a factory name (or group name) for all
the nodes that your LIL supports.

v bipgetparserfactory

After the operating system has loaded and initialized the LIL, the broker calls
initialization function bipgetparserfactory. The bipgetparserfactory function
defines the name of the factory that the user-defined parser supports, and the
classes of objects, or shared object, that the factory supports. The initialization
function bipgetparserfactory calls the utility function cpiCreateParserFactory,
which passes back a factory name (or group name) for all the parsers that your
LIL supports.

Before the node factory is returned, the broker calls the following functions:
1. cniCreateNodeFactory

This function creates a single instance of the node factory in the broker.
2. cndDefineNodeClass

This function defines the name of a node class that a node factory supports,
and identifies the nodes that the node factory can create.

Before the parser factory is returned, the broker calls the following functions:

12 User-defined Extensions

1. cpiCreateParserFactory

This function creates a single instance of the named parser factory in the
message broker.

2. cpiDefineParserClass

This function defines the name of a parser class that a parser factory supports,
and identifies the parsers that the factory can create.

See the following topics for information on these functions:
v “cniCreateNodeFactory” on page 127
v “cpiCreateParserFactory” on page 192
v “cniDefineNodeClass” on page 128
v “cpiDefineParserClass” on page 193

User-defined input nodes
A user-defined input node is an extension to the broker that provides a new input
node in addition to those supplied with the product.

You create user-defined input nodes using either the C or Java programming
language, to provide message input to a message flow from a message queue
when you want your broker to accept messages from a transport protocol other
than WebSphere MQ.

You can use a user-defined input node to receive data from an external data source
and to allow that data to be processed in a broker. In this way, you can
complement the primitive input node types provided by WebSphere Message
Broker.

You cannot use a user-defined input node to provide the in terminal to a message
subflow. If you want to provide the in terminal to a subflow, you must use the
supplied Input node.

Before writing a user-defined node, you should make sure you are familiar with
the concepts introduced in “Planning user-defined extensions” on page 5 and
“User-defined extensions in the runtime environment” on page 6.

C user-defined input node life cycle
A user-defined input node that is written in the C programming language
progresses through several stages during its lifetime.

The stages of the life cycle are:
v Registration
v Instantiation
v Processing
v Destruction

Registration: During the registration phase, the broker discovers which resources
are available and which LILs can provide them. In this instance, the resources
available are nodes. The phase starts when an execution group starts. The LILs are
loaded on the startup of an execution group, and the broker queries them to find
out what resources they can provide.

A CciFactory structure is created during the registration phase, when the
user-defined node calls cniCreateNodeFactory.

Developing user-defined extensions 13

The following APIs are called by the broker during this stage:
v biGetMessageflowNodeFactory
v bipGetParserFactory

The following API is called by the user-defined node during this stage:
v cniCreateNodeFactory

Instantiation: An instance of a user-defined input node is created when the
mqsistart command starts or restarts the execution group process, or when a
message flow that is associated with the node is deployed.

The following APIs are called during this phase:
v cniCreateNodeContext. This API allocates memory for the instantiation of the

user-defined node to hold the values for configured attributes. This API is called
once for each message flow that is using the user-defined Input node.

v cniCreateInputTerminal. This API is invoked within the cniCreateNodeContext
API, and is used to tell the broker what input terminals, if any, your
user-defined input node has.
Your user-defined input node only has input terminals if it is also acting as a
message processing node. If this is the case, it is typically better to use a
separate user-defined message processing node to perform the message
processing, rather than combine both operations in one, more complex, node.

v cniCreateOutputTerminal. This API is invoked within the cniCreateNodeContext
API, and is used to tell the broker what output terminals your user-defined
input node has.

v cniSetAttribute. This API is called by the broker to establish the values for the
configured attributes of the user-defined node.

During this phase, a CciTerminal structure is created when cniCreateTerminal is
called.

Processing: The processing phase begins when the cniRun function is called by
the broker. The broker uses the cniRun function to determine how to process a
message, including determining the domain in which a message is defined, and
invoking the relevant parser for that domain.

A thread is demanded from the message flow’s thread pool, and is started in the
run method of the input node. The thread connects to the broker’s queue manager,
and retains this connection for its lifetime. When a thread has been allocated, the
node enters a message processing loop while it waits to receive a message. It
remains in the loop until a message is received. If the message flow is configured
to use multiple threads, thread dispatching is activated.

The message data can now be propagated downstream.

The following APIs are called by the broker during this phase:
v cniRun. This function is called by the broker to determine how to process the

input message.
v cniSetInputBuffer. This function provides an input buffer, or tells the broker

where the input buffer is, and associates it with a message object.

14 User-defined Extensions

Destruction: A user-defined input node is destroyed when the message flow is
redeployed, or when the mqsistop command is used to stop the execution group
process. You can destroy the node by implementing the cniDeleteNodeContext
function.

When a user-defined input node is destroyed in one of these ways, you should free
any memory used by the node, and release any held resources, such as sockets.

The following APIs are called by the broker during this phase:
v cniDeleteNodeContext. This function is called by the broker to destroy the

instance of the input node.

Java user-defined input node life cycle
A user-defined input node that is written in the Java programming language
progresses through several stages during its lifetime.

The stages of the life cycle are:
v Registration
v Instantiation
v Processing
v Destruction

Registration: During the registration phase a user-defined input node written in
Java makes itself known to the broker. The node is registered with the broker
through the static getNodeName method. Whenever a broker starts, it loads all the
relevant Java classes. The static method getNodeName is called at this point, and
the broker registers the input node with the node name specified in the
getNodeName method. If you do not specify a node name, the broker
automatically creates a name for the node based on the package in which it is
contained.

Using a static method here means that the method can be called by the broker
before the node itself is instantiated.

Instantiation: A Java user-defined input node is instantiated when a broker
deploys a message flow containing the user-defined input node. When the node is
instantiated, the broker calls the constructor of the input node’s class.

When a node is instantiated, any terminals that you have specified are created. A
message processing node can have any number of input and output terminals
associated with it. You must include the createInputTerminal and
createOutputTerminal methods in your node constructor to declare these terminals.

To handle exceptions that are passed back to your input node, use
createOutputTerminal to create a catch terminal for your input node. When the
input node catches an error, the catch terminal processes it in the same way as an
MQInput node would. You can allow most exceptions, such as exceptions that are
caused by deployment problems, to pass back to the broker, and the broker will
warn the user of any possible configuration errors.

As a minimum, your constructor class needs only to create these output terminals
on your input node. However, if you need to initialize attribute values, such as
defining the parser that will initially parse a message passed from the input node,
you should also include that code at this point in your input node.

Developing user-defined extensions 15

Processing: Message processing for an input node begins when the broker calls
the run method. The run method creates the input message, and should contain
the processing function for the input node.

The run method is defined in MbInputNodeInterface, which is the interface used
in a user-defined node that defines it as an input node. You must include a run
method in your node. If you do not include a run method in your user-defined
input node, the node source code will not compile.

When a message flow containing a user-defined input node is deployed
successfully, the broker calls the node’s run implementation method, and continues
to call this method while it waits for messages to process.

When a message flow starts, a single thread is dispatched by the broker, and is
called into the input node’s run method. If the dispatchThread() method is called,
further threads can also be created in the same run method. These new threads
immediately call into the input node’s run method, and can be treated the same as
the original thread. The number of new threads that can be created is defined by
the additionalInstances property. Make sure that threads are dispatched after a
message has been created, and before it is propagated, to ensure that only one
thread at a time is waiting for a new message.

The user-defined input node can choose a different threading model and is
responsible for implementing the chosen model. If the input node supports the
additionalInstances property, and dispatchThread() is called, the code must be fully
re-entrant, and any functions that are invoked by the node should also be
re-entrant. If the input node forces single threading, that is, it does not call
dispatchThread(), the node documentation must state that setting the
additionalInstances property has no effect on the input node.

For more information on the threading model for user-defined input nodes, see
“Threading considerations for user-defined extensions” on page 11.

Destruction: A Java user-defined input node is destroyed when the node is
deleted or the broker is shut down. You do not need to include anything in your
code that specifies the node should be physically deleted, because this can be
handled by the garbage collector.

However, if you want notification that a node is about to be deleted, you can use
the onDelete method. You might want to do this if there are resources that you
want to delete, other than those that will be garbage collected. For example, if you
have opened a socket, this will not be properly closed when the node is
automatically deleted. You can include this instruction in your onDelete method to
ensure that the socket is closed properly.

Planning user-defined input nodes
Before you develop a user-defined input node, plan and design its content and
purpose.

Analysis: Before you develop a user-defined input node, ask yourself the
following questions:
v Do you need to create a custom input node?

You must include at least one input node in a message flow. Which one you
choose depends on the source of the input messages:

16 User-defined Extensions

– If the messages arrive at the broker on a WebSphere MQ queue, use the
MQInput or MQOptimizedFlow node.

– If other messages are received over HTTP, use the HTTPInput node.
– If the messages are received from a multicast application, use the

Real-timeInput node.
– If the messages are received from a JMS source, use either the Real-timeInput

node or the JMSInput node.
– If the messages are sent by telemetry (SCADA) devices, use the SCADAInput

node.
– If the message source is any other, you must use a user-defined input node.

For information about using more than one input node in a message flow, see
Using more than one input node.

v To successfully input the data concerned, does the input node have to interface
with vendor software? If so, does the API that enables access to this software
break your threading model?

v Do you need a new user-defined parser to interpret the body (payload) of the
message generated by this input node, or can it be parsed by a standard built-in
parser?

v Do you need the user-defined input node to operate the message flow instance
in which it resides under transactional control as a globally-coordinated
transaction?

v Do you need the new user-defined input node to offer configuration options?
v Do you need messages propagated by this input node to be processed by the

following primitives?
– All primitive output nodes
– ResetContentDescriptor nodes

Design considerations: Before developing and implementing your input node,
decide on the following factors:
v Which message parser will initially parse the input message.
v Whether to override the default message parser attribute values for this input

node.
v Which threading model is appropriate for the input node.
v What kind of message processing and transaction support will the node support.
v Which configuration attributes required by the input node should be

externalized for alteration by the message flow designer.
v What optional node APIs will the user-defined node provide.
v How you will handle general development issues:

– “Threading considerations for user-defined extensions” on page 11
– “Storage management in user-defined nodes” on page 10
– “String handling in user-defined nodes” on page 11
– “Errors and exception handling” on page 8
– Expected message formats for primitive nodes that expect specific header

folders.

When you design nodes to be used as extensions to WebSphere Event Broker, the
following restrictions apply:

Developing user-defined extensions 17

v User-defined input nodes can support only XML, BLOB, and the WebSphere MQ
parsers, because the MRM parser is not shipped with WebSphere Event Broker
and user-defined parsers are not supported.

v User-defined nodes must not allow users to evaluate user ESQL code, because
the use of ESQL in WebSphere Event Broker is not supported. For example,
nodes that expose the input to MbSQLStatement as a node attribute are
effectively emulating a Compute node.

User-defined message processing nodes
A user-defined message processing node is a node that you can create to
complement the supplied built-in node types.

You might consider the use of a user-defined message processing node in the
following situations:
v Your messages need transformations that the built-in nodes do not provide. For

example, you might need a currency converter node.
v You want to write messages into a flat file on the local system for later

processing by another application or utility program.

Combine your user-defined nodes with the built-in nodes to create message flows
that meet your exact business requirements.

C user-defined message processing nodes life cycle
This topic guides you through the various stages in the life of a user-defined
message processing node for the C programming language. It covers the objects
that are created and destroyed, and the implementation functions and classes that
are called in the following stages:
v Registration
v Instantiation
v Processing
v Destruction

The information in this topic applies to both output nodes and message processing
nodes. Both of these node types can be considered together, because although a
message processing node is typically used to process a message, and an output
node is used to provide an output in the form of a bit stream, you can use either
type of node to perform either of these functions.

Registration: A user-defined message processing node is registered with the
broker when the LIL that contains the node has been loaded and initialized by the
operating system.

The broker calls bipGetMessageflowNodeFactory to establish the function of the
LIL, and how the LIL should be called.

The bipGetMessageflowNodeFactory function in turn calls the
cniCreateNodeFactory function, which returns a factory or group name for all of
the nodes that are supported by your LIL.

The LIL should then call the utility function cniDefineNodeClass to pass both the
name of each node and a virtual function table of the function pointers of the
implementation functions.

18 User-defined Extensions

Instantiation: During the instantiation phase, an instance of a user-defined
message processing node is created. The phase starts when the broker creates a
message flow and calls the cniCreateNodeContext function for each instantiation of
the user-defined node in that message flow. The cniCreateNodeContext function is
that which is specified in the iFpCreateNodeContext field of the CNI_VFT struct
passed to cniDefineNodeClass for that node type. This function should allocate the
resources required for that node, including memory such that the instantiation of
the user-defined node can hold the values for the configured attributes.

The broker will create a node instance and call cniCreateNodeContext on the
following occasions:
v Message flow is created:

– Broker is being started (user has run mqsistart). Any message flows
previously deployed are recreated when the broker starts.

– Execution group is being reloaded (user has run mqsireload). Any message
flows that have been deployed previously are recreated when the execution
group reloads.

– A severe error has occurred within the execution group which results in the
execution group being restarted.

v Message flow is redeployed. When a message flow is changed and redeployed,
the broker processes redeploy by deleting all nodes in the flow and then
recreating them with the new configuration.

Note: A message flow is not created when starting an execution group. Stopping
an execution group simply stops all flows and does not delete the flow or
bring the process down. Restarting an execution group, starts the message
flows but does not recreate the message flows.

Within cniCreateContext, the user-defined extension calls the two functions
cniCreateInputTerminal and cniCreateOutputTerminal in order to establish what
input and output terminals the message processing node has.

Processing: During the processing phase of the life cycle of a user-defined
message processing node, the message is transformed in some way, when some
processing operation takes place on the input message.

When the broker retrieves a message from the queue and that message arrives at
the input terminal of your user-defined node, the broker calls the implementation
function cniEvaluate. This function is used to decide what to do with the message.

You can use a range of node utility functions in your user-defined message
processing node to perform a range of message processing functions, such as
accessing the message data, accessing ESQL, transforming a message object, and
propagating a message. You should include the node utility functions you are
going to use to process the message within the cniEvaluate function.

This interface does not automatically generate a properties subtree for a message. It
is not a requirement for a message to have a properties subtree, although you
might find it useful to create one to provide a consistent message tree structure
regardless of input node. If you want a properties subtree to be created in a
message, and you are also using a user-defined input node, you must do this
yourself

Destruction: When a user-defined message processing node has processed a
message, you should ensure that it is destroyed, to release any system resources

Developing user-defined extensions 19

that it used, and to release any data areas specific to the node instance, such as
context, that were acquired when the message was constructed or processed.

An instance of a user-defined message processing node is destroyed when the
broker calls the cniDeleteNodeContext function.

The broker calls cniDeleteNodeContext when the instance of the node is deleted.
The following events can cause a node to be deleted:
v Controlled termination of the execution group process:

– Broker is being stopped (user has run mqsistop)
– Execution group is being reloaded (user has run mqsireload)
– A severe error has occurred within the execution group, which results in the

execution group being restarted.

Note: This does NOT include stopping an execution group. Stopping an
execution group simply stops all flows, and does not delete the flow or
bring the process down.

v Message flow is deleted. For example, a message flow is deleted from the
tooling’s Broker Administration perspective.

v Message flow is redeployed. When a message flow is changed and redeployed,
the broker processes redeploy by deleting all nodes in the flow and then
recreating them with the new configuration.

Java user-defined message processing nodes life cycle
This topic guides you through the various stages in the life of a user-defined
message processing node for the Java programming language. It covers the objects
that are created and destroyed, and the methods and classes that are called in the
following stages:
v Registration
v Instantiation
v Processing
v Destruction

The information in this topic applies to both output nodes and message processing
nodes. Both of these node types can be considered together, because although a
message processing node is typically used to process a message, and an output
node is used to provide an output, in the form of a bit stream, from a message,
you can use either type of node to perform either of these functions.

Registration: The registration phase occurs when a user-defined message
processing node that is written in Java makes itself known to the broker, or
registers with the broker.

Whenever a broker starts, it loads all relevant LILs and Java classes. To ensure that
a message processing node is registered with the broker, you must provide the
broker with a class that implements the MbNodeInterface interface and is
contained in the broker’s classpath.

Instantiation: A Java user-defined message processing node is instantiated when
a broker deploys a message flow that contains the user-defined message processing
node. When the node is instantiated, the constructor of the message processing
node’s class is called.

20 User-defined Extensions

When a node is instantiated, any terminals that you have specified are created. A
message processing node can have any number of input and output terminals
associated with it. You must include the createInputTerminal and
createOutputTerminal methods in your node constructor in order to declare these
terminals.

Output terminals include out, failure, and catch terminals. Use the
createOutputTerminal class within the node class constructor in order to create as
many output terminals as you require.

As a minimum, you need only to create these output terminals by using your
constructor class. However, if you need to initialize attribute values, you should
also include that code at this point in your message processing node.

If you want to handle exceptions that are passed back to your message processing
node, it is good practice to do this by creating a failure terminal for your
user-defined message processing node, by using the createOutputTerminal method.
It is sensible to use the failure terminal for this process because that is to where
WebSphere Message Broker errors are propagated.

Make sure that any exceptions that are caught by the message processing node are
dealt with properly. If you do not include a failure terminal, the message
processing node will not attempt to handle the exception. If your message flow
does not contain any method of exception handling, any exceptions thrown are
passed back to the input node, where the input node deals with the exceptions.

If you do catch exceptions, make sure that you re-throw any exceptions that the
message processing node cannot deal with. This will cause the exception to be
passed back to the input node for handling, for example, when you want to
rollback a transaction.

Processing: During the processing phase of the life cycle of a user-defined
message processing node, the message processing node takes the logical hierarchy
of the message and processes it in some way.

Destruction: A Java user-defined message processing node is destroyed when the
node is deleted or the broker is shut down. You do not need to include anything in
your code to specify that the node should be physically deleted because this can be
handled by the garbage collector.

However, if you want notification that a node is about to be deleted, you can use
the onDelete method. You might want to do this if there are resources that you
want to delete, other than those that will be garbage collected. For example, if you
have opened a socket, this will not be properly closed when the node is
automatically deleted. You can include this instruction in your onDelete method to
ensure that the socket is closed properly.

Planning user-defined message processing nodes
Plan how to write your message processing node or output node, and how to
navigate the message within the node.

Design factors: Before developing and implementing your message processing
node, consider the following points:
v Which parser will parse messages.
v Whether to override the default message parser attribute values for this message

processing node.

Developing user-defined extensions 21

v What is the appropriate threading model for the message processing node.
v How to implement the end of message processing and transaction support that

the node must support.
v What configuration properties required by the message processing node should

be externalized for alteration by the message flow designer.
v What optional node APIs will the user-defined node provide.
v General development issues:

– “Threading considerations for user-defined extensions” on page 11
– “Storage management in user-defined nodes” on page 10
– “String handling in user-defined nodes” on page 11
– “Errors and exception handling” on page 8
– Expected message formats for built-in nodes that expect specific header

folders (see Element definitions for message parsers)

Syntax element navigation: The broker provides functions that your node can call
to traverse the tree representation of the message, as well as functions and
methods that support navigation from the current element to other elements:
v Parent
v First child
v Last child
v Previous (or left) sibling
v Next (or right) sibling

These relationships are shown in the following figure.

Other functions and methods support the manipulation of the elements
themselves, with functions and methods to create elements, to set or query their
values, to insert new elements into the tree, and to remove elements from the tree.
See “C node utility functions” on page 109 and “C parser utility functions” on
page 180, or the Javadoc information for more details.

The next figure describes a simple syntax element tree that shows a full range of
interconnections between the elements.

22 User-defined Extensions

The element A is the root element of the tree. It has no parent because it is the
root. It has a first child of element B. Because A has no other children, element B is
also the last child of A.

Element B has three children: elements C, D, and E. Element C is the first child of
B; element E is the last child of B.

Element C has two siblings: elements D and E. The next sibling of element C is
element D. The next sibling of element D is element E. The previous sibling of
element E is element D. The previous sibling of element D is element C.

The following figure shows the first generation of syntax elements of a typical
WebSphere MQ message received by a broker. (Not all messages have an MQRFH2
header.)

These elements at the first generation are often referred to as folders, in which
syntax elements that represent message headers and message content data are
stored. In this example, the first child of root is the Properties folder. The next
sibling of Properties is the folder for the MQMD header. The next sibling is the
folder for the MQRFH2 header. The last folder represents the message content,
which (in this example) is an XML message.

Developing user-defined extensions 23

The previous figure includes an MQMD and an MQRFH2 header. All messages
that are received by a processing node that handles WebSphere MQ include an
MQMD header; a number of other headers can also be included.

Navigating an XML message: Consider the following XML message:
<Business>

<Product type='messaging'></Product>
<Company>

<Title>IBM</Title>
<Location>Hursley</Location>
<Department>WebSphere MQ</Department>

</Company>
</Business>

In this example, the elements are of the following types:

Name element
Business, Product, Company, Title, Location, Department

Value element
IBM®, Hursley, WebSphere MQ

Name-value element
type=’messaging’

Use supplied node utility functions and methods (or the similar parser utility
functions) to navigate through a message. Using the XML message shown, you
must call cniRootElement first, with the message received by the node as input to
this function. In Java, you must call getRootElement on the incoming MbMessage
object. This call returns an MbElement that represents the root of the element. Do
not modify this root element in the user-defined node.

The figure of the first generation of the syntax elements of a typical message that is
received by the broker, shows that the last child of the root element is the folder
containing the XML parse tree. Navigate to this folder by calling cniLastChild
(with the output of the previous call as input to this function) in a C node, or by
calling the method getLastChild on the root element, in a Java node.

Only one element (<Business>) is at the top level of the message, therefore call
cniFirstChild (in C) or getFirstChild (in Java) to move to this point in the tree. Use
cniElementType or getType to get its type (which is name), followed by
cniElementName or getName to return the name itself (Business).

The element <Business> has two children, <Product> and <Company>. Use
cniFirstChild or getFirstChild followed by cniNextSibling or getNextSibling to
navigate to each child in turn.

The element <Product> has an attribute (type='messaging'), which is a child
element. Use cniFirstChild or getFirstChild to navigate to this element, and
cniElementType or getType to return its type (which is name-value). Use
cniElementName or getName to get the name. To get the value, call
cniElementValueType to return the type, followed by the appropriate function in
the cniElementValue group: in this example it is cniElementCharacterValue. In Java
use the method getValue, which returns a Java object representing the element
value.

The element <Company> has three children, each one having a child that is a value
element (IBM, Hursley, and WebSphere MQ). Use the functions already described to
navigate to them and access their values.

24 User-defined Extensions

Other functions are available to copy the element tree (or part of it). The copy can
then be modified by adding or removing elements, and changing their names and
values, to create an output message. See “C node utility functions” on page 109
and “C parser utility functions” on page 180, or the Java user-defined node API,
for more information.

User-defined output nodes
A user-defined output node is an extension to the broker that provides a new
message flow output node in addition to those supplied with the product.

If you want your message flow to send messages using a protocol that is not
supported by WebSphere Message Broker you can create your own output node to
do this.

WebSphere Message Broker provides the following output nodes:
v MQOutput - delivers an output message from a message flow to a WebSphere

MQ queue
v MQReply - sends a response to the originator of the input message.
v SCADAOutput - sends a message to a client connecting using the MQIsdp

protocol
v Publication - filters output messages from a message flow and transmit them to

subscribers who have registered an interest in a particular set of topics.

If the target application expects to receive message in any other way, you must use
a user-defined output node.

User-defined output nodes can be considered together with user-defined message
processing nodes. Conceptually, these two kinds of user-defined nodes are the
same. Although a message processing node is typically used to process a message,
and an output node is used to provide an output, in the form of a bit stream, from
a message, you construct output nodes and message processing nodes in a similar
way, and you can use either type of node to perform either function.

For more information on user-defined output nodes, read the topics that cover
user-defined message processing nodes.

User-defined output node life cycle
For information on the life cycle of a user-defined output node, you should read
the corresponding topics for user-defined message processing nodes.

The information in these topics applies to both output nodes and message
processing nodes. Both of these node types can be considered together, because
although a message processing node is typically used to process a message, and an
output node is used to provide an output in the form of a bit stream, you can use
either type of node to perform either of these functions.

Planning user-defined output nodes
A user-defined output node generates an output bit stream from a message tree.

Optionally, you can connect the node to another node and propagate the message
tree for further processing. User-defined output nodes and message processing
nodes are, therefore, structured in the same way. All relevant information for
output nodes is included in “Planning user-defined message processing nodes” on
page 21.

Developing user-defined extensions 25

User-defined parsers
A user-defined parser is a program that interprets the bit stream of an incoming
message and creates an internal representation of the message in a tree structure. A
user-defined parser can also regenerate a bit stream for an outgoing message from
the internal message tree representation

In addition to the parsers provided by WebSphere Message Broker, you can
provide alternative and complementary message parsers that are accessible to the
broker and its message processing nodes through a standard set of parsing and
construction interfaces.

If you need to process messages that do not conform to any of the defined
message domains you can use the C language programming interface to create a
user-defined parser.

User-defined parser life cycle
Various stages exist in the life of a user-defined message flow parser.

These stages are involved:
v Registration
v Instantiation
v Processing
v Destruction

This topic describes the interactions that take place between WebSphere Message
Broker components when you run a user-defined parser. It explains each stage in
terms of the events that start each stage, and the events that occur during and after
each stage, and the APIs that are called. Understanding the concepts here help you
to design and develop your parser more effectively.

Registration: The first phase in the user-defined parser’s life cycle is the
registration phase. The purpose of the registration phase is to register the
user-defined parser with the broker. This phase starts when the execution group
starts.

Instantiation: The parser is created during the instantiation phase of the parser
life cycle. When an input message is received, or an output message is built in a
Compute node, the relevant parser is identified, and parser requirements are taken
from the message header, such as the MQMD. The broker starts and loads the
Loadable Implementation Library (LIL) and the parser factory. Before the
cpiCreateContext function is called, the broker creates a name element as the
effective root element for the parser. However, this element is not named. The
parser should name this element in the cpiSetElementName function. The
execution group process creates an instance of the parser, and the broker makes a
call to cpiCreateContext to allow the parser object to acquire the appropriate
section of the message.

The broker then makes a call to cpiParseBuffer. cpiParseBuffer performs any
necessary initialization, and returns the length of the message content that the
parser is taking ownership of. The parser assesses how much of the message data
to parse, and claims the appropriate number of bytes.

Whenever an instance of a user-defined parser object is created, the context
creation implementation function cpiCreateContext is also invoked by the broker.
This call allows the parser to allocate instance data associated with the parser. A
cpiDeleteContext function to delete the context of the parser object is also required.

26 User-defined Extensions

Processing: During the processing phase, the parser manipulates, alters, and
references elements within the message object. The message flow processing phase
begins when any message processing activity occurs, such as navigation, that
requires access to an element within a message that does not exist in the broker’s
internal model representation of the message concerned.

During the message flow processing phase, the parser is invoked in response to
attempts to navigate into the message tree. The parser examines the buffer that
was allocated when cpiParseBuffer was called, and creates any necessary message
elements.

The parser can then navigate through the message elements, using any or all of the
following parser implementation functions:
v cpiParseFirstChild
v cpiParseLastChild
v cpiParsePreviousSibling
v cpiParseNextSibling

These functions are invoked when any form of navigation is made (such as a filter
expression that specifies a message field) into the part of the syntax element tree
that logically represents the data for a message format supported by a user-defined
parser. This navigation occurs when an operation within the broker requires a
syntax element tree to be built or extended.

Consider the following points when deciding how best to navigate the syntax
element tree:
v A Syntax element has five pointers to its parents, siblings, and first and last

children, so that a finite set of navigations is available.
v The same internal classes are used to perform all of these navigations.
v The parser does not control the navigation. The ESQL or a user-defined node

makes the decision about the direction in which to navigate, and the order in
which the navigational parser implementation functions are invoked. The
user-defined parser has no control over the direction and order, and needs to
respond correctly to the chosen navigation scheme; for example, parsing right to
left, as well as left to right.

v When writing a user-defined parser, place the parser code in a parseNextItem
function. This function should build the syntax element tree one element at a
time, setting names, values and complete flags appropriately. How you
implement this function depends on the nature of the bit stream to be parsed.
The supplied sample parser demonstrates this behavior.

When the parser has finished parsing the relevant parts of the syntax element tree,
it calls cpiWriteBuffer. This function appends its portion of the syntax element tree
to the bit stream in the message buffer that is associated with the parser object,
and creates the output message.

Destruction: The Destruction phase is the final phase in the user-defined parser
life cycle. When the parser has written its portion of the syntax element tree to the
bit stream and created the output message, the system resources that were created
by the broker for the parser to use need to be released.

The destruction phase begins when the mqsistop command is used to stop the
execution process.

Developing user-defined extensions 27

Planning user-defined parsers
Read about the concepts that you should consider before you develop a
user-defined parser.

When you have considered the information provided here, and are ready to
develop your own parser, use the instructions in “Creating a user-defined parser”
on page 47 to construct your parser.

Analysis: Before you start to create your own parser, be clear about its purpose.
You can perform most tasks using the functions that are provided with WebSphere
Message Broker, so you might not need to create a user-defined parser for your
particular task.

Before you construct and implement a user-defined parser, consider the following
questions:
v Do you need to create a user-defined parser?

If the available parsers in WebSphere Message Broker are not appropriate for
your needs, define your own parser to parse internal, customer-specific, or
generic commercial message formats.

v Does WebSphere Message Broker already provide a parser for the domain or
message header?
See Parsers for details of message domains for which the supplied parsers can
accept input messages, and message headers with which the supplied parsers
can work.

v Does the syntax of the in-house or commercial message dictate a format that can
be parsed?

v To parse the message successfully, does the parser need to interact with vendor
software? If so, does the API that enables access to this software break your
threading model?

v Do you need to process multi-part, multi-format messages?
WebSphere Message Broker does not support multi-part, multi-format messages.
A multi-part MRM message must consist of messages that are all in the same
format.

v What type of parsing strategy will provide best performance?
WebSphere Message Broker supports partial parsing, which allows your parser
to parse only relevant fields in a message. Using partial parsing can save system
resources.

Partial and full parsing: WebSphere Message Broker supports partial parsing. If an
individual message contains hundreds or even thousands of individual fields, the
parsing operation requires considerable memory and processor resources to
complete. An individual message flow might reference only a few of these fields,
or none at all, so it is inefficient to parse every input message completely. For this
reason, WebSphere Message Broker allows parsing of messages on an as-needed
basis. (This ability does not prevent a parser from processing the entire message in
one step, and some parsers are written to process the entire message in this way.)

Each syntax element in a logical message has two bits that indicate whether all the
elements on either side of an element are complete, and whether its children are
complete. Parsing is typically completed in a bottom-to-top, left-to-right manner.
When a parser has parsed the siblings of a particular element that precede the
given element and the first child, it sets the first completion bit to one. Similarly,

28 User-defined Extensions

when the pointer to the next sibling of an element is complete, as well as its last
child pointer, the other completion bit is set to one.

In partial parsing, the broker waits until a part of the message is referenced, and
invokes the parser to parse that part of the message. Message processing nodes
refer to fields within a message using hierarchical names. The name begins at the
root of the message and proceeds down the message tree until the particular
element is located. If an element is encountered without its completion bits set,
and further navigation from this element is required, the appropriate parser entry
point is called to parse the necessary part of the message. The relevant part of the
message is parsed, appropriate elements are added to the logical message tree, and
the element in question is marked as complete.

If you do not need to parse the full bit stream, you can use partial parsing. During
partial parsing, a parser is called recursively until the requested element is
returned, or until the message tree has been marked as complete, and the
requested element is known not to exist.

Whether you choose to perform a full or partial parse depends on how the
message will be processed. If most field elements within the message are likely to
be accessed during processing, performing a full parse of the message when an
attempt is made to access it is typically more efficient, particularly for smaller
messages.

However, if most field elements within the message are not likely to be accessed
during processing, performing a partial parse of the message when an attempt is
made to access a specific field is typically more efficient, particularly when the
message size grows.

Specific types used by parsers
Specific types are used when a parser needs additional information that is
associated with some or all of the elements in a tree in order to generate the bit
stream.

For the XML parser, the specific type information is used to mark special elements
such as components, processing instructions, and CDATA sections. The methods
getSpecificType and setSpecificType are used by user-defined nodes to query this
information and to generate message trees that use these special types.

Developers of user-defined parsers can generate their own specific type values to
control special handling characteristics in their parser code using the existing C
user-defined parser interface. The getSpecificType and setSpecificType methods
enable Java user-defined nodes to fully exploit this parser capability.

Implementing the supplied user-defined extension samples
WebSphere Message Broker provides some sample code to help you understand
how to write user-defined nodes and parsers.

The samples consist of a sample parser, and the following sample nodes:

Switch A node, implemented in both C and Java versions, that propagates an
input message to one of several output terminals depending on the
message content.

Transform A node, implemented in both C and Java versions, that performs a
simple message transformation.

Developing user-defined extensions 29

Each sample node consists of the source files and some files that you can use to
test each node. For the sample parser there are only source files. See “Sample node
files” on page 105 and “Sample parser files” on page 107 for details of the sample
files and where to find them.

To implement the supplied samples:
1. Compile the samples. For information on how to compile a Java node, see

“Compiling a Java user-defined node” on page 74. For information on how to
compile a C node or parser, see “Compiling a C user-defined extension” on
page 53.

2. Install the user-defined extension in a broker domain. For instructions on
completing this step, see “Installing user-defined extension runtime files on a
broker” on page 88.

3. On the computer that hosts the workbench, extract the SampleNodesProject.zip
file, which is located in the samples subdirectory and copy the files to a
directory from which the workbench can access them. For example, on
Windows, the location is install_dir\sample\extensions\com.ibm.samples.nodes
directory. For further information about where to copy the files, see “Installing
a user-defined extension to current and past versions of the broker” on page 91.

4. Open the workbench and switch to the Broker Application Development
perspective. The category called ″Sample nodes″ is now visible in the palette,
and the sample nodes are shown below it. Documentation about the sample
nodes is also visible in the help system under ″Samples″.

5. Include the sample nodes in a message flow (see Adding a message flow node).
6. Deploy the message flow; see Deploying.
7. For the Switch and Transform nodes, you can put a message to the input queue

of the message flow and observe the results, as follows:
a. Make sure that the message flow containing the sample node is deployed

successfully; see Checking the results of deployment.
b. Use the Enqueue message function to put the sample input messages (the

.xml files listed above) to the input queue named on the input node of the
message flow; see Debug: putting a test message on an input queue.

You can also use a Trace node or the Flow debugger to see what is happening
in your message flow.

Creating user-defined extensions

You can write user-defined nodes in C or Java. You can write user-defined parsers
in C only. For information on designing and creating user-defined nodes and
user-defined parsers, see the following topics:
v “Creating a user-defined extension in C” on page 31
v “Creating a user-defined extension in Java” on page 59

For user-defined nodes only, you must create a workbench Eclipse plug-in as well
as the runtime .lil or .jar file. The workbench plug-in adds the user-defined node to
the node palette in the Message Flow editor, and allows the new node to be
included in message flows. This additional task is described in “Creating the user
interface representation of a user-defined node in the workbench” on page 79. This
step is not required for user-defined parsers.

30 User-defined Extensions

|
|
|
|
|
|

When you have created your user-defined extensions, continue with the following
tasks:
v “Testing a user-defined node” on page 85
v “Packaging and distributing user-defined extensions” on page 87

Creating a user-defined extension in C

You can write user-defined nodes and user-defined parsers in C.

Complete one or more of the following steps to create user-defined extensions in
C:
v “Creating an input node in C”
v “Creating a message processing or output node in C” on page 39
v “Creating a user-defined parser” on page 47
v “Compiling a C user-defined extension” on page 53

When you have completed this set of tasks, continue with the following tasks:
v If you have compiled a user-defined node, “Creating the user interface

representation of a user-defined node in the workbench” on page 79
v “Testing a user-defined node” on page 85
v “Packaging and distributing user-defined extensions” on page 87

Creating an input node in C
Create a user-defined input node in C to receive messages into a message flow.

Before you start

Read the following topics:
v “Planning user-defined extensions” on page 5
v “Designing user-defined extensions” on page 8
v “User-defined input nodes” on page 13

A loadable implementation library, or LIL, is the implementation module for a C
node. A LIL is implemented as a shared or dynamic link library (DLL), but has the
file extension .lil not .dll.

The implementation functions that you write for the node are listed in “C node
implementation functions” on page 108. You can call utility functions, implemented
in the runtime broker, to help with the node operation; these functions are listed in
“C node utility functions” on page 109.

WebSphere Message Broker provides the source for two sample user-defined nodes
called SwitchNode and TransformNode. You can use these nodes in their current
state, or you can modify them.

To create an input node in C:
1. “Declaring and defining the node” on page 32
2. “Creating an instance of the node” on page 33
3. “Setting attributes” on page 34
4. “Implementing the node functionality” on page 34
5. “Overriding the default message parser attributes (optional)” on page 35

Developing user-defined extensions 31

6. “Deleting an instance of the node” on page 36

Declaring and defining the node:

To declare and define a user-defined node to the broker, include an initialization
function, bipGetMessageflowNodeFactory, in your LIL. The following steps outline
how the broker calls your initialization function, and how your initialization
function declares and defines the user-defined node:
1. The initialization function, bipGetMessageflowNodeFactory, is called by the

broker after the operating system has loaded and initialized the LIL. The broker
calls this function to understand what your LIL can do and how the broker
should call the LIL. For example:
CciFactory LilFactoryExportPrefix * LilFactoryExportSuffix
bipGetMessageflowNodeFactory()

2. The bipGetMessageflowNodeFactory function must call the utility function
cniCreateNodeFactory. This function passes back a unique factory name (or
group name) for all the nodes that your LIL supports. Every factory name (or
group name) that is passed back must be unique throughout all the LILs in a
single runtime broker.

3. The LIL must call the utility function cniDefineNodeClass to pass the unique
name of each node, and a virtual function table of the addresses of the
implementation functions.
For example, the following code declares and defines a single node called
InputxNode:
{
CciFactory* factoryObject;
int rc = 0;
CciChar factoryName[] = L"MyNodeFactory";
CCI_EXCEPTION_ST exception_st;

/* Create the Node Factory for this node */
factoryObject = cniCreateNodeFactory(0, factoryName);
if (factoryObject == CCI_NULL_ADDR) {

/* Any local error handling can go here */
}
else {
/* Define the nodes supported by this factory */
static CNI_VFT vftable = {CNI_VFT_DEFAULT};

/* Setup function table with pointers to node implementation functions */
vftable.iFpCreateNodeContext = _createNodeContext;
vftable.iFpDeleteNodeContext = _deleteNodeContext;
vftable.iFpGetAttributeName2 = _getAttributeName2;
vftable.iFpSetAttribute = _setAttribute;
vftable.iFpGetAttribute2 = _getAttribute2;
vftable.iFpRun = _run;

cniDefineNodeClass(0, factoryObject, L"InputxNode", &vftable);
}

/* Return address of this factory object to the broker */
return(factoryObject);
}

A user-defined node identifies itself as providing the features of an input node
by implementing the cniRun implementation function.

32 User-defined Extensions

User-defined nodes have to implement either a cniRun or a cniEvaluate
implementation function. If they do not, the broker does not load the
user-defined node, and the cniDefineNodeClass utility function fails, returning
CCI_MISSING_IMPL_FUNCTION.
For example:
int cniRun(

CciContext* context,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* message

){
...
/* Get data from external source */
return CCI_SUCCESS_CONTINUE;

}

Use the return value periodically to return control to the broker.
When a message flow that contains a user-defined input node is deployed
successfully, the node’s cniRun function is called for each message that is
propagated to the node. For the minimum code required to compile a C
user-defined node, see the “C skeleton code” on page 280.

Creating an instance of the node:

To instantiate your node:
1. When the broker has received the table of function pointers, it calls the function

cniCreateNodeContext for each instantiation of the user-defined node. For
example, if three message flows are using your user-defined node, your
cniCreateNodeContext function is called for each of them. This function should
allocate memory for that instantiation of the user-defined node to hold the
values for the configured attributes. For example:
a. Call the cniCreateNodeContext function:

CciContext* _createNodeContext(
CciFactory* factoryObject,
CciChar* nodeName,
CciNode* nodeObject

){
static char* functionName = (char *)"_createNodeContext()";
NODE_CONTEXT_ST* p;
CciChar buffer[256];

b. Allocate a pointer to the local context and clear the context area:
p = (NODE_CONTEXT_ST *)malloc(sizeof(NODE_CONTEXT_ST));

if (p) {
memset(p, 0, sizeof(NODE_CONTEXT_ST));

c. Save the node object pointer in the context:
p->nodeObject = nodeObject;

d. Save the node name:
CciCharNCpy((CciChar*)&p->nodeName, nodeName, MAX_NODE_NAME_LEN);

e. Return the node context:
return (CciContext*) p;

2. An input node has a number of output terminals associated with it, but
typically does not have any input terminals. Use the utility function
cniCreateOutputTerminal to add output terminals to an input node when the

Developing user-defined extensions 33

node is instantiated. These functions must be invoked within the
cniCreateNodeContext implementation function. For example, to define an
input node with three output terminals:

{
const CciChar* ucsOut = CciString("out", BIP_DEF_COMP_CCSID) ;
insOutputTerminalListEntry(p, (CciChar*)ucsOut);
free((void *)ucsOut) ;

}
{

const CciChar* ucsFailure = CciString("failure", BIP_DEF_COMP_CCSID) ;
insOutputTerminalListEntry(p, (CciChar*)ucsFailure);
free((void *)ucsFailure) ;

}
{

const CciChar* ucsCatch = CciString("catch", BIP_DEF_COMP_CCSID) ;
insOutputTerminalListEntry(p, (CciChar*)ucsCatch);
free((void *)ucsCatch) ; }

For the minimum code required to compile a C user-defined node, see “C
skeleton code” on page 280.

Setting attributes:

Attributes are set whenever you start the broker, or when you redeploy the
message flow with new values.

Following the creation of output terminals, the broker calls the cniSetAttribute
function to pass the values for the configured attributes of the user-defined node.
For example:

{
const CciChar* ucsAttr = CciString("nodeTraceSetting", BIP_DEF_COMP_CCSID) ;
insAttrTblEntry(p, (CciChar*)ucsAttr, CNI_TYPE_INTEGER);
_setAttribute(p, (CciChar*)ucsAttr, (CciChar*)constZero);
free((void *)ucsAttr) ;

}
{

const CciChar* ucsAttr = CciString("nodeTraceOutfile", BIP_DEF_COMP_CCSID) ;
insAttrTblEntry(p, (CciChar*)ucsAttr, CNI_TYPE_STRING);
_setAttribute(p, (CciChar*)ucsAttr, (CciChar*)constSwitchTraceLocation);
free((void *)ucsAttr) ;

}

The number of configuration attributes that a node can have is unlimited.
However, a user-defined node must not implement an attribute that is already
implemented as a base configuration attribute. The base attributes are listed below:
v label
v userTraceLevel
v traceLevel
v userTraceFilter
v traceFilter

Implementing the node functionality:

When the broker knows that it has an input node, it calls the cniRun function of
this node at regular intervals. The cniRun function must then decide what course
of action it should take. If data is available for processing, the cniRun function
should attempt to propagate the message. If no data is available for processing, the
cniRun function should return with CCI_TIMEOUT so that the broker can continue
configuration changes.

34 User-defined Extensions

For example, to configure the node to call cniDispatchThread and process the
message, or return with CCI_TIMEOUT:
If (anything to do)
CniDispatchThread;

/* do the work */

If (work done O.K.)
Return CCI_SUCCESS_CONTINUE;
Else
Return CCI_FAILURE_CONTINUE;

Else
Return CCI_TIMEOUT;

Overriding the default message parser attributes (optional):

An input node implementation typically determines what message parser initially
parses an input message. For example, the primitive MQInput node dictates that
an MQMD parser is required to parse the MQMD header. A user-defined input
node can select an appropriate header or message parser, and the mode in which
the parsing is controlled, by using or overriding the following attributes that are
included as default:

rootParserClassName
Defines the name of the root parser that parses message formats that are
supported by the user-defined input node. It defaults to GenericRoot, a
supplied root parser that causes the broker to allocate and chain parsers
together. It is unlikely that a node would need to modify this attribute
value.

firstParserClassName
Defines the name of the first parser, in what might be a chain of parsers
that are responsible for parsing the bit stream. It defaults to XML.

messageDomainProperty
An optional attribute that defines the name of the message parser that is
required to parse the input message. The supported values are the same as
those supported by the MQInput node. (See MQInput node for more
information.)

messageSetProperty
An optional attribute that defines the message set identifier, or the message
set name, in the Message Set field, only if the MRM parser was specified
by the messageDomainProperty attribute.

messageTypeProperty
An optional attribute that defines the identifier of the message in the
MessageType field, only if the MRM parser was specified by the
messageDomainProperty attribute.

messageFormatProperty
An optional attribute that defines the format of the message in the Message
Format field, only if the MRM parser was specified by the
messageDomainProperty attribute.

If you have written a user-defined input node that always begins with data of a
known structure, you can ensure that a certain parser deals with the start of the
data. For example, the MQInput node only reads data from WebSphere MQ
queues, so this data always has an MQMD at the beginning, and the MQInput
node sets firstParserClassName to MQHMD. If your user-defined node always

Developing user-defined extensions 35

deals with data that begins with a structure that can be parsed by a certain parser,
for example ″MYPARSER″, set firstParserClassName to MYPARSER as follows:
1. Declare the implementation functions:

CciFactory LilFactoryExportPrefix * LilFactoryExportSuffix bipGetMessageflowNodeFactory()
{
....
CciFactory* factoryObject;
....
factoryObject = cniCreateNodeFactory(0, (unsigned short *)constPluginNodeFactory);
...
vftable.iFpCreateNodeContext = _createNodeContext;
vftable.iFpSetAttribute = _setAttribute;
vftable.iFpGetAttribute = _getAttribute;
...
cniDefineNodeClass(&rc, factoryObject, (CciChar*)constSwitchNode, &vftable);
...
return(factoryObject);

}

2. Set the attribute in the cniCreateNodeContext implementation function:
CciContext* _createNodeContext(

CciFactory* factoryObject,
CciChar* nodeName,
CciNode* nodeObject

){
NODE_CONTEXT_ST* p;
...

/* Allocate a pointer to the local context */
p = (NODE_CONTEXT_ST *)malloc(sizeof(NODE_CONTEXT_ST));
/* Create attributes and set default values */
{

const CciChar* ucsAttrName = CciString("firstParserClassName", BIP_DEF_COMP_CCSID);
const CciChar* ucsAttrValue = CciString("MYPARSER", BIP_DEF_COMP_CCSID) ;
insAttrTblEntry(p, (CciChar*)ucsAttrName, CNI_TYPE_INTEGER);
/*see sample BipSampPluginNode.c for implementation of insAttrTblEntry*/

_setAttribute(p, (CciChar*)ucsAttrName, (CciChar*)ucsAttrValue);
free((void *)ucsAttrName) ;
free((void *)ucsAttrValue) ;

}

In the code example above, the insAttrTblEntry method is called. This method
is declared in the SwitchNode and TransformNode sample user-defined nodes.

Deleting an instance of the node:

Nodes are destroyed when a message flow is redeployed, or when the execution
group process is stopped (using the mqsistop command). When a node is
destroyed, you should call the cniDeleteNodeContext function to free any used
memory and release any held resources. For example:
void _deleteNodeContext(

CciContext* context
){

static char* functionName = (char *)"_deleteNodeContext()";

return;
}

Extending the capability of a C input node:

When you have created a user-defined node, you can extend its capability.

Before you start

36 User-defined Extensions

Read “Creating an input node in C” on page 31.

After you have created a user-defined node, the following options are available:
1. “Receiving external data into a buffer”
2. “Controlling threading and transactions”
3. “Propagating the message” on page 38

Receiving external data into a buffer:

An input node can receive data from any type of external source, such as a file
system or FTP connection, provided that the output from the node is in the correct
format. For connections to queues or databases, use the built-in nodes and the API
calls supplied, principally because the built-in nodes are already set up for error
handling. Do not use the MQGET or MQPUT calls for direct access to WebSphere
MQ queues.

You must provide an input buffer (or bit stream) to contain input data, and
associate it with a message object. In the C API, the buffer is attached to the
CciMessage object that represents the input message by using the cniSetInputBuffer
utility function. For example:
{

static char* functionName = (char *)"_Input_run()";
void* buffer;
CciTerminal* terminalObject;
int buflen = 4096;
int rc = CCI_SUCCESS;
int rcDispatch = CCI_SUCCESS;

buffer = readFromDevice(&buflen);
cniSetInputBuffer(&rc, message, buffer, buflen);

}
/*propagate etc*/

Controlling threading and transactions:

An input node must perform appropriate end-of-message processing when a
message has been propagated through a message flow. Specifically, the input node
needs to cause any transactions to be committed or rolled back, and return threads
to the thread pool.

Each message flow thread is allocated from a pool of threads that is maintained for
each message flow, and starts execution in the cniRun function. You determine the
behavior of a thread using the cniDispatchThread utility function, together with
the appropriate return value.

From the cniRun function, you can call the cniDispatchThread utility function to
cause another thread to start executing the cniRun function. The most appropriate
time to execute another thread is directly after you have established that data
could be available for the function to process on the new thread.

The term transaction is used generically to describe either a globally coordinated
transaction, or a broker-controlled transaction. Globally coordinated transactions
are coordinated by either WebSphere MQ as an XA-compliant Transaction
Manager, or Resource Recovery Service (RRS) on z/OS®. WebSphere Message
Broker controls transactions by committing (or rolling back) any database
resources, and then committing any WebSphere MQ units of work. However, if a
user-defined node is used, the broker cannot automatically commit any resource

Developing user-defined extensions 37

updates. The user-defined node uses return values to indicate whether a
transaction has been successful, and to control whether transactions are committed
or rolled-back. The broker infrastructure catches any unhandled exceptions, and
rolls back the transaction.

The following table describes each of the supported return values, the effect that
each one has on any transactions, and what the broker does with the current
thread.

Return value Affect on transaction Broker action on the thread

CCI_SUCCESS_CONTINUE Committed Calls the same thread again
in the cniRun function.

CCI_SUCCESS_RETURN Committed Returns the thread to the
thread pool.

CCI_FAILURE_CONTINUE Rolled back Calls the same thread again
in the cniRun function.

CCI_FAILURE_RETURN Rolled back Returns the thread to the
thread pool.

CCI_TIMEOUT Not applicable. The function
periodically times out while
it is waiting for an input
message.

Calls the same thread again
in the cniRun function.

The following code is an example of using the SUCCESS_RETURN return code
with the cniDispatchThread function:
{

...
cniDispatchThread(&rcDispatch, ((NODE_CONTEXT_ST *)context)->nodeObject);
...
if (rcDispatch == CCI_NO_THREADS_AVAILABLE) return CCI_SUCCESS_CONTINUE;
else return CCI_SUCCESS_RETURN;

}

Propagating the message:

Before you propagate a message, decide what message flow data you want to
propagate, and which terminal is to receive the data.

The terminalObject is derived from a list that the user-defined node maintains.

For example, to propagate the message to the output terminal, use the
cniPropagate function:

if (terminalObject) {
if (cniIsTerminalAttached(&rc, terminalObject)) {

if (rc == CCI_SUCCESS) {
cniPropagate(&rc, terminalObject, localEnvironment, exceptionList, message);

}
}

In the above example, the cniIsTerminalAttached function is used to test whether
the message can be propagated to the specified terminal. If you do not use the
cniIsTerminalAttached function, and the terminal is not attached to another node
by a connector, the message is not propagated and no warning message is
returned. Use the cniIsTerminalAttached function to prevent this error occurring.

38 User-defined Extensions

Creating a message processing or output node in C
A message processing node is used to process a message in some way, and an
output node is used to output a message as a bit stream.

Before you start

Read the following topics:
v “Planning user-defined extensions” on page 5
v “Designing user-defined extensions” on page 8
v “User-defined message processing nodes” on page 18
v “User-defined output nodes” on page 25

When you code a message processing node or an output node, the nodes provide
essentially the same services. You can perform message processing within an
output node, and you can output a message to a bit stream using a message
processing node. For simplicity, this topic refers mainly to the node as a message
processing node but it does also contain information about the functions of both
types of node.

A loadable implementation library (LIL), is the implementation module for a C
node. A LIL is implemented as a shared or dynamic link library (DLL), but has the
file extension .lil not .dll.

For more information about the C node implementation functions that you write
for the node, see “C node implementation functions” on page 108. You can call C
node utility functions, implemented in the runtime broker, to help with the node
operation; see “C node utility functions” on page 109.

WebSphere Message Broker provides the source for two sample user-defined nodes
called SwitchNode and TransformNode. You can use these nodes in their current
state, or you can modify them. In addition, you can view the following sample
which demonstrates the use of user-defined nodes, including a message processing
node written in C.
v User-defined Extension sample

You can view samples only when you use the information center that is integrated
with the Message Brokers Toolkit.

To create either type of node complete the following tasks:
1. “Declaring and defining your node”
2. “Creating an instance of the node” on page 41
3. “Setting attributes” on page 43
4. “Implementing the node functionality” on page 43
5. “Deleting an instance of the node” on page 44

Declaring and defining your node:

To declare and define a user-defined node to the broker, include an initialization
function, bipGetMessageflowNodeFactory, in your LIL. The following steps take
place on the configuration thread and outline how the broker calls your
initialization function and how your initialization function declares and defines the
user-defined node:

Developing user-defined extensions 39

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.ude.res

1. The broker calls the initialization function bipGetMessageflowNodeFactory after
the operating system has loaded and initialized the LIL. The broker calls this
function to understand what your LIL can do and how the broker can call the
LIL. For example:
CciFactory LilFactoryExportPrefix * LilFactoryExportSuffix
bipGetMessageflowNodeFactory()

2. The bipGetMessageflowNodeFactory function must call the utility function
cniCreateNodeFactory. This function passes back a factory name (or group
name) for all the nodes that your LIL supports. The factory name (or group
name) must be unique throughout all the LILs in a single runtime broker.

3. The LIL must call the utility function cniDefineNodeClass to pass the unique
name of each node and a virtual function table of the addresses of the
implementation functions.
For example, the following code declares and defines a single node called
MessageProcessingxNode:
{
CciFactory* factoryObject;
int rc = 0;
CciChar factoryName[] = L"MyNodeFactory";
CCI_EXCEPTION_ST exception_st;

/* Create the Node Factory for this node */
factoryObject = cniCreateNodeFactory(0, factoryName);
if (factoryObject == CCI_NULL_ADDR) {
/* Any local error handling can go here */
}
else {
/* Define the nodes supported by this factory */
static CNI_VFT vftable = {CNI_VFT_DEFAULT};

/* Setup function table with pointers to node implementation functions */
vftable.iFpCreateNodeContext = _createNodeContext;
vftable.iFpDeleteNodeContext = _deleteNodeContext;
vftable.iFpGetAttributeName2 = _getAttributeName2;
vftable.iFpSetAttribute = _setAttribute;
vftable.iFpGetAttribute2 = _getAttribute2;
vftable.iFpEvaluate = _evaluate;

cniDefineNodeClass(0, factoryObject, L"MessageProcessingxNode", &vftable);

}

/* Return address of this factory object to the broker */
return(factoryObject);
}

A user-defined node identifies itself as a message processing or output node by
implementing the cniEvaluate function. User-defined nodes must implement
either a cniEvaluate or a cniRun implementation function, otherwise the broker
does not load the user-defined node, and the cniDefineNodeClass utility
function fails, returning CCI_MISSING_IMPL_FUNCTION.
When a message flow containing a user-defined message processing node is
deployed successfully, the node’s cniEvaluate function is called for each
message propagated to the node.
Message flow data is received at the input terminal of the node, that is, the
message, Environment, LocalEnvironment, and ExceptionList.
For example:
void cniEvaluate(

CciContext* context,
CciMessage* localEnvironment,

40 User-defined Extensions

CciMessage* exceptionList,
CciMessage* message

){
...

}

For the minimum code required to compile a C user-defined node, see “C
skeleton code” on page 280.

Creating an instance of the node:

To instantiate your node:
1. When the broker has received the table of function pointers, it calls the function

cniCreateNodeContext for each instantiation of the user-defined node. For
example, if three message flows are using your user-defined node, your
cniCreateNodeContext function is called for each of them. This function
allocates memory for that instantiation of the user-defined node to hold the
values for the configured attributes. For example:
a. The user function cniCreateNodeContext is called:

CciContext* _Switch_createNodeContext(
CciFactory* factoryObject,
CciChar* nodeName,
CciNode* nodeObject

){
static char* functionName = (char *)"_Switch_createNodeContext()";
NODE_CONTEXT_ST* p;
CciChar buffer[256];

b. Allocate a pointer to the local context and clear the context area:
p = (NODE_CONTEXT_ST *)malloc(sizeof(NODE_CONTEXT_ST));

if (p) {
memset(p, 0, sizeof(NODE_CONTEXT_ST));

c. Save the node object pointer in the context:
p->nodeObject = nodeObject;

d. Save the node name:
CciCharNCpy((CciChar*)&p->nodeName, nodeName, MAX_NODE_NAME_LEN);

e. Return the node context:
return (CciContext*) p;

2. The broker calls the appropriate utility functions to find out about the node’s
input terminals and output terminals. A node has a number of input terminals
and output terminals associated with it. Within the user function
cniCreateNodeContext, calls must be made to cniCreateInputTerminal and
cniCreateOutputTerminal to define the user node’s terminals. These functions
must be started within the cniCreateNodeContext implementation function. For
example, to define a node with one input terminal and two output terminals:

{
const CciChar* ucsIn = CciString("in", BIP_DEF_COMP_CCSID) ;
insInputTerminalListEntry(p, (CciChar*)ucsIn);
free((void *)ucsIn) ;

}
{

const CciChar* ucsOut = CciString("out", BIP_DEF_COMP_CCSID) ;
insOutputTerminalListEntry(p, (CciChar*)ucsOut);
free((void *)ucsOut) ;

}
{

Developing user-defined extensions 41

const CciChar* ucsFailure = CciString("failure", BIP_DEF_COMP_CCSID) ;
insOutputTerminalListEntry(p, (CciChar*)ucsFailure);
free((void *)ucsFailure) ;

}

The previous code starts the insInputTerminalListEntry and
insOutputTerminalListEntry functions. You can find these functions in the
sample code Common.c; see “Sample node files” on page 105. These functions
define the terminals to the broker and store handles to the terminals. Handles
are stored in the structure referenced by the value returned in CciContext*. The
node can then access the terminal handles from within the other
implementation functions (for example CciEvaluate) because CciContext is
passed to those implementation functions.
The following code shows the definition of insInputTerminalListEntry:

TERMINAL_LIST_ENTRY *insInputTerminalListEntry(
NODE_CONTEXT_ST* context,
CciChar* terminalName

){
static char* functionName = (char *)"insInputTerminalListEntry()";
TERMINAL_LIST_ENTRY* entry;
int rc;

entry = (TERMINAL_LIST_ENTRY *)malloc(sizeof(TERMINAL_LIST_ENTRY));
if (entry) {

/* This entry is the current end of the list */
entry->next = 0;

/* Store the terminal name */
CciCharCpy(entry->name, terminalName);

/* Create terminal and save its handle */
entry->handle = cniCreateInputTerminal(&rc, context->nodeObject, (CciChar*)terminalName);

/* Link an existing previous element to this one */
if (context->inputTerminalListPrevious) context->inputTerminalListPrevious->next = entry;
else if ((context->inputTerminalListHead) == 0) context->inputTerminalListHead = entry;

/* Save the pointer to the previous element */
context->inputTerminalListPrevious = entry;

}
else {

/* Error: Unable to allocate memory */
}

return(entry);
}

The following example shows the code for insOutputTerminalListEntry:
TERMINAL_LIST_ENTRY *insOutputTerminalListEntry(

NODE_CONTEXT_ST* context,
CciChar* terminalName

){
static char* functionName = (char *)"insOutputTerminalListEntry()";
TERMINAL_LIST_ENTRY* entry;
int rc;

entry = (TERMINAL_LIST_ENTRY *)malloc(sizeof(TERMINAL_LIST_ENTRY));
if (entry) {

/* This entry is the current end of the list */
entry->next = 0;

/* Store the terminal name */
CciCharCpy(entry->name, terminalName);

42 User-defined Extensions

/* Create terminal and save its handle */
entry->handle = cniCreateOutputTerminal(&rc, context->nodeObject, (CciChar*)terminalName);

/* Link an existing previous element to this one */
if (context->outputTerminalListPrevious) context->outputTerminalListPrevious->next = entry;
else if ((context->outputTerminalListHead) == 0) context->outputTerminalListHead = entry;

/* Save the pointer to the previous element */
context->outputTerminalListPrevious = entry;

}
else {

/* Error: Unable to allocate memory */
}

return(entry);
}

For the minimum code required to compile a C user-defined node, see “C
skeleton code” on page 280.

Setting attributes:

Attributes are set whenever you start the broker, or when you redeploy a message
flow with new values. Attributes are set by the broker calling user code on the
configuration thread. Your code needs to store these attributes in its node context
area, for later use when processing messages.

Following the creation of input and output terminals, the broker calls the
cniSetAttribute function to pass the values for the configured attributes for this
instantiation of the user-defined node. For example:

{
const CciChar* ucsAttr = CciString("nodeTraceSetting", BIP_DEF_COMP_CCSID) ;
insAttrTblEntry(p, (CciChar*)ucsAttr, CNI_TYPE_INTEGER);
_setAttribute(p, (CciChar*)ucsAttr, (CciChar*)constZero);
free((void *)ucsAttr) ;

}
{

const CciChar* ucsAttr = CciString("nodeTraceOutfile", BIP_DEF_COMP_CCSID) ;
insAttrTblEntry(p, (CciChar*)ucsAttr, CNI_TYPE_STRING);
_setAttribute(p, (CciChar*)ucsAttr, (CciChar*)constSwitchTraceLocation);
free((void *)ucsAttr) ;

}

The number of configuration attributes that a node can have is unlimited.
However, a node must not implement an attribute that is already implemented as
a base configuration attribute. The following list shows base attributes:
v label
v userTraceLevel
v traceLevel
v userTraceFilter
v traceFilter

Implementing the node functionality:

When the broker retrieves a message from the queue, and that message arrives at
the input terminal of your user-defined message processing or output node, the
broker calls the implementation function cniEvaluate. This function is called on the

Developing user-defined extensions 43

message processing thread and it must decide what to do with the message. This
function might be called on multiple threads, especially if additional instances are
used.

Deleting an instance of the node:

If a node is deleted, the broker calls the cniDeleteNodeContext function. This
function is started on the same thread as cniCreateNodeContext. Use this function
to release resources used by your user-defined node. For example:
void _deleteNodeContext(

CciContext* context
){

static char* functionName = (char *)"_deleteNodeContext()";
free ((void*) context);
return;

}

Extending the capability of a C message processing or output node:

When you have created a user-defined message processing or output node in C,
you can extend its capability.

Before you start

Read the topic “Creating a message processing or output node in C” on page 39.

After you have created a user-defined node, the following options are available:
1. “Accessing message data”
2. “Transforming a message object” on page 45
3. “Accessing ESQL” on page 45
4. “Propagating a message” on page 46
5. “Writing to an output device” on page 46

Accessing message data:

In many cases, the user-defined node must access the contents of the message that
is received on its input terminal. The message is represented as a tree of syntax
elements. Groups of utility functions are provided for message management,
message buffer access, syntax element navigation, and syntax element access. (See
“C node utility functions” on page 109 for details of the utility functions.)

The types of query that you are likely to want to perform include:
v Obtaining the root element of the required message object
v Accessing the bit stream representation of an element tree
v Navigating or querying the tree by asking for child or sibling elements by name
v Getting the type of the element
v Getting the value of the element

For example, to query the name and type of the first child of body:
void cniEvaluate(...
){

...
/* Navigate to the target element */

rootElement = cniRootElement(&rc, message);
bodyElement = cniLastChild(&rc, rootElement);

44 User-defined Extensions

bodyFirstChild = cniFirstChild(&rc, bodyElement);

/* Query the name and value of the target element */
cniElementName(&rc, bodyFirstChild, (CciChar*)&elementname, sizeof(elementName));
bytes = cniElementCharacterValue(
&rc, bodyfirstChild, (CciChar*)&eValue, sizeof(eValue));
...

}

To access the bit stream representation of an element tree you can use the
cniElementAsBitstream function. Using this function, you can obtain the bit stream
representation of any element in a message. See “cniElementAsBitstream” on page
132 for details of how to use this function, and sample code.

Transforming a message object:

The received input message is read-only, therefore before a message can be
transformed, you must write it to a new output message using the
cniCreateMessage function. You can copy elements from the input message, or you
can create new elements and attach them to the message. New elements are
typically in a parser’s domain.

For example:
1. To write the incoming message to a new message:

{
...
context = cniGetMessageContext(&rc, message));
outMsg = cniCreateMessage(&rc, context));
...

}

2. To make a copy of the new message:
cniCopyElementTree(&rc, sourceElement, targetElement);

3. To modify the value of a target element:
cniSetElementIntegerValue(&rc, targetElement, L"newValue", 8);

4. After finalizing and propagating the message, you must delete the output
message using the cniDeleteMessage function:
cniDeleteMessage(&rc, outMsg);

As part of the transformation, you might want to create a new message body. To
create a new message body, use one of the following functions, which assign a
parser to a message tree folder:
cniCreateElementAsFirstChildUsingParser
cniCreateElementAsLastChildUsingParser
cniCreateElementAfterUsingParser
cniCreateElementBeforeUsingParser

When creating a message body, do not use the following functions because they do
not associate an owning parser with the folder:
cniCreateElementAsFirstChild
cniCreateElementAsLastChild
cniCreateElementAfter
cniCreateElementBefore

Accessing ESQL:

Nodes can invoke ESQL expressions using Compute node ESQL syntax. You can
create and modify the components of the message using ESQL expressions, and

Developing user-defined extensions 45

you can refer to elements of both the input message and data from an external
database using the cniSqlCreateStatement, cniSqlSelect, cniSqlDeleteStatement, and
cniSqlExecute functions.

For example, to populate the Result element from the contents of a column in a
database table:
{

...
sqlExpr = cniSqlCreateStatement(&rc,
(NODE_CONTEXT_ST *)context->nodeObject,
L"DB", CCI_SQL_TRANSACTION_AUTO,
L"SET OutputRoot.XMLNS.Result[] = (SELECT T.C1 AS Col1 FROM Database.TABLE AS T;");
...
cniSqlSelect(&rc, sqlExpr, localEnvironment, exceptionList, message, outMsg);
cniSqlDeleteStatement(&rc, sqlExpr);
...

}

For more information about ESQL, see ESQL overview.

If your user-defined node primarily uses ESQL, consider using a Compute node.

Propagating a message:

Before you propagate a message, decide what message flow data you want to
propagate, and which terminal is to receive the data.
1. If the message has changed, finalize the message before you propagate it using

the cniFinalize function. For example:
cniFinalize(&rc, outMsg, CCI_FINALIZE_NONE);

2. The terminalObject is derived from a list that the user-defined node maintains
itself. To propagate the message to the output terminal, use the cniPropagate
function:

if (terminalObject) {
if (cniIsTerminalAttached(&rc, terminalObject)) {

if (rc == CCI_SUCCESS) {
cniPropagate(&rc, terminalObject, localEnvironment, exceptionList, outMsg);

}
}

In the above example, the cniIsTerminalAttached function is used to test
whether the message can be propagated to the specified terminal. If you do not
use the cniIsTerminalAttached function and the terminal is not attached to
another node by a connector, the message is not propagated and no warning
message is returned. Use the cniIsTerminalAttached function to prevent this
error occurring.

3. If you created a new output message using cniCreateMessage, after
propagating the message, delete the output message using the
cniDeleteMessage function:
cniDeleteMessage(&rc, outMsg);

Writing to an output device:

A transformed message must be serialized to a bit stream; a message can be
serialized only once.

The bit stream can then be accessed and written to an output device. Write the
message to a bit stream using the cniWriteBuffer function. For example:

46 User-defined Extensions

{
...
cniWriteBuffer(&rc, message);
writeToDevice(cniBufferPointer(&rc, message), cniBufferSize(&rc, message));
...

}

In this example, the method writeToDevice is a user-written method which writes
a bit stream to an output device.

Do not write a user-defined output node to write messages to WebSphere MQ
queues; use the supplied MQOutput node in this scenario. The broker internally
maintains a WebSphere MQ connection and open queue handles on a
thread-by-thread basis, and these are cached to optimize performance. In addition,
the broker handles recovery scenarios when certain WebSphere MQ events occur;
this recovery would be adversely affected if WebSphere MQ MQI calls are used in
a user-defined output node.

Creating a user-defined parser
Create a user-defined parser to interpret messages with a different format and
structure.

Before you start

Read the following topics:
v “Planning user-defined extensions” on page 5
v “Designing user-defined extensions” on page 8
v “User-defined parsers” on page 26

A loadable implementation library, or a LIL, is the implementation module for a C
parser (or node). A LIL is a Linux or UNIX shared object or Windows dynamic link
library (DLL), that does not have the file extension .dll but .lil.

The implementation functions that you have to write are listed in “C parser
implementation functions” on page 179. The utility functions that are provided by
WebSphere Message Broker to help you are listed in “C parser utility functions” on
page 180.

WebSphere Message Broker provides the source for a sample user-defined parser
called BipSampPluginParser.c. This example is a simple pseudo-XML parser that
you can use in its current state, or you can modify.

The task of writing a parser varies considerably according to the complexity of the
bit stream to be parsed. Only the basic steps are described here:
1. “Declaring and defining the parser”
2. “Creating an instance of the parser” on page 49
3. “Deleting an instance of the parser” on page 49

Declaring and defining the parser:

To declare and define a user-defined parser to the broker, you must include an
initialization function, bipGetParserFactory, in your LIL. The following steps
outline how the broker calls your initialization function and how your initialization
function declares and defines the user-defined parser:

Developing user-defined extensions 47

The following procedure shows you how to declare and define your parser to the
broker:
1. The initialization function, bipGetParserFactory, is called by the broker after the

LIL has been loaded and initialized by the operating system. The broker calls
this function to understand what your LIL is able to do, and how it should be
called. For example:
CciFactory LilFactoryExportPrefix * LilFactoryExportSuffix
bipGetParserFactory()

2. The bipGetParserFactory function calls the utility function
cpiCreateParserFactory. This function passes back a unique factory name (or
group name) for all the parsers that your LIL supports. Every factory name (or
group name) passed back must be unique throughout all the LILs in the broker.

3. The LIL calls the utility function cpiDefineParserClass to pass the unique name
of each parser, and a virtual function table of the addresses of the
implementation functions.
For example, the following code declares and defines a single parser called
InputxParser:
{
CciFactory* factoryObject;
int rc = 0;
CciChar factoryName[] = L"MyParserFactory";
CCI_EXCEPTION_ST exception_st;

/* Create the Parser Factory for this parser */
factoryObject = cpiCreateParserFactory(0, factoryName);
if (factoryObject == CCI_NULL_ADDR) {

/* Any local error handling can go here */
}
else {
/* Define the parsers supported by this factory */
static CNI_VFT vftable = {CNI_VFT_DEFAULT};

/* Setup function table with pointers to parser implementation functions */
vftable.iFpCreateContext = cpiCreateContext;
vftable.iFpParseBufferEncoded = cpiParseBufferEncoded;
vftable.iFpParseFirstChild = cpiParseFirstChild;
vftable.iFpParseLastChild = cpiParseLastChild;
vftable.iFpParsePreviousSibling = cpiParsePreviousSibling;
vftable.iFpParseNextSibling = cpiParseNextSibling;
vftable.iFpWriteBufferEncoded = cpiWriteBufferEncoded;
vftable.iFpDeleteContext = cpiDeleteContext;
vftable.iFpSetElementValue = cpiSetElementValue;
vftable.iFpElementValue = cpiElementValue;
vftable.iFpNextParserClassName = cpiNextParserClassName;
vftable.iFpSetNextParserClassName = cpiSetNextParserClassName;
vftable.iFpNextParserEncoding = cpiNextParserEncoding;
vftable.iFpNextParserCodedCharSetId = cpiNextParserCodedCharSetId;

cpiDefineParserClass(0, factoryObject, L"InputxParser", &vftable);
}

/* Return address of this factory object to the broker */
return(factoryObject);
}

The initialization function must create a parser factory by invoking
cpiCreateParserFactory. The parser classes supported by the factory are defined
by calling cpiDefineParserClass. The address of the factory object (returned by
cpiCreateParserFactory) must be returned to the broker as the return value
from the initialization function.

48 User-defined Extensions

For example:
a. Create the parser factory using the cpiCreateParserFactory function:

factoryObject = cpiCreateParserFactory(&rc, constParserFactory);

b. Define the classes of message supported by the factory using the
cpiDefineParserClass function:
if (factoryObject) {

cpiDefineParserClass(&rc, factoryObject, constPXML, &vftable);
}

else {
/* Error: Unable to create parser factory */

}

c. Return the address of this factory object to the broker:
return(factoryObject);

}

Creating an instance of the parser:

When the broker has received the table of function pointers, it calls the function
cpiCreateContext for each instantiation of the user-defined parser. If you have three
message flows that use your user-defined parser, your cpiCreateContext function is
called for each of them. This function should allocate memory for that instantiation
of the user-defined parser to hold the values for the configured attributes. For
example:
1. Call the cpiCreateContext function:

CciContext* _createContext(
CciFactory* factoryObject,
CciChar* parserName,
CciNode* parserObject

){
static char* functionName = (char *)"_createContext()";
PARSER_CONTEXT_ST* p;
CciChar buffer[256];

2. Allocate a pointer to the local context and clear the context area:
p = (PARSER_CONTEXT_ST *)malloc(sizeof(PARSER_CONTEXT_ST));

if (p) {
memset(p, 0, sizeof(PARSER_CONTEXT_ST));

3. Save the parser object pointer in the context:
p->parserObject = parserObject;

4. Save the parser name:
CciCharNCpy((CciChar*)&p->parserName, parserName, MAX_NODE_NAME_LEN);

5. Return the parser context:
return (CciContext*) p;

Deleting an instance of the parser:

Parsers are destroyed when a message flow is deleted or redeployed, or when the
execution group process is stopped (using the mqsistop command). When a parser
is destroyed, it must free any used memory and release any held resources using
the cpiDeleteContext function. For example:
void cpiDeleteContext(

CciParser* parser,
CciContext* context

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

Developing user-defined extensions 49

int rc = 0;

return;
}

Extending the capability of a C user-defined parser:

When you have created a C parser, you can extend its capability.

Before you start

Ensure that you have read and understood the following topic:
v “Creating a user-defined parser” on page 47

You can extend the capability of a C parser in the following ways:
v “Implementing the parser functionality”
v “Implementing input functions”
v “Implementing parse functions” on page 51
v “Implementing output functions” on page 51
v “Implementing a message header parser” on page 52

Implementing the parser functionality:

A parser needs to implement the following types of implementation function:
1. Input functions
2. Parse functions
3. Output functions

Implementing input functions:

Your parser must implement one, and only one, of the following input functions:
v “cpiParseBuffer” on page 209
v “cpiParseBufferEncoded” on page 210
v “cpiParseBufferFormatted” on page 212

The broker invokes the input function when your user-defined parser is required to
parse an input message. The parser must tell the broker how much of the input
bitstream buffer that it claims to own. In the case of a fixed-size header, the parser
claims the size of the header. If the parser is intended to handle the whole
message, it claims the remainder of the buffer.

For example:
1. The broker invokes the cpiParseBufferEncoded input function:

int cpiParseBufferEncoded(
CciParser* parser,
CciContext* context,
int encoding,
int ccsid

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

2. Get a pointer to the message buffer and set the offset using the cpiBufferPointer
utility function:

50 User-defined Extensions

pc->iBuffer = (void *)cpiBufferPointer(&rc, parser);
pc->iIndex = 0;

3. Save the format of the buffer:
pc->iEncoding = encoding;
pc->iCcsid = ccsid;

4. Save the size of the buffer using the cpiBufferSize utility function:
pc->iSize = cpiBufferSize(&rc, parser);

5. Prime the first byte in the stream using the cpiBufferByte utility function:
pc->iCurrentCharacter = cpiBufferByte(&rc, parser, pc->iIndex);

6. Set the current element to the root element using the cpiRootElement utility
function:

pc->iCurrentElement = cpiRootElement(&rc, parser);

7. Reset the flag to ensure parsing is reset correctly:
pc->iInTag = 0;

8. Claim ownership of the remainder of the buffer:
return(pc->iSize);

}

Implementing parse functions:

General parse functions (for example, cpiParseFirstChild) are those invoked by the
broker when the syntax element tree needs to be created in order to evaluate an
ESQL or Java expression. For example, a Filter node uses an ESQL field reference
in an ESQL expression. This field reference must be resolved in order to evaluate
the expression. Your parser’s general parse function is called, perhaps repeatedly,
until the requested element is either created, or is known by the parser not to exist.

For example:
void cpiParseFirstChild(

CciParser* parser,
CciContext* context,
CciElement* element

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

if ((!cpiElementCompleteNext(&rc, element)) &&
(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME)) {

while ((!cpiElementCompleteNext(&rc, element)) &&
(!cpiFirstChild(&rc, element)) &&
(pc->iCurrentElement))

{
pc->iCurrentElement = parseNextItem(parser, context, pc->iCurrentElement);

}
}
return;

}

Implementing output functions:

Your parser must implement one, and only one, of the following output functions:
v “cpiWriteBuffer” on page 231
v “cpiWriteBufferEncoded” on page 232
v “cpiWriteBufferFormatted” on page 233

Developing user-defined extensions 51

The broker invokes the output function when your user-defined parser is required
to serialize a syntax element tree to an output bit stream. For example, a Compute
node might have created a tree in the domain of your user-defined parser. When a
node, such as an MQOutput node, needs to serialize this tree, the parser is
responsible for appending the output bitstream buffer with data that represents the
tree that has been built.

For example:
int cpiWriteBufferEncoded(

CciParser* parser,
CciContext* context,
int encoding,
int ccsid

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int initialSize = 0;
int rc = 0;
const void* a;
CciByte b;

initialSize = cpiBufferSize(&rc, parser);
a = cpiBufferPointer(&rc, parser);
b = cpiBufferByte(&rc, parser, 0);

cpiAppendToBuffer(&rc, parser, (char *)"Some test data", 14);

return cpiBufferSize(0, parser) - initialSize;
}

Implementing a message header parser:

Typically, the incoming message data is of a single message format, therefore one
parser is responsible for parsing the entire contents of the message. The class name
of the parser that is needed is defined in the Format field in the MQMD or the
MQRFH2 header of the input message.

However, the message might consist of multiple formats, for example where there
is a header in one format followed by data in another format. In this case, the first
parser has to identify the class name of the parser that is responsible for the next
format in the chain, and so on. In a user-defined parser, the implementation
function cpiNextParserClassName is invoked by the broker when it navigates
down a chain of parser classes for a message that is composed of multiple message
formats.

If your user-defined parser supports parsing a message format that is part of a
multiple message format, the user-defined parser must implement the
cpiNextParserClassName function.

For example:
1. Call the cpiNextParserClassName function:

void cpiNextParserClassName(
CciParser* parser,
CciContext* context,
CciChar* buffer,
int size

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc = 0;

2. Copy the name of the next parser class to the broker:

52 User-defined Extensions

CciCharNCpy(buffer, pc->iNextParserClassName, size);

return;
}

Compiling a C user-defined extension
Compile user-defined extensions in C for all supported operating systems.

Before you start

If you create your own user-defined nodes, parsers, and user exits in C, compile
them on the operating system on which the target broker is running. Samples are
provided for both nodes and parsers, and are described in “Sample node files” on
page 105 and “Sample parser files” on page 107. Use the instructions here to
compile the samples. If you want to create your own extensions, see the following
topics:
v “Creating a user-defined extension in C” on page 31
v “Creating a user-defined parser” on page 47
v Developing a user exit

These instructions use the file names of the supplied samples. If you are compiling
your own user-defined extensions, substitute your own file names.

When you compile a user-defined extension that is written in C, you need a
compatible compiler. For details of supported compilers, see Optional software
support.

Header files:

The following header files define the C interfaces:

BipCni.h
Message processing nodes

BipCpi.h
Message parsers

BipCci.h
Interfaces common to both nodes and parsers

BipCos.h
Platform-specific definitions

Compiling:

Compile the source for your user-defined extension on each of the supported
operating systems to create the executable file that the broker calls to implement
your user-defined extension. On Linux, UNIX, and z/OS systems, this file is a
loadable implementation library file (LIL); on Windows systems, it is a dynamic
load library (DLL).

The libraries that you build to contain user-defined nodes or parsers must have the
extension .lil on all operating systems so that the broker can load them. Libraries
that contain user exits must have the extension .lel on all operating systems. The
examples in this topic show libraries with the extension .lil.

Refer to the documentation for the compiler that you are using for full details of
available compile and link options that might be required for your programs.

Developing user-defined extensions 53

|
|
|
|
|
|

|

|

|

|
|
|
|

|
|

Navigate to the directory where your user-defined extension source code is located,
and follow the instructions for your operating system:
v AIX®

v HP-UX on PA-RISC
v HP-UX on Itanium
v Linux
v Solaris
v Windows
v z/OS

Compiling on AIX:

When you compile a user-defined extension that is written in C, use a supported
compiler.
xlc_r -q32 \

-I. \
-I/install_dir/include/plugin \
-c SwitchNode.c \
-o SwitchNode.o

xlc_r -q32 \
-I. \
-I/install_dir/include/plugin \
-c BipSampPluginUtil.c \
-o BipSampPluginUtil.o

xlc_r -q32 \
-I. \
-I/install_dir/include/plugin \
-c Common.c \
-o Common.o

xlc_r -q32 \
-I. \
-I/install_dir/include/plugin \
-c NodeFactory.c \
-o NodeFactory.o

xlc_r -q32 \
-qmkshrobj \
-bM:SRE \
-bexpall \
-bnoentry \
-o SwitchNode.lil SwitchNode.o \

BipSampPluginUtil.o Common.o NodeFactory.o \
-L /install_dir/lib \
-l imbdfplg

chmod a+r SwitchNode.lil

Compiling on HP-UX on PA-RISC:

When you compile a user-defined extension that is written in C, use a supported
compiler.
cc +z -DD32 \

-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c BipSampPluginUtil.c \
-o output_dir/BipSampPluginUtil.o \
-Ae

cc +z -DD32 \

54 User-defined Extensions

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c Common.c \
-o output_dir/Common.o \
-Ae

cc +z -DD32 \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c NodeFactory.c \
-o output_dir/NodeFactory.o \
-Ae

cc +z -DD32 \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c SwitchNode.c \
-o output_dir/SwitchNode.o \
-Ae

cc +z -DD32\
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c TransformNode.c \
-o output_dir/TransformNode.o \
-Ae

ld -b \
-o output_dir/SwitchNode.lil \
output_dir/BipSampPluginUtil.o \
output_dir/Common.o \
output_dir/NodeFactory.o \
output_dir/SwitchNode.o \
output_dir/TransformNode.o \
-L install_dir/lib \
-L install_dir/xml4c/lib \
-L install_dir/merant/lib \
-L install_dir/jre/lib/PA_RISC2.0 \
-L install_dir/jre/lib/PA_RISC2.0/server \
-l imbdfplg

chmod a+r output_dir/SwitchNode.lil

Compiling on HP-UX on Itanium:

When you compile a user-defined extension that is written in C, use a supported
compiler.
aCC -O +DD64 -AA -mt +z\
-I. \

-I/install_dir/include \
-I/install_dir/include/plugin \
-c BipSampPluginUtil.c \
-o output_dir/BipSampPluginUtil.o

aCC -O +DD64 -AA -mt +z\
-I. \

-I/install_dir/include \
-I/install_dir/include/plugin \
-c Common.c \
-o output_dir/Common.o

aCC -O +DD64 -AA -mt +z\

Developing user-defined extensions 55

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c NodeFactory.c \
-o output_dir/NodeFactory.o

aCC -O +DD64 -AA -mt +z\
-I. \

-I/install_dir/include \
-I/install_dir/include/plugin \
-c SwitchNode.c \
-o output_dir/SwitchNode.o

aCC -O +DD64 -AA -mt +z\
-I. \

-I/install_dir/include \
-I/install_dir/include/plugin \
-c TransformNode.c \
-o output_dir/TransformNode.o

ld -b \
-o output_dir/SwitchNode.lil \
output_dir/BipSampPluginUtil.o \
output_dir/Common.o \
output_dir/NodeFactory.o \
output_dir/SwitchNode.o \
output_dir/TransformNode.o \
-L install_dir/lib \
-L install_dir/xml4c/lib \
-L install_dir/merant/lib \
-L install_dir/jre/lib/IA64N\
-L install_dir/jre/lib/IA64N/server \
-l imbdfplg

chmod a+r output_dir/SwitchNode.lil

Compiling on Linux:

When you compile a user-defined extension that is written in C, use a supported
compiler.
/usr/bin/g++ -c -fpic -MD -trigraphs

-I.
-I/install_dir/include
-I/install_dir/include/plugin
-DLINUX -D__USE_GNU -D_GNU_SOURCE
TransformNode.c

/usr/bin/g++ -c -fpic -MD -trigraphs
-I.
-I/opt/mqsi/include
-I/install_dir/include/plugin
-DLINUX -D__USE_GNU -D_GNU_SOURCE
SwitchNode.c

/usr/bin/gcc -c -fpic -MD -trigraphs
-I.
-I/opt/mqsi/include
-I/install_dir/include/plugin
-DLINUX -D__USE_GNU -D_GNU_SOURCE
BipSampPluginUtil.c

/usr/bin/g++ -c -fpic -MD -trigraphs
-I.
-I/opt/mqsi/include
-I/install_dir/include/plugin

56 User-defined Extensions

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

-DLINUX -D__USE_GNU -D_GNU_SOURCE
Common.c

/usr/bin/g++ -c -fpic -MD -trigraphs
-I.
-I/opt/mqsi/include
-I/install_dir/include/plugin
-DLINUX -D__USE_GNU -D_GNU_SOURCE
NodeFactory.c

/usr/bin/g++ -o samples.lil
TransformNode.o
SwitchNode.o
BipSampPluginUtil.o
Common.o
NodeFactory.o
-shared -lc -lnsl -ldl
-L/install_dir/lib -limbdfplg

These commands create the file samples.lil that provides TransformNode and
SwitchNode objects.

Building the C user-defined extension with g++ requires some changes; you must
define the interface function as a C-style function to the C++ compiler. In the
following example, the ifdefs keep your code portable, and hide the extern "C"
directives from a C compiler.

#ifdef __cplusplus
extern "C" {
#endif
void LilFactoryExportPrefix * LilFactoryExportSuffix bipGetParserFactory()
{
...
...
}
#ifdef __cplusplus
}
#endif

Compiling on Solaris:

When you compile a user-defined extension that is written in C, use a supported
compiler.
cc -mt \

-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c SwitchNode.c \
-o output_dir/SwitchNode.o

cc -mt \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c BipSampPluginUtil.c \
-o output_dir/BipSampPluginUtil.o

cc -mt \
-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c NodeFactory.c \
-o output_dir/NodeFactory.o

cc -mt \

Developing user-defined extensions 57

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

-I. \
-I/install_dir/include \
-I/install_dir/include/plugin \
-c Common.c \
-o output_dir/Common.o

cc -G \
-o output_dir/SwitchNode.lil \

output_dir/SwitchNode.o \
output_dir/BipSampPluginUtil.o \
output_dir/NodeFactory.o \
output_dir/Common.o \

-L /install_dir/lib \
-l imbdfplg

chmod a+r output_dir/SwitchNode.lil

Compiling on Windows:

When you compile a user-defined extension that is written in C, use a supported
compiler.

Ensure that you include a space between SwitchNode.c and BipSampPluginUtil.c,
and also between -link and /DLL.

Enter the command as a single line of input; in the following example the lines
have been split to improve readability.
cl /VERBOSE /LD /MD /Zi /GX /I.

/Iinstall_dir\include\plugin
SwitchNode.c BipSampPluginUtil.c Common.c
NodeFactory.c TransformNode.c
-link /DLL install_dir\lib\imbdfplg.lib
/OUT:SwitchNode.lil

If you have correctly set the LIB environment variable, you do not have to specify
the full paths to the LIB files.

Compiling on z/OS:

When you compile a user-defined extension that is written in C, use a supported
compiler.

Force your link to use prelinker or linker by setting the _CC_STEPS variable to -1:
export _CC_STEPS=-1

Alternatively, add these two lines to your makefile to export it:
_CC_STEPS=-1
.EXPORT : _CC_STEPS

To create optimized builds, use -2 in place of -g in the following commands:
cc -c \
-Wc,DLL -g -W0,long,langlvl\(extended\),EXPORTALL,float\(ieee\) \
-Wc,xplink \
-W0,LIST\(./SwitchNode.lst\) \
-I. -I${install_dir}/include \
-I${install_dir}/include/plugin \
-I${install_dir}/sample/include \
-I${install_dir}/sample/plugin \
-o ./SwitchNode.o ./SwitchNode.c

58 User-defined Extensions

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

cc -c \
-Wc,DLL -g -W0,long,langlvl\(extended\),EXPORTALL,float\(ieee\) \
-Wc,xplink \
-W0,LIST\(./SwitchNode.lst\) \
-I. -I${install_dir}/include \
-I${install_dir}/include/plugin \
-I${install_dir}/sample/include \
-I${install_dir}/sample/plugin \
-o ./BipSampPluginUtil.o ./BipSampPluginUtil.c

cc -c \
-Wc,DLL -g -W0,long,langlvl\(extended\),EXPORTALL,float\(ieee\) \
-Wc,xplink \
-W0,LIST\(./SwitchNode.lst\) \
-I. -I${install_dir}/include \
-I${install_dir}/include/plugin \
-I${install_dir}/sample/include \
-I${install_dir}/sample/plugin \
-o ./Common.o ./Common.c

cc -c \
-Wc,DLL -g -W0,long,langlvl\(extended\),EXPORTALL, float\(ieee\) \
-Wc,xplink \
-W0,LIST\(./SwitchNode.lst\) \
-I. -I${install_dir}/include \
-I${install_dir}/include/plugin \
-I${install_dir}/sample/include \
-I${install_dir}/sample/plugin \
-o ./NodeFactory.o ./NodeFactory.c

cc \
-Wl,DLL -g -Wl,p,map -Wl,LIST=ALL,MAP,XREF,REUS=RENT \
-Wl,xplink \
-o ./SwitchNode.lil ./SwitchNode.o ./BipSampPluginUtil.o \
./Common.o ./NodeFactory.o \
${install_dir}/lib/libimbdfplg.x

Issue the following command to set the file permissions of the user-defined
extension to group read and to be executable:
chmod a+rx {output_dir}/SwitchNode.lil

Creating a user-defined extension in Java

Complete one or more of the following steps to create user-defined nodes in Java:
v “Creating an input node in Java” on page 60
v “Creating a message processing or output node in Java” on page 65
v “Compiling a Java user-defined node” on page 74
v “Packaging a Java user-defined node” on page 75

You can write only user-defined nodes in Java: user-defined parsers must be
written in C.

When you have completed this set of tasks, continue with the following tasks:
v “Creating the user interface representation of a user-defined node in the

workbench” on page 79
v “Testing a user-defined node” on page 85
v “Packaging and distributing user-defined extensions” on page 87

Restrictions when creating Java nodes
In Java user-defined nodes and the JavaCompute node, calling the System.exit(...)
method is not supported. Calling this method results in a SecurityException.

Developing user-defined extensions 59

Creating an input node in Java
An input node is used to receive a message into a message flow, typically from a
source that is not supported by the built-in input nodes.

Before you start

Read the following topics:
v “Planning user-defined extensions” on page 5
v “Designing user-defined extensions” on page 8
v “User-defined input nodes” on page 13

To create an input node in the Java language:
1. “Creating a new Java project”
2. “Declaring the input node class”
3. “Defining the node constructor” on page 61
4. “Receiving external data into a buffer” on page 61
5. “Propagating the message” on page 62
6. “Controlling threading and transactionality” on page 62
7. “Declaring the node name” on page 63
8. “Declaring attributes” on page 63
9. “Implementing the node functionality” on page 64

10. “Overriding default message parser attributes (optional)” on page 64
11. “Deleting an instance of the node” on page 65

A Java user-defined node is distributed as a .jar file.

Creating a new Java project:

Before you can create Java nodes in the workbench, you must create a new Java
project:
1. Switch to the Java perspective.
2. Click File → New → Project. Select Java from the left menu, and then select Java

Project from the right menu.
3. Give the project a name. The Java Settings panel is displayed.
4. Select the Libraries tab, and click Add External JARs.
5. Select install_dir\classes\jplugin2.jar
6. Follow the prompts on the other tabs to define any other build settings.
7. Click Finish.

You can now develop the source for your Java node in this project.

Declaring the input node class:

Any class that implements MbInputNodeInterface and is contained in the broker’s
LIL path is registered with the broker as an input node. When you implement
MbInputNodeInterface, you also need to implement a run method for this class.
The run method represents the start of the message flow, contains the data that
formulates the message, and propagates it down the flow. The broker calls the run
method when threads become available in accordance with your specified
threading model.

60 User-defined Extensions

For example, to declare the input node class:
package com.ibm.jplugins;

import com.ibm.broker.plugin.*;

public class BasicInputNode extends MbInputNode implements MbInputNodeInterface
{
...

Follow these steps to complete this action in the workbench:
1. Click File → New → Class.
2. Set the package and class name fields to appropriate values.
3. Delete the text in the Superclass text field and click the Browse button.
4. Select MbInputNode.
5. Click the Add button next to Interfaces text field, and select

MbInputNodeInterface.
6. Click Finish.

Defining the node constructor:

When the node is instantiated, the constructor of the user’s node class is called.
This class is where you create the terminals of the node, and initialize any default
values for the attributes.

An input node has a number of output terminals associated with it, but does not
typically have any input terminals. Use the createOutputTerminal method to add
output terminals to a node when the node is instantiated. For example, to create a
node with three output terminals:
public BasicInputNode() throws MbException
{
createOutputTerminal ("out");
createOutputTerminal ("failure");
createOutputTerminal ("catch");
setAttribute ("firstParserClassName","myParser");
attributeVariable = "none";
}

Receiving external data into a buffer:

An input node can receive data from any type of external source, such as a file
system, a queue, or a database, in the same way as any other Java program,
provided that the output from the node is in the correct format.

Provide an input buffer (or bit stream) to contain input data, and associate it with
a message object. Create a message from a byte array using the createMessage
method of the MbInputNode class, and then generate a valid message assembly
from this message. For example, to read the input from a file:
1. Create an input stream to read from the file:

FileInputStream inputStream = new FileInputStream("myfile.msg");

2. Create a byte array the size of the input file:
byte[] buffer = new byte[inputStream.available()];

3. Read from the file into the byte array:
inputStream.read(buffer);

4. Close the input stream:
inputStream.close();

Developing user-defined extensions 61

5. Create a message to put on the queue:
MbMessage msg = createMessage(buffer);

6. Create a new message assembly to hold this message:
msg.finalizeMessage(MbMessage.FINALIZE_VALIDATE);
MbMessageAssembly newAssembly =

new MbMessageAssembly(assembly, msg);

Propagating the message:

When you have created a message assembly, you can propagate it to one of the
node’s output terminals.

For example, to propagate the message assembly to the terminal named out:
MbOutputTerminal out = getOutputTerminal("out");
out.propagate(newAssembly);

To delete the message:
msg.clearMessage();

To clear the memory that is allocated for the message tree, call the clearMessage()
function within the finally block oftry/catch.

Controlling threading and transactionality:

The broker infrastructure handles transaction issues such as controlling the commit
of any WebSphere MQ or database unit of work when message processing has
completed. However, resources modified from within a user-defined node are not
necessarily under the transactional control of the broker.

Each message flow thread is allocated from a pool of threads maintained for each
message flow, and starts in the run method.

The user-defined node uses return values to indicate whether a transaction has
been successful, to control whether transactions are committed or rolled back, and
to control when the thread is returned to the pool. The broker infrastructure
catches any unhandled exceptions, and rolls back the transaction.

You determine the behavior of transactions and threads using the appropriate
return value:

MbInputNode.SUCCESS_CONTINUE
The transaction is committed and the broker calls the run method again
using the same thread.

MbInputNode.SUCCESS_RETURN
The transaction is committed and the thread is returned to the thread pool,
assuming that it is not the only thread for this message flow.

MbInputNode.FAILURE_CONTINUE
The transaction is rolled back and the broker calls the run method again
using the same thread.

MbInputNode.FAILURE_RETURN
The transaction is rolled back and the thread is returned to the thread pool,
assuming that it is not the only thread for this message flow.

MbInputNode.TIMEOUT
The run method must not block indefinitely while waiting for input data to

62 User-defined Extensions

arrive. While the flow is blocked by user code, you cannot shutdown or
reconfigure the broker. The run method must yield control to the broker
periodically by returning from the run method. If input data has not been
received after a certain period (for example, 5 seconds), the method should
return with the TIMEOUT return code. Assuming that the broker does not
need to reconfigure or shutdown, the input node’s run method gets called
again straight away.

To create multithreaded message flows, you call the dispatchThread method after a
message has been created, but before the message is propagated to an output
terminal. This action ensures that only one thread is waiting for data while other
threads are processing the message. New threads are obtained from the thread
pool up to the maximum limit specified by the Additional Instances property of
the message flow. For example:

public int run(MbMessageAssembly assembly) throws MbException
{

byte[] data = getDataWithTimeout(); // user supplied method
// returns null if timeout

if(data == null)
return TIMEOUT;

MbMessage msg = createMessage(data);
msg.finalizeMessage(MbMessage.FINALIZE_VALIDATE);
MbMessageAssembly newAssembly =

new MbMessageAssembly(assembly, msg);

dispatchThread();

getOutputTerminal("out").propagate(newAssembly);

return SUCCESS_RETURN;
}

Declaring the node name:

You must declare the name of the node for use and identification by the
workbench. All node names must end with the characters ″Node″. Declare the
name using the following method:
public static String getNodeName()
{

return "BasicInputNode";
}

If this method is not declared, the Java API framework creates a default node
name using the following rules:
v The class name is appended to the package name.
v The periods are removed, and the first letter of each part of the package and

class name is capitalized.

For example, by default, the following class is assigned the node name
″ComIbmPluginsamplesBasicInputNode″:
package com.ibm.pluginsamples;
public class BasicInputNode extends MbInputNode implements MbInputNodeInterface
{

...

Declaring attributes:

Developing user-defined extensions 63

Declare node attributes using the same method that you use for Java bean
properties. You are responsible for writing get and set methods for the attributes;
the API framework infers the attribute names using the Java bean introspection
rules. For example, if you declare the following two methods:
private String attributeVariable;

public String getFirstAttribute()
{

return attributeVariable;
}

publc void setFirstAttribute(String value)
{

attributeVariable = value;
}

The broker infers that this node has an attribute called firstAttribute. This name is
derived from the names of the get or set methods, not from the variable names of
any internal class members. Attributes can be exposed only as strings, so convert
any numeric types to and from strings in the get or set methods. For example, the
following method defines an attribute called timeInSeconds:
int seconds;

public String getTimeInSeconds()
{

return Integer.toString(seconds);
}

public void setTimeInSeconds(String value)
{

seconds = Integer.parseInt(value);
}

Implementing the node functionality:

As already described, the run method is called by the broker to create the input
message. This method should provide all the processing function for the input
node.

Overriding default message parser attributes (optional):

An input node implementation normally determines which message parser initially
parses an input message. For example, the built-in MQInput node dictates that an
MQMD parser is required to parse the MQMD header. A user-defined input node
can select an appropriate header or message parser, and the mode in which the
parsing is controlled, by using the following default attributes that are included,
which you can override:

rootParserClassName
Defines the name of the root parser that parses message formats supported
by the user-defined input node. It defaults to GenericRoot, a supplied root
parser that causes the broker to allocate and chain parsers together. It is
unlikely that a node would need to modify this attribute value.

firstParserClassName
Defines the name of the first parser, in what might be a chain of parsers
that are responsible for parsing the bitstream. It defaults to XML.

64 User-defined Extensions

messageDomainProperty
An optional attribute that defines the name of the message parser required
to parse the input message. The supported values are the same as those
supported by the MQInput node.

messageSetProperty
An optional attribute that defines the message set identifier, or the message
set name, in the Message Set field, only if the MRM parser was specified
by the messageDomainProperty attribute.

messageTypeProperty
An optional attribute that defines the identifier of the message in the
MessageType field, only if the MRM parser was specified by the
messageDomainProperty attribute.

messageFormatProperty
An optional attribute that defines the format of the message in the Message
Format field, only if the MRM parser was specified by the
messageDomainProperty attribute.

Deleting an instance of the node:

An instance of the node is deleted when either:
v You shut down the broker.
v You remove the node or the message flow containing the node, and redeploy the

configuration.

When the node is deleted, it can perform any cleanup operations, such as closing
sockets, if it implements the optional onDelete method. This method, if present, is
called by the broker just before the node is deleted.

Implement the onDelete method as follows:
public void onDelete()
{

// perform node cleanup if necessary
}

Creating a message processing or output node in Java
A message processing node is used to process a message, and an output node is
used to output a message as a bit stream.

Before you start

Read the following topics:
v “Planning user-defined extensions” on page 5
v “Designing user-defined extensions” on page 8
v “User-defined message processing nodes” on page 18
v “User-defined output nodes” on page 25
v “Restrictions when creating Java nodes” on page 59

WebSphere Message Broker provides the source for two sample user-defined nodes
called SwitchNode and TransformNode. You can use these nodes in their current
state, or you can modify them.

When you code a message processing node or an output node, the two types
provide essentially the same functions. You can perform message processing within
an output node, and likewise you can propagate an output message to a bit stream

Developing user-defined extensions 65

from a message processing node. For simplicity, this topic refers mainly to the
node as a message processing node, but it does discuss the functionality of both
types of node.

Complete the following steps:
1. “Creating a new Java project”
2. “Declaring the message processing node class”
3. “Defining the node constructor” on page 67
4. “Accessing message data” on page 67
5. “Transforming a message object” on page 67
6. “Propagating the message” on page 69
7. “Declaring the node name” on page 69
8. “Declaring attributes” on page 69
9. “Implementing the node functionality” on page 70

10. “Deleting an instance of the node” on page 70

A Java user-defined node is distributed as a .jar file.

Creating a new Java project:

Before you can create Java nodes in the workbench, you must create a new Java
project:
1. Switch to the Java perspective.
2. Click File → New → Project. Select Java from the left menu, and then select Java

Project from the right menu.
3. Give the project a name.

The Java Settings panel is displayed.
4. Select the Libraries tab, and click Add External JARs.
5. Select install_dir\classes\jplugin2.jar.
6. Follow the prompts on the other tabs to define any other build settings.
7. Click Finish.

You can now develop the source for your Java node within this project.

Declaring the message processing node class:

Any class that implements MbNodeInterface, and is contained in the broker’s LIL
path, is registered with the broker as a message processing node. When you
implement MbNodeInterface, you must also implement an evaluate method for
this class. The evaluate method is called by the broker for each message that passes
through the flow.

For example, to declare the message processing node class:
package com.ibm.jplugins;

import com.ibm.broker.plugin.*;

public class BasicNode extends MbNode implements MbNodeInterface

Declare the class in the workbench:
1. Click File → New → Class.
2. Set the package and class name fields to appropriate values.

66 User-defined Extensions

3. Delete the text in the Superclass text field and click Browse.
4. Select MbNode and click OK.
5. Click the Add button next to Interfaces text field, and select MbNodeInterface.
6. Click Finish.

Defining the node constructor:

When the node is instantiated, the constructor of the user’s node class is called.
Create the terminals of the node, and initialize any default values for attributes in
this constructor.

A message processing node has a number of input terminals and output terminals
that are associated with it. Use the methods createInputTerminal and
createOutputTerminal to add terminals to a node when the node is instantiated.

For example, to create a node with one input terminal and two output terminals:
public MyNode() throws MbException
{

// create terminals here
createInputTerminal ("in");
createOutputTerminal ("out");
createOutputTerminal ("failure");

}

Accessing message data:

In many cases, the user-defined node needs to access the contents of the message
received on its input terminal. The message is represented as a tree of syntax
elements. Use the supplied utility function to evaluate methods for message
management, message buffer access, syntax element navigation, and syntax
element access.

The MbElement class provides the interface to the syntax elements.

For example:
1. To navigate to the relevant syntax element in the XML message:

MbElement rootElement = assembly.getMessage().getRootElement();
MbElement switchElement =
rootElement.getLastChild().getFirstChild().getFirstChild();

2. To select the terminal indicated by the value of this element:
String terminalName;
String elementValue = (String)switchElement.getValue();
if(elementValue.equals("add"))

terminalName = "add";
else if(elementValue.equals("change"))

terminalName = "change";
else if(elementValue.equals("delete"))

terminalName = "delete";
else if(elementValue.equals("hold"))

terminalName = "hold";
else

terminalName = "failure";

MbOutputTerminal out = getOutputTerminal(terminalName);

Transforming a message object:

Developing user-defined extensions 67

The received input message is read-only, so before you can transform a message,
you must write it to a new output message. You can copy elements from the input
message, or you can create new elements in the output message.

The MbMessage class provides the copy constructors, and the methods to get the
root element of the message. The MbElement class provides the interface to the
syntax elements.

For example, if you have an incoming message assembly with embedded
messages, you could have the following code in the evaluate method of your
user-defined node:
1. To create a new copy of the message assembly and its embedded messages:

MbMessage newMsg = new MbMessage(assembly.getMessage());
MbMessageAssembly newAssembly = new MbMessageAssembly(assembly, newMsg);

2. To navigate to the relevant syntax element in the XML message:
MbElement rootElement = newAssembly.getMessage().getRootElement();
MbElement switchElement =
rootElement.getFirstElementByPath("/XML/data/action");

3. To change the value of an existing element:
String elementValue = (String)switchElement.getValue();

if(elementValue.equals("add"))
switchElement.setValue("change");

else if(elementValue.equals("change"))
switchElement.setValue("delete");

else if(elementValue.equals("delete"))
switchElement.setValue("hold");

else
switchElement.setValue("failure");

4. To add a new tag as a child of the switch tag:
MbElement tag = switchElement.createElementAsLastChild(MbElement.TYPE_NAME,

"PreviousValue",
elementValue);

5. To add an attribute to this new tag:
tag.createElementAsFirstChild(MbElement.TYPE_NAME_VALUE,

"NewValue",
switchElement.getValue());

MbOutputTerminal out = getOutputTerminal("out");

As part of the transformation, you might need to create a new message body. To
create a new message body, use one of the following methods, which specifically
assigns a parser to a message tree folder:
createElementAfter(String)
createElementAsFirstChild(String)
createElementAsLastChild(String)
createElementBefore(String)
createElementAsLastChildFromBitstream(byte[], String, String, String, String, int, int, int)

Do not use the following methods, which do not associate an owning parser with
the folder:
createElementAfter(int)
createElementAfter(int, String, Object)
createElementAsFirstChild(int)
createElementAsFirstChild(int, String, Object)
createElementAsLastChild(int)
createElementAsLastChild(int, String, Object)
createElementBefore(int)
createElementBefore(int, String, Object)

68 User-defined Extensions

Propagating the message:

Before you propagate a message, decide what message flow data you want to
propagate, and whether to propagate to a node terminal, or to a Label node.

For example:
1. To propagate the message to the output terminal ″out″:

MbOutputTerminal out = getOutputTerminal("out");
out.propagate(newAssembly);

2. To propagate the message to a Label node:
MbRoute label1 = getRoute ("label1");
Label1.propagate(newAssembly);

Call the clearMessage() function within the finally block of try/catch to clear the
memory that is allocated for the message tree.

Declaring the node name:

The name of the node must be the same as the one that is used in the workbench.
All node names must end with ″Node″. Declare the name using the following
method:
public static String getNodeName()
{

return "BasicNode";
}

If this method is not declared, the Java API framework creates a default node
name using the following rules:
v The class name is appended to the package name.
v The dots are removed, and the first letter of each part of the package and class

name are capitalized.

For example, by default, the following class is assigned the node name
″ComIbmPluginsamplesBasicNode″:
package com.ibm.pluginsamples;
public class BasicNode extends MbNode implements MbNodeInterface
{

...

Declaring attributes:

Declare node attributes in the same way as Java Bean properties. You must write
getter and setter methods for the attributes. The API framework infers the attribute
names using the Java Bean introspection rules. For example, if you declare the
following two methods:
private String attributeVariable;

public String getFirstAttribute()
{

return attributeVariable;
}

publc void setFirstAttribute(String value)
{

attributeVariable = value;
}

Developing user-defined extensions 69

the broker infers that this node has an attribute called firstAttribute. This name is
derived from the names of the get or set methods, not from any internal class
member variable names. Attributes can only be exposed as strings, therefore, you
must convert any numeric types to and from strings in the get or set methods. For
example, the following method defines an attribute called timeInSeconds:
int seconds;

public String getTimeInSeconds()
{

return Integer.toString(seconds);
}

public void setTimeInSeconds(String value)
{

seconds = Integer.parseInt(value);
}

Implementing the node functionality:

The evaluate method, defined in MbNodeInterface, is called by the broker to
process the message. All the processing function for the node is included in this
method.

The evaluate method has two parameters that are passed in by the broker:
1. The MbMessageAssembly, which contains the following objects that are

accessed using the appropriate methods:
v The incoming message
v The LocalEnvironment
v The global Environment
v The ExceptionList

2. The input terminal on which the message has arrived.

For example, the following code extract shows how you might write the evaluate
method:
public void evaluate(MbMessageAssembly assembly, MbInputTerminal inTerm) throws MbException

{
// add message processing code here

getOutputTerminal("out").propagate(assembly);
}

The message flow data, which consists of the message, Environment,
LocalEnvironment, and ExceptionList, is received at the input terminal of the node.

Deleting an instance of the node:

An instance of the node is deleted when either:
v You shut down the broker.
v You remove the node or the message flow that contains the node, and redeploy

the configuration.

If you want the node to perform any clean up operations, for example closing
sockets, include an implementation of the onDelete method:
public void onDelete()
{

// perform node cleanup if necessary
}

70 User-defined Extensions

This method is called by the broker immediately before it deletes the node.

Extending the capability of a Java message processing or output node:

Within a message processing or output node, you can add extended functions to
your Java node.

Before you start

Read “Creating a message processing or output node in Java” on page 65.

You can add one or more of the following functions:
v “Accessing ESQL”
v “Handling exceptions” on page 72
v “Writing to an output device” on page 73

Accessing ESQL:

Nodes can invoke ESQL expressions using Compute node ESQL syntax. You can
create and modify the components of the message using ESQL expressions, and
you can refer to elements of both the input message and data from an external
database.

The following procedure demonstrates how to use ESQL to control transactions
from the evaluate method in your user-defined node:
1. Set the name of the ODBC data source to use. For example:

String dataSourceName = "myDataSource";

2. Set the ESQL statement to run:
String statement =

"SET OutputRoot.XMLNS.data =
(SELECT Field2 FROM Database.Table1 WHERE Field1 = 1);";

Or, if you want to run a statement that returns no result:
String statement = "PASSTHRU(

'INSERT INTO Database.Table1 VALUES(
InputRoot.XMLNS.DataField1,
InputRoot.XMLNS.DataField2)');";

3. Select the type of transaction you want from the following:

MbSQLStatement.SQL_TRANSACTION_COMMIT
Immediately commit the transaction after the ESQL statement has
completed.

MbSQLStatement.SQL_TRANSACTION_AUTO
Commit the transaction when the message flow has completed.
(Rollbacks are performed if necessary.)

For example:
int transactionType = MbSQLStatement.SQL_TRANSACTION_AUTO;

4. Get the ESQL statement. For example:
MbSQLStatement sql =

createSQLStatement(dataSourceName, statement, transactionType);

You can use the method createSQLStatement(dataSource, statement to default
the transaction type to MbSQLStatement.SQL_TRANSACTION_AUTO).

5. Create the new message assembly to be propagated:

Developing user-defined extensions 71

MbMessageAssembly newAssembly =
new MbMessageAssembly(assembly, assembly.getMessage());

6. Run the ESQL statement:
sql.select(assembly, newAssembly);

Or, if you want to run an ESQL statement that returns no result:
sql.execute(assembly);

Handling exceptions:

Use the MbException class to catch and access exceptions. The MbException class
returns an array of exception objects that represent the children of an exception in
the broker exception list. Each element returned specifies its exception type. An
empty array is returned if an exception has no children. The following code sample
shows an example of how you could use the MbException class in the evaluate
method of your user-defined node.

public void evaluate(MbMessageAssembly assembly, MbInputTerminal inTerm) throws MbException
{

try
{

// plug-in functionality

}
catch(MbException ex)

{
traverse(ex, 0);

throw ex; // if re-throwing, it must be the original exception that was caught
}

}

void traverse(MbException ex, int level)
{

if(ex != null)
{

// Do whatever action here
System.out.println("Level: " + level);
System.out.println(ex.toString());
System.out.println("traceText: " + ex.getTraceText());

// traverse the hierarchy
MbException e[] = ex.getNestedExceptions();
int size = e.length;
for(int i = 0; i < size; i++)

{
traverse(e[i], level + 1);

}
}

}

You can develop a user-defined message-processing or output node in such a way
that it can access all current exceptions. For example, to catch database exceptions
you can use the MbSQLStatement class. This class sets the value of the
’throwExceptionOnDatabaseError’ attribute, which determines broker behavior
when it encounters a database error. When it is set to true, if an exception is
thrown it can be caught and handled by the evaluate method in your user-defined
extension.

The following code sample shows an example of how to use the MbSQLStatement
class.

72 User-defined Extensions

public void evaluate(MbMessageAssembly assembly, MbInputTerminal inTerm) throws MbException
{

MbMessage newMsg = new MbMessage(assembly.getMessage());
MbMessageAssembly newAssembly = new MbMessageAssembly(assembly, newMsg);

String table =
assembly.getMessage().getRootElement().getLastChild().getFirstChild().getName();

MbSQLStatement state = createSQLStatement("dbName",
"SET OutputRoot.XMLNS.integer[] = PASSTHRU('SELECT * FROM " + table + "');");

state.setThrowExceptionOnDatabaseError(false);
state.setTreatWarningsAsErrors(true);

state.select(assembly, newAssembly);

int sqlCode = state.getSQLCode();
if(sqlCode != 0)

{
// Do error handling here

System.out.println("sqlCode = " + sqlCode);
System.out.println("sqlNativeError = " + state.getSQLNativeError());
System.out.println("sqlState = " + state.getSQLState());
System.out.println("sqlErrorText = " + state.getSQLErrorText());

}

getOutputTerminal("out").propagate(newAssembly);
}

Writing to an output device:

To write to an output device, the logical (hierarchical) message must be converted
back into a bit stream in your evaluate method. Use the getBuffer method in
MbMessage to perform this task:
public void evaluate(MbMessageAssembly assembly, MbInputTerminal in)

throws MbException
{

MbMessage msg = assembly.getMessage();
byte[] bitstream = msg.getBuffer();

// write the bitstream out somewhere
writeBitstream(bitstream); // user method

}

Typically, for an output node the message is not propagated to any output
terminal, therefore you can just return at this point.

You must use the supplied MQInput node when writing to WebSphere MQ
queues, because the broker internally maintains a WebSphere MQ connection and
the open queue handles on a thread-by-thread basis. These handles are cached to
optimize performance. In addition, the broker handles exception scenarios when
certain WebSphere MQ events occur, and this recovery is adversely affected if
WebSphere MQ MQI calls are used in a user-defined output node.

Getting and setting the specific type of an Mb element:

Two methods are provided for handling the specific type of an Mb syntax element:
v getSpecificType
v setSpecificType

Developing user-defined extensions 73

Use these methods to access or set the specific type of an XML element. For
example, to update the current value:
1. Call getSpecificType on the syntax element.

The getSpecificType method does not take any parameters, but returns the
specific type of the element as an int value.

2. Call setSpecificType on the syntax element.
The setSpecificType method takes one parameter of the type int, which is the
specific type that you want the Mb element to be. This method has no return
value.

Specific type values for the XML and MRM parsers are listed in “XML, MRM, and
XMLNSC parser constants” on page 286.

Compiling a Java user-defined node
When you have created the code for yourJava user-defined node, you must
compile it for your operating system.

Before you start

You must have a user-defined node written in Java. This node can be one of the
provided sample nodes that are described in “Sample node files” on page 105, or a
node that you have created yourself using the instructions in either “Creating a
message processing or output node in Java” on page 65 or “Creating an input node
in Java” on page 60.

You can compile a Java user-defined node either from the command line, or from
within the project in the workbench. Both options are described below.

When you compile a Java user-defined node from the command line on any
platform, you need a compatible IBM Software Developer Kit for Java. For details
of supported Java versions, see Additional software requirements.

Compiling a Java user-defined node from the workbench:

Use the following procedure to compile your Java user-defined node from the
workbench:
1. Switch to the Java Development Perspective.
2. In the Package Explorer, select the /src directory inside your node project, and

click File → Export.
3. From the list displayed, select JAR file. Click Next. The resources that are

available for you to export as a JAR file are listed.
4. Verify that Export generated class files and resources is checked.
5. Specify a name and location for your JAR file. Place the file inside the root

directory of your node project, and give the file the same name as the name of
the project (with a .jar extension). You can use the default values for the rest of
the options. Click Finish.

The created .jar file appears in your node project, and is ready for you to install in
a broker domain (see “Installing user-defined extension runtime files on a broker”
on page 88) or to package for distribution (see “Packaging a user-defined node
workbench project” on page 89).

Compiling a Java user-defined node from the command line:

74 User-defined Extensions

Use the following procedure to compile your Java user-defined node from the
command line:
1. Add the location of jplugin2.jar to the CLASSPATH. The location of the

jplugin2.jar file for each platform is shown below:

Windows install_dir\classes\jplugin2.jar

Linux install_dir/classes/jplugin2.jar

UNIX install_dir/classes/jplugin2.jar

z/OS install_dir/classes/jplugin2.jar
2. Put your Java user-defined node class into the following directory:

Windows install_dir\sample\extensions\nodes

Linux install_dir/sample/extensions/nodes

UNIX install_dir/sample/extensions/nodes

z/OS install_dir/sample/extensions/nodes
3. Change to the directory that now contains your user-defined node class.
4. Compile the .java file using the javac command, for example:

javac nodename.java

5. Package the resulting .class file into a .par file. See “Packaging a Java
user-defined node.”

The .par file that you have created is ready for you to install on a broker domain
(see “Installing user-defined extension runtime files on a broker” on page 88) or to
package for distribution (see “Packaging a user-defined node workbench project”
on page 89).

Packaging a Java user-defined node:

How to package a Java user-defined node.

Before you start

You must have a user-defined node written in Java. This node can be one of the
provided sample nodes that are described in “Sample node files” on page 105, or a
node that you have created yourself using the instructions in either “Creating a
message processing or output node in Java” on page 65 or “Creating an input node
in Java” on page 60.

You can package a user-defined node in two ways:
v PAR

A Plug-in Archive (PAR) is the deployment unit for Java user-defined nodes. The
PAR contains the user-defined node classes and, if required as dependencies, can
contain JAR files. A PAR file is a compressed file with a .par file extension. The
directory structure in the .par file has the following format:
– /classes

The user-defined node classes are stored in this location.
– /lib

JAR files that are required by the user-defined node are stored in this
location. This directory is optional because it might not be necessary to
include JAR files.

Developing user-defined extensions 75

The following procedure describes how to package an example user-defined
node, parexamplenode. In this example, the PAR is to be contained in
par.example.parexamplenode.class with a JAR file dependency dependency.jar.
1. Create the directory structure; for example:

– /classes/par/example/parexamplenode.class

– /lib/dep.jar

2. Issue a file compression command to create the PAR; for example:
jar cvf parexample.par classes lib

The PAR should be placed in the LIL path that is specified in “Installing
user-defined extension runtime files on a broker” on page 88.

v JAR

User-defined nodes can be packaged using a simple JAR. For example, if your
node is defined in example/jarexamplenode.class, create the JAR by using the
jar cvf jarexample.jar example command.
The preferred way to package a Java user-defined node is to use a PAR file,
because all dependencies can be packaged with the node, and each node is
loaded in a separate classloader. Refer to “User-defined node classloading” for
information on classloading.
The JAR should be placed in the LIL path that is specified in “Installing
user-defined extension runtime files on a broker” on page 88.

Deployment dependencies:

If a user-defined node requires an external package, the package can be deployed
in one of following ways:
v The external packages can be added to the /lib directory in the deployed PAR.
v For external packages that are shared between several node types, the packages

can be added to one of the following locations:
– The<workpath>/shared-classes/ directory
– The CLASSPATH environment variable, where all user-defined nodes that are in

the broker installation can access the packages

User-defined node classloading:

When a Java user-defined node is packaged as a PAR file, the Java user-defined
node is loaded in a separate classloader.

The classloader loads any class that is packaged within the deployed PAR file. The
classes that are placed in the JAR file override any classes that are in the shared
classes directory or the CLASSPATH environment variable. If the deployed PAR
file contains more than one node type, the nodes share the same classloader.
Therefore, a set of user-defined nodes that share static data must be packaged in a
single PAR file.

Java user-defined nodes that are packaged as simple JAR files are loaded in the
same classloader. The classes and the location from which they are loaded are
written to user trace, therefore you can use this information to check that the
correct classes are being loaded.

The broker uses the following classloader tree:

76 User-defined Extensions

Bootstrap

System

Common

Broker Shared

JVM classloaders

Grouped

NodeType1 NodeTypeN

Java user-defined nodes

...

v Common classloader: This component loads the classes that are shared between
the broker and user code. For example, the classes that are contained in
jplugin2.jar are common to the broker and the user code.

v Broker classloader: This component loads the broker internal classes. These
classes cannot be accessed by user classes.

v Shared classloader : This component loads classes from JAR files that have
been placed in the WorkPath/shared-classes/ directory. These classes are
available to all user-defined nodes within the broker.
The shared classloader also loads context classes. It uses the CLASSPATH and
the WorkPath/shared-classes/ directory to search for classes.
The broker classloader and the shared classloader are children of the common
classloader. Therefore, the contents of the shared classloader are not visible to
the broker classloader. Do not store the following resources in this directory:
– User-defined nodes
– Classes that have a dependency on other classes that have been deployed

with a user-defined node.
v Grouped classloader: This component loads all user-defined nodes that are

packaged as JAR files. If you have packaged user-defined nodes in an earlier
version, they are loaded using this loader. User-defined nodes that are packaged
in JAR files are loaded into one loader, and can therefore share static data.

User-defined nodes classloading search paths:

User-defined nodes package in a PAR file

The broker uses the following search path to find user-defined node classes:
1. /classes to locate classes in the deployed PAR file.
2. /lib to locate any JAR files in the deployed PAR file.

Developing user-defined extensions 77

|
|

3. WorkPath/shared-classes/ to locate any JAR files.
4. CLASSPATH environment variable.

User-defined nodes package in a JAR file

The broker uses the following search path to find user-defined node classes:
1. The deployed JAR file.
2. WorkPath/shared-classes/ to locate any JAR files
3. CLASSPATH environment variable.

Endorsed standards for overriding classes

The endorsed standards overriding mechanism allows the following standard
packages to be overridden in the JRE:
v javax.rmi.CORBA
v org.omg.CORBA
v org.omg.CORBA.DynAnyPackage
v org.omg.CORBA.ORBPackage
v org.omg.CORBA.portable
v org.omg.CORBA.TypeCodePackage
v org.omg.CORBA_2_3
v org.omg.CORBA_2_3.portable
v org.omg.CosNaming
v org.omg.CosNaming.NamingContextExtPackage
v org.omg.CosNaming.NamingContextPackage
v org.omg.Dynamic
v org.omg.DynamicAny
v org.omg.DynamicAny.DynAnyFactoryPackage
v org.omg.DynamicAny.DynAnyPackage
v org.omg.IOP
v org.omg.IOP.CodecFactoryPackage
v org.omg.IOP.CodecPackage
v org.omg.Messaging
v org.omg.PortableInterceptor
v org.omg.PortableInterceptor.ORBInitInfoPackage
v org.omg.PortableServer
v org.omg.PortableServer.CurrentPackage
v org.omg.PortableServer.POAManagerPackage
v org.omg.PortableServer.POAPackage
v org.omg.PortableServer.portable
v org.omg.PortableServer.ServantLocatorPackage
v org.omg.SendingContext
v org.omg.stub.java.rmi
v org.w3c.dom
v org.xml.sax
v org.xml.sax.ext
v org.xml.sax.helpers

78 User-defined Extensions

Refer to the Endorsed Standards Override Mechanism for more information.

To override these packages in the broker, place the JAR files for the API standards
in the /lib directory of the PAR file.

JNDI context: When looking up a JNDI context, the context classloader is used. If
the lookup uses classes that are packaged with the user-defined node, the context
classloader must be the same as the classloader that is being used to load the
user-defined node. To ensure that each thread uses the same classloader, the
following code can be included in the user-defined node class:
Thread.currentThread.setContextClassLoader(this.getClass().getClassLoader());

Creating the user interface representation of a user-defined
node in the workbench

When you are developing a user-defined node, you must create the user interface
representation of the node in the workbench.

Before you start:
v Perform the steps in “Developing user-defined extensions” on page 3.

The following topics describe the steps that you must complete:
1. “Creating a user-defined node project”
2. “Creating a user-defined node in the workbench” on page 80

If you have a plug-in node from Version 2.1, you must migrate the node to Version
6.0 using the mqsimigratemsgflows command, as described in Migrating a message
flow, then follow the instructions in the steps listed above.

For user-defined parsers, just install the compiled .lil file. You do not manipulate
parsers from within the workbench and therefore you do not create a user interface
representation of user-defined parsers.

When you have created the workbench representation, test your user-defined node.

Creating a user-defined node project
When you create user-defined nodes, you must first create a user-defined node
project to contain the nodes and their supporting files.

To create a new project for your user-defined node, perform the following steps:
1. Switch to the Broker Application Development perspective.
2. Click File → New → Project, then Message Flow Node Development → Message

Flow Plug-in Node Project. Click Next to start the Message Flow Plug-in Node
Project wizard. The New Message Flow Plug-in Node Project window is
displayed.

3. Specify the name of the category for the nodes that you are creating. The node
appears under this category in the message flow node palette. Either choose the
name of an existing category, or enter a name to create a new category. Click
Next. The New Plug-in Project window is displayed.

4. Specify a name for your project. To be consistent with the supplied nodes, and
to avoid conflict with the names of node projects that are supplied by other
independent software vendors, use your organization’s Internet domain name
as part of the name. For example, the name should be of the form
com.xyz.nodegroup, where com.xyz is the company Internet domain name.

Developing user-defined extensions 79

http://java.sun.com/j2se/1.4.2/docs/guide/standards/

Do not enter a blank space or an underscore character in your project name.
These characters are not valid. You can save any number of nodes in a single
project. You have now created a name for your project. Click Next.
The Plug-in content panel of the New Plug-in Project window is displayed.
Ensure that the Plug-in ID field does not contain an underscore character. This
character is not valid.

5. Accept all default values and click Next. The Templates panel of the New
Plug-in Project window is displayed.

6. Click Finish.
7. If any warnings are displayed in the Tasks view that are associated with the

newly created project, perform the following steps:
a. Click Window → Preferences.
b. Expand Plug-In Development and click Target Platform.
c. Click Add required Plug-ins to select all loaded plug-ins and click OK.
d. Select your user-defined node project in the Package Explorer view, and

click Project → Clean . A new dialog box appears in which you can select:
v Clean all projects, or
v Clean projects selected below. If you choose this option check the boxes

next to the projects that you want to clean.

A project folder containing all the supporting files that are needed for your
user-defined node is displayed in the Package Explorer view. The project is stored
in the default workspace directory.

Creating a user-defined node in the workbench
Follow these steps to create the representation of a user-defined node in the
workbench.

Before you start:

Create a user-defined node project.

To create the visual representation of your user-defined node in the workbench,
complete the following tasks:
1. “Creating the user-defined node plug-in files”
2. “Defining the node properties” on page 81
3. Optional: “Adding help to the node” on page 82
4. Optional: “Creating node icons” on page 84
5. Optional: “Adding a property editor or compiler” on page 84

When you have created the node’s representation, you cannot move it to another
folder.

Creating the user-defined node plug-in files:

Before you start:

Complete the task “Creating a user-defined node project” on page 79.
1. Switch to the Broker Application Development perspective.
2. Launch the wizard: click File → New → Other.... The New window opens.

80 User-defined Extensions

|

|
|

|

|
|

3. Expand Message Flow Node Development and select Message Flow Plug-in
Node. Click Next. The New Message Flow Plug-in Node window opens.

4. Select the parent folder for the node from the list of names that are displayed.
This folder is the project that you have created to contain this node.

5. Specify a file name for the node. The file name must be the name of the node,
excluding the Node at the end. For example, if you have created a node called
BasicNode, the file name must be Basic.

6. Click Finish. A .msgnode file for the new node is created and is added to the
project in the Broker Development view. The .msgnode file is opened in the
message node editor.

Next:

When you have completed this task, define the node properties.

Defining the node properties:

Define the properties for a user-defined node, and add input and output terminals
so that you can connect it to other nodes in a message flow.

Before you start:

Complete the following tasks:
1. “Creating a user-defined node project” on page 79
2. “Creating the user-defined node plug-in files” on page 80

When you complete the task described in “Creating the user-defined node plug-in
files” on page 80, a .msgnode file is created for the new node, and is opened in the
Message Node editor of the Broker Application Development perspective. You can
now add terminals and properties to the node.

Adding terminals to the node:

1. If the Terminals page is not already displayed, click the Terminals tab at the
bottom of the Message Node editor.

2. Click Add to the right of the In Terminals or Out Terminals fields to add an
input or output terminal.
You must define at least one input terminal, but output terminals are optional.

3. To rename a terminal, click the terminal name so that it is highlighted and
shows a flashing cursor after the name, and enter a new name.

Defining properties for the node:

1. Click the Properties tab at the bottom of the Message Node editor.
On the Properties page, you can set the node’s properties: for example, a
database name, a host server name, or a password. The properties that you set
here must match the properties that you specified in the user-defined node
itself by using the get and set methods.

2. If the node is an input node, click the node name in the hierarchy to highlight
it, and select Input node. Select Use broker default values if you want the
node to initialize with the broker’s default values.

3. To add a simple property, click the name of a property group in the hierarchy

to highlight it, and click Add Simple Property

Developing user-defined extensions 81

The new property is added to the hierarchy as a child of the property group.
Its name is highlighted so that you can change it. A number of fields are
displayed in the Details section, where you can configure the property.
a. Select the correct attribute type: one of the built-in types, or a type to match

the list of values that the property can have.
b. Enter any default values, which are shown in the Properties view when the

node is included in a message flow.
c. Specify the location of these resources in the relevant field to generate a

property editor or a compiler. Use the IPropertyEditor interface for your
property editor; see the Property editor API for more details.

d. Use the IPropertyCompiler interface to create a custom compiler; see the
Property editor API for more details.

e. Specify the system property for each attribute that you define:

Hidden
The property is not displayed in the Properties view or the Promote
Property dialog box.

Read only
The property is displayed, but cannot be changed.

Mandatory
A value is required. The field cannot be left blank. Boolean and
enum properties are always mandatory.

Configurable
The property can be configured at deployment time

4. Optional: Drag the properties in the properties hierarchy to change the order in
which they are listed on the properties page.

5. Close the nodename.msgnode file.
6. Optional: You can customize the text that appears in the node properties view

for each property. To set the text, open the nodename.properties file and edit the
line:
Property.propertyName = your descriptive text

Next:

The following tasks are optional:
v “Adding help to the node”
v “Creating node icons” on page 84
v “Adding a property editor or compiler” on page 84

You can now test your node.

Adding help to the node:

Add help information for the node that you have created as an HTML file.

Before you start:

Complete the following tasks:
1. “Creating a user-defined node project” on page 79
2. “Creating the user-defined node plug-in files” on page 80
3. “Defining the node properties” on page 81

82 User-defined Extensions

Add help information for the node that you have created to explain why and
when to use the node, and how it must be configured:
v Topic information that is displayed within the information center.
v Context sensitive help that is displayed when you press F1.
v Hover help that is displayed when you hover your mouse over the node.

All three forms of help are optional; you can create any one or more of the three
resources described below.
1. Create a help.html file within the project to contain the online help that

explains what the node does and how you can use it. If you have several files,
create a separate doc subdirectory in the plug-in project, and store the online
help files in that directory.
You can make the node’s online help appear integrated with the
product-supplied information center, under the leaf node called ″User-defined
nodes″, which you can find in Reference → Message flows. To make the online
help for your node appear at that point:
a. Modify the plugin.xml file to include the following extension point to the

information center:
<extension point="org.eclipse.help.toc">
<toc file="toc.xml"/>
</extension>

b. Create a toc.xml file in your user-defined node project, and modify the
link_to attribute to link to the ″UDNodes″ anchor that is already defined in
the information center table of contents:
<toc label="My Plugin Node" topic="my_node.htm"
link_to="../com.ibm.etools.mft.doc/toc.xml#UDNodes">
<topic label="Mytopic 1" href="topic1.htm>
</toc>

Your help topic is now displayed in the table of contents under Reference →
Message flows → User-defined nodes.
The sample nodes that are provided with the product demonstrate this
option.
For further explanation of extension points and how to use them, see the
PDE Guide.

2. Add context sensitive (F1) help to the node. Context sensitive help is displayed
when you click on a node in the Broker Application Development perspective
and press F1.
When a node is created, a HelpContexts.xml file is created. This file assigns a
context id based on the name of the node. Modify the HelpContexts.xml file for
your node by changing the text in the description field. The name of the
HelpContexts.xml file must be unique within the project, but can contain
multiple context entries; for example, if you have several nodes within a single
project, each node can have its context-sensitive help in the file.
Context-sensitive help is limited in length. A useful way of providing more
help to the user is to link from the F1 help to an HTML file that contains
further information; for example, to the node’s online help, described above.
Code the link as shown below:
<topic href"../plug-in directory/html file" label="Link title">

3. Add hover help (known as ToolTip help on Windows) to the node. When you
create a user-defined node, a palette.properties file is created. Modify this file to
contain your node’s hover help, which shows the node name when the palette
is not wide enough to display it all.

Developing user-defined extensions 83

You can add another optional feature, a node icon or a property editor or compiler,
or you can test your node.

Creating node icons:

Create the icons that are displayed in the workbench when your node is present.

Before you start:

You must complete the following tasks:
1. “Creating a user-defined node project” on page 79
2. “Creating the user-defined node plug-in files” on page 80
3. “Defining the node properties” on page 81

When you create a node, a set of default icons are created for you; files clc16.gif
and obj16.gif are used for the node in the palette on the Broker Application
Development perspective, and obj30.gif is used for the node in the Message Flow
Editor (that is, when it is dragged into a message flow). To change the default
icons to your own icons, replace the supplied .gif files in the icons subdirectory of
the plug-in project by your files.

You can add another optional feature, help or a property editor or compiler, or you
can test your node.

Adding a property editor or compiler:

Create a custom compiler by using the IPropertyCompiler interface; for example, to
encrypt a value before sending it to the server.

Before you start:

You must complete the following tasks:
1. “Creating a user-defined node project” on page 79
2. “Creating the user-defined node plug-in files” on page 80
3. “Defining the node properties” on page 81

Importing the plug-in API into the workbench:

To create a property editor or compiler, you must first import the plug-in API into
the workbench:
1. Click File → Import → External Plug-ins and Fragments.
2. Click Next.
3. Select the com.ibm.etools.mft.api plug-in.
4. When the plug-in is imported in the workspace, right-click the plug-in, and

click Update Classpath.
5. Click Finish.
6. From the Window menu, click Preferences.
7. Expand Plug-in development and select Target Platform.
8. Click Not in Workspace to select all plug-ins except the

com.ibm.etools.mft.api plug-in that you have just imported into the
workbench.

9. Click OK.

84 User-defined Extensions

10. Switch to the Java perspective.
11. Select your user-defined node project in the Package Explorer, and click

Project → Clean Project.
12. Right-click your user-defined node project, and click Update Classpath.

Creating a Java class:

To create a new Java class for your property editor or compiler, complete the
following steps.
1. Switch to the Java perspective.
2. Select your user-defined node project in the Package Explorer, and click Project

→ Clean Project

3. Right-click your user-defined node project, and click Update Classpath...

4. In the user-defined node project, select the /src directory, and click File → New
→ Class.

5. Type a name for your class in the Name text field.
6. Perform the following steps, according to whether you are creating a property

editor or a property compiler.
v If you are creating a property editor:
a. Delete any text in the Superclass text field, and click Browse....
b. Select the AbstractPropertyEditor class and click OK.
v If you are creating a property compiler:
a. Click Add next to the Interfaces text field.
b. Select the IPropertyCompiler interface and click OK.

7. Click Finish.

Testing your property editor or compiler:

To test your property editor, see “Testing a user-defined node.”

To test your property compiler, deploy to a broker the flow that contains your
user-defined node.

A custom property editor can use RAD or Eclipse APIs. When you migrate to a
new version of WebSphere Message Broker, your custom property editor might not
work if the RAD or Eclipse APIs change. Update your property editor code to
comply with the changed API.

Testing a user-defined node
When you have created and installed the required resources, you can test your
user-defined node.

Before you start

Complete the following tasks:
v “Creating a user-defined extension in C” on page 31 or “Creating a user-defined

extension in Java” on page 59
v “Creating the user interface representation of a user-defined node in the

workbench” on page 79
v “Installing user-defined extension runtime files on a broker” on page 88

Developing user-defined extensions 85

|

|

1. Enable the Eclipse Plug-in Development environment. This task is described in
“Enabling PDE runtime capabilities” on page 87. For more information about
the PDE and the Plug-in Development Perspective, see the PDE Guide.

2. Click Run → Run as → Runtime Workbench to start a new copy of the
workbench that includes your new nodes.

3. Open the Message Flow editor. Your new nodes appear in the node palette.
4. Create a message flow that includes your node. Read Adding a message flow

node for guidance on how to complete this task.
5. Deploy the message flow to a broker. This task is described in Deploying a

message flow application.
6. Send a test message through the flow and look for the results that you expect

(for example, a message put to a target queue). You might have to write an
application to send the test message to the message flow.

7. Use the diagnostic tools that are provided to determine whether your node
works, or if not, what went wrong:
a. See Resolving problems with user-defined extensions for a description of

some common problems and their solutions.
b. Check the event log. Details are provided in Event Log editor.
c. Write entries to the event log from your node. See “Using event logging

from a user-defined extension” on page 98 for more information.
d. Switch on user trace at debug level. See Using trace for details of how to

complete this task.
The following debug messages are generated by a user trace to help you to
understand the execution of your user-defined nodes and parsers:
v BIP2233 and BIP2234: a pair of messages traced before and after a

user-defined extension implementation function is invoked. These
messages report the input parameters and the returned value.
In these messages, an ″implementation function″ can be interpreted as
either a C implementation function or a Java implementation method.

v BIP3904: a message traced before invoking the Java evaluate() method of
a user-defined node.

v BIP3905: a message traced before invoking the C cniEvaluate()
implementation function (iFpEvaluate member of CNI_VFT) of a
user-defined node.

v BIP4142: a debug message that is traced when invoking a user-defined
node utility function, where the utility function alters the state of a syntax
element. All utility functions that start with cniSetElement*, where *
represents all nodes with that stem, are included.

v BIP4144 and BIP4145: a pair of messages traced by certain
implementation functions that, when invoked by a user-defined
extension, can modify the internal state of a message broker’s object.
Possible broker objects include syntax element, node, and parser.
In these messages, an ″implementation function″ can be interpreted as
either a C implementation function or a Java implementation method.

v BIP4146: a debug message that is traced when invoking a user-defined
parser utility function, where the utility function alters the state of a
syntax element. All utility functions that start with cpiSetElement*, where
* represents all nodes with that stem, are included.

v BIP4147: an error message that is traced when a user-defined extension
passes an invalid input object to a user-defined extension utility API
function.

86 User-defined Extensions

v BIP4148: an error message that is traced when a user-defined extension
damages a broker’s object.

v BIP4149: an error message that is traced when a user-defined extension
passes an invalid input data pointer to a user-defined extension utility
API function.

v BIP4150: an error message that is traced when a user-defined extension
passes invalid input data to a user-defined extension utility API function.

v BIP4151: a debug message that is traced when cniGetAttribute2 or
cniGetAttributeName2 sets the return code to an unexpected value.
Expected values are CCI_SUCCESS, CCI_ATTRIBUTE_UNKNOWN, and
CCI_BUFFER_TOO_SMALL. Any other value is an unexpected value.

v BIP4152: a debug message that is traced in the following situations:
1) cniGetAttribute2 or cniGetAttributeName2 sets the return code to

CCI_BUFFER_TOO_SMALL.
2) cniGetAttribute2 or cniGetAttributeName2 is called again with the

correct size buffer, however the return code is set to
CCI_BUFFER_TOO_SMALL.

e. Add a Trace node to your message flow, and check the output that is
generated.

f. Use the flow debugger to debug the flow that contains your node. Start with
Testing and debugging message flow applications.

When your node behavior is complete and correct, add the new node into your
normal palette of nodes in the Message Flow editor (see “Packaging a user-defined
node workbench project” on page 89). Until you do this, the new nodes are
available only in your test workbench session on your local system.

Enabling PDE runtime capabilities
To access PDE Runtime facilities you must first enable the PDE capabilities in your
workbench.

To enable the PDE capabilities:
1. Click Window → Preferences to open the Preferences window.
2. Expand General in the left hand pane, and click Capabilities.
3. Expand Eclipse Developer in the Capabilities pane.
4. Select the Eclipse Plug-in Development check box.
5. Click OK or Apply to apply your changes.

The PDE and PDE runtime views are now available in the workbench.

Packaging and distributing user-defined extensions
When you have created and tested a user-defined extension, you can package and
distribute it.

Before you start:

Complete the following tasks:
v “Creating user-defined extensions” on page 30
v “Testing a user-defined node” on page 85

Developing user-defined extensions 87

When you have created and tested your user-defined extension, you can distribute
these resources to other computers in your broker domain:
v Copy the files generated by the compilation step to all the computers on which

you have created brokers that might need these resources. This task is described
in “Installing user-defined extension runtime files on a broker.” For a more
automated approach, see the information in “Installing a user-defined extension
to current and past versions of the broker” on page 91.

v Package the resources that make up the workbench representation of your
user-defined node to create an Eclipse plug-in. This task is described in
“Creating the user interface representation of a user-defined node in the
workbench” on page 79. Then install the plug-in on all the computers on which
your workbench users might need to use them, following the instructions in
“Installing a user-defined extension to current and past versions of the broker”
on page 91. This step is not required for user-defined parsers.

Installing user-defined extension runtime files on a broker
Install the compiled runtime files for your user-defined extension on the broker on
which you want to test its function.

Before you start

v Create and compile your user-defined extension using the procedure described
in “Compiling a Java user-defined node” on page 74 or “Compiling a C
user-defined extension” on page 53.
– The files that have been created for extension created in C depend on the

underlying broker operating system:

Windows A dynamic link library (DLL), named with a file type of ’.lil’.

Linux A shared object, again with a file type of ’.lil’.

UNIX A shared object, again with a file type of ’.lil’.

z/OS A shared object, with a file type of ’.lil’.
– For Java nodes, a Java Archive file (JAR), with a file type of ’.jar’ (on all

operating systems).
v If you have created a user-defined node, you must also complete the task

“Creating the user interface representation of a user-defined node in the
workbench” on page 79.

This task instructs you to stop and restart brokers. This action is required in all but
the two circumstances described in step 4 below, although if you do stop and
restart the broker, you can ensure that anyone with an interest in a particular
execution group is made aware that recent changes have been made.

To install runtime files on the broker:
1. Stop the broker on which you want to install your compiled or packaged

user-defined extension file (files with extension .lil, .jar, .par, .pdb, or .lel)
2. Create a directory if you haven’t already got one for this purpose. Add the

directory to the LILPATH by using the mqsichangebroker command.
CAUTION:
Do not put the .lil, .jar, .par, .pdb, or .lel files in the WebSphere Message
Broker installation directory, because they could be overwritten by the
broker.

88 User-defined Extensions

3. Put your user-defined file in the directory, and make sure that the broker has
access to it. For example, on Linux or UNIX, use the chmod 755* command on
the file.

4. Stop and restart the broker to implement the change and to ensure that the
existence of the new file is detected. A broker restart is not necessary in the
following circumstances:
v If you have created an execution group in the workbench, and nothing is yet

deployed to it, you can add the .lil, .pdb, .jar, .par, or .lel file to your chosen
directory.

v If something has already been deployed to the execution group that you
want to use, add the .lil, .pdb, .jar, .par, or .lel file to your chosen directory,
and issue the mqsireload command to restart the group. You cannot
overwrite an existing file on the Windows system when the broker is
running, because of the file lock that is put in place by the operating system.

Use these two approaches with care, because any execution group that is
connected to the same broker also detects the new .lil, .pdb, .jar, .par, or .lel
files when that execution group restarts, or when something is first deployed to
that execution group.

5. Repeat the above steps for every broker that needs the user-defined extension
file. If all of your brokers are on the same machine type, you can build the
user-defined extension file once and distribute it to each of your systems.
If you have a cluster, for example, that includes one AIX, one Solaris, and one
Windows broker, you must build the files separately on each machine type.

Windows On Windows, the .pdb file provides symbolic information that is
used when displaying stack diagnostic information in the event of access
violations or other software malfunctions.

6. For C user-defined extensions, store the .pdb file in the same directory as the
.lil file to which it corresponds.

7. Use either the mqsichangebroker command or the mqsicreatebroker command,
as appropriate, to specify to the broker the directory that contains the
user-defined extension file.
When you have installed a user-defined extension, it is referred to by its
schema and name, just like a message flow.

The broker loads the user-defined extension files during initialization. After
loading the files, the broker invokes the registration functions in the user-defined
extension and records what nodes or parsers the user-defined extension supports.

A C user-defined extension implements a node or parser factory that can support
multiple nodes or parser types. For more information refer to node and parser
factory behavior. Java users do not need to write a node factory.

Packaging a user-defined node workbench project
Package a user-defined node workbench project to distribute to other computers
for use throughout your broker domain.

Before you start

1. Create and compile your user-defined node in Java or in C.
2. Create the representation of your user-defined node in the workbench.
3. Test your user-defined node.

Developing user-defined extensions 89

Although you have used and tested your user-defined node on your local
computer, you must make its associated files available on other computers when
your user-defined node is ready for use throughout your broker domain. A
user-defined node consists of two sets of files:
v Files that support the node execution in the broker. You created these files in

“Creating a user-defined extension in C” on page 31 or “Creating a user-defined
extension in Java” on page 59.

v Files that represent the node in the workbench. You created these files in
“Creating the user interface representation of a user-defined node in the
workbench” on page 79.

The workbench representation consists of a set of resources that have been created
as an Eclipse plug-in. To package the plug-in so that it can be distributed to other
computers, perform the following steps:
1. Switch to the Plug-in Development perspective.
2. Right-click the node project that you want to package for distribution and click

File → Export.
3. From the list displayed, select Zip file.
4. Click Next. The resources that are available for you to export as a compressed

file are listed. Select your user-defined node by selecting the check box next to
its project name. Resources that are automatically selected for the node include
the .msgnode file, the .properties file, plugin.xml, and palette.properties.

5. Deselect the following files and directories (all are selected as default):
v .classpath
v .project
v build.properties
v build.xml
v /bin
v /src
v /temp.folder

6. Give your compressed file the same name as your user-defined node project,
and specify a location for the file.

7. Click Finish.

The compressed file is saved at the location that you specified. Java source code
that you developed in the project is included in the compressed file. You can add
your C source code or compiled files to the compressed file using any file
compression utility. You then have a self-contained package that you can distribute.

To distribute the workbench files, continue with “Installing a user-defined
extension to current and past versions of the broker” on page 91. To distribute the
runtime components, see “Installing user-defined extension runtime files on a
broker” on page 88.

For installation on another system, see “Installing a user-defined extension to
current and past versions of the broker” on page 91.

To distribute your node commercially, see the PDE Guide for information about
issues such as versioning and updating your user-defined node.

90 User-defined Extensions

Installing a user-defined extension to current and past
versions of the broker

Install user-defined extensions that you have developed yourself, or have acquired
from other software vendors, with the minimum of user intervention.

Before you start

Complete the following tasks:
1. “Compiling a Java user-defined node” on page 74 or “Compiling a C

user-defined extension” on page 53
2. “Creating the user interface representation of a user-defined node in the

workbench” on page 79
3. “Testing a user-defined node” on page 85
4. “Packaging a user-defined node workbench project” on page 89

You must install user-defined extensions on all appropriate broker computers, and,
if the extension is a user-defined node, on the workbench computers (user-defined
parsers have no workbench component). Components can be installed separately,
or as part of one process. The components can be on different systems, therefore
check that the installations are completed on all affected systems.

If an extension writes messages to user trace, you must update the environment
variable MQSI_CONSOLE_NLSPATH (Windows systems), or NLSPATH (all other
systems), so that the mqsiformatlog command can find the message catalog.

The Message Brokers Toolkit installation

Before installing a user-defined node, check the version of the Message Brokers
Toolkit to which you are installing, because a specific version of the toolkit could
be a prerequisite of the user-defined extension, or it might require specific files to
run.

To determine the version, see “Detecting installed versions of WebSphere Message
Broker” on page 95.

If the product is shell-sharing with another product, the installation path is
determined by the first Rational® program that was installed. To determine the
location of the Message Brokers Toolkit installation, look at the cdi_ref.properties
file which is set up by Rational. This file is installed by the Message Brokers
Toolkit and by Rational Version 6.x products; the first time one of these products is
installed the file is created. It is shared by all subsequent installations. If all
Message Brokers Toolkit and Rational Version 6.x products are uninstalled, the file
is removed when the last product is uninstalled.
1. If you are using Installshield Multiplatform Edition to determine the location,

the location resolves to $D(os_main)/IBM/RAT60/.sdpinst/cdi_ref.properties.
In this instance, $D(os_main) is an Installshield variable, which the CDI install
framework used.

2. If you are not using Installshield Multiplatform Edition:
a. The location resolves to /etc/IBM/RAT60/.sdpinst/cdi_ref.properties
b. Look for the file in two locations, in the following order:

1) %windir%/IBM/RAT60/.sdpinst/cdi_ref.properties
2) %SystemRoot%/IBM/RAT60/.sdpinst/cdi_ref.properties

Developing user-defined extensions 91

|
|
|

3. Use the cdi_ref.properties file to detect the presence of a Message Brokers
Toolkit installation; search for c_wmbt_specific.products=wmbt within this file.
For the location, look at the content of the variable:
c_wmbt_specifc.b_wmbt_specific.location.

Windows For example, C:\Program Files\IBM\MessageBrokersToolkit\6.0.

Linux For example, /opt/ibm/MessageBrokerToolkit/6.0.
For the location of the workbench look at variable c_wb.b_wb.location.

Windows For example, C:\Program Files\IBM\MessageBrokersToolkit\6.0.

Linux For example, /opt/ibm/MessageBrokerToolkit/6.0.
The value of c_wb.b_wb.location might not be the same as the value of
c_wmbt_specifc.b_wmbt_specific.location. This discrepancy can occur if
another Rational product has been installed before WebSphere Message Broker.
If cdi_ref.properties does not exist, no Rational products are installed, and the
Message Brokers Toolkit is not installed on this computer.

To set up Message Brokers Toolkit with icons and options for a new user-defined
node, set up a new Eclipse link file that points to the directory containing the
Eclipse plug-in files. The link file must contain one line which specifies the full
path of the target directory. When you create the Eclipse link file, place it in
<c.wb.b_wb.location>/eclipse/links/.

Copy the compressed file that you created in “Packaging a user-defined node
workbench project” on page 89 to the directory identified by your link file. Extract
the contents into that directory. For example:

Linux The file named opt/ibm/MessageBrokerToolkit/6.0/eclipse/links/
Myextension.link might contain the line path=/opt/My/Extension/Nodes/eclipse/
plugins/your_node_name. The directory pointed to by the path variable must
contain the contents of the compressed file that you created earlier when you
packaged the project.

When you have installed the extension, restart the target workbench with the
-clean option. You can do this from the command line, or by modifying the menu
shortcut. You should use the -clean option whenever any changes are made to
user-defined extensions, to make sure the changes are picked up by the message
flow node palette. When the workbench has restarted, the new category of nodes
appears on the palette of the flow editor.

If you are an experienced Eclipse user or plug-in developer, you might want to use
more advanced Eclipse functions to handle additional products like user-defined
extensions. For example, you can package user-defined extensions as Eclipse
features, instead of plug-ins.

Features have several advantages:
v You can include many related plug-ins in a single feature.
v You can define a feature such that it is restricted to use with particular versions

of your workbench.
v You can provide automated updates to features using the Eclipse Update

Manager.

92 User-defined Extensions

For a full description of these and other advanced Eclipse options, see the PDE
Guide which includes a section about creating features. You might also find useful
the description of the feature manifest in ″Navigating and customizing the
workbench″.

Runtime installation

You might need to detect the version of the runtime components that are installed,
to ensure that the correct LIL file is loaded by the correct level of the broker. See
“Detecting installed versions of WebSphere Message Broker” on page 95.

To add .jar or .lil files to runtime installations on WebSphere Business Integration
Message Broker Version 5.0 or later, and WebSphere Message Broker Version 6.0
and later, see “Installing user-defined extension runtime files on a broker” on page
88. For Version 2 brokers, add the user-defined extension files to install_dir/lil/,
and restart the broker.

Installing a user-defined extension for single broker

To make a 32-bit extension accessible from only one broker on the system, modify
the UserLilPath setting for the broker by specifying the -l parameter on the
mqsicreatebroker or mqsichangebroker command.

You cannot use the -l parameter to modify the user LILPATH for 64-bit extensions.
Instead, append the directory containing the directory that holds the extension files
to the environment variable MQSI_LILPATH64, as described in the following
section.

See the mqsicreatebroker and mqsichangebroker commands for further
information.

Installing a user-defined extension for multiple brokers

To affect all brokers on a system, you must modify the system LILPATH. Append
the directory containing the directory that holds the extension files to the
environment variable MQSI_LILPATH (for 32-bit extensions) or MQSI_LILPATH64
(for 64-bit extensions).

You can make this change by creating a custom environment script in the working
directory:

v Linux UNIX On Linux and UNIX systems, /var/mqsi/common/profiles

v Windows On Windows, %ALLUSERSPROFILE%\Application
Data\IBM\MQSI\common\profiles where the default setting for the
environment variable %ALLUSERSPROFILE% is C:\Documents and
Settings\All Users. The actual value might be different on your computer.

You can give the environment script any name, but the file extension must be .cmd
on Windows and .sh on all other platforms. The script can perform all the
operations of a shell script, but you should limit the scope to only appending the
following variables:

MQSI_LILPATH
Defines the directories to search for 32-bit plug-ins

MQSI_LILPATH64
Defines the directories to search for 64-bit plug-ins

Developing user-defined extensions 93

|
|

http://help.eclipse.org/help30/topic/org.eclipse.pde.doc.user/guide/pde_features.htm
http://help.eclipse.org/help30/topic/org.eclipse.platform.doc.isv/reference/misc/feature_manifest.html

CLASSPATH
Defines the locations that Java should search for additional classes

MQSI_CONSOLE_NLSPATH
On Windows systems, defines the location of message catalogs (DLL files)

NLSPATH
On Linux and UNIX systems, defines the location of message catalogues (CAT
files)

PATH
Defines the location of executable files. On Windows, this variable also defines
the location of dependent libraries.

LIBPATH / SHLIB_PATH / LD_LIBRARY_PATH
Defines the location of dependent libraries on UNIX and Linux systems.

Example scripts

Windows This example shows the environment profile for MyExtension on
Windows, which is installed in C:\Program Files\MyExtensions.

The script is called MyExtension.cmd and is stored in the working directory. The
default location is %ALLUSERSPROFILE%\Application Data\IBM\MQSI\
common\profiles. where the default setting for the environment variable
%ALLUSERSPROFILE% is C:\Documents and Settings\All Users\.

The Windows script contains the following content:
REM Added by MyExtension install, do not modify
set MQSI_LILPATH=%MQSI_LILPATH%;"C:\Program Files\MyExtension\bin"

UNIX This example shows the environment profile for MyExtension on Linux,
which is installed in /opt/MyExtension. The script is called MyExtension.sh and is
stored in the working directory /var/mqsi/common/profiles/.

The Linux script contains the following content:
#!/bin/ksh
Added by MyExtension install, do not modify
export MQSI_LILPATH=/opt/MyExtension/lil${MQSI_LILPATH:+":"${MQSI_LILPATH}}

You can test the following variables in the profile script, for example if you want
to ensure that a user-defined extension runs only on a specific version of the
broker:

MQSI_FILEPATH
The full path to the installed file for WebSphere Message Broker

MQSI_WORKPATH
The full path to the configuration data for WebSphere Message Broker

MQSI_VERSION
WebSphere Message Broker version, in the form
version.release.modification.fix

MQSI_VERSION_V
The value of WebSphere Message Broker major version

MQSI_VERSION_R
The value of WebSphere Message Broker release

94 User-defined Extensions

|
|

|
|

MQSI_VERSION_M
The value of WebSphere Message Broker modification number

MQSI_VERSION_F
The value of WebSphere Message Broker fix level

Detecting installed versions of WebSphere Message Broker
A user-defined extension can detect which version of WebSphere Message Broker is
installed.

Use the conditions described here to test for particular version or versions. If
expected conditions are not met, a component might not have installed correctly, or
might have become corrupted. Check the status of the installed component and the
local logs to identify and resolve any errors.

Detecting installed versions on Windows:

Use the following instructions in your installer scripts on Windows to test for the
following versions. To detect each version, look for the registry key given for each
version. In the examples shown, x can be any integer.

MQSeries® Integrator Version 2
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\
WebSphere MQ Integrator V2.1

WebSphere Business Integration Message Broker Version 5.0 toolkit
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\
mqsi.studio\DisplayVersion = 5.x.x.x

WebSphere Business Integration Message Broker Version 5.0 runtime
components

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\
mqsi.ib\DisplayVersion = 5.x.x.x

WebSphere Message Broker Version 6.0 toolkit
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\
WMBT60\DisplayVersion = 6.x.x.x

WebSphere Message Broker Version 6.0 runtime components
Open the file install.properties in the working directory.

The default working directory is %ALLUSERSPROFILE%\Application
Data\IBM\MQSI where %ALLUSERSPROFILE% is the environment variable
that defines the system working directory. With the default value of
%ALLUSERSPROFILE%, the working directory is C:\Documents and
Settings\All Users\Application Data\IBM\MQSI. The actual value might
be different on your computer; use %ALLUSERSPROFILE% to ensure that you
access the correct location.

Each line in the file is of the following format:
PATH_TO_INSTALLATION = VERSION_OF_INSTALLATION

For example, if you have installed Version 6.0 Fix Pack 5 in the default
installation location, the line contains the following text:
C\:\\ Program\ Files\\IBM\\MQSI=6.0.0.5

The backslash character \ is interpreted as an escape character. It is
inserted before each non-alphabetic and non-numeric character in the
string to preserve the character. A colon, a space, and several backslash
characters are escaped in this example.

Developing user-defined extensions 95

|
|

|
|
|
|
|
|
|

|

|

|
|

|

|
|
|
|

Parse each line of the file to detect all the installed versions and the
directory paths for the runtime components, and ignore all duplicates and
non-existent directories.

Detecting installed versions on Linux and UNIX systems:

Linux and UNIX systems do not have a common packaging method: you must
check which files are present in the file system. Look for the files listed below for
each version of WebSphere Message Broker that you want to detect.

MQSeries Integrator Version 2 runtime components

AIX Check for the presence of /usr/opt/mqsi/bin/mqsilist and
check that /usr/opt/mqsi/bin/mqsiprofile and /usr/opt/mqsi/bin/
mqsisetdbparms are not present.

On other Linux and UNIX systems, check for the presence of
/opt/mqsi/bin/mqsilist, and make sure that opt/mqsi/bin/mqsiprofile
and /opt/mqsi/bin/mqsisetdbparms are not present.

WebSphere Business Integration Message Broker Version 5.0 runtime
components

AIX Check for the presence of /usr/opt/mqsi/bin/mqsilist. Also
check that /usr/opt/mqsi/bin/mqsiprofile is not present.

On Linux and other UNIX systems, check for the presence of
/opt/mqsi/bin/mqsilist, and make sure that opt/mqsi/bin/mqsiprofile is
not present.

WebSphere Message Broker Version 6.0 toolkit

To detect Version 6 and later toolkits, look for the existence of
/etc/IBM/WebSphereMessageBrokersToolkit/products/com.ibm.wbmt.

To determine the version, use the following code example. Shell-script
notation is used in this code: '-e' means if file exists.
if [-e /etc/IBM/WebSphereMessageBrokersToolkit/products/com.ibm.webt]

Event Broker installed
if [-e `grep location /etc/IBM/WebSphereMessageBrokersToolkit/products/

com.ibm.webt | sed 's/location=//'`/webt_prod/version.txt`]
it is FP1 or greater
get version from version.txt

else
#version is 6.0

fi
fi

if [-e /etc/IBM/WebSphereMessageBrokersToolkit/products/com.ibm.wmbt]
Message Broker installed
if [-e `grep location /etc/IBM/WebSphereMessageBrokersToolkit/products/
com.ibm.wmbt | sed 's/location=//'`/wmbt_prod/version.txt`]

#It is FP1 or greater
get version from version.txt

else
#version is 6.0

fi
fi

WebSphere Message Broker Version 6.0 runtime components

To detect Version 6.0 and later runtime components, look for the file
/var/mqsi/install.properties. Each line in this file contains an installation
path and V.R.M.F version information.

96 User-defined Extensions

|
|
|

Updating a user-defined extension
On all systems, you can change a user-defined extension file by completing the
following steps.
1. Stop the broker using the mqsistop command.
2. Update or overwrite the .lil or .jar file.
3. Start the broker using the mqsistart command.

In two situations it is not necessary to stop and start the broker:
v If have created an execution group in the workbench, but have not yet deployed

to it, you can add the .lil, .pdb, and .jar files to your chosen directory.
v If something has already been deployed to the execution group that you want to

use, add the .lil, .pdb, and .jar files to your chosen directory and use the
mqsireload command to restart the group. You cannot overwrite an existing file
on the Windows system when the broker is running because of the file lock that
is put in place by the operating system.

These two approaches should be used with caution, because any execution group
that is connected to the same broker also detects the new .lil, .pdb, and .jar files
when that execution group is restarted, or when something is first deployed to it.
If you restart the broker, you ensure that anyone with an interest in a particular
execution group is made aware that recent changes have been made to the broker.

These two situations assume that you have used either the mqsichangebroker
command or the mqsicreatebroker command to notify the broker of the directory
in which the user-defined extension files have been placed.

Deleting a user-defined extension from the broker
Remove a user-defined extension file from the broker.
1. Stop the broker by using the mqsistop command.
2. Delete the .lil or .jar file from the appropriate directory.

For C user-defined extensions:

Platform Location

Windows
install_dir\bin

Linux install_dir/lil

UNIX install_dir/lil

z/OS install_dir/lil

For Java user-defined nodes:

Platform Location

Windows
install_dir\jplugin

Linux install_dir/jplugin

UNIX
install_dir/jplugin

z/OS
install_dir/lil

3. Restart the broker by using the mqsistart command.

Developing user-defined extensions 97

Using event logging from a user-defined extension
Program user-defined extensions to write entries in the local error log.

In most circumstances, user-defined extensions should use exceptions to report
errors. However, you can choose to provide information about significant events,
error or otherwise, for problem determination and operational purposes. The
details that you supply are included in pre-defined message text that is extracted
from a message source or catalog.
v In C code, use the utility function CciLog or CciLogW to report events. Two of

the arguments that you pass to this function, messageSource and messageNumber,
define the event source (catalog) and the integer representation of a message
within that source, respectively.
You can also write trace information, using CciUserTrace, CciUserTraceW,
CciUserDebugTrace, and CciUserDebugTraceW when tracing and debugging is
active.

v In Java code, use the class MbService, which provides static methods to log
information to the event log. To log messages to the event log, package your
messages into a standard Java resource bundle. You can use one of the three
logging methods, passing in the resource bundle name and the message key. The
message is fully resolved, and is then inserted as a single insert into the
appropriate broker message as shown:
– logInformation(...) - BIP4360 Java user-defined node information: user

message

– logWarning(...) - BIP4361 Java user-defined node warning: user message

– logError(...) - BIP4362 Java user-defined node error: user message

You can choose to write messages that are defined in the product message catalog
(BIPv600) to which you can add your own text as an argument. If you prefer, you
can create your own message catalog, so that you can create more complex
messages, or share a message catalog with other applications. If you want to create
your own message catalog, see “Creating message catalogs.”

v Windows On Windows systems, messages are written to the Windows event log.

v Linux UNIX z/OS On Linux, UNIX, and z/OS systems, messages
are written to the SYSLOG facility.

The description here covers exceptions that are raised during normal message flow
processing. You must also provide for exceptions that are raised when you deploy
and configure a message flow. Messages that result from these configuration
exceptions are reported back to the workbench for display to the workbench user.
Create an appropriately-named Java properties file to contain your messages, then
copy the file to each computer on which you are running the workbench, so that
your messages can be displayed.

Creating message catalogs
Create your own message catalogs to write tailored entries to the local error log.

In some error and other situations, you might choose to write information to the
error log so that you can track what is happening in a message flow. You can use
the Throw and Trace built-in nodes to generate entries in the log, or you can create
your own nodes and user exits, and write entries in the log from your user-defined
extensions.

You can write either or both of the following sets of messages:

98 User-defined Extensions

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|

v A fixed set of messages that are provided in the product message catalog. This
set provides a range of numbers for Throw nodes (BIP3001 to BIP3001), and a
second range for Trace nodes (BIP3051 to BIP3001). A third range (BIP2951 to
BIP2999) is provided for the ESQL statements LOG and THROW.
When you use these messages, you can also provide additional text that is
displayed in the message text.

v Your own messages, created in your own message catalog. You can use this
additional catalog to define specialized message content, and you can include
variables or inserts that are determined by the code that generates the message.
You can also share your own message catalog with other applications that are
not associated with WebSphere Message Broker.

The instructions in this topic describe how to create message catalogs for C
programs. If you want to create a Java resource bundle, refer to the documentation
for the Java 2 Platform, Standard Edition.

Read the section appropriate to your broker operating platform:
v “Building and installing a Windows message source”
v “Creating an XPG/4 catalog for Linux, UNIX, and z/OS” on page 100

Building and installing a Windows message source:

On Windows, you must create your additional message catalog as a DLL file. The
DLL file contains definitions of your event messages which the event viewer can
display in a readable format, based on the event message written by your
application. When you compile a message catalog, a header file is created that
defines symbolic values for each event message number you have created. You
must include the header file in your application.

To create an event source for the Windows Event Log Service:
1. Create a message compiler input (.mc) file with the source for your event

messages. Refer to the Microsoft® Developer Network Web site, and search on
.mc file for details on the format of this input file.

2. Compile the message file to create a resource compiler input file:
mc -v -w -s -h c:\mymessages -r c:\mymessages mymsg.mc

where c:\mymessages is the location of the output files and mymsg.mc is the
name of the input file.
The message compiler produces an output header (.h) file that contains
symbolic #defines that map to each message number that is coded in the input
.mc file. Include this header file when you compile a user-defined extension
source file that uses a utility function (for example, CciLog) to write an event
message that you have defined. The messageNumber argument to utility function
must use the appropriate value that is hash-defined in the output header file.

3. Compile the output file (.rc) from the message compiler to create a resource file
(.res):
RC /v output_file.rc

4. Create a resource DLL file from the .res file:
LINK /DLL /NOENTRY resource_file.res

5. Append the location of the resource DLL file to the
MQSI_CONSOLE_NLSPATH environment variable, for example:
set MQSI_CONSOLE_NLSPATH=%MQSI_CONSOLE_NSPATH%;c:\messages

Developing user-defined extensions 99

|
|
|
|

|
|

|
|
|
|
|

|
|
|

|

|

|

|

|
|
|
|
|
|

|

|
|
|

|

|

|
|

|
|
|
|
|
|

|
|

|

|

|

|
|

|

http://msdn.microsoft.com

You can do this by creating a custom environment script in your working
directory. The default location is %ALLUSERSPROFILE%\Application
Data\IBM\MQSI\common\profiles where %ALLUSERSPROFILE% is the
environment variable that defines the system working directory. The default
value is C:\Documents and Settings\All Users. The actual value might be
different on your computer.

6. Install the event source into the Windows Event Log Service:
a. Start the Windows Registry Editor:

regedit

b. Create a new registry subkey for your user-defined extension under the
existing structure:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\EventLog\Application

Right-click Application and select New → Key. The new key is created
immediately under the Application key (not under the WebSphere Message
Broker key). You must give the key the name that you specify for the
messageSource on a utility function in your user-defined extension (for
example, CciLog) or as the property of the built-in node that you have
included in your message flow.
Create the following values for this entry:

EventMessageFile
Set the value of this string to contain the fully qualified path for the
DLL file that you have created to contain your messages. This entry
represents the message catalog.

TypesSupported
Set the DWORD value to ″7″.

Creating an XPG/4 catalog for Linux, UNIX, and z/OS:

On Linux, UNIX, and z/OS systems, messages are written to the SYSLOG facility.
If you want to use your own message catalog, you must create an XPG/4 message
catalog.

The process for creating a message catalog (a .cat file) depends on the operating
system on which you are creating it. The commands that you use are typically
gencat (create or modify a message catalog) and dspcat (to display all or part of a
message catalog). The gencat command merges text files that contain your message
text, to create or modify a formatted catalog. The text files typically have a file
extension of .msg.

You must append the location of the message catalog to the NLSPATH
environment variable. You can use %L and %N to represent the locale and the
catalog name, for example:
export NLSPATH=${NLSPATH}:${MY_INST_PATH}/messages/%L/%N:${MY_INST_PATH}/messages/En_US/%N

In this example, the English version is hardcoded later in the search path, ensuring
that messages are displayed even in locales for which no .cat file exists.

The messages that you define in the .msg files can include variables that are
substituted at run time. Such variables must be of the format {number}, where
{number} is the message insert number, surrounded by braces. The first message
insert is numbered 0. For example:

100 User-defined Extensions

|
|
|
|
|
|

|

|

|

|
|

|

|
|
|
|
|
|

|

|
|
|
|

|
|

|

|
|
|

|
|
|
|
|
|

|
|
|

|

|
|

|
|
|
|

1234 "MSG1234E: \
Syntax Error. \n
The value '{0}' is not valid for property '{1}'.\n
Correct it and then reissue the command.\n"

If you create a message catalog on one operating system, you cannot port it to
another operating system because the catalogs are binary-encoded. However, you
can use the same .msg files as input to the gencat command on another system.

See the relevant information in the documentation for your operating system. For
example:

v AIX For AIX, see the Commands Reference in the information center.

v z/OS Forz/OS, see the UNIX System Services Command Reference in the
LibraryCenter.

You must also check the information about additional supported locales, if you
want to use messages in locales other than US English.

Developing user-defined extensions 101

|
|
|
|

|
|
|

|
|

|

|
|

|
|

102 User-defined Extensions

Part 2. Reference

User-defined extensions 105
Sample node files 105

SupportPacs 107
Sample parser files 107

SupportPacs 107
C Header files 107
C language user-defined node API 108

C node implementation functions 108
C node utility functions 109
cniAddAfter 111
cniAddasFirstChild 112
cniAddasLastChild 112
cniAddBefore 113
cniBufferByte 113
cniBufferPointer 114
cniBufferSize 114
cniCopyElementTree 115
cniCreateElementAfter 116
cniCreateElementAfterUsingParser 116
cniCreateElementAsFirstChild 117
cniCreateElementAsFirstChildUsingParser . . . 118
cniCreateElementAsLastChild 119
cniCreateElementAsLastChildFromBitstream . . 120
cniCreateElementAsLastChildUsingParser . . . 122
cniCreateElementBefore 123
cniCreateElementBeforeUsingParser 123
cniCreateInputTerminal 124
cniCreateMessage 125
cniCreateNodeContext 126
cniCreateNodeFactory 127
cniCreateOutputTerminal 128
cniDefineNodeClass 128
cniDeleteMessage 130
cniDeleteNodeContext 130
cniDetach 131
cniDispatchThread 131
cniElementAsBitstream 132
cniElementName 137
cniElementNamespace 138
cniElementType 139
cniElementValue group 140
cniElementValueState 141
cniElementValueType 142
cniElementValueValue 142
cniEvaluate 143
cniFinalize 144
cniFirstChild 145
cniGetAttribute 145
cniGetAttribute2 146
cniGetAttributeName. 147
cniGetAttributeName2 148
cniGetBrokerInfo 149
cniGetEnvironmentMessage 150
cniGetMessageContext 150
cniGetParserClassName 151
cniGetThreadContext 152

cniIsTerminalAttached 152
cniLastChild. 153
cniNextSibling 154
cniParent 154
cniPreviousSibling 155
cniPropagate 155
cniRootElement. 156
cniRun 157
cniSearchElement group 159
cniSearchElementInNamespace group 160
cniSetAttribute 163
cniSetElementName 163
cniSetElementNamespace 164
cniSetElementType 165
cniSetElementValue group 165
cniSetElementValueValue 167
cniSetInputBuffer 168
cniSqlCreateModifyablePathExpression 168
cniSqlCreateReadOnlyPathExpression 171
cniSqlCreateStatement 172
cniSqlDeletePathExpression. 174
cniSqlDeleteStatement 174
cniSqlExecute 175
cniSqlNavigatePath 176
cniSqlSelect 177
cniWriteBuffer 178

C language user-defined parser API 179
C parser implementation functions 179
C parser utility functions 180
cpiAddAfter 181
cpiAddAsFirstChild 182
cpiAddAsLastChild 183
cpiAddBefore 184
cpiAppendToBuffer 185
cpiBufferByte 186
cpiBufferPointer 187
cpiBufferSize 187
cpiCreateAndInitializeElement. 188
cpiCreateContext 190
cpiCreateElement 191
cpiCreateParserFactory 192
cpiDefineParserClass 193
cpiDeleteContext 195
cpiElementCompleteNext 195
cpiElementCompletePrevious 196
cpiElementName 197
cpiElementNameSpace 197
cpiElementType 199
cpiElementValue 200
cpiElementValue group 200
cpiElementValueValue 202
cpiFirstChild 203
cpiLastChild. 203
cpiNextParserClassName 204
cpiNextParserCodedCharSetId. 205
cpiNextParserEncoding 206

© Copyright IBM Corp. 2000, 2009 103

cpiNextSibling 207
cpiParent 208
cpiParseBuffer 209
cpiParseBufferEncoded 210
cpiParseBufferFormatted 212
cpiParseFirstChild 213
cpiParseLastChild 214
cpiParseNextSibling 215
cpiParsePreviousSibling 216
cpiParserType 217
cpiRootElement. 218
cpiSetCharacterValueFromBuffer 219
cpiSetElementCompleteNext 220
cpiSetElementCompletePrevious 221
cpiSetElementName 222
cpiSetElementNamespace 223
cpiSetElementType 225
cpiSetElementValue 226
cpiSetElementValue group 227
cpiSetElementValueValue 228
cpiSetNameFromBuffer 229
cpiSetNextParserClassName 230
cpiWriteBuffer 231
cpiWriteBufferEncoded 232
cpiWriteBufferFormatted 233

C user exit API 235
C user exit implementation functions 235
C user exit utility functions. 241

C common API 249
C common implementation functions 249
C common utility functions. 251

C skeleton code 280
Utility function return codes and values 283
Available parsers 285
XML, MRM, and XMLNSC parser constants . . . 286

XML parser constants 286
MRM parser constants 288288

Trace logging from a user-defined C extension . . 288
Multicultural support considerations for message
catalogs 289

Multicultural support considerations on
Windows 290
Multicultural support considerations on Linux
and UNIX 290
Multicultural support considerations on z/OS 291

104 User-defined Extensions

User-defined extensions

Reference material that supports the creation and management of your
user-defined extensions.

This section contains the following information:
v “Sample node files”
v “Sample parser files” on page 107
v “C Header files” on page 107
v “C language user-defined node API” on page 108
v “C language user-defined parser API” on page 179
v “C user exit API” on page 235
v “C common API” on page 249
v “C skeleton code” on page 280
v Java user-defined extensions API
v “Utility function return codes and values” on page 283
v “Available parsers” on page 285
v “XML, MRM, and XMLNSC parser constants” on page 286
v “Trace logging from a user-defined C extension” on page 288
v “Multicultural support considerations for message catalogs” on page 289

Sample node files
Several sample node files are provided on all platforms.

Windows On Windows, the following sample node files are in the
install_dir\sample\extensions\nodes directory.

Linux On Linux, the following files are in the install_dir/sample/extensions/
nodes directory.

UNIX On UNIX, the following files are in the install_dir/sample/extensions/
nodes directory.

z/OS On z/OS, the following files are in the install_dir/sample/extensions/
nodes directory.

SwitchNode.c C source file containing a sample
implementation of a message processing
node that routes a message to one of five
output terminals, depending on the content.

SwitchNode.h The header file for the SwitchNode.c file.

TransformNode.c C source file containing a sample
implementation of a simple fixed
transformation of an input message into an
output message.

TransformNode.h The header file for the TransformNode.c file.

© Copyright IBM Corp. 2000, 2009 105

com/ibm/broker/plugin/package-overview.html

BipSampPluginUtil.c Sample utility functions used by the Switch
and Transform nodes.

BipSampPluginUtil.h The header file for BipSampPluginNode and
BipSampPluginUtil.

NodeFactory.c Common C functions for SwitchNode.c,
TransformNode.c, and BipSampPluginUtil.c

NodeFactory.h The header file for NodeFactory.c

Common.c Common C functions for SwitchNode.c,
TransformNode.c, and BipSampPluginUtil.c

Common.h The header file for Common.c

PluginSample.add.xml A sample XML input message that you can
use to test the C sample nodes.

PluginSample.change.xml A sample XML input message that you can
use to test the C sample nodes.

PluginSample.delete.xml A sample XML input message that you can
use to test the C sample nodes.

JavaPlugin.add.xml A sample XML input message that you can
use to test the Java sample nodes.

JavaPlugin.change.xml A sample XML input message that you can
use to test the Java sample nodes.

JavaPlugin.delete.xml A sample XML input message that you can
use to test the Java sample nodes.

JavaPlugin.hold.xml A sample XML input message that you can
use to test the Java sample nodes.

Windows On Windows, the following sample node files are in the
install_dir\sample\extensions\nodes directory.

Linux On Linux, the following files are in the install_dir/sample/Javaplugin/
com/ibm/samples directory.

UNIX On UNIX, the following files are in the install_dir/sample/Javaplugin/
com/ibm/samples directory.

z/OS On z/OS, the following files are in the install_dir/sample/Javaplugin/
com/ibm/samples directory.

JavaSwitchPluginNode.java Java source file containing a sample
implementation of a message processing
node that routes a message to one of five
output terminals, depending on the content.

JavaTransformPluginNode.java Java source file containing a sample
implementation of a simple fixed
transformation of an input message into an
output message.

The files that the workbench needs to recognize the Switch node and Transform
node are in the install_dir\sample\extensions\nodes\com.ibm.samples.nodes
directory. You can add this directory to your workspace using the Update Manager,
or you can copy it across to your workspace directory and restart the workbench

106 User-defined Extensions

to see the nodes. The help files (HelpContexts.xml, SwitchNode.htm, and
TransformNode.htm) demonstrate some features of Eclipse help by adding
themselves into the main topic tree, referencing topics in the main tree, and so on.

GIF files that are used to represent the sample nodes in the workbench, which you
can use, or replace with your own, are supplied. The GIF files come in three
different sizes and can be found in individual directories under the
sample\extensions\nodes\com.ibm.samples.nodes\icons\full\ directory.

SupportPacs

Many other sample nodes are available as SupportPac™ offerings. For a complete
list of available SupportPac offerings see WebSphere MQ SupportPacs Web page.

Sample parser files

Windows On Windows, the following sample parser files are in the
install_dir\sample\extensions\parser directory.

Linux On Linux, the following sample parser files are in the
install_dir/sample/extensions/parser directory:

UNIX On UNIX, the following sample parser files are in the
install_dir/sample/extensions/parser directory:

z/OS On z/OS, the following sample parser files are in the
install_dir/sample/extensions/parser directory:

BipSampPluginParser.c C source file containing sample implementations of a
simple pseudo-XML parser.

BipSampPluginParser.h The header file for the BipSampPluginParser.c file.

SupportPacs

Many other sample parsers are available as SupportPacs. For a complete list of
available SupportPacs see http://www.ibm.com/software/integration/support/
supportpacs/.

C Header files
The C interfaces are defined by the following header files.
v BipCni.h contains functions for user-defined nodes that have been written in C.

For a list of functions, refer to the “C language user-defined node API” on page
108.

v BipCpi.h contains functions for user-defined parsers that have been written in
C. For a list of functions, refer to the “C language user-defined parser API” on
page 179.

v BipCci.h contains utility functions common to both user-defined nodes and
parsers that have been written in C. For a list of functions, refer to “C common
utility functions” on page 251. This file also contains definitions for utility
function return codes and values. For more information, see “Utility function
return codes and values” on page 283.

User-defined extensions 107

http://www.ibm.com/software/integration/support/supportpacs
http://www.ibm.com/software/integration/support/supportpacs/
http://www.ibm.com/software/integration/support/supportpacs/

v BipCos.h contains operating system specific definitions for user-defined nodes
that have been written in C.

C language user-defined node API

The C language user-defined node API consists of:
1. A set of implementation functions that provide the functionality of the

user-defined node. These functions are invoked by the broker. The
implementation functions are mandatory, and if they are not supplied by the
developer, an exception is thrown at run time.

2. A set of utility functions that create resources in the message broker, or request
a service of the broker. These utility functions are invoked by a user-defined
node.

Most of the utilities are shared by any type of node, however there are a few that
are specific to input nodes. These are marked in the text.

These functions are defined in the BipCni.h header file.

This section covers the following topics:

“C node implementation functions”

“C node utility functions” on page 109

C node implementation functions

The user-defined node implements a function interface for the message broker to
invoke during runtime execution. This includes functions to create a local context
whenever a node instance is created, functions to set and retrieve attribute values,
the function to actually perform the processing of the node itself, and functions to
examine messages:

Mandatory function
“cniCreateNodeContext” on page 126

Optional and conditional functions

v “cniDeleteNodeContext” on page 130
v Either “cniEvaluate” on page 143 (for message processing and output

nodes), or “cniRun” on page 157 (for input nodes)
v “cniGetAttribute” on page 145
v “cniGetAttribute2” on page 146
v “cniGetAttributeName” on page 147
v “cniGetAttributeName2” on page 148
v “cniSetAttribute” on page 163

These implementation functions are called by the broker and implemented by the
node.

For certain implementation functions, it might be necessary to specify the name of
a parser supplied with WebSphere Message Broker. When doing so you must use
the correct class name of the parser. The following table provides a summary of
the parsers, root element names, and class names for different headers.

108 User-defined Extensions

Parser Root element name Class name

BLOB BLOB NONE

IDOC IDOC IDOC

JMSMap JMSMap JMS_MAP

JMSStream JMSStream JMS_STREAM

MIME MIME MIME

MQCFH MQPCF MQPCF

MQCIH MQCIH MQCICS

MQDLH MQDLH MQDEAD

MQIIH MQIIH MQIMS

MQMD MQMD MQHMD

MQMDE MQMDE MQHMDE

MQRFH MQRFH MQHRF

MQRFH2 MQRFH2 MQHRF2

MQRMH MQRMH MQHREF

MQSAPH MQSAPH MQHSAP

MQWIH MQWIH MQHWIH

MRM MRM MRM

Properties Properties PropertyParser

SMQ_BMH SMQ_BMH SMQBAD

XML XML xml

XMLNS XMLNS xmlns

XMLNSC XMLNSC xmlnsC

C node utility functions

Using the following system-provided functions, a C user-defined node can create
or define message broker objects, such as node factories, nodes, and terminals.
Functions are also provided to send messages to an output terminal for
propagation to connected nodes, and to examine message content.

These utility functions are called by the node, and implemented by the broker.

This section covers the following topics:

Initialization and resource creation

v “cniCreateNodeFactory” on page 127
v “cniDefineNodeClass” on page 128
v “cniDispatchThread” on page 131 (for input nodes only)
v “cniCreateInputTerminal” on page 124
v “cniCreateOutputTerminal” on page 128
v “cniIsTerminalAttached” on page 152
v “cniGetBrokerInfo” on page 149

Message management

v “cniCreateMessage” on page 125

User-defined extensions 109

v “cniDeleteMessage” on page 130
v “cniFinalize” on page 144
v “cniGetMessageContext” on page 150
v “cniGetEnvironmentMessage” on page 150
v “cniPropagate” on page 155

Message buffer access

v “cniBufferByte” on page 113
v “cniBufferPointer” on page 114
v “cniBufferSize” on page 114
v “cniSetInputBuffer” on page 168 (for input nodes only)
v “cniWriteBuffer” on page 178

Syntax element navigation

v “cniRootElement” on page 156
v “cniParent” on page 154
v “cniNextSibling” on page 154
v “cniPreviousSibling” on page 155
v “cniFirstChild” on page 145
v “cniLastChild” on page 153
v “cniSearchElement group” on page 159
v “cniSearchElementInNamespace group” on page 160
v “cniSqlCreateReadOnlyPathExpression” on page 171
v “cniSqlCreateModifyablePathExpression” on page 168
v “cniSqlNavigatePath” on page 176
v “cniSqlDeletePathExpression” on page 174

Syntax element access

v “cniAddAfter” on page 111
v “cniAddBefore” on page 113
v “cniAddasFirstChild” on page 112
v “cniAddasLastChild” on page 112
v “cniCopyElementTree” on page 115
v “cniCreateElementAfter” on page 116
v “cniCreateElementAfterUsingParser” on page 116
v “cniCreateElementBefore” on page 123
v “cniCreateElementBeforeUsingParser” on page 123
v “cniCreateElementAsFirstChild” on page 117
v “cniCreateElementAsFirstChildUsingParser” on page 118
v “cniCreateElementAsLastChild” on page 119
v “cniCreateElementAsLastChildFromBitstream” on page 120
v “cniCreateElementAsLastChildUsingParser” on page 122
v “cniDetach” on page 131
v “cniElementAsBitstream” on page 132
v “cniElementName” on page 137
v “cniElementNamespace” on page 138
v “cniElementType” on page 139

110 User-defined Extensions

v “cniElementValue group” on page 140
v “cniElementValueState” on page 141
v “cniElementValueType” on page 142
v “cniElementValueValue” on page 142
v “cniGetParserClassName” on page 151
v “cniSetElementName” on page 163
v “cniSetElementNamespace” on page 164
v “cniSetElementType” on page 165
v “cniSetElementValue group” on page 165
v “cniSetElementValueValue” on page 167

SQL statement handling

v “cniSqlCreateStatement” on page 172
v “cniSqlExecute” on page 175
v “cniSqlSelect” on page 177
v “cniSqlDeleteStatement” on page 174

Miscellaneous

v “cniGetThreadContext” on page 152

cniAddAfter

Adds an unattached syntax element after a specified syntax element. The currently
unattached syntax element, and any child elements it possesses, is connected to the
syntax element tree after the specified target element. The newly added element
becomes the next sibling of the target element. The target element must be attached
to a tree (that is, it must have a parent element).

Syntax
void cniAddAfter(
int* returnCode,
CciElement* targetElement,
CciElement* newElement);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

newElement
The address of the new syntax element object that is to be added to the tree
structure (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

User-defined extensions 111

cniAddasFirstChild

Adds an unattached syntax element as the first child of a specified syntax element.
The currently unattached syntax element, and any child elements it possesses, is
connected to the syntax element tree as the first child of the specified target
element. The target element need not be attached to a tree.

Syntax
void cniAddAsFirstChild(

int* returnCode,
CciElement* targetElement,
CciElement* newElement);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

newElement
The address of the new syntax element object that is to be added to the tree
structure (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

cniAddasLastChild

Adds an unattached syntax element as the last child of a specified syntax element.
The currently unattached syntax element, and any child elements it possesses, is
connected to the syntax element tree as the last child of the specified target element.
The new element need not be attached to a tree.

Syntax
void cniAddAsLastChild(

int* returnCode,
CciElement* targetElement,
CciElement* newElement);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

112 User-defined Extensions

targetElement
The address of the target syntax element object (input).

newElement
The address of the new syntax element object that is to be added to the tree
structure (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

cniAddBefore

Adds an unattached syntax element before a specified syntax element. The
currently unattached syntax element, and any child elements it possesses, is
connected to the syntax element tree before the specified target element. The newly
added element becomes the previous sibling of the target element. The target
element must be attached to a tree (that is, it must have a parent element).

Syntax
void cniAddBefore(

int* returnCode,
CciElement* targetElement,
CciElement* newElement);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

newElement
The address of the new syntax element object that is to be added to the tree
structure (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

cniBufferByte

Gets a single byte from the data buffer associated with (and owned by) the
message object specified in the message argument. The value of the index
argument indicates which byte in the byte array is to be returned.

Syntax
CciByte cniBufferByte(

int* returnCode,
CciMessage* message,
CciSize index);

User-defined extensions 113

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT

message
The address of the message object for which the size of the data buffer is to be
returned (input).

index
The offset to use as an index into the buffer (input).

Return values

The requested byte is returned. If an error occurred, the returnCode parameter
indicates the reason for the error.

cniBufferPointer

Gets a pointer to the data buffer associated with (and owned by) the message
object specified in the message argument. This function is normally used by output
nodes.

Syntax
const CciByte* cniBufferPointer(

int* returnCode,
CciMessage* message);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT

message
The address of the message object for which the address of the data buffer is to
be returned (input).

Return values

If successful, the address of the data buffer is returned. Otherwise, zero
(CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the reason
for the error.

cniBufferSize

Gets the size of the data buffer associated with (and owned by) the message object
specified in the message argument.

114 User-defined Extensions

Syntax
CciSize cniBufferSize(

int* returnCode,
CciMessage* message);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT

message
The address of the message object for which the size of the data buffer is to be
returned (input).

Return values

The size of the buffer in bytes, or zero if no buffer exists. If an error occurred,
(CCI_FAILURE) is returned, and the returnCode parameter indicates the reason for
the error.

cniCopyElementTree

Copies a part of the element tree from the source element to the target element.
Only the child elements of the source element are copied. All existing child
elements of the target element are deleted, and are replaced by the child elements
of the source element.

If the target element has not been fully parsed, or represents an unparsed bit
stream, then the cniCopyElementTree function results in a parse of the target
element before its child elements are detached. The function therefore ensures
consistency in message-tree formatting so that any references to detached fields by
cciElements remain valid. Therefore, if a parsing exception occurs during the
execution of the cniCopyElementTree function the cause might be a problem with
either the target element or the source element.

Syntax
void cniCopyElementTree(

int* returnCode,
CciElement* sourceElement,
CciElement* targetElement);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT

sourceElement
The address of the source syntax element object (input).

User-defined extensions 115

targetElement
The address of the target syntax element object (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example
cniCopyElementTree(&rc, inRootElement, outRootElement);

cniCreateElementAfter

Creates a new syntax element and inserts it after the specified syntax element. The
new element becomes the next sibling of the specified element.

cniCreateElementAfter should not be used when creating a message body folder
(such as XML, XMLNS, MRM, BLOB), because it does not associate an owning
parser with the folder. To create a message body folder, you can use any of the
following functions:

cniCreateElementAsFirstChildUsingParser
cniCreateElementAsLastChildUsingParser
cniCreateElementAfterUsingParser
cniCreateElementBeforeUsingParser

When the message body folder has been created, cniCreateElementAfter can be
used to create elements under the folder. cniCreateElementAfter can be used
because the parser, which is associated with the message body folder, is inherited.

Syntax
CciElement* cniCreateElementAfter(

int* returnCode,
CciElement* targetElement);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the element object (input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the
reason for the error.

cniCreateElementAfterUsingParser

Creates a new syntax element, inserts it after the specified syntax element, and
associates it with the specified parser class name. The new element becomes the
next sibling of the specified element.

116 User-defined Extensions

A portion of the syntax element tree that is owned by a parser can only have its
effective root at the first generation of elements (that is, as immediate children of
root). The user-defined node interface does not restrict the ability to create a
subtree that appears to be owned by a different parser. However, it is not possible
to serialize these element trees into a bit stream when outputting a message.

If you specify the name of a parser supplied with WebSphere Message Broker, you
must use the correct class name of the parser.

The internal name for the BLOB parser is none. Therefore, if you use this function
to create a BLOB parser folder, the associated parser name should be none.

Syntax
CciElement* cniCreateElementAfterUsingParser(

int* returnCode,
CciElement* targetElement,
const CciChar* parserClassName);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_PARSER_NAME

TargetElement
The address of the element object (input).

parserClassName
The name of the parser class (input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the
reason for the error.

cniCreateElementAsFirstChild

Creates a new syntax element as the first child of the specified syntax element.

cniCreateElementAsFirstChild should not be used when creating a message body
folder (such as XML, XMLNS, MRM, BLOB), because it does not associate an
owning parser with the folder. To create a message body folder, you can use any of
the following functions:

cniCreateElementAsFirstChildUsingParser
cniCreateElementAsLastChildUsingParser
cniCreateElementAfterUsingParser
cniCreateElementBeforeUsingParser

When the message body folder has been created, cniCreateElementAsFirstChild
can be used to create elements under the folder. cniCreateElementAsFirstChild
can be used because the parser, which is associated with the message body folder,
is inherited.

User-defined extensions 117

Syntax
CciElement* cniCreateElementAsFirstChild(

int* returnCode,
CciElement* targetElement);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the element object (input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the
reason for the error.

cniCreateElementAsFirstChildUsingParser

Creates a new syntax element as the first child of the specified syntax element, and
associates it with the specified parser class name.

A portion of the syntax element tree that is owned by a parser can only have its
effective root at the first generation of elements (that is, as immediate children of
root). The user-defined node interface does not restrict the ability to create a
subtree that appears to be owned by a different parser. However, it is not possible
to serialize these element trees into a bit stream when outputting a message.

If you specify the name of a parser supplied with WebSphere Message Broker, you
must use the correct class name of the parser.

The internal name for the BLOB parser is none. Therefore, if you use this function
to create a BLOB parser folder, the associated parser name should be none.

Syntax
CciElement* cniCreateElementAsFirstChildUsingParser(

int* returnCode,
CciElement* targetElement,
const CciChar* parserClassName);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_PARSER_NAME

118 User-defined Extensions

targetElement
The address of the element object (input).

parserClassName
The name of the parser class (input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the
reason for the error.

cniCreateElementAsLastChild

Creates a new syntax element as the last child of the specified syntax element.

cniCreateElementAsLastChild should not be used when creating a message body
folder (such as XML, XMLNS, MRM, BLOB), because it does not associate an
owning parser with the folder. To create a message body folder, you can use any of
the following functions:

cniCreateElementAsFirstChildUsingParser
cniCreateElementAsLastChildUsingParser
cniCreateElementAfterUsingParser
cniCreateElementBeforeUsingParser

When the message body folder has been created, cniCreateElementAsLastChild can
be used to create elements under the folder. cniCreateElementAsLastChild can be
used because the parser, which is associated with the message body folder, is
inherited.

Syntax
CciElement* cniCreateElementAsLastChild(

int* returnCode,
CciElement* targetElement);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the element object (input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned and the returnCode parameter indicates the
reason for the error.

Example
CciElement* lastChild = cniCreateElementAsLastChild(&rc, outRootElement);
cniSetElementName(&rc, lastChild, elementName);

User-defined extensions 119

cniCreateElementAsLastChildFromBitstream

Creates a new syntax element tree as the last child of the specified syntax element,
and associates it with the specified parser. The new syntax element tree is
populated by parsing the specified bit stream. During the execution of this
function, the bit stream is copied, so the caller can free or reuse the memory
allocated to hold the original bit stream. You can use this function only to create a
message body, that is, the last child of the message root. An output message
should already exist. The root element of this output message should be passed in
as the target element parameter. Because this call is only designed to be used to
create a message body, you cannot use it to build successive elements. For
example, it should not be used to create an RFH2 as the last child of root and then
an XML message as the last child of root, after the RFH2.

Syntax
CciElement* cniCreateElementAsLastChildFromBitstream (

int* returnCode,
CciElement* targetElement,
const struct CciByteArray* value,
const CciChar* parserClassName,
CciChar* messageType,
CciChar* messageSet,
CciChar* messageFormat,
int encoding,
int ccsid,
int options);

Parameters
returnCode

The return code from the function (output). Specifying a NULL pointer
signifies that the node does not want to deal with errors. If input is not NULL,
the output signifies the success status of the call. Any exceptions thrown
during the execution of this call are re-thrown to the next upstream node in the
flow. Call cciGetLastExceptionData for details of the exception.

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_PARSER_NAME
v CCI_INV_DATA_POINTER

targetElement
The syntax element under which the new syntax element tree is created
(input). This must be the message root.

parserClassName
The name of the parser class to use to parse the bit stream (input). You must
use the same parser that was used to parse the whole bit stream.

value
A pointer to a CciByteArray struct containing a pointer to the bit stream to be
parsed, and also the size in CciBytes of this bit stream (output).

messageType
The message type definition used to create the element tree from the bit stream

120 User-defined Extensions

(input). A NULL pointer means that this parameter is ignored. Also, if the
parser specified has no interest in this value, for example if it is a generic XML
parser, the parameter is ignored.

messageSet
The message set definition used to create the element tree from the bit stream
(input). A NULL pointer means that this parameter is ignored. Also, if the
parser specified has no interest in this value, for example if it is a generic XML
parser, the parameter is ignored.

messageFormat
The format used to create the element tree from the bit stream (input). A NULL
pointer means that this parameter is ignored. Also, if the parser specified has
no interest in this value, for example if it is a generic XML parser, the
parameter is ignored.

encoding
The encoding to use when parsing the bit stream (input). This parameter is
mandatory. You can specify a value of 0 to indicate that the queue manager’s
encoding should be used.

ccsid
The coded character set identifier to use when parsing the bit stream (input).
This parameter is mandatory. You can specify a value of 0 to indicate that the
queue manager’s ccsid should be used.

options
This is reserved for future use. You must specify a value of 0 to maintain
forward compatibility.

Return values

If successful, the address of the new element object is returned. Otherwise, a value
zero (CCI_NULL_ADDR) is returned and the return code parameter indicates the
reason for the error. If an exception occurs during execution, returnCode is set to
CCI_EXCEPTION

Example
outMQMD = cniCreateElementAsFirstChildUsingParser(&rc,

outRootElement,
CciString("MQHMD",BIP_DEF_COMP_CCSID));

checkRC(rc);

cniCopyElementTree(&rc, inMQMD, outMQMD);
checkRC(rc);

outBlobRoot = cniCreateElementAsLastChildFromBitstream(
&rc,
outRootElement,
&bitstream,
inParserClassName,
messageType,
messageSet,
messageFormat,
encoding,
ccsid,
0);

checkRC(rc);

User-defined extensions 121

...

return;
}

cniCreateElementAsLastChildUsingParser

Creates a new syntax element as the last child of the specified syntax element, and
associates it with the specified parser class name.

A portion of the syntax element tree that is owned by a parser can only have its
effective root at the first generation of elements (that is, as immediate children of
root). The user-defined node interface does not restrict the ability to create a
subtree that appears to be owned by a different parser. However, it is not possible
to serialize these element trees into a bit stream when outputting a message.

If you specify the name of a parser supplied with WebSphere Message Broker, you
must use the correct class name of the parser. See “C node implementation
functions” on page 108 for a list of the supplied parsers.

If you use this function to create a BLOB parser folder, the internal name for the
BLOB parser is none. Therefore, if you use this function to create a BLOB parser
folder, the associated parser name should be none.

The internal name for the BLOB parser is none. Therefore, if you use this function
to create a BLOB parser folder, the associated parser name should be none.

Syntax
CciElement* cniCreateElementAsLastChildUsingParser(

int* returnCode,
CciElement* targetElement,
const CciChar* parserClassName);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_PARSER_NAME

targetElement
The address of the element object (input).

parserClassName
The name of the parser class (input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the
reason for the error.

122 User-defined Extensions

Example
cniElementName(&rc, firstChild, elementName);
CciElementType type = cniElementType(&rc, firstChild);
CciElement* lastChild = cniCreateElementAsLastChildUsingParser(

&rc,
outRootElement,
parserName);

cniSetElementName(&rc, lastChild, elementName);
cniSetElementType(&rc, lastChild, elementType);

cniCreateElementBefore

Creates a new syntax element and inserts it before the specified syntax element.
The new element becomes the previous sibling of the specified element, and shares
the same parent element.

cniCreateElementBefore should not be used when creating a message body folder
(such as XML, XMLNS, MRM, BLOB), because it does not associate an owning
parser with the folder. To create a message body folder, you can use any of the
following functions:

cniCreateElementAsFirstChildUsingParser
cniCreateElementAsLastChildUsingParser
cniCreateElementAfterUsingParser
cniCreateElementBeforeUsingParser

When the message body folder has been created, cniCreateElementBefore can be
used to create elements under the folder. cniCreateElementBefore can be used
because the parser, which is associated with the message body folder, is inherited.

Syntax
CciElement* cniCreateElementBefore(

int* returnCode,
CciElement* targetElement);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target element object (input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the
reason for the error.

cniCreateElementBeforeUsingParser

Creates a new syntax element, inserts it before the specified syntax element, and
associates it with the specified parser class name. The new element becomes the
previous sibling of the specified element.

User-defined extensions 123

A portion of the syntax element tree that is owned by a parser can only have its
effective root at the first generation of elements (that is, as immediate children of
root). The user-defined node interface does not restrict the ability to create a
subtree that appears to be owned by a different parser. However, it is not possible
to serialize these element trees into a bit stream when outputting a message.

If you specify the name of a parser supplied with WebSphere Message Broker, you
must use the correct class name of the parser.

The internal name for the BLOB parser is none. Therefore, if you use this function
to create a BLOB parser folder, the associated parser name should be none.

Syntax
CciElement* cniCreateElementBeforeUsingParser(

int* returnCode,
CciElement* targetElement,
const CciChar* parserClassName);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_PARSER_NAME

targetElement
The address of the element object (input).

parserClassName
The name of the parser class (input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the
reason for the error.

cniCreateInputTerminal

Creates an input terminal on an instance of a node object, returning the address of
the terminal object that was created. The terminal object is destroyed by the
message broker when its owning node is destroyed.

You must call this function only from within the implementation function
cniCreateNodeContext.

Syntax
CciTerminal* cniCreateInputTerminal(

int* returnCode,
CciNode* nodeObject,
CciChar* name);

124 User-defined Extensions

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_NODE_OBJECT
v CCI_INV_TERMINAL_NAME

nodeObject
Specifies the address of the instance of the node object on which the input
terminal is to be created (input). The handle is passed to the
cniCreateNodeContext function.

name
Specifies a name for the terminal being created (input).

Return values

If successful, the address of the node terminal object is returned. Otherwise, a
value of zero (CCI_NULL_ADDR) is returned.

Example
entry->handle = cniCreateInputTerminal(

&rc,
context->nodeObject,
(CciChar*)terminalName);

cniCreateMessage

Creates a new output message object. For every call to this function, there should
be a matching call to cniDeleteMessage to return allocated resources when the
processing on the output message has been completed.

Syntax
CciMessage* cniCreateMessage(

int* returnCode,
CciMessageContext* messageContext);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_FAILURE
v CCI_EXCEPTION
v CCI_INV_MESSAGE_CONTEXT

messageContext
The address of the context for the message (input). Use cniGetMessageContext
to get the context from an incoming message (for example, one received in the
cniEvaluate function).

User-defined extensions 125

Return values

If successful, the address of the message object is returned. Otherwise, a value of
zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the
reason for the error.

Example
outMsg = cniCreateMessage(&rc, cniGetMessageContext(&rc, message));

cniCreateNodeContext

Creates any context for an instance of a node object. It is invoked by the message
broker whenever an instance of a node object is constructed. Nodes are constructed
when a message flow is deployed by the broker, or when the execution group is
started.

The responsibilities of the node at this point are to:
1. (Optionally) verify that the name of the node specified in the nodeName

parameter is supported by the factory.
2. Allocate any node instance specific data areas that might be required (for

example: context, attribute data, and terminals).
3. Perform any additional resource acquisition or initialization that might be

required for the processing of the node.
4. Return the address of the context to the calling function. Whenever an

implementation function for this node instance is invoked, the appropriate
context is passed as an argument to that function. This means that a
user-defined node developed in C need not maintain its own static pointers to
per-instance data areas.

Defined In Type Member

CNI_VFT Mandatory iFpCreateNodeContext

Syntax
CciContext* cniCreateNodeContext(

CciFactory* factoryObject,
CciChar* nodeName,
CciNode* nodeObject);

Parameters
factoryObject

The address of the factory object that owns the node being created (input).

nodeName
The name of the node being created (input).

nodeObject
The address of the node object that has just been created (input).

Return values

If successful, the address of the node context is returned. Otherwise, a value of
zero (CCI_NULL_ADDR) is returned.

126 User-defined Extensions

Example
static char* functionName = (char *)"_Switch_createNodeContext()";
NODE_CONTEXT_ST* p;

/* Allocate a pointer to the local context */
p = (NODE_CONTEXT_ST *)malloc(sizeof(NODE_CONTEXT_ST));

if (p) {

/* Clear the context area */
memset(p, 0, sizeof(NODE_CONTEXT_ST));

/* Save our node object pointer in our context */
p->nodeObject = nodeObject;

/* Save our node name */
CciCharNCpy((CciChar*) &p->nodeName, nodeName, MAX_NODE_NAME_LEN);

}
else
/* Handle errors */

cniCreateNodeFactory

Creates a node factory in the message broker engine. A single instance of the
named message flow node factory is created.

This function must be invoked only in the initialization function
bipGetMessageFlowNodeFactory, which is called when the LIL is loaded by the
message broker. If cniCreateNodeFactory is invoked at any other time, the results
are unpredictable.

Syntax
CciFactory* cniCreateNodeFactory(

int* returnCode,
CciChar* name);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_FAILURE
v CCI_EXCEPTION
v CCI_INV_FACTORY_NAME
v CCI_INV_OBJECT_NAME

name
The name of the factory being created (input).

Return values

If successful, the address of the node factory object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the
reason for the error.

User-defined extensions 127

Example
factoryObject = cniCreateNodeFactory(0, (unsigned short *)constPluginNodeFactory);
if (factoryObject == CCI_NULL_ADDR) {

/* Handle errors */

cniCreateOutputTerminal

Creates an output terminal on an instance of a node object, returning the address
of the terminal object that was created. The terminal object is destroyed when its
owning node is destroyed.

You must call this function only from within the implementation function
cniCreateNodeContext.

Syntax
CciTerminal* cniCreateOutputTerminal(

int* returnCode,
CciNode* nodeObject,
CciChar* name);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_FAILURE
v CCI_EXCEPTION
v CCI_INV_NODE_OBJECT
v CCI_INV_TERMINAL_NAME

nodeObject
The address of the instance of the node object on which the output terminal is
to be created (input). The handle is passed to the cniCreateNodeContext
function.

name
The name of the terminal being created (input).

Return values

If successful, the address of the node terminal object is returned. Otherwise, a
value of zero (CCI_NULL_ADDR) is returned.

Example
entry->handle = cniCreateOutputTerminal(

&rc,
context->nodeObject
(CciChar*)terminalName);

cniDefineNodeClass

Defines a node class, as specified by the name parameter, which is supported by
the node factory specified as the factoryObject parameter. This function is called by
the node during execution of bipGetMessageFlowNodeFactory, when the LIL is
loaded.

128 User-defined Extensions

If both cniGetAttribute and cniGetAttribute2 or cniGetAttributeName and
cniGetAttributeName2 are implemented, cniDefineNodeClass fails with
CCI_INV_IMPL_FUNCTION.

Syntax
void cniDefineNodeClass(

int* returnCode,
CciFactory* factoryObject,
CciChar* name,
CNI_VFT* functbl);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_FACTORY_OBJECT
v CCI_INV_NODE_NAME
v CCI_INV_OBJECT_NAME
v CCI_INV_VFTP
v CCI_MISSING_IMPL_FUNCTION
v CCI_NAME_EXISTS

factoryObject
The address of the factory object that supports the named node. The address is
returned from cniCreateNodeFactory (input).

name
The name of the node to be defined. The name of the node must end with the
characters Node (input).

functbl
The address of the CNI_VFT structure that contains pointers to the node
implementation functions (input). Here is an example of a function table:
vftable.iFpCreateNodeContext = _Transform_createNodeContext;
vftable.iFpDeleteNodeContext = _deleteNodeContext;
vftable.iFpGetAttributeName2 = _getAttributeName2;
vftable.iFpSetAttribute = _setAttribute;
vftable.iFpGetAttribute2 = _getAttribute2;
vftable.iFpEvaluate = _Transform_evaluate; /* if not an input node */
vftable.iFRun = _run /* if an input node */

You would typically define only one of the last 2 entries, that is, you define
vftable.iFpEvaluate = _Transform_evaluate; for a message processing node,
or you define vftable.iFpRun = _run; for an input node.

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

User-defined extensions 129

cniDeleteMessage

Deletes the specified message object. For every call to the cniCreateMessage
function, there should be a matching call to cniDeleteMessage to return allocated
resources when the processing on the output message has been completed.

Syntax
void cniDeleteMessage(

int* returnCode,
CciMessage* message);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT

message
The address of the message object to be deleted (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example
cniDeleteMessage(0, outMsg);

cniDeleteNodeContext

Deletes any context for an instance of a user-defined node object. It is invoked by
the message broker whenever an instance of a node object is destroyed, when a
message flow is deleted, or when a configuration is redeployed. A message flow
node might also be deleted when reconfiguring or redeploying a broker.

The responsibilities of the node at this point are to:
1. Release any node instance specific data areas (such as context) that were

acquired at construction or during node processing.
2. Release any additional resources that might have been acquired for the

processing of the node.

Defined In Type Member

CNI_VFT Optional iFpDeleteNodeContext

Syntax
void cniDeleteNodeContext(CciContext* context);

Parameters
context

The address of the context for the instance of the node, as created and returned
by the cniCreateNodeContext function (input).

130 User-defined Extensions

Example
void _deleteNodeContext(

CciContext* context
){

static char* functionName = (char *)"_deleteNodeContext()";

return;
}

cniDetach

Detaches the specified syntax element from the syntax element tree. The element is
detached from its parent and siblings, but any child elements are left attached.

Syntax
void cniDetach(

int* returnCode,
CciElement* targetElement);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the syntax element object to be detached (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

cniDispatchThread

This function dispatches a new message flow thread to invoke another thread
instance to run the user-defined message flow input node. This message flow
thread is allocated from a pool of threads maintained for each message flow, under
control of the Additional Instances property of the message flow. If there are no
threads available because they are all in use, CCI_SUCCESS is returned and
returnCode is set to CCI_NO_THREADS_AVAILABLE. This is not an error, but
means one of the following:
v The message flow was not configured to run with additional threads.
v All additional threads configured are currently running.

The cniDispatchThread function can only be issued from an input node. If it is
issued at any other time, CCI_FAILURE is returned and returnCode is set to
CCI_INV_NODE_ENV.

Syntax
int cniDispatchThread(

int* returnCode,
CciNode* nodeObject);

User-defined extensions 131

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_NO_THREADS_AVAILABLE
v CCI_INV_NODE_OBJECT
v CCI_INV_NODE_ENV

nodeObject
The address of the node object that is run when WebSphere Message Broker
creates or reuses the thread. This is passed to the node when its
cniCreateNodeContext implementation function is invoked (input).

Return values
v If a thread was successfully allocated, CCI_SUCCESS is returned and returnCode

is set to CCI_SUCCESS.
v If a thread could not be dispatched because there were insufficient threads in the

message flow thread pool to satisfy the request, CCI_SUCCESS is returned, and
returnCode is set to CCI_NO_THREADS_AVAILABLE.

v If the function was not issued from within an input node, CCI_FAILURE is
returned and returnCode is set to CCI_INV_NODE_ENV.

v For any other error conditions, CCI_FAILURE is returned, and returnCode
indicates the reason for the error.

Example
cniDispatchThread(&rcDispatch, ((NODE_CONTEXT_ST *)context)->nodeObject);

cniElementAsBitstream

Gets the bitstream representation of the specified element. The parser that is
associated with the element serializes the element and all its children. The result is
copied to memory allocated by the caller. In the special case where all the options
that are specified match those of the original bit stream, for example a bit stream
that is read from a WebSphere MQ queue by the MQInput node, and the message
has not been modified since receiving the original bit stream, this original bit
stream is copied into the allocated memory. In this case, the parser is not required
to parse and re-serialize the message.

The algorithm that is used to generate the bit stream depends on the parser that is
used, and the options that are specified. All parsers support the following modes:
v RootBitStream, in which the algorithm that generates the bit stream is the same

as that used by an output node. In this mode, a meaningful result is obtained
only if the element pointed to is at the head of a subtree with an appropriate
structure.

v EmbeddedBitStream, in which not only is the algorithm that generates the bit
stream the same as that used by an output node, but also the following elements
are determined, if not explicitly specified, in the same way as the output node.
Therefore they are determined by searching the previous siblings of element on
the assumption that these elements represent headers:
– Encoding

132 User-defined Extensions

– CCSID
– Message set
– Message type
– Message format
In this way, the algorithm for determining these properties is essentially the
same as that used for the ESQL BITSTREAM function.

Some parsers also support another mode, FolderBitStream, which generates a
meaningful bit stream for any subtree, provided that the field pointed to represents
a folder.

Syntax
CciSize cniElementAsBitstream(

int* returnCode,
CciElement* element,
const struct CciByteArray* value,
CciChar* messageType,
CciChar* messageSet,
CciChar* messageFormat,
int encoding,
int ccsid,
int options);

Parameters
returnCode

The return code from the function (output). If you specify a NULL pointer on
input, the value indicates that the node does not handle errors. If input is not
NULL, the output signifies the success status of the call. Any exceptions that
are thrown during the execution of this call are re-thrown to the next upstream
node in the flow. Call cciGetLastExceptionData for details of the exception.

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN
v CCI_INV_BUFFER_TOO_SMALL

element
The syntax element to be serialized (input.)

value
A pointer to a CciByteArray struct that contains a pointer to a region of
memory allocated by the caller, and the size in CciBytes of this memory
(output).

messageType
The message type definition used to create the bit stream from the element tree
(input). If you specify a NULL pointer, the parameter is ignored. The
parameter is also ignored if the value is not relevant to the parser associated
with the element; for example, a generic XML parser.

messageSet
The message set definition used to create the bit stream from the element tree
(input). If you specify a NULL pointer, the parameter is ignored. The

User-defined extensions 133

parameter is also ignored if the value is not relevant to the parser associated
with the element; for example, a generic XML parser.

messageFormat
The format used to create the bit stream from the element tree (input). If you
specify a NULL pointer, the parameter is ignored. The parameter is also
ignored if the value is not relevant to the parser associated with the element;
for example, a generic XML parser.

encoding
The encoding to use when writing the bit stream (input). This parameter is
mandatory. You can specify a value of 0 to indicate that the queue manager’s
encoding should be used.

ccsid
The coded character set identifier to use when writing the bit stream (input).
This parameter is mandatory. If you specify a value of 0, the queue manager’s
ccsid is used. A ccsid of -1 indicates that the bit stream is to be generated using
ccsid information contained in the subtree consisting of the field pointed to by
the element and its children. No supplied parsers support this option.

options
Integer value that specifies which bitstream generation mode should be used.
Set one of the following values:
v CCI_BITSTREAM_OPTIONS_ROOT
v CCI_BITSTREAM_OPTIONS_EMBEDDED
v CCI_BITSTREAM_OPTIONS_FOLDER

Return values
v If successful, the correct size of memory needed to hold the bit stream is

returned.
v If the memory allocated by the caller was insufficient, returnCode is

CCI_BUFFER_TOO_SMALL.
v If an exception occurs during execution, returnCode is CCI_EXCEPTION.

Example

The following example demonstrates how the options parameter can be used to
generate the bit stream for different parts of the message tree.

This code can be copied into the _evaluate function of the sample Transform node.
For an input message such as:
MQMD
MQRFH2
<test><data><foo>text</foo></data></test>

the node propagates three messages; one that contains a copy of the input message
in the BLOB domain, one that contains a copy of the input MQRFH2 as the
message body in the BLOB domain, and one that contains the <data></data>
folder as the message body in the BLOB domain.

CciMessage* outMsg[3];
CciTerminal* terminalObject;
CciElement* bodyChild;
CciElement* inRootElement;
CciElement* inSourceElement[3];
CciElement* outRootElement;
CciElement* outBlobElement;
CciElement* outBody;

134 User-defined Extensions

struct CciByteArray bitstream[3];
int bitstreamOptions[3];
int retvalue;
int rc = 0;
int loopCount;
CCI_EXCEPTION_ST exception_st = {CCI_EXCEPTION_ST_DEFAULT};
const CciChar* constBLOBParserName =

cciString("NONE",BIP_DEF_COMP_CCSID);
const CciChar* constBLOBElementName =

cciString("BLOB",BIP_DEF_COMP_CCSID);
const CciChar* constEmptyString =

cciString("",BIP_DEF_COMP_CCSID);

/*build up and propagate 3 output messages*/
/*first message has bit stream for input message body*/
/*second message has bit stream for input MQRFH2*/
/*third message has bit stream for sub element from input message*/

/* Get the root element of the input message */
inRootElement = cniRootElement(&rc, message);
/*CCI_CHECK_RC();*/
checkRC(rc);

/*set up the array of source elements and bitstream options*/

/*message body*/
inSourceElement[0] = cniLastChild(&rc,inRootElement);
checkRC(rc);

/*This is the root of the message body so we use RootBitStream mode*/
bitstreamOptions[0] = CCI_BITSTREAM_OPTIONS_ROOT;

/*last header*/
inSourceElement[1] = cniPreviousSibling(&rc,inSourceElement[0]);
checkRC(rc);

/*This is the root of the MQRFH2 so we use RootBitStream mode*/
bitstreamOptions[1] = CCI_BITSTREAM_OPTIONS_ROOT;

/*body.FIRST(first child of message body) */
inSourceElement[2] = cniFirstChild(&rc,inSourceElement[0]);
checkRC(rc);

/*body.FIRST.FIRST */
inSourceElement[2] = cniFirstChild(&rc,inSourceElement[2]);
checkRC(rc);

/*This is a sub tree within the message body so we use FolderBitStream mode*/
bitstreamOptions[2] = CCI_BITSTREAM_OPTIONS_FOLDER;

for (loopCount=0;loopCount<3;loopCount++) {
int bufLength;

/* Create new message for output */
outMsg[loopCount] = cniCreateMessage(&rc, cniGetMessageContext(&rc, message));
checkRC(rc);

/* Get the root element of the output message */
outRootElement = cniRootElement(&rc, outMsg[loopCount]);
checkRC(rc);

/* Copy the contents of the input message to the output message */
cniCopyElementTree(&rc, inRootElement, outRootElement);
checkRC(rc);

User-defined extensions 135

/* Get the last child of root (ie the body) */
bodyChild = cniLastChild(&rc, outRootElement);
checkRC(rc);

/*throw away the message body which was copied from the input message*/
cniDetach(&rc,

bodyChild);
checkRC(rc);

/*create the new output message body in the BLOB domain*/
outBody = cniCreateElementAsLastChildUsingParser(&rc,

outRootElement,
constBLOBParserName);

checkRC(rc);

/*create the BLOB element*/
outBlobElement = cniCreateElementAsLastChild(&rc,

outBody);
checkRC(rc);

cniSetElementName(&rc,
outBlobElement,
constBLOBElementName);

checkRC(rc);

/*Set the value of the blob element by obtaining the bit stream for the
element */
bitstream[loopCount].size=512;
bitstream[loopCount].pointer=(CciByte*)malloc(sizeof(CciByte) * 512);

bufLength = cniElementAsBitstream(&rc,
inSourceElement[loopCount],
&bitstream[loopCount],
constEmptyString,/*assume XML message so no interest in*/
constEmptyString,/* type, set or format*/
constEmptyString,
0,/*Use Queue Manager CCSID & Encoding*/
0,
bitstreamOptions[loopCount]);

if (rc==CCI_BUFFER_TOO_SMALL)
{

free(bitstream[loopCount].pointer);
bitstream[loopCount].size=bufLength;
bitstream[loopCount].pointer=(CciByte*)malloc(sizeof(CciByte) * bitstream[loopCount].size);

bufLength = cniElementAsBitstream(&rc,
inSourceElement[loopCount],
&bitstream[loopCount],
constEmptyString,/*assume XML message so no interest in*/
constEmptyString,/* type, set or format*/
constEmptyString,
0,/*Use Queue Manager CCSID & Encoding*/
0,
bitstreamOptions[loopCount]);

}
checkRC(rc);
bitstream[loopCount].size=bufLength;

cniSetElementByteArrayValue(&rc,
outBlobElement,
&bitstream[loopCount]);

checkRC(rc);
}

136 User-defined Extensions

/* Get handle of output terminal */
terminalObject = getOutputTerminalHandle((NODE_CONTEXT_ST *)context,

(CciChar*)constOut);

/* If the terminal exists and is attached, propagate to it */
if (terminalObject) {

if (cniIsTerminalAttached(&rc, terminalObject)) {
/* As this is a new, and changed message, it should be finalized... */
cniFinalize(&rc, outMsg[0], CCI_FINALIZE_NONE);
cniFinalize(&rc, outMsg[1], CCI_FINALIZE_NONE);
cniFinalize(&rc, outMsg[2], CCI_FINALIZE_NONE);
retvalue = cniPropagate(&rc, terminalObject, localEnvironment, exceptionList, outMsg[0]);
retvalue = cniPropagate(&rc, terminalObject, localEnvironment, exceptionList, outMsg[1]);
retvalue = cniPropagate(&rc, terminalObject, localEnvironment, exceptionList, outMsg[2]);
if (retvalue == CCI_FAILURE) {

if (rc == CCI_EXCEPTION) {
/* Get details of the exception */
memset(&exception_st, 0, sizeof(exception_st));
cciGetLastExceptionData(&rc, &exception_st);

/* Any local error handling may go here */

/* Ensure message is deleted prior to return/throw */
cniDeleteMessage(0, outMsg[0]);
cniDeleteMessage(0, outMsg[1]);
cniDeleteMessage(0, outMsg[2]);

/* We must "rethrow" the exception; note this does not return */
cciRethrowLastException(&rc);

}
else {

/* Some other error...the plugin might choose to log it using the CciLog() */
/* utility function */

}
}
else {
}

}
}
else {

/* Terminal did not exist...severe internal error. The plugin may wish to */
/* log an error here using the cciLog() utility function. */

}

/* Delete the messages we created now we have finished with them */
cniDeleteMessage(0, outMsg[0]);
cniDeleteMessage(0, outMsg[1]);
cniDeleteMessage(0, outMsg[2]);

free((void*) constBLOBParserName);
free((void*) constBLOBElementName);
free((void*) constEmptyString);
return;

cniElementName

Gets the value of the name attribute for the specified syntax element. The syntax
element name will have been set previously using cniSetElementName or
cpiSetElementName.

User-defined extensions 137

Syntax
CciSize cniElementName(

int* returnCode,
CciElement* targetElement,
const CciChar* value,
Ccisize length);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN
v CCI_INV_BUFFER_TOO_SMALL

targetElement
The address of the target syntax element object (input).

value
The address of a buffer into which the element name is copied (input).

length
The length, in characters, specified by the value parameter (input).

Return values
v If successful, the element name is copied into the supplied buffer and the

number of CciChar characters copied is returned.
v If the buffer is not large enough to contain the attribute value, returnCode is set

to CCI_BUFFER_TOO_SMALL, and the number of CciChars required is
returned.

v For any other failures, CCI_FAILURE is returned, and returnCode indicates the
reason for the error.

cniElementNamespace

Gets the value of the namespace attribute for the specified syntax element. The
syntax element name will have been set previously using cniSetElementNamespace
or cpiSetElementNamespace.

This is used when converting a message that belongs to a namespace-aware
domain to a bit stream.

Syntax
CciSize cniElementNamespace(
int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length)

Parameters
returnCode

The return code from the function (output). Specifying a NULL pointer

138 User-defined Extensions

signifies that the node does not want to deal with errors. If input is not NULL,
the output signifies the success status of the call. Any exceptions thrown
during the execution of this call are re-thrown to the next upstream node in the
flow. Call cciGetLastExceptionData for details of the exception.

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN
v CCI_INV_BUFFER_TOO_SMALL

targetElement
Specifies the address of the target syntax element object (input).

value
Specifies the address of a buffer into which the element namespace value is
copied (output). A string of characters (including a NULL terminator)
representing the namespace value is copied into this buffer. The buffer should
be a portion of memory previously allocated by the caller.

length
The length, in characters, of the buffer specified by the value parameter (input).

Return values
v If successful, the number of CciChars copied into the buffer is returned.
v If the buffer is not large enough to contain the attribute value, returnCode is set

to CCI_BUFFER_TOO_SMALL, and the number of CciChars required is
returned.

v If an exception occurs during execution, returnCode is set to CCI_EXCEPTION.

Example
if (element != 0) {

/*get name*/
cniElementName(&rc, element, (CciChar*)&elementName, sizeof(elementName));

/*get namespace*/
elementNamespace=(CciChar*)malloc(sizeof(CciChar) * elementNamespaceLength);
elementNamespaceLength = cniElementNamespace(&rc,

element,
elementNamespace,
elementNamespaceLength);

if (rc==CCI_BUFFER_TOO_SMALL){
free(elementNamespace);
elementNamespace=(CciChar*)malloc(sizeof(CciChar) * elementNamespaceLength);
elementNamespaceLength = cniElementNamespace(&rc,

element,
elementNamespace,
elementNamespaceLength);

}
checkRC(rc);

cniElementType

Gets the value of the type attribute for the specified syntax element. The syntax
element type will have been set previously using cniSetElementType or
cpiSetElementType.

User-defined extensions 139

Syntax
CciElementType cniElementType(

int* returnCode,
CciElement* targetElement);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

Return values

The value of the target element type is returned. If an error occurs, CCI_FAILURE
is returned, and the returnCode parameter indicates the reason for the error.

cniElementValue group

These functions retrieve the value of the specified syntax element.

Syntax
CciSize cniElementBitArrayValue(

int* returnCode,
CciElement* targetElement,
const struct CciBitArray* value);

CciBool cniElementBooleanValue(
int* returnCode,
CciElement* targetElement);

CciSize cniElementByteArrayValue(
int* returnCode,
CciElement* targetElement,
const struct CciByteArray* value);

CciSize cniElementCharacterValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

struct CciDate cniElementDateValue(
int* returnCode,
CciElement* targetElement);

CciSize cniElementDecimalValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

struct CciTimestamp cniElementGmtTimestampValue(
int* returnCode,
CciElement* targetElement);

struct CciTime cniElementGmtTimeValue(
int* returnCode,
CciElement* targetElement);

140 User-defined Extensions

CciInt cniElementIntegerValue(
int* returnCode,
CciElement* targetElement);

CciReal cniElementRealValue(
int* returnCode,
CciElement* targetElement);

struct CciTimestamp cniElementTimestampValue(
int* returnCode,
CciElement* targetElement);

struct CciTime cniElementTimeValue(
int* returnCode,
CciElement* targetElement);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN
v CCI_INV_BUFFER_TOO_SMALL

targetElement
The address of the target syntax element object (input).

value
The address of an output buffer into which the value of the syntax element is
stored (input). Used on relevant function calls only.

length
The length of the output buffer, in characters, specified by the value parameter
(input). Used on relevant function calls only.

Return values
v If successful, the value of the target element is returned.
v If the size of an element’s data can vary, the correct data size is returned.
v If the specified length is too small, the error code is set to

CCI_BUFFER_TOO_SMALL.
v If an error occurs, the returnCode parameter indicates the reason for the error.

Example
numberOfChars = cniElementCharacterValue(

&rc, firstChild, (CciChar*)&elementValue, sizeof(elementValue)
);

if (rc==CCI_BUFFER_TOO_SMALL) {
free(elementValue);
elementValue = (CciChar*)malloc(numberOfChars * sizeof(CciChar));
numberOfChars = cniElementCharacterValue(

&rc, firstChild, (CciChar*)&elementValue, sizeof(elementValue));
}

cniElementValueState

Gets the state of the value of the specified syntax element.

User-defined extensions 141

Syntax
CciValueState cniElementValueState(

int* returnCode,
CciElement* targetElement);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

Return values

The state of the value of the target syntax element is returned. If an error occurs,
CCI_VALUE_STATE_UNDEFINED is returned, and the returnCode parameter
indicates the reason for the error.

cniElementValueType

Gets the type attribute for the value of the specified syntax element. The state of an
element after creation is undefined. When the value of the element is set, its state
becomes valid.

Syntax
CciValueType cniElementValueType(

int* returnCode,
CciElement* targetElement);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

Return values

The type of the value of the target syntax element is returned. If an error occurs,
CCI_ELEMENT_TYPE_UNKNOWN is returned, and the returnCode parameter
indicates the reason for the error.

cniElementValueValue

Gets the address of the value object owned by the specified syntax element.

142 User-defined Extensions

Syntax
const CciElementValue* cniElementValueValue(

int* returnCode,
CciElement* targetElement);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER

targetElement
The address of the target syntax element object (input).

Return values

The address of the value object of the target syntax element is returned. If an error
occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode parameter
indicates the reason for the error.

cniEvaluate

Performs node processing. The broker invokes this function when a message is
received on one of the input terminals of an instance of a node object. The function
forms the main logic of the message processing node or output node. It is not used
with input nodes.

You must define a function table before you call this function.

The responsibilities of the node at this point are to:
1. Process the message in accordance with the values of any attributes on the

node instance.
2. Process the message based on content, if desired.
3. Propagate the message to any appropriate output terminals.
4. Throw an exception if an error occurs.

Defined In Type Member

CNI_VFT Conditional iFpEvaluate

Syntax
void cniEvaluate(

CciContext *context,
CciMessage *localEnvironment,
CciMessage *exceptionList,
CciMessage *message);

Parameters
context

The address of the context for the instance of the node, as created by the node
and returned by the cniCreateNodeContext function (input).

User-defined extensions 143

localEnvironment
The address of the input local environment object (input).

For compatibility with earlier versions, you can refer to this parameter as
destinationList.

exceptionList
The address of the exception list for the message (input).

message
The address of the input message object (input).

cniFinalize

Causes the broker to request parsers to perform finalize processing on the specified
message. Finalization is a process that fixes header chains and makes the
Properties folder match the headers.

The behavior of this processing is specific to each parser. Some parsers do not
support finalization processing.

Call cniFinalize before you propagate a message from the node; for example,
before you call cniWriteBuffer.

Syntax
void cniFinalize(

int* returnCode,
CciMessage* message,
int options);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT

message
The address of the message object for which the element tree is to be finalized
(input).

options
Set this parameter to CCI_FINALIZE_NONE.

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example
cniFinalize(&rc, outMsg, CCI_FINALIZE_NONE);
retvalue = cniPropagate(

&rc,
terminalObject,
localEnvironment,

144 User-defined Extensions

exceptionList,
outMsg);

/* Handle errors */

cniFirstChild

Returns the address of the syntax element object that is the first child of the
specified syntax element.

Syntax
CciElement* cniFirstChild(

int* returnCode,
CciElement* targetElement);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

Return values
v If successful, the address of the requested syntax element object is returned.
v If there is no first child, zero is returned, and returnCode is set to CCI_SUCCESS.
v If an error occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode

parameter indicates the reason for the error.

Example
if (element != 0) {

cniElementName(&rc, element, (CciChar*)&elementName, sizeof(elementName));
firstChild = cniFirstChild(&rc, element);

cniGetAttribute
This function gets the value of an attribute on a specific node instance.

Restriction: This function imposes a restriction on the length of the attribute value.
This function is provided only for compatibility with earlier versions.
You should implement cniGetAttribute2.

This function is invoked by the broker:
v Before the nodes configuration is deployed in order to ascertain default values of

any attributes that might override attributes owned by the framework.
v After setting the deployed configuration in order to write the configuration to

the broker’s database. This call ensures that the configuration persists across
shutdown and restarts of the execution group

The responsibilities of the node are to:
1. Return a character representation of the attribute value.
2. Throw an exception if an error occurs.

User-defined extensions 145

If both cniGetAttribute and cniGetAttribute2 are implemented,
cniDefineNodeClass fails with CCI_INV_IMPL_FUNCTION.

Defined In Type Member

CNI_VFT Optional iFpGetAttribute

Syntax
int cniGetAttribute(

CciContext* context,
CciChar* attrName,
CciChar* buffer,
int bufsize);

Parameters
context

The address of the context for the instance of the node, as created by the node
and returned by the cniCreateNodeContext function (input).

attrName
The name of the attribute for which the value is to be retrieved (input).

buffer
The address of a buffer into which the attribute value is copied (output).

bufsize
The length, in bytes, of the buffer specified in the buffer parameter (input).

Return values

If successful, zero is returned, and the character representation of the value of the
attribute is returned in the specified buffer. If the name of the attribute does not
identify one supported by the node, a non-zero value is returned.

cniGetAttribute2

This function gets the value of an attribute on a specific node instance. It is
invoked by the message broker after all of the attributes that the user deploys are
set. The results are written to the broker’s persistent configuration store in order to
ensure that the node is configured correctly after the execution group process is
stopped and started.

The responsibilities of the node at this point are to:
1. Return a character representation of the attribute value.
2. Throw an exception if an error occurs.

If both cniGetAttribute and cniGetAttribute2 are implemented,
cniDefineNodeClass fails with CCI_INV_IMPL_FUNCTION.

Defined In Type Member

CNI_VFT Optional iFpGetAttribute2

146 User-defined Extensions

Syntax
CciSize cniGetAttribute2(

int returnCode,
CciContext* context,
CciChar* attrName,
CciChar* buffer,
int bufsize);

Parameters
context

The address of the context for the instance of the node, as created by the node
and returned by the cniCreateNodeContext function (input).

returnCode (output)
Pointer to an int. On return, the node should ensure that this int stores a value
that describes the status of completion. Possible return codes are:
v CCI_SUCCESS
v CCI_ATTRIBUTE_UNKNOWN
v CCI_BUFFER_TOO_SMALL

attrName
The name of the attribute for which the value is to be retrieved (input).

buffer
The address of a buffer into which the attribute value is copied (output).

bufsize
The length, in CciChars, of the buffer specified in the buffer parameter (input).

Return values
v If successful, the attribute value is copied into the supplied buffer and the

number of CciChar characters copied is returned.
v If the buffer is not large enough to contain the attribute value, returnCode is set

to CCI_BUFFER_TOO_SMALL, and the number of CciChars required is
returned.

v If the attrName is not known to this node, returnCode is set to
CCI_ATTRIBUTE_UNKNOWN.

cniGetAttributeName
This functions returns the name of a node attribute specified by an index.

Restriction: This function imposes a restriction on the length of the attribute value.
This function is provided only for compatibility with earlier versions.
You should implement cniGetAttributeName2.

This function is invoked by the message broker when the broker requires the
names of attributes supported by a particular instance of a node. The function
must guarantee to return the attributes in a known, defined order, and to return
the attribute name represented by the index parameter.

If both cniGetAttributeName and cniGetAttributeName2 are implemented,
cniDefineNodeClass fails with CCI_INV_IMPL_FUNCTION.

Defined In Type Member

CNI_VFT Optional iFpGetAttributeName

User-defined extensions 147

Syntax
int cniGetAttributeName(

CciContext* context,
int index,
CciChar* buffer,
int bufsize);

Parameters
context

The address of the context for the instance of the node, as created by the node
and returned by the cniCreateNodeContext function (input).

index
Specifies the index of the attribute name (input). The index of the attributes
starts from zero.

buffer
The address of a buffer into which the attribute name is copied (output).

bufsize
The length, in bytes, of the buffer specified in the buffer parameter (input).

Return values

If successful, zero is returned, and the name of the attribute is returned in the
specified buffer. If the end of the list of attributes is reached, a non-zero value is
returned.

cniGetAttributeName2

This function returns the name of a node attribute specified by an index. It is
invoked by the message broker when the broker requires the names of the
attributes that are supported by a particular instance of a node. The function must
guarantee to return the attributes in a known, defined order, and to return the
attribute name that is represented by the index parameter.

If both cniGetAttributeName and cniGetAttributeName2 are implemented,
cniDefineNodeClass fails with CCI_INV_IMPL_FUNCTION.

Defined In Type Member

CNI_VFT Optional iFpGetAttributeName2

Syntax
CciSize cniGetAttributeName2(

int returnCode,
CciContext* context,
int index,
CciChar* buffer,
int bufsize);

Parameters
context

The address of the context for the instance of the node, as created by the node
and returned by the cniCreateNodeContext function (input).

returnCode (output)
Pointer to an int. On return, the node should ensure that this int stores a value
that describes the status of completion. Possible return codes are:

148 User-defined Extensions

v CCI_SUCCESS
v CCI_ATTRIBUTE_UNKNOWN
v CCI_BUFFER_TOO_SMALL

index
Specifies the index of the attribute name (input). The index of the attributes
starts from zero.

buffer
The address of a buffer into which the attribute name is copied (output).

bufsize
The length, in CciChars, of the buffer specified in the buffer parameter (input).

Return values
v If successful, the attribute name is copied into the supplied buffer and the

number of CciChar characters copied is returned.
v If the buffer is not large enough to contain the attribute name, returnCode is set

to CCI_BUFFER_TOO_SMALL, and the number of CciChars required is
returned.

v If the end of the list of attributes is reached and the attribute name is not found,
returnCode is set to CCI_ATTRIBUTE_UNKNOWN. For example, when index is
greater than n-1, where n is the number of attributes for this node.

cniGetBrokerInfo

Queries the current broker environment (for example, for information about broker
name and message flow name). The information is returned in a structure of type
CNI_BROKER_INFO_ST.

Syntax
void cniGetBrokerInfo(

int* returnCode,
CciNode* nodeObject,
CNI_BROKER_INFO_ST* broker_info_st);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_NODE_OBJECT

nodeObject
The message flow processing node for which broker environment information
is being requested (input).

broker_info_st
The address of a CNI_BROKER_INFO_ST structure that is used to return a
message that represents the input destination (input):
typedef struct broker_info_st {
int versionId; /*Structure version identification*/
CCI_STRING_ST brokerName; /*The label of the broker*/
CCI_STRING_ST executionGroupName; /*The label of the current execution group*/
CCI_STRING_ST messageFlowName; /*The label of the current message flow*/
CCI_STRING_ST queueManagerName; /*The name of the MQ Queue Manager for the broker*/

User-defined extensions 149

int commitCount; /*Commit count value*/
int commitInterval; /*Commit interval value*/
int coordinatedTransaction; /*Flag: coordinatedTransaction: 0=no, 1=yes*/
CCI_STRING_ST dataSourceUserId; /*The userid broker connects to datasource as*/
} CNI_BROKER_INFO_ST;

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example
cniGetBrokerInfo(&rc, nodeObject, &broker_info_st);

where nodeObject is of type CciNode*

cniGetEnvironmentMessage

Gets the CciMessage object corresponding to the Environment for the message flow.

Syntax
CciMessage ImportExportPrefix * ImportExportSuffix

cniGetEnvironmentMessage(
int* returnCode,
CciMessage* message);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT

message
The address of the message object for which the environment is to be obtained.
This might be an input message received as an argument to the cniEvaluate
implementation function, or a message created using the cniCreateMessage
utility function.

Return values

If successful, the address of the message object corresponding to the Environment
is returned. Otherwise, a value of zero is returned, and the returnCode parameter
indicates the reason for the error.

cniGetMessageContext

Gets the address of the message context associated with the specified message. The
context of an existing message is used to create an output message, for example
using the cniCreateMessage function.

Syntax
CciMessageContext* cniGetMessageContext(

int* returnCode,
CciMessage* message);

150 User-defined Extensions

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_INV_MESSAGE_OBJECT

message
The address of the message object (input).

Return values

If successful, the address of the message context is returned. Otherwise, zero
(CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the reason
for the error.

Example
outMsg = cniCreateMessage(&rc, cniGetMessageContext(&rc, message));

cniGetParserClassName

Gets the parser class name associated with the specified syntax element.

Syntax
CciSize cniGetParserClassName(

int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN
v CCI_INV_BUFFER_TOO_SMALL

targetElement
The address of the element for which the parser class name is to be returned
(input).

value
The address of an output buffer into which the parser class name is stored
(input).

length
The length of the output buffer, expressed as the number of CciChar
characters, specified in the value parameter (input).

User-defined extensions 151

Return values
v If successful, the returnCode parameter indicates CCI_SUCCESS, and the number

of characters written to the buffer is returned.
v If the buffer is not large enough to retain the returned name, the returnCode

parameter indicates CCI_BUFFER_TOO_SMALL, and the returned value
indicates the number of characters required to store the name.

v If any other error occurs, CCI_FAILURE is returned, and the returnCode
parameter indicates the reason for the error.

cniGetThreadContext

Returns the thread context for the current thread.

Syntax
CciThreadContext *cniGetThreadContext(

int *returnCode,
CciMessageContext *msgContext);

Parameters
returnCode

This is the return code from the function (output). If the input is NULL, this
signifies that errors are silently handled or are ignored by the broker. If the
input is not NULL, the output signifies the success status of the call. If the
msgContext parameter is not valid, then *returnCode is set to
CCI_INV_MESSAGE_CONTEXT and a NULL CciThreadContext is returned.

msgContext
This provides the message context from which to acquire the thread-specific
context. It is expected that this parameter is obtained by using the
cniGetMessageContext utility function.

Return values

If this function is successful, it returns a handle to the CciThreadContext for the
current thread.

The cciMessageContext value must correspond to a cciMessage, where the
cciMessage is passed in to the cniEvaluate or cniRun function on the current
thread.

Example
CciMessageContext* messageContext = cniGetMessageContext(NULL,message);
CciThreadContext* threadContext = cniGetThreadContext(NULL,messageContext);

cniIsTerminalAttached

Checks whether a terminal is attached to another node by a connector. It returns
an integer value that specifies whether the specified terminal object is attached to
one or more terminals on other message flow nodes.

Use this function to test whether a message can be propagated to a terminal; you
do not have to call this function before you propagate a message with the
cniPropagate utility function. Use the cniIsTerminalAttached function to modify the
node behavior when a terminal is not connected.

152 User-defined Extensions

Syntax
int cniIsTerminalAttached(

int* returnCode,
CciTerminal* terminalObject);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_TERMINAL_OBJECT

terminalObject
The address of the input or output terminal to be checked for an attached
connector (input). The address is returned from cniCreateOutputTerminal.

Return values
v If the terminal is attached to another node by a connector, a value of 1 is

returned.
v If the terminal is not attached, or a failure occurred, a value of zero is returned.
v If a failure occurs, the value of the returnCode parameter indicates the reason for

the error.

Example
if (terminalObject) {

if (cniIsTerminalAttached(&rc, terminalObject)) {
if (rc == CCI_SUCCESS) {

retvalue = cniPropagate(
&rc,
terminalObject,
localEnvironment,
exceptionList,
message);

cniLastChild

Returns the address of the syntax element object that is the last child of the
specified syntax element.

Syntax
CciElement* cniLastChild(

int* returnCode,
CciElement* targetElement);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT

targetElement
The address of the target syntax element object (input).

User-defined extensions 153

Return values
v If successful, the address of the requested syntax element object is returned.
v If there is no last child, zero is returned, and returnCode is set to CCI_SUCCESS.
v If an error occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode

parameter indicates the reason for the error.

Example
bodyChild = cniLastChild(&rc, outRootElement);

cniNextSibling

Returns the address of the syntax element object that is the next sibling (right
sibling) of the specified syntax element.

Syntax
CciElement* cniNextSibling(

int* returnCode,
CciElement* targetElement);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

Return values
v If successful, the address of the requested syntax element object is returned.
v If there is no next sibling, zero is returned, and returnCode is set to

CCI_SUCCESS.
v If an error occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode

parameter indicates the reason for the error.

Example
nextSibling = cniNextSibling(&rc, element);

cniParent

Returns the address of the syntax element object that is the parent of the specified
syntax element.

Syntax
CciElement* cniParent(

int* returnCode,
CciElement* targetElement);

Parameters
returnCode

The return code from the function (output).

154 User-defined Extensions

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

Return values
v If successful, the address of the requested syntax element is returned.
v If there is no parent element, zero is returned.
v If an error occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode

parameter indicates the reason for the error.

cniPreviousSibling

Returns the address of the syntax element object that is the previous sibling (left
sibling) of the specified syntax element.

Syntax
CciElement* cniPreviousSibling(

int* returnCode,
CciElement* targetElement);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

Return values
v If successful, the address of the requested syntax element object is returned.
v If there is no previous sibling, zero is returned, and returnCode is set to

CCI_SUCCESS.
v If an error occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode

parameter indicates the reason for the error.

cniPropagate

Propagates a message to a specified terminal object. If the terminal is not attached
to another node by a connector, the message is not propagated, and the function is
ignored. Therefore, you do not have to check whether the terminal is attached
before you propagate the message, unless the action that the node takes would be
different (in which case you can use cniIsTerminalAttached to check whether the
terminal is connected).

User-defined extensions 155

Syntax
int cniPropagate(

int* returnCode,
CciTerminal* terminalObject,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* message);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_TERMINAL_OBJECT
v CCI_INV_MESSAGE_OBJECT

terminalObject
The address of the output terminal to receive the message (input). The address
is returned by cniCreateOutputTerminal.

localEnvironment
The address of the local environment object to be sent with the message
(input).

This message object is used by the publish/subscribe node supplied by the
broker.

For compatibility with earlier versions, you can refer to this parameter as
destinationList.

exceptionList
The address of the exception list for the message (input).

message
The address of the message object to be sent (input). If the message being sent
is the same as the input message, this address is the one passed on the
cniEvaluate implementation function.

Return values

If successful, CCI_SUCCESS is returned. Otherwise, CCI_FAILURE is returned, and
the returnCode parameter indicates the reason for the error.

Example
if (terminalObject) {

if (cniIsTerminalAttached(&rc, terminalObject)) {
if (rc == CCI_SUCCESS) {

cniPropagate(&rc, terminalObject, destinationList, exceptionList, message);

cniRootElement

Gets the root syntax element associated with a specified message. It returns the
root element that is associated with (and owned by) the message object identified
by the message parameter. When a message object is constructed by the broker, a
root element is automatically created.

156 User-defined Extensions

Syntax
CciElement* cniRootElement(

int* returnCode,
CciMessage* message);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT

message
The address of the message object (input).

Return values

If successful, the address of the root element object is returned. Otherwise, zero
(CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the reason
for the error.

Example
inRootElement = cniRootElement(&rc, message);

cniRun

This function declares the node as an input node. Message processing nodes and
output nodes do not use it, and you do not need to call cniEvaluate. The broker
allocates a thread and invokes this function on that thread.

Defined In Type Member

CNI_VFT Conditional iFpRun

Syntax
int cniRun(

CCiContext* context,
CCiMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* message

);

Parameters
context

The address of the context for the instance of the node, as created by the node
and returned by the cniCreateNodeContext function (input).

localEnvironment
The address of the input local environment object (input).

For compatibility with earlier versions, you can refer to this parameter as
destinationList.

exceptionList
The address of the exception list for the message (input).

User-defined extensions 157

message
The address of the message object to which the data is attached (input).

The user-defined node can call cniSetInputBuffer to associate a bit stream with
this message. Populating the tree of this message is not supported, therefore
calls to functions such as cniAddAsLastChild or
cniCreateElementAsLastChildFromBitstream do not work. To build parts of the
tree, create a new message using cniCreateMessage rather than providing a
buffer to be parsed as the whole message.

For example, if you have a bit stream that is to be used as the payload part of
the message, and you also want to add a header, take the following steps:
1. Create a new message using cniCreateMessage.
2. Create the header part in this new message by using the Syntax Element

Access Utility functions, for example
cniCreateElementAsLastChildUsingParser, and passing in the root element
of this new message.

3. Add fields to the header by using functions such as
cniCreateElementAsLastChild.

4. Create the body of the message by parsing your bit stream through calling
cniCreateElementAsLastChildFromBitstream, and passing in the root
element of this new message.

Return values

This function is called by the broker as part of a loop. The meaning of the return
value is as follows:

CCI_TIMEOUT
The input node did not receive its input data. This value means that control
should be returned to the broker in case message flow reconfiguration is being
requested. A user-defined input node should return regularly to give control
back to the broker.

CCI_SUCCESS_CONTINUE
A message was successfully processed. The broker performs default transaction
commit processing. The input node’s cniRun implementation function is called
immediately so that the node can continue processing.

CCI_SUCCESS_RETURN
A message has been successfully processed. The broker performs default
transaction commit processing. The input node has determined that the thread
is not required, and it is returned to the message flow thread pool. If this
processing is performed on the only thread, or the last active thread, the broker
prevents this last thread being returned to the pool, otherwise no active
threads are available to dispatch another thread. In this situation, the broker
invokes the cniRun implementation function immediately, as if
CCI_SUCCESS_CONTINUE was returned.

CCI_FAILURE_CONTINUE
An error was detected in the processing of a message, and the node is
requesting that transaction rollback processing is performed. The input node’s
cniRun implementation function is called immediately.

CCI_FAILURE_RETURN
An error was detected in the processing of a message, and the node is
requesting that transaction rollback processing is performed. However, the
input node has determined that the thread is not required and it can be
returned to the message flow thread pool. If this processing is performed on

158 User-defined Extensions

the last active thread, the broker prevents this last thread being returned to the
pool, otherwise no active threads are available to dispatch another thread. In
this situation the broker invokes the cniRun implementation function
immediately, as if CCI_FAILURE_CONTINUE was returned.

cniSearchElement group

Searches previous siblings of the specified element for an element matching
specified criteria. The search is performed starting at the syntax element specified
in the targetElement parameter, and each of the four functions provides a search in
a different tree direction:
1. cniSearchFirstChild searches the immediate child elements of the starting

element from the first child, until either a match is found, or the end of the
child element chain is reached.

2. cniSearchLastChild searches the immediate child elements of the starting
element from the last child, until either a match is found, or the end of the
child element chain is reached.

3. cniSearchNextSibling searches from the starting element to the next siblings,
until either a match is found, or the end of the sibling chain is reached.

4. cniSearchPreviousSibling searches from the starting element to the previous
siblings, until either a match is found, or the start of the sibling chain is
reached.

If you use this command to search for an element within a message that belongs to
a namespace-aware domain, the search is only performed on those elements whose
namespace is an empty string. If you want to perform a search for elements in any
namespace, use one of the cniSearchElementNamespace commands.

Syntax
CciElement* cniSearchFirstChild(

int* returnCode,
CciElement* targetElement,
CciCompareMode* mode,
CciElementType type,
CciChar name);

CciElement* cniSearchLastChild(
int* returnCode,
CciElement* targetElement,
CciCompareMode* mode,
CciElementType type,
CciChar name);

CciElement* cniSearchNextSibling(
int* returnCode,
CciElement* targetElement,
CciCompareMode* mode,
CciElementType type,
CciChar name);

CciElement* cniSearchPreviousSibling(
int* returnCode,
CciElement* targetElement,
CciCompareMode* mode,
CciElementType type,
CciChar name);

Parameters
returnCode

The return code from the function (output).

User-defined extensions 159

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the syntax element object from which the search starts (input).

mode
The search mode to use (input). This indicates what combination of element
type and element name is to be searched for. The possible values are:
v CCI_COMPARE_MODE_FULL
v CCI_COMPARE_MODE_FULL_TYPE
v CCI_COMPARE_MODE_GENERIC_TYPE
v CCI_COMPARE_MODE_SPECIFIC_TYPE
v CCI_COMPARE_MODE_NAME
v CCI_COMPARE_MODE_NAME_SPECIFIC_TYPE
v CCI_COMPARE_MODE_NAME_GENERIC_TYPE
v CCI_COMPARE_MODE_NAME_FULL_TYPE
v CCI_COMPARE_MODE_NULL

type
The element type to search for (input). This is used only if the search mode
involves a match on the type.

name
The element name to search for (input). This is used only if the search mode
involves a match on the name.

Example
int rc;
CciElement* firstChild = cniSearchFirstChild(

&rc,
inRootElement,
CCI_COMPARE_MODE_NAME,
elementName,
0);

Return values
v If successful, the address of the requested syntax element object is returned.
v If there is no matching element, zero is returned.
v If an error occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode

parameter indicates the reason for the error.

cniSearchElementInNamespace group

Searches for an element matching the specified criteria. The search starts at the
syntax element specified in the element argument, and each of the four functions
provides a search in a different tree direction:
1. cniSearchFirstChildInNamespace searches the immediate child elements of the

starting element from the first child, until either a match is found, or the end of
the child element chain is reached.

2. cniSearchLastChildInNamespace searches the immediate child elements of the
starting element from the last child, until either a match is found, or the end of
the child element chain is reached.

160 User-defined Extensions

3. cniSearchNextSiblingInNamespace searches from the starting element to the
next siblings, until either a match is found, or the end of the sibling chain is
reached.

4. cniSearchPreviousSiblingInNamespace searches from the starting element to the
previous siblings, until either a match is found, or the start of the sibling chain
is reached.

This is used when searching a message that belongs to a namespace-aware
domain.

Syntax
void cniSearchFirstChildInNamespace(
int* returnCode,
CciElement* targetElement,
CciCompareMode mode,
const CciChar* nameSpace,
const CciChar* name,
CciElementType type)

void cniSearchLastChildInNamespace(
int* returnCode,
CciElement* targetElement,
CciCompareMode mode,
const CciChar* nameSpace,
const CciChar* name,
CciElementType type)

void cniSearchNextSiblingInNamespace(
int* returnCode,
CciElement* targetElement,
CciCompareMode mode,
const CciChar* nameSpace,
const CciChar* name,
CciElementType type)

void cniSearchPreviousSiblingInNamespace(
int* returnCode,
CciElement* targetElement,
CciCompareMode mode,
CciElementType type,
const CciChar* nameSpace,
const CciChar* name)

Parameters
returnCode

The return code from the function (output). Specifying a NULL pointer
signifies that the node does not want to deal with errors. If input is not NULL,
the output signifies the success status of the call. Any exceptions thrown
during the execution of this call are re-thrown to the next upstream node in the
flow. Call cciGetLastExceptionData for details of the exception. The return code
from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the syntax element object from which the search starts (input).

User-defined extensions 161

mode
The search mode to use (input). This indicates what combination of element
namespace, element name and element type is to be searched for. The possible
values are:
v CCI_COMPARE_MODE_SPACE
v CCI_COMPARE_MODE_SPACE_FULL_TYPE
v CCI_COMPARE_MODE_SPACE_GENERIC_TYPE
v CCI_COMPARE_MODE_SPACE_SPECIFIC_TYPE
v CCI_COMPARE_MODE_SPACE_NAME
v CCI_COMPARE_MODE_SPACE_NAME_FULL_TYPE
v CCI_COMPARE_MODE_SPACE_NAME_GENERIC_TYPE
v CCI_COMPARE_MODE_SPACE_NAME_SPECIFIC_TYPE
v CCI_COMPARE_MODE_NULL

When the compare mode does not involve a match on the namespace, all
namespaces are searched. This is different behavior to that of the
cniSearchElement group, where only the empty string namespace is searched.
When you specify one of the above modes, set the nameSpace parameter to
empty string.

type
The element type to search for (input). This is used only if the search mode
involves a match on the type.

nameSpace
The namespace to search (input). This is used only if the search mode involves
a match on the namespace.

name
The name to search for (input). This is used only if the search mode involves a
match on the name.

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example
mode=CCI_COMPARE_MODE_SPACE ;
...

if (forward) {
firstChild = cniSearchFirstChildInNamespace(&rc, element, mode, space, 0,0);

}else{
firstChild = cniSearchLastChildInNamespace(&rc, element, mode, space, 0,0);

}

if (firstChild) {
depth++;
traceElement(firstChild,forward,space);
depth--;

}
currentElement = firstChild;
do{

if (forward) {
nextSibling = cniSearchNextSiblingInNamespace(&rc, currentElement,mode,space,0,0);

}else{
nextSibling = cniSearchPreviousSiblingInNamespace(&rc, currentElement,mode,space,0,0);

162 User-defined Extensions

}
if (nextSibling) {

traceElement(nextSibling,forward,space);
currentElement=nextSibling;

}

}while (nextSibling) ;

}

cniSetAttribute

Sets the value of an attribute on a specific node instance. It is invoked by the
message broker when a configuration request is received that attempts to set the
value of a node attribute, or during initialization of the node. A node receives
requests to set attributes for the base. If an unknown attribute value is received,
this function must return a non-zero value so that the broker processes the request
correctly.

The responsibilities of the node at this point are to:
1. Verify that the value of the attribute is correctly specified. If not, a

configuration exception should be thrown using the cciThrowException
function.

2. Store the value of the attribute within the context, which should have been
allocated in the cniCreateNodeContext function.

3. Throw a configuration exception if an error occurs, using the
cciThrowException function.

Defined In Type Member

CNI_VFT Optional iFpSetAttribute

Syntax
int cniSetAttribute(

CciContext* context,
CciChar* attrName,
CciChar* attrValue);

Parameters
context

The address of the context for the instance of the node, as created by the node
and returned by the cniCreateNodeContext function (input).

attrName
The name of the attribute whose value is to be set (input).

attrValue
The value of the attribute (input).

Return values

If successful, zero is returned. If the name of the attribute does not identify one
supported by the node, a non-zero value is returned.

cniSetElementName

Sets the name of the specified syntax element.

User-defined extensions 163

Syntax
void cniSetElementName(

int* returnCode,
CciElement* targetElement,
const CciChar* name);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER

targetElement
The address of the target syntax element object (input).

name
The name of the element (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example
CciElement* lastChild = cniCreateElementAsLastChild(&rc, outRootElement);
cniSetElementName(&rc, lastChild, elementName);
cniSetElementType(&rc, lastChild, CCI_ELEMENT_TYPE_NAME);

cniSetElementNamespace

Sets the namespace attribute for the specified syntax element.

This is used when manipulating a message that belongs to a namespace-aware
domain.

Syntax
void cniSetElementNamespace(
int* returnCode,
CciElement* targetElement,
const CciChar* nameSpace)

Parameters
returnCode

The return code from the function (output). Specifying a NULL pointer
signifies that the node does not want to deal with errors. If input is not NULL,
the output signifies the success status of the call. Any exceptions thrown
during the execution of this call are re-thrown to the next upstream node in the
flow. Call cciGetLastExceptionData for details of the exception.

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

164 User-defined Extensions

v CCI_INV_DATA_POINTER

targetElement
Specifies the address of the target syntax element object (input).

value
Specifies the address of a null terminated string of CciChars representing the
namespace value (output). An empty string is a valid value for namespace. By
default, elements are created in the empty string namespace, so you could
specify an empty string as the namespace, but it only has an effect if the
element was previously in another namespace and you want to change the
namespace value to empty string.

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

cniSetElementType

Sets the type of the specified syntax element.

Syntax
void cniSetElementType(

int* returnCode,
CciElement* targetElement,
CciElementType type);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
The address of the target syntax element object (input).

type
The type of the element (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example
CciElement* lastChild = cniCreateElementAsLastChild(&rc, outRootElement);
cniSetElementName(&rc, lastChild, elementName);
cniSetElementType(&rc, lastChild, CCI_ELEMENT_TYPE_NAME);

cniSetElementValue group

Functions to set a value into the specified syntax element.

User-defined extensions 165

Syntax
void cniSetElementBitArrayValue(

int* returnCode,
CciElement* targetElement,
const struct CciBitArray* value);

void cniSetElementBooleanValue(
int* returnCode,
CciElement* targetElement,
CciBool value);

void cniSetElementByteArrayValue(
int* returnCode,
CciElement* targetElement,
const struct CciByteArray* value);

void cniSetElementCharacterValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

void cniSetElementDateValue(
int* returnCode,
CciElement* targetElement,
const struct CciDate* value);

void cniSetElementDecimalValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value);

void cniSetElementGmtTimestampValue(
int* returnCode,
CciElement* targetElement,
const struct CciTimestamp* value);

void cniSetElementGmtTimeValue(
int* returnCode,
CciElement* targetElement,
const struct CciTime* value);

void cniSetElementIntegerValue(
int* returnCode,
CciElement* targetElement,
CciInt value);

void cniSetElementRealValue(
int* returnCode,
CciElement* targetElement,
CciReal value);

void cniSetElementTimestampValue(
int* returnCode,
CciElement* targetElement,
const struct CciTimestamp* value);

void cniSetElementTimeValue(
int* returnCode,
CciElement* targetElement,
const struct CciTime* value);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

166 User-defined Extensions

v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN

targetElement
The address of the target syntax element object (input).

value
The value to store in the syntax element (input).

length
The length of the data value (input). Used on relevant function calls only.

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example
static char* functionName = (char *)"_Input_run()";
void* buffer;
CciTerminal* terminalObject;
int buflen = 4096;
int rc = CCI_SUCCESS;
int rcDispatch = CCI_SUCCESS;
char xmlData[] = "<A>data";
buffer = malloc(buflen);
memcpy(buffer, &xmlData, sizeof(xmlData));

cniSetInputBuffer(&rc, message, buffer, buflen);

cniSetElementValueValue

Sets the value object of the specified syntax element.

Syntax
void cniSetElementValueValue(

int* returnCode,
CciElement* targetElement,
CciElementValue* value);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER

targetElement
The address of the target syntax element object (input).

value
The address of a value object that is used to set the value of the syntax
element specified by the targetElement parameter (input). The address of the
value object is obtained using cniElementValueValue.

User-defined extensions 167

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

cniSetInputBuffer

Using this function, the caller can supply a buffer. It is used by input nodes only.
The address is specified by the source parameter as an input bit stream of the
input message to the broker. By supplying a buffer, an input node can read data
into the bit stream that represents an input message from an external data source.
The broker takes a copy of the data and the caller can free the storage on return.

Syntax
int cniSetInputBuffer(

void* returnCode,
CciMessage* message,
Void* source,
CCiInt length);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN

message
The message object that uses the buffer described by the source parameter to
represent the input bit stream. (input)

source
The address of the buffer to be used as input. (input)

length
The length of the input buffer described by the source parameter. (input)

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example
cniSetInputBuffer(&rc, message, buffer, buflen);

cniSqlCreateModifyablePathExpression

Creates a SqlPathExpression object that represents the path that is specified by the
path argument. When they are navigated, path elements are created if they do not
already exist. This function returns a pointer to the PathExpression object which is
used as input to the functions that navigate the path, namely the
cniSqlNavigatePath family.

168 User-defined Extensions

Because an overhead is incurred in creating the expression, if the same path
expression is to be used for every message, call this function once, and use the
CciSqlPathExpression* that is returned in a call to cniSqlNavigate for each
message. You can use the CciSqlPathExpression on threads other than the one on
which it was created.

Syntax
CciSqlPathExpression* cniSqlCreateModifiablePathExpression(
int* returnCode,
CciNode* nodeObject,
CciChar* dataSourceName,
CciChar* path);

Parameters
returnCode (output)

A NULL pointer input signifies that the user-defined node does not handle
errors. Any exceptions that are thrown during the execution of this call are
re-thrown to the next upstream node in the flow. If input is not NULL, output
signifies the success status of the call. If an exception occurs during execution,
*returnCode is set to CCI_EXCEPTION on output. A call to
cciGetLastExceptionData provides details of the exception. If an invalid
nodeObject parameter was passed in, returnCode is set to
CCI_INV_NODE_OBJECT. If an invalid path parameter, such as NULL or an
empty string, was passed in, returnCode is set to
CCI_INV_ESQL_PATH_EXPR.

nodeObject (input)
Specifies the message flow processing node that the ESQL Path Expression is
owned by. This pointer is passed to the cniCreateNodeContext implementation
function. This parameter must not be NULL.

dataSourceName (input)
The ODBC data source name to be used if the statement references an external
database. This parameter can be NULL.

path (input)
Pointer to a NULL terminated string of CciChars. This parameter specifies the
ESQL path expression to be created as defined by the ESQL field reference
syntax diagram, except that it cannot include local ESQL variables, ESQL
reference variables, user-defined functions, or ESQL namespace constants,
because they cannot be declared. This parameter must not be NULL.

Return values

If successful, the address of the SQLPathExpression object is returned. If an error
occurs, CCI_NULL_ADDR is returned, and the return code parameter indicates the
reason for the error. When the SQLPathExpression is no longer needed, (typically
when the node is deleted) call cniSqlDeletePathExpression to delete it.

Example

If you add the following code to the Transform node sample, you can create an
element, and all necessary ancestor elements, with one function call.

Create the CciSQLPathExpression in the _Transform_createNodeContext function:
{

CciChar ucsPathExpressionString[32];
char* mbPathExpressionString =

"OutputRoot.XMLNS.Request.A.B.C.D.E";

User-defined extensions 169

/* convert our path string to unicode*/
cciMbsToUcs(NULL,

mbPathExpressionString,
ucsPathExpressionString,
32,
BIP_DEF_COMP_CCSID);

p->pathExpression =
cniSqlCreateModifiablePathExpression(

NULL,
nodeObject,
NULL,/* do not reference Database*/
ucsPathExpressionString);

}

Now use the CciSqlPathExpression later in the _Transform_evaluate function
{

CciElement* newElement =
cniSqlNavigatePath(

NULL,
((NODE_CONTEXT_ST *)context)->pathExpression,
message,
localEnvironment,
exceptionList,
outMsg,
NULL,/* do not reference OutputLocalEnvironment*/
NULL/* do not reference OutputLExceptionList*/);

}

Therefore passing in the input message PluginSample.change.xml:
<Request
type="change">

<CustomerAccount>01234567</CustomerAccount>
<CustomerPhone>555-0000</CustomerPhone>

</Request>

The following output message is generated:
<Request
type="modify">

<CustomerAccount>01234567</CustomerAccount>
<CustomerPhone>555-0000</CustomerPhone>
<A>

<C>

<D/>
</C>

</Request>

This approach, rather than using functions such as cniCreateElementAsLastChild,
has the following advantages:
v The path is more dynamic: the path string could be determined at deploy time,

for example based on a node property (you could create the
CciSQLPathExpression in the cniSetAttribute implementation function).

v While navigating to and creating the element, only one function call is made.
This technique is more apparent when the target element is deep within the tree
structure.

170 User-defined Extensions

cniSqlCreateReadOnlyPathExpression

Creates a SqlPathExpression object that represents the path that is specified by the
path argument. The navigated path does not create path elements if they do not
already exist. This function returns a pointer to the PathExpression object, which is
used as input to the functions that navigate the path, namely the
cniSqlNavigatePath family.

Because an overhead is incurred in creating the expression, if the same path
expression is to be used for every message, call this function once, and use the
CciSqlPathExpression* that is returned in a call to cniSqlNavigate for each
message. You can use the CciSqlPathExpression* on threads other than the one on
which it was created.

Syntax
CciSqlPathExpression* cniSqlCreateReadOnlyPathExpression(

int* returnCode,
CciNode* nodeObject,
CciChar* dataSourceName,
CciChar* path);

Parameters
returnCode (output)

A NULL pointer input signifies that the user-defined node does not handle
errors. Any exceptions thrown during the execution of this call are re-thrown
to the next upstream node in the flow. If input is not NULL, output signifies
the success status of the call. If an exception occurs during execution,
*returnCode is set to CCI_EXCEPTION on output. A call to
cciGetLastExceptionData provides details of the exception. If an invalid
nodeObject parameter was passed in, returnCode is set to
CCI_INV_NODE_OBJECT. If an invalid path parameter, such as a NULL or
empty string, was passed in, returnCode is set to
CCI_INV_ESQL_PATH_EXPR.

nodeObject (input)
Specifies the message flow processing node that owns the ESQL Path
Expression. This pointer is passed to the cniCreateNodeContext
implementation function. This parameter must not be NULL.

dataSourceName (input)
The ODBC data source name that is used if the statement references an
external database. NULL is allowed.

path (input)
Pointer to a NULL terminated string of CciChars. This parameter specifies the
ESQL path expression to be created, as defined by the ESQL field reference
syntax diagram. It cannot include local ESQL variables, ESQL reference
variables, user-defined functions, or ESQL namespace constants, because they
cannot be declared. This parameter must not be NULL.

Return values

If successful, the address of the SQLPathExpression object is returned. If an error
occurs, CCI_NULL_ADDR is returned and the return code parameter indicates the
reason for the error. When the SQLPathExpression is no longer needed (typically
when the node is deleted), call cniSqlDeletePathExpression to delete it.

User-defined extensions 171

Example

The switch node sample shows how to navigate to a syntax element using
functions like cniFirstChild. The following code could be used to achieve the same
result.

In _Switch_createNodeContext function, create the CciSqlPathExpression for use
later.
{

CciChar ucsPathExpressionString[32];
char* mbPathExpressionString = "InputBody.Request.type";
/* convert our path string to unicode*/
cciMbsToUcs(

NULL,
mbPathExpressionString,
ucsPathExpressionString,
32,
BIP_DEF_COMP_CCSID);

p->pathExpression =
cniSqlCreateReadOnlyPathExpression(

NULL,
nodeObject,
NULL, /* do not reference Database*/
ucsPathExpressionString);

}

This code assumes the addition of the field CciSqlPathExpression* pathExpression
to the NODE_CONTEXT_ST struct.

Now use the CciSqlPathExpression in the _Switch_evaluate function.
CciElement* targetElement = cniSqlNavigatePath(

NULL,
((NODE_CONTEXT_ST *)context)->pathExpression,
message,
localEnvironment,
exceptionList,
NULL, /* do not reference any output trees*/
NULL,
NULL);

This approach, rather than using functions such as cniFirstChild and
cniNextSibling, has the following advantages:
v The path is more dynamic: the path string could be determined at deploy time

based on a node property (you could create the CciSqlPathExpression in the
cniSetAttribute implementation function).

v While navigating to the element, only one function call is made. This technique
is more apparent when the target element is deep within the tree structure.

cniSqlCreateStatement

Creates an SQL expression object representing the statement specified by the
statement argument, using the syntax as defined for the Compute message flow
processing node, with the exception that you are not allowed to use:
v CREATE PROCEDURE
v CREATE MODULE
v CREATE SCHEMA
v CREATE FUNCTION

172 User-defined Extensions

This function returns a pointer to the SQL expression object, which is used as input
to the functions that execute the statement, namely cniSqlExecute and cniSqlSelect.
You can create multiple SQL expression objects in a single message flow processing
node. Although you can create these objects at any time, you would typically
create them when the message flow processing node is instantiated, within the
implementation function cniCreateNodeContext.

Syntax
CciSqlExpression* cniSqlCreateStatement(

int* returnCode,
CciNode* nodeObject,
CciChar* dataSourceName,
CciSqlTransaction transaction,
CciChar* statement);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_NODE_OBJECT
v CCI_INV_TRANSACTION_TYPE
v CCI_INV_STATEMENT

nodeObject
The message flow processing node that the SQL expression object is owned by
(input). This pointer is passed to the cniCreateNodeContext implementation
function.

dataSourceName
The ODBC data source name used if the statement references data in an
external database (input).

transaction
Specifies whether a database commit is performed after the statement is
executed (input). Valid values are:

CCI_SQL_TRANSACTION_AUTO
Specifies that a database commit is performed at the completion of the
message flow (that is, as a fully globally coordinated or partially
globally coordinated transaction). This is the default.

CCI_SQL_TRANSACTION_COMMIT
Specifies that a commit is performed after execution of the statement,
and within the cniSqlExecute or cniSqlSelect function (that is, the
message flow is partially broker coordinated).

statement
The SQL expression to be created, using the syntax as defined for the compute
message flow processing node (input).

Return values

If successful, the address of the SQL expression object is returned. If an error
occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode parameter
indicates the reason for the error.

User-defined extensions 173

cniSqlDeletePathExpression

Deletes the SQLPathExpression previously created by the
cniSqlCreateReadOnlyPathExpression or the cniSqlCreateModifiablePathExpression
utility functions, as defined by the sqlPathExpression argument.

Syntax
void cniSqlDeletePathExpression(

int* returnCode,
CciSqlPathExpression* sqlPathExpression);

Parameters
returnCode (output)

A NULL pointer input signifies that the user-defined node does not want to
deal with errors. Any exceptions thrown during the execution of this call will
be re-thrown to the next upstream node in the flow. If input is not NULL,
output will signify the success status of the call. If an exception occurs during
execution, *returnCode will be set to CCI_EXCEPTION on output. A call to
cciGetLastExceptionData will provide details of the exception. If an invalid
sqlPathExpression parameter was passed in, then returnCode will be set to
CCI_INV_SQL_EXPR_OBJECT.

sqlPathExpression (output)
Specifies the SQLPathExpression object to be deleted as returned by one of the
cniCreate[ReadOnly|Modifiable]PathExpression functions. May not be NULL.

Return values
None. If an error occurs, the returnCode parameter indicates the reason for the
error..

Example

Expanding on the example for cniSqlCreateReadOnlyPathExpression, you should
place the following code in _deleteNodeContext
cniSqlDeletePathExpression(

NULL,
((NODE_CONTEXT_ST *)context)->pathExpression);

cniSqlDeleteStatement

Deletes an SQL statement previously created using the cniSqlCreateStatement
utility function, as defined by the sqlExpression parameter.

Syntax
void cniSqlDeleteStatement(

int* returnCode,
CciSqlExpression* sqlExpression);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CC_INV_SQL_EXPR_OBJECT

174 User-defined Extensions

sqlExpression
The SQL expression object to be deleted, as returned by the
cniSqlCreateStatement utility function (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

cniSqlExecute

Executes an SQL statement that has been previously created using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter.
Use this function when the statement does not return data, for example, when a
PASSTHRU function is used.

Syntax
void cniSqlExecute(

int* returnCode,
CciSqlExpression* sqlExpression,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* message);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_INV_SQL_EXPR_OBJECT
v CCI_INV_MESSAGE_OBJECT

sqlExpression
The SQL expression object to be executed, as returned by the
cniSqlCreateStatement utility function (input).

localEnvironment
The message representing the input local environment (input).

For compatibility with earlier versions, you can refer to this parameter as
destinationList.

exceptionList
The message representing the input exception list (input).

message
The message representing the input message (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

User-defined extensions 175

cniSqlNavigatePath

Executes the SQLPathExpression previously created with the
cniSqlCreateReadOnlyPathExpression or the cniSqlCreateModifiablePathExpression
utility functions, as defined by the sqlPathExpression argument.

Syntax
CciElement* cniSqlNavigatePath(
int* returnCode,
CciSqlPathExpression* sqlPathExpression,
CciMessage* inputMessageRoot,
CciMessage* inputLocalEnvironment,
CciMessage* inputExceptionList,
CciMessage* outputMessageRoot
CciMessage* outputLocalEnvironment,
CciMessage* outputExceptionList);

Parameters
returnCode (output)

A NULL pointer input signifies that the user-defined node does not handle
errors. Any exceptions that are thrown during the execution of this call are
re-thrown to the next upstream node in the flow. If input is not NULL, output
signifies the success status of the call. If an exception occurs during execution,
*returnCode is set to CCI_EXCEPTION on output. A call to
cciGetLastExceptionData provides details of the exception. If an invalid
sqlPathExpression parameter was passed in, returnCode is set to
CCI_INV_SQL_EXPR_OBJECT. If an invalid CciMessage* value is passed in,
returnCode is set to CCI_INV_MESSAGE_OBJECT. If the element could not be
navigated to or created, returnCode is set to CCI_PATH_NOT_NAVIGABLE.

sqlPathExpression (input)
Specifies the SQLPathExpression object to be executed as returned by either the
cniCreateReadOnlyPathExpression or the cniCreateModifyablePathExpression
function. This parameter can not be NULL.

inputMessageRoot (input)
The message representing the input message. This parameter can not be NULL.

inputLocalEnvironment (input)
The message representing the input local environment. This parameter can not
be NULL.

inputExceptionList (input)
The message representing the input exception list. This parameter can not be
NULL.

outputMessageRoot (input)
The message representing the output message. This parameter can be NULL.

outputLocalEnvironment (input)
The message representing the output local environment. This parameter can be
NULL.

outputExceptionList (input)
The message representing the output exception list. This parameter can be
NULL.

The following table shows the mapping between the correlation names accepted in
the ESQL path expression and the data that is accessed.

176 User-defined Extensions

Correlation name Data accessed

Environment The single Environment tree for the flow. This element is
determined by the broker and it is not necessary to specify
it with this API.

InputLocalEnvironment inputLocalEnvironment parameter to cniSqlNavigatePath

OutputLocalEnvironment outputLocalEnvironment parameter to cniSqlNavigatePath

InputRoot inputMessageRoot parameter to cniSqlNavigatePath

InputBody Last child of InputRoot

InputProperties InputRoot.Properties (InputRoot.Properties is the first child
of InputRoot, named ″Properties″)

OutputRoot outputMessageRoot parameter to cniSqlNavigatePath

InputExceptionList inputExceptionList parameter to cniSqlNavigatePath

OutputExceptionList outputExceptionList parameter to cniSqlNavigatePath

Database ODBC datasource identified by dataSourceName parameter
to cniCreateReadOnlyPathExpression or
cniCreateModifyablePathExpression

InputDestinationList Synonym for InputLocalEnvironment that is compatible
with earlier versions

OutputDestinationList Synonym for OutputLocalEnvironment that is compatible
with earlier versions

All other rules regarding the actual navigability and validity of paths are defined
in Correlation names.

Return values
If the path is navigated successfully, the address of the syntax element is returned.
However, if the path is not navigable, a value of zero (CCI_NULL_ADDR) is
returned, and the returnCode parameter indicates the reason for the error.

Example

Assuming that you have previously created a SQLPathExpression (see the example
for cniSqlCreateReadOnlyPathExpression or
cniSqlCreateModifiablePathExpression), you could use the following code to
navigate to the target element.
CciElement* targetElement = cniSqlNavigatePath(

NULL,
((NODE_CONTEXT_ST *)context)->pathExpression,
message,
localEnvironment,
exceptionList,
NULL, /* do not reference any output trees*/
NULL,
NULL);

cniSqlSelect

Executes an SQL statement that has been previously created using the
cniSqlCreateStatement utility function, as defined by the sqlExpression parameter. If
the statement returns data, the data is written into the message specified by the
outputMessage parameter.

User-defined extensions 177

Syntax
void cniSqlSelect(

int* returnCode,
CciSqlExpression* sqlExpression,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* message,
CciMessage* outputMessage);

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_SQL_EXPR_OBJECT
v CCI_INV_MESSAGE_OBJECT

sqlExpression
The SQL expression object to be executed, as returned by the
cniSqlCreateStatement utility function (input).

localEnvironment
The message representing the input local environment (input).

For compatibility with earlier versions, you can refer to this parameter as
destinationList.

exceptionList
The message representing the input exception list (input).

message
The message representing the input message (input).

outputMessage
The message into which any data returned by the statement is written
(output).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

cniWriteBuffer

Writes the syntax element tree associated with the specified message to the data
buffer owned by that message object. This function is typically used by output
nodes. This operation serializes the element tree into a bit stream that can then be
processed as a sequence of contiguous bytes. This function should be used when
writing the bit stream to a target that is outside the broker.

You must call cniFinalize before this call, or it will not work.

Syntax
void cniWriteBuffer(

int* returnCode,
CciMessage* message);

178 User-defined Extensions

Parameters
returnCode

The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_MESSAGE_OBJECT

message
The address of the message object for which the element tree is to be serialized
(input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example
cniCopyElementTree(&rc, inLastChild, outLastChild);
cniFinalize(&rc, outMessage);
cniWriteBuffer(&rc, outMessage);

C language user-defined parser API

The C language user-defined parser API consists of:
1. A set of implementation functions that provide the functionality of the

user-defined parser. These functions are invoked by the message broker. Most
implementation functions are mandatory and, if not supplied by the developer,
cause an exception at run time.

2. A set of utility functions that create resources in the message broker or request
a service of the broker. These utility functions can be invoked by a user-defined
parser.

These functions are defined in the BipCpi.h header file.

This section covers the following topics:
v “C parser implementation functions.”
v “C parser utility functions” on page 180.

C parser implementation functions

A user-defined parser implements its capability through a function interface which
is invoked by the message broker during runtime execution. This interface includes
functions to create and delete any local context storage associated with a parser
object and the parsing operations.

Some implementation functions are mandatory, and must be implemented by the
developer, as shown below.

This section covers the following topics:

Mandatory functions

v “cpiCreateContext” on page 190

User-defined extensions 179

v “cpiParseNextSibling” on page 215
v “cpiParsePreviousSibling” on page 216
v “cpiParseFirstChild” on page 213
v “cpiParseLastChild” on page 214

Optional and conditional functions

v “cpiDeleteContext” on page 195
v “cpiElementValue” on page 200
v “cpiNextParserClassName” on page 204
v “cpiNextParserCodedCharSetId” on page 205
v “cpiNextParserEncoding” on page 206
v “cpiParseBuffer” on page 209
v “cpiParseBufferEncoded” on page 210
v “cpiParseBufferFormatted” on page 212
v “cpiParserType” on page 217
v “cpiSetElementValue” on page 226
v “cpiSetNextParserClassName” on page 230
v “cpiWriteBuffer” on page 231
v “cpiWriteBufferEncoded” on page 232
v “cpiWriteBufferFormatted” on page 233

C parser utility functions

The following system-provided functions allow the C user-defined parser to create
or define message broker objects, such as message parser factories.

This section covers the following topics:

Initialization and resource creation

v “cpiCreateParserFactory” on page 192
v “cpiDefineParserClass” on page 193

Message buffer access

v “cpiAppendToBuffer” on page 185
v “cpiBufferByte” on page 186
v “cpiBufferPointer” on page 187
v “cpiBufferSize” on page 187

Syntax element navigation

v “cpiRootElement” on page 218
v “cpiParent” on page 208
v “cpiNextSibling” on page 207
v “cpiFirstChild” on page 203
v “cpiLastChild” on page 203
v “cpiAddAfter” on page 181

Syntax element access

v “cpiAddBefore” on page 184
v “cpiAddAsFirstChild” on page 182
v “cpiAddAsLastChild” on page 183

180 User-defined Extensions

v “cpiCreateAndInitializeElement” on page 188
v “cpiCreateElement” on page 191
v “cpiElementCompleteNext” on page 195
v “cpiElementCompletePrevious” on page 196
v “cpiElementName” on page 197
v “cpiElementNameSpace” on page 197
v “cpiElementType” on page 199
v “cpiElementValue group” on page 200
v “cpiElementValueValue” on page 202
v “cpiSetCharacterValueFromBuffer” on page 219
v “cpiSetElementCompleteNext” on page 220
v “cpiSetElementCompletePrevious” on page 221
v “cpiSetElementName” on page 222
v “cpiSetElementType” on page 225
v “cpiSetElementValue group” on page 227
v “cpiSetElementValueValue” on page 228
v “cpiSetNameFromBuffer” on page 229

cpiAddAfter
Purpose

Adds a new (and currently unattached) syntax element to the syntax element tree
after the specified target element. The newly added element becomes the next
sibling of the target element.

Syntax
void cpiAddAfter(

int* returnCode,
CciElement* targetElement,
CciElement* newElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

newElement
Specifies the address of the new syntax element object that is to be added to
the tree structure (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

User-defined extensions 181

Sample
void cpiSetElementValue(

CciParser* parser,
CciElement* element,
CciElementValue* value

){
CciElement* newElement;
int rc;

if ((cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_VALUE) ||
(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME_VALUE)) {

cpiSetElementValueValue(&rc, element, value);
}
else if (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME) {

/* Create a new value element, add after the current value element,
and set the value */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_VALUE);
cpiSetElementValueValue(&rc, newElement, value);
cpiAddAfter(&rc, element, newElement);

}
else {
}

return;
}

cpiAddAsFirstChild
Purpose

Adds a new (and currently unattached) syntax element to the syntax element tree
as the first child of the specified target element.

Syntax
void cpiAddAsFirstChild(

int* returnCode,
CciElement* targetElement,
CciElement* newElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

newElement
Specifies the address of the new syntax element object that is to be added to
the tree structure (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

182 User-defined Extensions

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
675 to 698):
void cpiSetElementValue(

CciParser* parser,
CciElement* element,
CciElementValue* value

){
CciElement* newElement;
int rc;

if ((cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_VALUE) ||
(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME_VALUE)) {

cpiSetElementValueValue(&rc, element, value);
}
else if (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME) {

/* Create a new value element, add as a first child, and set the value */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_VALUE);
cpiSetElementValueValue(&rc, newElement, value);
cpiAddAsFirstChild(&rc, element, newElement);

}
else {
}

return;
}

cpiAddAsLastChild
Purpose

Adds a new (and currently unattached) syntax element to the syntax element tree
as the last child of the specified target element.

Syntax
void cpiAddAsLastChild(

int* returnCode,
CciElement* targetElement,
CciElement* newElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

newElement
Specifies the address of the new syntax element object that is to be added to
the tree structure (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

User-defined extensions 183

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
209 to 228):
/* Convert the attribute value into broker form */

data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);
cpiSetElementName(&rc, newElement, data);

/* Free the memory created in CciNString() */
free((void *)data);

/* Add the element */
cpiAddAsLastChild(&rc, element, newElement);

cpiAddBefore
Purpose

Adds a new (and currently unattached) syntax element to the syntax element tree
before the specified target element. The newly added element becomes the
previous sibling of the target element.

Syntax
void cpiAddBefore(

int* returnCode,
CciElement* targetElement,
CciElement* newElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

newElement
Specifies the address of the new syntax element object that is to be added to
the tree structure (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample
void cpiSetElementValue(

CciParser* parser,
CciElement* element,
CciElementValue* value

){
CciElement* newElement;
int rc;

184 User-defined Extensions

if ((cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_VALUE) ||
(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME_VALUE)) {

cpiSetElementValueValue(&rc, element, value);
}
else if (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME) {

/* Create a new value element, add before the current value element,
and set the value */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_VALUE);
cpiSetElementValueValue(&rc, newElement, value);
cpiAddBefore(&rc, element, newElement);

}
else {
}

return;
}

cpiAppendToBuffer
Purpose

Appends data to the buffer containing the bit stream representation of a message,
for the specified parser object.

Syntax
void cpiAppendToBuffer(

int* returnCode,
CciParser* parser,
CciByte* data,
CciSize length);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_PARSER_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_LENGTH

parser
Specifies the address of the parser object (input).

data
The address of the data to be appended to the buffer (input).

length
The size in bytes of the data to be appended to the buffer (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

User-defined extensions 185

Sample

This example is taken from the sample parser file BipSampPluginParser.c (line
634):
cpiAppendToBuffer(&rc, parser, (char *)"Some test data", 14);

cpiBufferByte
Purpose

Gets a single byte from the buffer containing the bit stream representation of the
input message, for the specified parser object. The value of the index argument
indicates which byte in the byte array is to be returned.

Syntax
CciByte cpiBufferByte(

int* returnCode,
CciParser* parser,
CciSize index);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_PARSER_OBJECT
v CCI_NO_BUFFER_EXISTS

parser
Specifies the address of the parser object (input).

index
Specifies the offset to use as an index into the buffer (input).

Return values

The requested byte is returned. If an error occurs, returnCode indicates the reason
for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines 61
to 75):
void advance(

PARSER_CONTEXT_ST* context,
CciParser* parser

){
int rc = 0;

/* Advance to the next character */
context->iIndex++;

/* Detect and handle the end condition */
if (context->iIndex == context->iSize) return;

186 User-defined Extensions

/* Obtain the next character from the buffer */
context->iCurrentCharacter = cpiBufferByte(&rc, parser, context->iIndex);

}

cpiBufferPointer
Purpose

Gets a pointer to the buffer containing the bit stream representation of the input
message, for the specified parser object.

Syntax
const CciByte* cpiBufferPointer(

int* returnCode,
CciParser* parser);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_PARSER_OBJECT
v CCI_NO_BUFFER_EXISTS

parser
Specifies the address of the parser object (input).

Return values

If successful, the address of the buffer is returned. Otherwise, a value of zero
(CCI_NULL_ADDR) is returned, and returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
428 to 445):
int cpiParseBufferEncoded(

CciParser* parser,
CciContext* context,
int encoding,
int ccsid

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

/* Get a pointer to the message buffer and set the offset */
pc->iBuffer = (void *)cpiBufferPointer(&rc;, parser);
pc->iIndex = 0;

cpiBufferSize
Purpose

Gets the size of the buffer containing the bit stream representation of the input
message, for the specified parser object.

User-defined extensions 187

Syntax
CciSize cpiBufferSize(

int* returnCode,
CciParser* parser);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_PARSER_OBJECT
v CCI_NO_BUFFER_EXISTS

parser
Specifies the address of the parser object (input).

Return values

If successful, the size of the buffer, in bytes, is returned. If an error occurs, zero
(CCI_NULL_ADDR) is returned, and returnCode indicates the reason for the error.

Sample

This example is taken from the sample node file BipSampPluginParser.c (lines 428
to 452):
int cpiParseBufferEncoded(

CciParser* parser,

CciContext* context,
int encoding,
int ccsid

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

/* Get a pointer to the message buffer and set the offset */
pc->iBuffer = (void *)cpiBufferPointer(&rc, parser);
pc->iIndex = 0;

/* Save the format of the buffer */
pc->iEncoding = encoding;
pc->iCcsid = ccsid;

/* Save size of the buffer */
pc->iSize = cpiBufferSize(&rc, parser);

cpiCreateAndInitializeElement
Purpose

Creates a syntax element, owned by the specified parser, that is not attached to a
syntax tree. The element is partially initialized with the values of the type, name,
firstChildComplete, and lastChildComplete parameters.

188 User-defined Extensions

Syntax
CciElement* cpiCreateAndInitializeElement(

int* returnCode,
CciParser* parser,
CciElementType type,
const CciChar* name,
CciBool firstChildComplete,
CciBool lastChildComplete);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_FAILURE
v CCI_INV_PARSER_OBJECT

parser
Specifies the address of the parser object (input). This address is passed to the
parser as a parameter of the cpiCreateContext implementation function.

type
Specifies the type of the element being created (input).

name
Specifies a descriptive name for the element (input).

firstChildComplete
Specifies a value for the firstChildComplete flag of the syntax element (input).

lastChildComplete
Specifies a value for the lastChildComplete flag of the syntax element (input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned, and returnCode indicates the reason for
the error.

Sample
/* Advance to the end of the value */

while (pc->iCurrentCharacter != quoteChar) {
advance((PARSER_CONTEXT_ST *)context, parser);

}

/* Get a pointer to the end of the tag */
endMarker = (char*)pc->iBuffer+(int)pc->iIndex;

/* Compute the size of the tag */
markedSize = (size_t)endMarker-(int)startMarker;

/* Convert the attribute value into broker form */
data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */
newElement = cpiCreateAndInitializeElement(&rc, parser, type, name);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);
cpiSetElementName(&rc, newElement, data);
if (pc->trace) {

User-defined extensions 189

const char * mbData = mbString(data, pc->iCcsid);
fprintf(pc->tracefile, "PLUGIN: Created new NAMEVALUE element;

object=0x%x type=0x%x name=",
newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

fprintf(pc->tracefile, "%s\n", mbData);
fflush(pc->tracefile);
free((void *)mbData);

}
/* Free the memory created in CciNString() */
free((void *)data);

cpiCreateContext
Purpose

Creates a user-defined extension context associated with a parser object. It is
invoked by the message broker when an instance of a parser object is constructed
or allocated. This occurs when a message flow causes the message data to be
parsed; the broker constructs or allocates a parser object to acquire the appropriate
section of the message data. Before this function is called, the broker will have
created a name element as the effective root element for the parser. However, this
element is not named. The parser should name this element in the
cpiSetElementName function.

The responsibilities of the extension are to:
1. Allocate any parser instance specific data areas (such as context) that might be

required.
2. Perform any additional resource acquisition or initialization that might be

required.
3. Return the address of the context to the calling function. Whenever an

implementation function for this parser instance is invoked, the appropriate
context is passed as an argument to that function. This means that a
user-defined parser developed in C need not maintain its own static pointers to
per-instance data areas.

Defined In Type Member

CPI_VFT Mandatory iFpCreateContext

Syntax
void cpiCreateContext(

CciParser* parser);

Parameters

parser
The address of the parser object (input).

Return values

If successful, the address of the user-defined extension context is returned.
Otherwise, a value of zero is returned.

190 User-defined Extensions

cpiCreateElement
Purpose

Creates a default syntax element that is not attached to a syntax tree. The element
is owned by the specified parser. The element is incomplete in that none of its
attributes (such as type or name) are set.

Syntax
CciElement* cpiCreateElement(

int* returnCode,
CciParser* parser);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_FAILURE
v CCI_INV_PARSER_OBJECT

parser
Specifies the address of the parser object (input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value
of zero (CCI_NULL_ADDR) is returned, and returnCode indicates the reason for
the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
198 to 225):
/* Advance to the end of the value */

while (pc->iCurrentCharacter != quoteChar) {
advance((PARSER_CONTEXT_ST *)context, parser);

}

/* Get a pointer to the end of the tag */
endMarker = (char*)pc->iBuffer+(int)pc->iIndex;

/* Compute the size of the tag */
markedSize = (size_t)endMarker-(int)startMarker;

/* Convert the attribute value into broker form */
data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);
cpiSetElementName(&rc, newElement, data);
if (pc->trace) {

const char * mbData = mbString(data, pc->iCcsid);
fprintf(pc->tracefile, "PLUGIN: Created new NAMEVALUE element;

object=0x%x type=0x%x name=",
newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

fprintf(pc->tracefile, "%s\n", mbData);

User-defined extensions 191

fflush(pc->tracefile);
free((void *)mbData);

}
/* Free the memory created in CciNString() */
free((void *)data);

cpiCreateParserFactory
Purpose

Creates a single instance of the named parser factory in the message broker. It
must be invoked only in the initialization function bipGetParserFactory which is
called when the ’lil’ is loaded by the message broker. If cpiCreateParserFactory is
invoked at any other time, the results are unpredictable.

Syntax
CciFactory* cpiCreateParserFactory(

int* returnCode,
CciChar* name);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_FAILURE
v CCI_INV_FACTORY_NAME
v CCI_INV_OBJECT_NAME

name
Specifies the name of the factory being created (input).

Return values

If successful, the address of the parser factory object is returned. Otherwise, a
value of zero (CCI_NULL_ADDR) is returned, and returnCode indicates the reason
for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
862 to 901):
void LilFactoryExportPrefix * LilFactoryExportSuffix bipGetParserFactory()
{

/* Declare variables */
CciFactory* factoryObject;
int rc;
static CPI_VFT vftable = {CPI_VFT_DEFAULT};

/* Before we proceed we need to initialise all the static constants */
/* that may be used by the plug-in. */
initParserConstants();

/* Setup function table with pointers to parser implementation functions */
vftable.iFpCreateContext = cpiCreateContext;
vftable.iFpParseBufferEncoded = cpiParseBufferEncoded;
vftable.iFpParseFirstChild = cpiParseFirstChild;

192 User-defined Extensions

vftable.iFpParseLastChild = cpiParseLastChild;
vftable.iFpParsePreviousSibling = cpiParsePreviousSibling;
vftable.iFpParseNextSibling = cpiParseNextSibling;
vftable.iFpWriteBufferEncoded = cpiWriteBufferEncoded;
vftable.iFpDeleteContext = cpiDeleteContext;
vftable.iFpSetElementValue = cpiSetElementValue;
vftable.iFpElementValue = cpiElementValue;
vftable.iFpNextParserClassName = cpiNextParserClassName;
vftable.iFpSetNextParserClassName = cpiSetNextParserClassName;
vftable.iFpNextParserEncoding = cpiNextParserEncoding;
vftable.iFpNextParserCodedCharSetId = cpiNextParserCodedCharSetId;

/* Create the parser factory for this plugin */
factoryObject = cpiCreateParserFactory(&rc, constParserFactory);
if (factoryObject) {

/* Define the classes of message supported by the factory */
cpiDefineParserClass(&rc, factoryObject, constPXML, &vftable);

}
else {

/* Error: Unable to create parser factory */
}

/* Return address of this factory object to the broker */
return(factoryObject);

}

cpiDefineParserClass
Purpose

Defines the name of a parser class that is supported by a parser factory. functbl is
a pointer to a virtual function table containing pointers to the C implementation
functions, that is, those functions that provide the function of the parser itself.

Syntax
void cpiDefineParserClass(

int* returnCode,
CciFactory* factoryObject,
CciChar* name,
CPI_VFT* functbl);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_FACTORY_OBJECT
v CCI_INV_PARSER_NAME
v CCI_PARSER_NAME_TOO_LONG
v CCI_INV_OBJECT_NAME
v CCI_INV_VFTP
v CCI_MISSING_IMPL_FUNCTION
v CCI_INV_IMPL_FUNCTION
v CCI_NAME_EXISTS

User-defined extensions 193

factoryObject
Specifies the address of the factory object that supports the named parser
(input). The address is returned from cpiCreateParserFactory.

name
The name of the parser class to be defined (input). The maximum length of a
parser class name is 8 characters.

functbl
The address of the CPI_VFT structure that contains pointers to the
implementation functions (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
862 to 901):
void LilFactoryExportPrefix * LilFactoryExportSuffix bipGetParserFactory()
{

/* Declare variables */
CciFactory* factoryObject;
int rc;
static CPI_VFT vftable = {CPI_VFT_DEFAULT};

/* Before we proceed we need to initialise all the static constants */
/* that may be used by the plug-in. */
initParserConstants();

/* Setup function table with pointers to parser implementation functions */
vftable.iFpCreateContext = cpiCreateContext;
vftable.iFpParseBufferEncoded = cpiParseBufferEncoded;
vftable.iFpParseFirstChild = cpiParseFirstChild;
vftable.iFpParseLastChild = cpiParseLastChild;
vftable.iFpParsePreviousSibling = cpiParsePreviousSibling;
vftable.iFpParseNextSibling = cpiParseNextSibling;
vftable.iFpWriteBufferEncoded = cpiWriteBufferEncoded;
vftable.iFpDeleteContext = cpiDeleteContext;
vftable.iFpSetElementValue = cpiSetElementValue;
vftable.iFpElementValue = cpiElementValue;
vftable.iFpNextParserClassName = cpiNextParserClassName;
vftable.iFpSetNextParserClassName = cpiSetNextParserClassName;
vftable.iFpNextParserEncoding = cpiNextParserEncoding;
vftable.iFpNextParserCodedCharSetId = cpiNextParserCodedCharSetId;

/* Create the parser factory for this plugin */
factoryObject = cpiCreateParserFactory(&rc, constParserFactory);
if (factoryObject) {

/* Define the classes of message supported by the factory */
cpiDefineParserClass(&rc, factoryObject, constPXML, &vftable);

}
else {

/* Error: Unable to create parser factory */
}

/* Return address of this factory object to the broker */
return(factoryObject);

}

194 User-defined Extensions

cpiDeleteContext
Purpose

Deletes the context owned by the parser object. It is invoked by the message
broker when an instance of a parser object is destroyed.

The responsibilities of the parser are to:
1. Release any parser instance specific data areas (such as context) that were

acquired at construction or during parser processing.
2. Release any additional resources that might have been acquired for the

processing of the parser.

Defined In Type Member

CPI_VFT Optional iFpDeleteContext

Syntax
void cpiDeleteContext(

CciParser* parser,
CciContext* context);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

Return values

None.

cpiElementCompleteNext
Purpose

Gets the value of the ’next child complete’ flag from the target syntax element.
This attribute indicates whether the element tree is complete.

Syntax
CciBool cpiElementCompleteNext(

int* returnCode,
CciElement* targetElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

User-defined extensions 195

Return values

The value of the attribute is returned. If an error occurs, returnCode indicates the
reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
491 to 499):
if ((!cpiElementCompleteNext(&rc, element)) &&

(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME)) {

while ((!cpiElementCompleteNext(&rc, element)) &&
(!cpiFirstChild(&rc, element)) &&
(pc->iCurrentElement))

{
pc->iCurrentElement = parseNextItem(parser, context, pc->iCurrentElement);

}

cpiElementCompletePrevious
Purpose

Gets the value of the ’previous child complete’ flag from the target syntax element.
This attribute indicates whether the element tree is complete.

Syntax
CciBool cpiElementCompletePrevious(

int* returnCode,
CciElement* targetElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

Return values

The value of the attribute is returned. If an error occurs, returnCode indicates the
reason for the error.

Sample

This example is similar to code taken from the sample parser file
BipSampPluginParser.c (lines 491 to 499). In the sample file, the code given is for
cpiElementCompleteNext.
if ((!cpiElementCompletePrevious(&rc, element)) &&

(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME)) {

while ((!cpiElementCompletePrevious(&rc, element)) &&
(!cpiFirstChild(&rc, element)) &&

196 User-defined Extensions

(pc->iCurrentElement))
{

pc->iCurrentElement = parsePreviousItem(parser, context, pc->iCurrentElement);
}

cpiElementName
Purpose

Gets the name of the target syntax element. The syntax element name will have
been set previously using cniSetElementName or cpiSetElementName.

Syntax
Ccisize cpiElementName(

int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN
v CCI_INV_BUFFER_TOO_SMALL

targetElement
Specifies the address of the target syntax element object (input).

value
Specifies the address of a buffer into which the element name will be copied
(input).

length
The length, in characters, specified by the value parameter (input).

Return values

If successful, the element name is copied into the supplied buffer and the number
of CciChar characters copied is returned. If the buffer is not large enough to
contain the element name, returnCode is set to CCI_BUFFER_TOO_SMALL and
the number of characters required is returned. For any other failures,
CCI_FAILURE is returned and returnCode indicates the reason for the error.

Sample
cpiElementName(&rc;, element, (CciChar*)&elementName;, sizeof(elementName));

cpiElementNameSpace
Purpose

Gets the value of the ″namespace″ attribute for the specified syntax element

User-defined extensions 197

Defined In Type Member

CPI_VFT Optional iFpElementValue

Syntax
CciSize cpiElementNamespace(

int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

Parameters

returnCode
A NULL pointer input signifies that the user-defined node does not want to
deal with errors. Any exceptions thrown during the execution of this call will
be re-thrown to the next upstream node in the flow. If input is not NULL,
output will signify the success status of the call. If an exception occurs during
execution, *returnCode will be set to CCI_EXCEPTION on output. A call to
CciGetLastExceptionData will provide details of the exception. If the caller did
not allocate enough memory to hold the namespace value, *returncode is set to
CCI_BUFFER_TOO_SMALL.

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN
v CCI_INV_BUFFER_TOO_SMALL

targetElement
Specifies the address of the target syntax element object.

value
Specifies the address of a buffer into which the element namespace value will
be copied. A string of characters (including a NULL terminator) representing
the namespace value is copied into this buffer. The buffer should be a portion
of memory previously allocated by the caller

length
The length in CciChars of the buffer specified by the value parameter.

Return values

If successful, the number of CciChars copied into the buffer is returned.

If the buffer is not large enough to contain the attribute value, returnCode is set to
CCI_BUFFER_TOO_SMALL, and the number of bytes CciChars required is
returned.

Sample
elementNamespace=(CciChar*)malloc(sizeof(CciChar) * elementNamespaceLength);

elementNamespaceLength = cpiElementNamespace(&rc;,
element,
elementNamespace,
elementNamespaceLength);

198 User-defined Extensions

if (rc==CCI_BUFFER_TOO_SMALL){
free(elementNamespace);
elementNamespace=(CciChar*)malloc(sizeof(CciChar) * elementNamespaceLength);
elementNamespaceLength = cpiElementNamespace(&rc;,

element,
elementNamespace,
elementNamespaceLength);

}
checkRC(rc);

cpiElementType
cpiElementType C API command

Purpose

Gets the type of the target syntax element. The syntax element type will have been
set previously using cniSetElementType or cpiSetElementType.

Syntax
CciElementType cpiElementType(

int* returnCode,
CciElement* targetElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

Return values

The value of the element type is returned. If an error occurs, returnCode indicates
the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
491 to 499):
if ((!cpiElementCompleteNext(&rc, element)) &&

(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME)) {

while ((!cpiElementCompleteNext(&rc, element)) &&
(!cpiFirstChild(&rc, element)) &&
(pc->iCurrentElement))

{
pc->iCurrentElement = parseNextItem(parser, context, pc->iCurrentElement);

}

User-defined extensions 199

cpiElementValue
Purpose

Optional function to get the value of a specified element. It is invoked by the
broker when the value of a syntax element is to be retrieved. It provides an
opportunity for a user-defined parser to override the behavior for retrieving
element values.

Defined In Type Member

CPI_VFT Optional iFpElementValue

Syntax
const CciElementValue* cpiElementValue(

CciParser* parser,
CciElement* currentElement);

Parameters

parser
The address of the parser object (input).

currentElement
The address of the current syntax element (input).

Return values

The value of the target syntax element object is returned. This will have been
returned by the cpiElementValueValue function.

cpiElementValue group
Purpose

Functions to get the value of the specified syntax element.

Syntax
CciSize cpiElementBitArrayValue(

int* returnCode,
CciElement* targetElement,
const struct CciBitArray* value);

CciBool cpiElementBooleanValue(
int* returnCode,
CciElement* targetElement);

CciSize cpiElementByteArrayValue(
int* returnCode,
CciElement* targetElement,
const struct CciByteArray* value);

CciSize cpiElementCharacterValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

struct CciDate cpiElementDateValue(
int* returnCode,
CciElement* targetElement);

200 User-defined Extensions

CciSize cpiElementDecimalValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

struct CciTimestamp cpiElementGmtTimestampValue(
int* returnCode,
CciElement* targetElement);

struct CciTime cpiElementGmtTimeValue(
int* returnCode,
CciElement* targetElement);

CciInt cpiElementIntegerValue(
int* returnCode,
CciElement* targetElement);

CciReal cpiElementRealValue(
int* returnCode,
CciElement* targetElement);

struct CciTimestamp cpiElementTimestampValue(
int* returnCode,
CciElement* targetElement);

struct CciTime cpiElementTimeValue(
int* returnCode,
CciElement* targetElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN
v CCI_INV_BUFFER_TOO_SMALL

targetElement
Specifies the address of the target syntax element object (input).

value
The address of an output buffer into which the value of the syntax element is
stored (input). Used on relevant function calls only.

length
The length of the output buffer, in characters, specified by the value parameter
(input). Used on relevant function calls only.

Return values

The value of the element is returned.

In some cases, for example, cpiElementCharacterValue or
cpiElementDecimalValue, if the buffer is not large enough to receive the data the
data is not written into the buffer. The size of the required buffer is passed as the
return value, and returnCode is set to CCI_BUFFER_TOO_SMALL.

If an error occurs, returnCode indicates the reason for the error.

User-defined extensions 201

cpiElementValueValue
Purpose

Gets the value object from the specified syntax element. This value object is
opaque in that it cannot be interrogated. It can be used to set or derive the value of
one element from another, without knowing its type, by using the
cpiSetElementValueValue function. This can be used by parsers that override
behavior by invoking the implementation functions cpiElementValue and
cpiSetElementValue.

Syntax
const CciElementValue* cpiElementValueValue(

int* returnCode,
CciElement* targetElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

Return values

The address of the CciElementValue object stored in the specified target syntax
element is returned. If an error occurs, zero (CCI_NULL_ADDR) is returned and
returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
705 to 725):
const CciElementValue* cpiElementValue(

CciParser* parser,
CciElement* element

){
CciElement* firstChild;
const CciElementValue* value;
int rc;

if ((cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_VALUE) ||
(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME_VALUE)) {

value = cpiElementValueValue(&rc, element);
}
else if (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME) {

firstChild = cniFirstChild(&rc, element);
value = cpiElementValueValue(&rc, firstChild);

}
else {
}

return(value);
}

202 User-defined Extensions

cpiFirstChild
Purpose

Returns the address of the syntax element object that is the first child of the
specified target element.

Syntax
CciElement* cpiFirstChild(

int* returnCode,
const CciElement* targetElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

Return values

The address of the requested syntax element object is returned, unless there is no
child in which case zero is returned. If an error occurs, zero (CCI_NULL_ADDR) is
returned and returnCode indicates the reason for the error.

Sample

This example is taken from the sample node file BipSampPluginParser.c (lines 494
to 496):
while ((!cpiElementCompleteNext(&rc, element)) &&

(!cpiFirstChild(&rc, element)) &&
(pc->iCurrentElement))

cpiLastChild
Purpose

Returns the address of the syntax element object that is the last child of the
specified target element.

Syntax
CciElement* cpiLastChild(

int* returnCode,
const CciElement* targetElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION

User-defined extensions 203

v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

Return values

The address of the requested syntax element object is returned, unless there is no
child in which case zero is returned. If an error occurs, zero (CCI_NULL_ADDR) is
returned and returnCode indicates the reason for the error.

cpiNextParserClassName
Purpose

Optional function to return the name of the next parser class in the chain, if any. It
allows the parser to return to the broker the name of the parser class that handles
the next section, or remainder, of the message content. Normally, for messages
having a simple format type, there is only one message content parser; it is not
necessary to provide this function. For messages having a more complex format
type with multiple message parsers, each parser should identify the next one in the
chain by returning its name in the buffer parameter. The last parser in the chain
must return an empty string.

If you specify the name of a parser supplied with WebSphere Message Broker, you
must use the correct class name of the parser.

Defined In Type Member

CPI_VFT Optional iFpNextParserClassName

Syntax
void cpiNextParserClassName(

CciParser* parser,
CciContext* context,
CciChar* buffer,
int size);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

buffer
The address of a buffer into which the parser class name should be put (input).

size
The length, in bytes, of the buffer provided by the broker (input).

Return values

None.

204 User-defined Extensions

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines 732
to 756).
void cpiNextParserClassName(

CciParser* parser,
CciContext* context,
CciChar* buffer,
int size

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc = 0;

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: -> cpiNextParserClassName() parser=0x%x context=0x%x\n",

parser, context);
fflush(pc->tracefile);

}

/* Copy the name to the broker */
CciCharNCpy(buffer, pc->iNextParserClassName, size);

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiNextParserClassName()\n");
fflush(pc->tracefile);

}

return;
}

cpiNextParserCodedCharSetId
Purpose

Optional function to return the coded character set ID (CCSID) of the data owned
by the next parser class in the chain, if any.

Defined In Type Member

CPI_VFT Optional iFpNextParserCodedCharSetId

Syntax
int cpiNextParserCodedCharSetId(

CciParser* parser,
CciContext* context);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

Return values

The CCSID of the data is returned. If it is not known, zero might be returned and
a default CCSID will apply.

User-defined extensions 205

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines 820
to 839).
int cpiNextParserCodedCharSetId(

CciParser* parser,
CciContext* context

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int ccsid = 0;

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: -> cpiNextParserCodedCharSetId() parser=0x%x

context=0x%x\n", parser, context);
fflush(pc->tracefile);

}

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiNextParserCodedCharSetId()\n");
fflush(pc->tracefile);

}

return ccsid;
}

cpiNextParserEncoding
Purpose

Optional function to return the encoding of data owned by the next parser class in
the chain, if any.

Defined In Type Member

CPI_VFT Optional iFpNextParserEncoding

Syntax
int cpiNextParserEncoding(

CciParser* parser,
CciContext* context);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

Return values

The encoding of the data is returned. If it is not known, zero might be returned
and default encoding will apply.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines 794
to 813).
int cpiNextParserEncoding(

CciParser* parser,
CciContext* context

206 User-defined Extensions

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int encoding = 0;

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: -> cpiNextParserEncoding() parser=0x%x context=0x%x\n",

parser, context);
fflush(pc->tracefile);

}

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiNextParserEncoding()\n");
fflush(pc->tracefile);

}

return encoding;
}

cpiNextSibling
Purpose

Returns the address of the syntax element object that is the next (right) sibling of
the specified target element.

Syntax
CciElement* cpiNextSibling(

int* returnCode,
const CciElement* targetElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

Return values

The address of the requested syntax element object is returned, unless there is no
next sibling in which case zero is returned. If an error occurs, zero
(CCI_NULL_ADDR) is returned and returnCode indicates the reason for the error.

Sample

This example is taken from the sample node file BipSampPluginParser.c (lines 494
to 496):
while ((!cpiElementCompleteNext(&rc, cpiParent(&rc, element))) &&

(!cpiNextSibling(&rc, element)) &&
(pc->iCurrentElement))

User-defined extensions 207

cpiParent
Purpose

Returns the address of the syntax element object that is the parent of the specified
target element.

Syntax
CciElement* cpiParent(

int* returnCode,
const CciElement* targetElement);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

Return values

If successful, the address of the requested syntax element is returned. If there is no
parent element, zero is returned. If an error occurs, zero (CCI_NULL_ADDR) is
returned and the returnCode parameter indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
116 to 173):
void* parseNextItem(

CciParser* parser,
CciContext* context,
CciElement* element

){
void* endMarker;
void* startMarker;
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context;
CciElement* returnElement = element;
CciElement* newElement;
size_t markedSize;
const CciChar* data;
int rc;

if (pc->trace)

/* Skip any white space */
skipWhiteSpace((PARSER_CONTEXT_ST *)context);

/* Are we at the end of the buffer? */
if (pc->iIndex == pc->iSize)

return(0);
}

/* Are we within a tag? */
if (pc->iInTag) {

208 User-defined Extensions

if (pc->iCurrentCharacter == chCloseAngle) {

/* We have reached the end of a tag */
pc->iInTag = 0;
advance((PARSER_CONTEXT_ST *)context, parser);

}
else if (pc->iCurrentCharacter == chForwardSlash) {

/* We may have reached the end of an empty tag */
advance((PARSER_CONTEXT_ST *)context, parser);

if (pc->iCurrentCharacter == chCloseAngle) {

pc->iInTag = 0;
advance((PARSER_CONTEXT_ST *)context, parser);

cpiSetElementCompleteNext(&rc, element, 1);

returnElement = cpiParent(&rc, element);
}

cpiParseBuffer
Purpose

Prepares a parser to parse a new message object. It is called the first time (for each
message) that the message flow causes the message content to be parsed. Each
user-defined parser that is used to parse a particular message format has this
function invoked to:
v Perform any initialization that is required
v Return the length of the message content that it takes ownership for

The offset parameter indicates the offset within the message buffer where parsing
is to commence. This is necessary because another parser might own a previous
portion of the message (for example, an MQMD header will have been parsed by
the message broker’s internal parser). The offset must be positive and be less than
the size of the buffer. It is recommended that the implementation function verifies
that the offset is valid, as this could improve problem determination if a previous
parser is in error.

The parser must return the size of the remaining buffer for which it takes
ownership. This must be less than or equal to the size of the buffer less the current
offset.

A parser must not attempt to cause parsing of other portions of the syntax element
tree, for example, by navigating to the root element and to another branch. This
can cause unpredictable results.

If this implementation function is provided in the CPI_VFT structure, neither
cpiParseBufferEncoded() nor cpiParseBufferFormatted() can be specified, because
the cpiDefineParserClass() function will fail with a return code of
CCI_INVALID_IMPL_FUNCTION.

Defined In Type Member

CPI_VFT Conditional iFpParseBuffer

User-defined extensions 209

Syntax
int cpiParseBuffer(

CciParser* parser,
CciContext* context,
int offset);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

offset
The offset into the message buffer at which parsing is to commence (input).

Return values

The size (in bytes) of the remaining portion of the message buffer for which the
parser takes ownership.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
428 to 466):
int cpiParseBuffer(

CciParser* parser,
CciContext* context,
int offset,

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

/* Get a pointer to the message buffer and set the offset */
pc->iBuffer = (void *)cpiBufferPointer(&rc, parser);
pc->iIndex = 0;

/* Save size of the buffer */
pc->iSize = cpiBufferSize(&rc, parser);

/* Prime the first byte in the stream */
pc->iCurrentCharacter = cpiBufferByte(&rc, parser, pc->iIndex);

/* Set the current element to the root element */
pc->iCurrentElement = cpiRootElement(&rc, parser);

/* Reset flag to ensure parsing is reset correctly */
pc->iInTag = 0;

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiParseBuffer()
retvalue=%d\n", pc->iSize);
fflush(pc->tracefile);

}

cpiParseBufferEncoded
Purpose

This function is an extension of the capability provided by the existing
cpiParseBuffer() implementation function that provides the encoding and coded
character set that the input message is represented in. If this implementation

210 User-defined Extensions

function is provided in the CPI_VFT structure, neither cpiParseBuffer() nor
cpiParseBufferFormatted() can be specified, otherwise the cpiDefineParserClass()
function will fail with a return code of CCI_INVALID_IMPL_FUNCTION.

Defined In Type Member

CPI_VFT Conditional iFpParseBufferEncoded

Syntax
int cpiParseBufferEncoded(

CciParser* parser,
CciContext* context,
int encoding,
int ccsid);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

encoding
The encoding of the message buffer (input).

ccsid
The ccsid of the message buffer (input).

Return values

The size (in bytes) of the remaining portion of the message buffer for which the
parser takes ownership.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
428 to 466):
int cpiParseBufferEncoded(

CciParser* parser,
CciContext* context,
int encoding,
int ccsid

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

/* Get a pointer to the message buffer and set the offset */
pc->iBuffer = (void *)cpiBufferPointer(&rc, parser);
pc->iIndex = 0;

/* Save the format of the buffer */
pc->iEncoding = encoding;
pc->iCcsid = ccsid;

/* Save size of the buffer */
pc->iSize = cpiBufferSize(&rc, parser);

/* Prime the first byte in the stream */
pc->iCurrentCharacter = cpiBufferByte(&rc, parser, pc->iIndex);

/* Set the current element to the root element */

User-defined extensions 211

pc->iCurrentElement = cpiRootElement(&rc, parser);

/* Reset flag to ensure parsing is reset correctly */
pc->iInTag = 0;

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiParseBufferEncoded()
retvalue=%d\n", pc->iSize);
fflush(pc->tracefile);

}

cpiParseBufferFormatted
Purpose

This function is an extension of the capability provided by the existing
cpiParseBuffer() implementation function that provides:
1. The encoding and coded character set that the input message is represented in.
2. The message set, type and format for the message.

If this implementation function is provided in the CPI_VFT structure, neither
cpiParseBuffer() nor cpiParseBufferEncoded() can be specified, because the
cpiDefineParserClass() function will fail with a return code of
CCI_INVALID_IMPL_FUNCTION.

Defined In Type Member

CPI_VFT Conditional iFpParseBufferFormatted

Syntax
int cpiParseBufferFormatted(

CciParser* parser,
CciContext* context,
int encoding,
int ccsid,
CciChar* set,
CciChar* type,
CciChar* format);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

encoding
The encoding of the message buffer (input).

ccsid
The ccsid of the message buffer (input).

set
The message set to which the message belongs (input).

type
The message type (input).

format
The message format (input).

212 User-defined Extensions

Return values

The size (in bytes) of the remaining portion of the message buffer for which the
parser takes ownership.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
428 to 466):
int cpiParseBufferFormatted(

CciParser* parser,
CciContext* context,
int encoding,
int ccsid,
CciChar* set,
CciChar* type,
CciChar* format

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

/* Get a pointer to the message buffer and set the offset */
pc->iBuffer = (void *)cpiBufferPointer(&rc, parser);
pc->iIndex = 0;

/* Save the format of the buffer */
pc->iEncoding = encoding;
pc->iCcsid = ccsid;

/* Save size of the buffer */
pc->iSize = cpiBufferSize(&rc, parser);

/* Prime the first byte in the stream */
pc->iCurrentCharacter = cpiBufferByte(&rc, parser, pc->iIndex);

/* Set the current element to the root element */
pc->iCurrentElement = cpiRootElement(&rc, parser);

/* Reset flag to ensure parsing is reset correctly */
pc->iInTag = 0;

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiParseBufferFormatted()
retvalue=%d\n", pc->iSize);
fflush(pc->tracefile);

}

cpiParseFirstChild
Purpose

Parses the first child of a specified syntax element. It is invoked by the broker
when the first child element of the current syntax element is required.

Defined In Type Member

CPI_VFT Mandatory iFpParseFirstChild

Syntax
void cpiParseFirstChild(

CciParser* parser,
CciContext* context,
CciElement* currentElement);

User-defined extensions 213

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

currentElement
The address of the current syntax element (input).

Return values

None.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
477 to 508):
void cpiParseFirstChild(

CciParser* parser,
CciContext* context,
CciElement* element

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

if ((!cpiElementCompleteNext(&rc, element)) &&
(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME)) {

while ((!cpiElementCompleteNext(&rc, element)) &&
(!cpiFirstChild(&rc, element)) &&
(pc->iCurrentElement))

{
pc->iCurrentElement = parseNextItem(parser, context, pc->iCurrentElement);

}
}

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiParseFirstChild()\n");
fflush(pc->tracefile);

}

return;
}

cpiParseLastChild
Purpose

Parses the last child of a specified syntax element. It is invoked by the broker
when the last child element of the current syntax element is required.

Defined In Type Member

CPI_VFT Mandatory iFpParseLastChild

Syntax
void cpiParseLastChild(

CciParser* parser,
CciContext* context,
CciElement* currentElement);

214 User-defined Extensions

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

currentElement
The address of the current syntax element (input).

Return values

None.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
515 to 544):
void cpiParseLastChild(

CciParser* parser,
CciContext* context,
CciElement* element

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

if ((cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME)) {

while ((!cpiElementCompleteNext(&rc, element)) &&
(pc->iCurrentElement))

{
pc->iCurrentElement = parseNextItem(parser, context, pc->iCurrentElement);

}
}

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiParseLastChild()\n");
fflush(pc->tracefile);

}

return;
}

The purpose of this code is to parse children of an element until the last child is
reached. You can use this kind of structure in a parser that does not already know
the exact offset in the bit stream of the last child of an element.

cpiParseNextSibling
Purpose

Parses the next (right) sibling of a specified syntax element. It is invoked by the
broker when the next (right) sibling element of the current syntax element is
required.

Defined In Type Member

CPI_VFT Mandatory iFpParseNextSibling

User-defined extensions 215

Syntax
void cpiParseNextSibling(

CciParser* parser,
CciContext* context,
CciElement* currentElement);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

currentElement
The address of the current syntax element (input).

Return values

None.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
578 to 605):
void cpiParseNextSibling(

CciParser* parser,
CciContext* context,
CciElement* element

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

while ((!cpiElementCompleteNext(&rc, cpiParent(&rc, element))) &&
(!cpiNextSibling(&rc, element)) &&
(pc->iCurrentElement))

{
pc->iCurrentElement = parseNextItem(parser, context, pc->iCurrentElement);

}

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiParseNextSibling()\n");
fflush(pc->tracefile);

}

return;
}

cpiParsePreviousSibling
Purpose

Parse the previous (left) sibling of a specified syntax element. It is invoked by the
broker when the previous (left) sibling element of the current syntax element is
required.

Defined In Type Member

CPI_VFT Mandatory iFpParsePreviousSibling

216 User-defined Extensions

Syntax
void cpiParsePreviousSibling(

CciParser* parser,
CciContext* context,
CciElement* currentElement);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

currentElement
The address of the current syntax element (input).

Return values

None.

Sample
void cpiParsePreviousSibling(

CciParser* parser,
CciContext* context,
CciElement* element

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

while ((!cpiElementCompletePrevious(&rc, cpiParent(&rc, element))) &&
(!cpiPreviousSibling(&rc, element)) &&
(pc->iCurrentElement))

{
pc->iCurrentElement = parsePreviousItem(parser, context, pc->iCurrentElement);

}

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiParsePreviousSibling()\n");
fflush(pc->tracefile);

}

return;
}

The code sample is similar to that used for cpiParseNextSibling. Use
cpiParsePreviousSibling in the context shown above when you are parsing the
bit-stream right to left.

cpiParserType
Purpose

Optional function to return whether the parser is an implementation of a standard
parser. Such a parser expects that the Format field of the preceding header will
contain the name of the parser class that follows. Non-standard parsers expect that
the Domain field will contain the parser class name. If the cpiParserType
implementation function is not provided, the message broker assumes that the
parser is of the standard type.

Defined In Type Member

User-defined extensions 217

CPI_VFT Optional iFpParserType

Syntax
CciBool cpiParserType(

CciParser* parser,
CciContext* context);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

Return values

If the implementation is of a standard parser, zero is returned. Otherwise, the
implementation is assumed to be that of a non-standard parser and a non-zero
value is returned.

cpiRootElement
Purpose

Gets the address of the root syntax element of the specified parser object.

Syntax
CciElement* cpiRootElement(

int* returnCode,
CciParser* parser);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_PARSER_OBJECT

parser
Specifies the address of the parser object (input).

Return values

The address of the root syntax element is returned. If an error occurs, zero
(CCI_NULL_ADDR) is returned, and returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
428 to 470):
int cpiParseBufferEncoded(

CciParser* parser,
CciContext* context,
int encoding,

218 User-defined Extensions

int ccsid
){

PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc;

/* Get a pointer to the message buffer and set the offset */
pc->iBuffer = (void *)cpiBufferPointer(&rc, parser);
pc->iIndex = 0;

/* Save the format of the buffer */
pc->iEncoding = encoding;
pc->iCcsid = ccsid;

/* Save size of the buffer */
pc->iSize = cpiBufferSize(&rc, parser);

/* Prime the first byte in the stream */
pc->iCurrentCharacter = cpiBufferByte(&rc, parser, pc->iIndex);

/* Set the current element to the root element */
pc->iCurrentElement = cpiRootElement(&rc, parser);

/* Reset flag to ensure parsing is reset correctly */
pc->iInTag = 0;

/* We will assume ownership of the remainder of the buffer */
return(pc->iSize);

}

cpiSetCharacterValueFromBuffer
Purpose

Sets the value of the specified syntax element.

Syntax
void cpiSetCharacterValueFromBuffer(

int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN

targetElement
Specifies the address of the target syntax element object (input).

value
The value to be set in the target element (input).

length
The length of the character string, expressed as the number of CciChar
characters, specified by the value parameter (input).

User-defined extensions 219

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample
/* Convert the attribute value into broker form */

data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);
cpiSetCharacterValueFromBuffer(&rc, newElement, data, length);
if (pc->trace) {

const char * mbData = mbString(data, pc->iCcsid);
fprintf(pc->tracefile, "PLUGIN: Created new NAMEVALUE element;

object=0x%x type=0x%x name=",
newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

fprintf(pc->tracefile, "%s\n", mbData);
fflush(pc->tracefile);
free((void *)mbData);

}
/* Free the memory created in CciNString() */
free((void *)data);

/* Add the element */
cpiAddAsLastChild(&rc, element, newElement);

cpiSetElementCompleteNext
Purpose

Sets the ’next child complete’ flag in the target syntax element to the specified
value.

Syntax
void cpiSetElementCompleteNext(

int* returnCode,
CciElement* targetElement,
CciBool value);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

value
The value to be set in the flag (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

220 User-defined Extensions

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
289 to 318):
/* Get a pointer to the start of the tag */

startMarker = (char*)pc->iBuffer+(int)pc->iIndex;

/* Skip over the tag */
goToNameEnd((PARSER_CONTEXT_ST *)context, parser);

/* Get a pointer to the end of the tag */
endMarker = (char*)pc->iBuffer+(int)pc->iIndex;

/* Compute the size of the tag */
markedSize = (size_t)endMarker-(int)startMarker;

/* Convert the tag into broker form */
data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name element for the tag */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME);
cpiSetElementName(&rc, newElement, data);
cpiSetElementCompletePrevious(&rc, newElement, 0);
cpiSetElementCompleteNext(&rc, newElement, 0);
if (pc->trace) {

const char * mbData = mbString(data, pc->iCcsid);
fprintf(pc->tracefile, "PLUGIN: New tag found\n");
fprintf(pc->tracefile, "PLUGIN: Created new NAME element;

object=0x%x type=0x%x name=",
newElement, CCI_ELEMENT_TYPE_NAME);

fprintf(pc->tracefile, "%s\n", mbData);
fflush(pc->tracefile);
free((void *)mbData);

}
/* Free the memory allocated in CciNString() */
free((void *)data);

/* Add the element */
cpiAddAsLastChild(&rc, element, newElement);
cpiSetElementCompletePrevious(&rc, element, 1);

cpiSetElementCompletePrevious
Purpose

Sets the ’previous child complete’ flag in the target syntax element to the specified
value.

Syntax
void cpiSetElementCompletePrevious(

int* returnCode,
CciElement* targetElement,
CciBool value);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION

User-defined extensions 221

v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

value
The value to be set in the flag (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
289 to 318):
/* Get a pointer to the start of the tag */

startMarker = (char*)pc->iBuffer+(int)pc->iIndex;

/* Skip over the tag */
goToNameEnd((PARSER_CONTEXT_ST *)context, parser);

/* Get a pointer to the end of the tag */
endMarker = (char*)pc->iBuffer+(int)pc->iIndex;

/* Compute the size of the tag */
markedSize = (size_t)endMarker-(int)startMarker;

/* Convert the tag into broker form */
data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name element for the tag */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME);
cpiSetElementName(&rc, newElement, data);
cpiSetElementCompletePrevious(&rc, newElement, 0);
cpiSetElementCompleteNext(&rc, newElement, 0);
if (pc->trace) {

const char * mbData = mbString(data, pc->iCcsid);
fprintf(pc->tracefile, "PLUGIN: New tag found\n");
fprintf(pc->tracefile, "PLUGIN: Created new NAME element;

object=0x%x type=0x%x name=",
newElement, CCI_ELEMENT_TYPE_NAME);

fprintf(pc->tracefile, "%s\n", mbData);
fflush(pc->tracefile);
free((void *)mbData);

}
/* Free the memory allocated in CciNString() */
free((void *)data);

/* Add the element */
cpiAddAsLastChild(&rc, element, newElement);
cpiSetElementCompletePrevious(&rc, element, 1);

cpiSetElementName
Purpose

Sets the name of the specified syntax element.

222 User-defined Extensions

Syntax
void cpiSetElementName(

int* returnCode,
CciElement* targetElement,
const CciChar* name);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER

targetElement
Specifies the address of the target syntax element object (input).

name
The name to be set in the target element (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
209 to 228):
/* Convert the attribute value into broker form */

data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);
cpiSetElementName(&rc, newElement, data);
if (pc->trace) {

const char * mbData = mbString(data, pc->iCcsid);
fprintf(pc->tracefile, "PLUGIN: Created new NAMEVALUE element;

object=0x%x type=0x%x name=",
newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

fprintf(pc->tracefile, "%s\n", mbData);
fflush(pc->tracefile);
free((void *)mbData);

}
/* Free the memory created in CciNString() */
free((void *)data);

/* Add the element */
cpiAddAsLastChild(&rc, element, newElement);

cpiSetElementNamespace
Purpose

Sets the ″namespace″ attribute for the specified syntax element.

Defined In Type Member

User-defined extensions 223

CPI_VFT Optional iFpSetElementValue

Syntax
void cpiSetElementNamespace(

int* returnCode,
CciElement* targetElement,
const CciChar* nameSpace);

Parameters

returnCode
A NULL pointer input signifies that the user-defined node does not wish to
deal with errors. Any exceptions thrown during the execution of this call will
be re-thrown to the next upstream node in the flow. If input is not NULL,
output will signify the success status of the call. If an exception occurs during
execution, *returnCode will be set to CCI_EXCEPTION on output. A call to
CciGetLastExceptionData will provide details of the exception. (input).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER

currentElement
The address of the current syntax element (input).

targetElement
Specifies the address of the target syntax element object.

value
Specifies the address of a null terminated string of CciChars representing the
namespace value. An empty string is a valid value for namespace. In fact,
elements are created in the empty string namespace by default so specifying an
empty string as the namespace via this API will only have any effect if the
element was previously in another namespace and the desired effect is to
change the namespace value to empty string.

Return values

None.

Sample
/* Convert the attribute value into broker form */

data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);
cpiSetElementName(&rc, newElement, data);
cpiSetElementNamespace(&rc, newElement, data);
if (pc->trace) {

const char * mbData = mbString(data, pc->iCcsid);
fprintf(pc->tracefile, "PLUGIN: Created new NAMESPACEVALUE element;

object=0x%x type=0x%x name=",
newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

fprintf(pc->tracefile, "%s\n", mbData);
fflush(pc->tracefile);
free((void *)mbData);

224 User-defined Extensions

}
/* Free the memory created in CciNString() */
free((void *)data);

/* Add the element */
cpiAddAsLastChild(&rc, element, newElement);

cpiSetElementType
Purpose

Sets the type of the specified syntax element.

Syntax
void cpiSetElementType(

int* returnCode,
CciElement* targetElement,
CciElementType type);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT

targetElement
Specifies the address of the target syntax element object (input).

type
The type to be set in the target element (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
209 to 228):
/* Convert the attribute value into broker form */

data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);
cpiSetElementName(&rc, newElement, data);
if (pc->trace) {

const char * mbData = mbString(data, pc->iCcsid);
fprintf(pc->tracefile, "PLUGIN: Created new NAMEVALUE element;

object=0x%x type=0x%x name=",
newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

fprintf(pc->tracefile, "%s\n", mbData);
fflush(pc->tracefile);
free((void *)mbData);

}
/* Free the memory created in CciNString() */
free((void *)data);

User-defined extensions 225

/* Add the element */
cpiAddAsLastChild(&rc, element, newElement);

cpiSetElementValue
Purpose

Optional function to set the value of a specified element. It is invoked by the
broker when the value of a syntax element is to be set. It provides an opportunity
for a user-defined parser to override the behavior for setting element values.

Defined In Type Member

CPI_VFT Optional iFpSetElementValue

Syntax
void cpiSetElementValue(

CciParser* parser,
CciElement* currentElement,
CciElementValue* value);

Parameters

parser
The address of the parser object (input).

currentElement
The address of the current syntax element (input).

value
The value (input).

Return values

None.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
675 to 698):
void cpiSetElementValue(

CciParser* parser,
CciElement* element,
CciElementValue* value

){
CciElement* newElement;
int rc;

if ((cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_VALUE) ||
(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME_VALUE)) {

cpiSetElementValueValue(&rc, element, value);
}
else if (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME) {

/* Create a new value element, add as a first child, and set the value */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_VALUE);
cpiSetElementValueValue(&rc, newElement, value);
cpiAddAsFirstChild(&rc, element, newElement);

}
else {

226 User-defined Extensions

}

return;
}

cpiSetElementValue group
Purpose

Functions to set a value in the specified syntax element.

Syntax
void cpiSetElementBitArrayValue(

int* returnCode,
CciElement* targetElement,
const struct CciBitArray* value);

void cpiSetElementByteArrayValue(
int* returnCode,
CciElement* targetElement,
const struct CciByteArray* value);

void cpiSetElementBooleanValue(
int* returnCode,
CciElement* targetElement,
CciBool value);

void cpiSetElementCharacterValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value,
CciSize length);

void cpiSetElementDateValue(
int* returnCode,
CciElement* targetElement,
const struct CciDate* value);

void cpiSetElementDecimalValue(
int* returnCode,
CciElement* targetElement,
const CciChar* value);

void cpiSetElementGmtTimestampValue(
int* returnCode,
CciElement* targetElement, const struct CciTimestamp* value);

void cpiSetElementGmtTimeValue(
int* returnCode,
CciElement* targetElement,
const struct CciTime* value);

void cpiSetElementIntegerValue(
int* returnCode,
CciElement* targetElement,
CciInt value);

void cpiSetElementRealValue(
int* returnCode,
CciElement* targetElement,
CciReal value);

void cpiSetElementTimestampValue(
int* returnCode,
CciElement* targetElement,
const struct CciTimestamp* value);

void cpiSetElementTimeValue(
int* returnCode,
CciElement* targetElement,
const struct CciTime* value);

User-defined extensions 227

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN

targetElement
Specifies the address of the target syntax element object (input).

value
The value to be set in the target element (input).

length
The length of the data value, expressed as the number of CciChar characters.
Used on relevant function calls only.

Return values

None. If an error occurs, returnCode indicates the reason for the error.

cpiSetElementValueValue
Purpose

Sets the value of the specified syntax element.

Syntax
void cpiSetElementValueValue(

int* returnCode,
CciElement* targetElement,
CciElementValue* value);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER

targetElement
Specifies the address of the target syntax element object (input).

value
Specifies the address of the CciElementValue object that contains the value to
be stored in the specified target element (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

228 User-defined Extensions

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
675 to 698):
void cpiSetElementValue(

CciParser* parser,
CciElement* element,
CciElementValue* value

){
CciElement* newElement;
int rc;

if ((cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_VALUE) ||
(cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME_VALUE)) {

cpiSetElementValueValue(&rc, element, value);
}
else if (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME) {

/* Create a new value element, add as a first child, and set the value */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_VALUE);
cpiSetElementValueValue(&rc, newElement, value);
cpiAddAsFirstChild(&rc, element, newElement);

}
else {
}

return;
}

cpiSetNameFromBuffer
Purpose

Sets the name attribute of the target syntax element using the data supplied in the
buffer pointed to by the name parameter. The size of the name is specified using
the length parameter.

Syntax
void cpiSetNameFromBuffer(

int* returnCode,
CciElement* targetElement,
const CciChar* name,
CciSize length);

Parameters

returnCode
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_EXCEPTION
v CCI_INV_ELEMENT_OBJECT
v CCI_INV_DATA_POINTER
v CCI_INV_DATA_BUFLEN

targetElement
Specifies the address of the target syntax element object (input).

name
The address of a buffer containing the name (input).

User-defined extensions 229

length
The length of the character string, expressed as the number of CciChar
characters, specified by the name parameter.

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample
/* Convert the attribute value into broker form */

data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */
newElement = cpiCreateElement(&rc, parser);
cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);
cpiSetNameFromBuffer(&rc, newElement, data, length);
if (pc->trace) {

const char * mbData = mbString(data, pc->iCcsid);
fprintf(pc->tracefile, "PLUGIN: Created new NAMEVALUE element;

object=0x%x type=0x%x name=",
newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

fprintf(pc->tracefile, "%s\n", mbData);
fflush(pc->tracefile);
free((void *)mbData);

}
/* Free the memory created in CciNString() */
free((void *)data);

/* Add the element */
cpiAddAsLastChild(&rc, element, newElement);

cpiSetNextParserClassName
Purpose

Optional function to advise a parser of the next parser in the chain. It is called
during finalize processing, and returns to the user-defined parser a string
containing the name of the next parser class in the chain. It allows a parser to take
action during the finalize phase to modify the syntax element tree before the phase
that causes serialization of the bit stream.

If you specify the name of a parser supplied with WebSphere Message Broker, you
must use the correct class name of the parser.

Defined In Type Member

CPI_VFT Optional iFpSetNextParserClassName

Syntax
void cpiSetNextParserClassName(

CciParser* parser,
CciContext* context,
CciChar* name,
CciBool parserType);

Parameters

parser
The address of the parser object (input).

230 User-defined Extensions

context
The address of the context owned by the parser object (input).

name
The name of the next parser as a string of CciChar characters.

parserType
Indicates whether the referenced parser is standard (parserType=0) or
non-standard (parserType=non-zero) (input). A standard parser expects that the
Format field of the preceding header in the chain will contain the name of the
parser class that follows. Non-standard parsers expect that the Domain field
will contain the parser class name.

Return values

None.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
763 to 787):
void cpiSetNextParserClassName(

CciParser* parser,
CciContext* context,
CciChar* name,
CciBool isHeaderParser

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int rc = 0;

/* Save the name in my context */
CciCharNCpy(pc->iNextParserClassName, name, CciCharLen(name));

if (pc->trace) {
fprintf(pc->tracefile, "PLUGIN: <- cpiSetNextParserClassName()\n");
fflush(pc->tracefile);

}

return;
}

cpiWriteBuffer
Purpose

Writes a syntax element tree to the message buffer associated with a parser. It
appends data to the bit stream in the message buffer associated with the parser
object, using the current syntax element tree as a source. The element tree should
not be modified during the execution of this implementation function. The
cpiAppendToBuffer utility function can be used to append the message buffer (bit
stream) with data from the element tree.

If this implementation function is provided in the CPI_VFT structure, neither
cpiWriteBufferEncoded() nor cpiWriteBufferFormatted() can be specified, because
the cpiDefineParserClass() function will fail with a return code of
CCI_INVALID_IMPL_FUNCTION.

Defined In Type Member

CPI_VFT Conditional iFpWriteBuffer

User-defined extensions 231

Syntax
int cpiWriteBuffer(

CciParser* parser,
CciContext* context);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

Return values

The size in bytes of the data appended to the bit stream in the buffer.

Sample
int cpiWriteBuffer(

CciParser* parser,
CciContext* context

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int initialSize = 0;
int rc = 0;
const void* a;
CciByte b;

initialSize = cpiBufferSize(&rc, parser);
a = cpiBufferPointer(&rc, parser);
b = cpiBufferByte(&rc, parser, 0);

cpiAppendToBuffer(&rc, parser, (char *)"Some test data", 14);

return cpiBufferSize(0, parser) - initialSize;
}

cpiWriteBufferEncoded
Purpose

This function is an extension of the capability provided by the existing
cpiWriteBuffer() implementation function that provides the encoding and coded
character set that the output message should be represented in when the parser
serialises its element tree to an output bit stream. If serialisation is not required, for
example when the output based is based on an input bit stream, and the tree has
not been modified, this implementation function will not be invoked by the broker.
If this implementation function is provided in the CPI_VFT structure, neither
cpiWriteBuffer() nor cpiWriteBufferFormatted() can be specified, because the
cpiDefineParserClass() function will fail with a return code of
CCI_INVALID_IMPL_FUNCTION.

Defined In Type Member

CPI_VFT Conditional iFpWriteBufferEncoded

232 User-defined Extensions

Syntax
int cpiWriteBufferEncoded(

CciParser* parser,
CciContext* context,
int encoding,
int ccsid);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

encoding
The encoding of the message buffer (input).

ccsid
The ccsid of the message buffer (input).

Return values

The size in bytes of the data appended to the bit stream in the buffer.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines
612 to 642):
int cpiWriteBufferEncoded(

CciParser* parser,
CciContext* context,
int encoding,
int ccsid

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int initialSize = 0;
int rc = 0;
const void* a;
CciByte b;

initialSize = cpiBufferSize(&rc, parser);
a = cpiBufferPointer(&rc, parser);
b = cpiBufferByte(&rc, parser, 0);

cpiAppendToBuffer(&rc, parser, (char *)"Some test data", 14);

return cpiBufferSize(0, parser) - initialSize;
}

cpiWriteBufferFormatted
Purpose

This function is an extension of the capability provided by the existing
cpiWriteBuffer() implementation function that provides:
1. The encoding and coded character set that the output message should be

represented in when the parser serializes its element tree to an output bit
stream.

User-defined extensions 233

2. The message set, type and format for the output message for those parsers
which require such information to correctly serialize its element tree to an
output bit stream.

If serialization is not required, for example when the output is based on an input
bit stream, and the tree has not been modified, this implementation function will
not be invoked by the broker.

If this implementation function is provided in the CPI_VFT structure, neither
cpiWriteBuffer() nor cpiWriteBufferEncoded() can be specified, because the
cpiDefineParserClass() function will fail with a return code of
CCI_INVALID_IMPL_FUNCTION.

Defined In Type Member

CPI_VFT Conditional iFpWriteBufferFormatted

Syntax
int cpiWriteBufferFormatted(

CciParser* parser,
CciContext* context,
int encoding,
int ccsid,
CciChar* set,
CciChar* type,
CciChar* format);

Parameters

parser
The address of the parser object (input).

context
The address of the context owned by the parser object (input).

encoding
The encoding of the message buffer (input).

ccsid
The ccsid of the message buffer (input).

set
The message set to which the message belongs (input).

type
The message type (input).

format
The message format (input).

Return values

The size in bytes of the data appended to the bit stream in the buffer.

Sample
int cpiWriteBufferFormatted(

CciParser* parser,
CciContext* context,
int encoding,
int ccsid
CciChar* set,

234 User-defined Extensions

CciChar* type,
CciChar* format

){
PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;
int initialSize = 0;
int rc = 0;
const void* a;
CciByte b;

initialSize = cpiBufferSize(&rc, parser);
a = cpiBufferPointer(&rc, parser);
b = cpiBufferByte(&rc, parser, 0);

cpiAppendToBuffer(&rc, parser, (char *)"Some test data", 14);

return cpiBufferSize(0, parser) - initialSize;
}

C user exit API
The user exit API defines implementation and utility functions.
v A set of implementation functions provides the functionality of the user exits.

Some of these implementation functions are mandatory and others are optional.
These functions are defined in the BipCci.h header file. They are described in “C
user exit implementation functions.”

v A set of utility functions that are invoked by user exits.
These functions are defined in the BipCpi.h header file. They are described in
“C user exit utility functions” on page 241.

C user exit implementation functions

A set of implementation functions provide the functionality of the user exits.

Some implementation functions are mandatory, and must be implemented by the
developer, as shown below.

This section covers the following topics:

Mandatory functions

v “bipInitializeUserExits”
v “bipTerminateUserExits” on page 236

Optional functions

v “cciInputMessageCallback” on page 237
v “cciPropagatedMessageCallback” on page 239
v “cciNodeCompletionCallback” on page 238
v “cciTransactionEventCallback” on page 240

bipInitializeUserExits

This is an implementation function exported by the User Exit library (.lel). It is
invoked when the execution group starts just after loading the .lel. During
invocation of this function, the user’s code should call cciRegisterUserExit to
register each user exit provided by that .lel.

Syntax:

User-defined extensions 235

|
|

void bipInitializeUserExits()

Parameters:

None.

Return values:

None.

Example:
extern "C"{

void bipInitializeUserExits(){

int rc = CCI_SUCCESS;
CCI_UE_VFT myVft = {CCI_UE_VFT_DEFAULT};
myVft.iFpInputMessageCallback = myInputMessageCallback;
myVft.iFpTransactionEventCallback = myTransactionEventCallback;
myVft.iFpPropagatedMessageCallback = myPropagatedMessageCallback;
myVft.iFpNodeCompletionCallback = myNodeCompletionCallback;

cciRegisterUserExit(&rc,
MyConstants::myUserExitName,
0,
myVft);

/*we should now check the rc for unexpected values*/

return;
}

}/*end of extern "C" */

bipTerminateUserExits

This is an implementation function exported by the User Exit library (.lel). It is
invoked just before unloading the .lel which typically happens when the execution
group process is stopping. During invocation of this function, the user’s code
should clean-up any resources allocated during the bipInitializeUserExits function.
If this function is not exported, then the .lel fails to load. It is not valid to call any
utility functions during invocation of bipTerminateUserExits. This function is
invoked on the same thread as bipInitializeUserExits.

Syntax:
void bipTerminateUserExits()

Parameters:

None.

Return values:

None.

Example:
extern "C"{

void bipTerminateUserExits(){
/*Here, we clean up any resources, e.g.

spawned threads, file handles, sockets */

236 User-defined Extensions

freeResources();
}

}/*end of extern "C" */

cciInputMessageCallback
The cciInputMessageCallback function can be registered as a callback and is called
every time a message is read by an input node, and before that message is
propagated down the message flow.

The cciInputMessageCallback function is called for every input message that is
read in the execution group where the callback is registered, if the user exit state is
active. The callback is registered by providing a pointer to the function as the
iFpInputMessageCallback field of the CCI_UE_VFT struct that is passed to
cciRegisterUserExit.

Syntax:
typedef void (*cciInputMessageCallback) (

CciDataContext* userContext,
CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciMessageOrigin messageOrigin,
CciNode* inputNode);

Parameters:

userContext (input)
The value that is passed to the cciRegisterUserExit function.

message
A handle to the message object. The user exit code must not update this tree.

localEnvironment
A handle to the local environment object.

exceptionList
A handle to the exception list object.

environment
A handle to the environment object for the current message flow.

messageOrigin
Depending on the type of input node, the message might have originated from
a bit stream (CCI_MESSAGE_ORIGIN_BITSTREAM) or from a tree
(CCI_MESSAGE_ORIGIN_TREE). The user exit can access one of these sources
without causing processing by the parser. For example, in the case of the
MQInput node, you can access the bitstream safely whereas, in the case of the
JMSInput node, you can access the tree safely. You can access the bit stream by
calling cniBufferPointer, cniBufferSize, or cniBufferByte. You can access the
tree by calling cniRootElement and using the usual syntax element navigation
functions (for example, cniFirstChild). Although this parameter tells the user
exit what it can access safely without causing processing by the parser, the
user exit code might ignore this advice and effectively alter the parse timing.

inputNode
A handle to the input node that reads this input message. The handle can be
used to make calls to functions such as cciGetNodeName, cciGetNodeType,
and cniGetBrokerInfo.

User-defined extensions 237

Return values:

None.

Example:
void myInputMessageCallback(

CciDataContext* userContext,
CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciMessageOrigin messageOrigin,
CciNode* inputNode){

...

...
}

cciNodeCompletionCallback
The cciNodeCompletionCallback function can be registered as a callback and is
called whenever a node has completed processing of a message and is returning
control to its upstream node.

The cciNodeCompletionCallback function is called for every message that is
propagated in the execution group where the callback was registered, if the user
exit state is active. The callback is registered by providing a pointer to the function
as the iFpNodeCompletionCallback field of the CCI_UE_VFT struct that is passed
to cciRegisterUserExit.

If the node completes due to an unhandled exception, it returns with a reasonCode
of CCI_EXCEPTION, and that exception’s details can be obtained by calling
cciGetLastExceptionData.

If the node completes normally (including handling an exception on the catch or
failure terminal), it returns with a reasonCode of CCI_SUCCESS. In this case,
calling cciGetLastExceptionData returns unpredictable results.

Syntax:
typedef void (*cciNodeCompletionCallback) (

CciDataContext* userContext,
CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection,
int reasonCode);

Parameters:

userContext (input)
The value that is passed to the cciRegisterUserExit function.

message
A handle to the current message object. The current message is the message
that is propagated to the node plus modifications that are applied to input root
in the node.

localEnvironment
A handle to the local environment object that is being propagated.

exceptionList
A handle to the exception list object that is being propagated.

238 User-defined Extensions

environment
A handle to the environment object for the current message flow.

connection
A handle to the connection object between the two nodes. The handle can be
used, for example, in calls to cciGetSourceNode, cciGetTargetNode,
cciGetSourceTerminalName, and cciGetTargetTerminalName. This handle is
valid only for the duration of this instance of the user exit function.

reasonCode
A reason code that indicates whether the node completes normally
(CCI_SUCCESS) or the node completes as the result of an unhandled exception
(CCI_EXCEPTION). If the node completes due to an unhandled exception, you
can obtain that exception’s details by calling cciGetLastExceptionData. If the
node completes normally (including handling an exception on the catch or
failure terminal), the effect of calling cciGetLastExceptionData is
undetermined.

Return values:

None.

Example:
void myNodeCompletionCallback(

CciDataContext* userContext,
CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection
int reasonCode){

...

...
}

cciPropagatedMessageCallback
The cciPropagatedMessageCallback function can be registered as a callback and is
called whenever a message is propagated from one node to another.

The cciPropagatedMessageCallback function is called for every message that is
propagated in the execution group where the callback was registered, if the user
exit state is active. The callback is registered by providing a pointer to the function
as the iFpPropagatedMessageCallback field of the CCI_UE_VFT struct that is
passed to cciRegisterUserExit.

Syntax:
typedef void (*cciPropagatedMessageCallback)(

CciDataContext* userContext,
CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection);

Parameters:

userContext (input)
The value that is passed to the cciRegisterUserExit function.

User-defined extensions 239

message
A handle to the message object that is being propagated. The user exit code
must not update this tree.

localEnvironment
A handle to the local environment object that is being propagated.

exceptionList
A handle to the exception list object that is being propagated.

environment
A handle to the environment object for the current message flow.

connection
A handle to the connection object between the two nodes. The handle can be
used, for example, in calls to cciGetSourceNode, cciGetTargetNode,
cciGetSourceTerminalName, and cciGetTargetTerminalName. This handle is
valid only for the duration of this instance of the user exit function.

Return values:

None.

Example:
void myPropagatedMessageCallback(

CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection){

int rc = CCI_SUCCESS;
CciNode* targetNode = cciGetTargetNode(amp rc,

connection);

CciChar targetNodeName [initialStringBufferLength];
targetNodeNameLength = cciGetNodeName(amp rc,

targetNode,
targetNodeName,
initialStringBufferLength);

/*you should now check the rc for unexpected values*/
/*if rc is CCI_BUFFER_TOO_SMALL then you should resize and retry*/

}

cciTransactionEventCallback

This is a function that can be registered as a callback and is invoked every time a
message flow transaction ends. It is invoked for every message flow transaction
within the execution group where the callback was registered, if the user exit state
is active. The callback is registered by providing a pointer to the function in the
iFpTransactionEventCallback field of the CCI_UE_VFT struct passed to
cciRegisterUserExit.

Syntax:

240 User-defined Extensions

typedef void (*cciTransactionEventCallback) (
CciDataContext* userContext,
CciTransactionEventType type,
CciMessage* environment,
CciNode* inputNode);

Parameters:

userContext (input)
This is the value that was passed to the cciRegisterUserExit function.

type
This describes the event that occurred. Possible values are:
v CCI_TRANSACTION_EVENT_COMMIT

A transaction has been successfully committed.
v CCI_TRANSACTION_EVENT_ROLLBACK

A transaction has been rolled back.

If the transaction was rolled back due to an unhandled exception then that
exception’s details can be obtained by calling cciGetLastExceptionData.

environment
This is a handle to the environment object for the current message flow.
Although the user exit can update this tree, it is cleared after returning from
this function, so any updates are lost.

inputNode
This is a handle to the input node which reads the input message that
triggered the transaction. It can be used to make calls to functions such as
cciGetNodeName, cciGetNodeType, and cniGetBrokerInfo.

Return values:
None

Example:
void myTransactionEventCallback(

CciDataContext* userContext,
CciTransactionEventType type,
CciMessage* environment,
CciNode* inputNode){

...

...
}

C user exit utility functions

The utility functions described in this section can be invoked by user exits.

This section covers the following topics:
v “cciGetNodeAttribute” on page 242
v “cciGetNodeName” on page 243
v “cciGetNodeType” on page 244
v “cciGetSourceNode” on page 245
v “cciGetSourceTerminalName” on page 245
v “cciGetTargetNode” on page 246
v “cciGetTargetTerminalName” on page 246
v “cciRegisterUserExit” on page 247

User-defined extensions 241

cciGetNodeAttribute

This function returns the value of the specified attribute.

Syntax:
CciSize cciGetNodeAttribute (int* returnCode,

CciNode* node,
CciChar* name,
CciChar* value,
CciSize length);

Parameters:

returnCode (output)
Receives the return code from the function (output).
v CCI_INV_BUFFER_TOO_SMALL

The provided buffer was not large enough to hold the value of node’s type.

node (input)
This is a handle to a node.

name (input)
This is a pointer to a NULL-terminated string of CciChar specifying the name
of the node attribute being queried.

value (output)
Address of a buffer, allocated by the caller to hold the value of the attribute.

length
The length, in CciChars, of the buffer allocated by the caller.

Return values:

v If successful, the attribute value is copied into the supplied buffer and the
number of CciChar characters copied is returned.

v If the buffer is not large enough to contain the attribute value, returnCode is set
to CCI_BUFFER_TOO_SMALL, and the number of CciChars required is
returned.

v If name specifies an attribute name that is not appropriate for the given node,
then returnCode is set to CCI_ATTRIBUTE_UNKOWN.

Example:
void myPropagatedMessageCallback(

CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection){

int rc = CCI_SUCCESS;
CciNode* sourceNode = cciGetSourceNode(&rc,

connection);
/*you should now check the rc for unexpected values*/
CciChar queueNameAttribute[16];
cciMbsToUcs(&rc,

"queueName",
queueNameAttribute,
16,
BIP_DEF_COMP_CCSID);

/*you should now check the rc for unexpected values*/

CciChar queueName [512];
sourceNodeQueueNameLength = cciGetNodeType(&rc,

242 User-defined Extensions

sourceNode,
queueName,
512);

/*you should now check the rc for unexpected values*/
/*if rc is CCI_BUFFER_TOO_SMALL then you should resize and retry*/

/*sourceNodeQueueNameLength will hold the actual or required size */

cciGetNodeName
This function returns the name of the specified node.

The name is assigned internally by the Message Brokers Toolkit and is unique in
the message flow. The label that is assigned to a node by the message flow
designer in the Message Flow Editor can be obtained by calling
“cciGetNodeAttribute” on page 242 to read the label attribute.

Syntax:
CciSize getNodeName (int* returnCode,

CciNode* node,
CciChar* value,
CciSize length);

Parameters:

returnCode (output)
Receives the return code from the function (output)
v CCI_INV_BUFFER_TOO_SMALL

The provided buffer was not large enough to hold the value of node’s name.

node (input)
This is a handle to a node.

value (output)
Address of a buffer, allocated by the caller to hold the value of the node’s
name.

length
The length, in CciChars, of the buffer allocated by the caller.

Return values:

v If successful, the node name is copied into the supplied buffer and the number
of CciChar characters copied is returned.

v If the buffer is not large enough to contain the node name, returnCode is set to
CCI_BUFFER_TOO_SMALL, and the number of CciChars required is returned.

Example:
void myPropagatedMessageCallback(

CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection){

int rc = CCI_SUCCESS;
CciNode* targetNode = cciGetTargetNode(&rc,

connection);

CciChar targetNodeName [initialStringBufferLength];
targetNodeNameLength = cciGetNodeName(&rc,

targetNode,

User-defined extensions 243

targetNodeName,
initialStringBufferLength);

/*you should now check the rc for unexpected values*/
/*if rc is CCI_BUFFER_TOO_SMALL then you should resize and retry*/

}

cciGetNodeType
This function returns the type of the specified node.

Syntax:
CciSize cciGetNodeType (int* returnCode,

CciNode* node,
CciChar* value,
CciSize length);

Parameters:

returnCode (output)
Receives the return code from the function (output).
v CCI_INV_BUFFER_TOO_SMALL

The provided buffer was not large enough to hold the value of node’s type.

node (input)
This is a handle to a node.

value (output)
Address of a buffer, allocated by the caller to hold the value of the node type.

length
The length, in CciChars, of the buffer allocated by the caller.

Return values:

v If the function is successful, the node type is copied into the supplied buffer and
the number of CciChar characters copied is returned.

v If the buffer is not large enough to contain the node type, returnCode is set to
CCI_BUFFER_TOO_SMALL, and the number of CciChars required is returned.

Example:
void myPropagatedMessageCallback(

CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection){

int rc = CCI_SUCCESS;
CciNode* sourceNode = cciGetSourceNode(&rc,

connection);
/*you should now check the rc for unexpected values*/

CciChar sourceNodeType[initialStringBufferLength];
sourceNodeTypeLength = cciGetNodeType(&rc,

sourceNode,
sourceNodeType,
initialStringBufferLength);

/*you should now check the rc for unexpected values*/
/*if rc is CCI_BUFFER_TOO_SMALL then you should resize and retry*/

244 User-defined Extensions

cciGetSourceNode

This function returns a handle to the upstream node of a given connection.

Syntax:
CciNode* cciGetSourceNode(int* returnCode,

CciConnection * connection);

Parameters:

returnCode (output)
Receives the return code from the function.

connection
This is a handle to a connection on the output terminal of the requested node.

Return values:
A handle to the node that is on the source side of the connection.

Example:
void myPropagatedMessageCallback(

CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection){

...

...

int rc = CCI_SUCCESS;
CciNode* sourceNode = cciGetSourceNode(&rc,

connection);
/*you should now check the rc for unexpected values*/

cciGetSourceTerminalName

This function returns the name of the output terminal of the source node for the
specified connection.

Syntax:
CciSize cciGetSourceTerminalName (int* returnCode,

CciConnection* connection,
CciChar* value,
CciSize length);

Parameters:

returnCode (output)
Receives the return code from the function (output).
v CCI_BUFFER_TOO_SMALL

The provided buffer was not large enough to hold the value of node’s name.

connection (input)
This is a handle to a connection between two nodes.

value (output)
Address of a buffer, allocated by the caller to hold the value of the terminal’s
name.

length
The length, in CciChars, of the buffer allocated by the caller.

User-defined extensions 245

Return values:

v If successful, the terminal name is copied into the supplied buffer and the
number of CciChar characters copied is returned.

v If the buffer is not large enough to contain the attribute value, returnCode is set
to CCI_BUFFER_TOO_SMALL, and the number of CciChars required is
returned.

Example:
void myPropagatedMessageCallback(

CciDataContext* userContext,
CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection){

int rc = CCI_SUCCESS;
CciChar sourceTerminalName[initialStringBufferLength];
cciGetSourceTerminalName(&rc,

connection,
sourceTerminalName,
initialStringBufferLength);

}

cciGetTargetNode

This function returns a handle to the downstream node of a given connection.

Syntax:
CciNode* cciGetTargetNode(int* returnCode,

CciConnection * connection);

Parameters:

returnCode (output)
Receives the return code from the function (output).

connection
This is a handle to a connection on an input terminal of the requested node.

Return values:
A handle to the node that is on the target side of the connection.

Example:
void myPropagatedMessageCallback(

CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection){

...

...

CciNode* targetNode = cciGetTargetNode(&rc,
connection);

cciGetTargetTerminalName

This function returns the name of the input terminal of the target node for the
specified connection.

Syntax:

246 User-defined Extensions

CciSize cciGetTargetTerminalName (int* returnCode,
CciConnection* connection,
CciChar* value,
CciSize length);

Parameters:

returnCode (output)
Receives the return code from the function (output).
v CCI_BUFFER_TOO_SMALL

The provided buffer was not large enough to hold the value of node’s name.

connection (input)
This is a handle to a connection between two nodes.

value (output)
Address of a buffer, allocated by the caller to hold the value of the terminal’s
name.

length
The length, in CciChars, of the buffer allocated by the caller.

Return values:

v If successful, the terminal name is copied into the supplied buffer and the
number of CciChar characters copied is returned.

v If the buffer is not large enough to contain the terminal name, returnCode is set
to CCI_BUFFER_TOO_SMALL, and the number of CciChars required is
returned.

Example:
void myPropagatedMessageCallback(

CciDataContext* userContext,
CciMessage* message,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* environment,
CciConnection* connection){

int rc = CCI_SUCCESS;
CciChar targetTerminalName[initialStringBufferLength];
cciGetTargetTerminalName(&rc,

connection,
targetTerminalName,
initialStringBufferLength);

/*you should now check the rc for unexpected values*/
/*if rc is CCI_BUFFER_TOO_SMALL then you should resize and retry*/

cciRegisterUserExit
cciRegisterUserExit is a utility function that can be called by the user’s code when
bipInitializeUserExits is called.

This function is called by the user’s code if the user wants to register functions to
be called every time certain events occur.

Syntax:
typedef struct cci_UEVft {

int reserved;
char StrucId[4];
int Version;
cciInputMessageCallback iFpInputMessageCallback;
cciTransactionEventCallback iFpTransactionEventCallback;
cciPropagatedMessageCallback iFpPropagatedMessageCallback;

User-defined extensions 247

cciNodeCompletionCallback iFpNodeCompletionCallback;

} CCI_UE_VFT;

void cciRegisterUserExit (
int* returnCode,
CciChar* name,
CciDataContext* userContext,
CCI_UE_VFT* functionTable);

Parameters:

returnCode (output)
Requires the return code from the function. Possible values are:
v CCI_DUP_USER_EXIT_NAME

The specified name matches the name of a user exit previously registered in
the current execution group.

v CCI_INV_USER_EXIT_NAME
The specified name was invalid. This can be caused if a NULL pointer,
empty string or a string containing non-alphanumeric characters was
specified.

Name (input)
This parameter must contain a pointer to a NULL-terminated string of
CciChars specifying a name for the user exit. The name must be unique across
all user exits that can be installed on the same broker. This name is used to
identify the user exit in, for example:
v User Trace messages
v Exceptions or syslog messages
v Administration commands (for example, mqsichangeflowuserexits)

The name has the following restrictions:
v It must consist of alphanumeric characters only.
v It must be no greater than 255 characters.
v The name must be unique across all user exits that can be installed on the

same broker.

userContext (input)
This parameter allows the caller to provide a context pointer that is passed to
the callback function when it is called. This parameter can be NULL.

functionTable (input)
This parameter is a pointer to a struct whose fields must contain either
pointers to functions matching the correct signatures or contain NULL. A
NULL value for any of these fields indicates that the user exit must not be
called for that event.

Return values:

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
extern "C"{

void bipInitializeUserExits(){

int rc = CCI_SUCCESS;

248 User-defined Extensions

CCI_UE_VFT myVft = {CCI_UE_VFT_DEFAULT};
myVft.iFpInputMessageCallback = myInputMessageCallback;
myVft.iFpTransactionEventCallback = myTransactionEventCallback;
myVft.iFpPropagatedMessageCallback = myPropagatedMessageCallback;
myVft.iFpNodeCompletionCallback = myNodeCompletionCallback;

cciRegisterUserExit(&rc,
MyConstants::myUserExitName,
0,
&myVft);

/*you should now check the rc for unexpected values*/

return;
}

}/*end of extern "C" */

C common API

The C language common API consists of:
1. A set of implementation functions, implemented by user-defined nodes,

parsers, and user exits.
2. A set of additional utility functions.

These functions are defined in the BipCpi.h header file.

This section covers the following topics:
v “C common implementation functions.”
v “C common utility functions” on page 251.

C common implementation functions

The following functions are implemented by user-defined nodes or user-defined
parsers. They will be called by the broker on occurrence of certain events.

These functions are defined in the BipCci.h header file.

Optional functions
v cciRegCallback

cciRegCallback

This is a function that can be registered as a callback and is invoked when the
registered event occurs. The function is registered by providing a function pointer
which matches the following typedef:

Syntax:
typedef int (*CciRegCallback)(CciDataContext *, cciCallbackType);

Parameters:

type CciDataContext*
This is the pointer that is provided by the caller to the registration function.

User-defined extensions 249

type CciCallbackType
This indicates the reason for the callback. This is always one of the
CciCallbackType values that is specified on the registration call corresponding
to this callback.

Return values:

type CciRegCallbackStatus (defined in BipCci.h)
v CCI_THREAD_STATE_REGISTRATION_RETAIN: This return code is used for a

callback that is to remain registered as a callback function on a particular thread.
v CCI_THREAD_STATE_REGISTRATION_REMOVE: This return code is used to

signify that the callback is to be de-registered, and that it should not be called
again on this thread unless it is re-registered. If any other value is returned, a
warning is written to a log and CCI_THREAD_STATE_REGISTRATION_RETAIN
is assumed.

During execution of this function, it is possible that the node or parser that has
registered the function has already been deleted. Therefore, you should not call
any node or parser utility function that depends on the existence of a node or
parser. The only utility functions that may be called from this callback are:
v cciLog
v cciUserTrace
v cciServiceTrace
v cciUserDebugTrace
v cciServiceDebugTrace
v cciIsTraceActive

For each of these five trace utility functions, the CciObject parameter must be
NULL.

Example:

Declare the following struct and function:
typedef struct {

int id;
}MyContext;

static int registered=0;

CciRegCallbackStatus switchThreadStateChange(CciDataContext *context, CciCallbackType type)
{

char traceText[256];
char* typeStr=0;
MyContext* myContext = (MyContext*)context;

if (type==CCI_THREAD_STATE_IDLE){
typeStr = "idle";

}else if(type==CCI_THREAD_STATE_INSTANCE_END){
typeStr = "instance end";

}else if (type==CCI_THREAD_STATE_TERMINATION){
typeStr = "termination";

}else{
typeStr = "unknown";

}

memset(traceText,0,256);
sprintf(traceText,"switchThreadStateChange: context id = %d, thread state %s",myContext->id,typeStr);
cciServiceTrace(NULL,

250 User-defined Extensions

NULL,
traceText);

return CCI_THREAD_STATE_REGISTRATION_RETAIN;

}

Place the following code into the _Switch_evaluate function in the samples to
enable you to read service trace and see when the message processing thread
changes state:

/*register for thread state change*/
CciMessageContext* messageContext = cniGetMessageContext(NULL,message);
CciThreadContext* threadContext = cniGetThreadContext(NULL,messageContext);

static MyContext myContext={1};

if(registered==0){
cciRegisterForThreadStateChange(

NULL,
threadContext,
& myContext,
switchThreadStateChange,
CCI_THREAD_STATE_IDLE |
CCI_THREAD_STATE_INSTANCE_END |
CCI_THREAD_STATE_TERMINATION);

registered=1;

}

This example registers only on the first thread that receives a message. If it is
necessary to register every thread that receives a message, the user-defined
extensions must remember on which threads they have registered.

By using the userContext parameter you can see how data is passed from the code
where the callback is registered to the actual callback function.

When registering the callback, a pointer to an instance of the MyContext struct is
passed in. This is the same pointer as is passed back to the callback. To ensure that
the pointer is still valid when it is passed back to the callback, an instance of the
struct is declared as static. Another technique to ensure that the pointer is valid is
to allocate storage on the heap.

In the callback function, the userContext parameter can be cast to a (MyContext*).
The original MyContext struct can be referenced through this address. This permits
the passing of data from the code where the callback is registered to the callback
function.

C common utility functions

WebSphere Message Broker provides some additional utilities that user-defined
nodes and parsers can use. These are:
v Exception handling and logging
v Character representation handling

These functions are defined in the BipCci.h header file.

The following exception handling and logging functions are provided for use by a
user-defined node or parser:

User-defined extensions 251

v “cciGetLastExceptionData” on page 254
v “cciGetLastExceptionDataW” on page 256
v “cciLog” on page 257
v “cciLogW” on page 258
v “cciRethrowLastException” on page 263
v “cciThrowException” on page 268
v “cciThrowExceptionW” on page 269

The following utilities help you convert between WebSphere Message Broker’s
internal processing code (in UCS-2) and file code (for example, ASCII).
v “cciMbsToUcs” on page 260
v “cciUcsToMbs” on page 272

The following utility functions enable you to determine whether trace is active,
and write entries that are appropriate for the trace settings.
v “ccilsTraceActive” on page 271
v “cciUserTrace” on page 277
v “cciUserTraceW” on page 278
v “cciUserDebugTrace” on page 273
v “cciUserDebugTraceW” on page 275
v “cciServiceTrace” on page 266
v “cciServiceTraceW” on page 267
v “cciServiceDebugTrace” on page 264
v “cciServiceDebugTraceW” on page 265

The following utility function is used to register a function that is to be called
when the current thread enters a particular state:
v “cciRegisterForThreadStateChange” on page 261

The following utility functions are available for use with user exits:
v “cciGetBrokerInfo” on page 253
v “cciGetNodeAttribute” on page 242
v “cciGetNodeName” on page 243
v “cciGetNodeType” on page 244
v “cciGetSourceNode” on page 245
v “cciGetSourceTerminalName” on page 245
v “cciGetTargetNode” on page 246
v “cciGetTargetTerminalName” on page 246
v “cciInputMessageCallback” on page 237
v “cciNodeCompletionCallback” on page 238
v “cciPropagatedMessageCallback” on page 239
v “cciRegisterUserExit” on page 247
v “cciTransactionEventCallback” on page 240

252 User-defined Extensions

cciGetBrokerInfo

This function queries the current broker environment (for example, for information
about broker name, execution group name, queue manager name). The information
is returned in a structure of type CCI_BROKER_INFO_ST.

Note: This differs from the existing cniGetBrokerInfo (Click “cniGetBrokerInfo”
on page 149 for a description of that function) in that it is not necessary to
provide a CciNode* handle and that cciGetBrokerInfo does not return any
information about a message flow. Consequently, cciGetBrokerInfo can be
called from initialization functions, for example, bipInitializeUserExits,
bipGetMessageParserFactory, and bipGetMessageFlowNodeFactory.

Syntax:
void cciGetBrokerInfo(

int* returnCode,
CCI_BROKER_INFO_ST* broker_info_st);

Parameters:

returnCode (output)
Receives the return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_INV_BROKER_INFO_ST
v CCI_EXCEPTION

broker_info_st (output)
The address of a CCI_BROKER_INFO_ST structure to be populated with the
relevant values on successful completion:
typedef struct cci_broker_info_st {
int versionId; /*Structure version identification*/
CCI_STRING_ST brokerName; /*The label of the broker*/
CCI_STRING_ST executionGroupName; /*The label of the current execution group*/
CCI_STRING_ST queueManagerName; /*The name of the MQ Queue Manager for the broker*/
CCI_STRING_ST dataSourceUserId; /*The userid broker connects to datasource as*/
} CCI_BROKER_INFO_ST;

Return values:

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
int rc = CCI_SUCCESS;

CCI_BROKER_INFO_ST brokerInfo = {CCI_BROKER_INFO_ST_DEFAULT};

#define INTITIAL_STR_LEN 256
CciChar brokerNameStr[INTITIAL_STR_LEN];
CciChar executionGroupNameStr[INTITIAL_STR_LEN];
CciChar queueManagerNameStr[INTITIAL_STR_LEN];

brokerInfo.brokerName.bufferLength = INTITIAL_STR_LEN;
brokerInfo.brokerName.buffer = brokerNameStr;

brokerInfo.executionGroupName.bufferLength = INTITIAL_STR_LEN;
brokerInfo.executionGroupName.buffer = executionGroupNameStr;

User-defined extensions 253

brokerInfo.queueManagerName.bufferLength = INTITIAL_STR_LEN;
brokerInfo.queueManagerName.buffer = queueManagerNameStr;

cciGetBrokerInfo(&rc,&brokerInfo);

/* just in case any of the buffers were too short*/
if ((brokerInfo.brokerName.bytesOutput < brokerInfo.brokerName.dataLength) ||

(brokerInfo.executionGroupName.bytesOutput < brokerInfo.executionGroupName.dataLength) ||
(brokerInfo.queueManagerName.bytesOutput < brokerInfo.queueManagerName.dataLength)) {

/*at least one of the buffer were too short, need to rerty*/
/* NOTE this is unlikely given that the initial sizes were reasonably large*/

brokerInfo.brokerName.bufferLength =
brokerInfo.brokerName.dataLength;

brokerInfo.brokerName.buffer =
(CciChar*)malloc (brokerInfo.brokerName.bufferLength * sizeof(CciChar));

brokerInfo.executionGroupName.bufferLength =
brokerInfo.executionGroupName.dataLength;

brokerInfo.executionGroupName.buffer =
(CciChar*)malloc (brokerInfo.executionGroupName.bufferLength * sizeof(CciChar));

brokerInfo.queueManagerName.bufferLength =
brokerInfo.queueManagerName.dataLength;

brokerInfo.queueManagerName.buffer =
(CciChar*)malloc (brokerInfo.queueManagerName.bufferLength * sizeof(CciChar));

cciGetBrokerInfo(&rc,&brokerInfo);

/*now do something sensible with these strings before the buffers go out of scope*/
/* for example call a user written function to copy them away*/
copyBrokerInfo(brokerInfo.brokerName.buffer,

brokerInfo.executionGroupName.buffer,
brokerInfo.queueManagerName.buffer);

free((void*)brokerInfo.brokerName.buffer);
free((void*)brokerInfo.executionGroupName.buffer);
free((void*)brokerInfo.queueManagerName.buffer);

}else{
/*now do something sensible with these strings before the buffers go out of scope*/
/* for example call a user written function to copy them away*/
copyBrokerInfo(brokerInfo.brokerName.buffer,

brokerInfo.executionGroupName.buffer,
brokerInfo.queueManagerName.buffer);

}

cciGetLastExceptionData

Gets diagnostic information about the last exception generated. Information about
the last exception generated on the current thread is returned in a
CCI_EXCEPTION_ST output structure. The user-defined extension can use this
function to determine whether any recovery is required when a utility function
returns an error code.

You can call this function, when a utility function or user exit callback indicates
that an exception has occurred, by setting returnCode to CCI_EXCEPTION.

Note: Unless CCI_EXCEPTION is indicated you must not call
cciGetLastExceptionData() as it returns unpredictable results.

254 User-defined Extensions

The traceText that is associated with the exception converts to a char* if the char*
is US-ASCII. If the traceText is in another language, use cciGetLastExceptionDataW
and its associated CCI_EXCEPTION_WIDE_ST structure which stores the traceText
as UTF-16.

If the exception has been raised by the broker or by cciThrowExceptionW, the
traceText element of the CCI_EXCEPTION_ST structure is an empty string.

Syntax:
void* cciGetLastExceptionData(

int* returnCode,
CCI_EXCEPTION_ST* exception_st);

Parameters:

returnCode
Receives the return code from the function (output). Possible return codes are:
v CCI_INV_DATA_POINTER
v CCI_NO_EXCEPTION_EXISTS
v CCI_EXCEPTION
v CCI_EXCEPTION_UNKNOWN
v CCI_EXCEPTION_FATAL
v CCI_EXCEPTION_RECOVERABLE
v CCI_EXCEPTION_CONFIGURATION
v CCI_EXCEPTION_PARSER
v CCI_EXCEPTION_CONVERSION
v CCI_EXCEPTION_DATABASE
v CCI_EXCEPTION_USER

exception_st
Specifies the address of a CCI_EXCEPTION_ST structure to receive data about
the last exception (output). The type value returned in the exception_st.type
field is one of the following:
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_BASE
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_TERMINATION
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_FATAL
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_RECOVERABLE
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_CONFIGURATION
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_PARSER
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_CONVERSION
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_DATABASE
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_USER

The value returned in the exception_st.messageNumber field, for exceptions
resulting in a BIP catalogued exception message, contains the message level in
the high order bytes and the BIP message number in the lower four bytes.

Return values:

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:

User-defined extensions 255

typedef struct exception_st {
int versionId; /* Structure version identification */
int type; /* Type of exception */
int messageNumber; /* Message number */
int insertCount; /* Number of message inserts */
CCI_STRING_ST inserts[CCI_MAX_EXCEPTION_INSERTS];

/* Array of message insert areas */
const char* fileName; /* Source: file name */
int lineNumber; /* Source: line number in file */
const char* functionName; /* Source: function name */
const char* traceText; /* Trace text associated with exception */
CCI_STRING_ST objectName; /* Object name */
CCI_STRING_ST objectType; /* Object type */

} CCI_EXCEPTION_ST;

CCI_EXCEPTION_ST exception_st = malloc(sizeof(CCI_EXCEPTION_ST));
int rc = 0;
memset(&exception_st,0,sizeof(exception_st));
cciGetLastExceptionData(&rc, &exception_st);

cciGetLastExceptionDataW

Gets diagnostic information about the last exception generated. Information about
the last exception generated on the current thread is returned in a
CCI_EXCEPTION_WIDE_ST output structure. The user-defined extension uses this
function to determine whether any recovery is required when a utility function
returns an error code.

You can call this function, when a utility function or user exit callback indicates
that an exception has occurred, by setting returnCode to CCI_EXCEPTION.

Note: Unless CCI_EXCEPTION is indicated you must not call
cciGetLastExceptionDataW() as it returns unpredictable results.

Syntax:
void* cciGetLastExceptionDataW(

int* returnCode,
CCI_EXCEPTION_WIDE_ST* exception_st);

Parameters:

returnCode
Receives the return code from the function (output). Possible return codes are:
v CCI_INV_DATA_POINTER
v CCI_NO_EXCEPTION_EXISTS
v CCI_EXCEPTION
v CCI_EXCEPTION_UNKNOWN
v CCI_EXCEPTION_FATAL
v CCI_EXCEPTION_RECOVERABLE
v CCI_EXCEPTION_CONFIGURATION
v CCI_EXCEPTION_PARSER
v CCI_EXCEPTION_CONVERSION
v CCI_EXCEPTION_DATABASE
v CCI_EXCEPTION_USER

exception_st
Specifies the address of a CCI_EXCEPTION_WIDE_ST structure to receive data

256 User-defined Extensions

about the last exception (output). The type value returned in the
exception_st.type field is one of the following:
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_BASE
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_TERMINATION
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_FATAL
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_RECOVERABLE
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_CONFIGURATION
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_PARSER
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_CONVERSION
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_DATABASE
v CCI_EXCEPTION_ST_TYPE_EXCEPTION_USER

The value returned in the exception_st.messageNumber field, for exceptions
resulting in a BIP catalogued exception message, contains the message level in
the high order bytes and the BIP message number in the lower four bytes.

Return values:

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
typedef struct exception_wide_st {

int versionId; /* Structure version identification */
int type; /* Type of exception */
int messageNumber; /* Message number */
int insertCount; /* Number of message inserts */
CCI_STRING_ST inserts[CCI_MAX_EXCEPTION_INSERTS];

/* Array of message insert areas */
const char* fileName; /* Source: file name */
int lineNumber; /* Source: line number in file */
const char* functionName; /* Source: function name */
CCI_STRING_ST traceText; /* Trace text associated with exception */
CCI_STRING_ST objectName; /* Object name */
CCI_STRING_ST objectType; /* Object type */

} CCI_EXCEPTION_WIDE_ST;

CCI_EXCEPTION_WIDE_ST exception_st = malloc(sizeof(CCI_EXCEPTION_WIDE_ST));
int rc = 0;
memset(&exception_st,0,sizeof(exception_st));
cciGetLastExceptionDataW(&rc, &exception_st);

cciLog
Use cciLog to write an error, warning, or informational event.

The event is logged by the broker interface, and includes the specified arguments
as log data.

Syntax:
void cciLog(

int* returnCode,
CCI_LOG_TYPE type,
char* file,
int line,
char* function,

User-defined extensions 257

CciChar* messageSource,
int messageNumber,
char* traceText,

...);

Parameters:

returnCode
The return code from the function (output). Possible return codes are:
v CCI_SUCCESS
v CCI_INV_DATA_POINTER
v CCI_INV_LOG_TYPE

type The type of event, as defined by CCI_LOG_TYPE (input). Valid values are:
v CCI_LOG_ERROR
v CCI_LOG_WARNING
v CCI_LOG_INFORMATION

file The source file name where the function was invoked (input). The value is
optional, but it is useful for debugging purposes.

line The line number in the source file where the function was invoked (input).
The value is optional, but it is useful for debugging purposes.

function
The function name that invoked the log function (input). The value is
optional, but it is useful for debugging purposes.

messageSource
The fully-qualified location and name of the Windows message source or
the Linux, UNIX, or z/OS message catalog.

To use the current broker message catalog, specify BIPv600 on all operating
systems. Alternatively, you can create your own message catalog.

messageNumber
The message number identifying the event (input). If messageNumber is
specified as zero, it is assumed that a message is not available. If
messageNumber is non-zero, the specified message is written into the broker
event log with any inserts provided in the variable argument list.

traceText
Trace information that is written into the broker service trace log (input).
The information is optional, but it is useful for debugging purposes.

... A C variable argument list containing any message inserts that accompany
the message (input). These inserts are treated as character strings, and the
variable arguments are assumed to be of type pointer to char.

char* characters must be strings in either ASCII (Latin) or EBCDIC (1047).

The last argument in this list must be (char*)0.

Return values:

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

cciLogW
cciLogW logs an error, warning, or informational event. The event is logged by the
broker interface and uses the specified arguments as log data.

258 User-defined Extensions

|
|

Syntax:
void cciLogW(

int* returnCode,
CCI_LOG_TYPE type,
const char* file,
int line,
const char* function,
const CciChar* messageSource,
int messageNumber,
const CciChar* traceText,

...
);

Parameters:

returnCode
The return code from the function (output). If the messageSource parameter
is null, the returnCode is set to CCI_INV_DATA_POINTER.

type The type of event, as defined by CCI_LOG_TYPE (input). Valid values are:
v CCI_LOG_ERROR
v CCI_LOG_WARNING
v CCI_LOG_INFORMATION

file The source file name where the function was invoked (input). The value is
optional, but it is useful for debugging purposes.

line The line number in the source file where the function was invoked (input).
The value is optional, but it is useful for debugging purposes.

function
The function name that invoked the log function (input). The value is
optional, but it is useful for debugging purposes.

messageSource
The fully-qualified location and name of the Windows message source or
the Linux, UNIX, or z/OS message catalog.

To use the current broker message catalog, specify BIPv600 on all operating
systems. Alternatively, you can create your own message catalog.

messageNumber
The message number identifying the event (input). If messageNumber is
specified as zero, it is assumed that a message is not available. If
messageNumber is non-zero, the specified message is written into the broker
event log with any inserts provided in the variable argument list (see
below).

traceText
Trace information that is written into the broker service trace log (input).
The information is optional, but it is useful for debugging purposes.

... A C variable argument list containing any message inserts that accompany
the message (input). These inserts are treated as character strings and the
variable arguments are assumed to be of type pointer to CciChar.

The last argument in this list must be (CciChar*)0.

Return values:

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

User-defined extensions 259

|
|

Example:
void logSomethingWithBroker(CciChar* helpfulText,

char* file,
int line,
char* func
){

int rc = CCI_SUCCESS;
/* set up the message catalog name */
const CciChar* catalog = CciString("BIPv600", BIP_DEF_COMP_CCSID);

cciLogW(&rc,
CCI_LOG_INFORMATION
file, line, func,
catalog, BIP2111,
helpfulText,
helpfulText,
(CciChar*)0
);

if(CCI_SUCCESS != rc){
const CciChar* message = CciString("Failed to log message",

BIP_DEF_COMP_CCSID);
raiseExceptionWithBroker(message,

__FILE__,
__LINE__,
"logSomethingWithBroker");

}
}

cciMbsToUcs

Converts multi-byte string data to Universal Character Set (UCS).

Syntax:
int cciMbsToUcs(

int* returnCode,
const char* mbString,
CciChar* ucsString,
int ucsStringLength,
int codePage);

Parameters:

returnCode
The return code from the function (output). Possible return codes are:
v CCI_SUCCESS
v CCI_BUFFER_TOO_SMALL
v CCI_INV_CHARACTER
v CCI_FAILURE
v CCI_INV_CODEPAGE

mbString
The string to be converted, expressed as ’file code’ (input).

ucsString
The location of the resulting UCS-2 Unicode string (input). This has a
trailing CciChar of 0, just as the mbString has a trailing byte of 0.

ucsStringLength
The length (in CciChars) of the buffer that you have provided (input). Each
byte in mbString expands to not more than one CciChar and this defines an
upper limit for the buffer size required.

260 User-defined Extensions

codePage
The code page of the source string (input). The value of the code page
should be suitable for the compiler that is being used to compile the
user-defined node.

For an ASCII system, a value of 1208 (meaning code page ibm-1208, which
is UTF-8 Unicode) is a good choice if you are using cciMbsToUcs to
convert string constants for processing by WebSphere Message Broker. 1208
is appropriate for Linux and UNIX, and for Windows platforms.

On Linux and UNIX, nl_langinfo(CODEPAGE) gives you the code page that
has been selected by setlocale.

For OS/390 and z/OS, the default code page for WebSphere MQ, which is
500, should not be used. Instead, you should use a code page value of
1047.

Return values:

The converted length in half-words (UCS-2 characters).

cciRegisterForThreadStateChange

This function registers a function to be called when the current thread enters a
particular state.

Syntax:
void cciRegisterForThreadStateChange(

int *returnCode,
CciThreadContext *threadContext,
CciDataContext *userContext,
CciRegCallback callback,
CciCallbackType type);

Parameters:

returnCode
The return code from the function (output). If the input is NULL, this signifies
that errors are silently handled or are ignored by the broker. If the input is not
NULL, the output signifys the success status of the call. If the threadContext
parameter is not valid, *returnCode is set to CCI_INV_THREAD_CONTEXT
and the callback is not registered.

threadContext
This provides the thread context in which to register the callback function and
associated data. It is assumed that this parameter is obtained by using the
cniGetThreadContext() API on the current thread. If NULL is supplied as
threadContext, then the thread context is determined by the framework. This is
less efficient than calling cniGetThreadContext.

userContext
This allows the caller to provide a context pointer that is passed to the callback
function when it is invoked. This parameter can be NULL.

callback
This is a pointer to the callback function that is to be invoked. This function
must be of the type CciRegCallback.

User-defined extensions 261

type
This specifies whether the callback is to be invoked at the time when the
thread is ending or when the thread is in one of the idle states. The idle states
can be one of the following values:
v CCI_THREAD_STATE_IDLE:

The input node for the current thread is actively polling for data from the
input source but no data is available. Messages are not propagated down the
message flow until data becomes available for the input node.

v CCI_THREAD_STATE_INSTANCE_END
The input node for the current thread has stopped polling for data and the
thread has been released. The thread is dispatched again either by the same
input node or by any other input node in the same message flow. This state
is entered when additional instances, which have been deployed for a
message flow, have been utilized to cope with an influx of input data that
has now ceased. The input node continues to poll for input data on a single
thread and the other threads are released.

v CCI_THREAD_STATE_TERMINATION
The current thread is ending. This can happen when the broker is shutdown,
the execution group process is ending in a controlled manner, or when the
message flow is being deleted. This can occur after all nodes and parsers in
the flow are deleted.

Alternatively, the type parameter can be the result of a bit wise OR operation
on two or more of these values. In this case, the specified function is called
when the thread enters the relevant state for each individual type value.

Return values:

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:

Declaring the struct and function:
typedef struct {

int id;
}MyContext;

static int registered=0;

CciRegCallbackStatus switchThreadStateChange(
CciDataContext *context, CciCallbackType type)

{
char traceText[256];
char* typeStr=0;
MyContext* myContext = (MyContext*)context;

if (type==CCI_THREAD_STATE_IDLE){
typeStr = "idle";

}else if(type==CCI_THREAD_STATE_INSTANCE_END){
typeStr = "instance end";

}else if (type==CCI_THREAD_STATE_TERMINATION){
typeStr = "termination";

}else{
typeStr = "unknown";

}

memset(traceText,0,256);
sprintf(traceText,"switchThreadStateChange: context id = %d, thread state %s",myContext->id,typeStr);

262 User-defined Extensions

cciServiceTrace(NULL,
NULL,
traceText);

return CCI_THREAD_STATE_REGISTRATION_RETAIN;

}

Place the following code into the _Switch_evaluate function in the samples to
enable you to read service trace and to see when the message processing thread
changes state:

/*register for thread state change*/
CciMessageContext* messageContext = cniGetMessageContext(NULL,message);
CciThreadContext* threadContext = cniGetThreadContext(NULL,messageContext);

static MyContext myContext={1};

if(registered==0){
cciRegisterForThreadStateChange(

NULL,
threadContext,
& myContext,
switchThreadStateChange,
CCI_THREAD_STATE_IDLE |
CCI_THREAD_STATE_INSTANCE_END |
CCI_THREAD_STATE_TERMINATION);

registered=1;

}

This example registers only on the first thread that receives a message. If it is
necessary to register every thread that receives a message, the user-defined
extensions must remember on which threads they have registered.

By using the userContext parameter you can see how data is passed from the code
where the callback is registered to the actual callback function.

When registering the callback, a pointer to an instance of the MyContext struct is
passed in. This is the same pointer as is passed back to the callback. To ensure that
the pointer is still valid when it is passed back to the callback, an instance of the
struct is declared as static. Another technique to ensure that the pointer is valid is
to allocate storage on the heap.

In the callback function, the userContext parameter can be cast to a (MyContext*).
The original MyContext struct can be referenced through this address. This permits
the passing of data from the code where the callback is registered to the callback
function.

cciRethrowLastException

Re-throws the last exception generated on the current thread. It is used to pass the
exception back to the message broker for further handling. Note that, similar to a
C exit call, cciRethrowLastException does not return in this case.

Syntax:
void cciRethrowLastException(int* returnCode);

Parameters:

User-defined extensions 263

returnCode
The return code from the function (output). The possible return code is
CCI_NO_EXCEPTION_EXISTS

Return values:

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
if (rc == CCI_EXCEPTION) {

cciRethrowLastException(&rc);
}

cciServiceDebugTrace

This function is very similar to cciServiceTrace with the only difference being that
the entry is written to service trace only when service trace is active at debug level.

Syntax:
void cciServiceDebugTrace(

int* returnCode,
CciObject* object,
const char* traceText

);

Parameters:

returnCode
Receives the return code from the function (output). A NULL pointer input
signifies that the user-defined node does not wish to deal with errors. Any
exceptions thrown during the execution of this call will be re-thrown to the
next upstream node in the flow. If input is not NULL, output will signify the
success status of the call. If an exception occurs during execution, *returnCode
will be set to CCI_EXCEPTION on output. A call to CciGetLastExceptionData
will provide details of the exception.

object (input)
The address of the object that is to be associated with the trace entry (input).
This object can be a CciNode* or a CciParser*. If it is a CciNode*, then the
name of that node is written to trace. If it is a CciParser*, then the name of the
node that created the parser is written to trace. This object is also used to
determine if the entry should be written to trace. The entry is only written if
trace is active for the node. Currently nodes inherit their trace setting from the
message flow.

If this parameter is NULL, the trace level for the execution group is returned.

traceText (input)
A string of characters that ends with NULL (input). This string will be written
to service trace and provides an easy way to correlate trace entries with paths
through the source code. For example, there could be several paths through the
code that result in the same message (messageSource and messageNumber) being
written to trace. traceText can be used to distinguish between these different
paths. That is, the traceText string will be a static literal string in the source and
therefore the same string will be in both the source code file and the formatted
trace file.

264 User-defined Extensions

This string must be in ISO-8859-1 (ibm-819) codepage for user-defined
extensions running on distributed platforms and must be in EBCDIC (1047) for
user-defined extensions running on Z/OS See NLS section.

Return values:

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;

cciServiceTrace(&rc,(CciObject*)thisNode,">>_Switch_evaluate()");
checkRC(rc);

cciServiceDebugTraceW

This function is very similar to cciServiceTraceW with the only difference being
that the entry is written to service trace only when service trace is active at debug
level.

Syntax:
void cciServiceDebugTraceW(

int* returnCode,
CciObject* object,
const CciChar* traceText

);

Parameters:

returnCode
Receives the return code from the function (output). A NULL pointer input
signifies that the user-defined node does not wish to deal with errors. Any
exceptions thrown during the execution of this call will be re-thrown to the
next upstream node in the flow. If input is not NULL, output will signify the
success status of the call. If an exception occurs during execution, *returnCode
will be set to CCI_EXCEPTION on output. A call to CciGetLastExceptionData
will provide details of the exception.

object (input)
The address of the object that is to be associated with the trace entry (input).
This object can be a CciNode* or a CciParser*. If it is a CciNode*, then the
name of that node is written to trace. If it is a CciParser*, then the name of the
node that created the parser is written to trace. This object is also used to
determine if the entry should be written to trace. The entry is only written if
trace is active for the node. Currently nodes inherit their trace setting from the
message flow.

If this parameter is NULL, the trace level for the execution group is returned.

traceText (input)
A string of characters that ends with NULL (input). This string will be written
to service trace and provides an easy way to correlate trace entries with paths
through the source code. For example, there could be several paths through the
code that result in the same message (messageSource and messageNumber) being
written to trace. traceText can be used to distinguish between these different
paths. That is, the traceText string will be a static literal string in the source and
therefore the same string will be in both the source code file and the formatted
trace file.

User-defined extensions 265

Return values:

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;
CciChar* traceText = CciString(">>_Switch_evaluate()",BIP_DEF_COMP_CCSID");
cciServiceTraceW(&rc,(CciObject*)thisNode,traceText);
checkRC(rc);

cciServiceTrace

Writes a message to service trace, if service trace is active. The message that is
written to service trace has the following format:
<date-time stamp> <threadNumber> +cciServiceTrace <nodeName> <nodeType> <traceText>, <nodeLabel>

Syntax:
void cciServiceTrace(

int* returnCode,
CciObject* object,
const char* traceText

);

Parameters:

returnCode
Receives the return code from the function (output). A NULL pointer input
signifies that the user-defined node does not wish to deal with errors. Any
exceptions thrown during the execution of this call will be re-thrown to the
next upstream node in the flow. If input is not NULL, output will signify the
success status of the call. If an exception occurs during execution, *returnCode
will be set to CCI_EXCEPTION on output. A call to CciGetLastExceptionData
will provide details of the exception.

object (input)
The address of the object that is to be associated with the trace entry (input).
This object can be the address of a CciNode or a CciParser. If it is a CciNode,
then the name of that node is written to trace. If it is a CciParser, then the
name of the node that created the parser is written to trace. This object is also
used to determine if the entry should be written to trace. The entry is only
written if trace is active for the node. Currently nodes inherit their trace setting
from the message flow.

If this parameter is NULL, the following occurs:
v <nodeName>, <nodeType>, <nodeLabel>, and <messageFlowLabel> are

omitted from the trace entry.
v The entry is written based on the trace setting of the execution group.

traceText (input)
A string of characters that ends with NULL (input). This string will be written
to service trace and provides an easy way to correlate trace entries with paths
through the source code. For example, there could be several paths through the
code that result in the same message (messageSource and messageNumber) being
written to trace. traceText can be used to distinguish between these different
paths. That is, the traceText string will be a static literal string in the source and
therefore the same string will be in both the source code file and the formatted
trace file.

266 User-defined Extensions

This string must be in ISO-8859-1 (ibm-819) codepage for user-defined
extensions running on distributed platforms and must be in EBCDIC (1047) for
user-defined extensions running on Z/OS See NLS section.

Return values:

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;

cciServiceTrace(&rc,(CciObject*)thisNode,">>_Switch_evaluate()");
checkRC(rc);

cciServiceTraceW

Writes a message to service trace, if service trace is active. The message that is
written to service trace has the following format:
<date-time stamp> <threadNumber> +cciServiceTrace <nodeName> <nodeType> <traceText>, <nodeLabel>

Syntax:
void cciServiceTraceW(

int* returnCode,
CciObject* object,
const CciChar* traceText

);

Parameters:

returnCode
Receives the return code from the function (output). A NULL pointer input
signifies that the user-defined node does not wish to deal with errors. Any
exceptions thrown during the execution of this call will be re-thrown to the
next upstream node in the flow. If input is not NULL, output will signify the
success status of the call. If an exception occurs during execution, *returnCode
will be set to CCI_EXCEPTION on output. A call to CciGetLastExceptionData
will provide details of the exception.

object (input)
The address of the object that is to be associated with the trace entry (input).
This object can be a CciNode* or a CciParser*. If it is a CciNode*, then the
name of that node is written to trace. If it is a CciParser*, then the name of the
node that created the parser is written to trace. This object is also used to
determine if the entry should be written to trace. The entry is only written if
trace is active for the node. Currently nodes inherit their trace setting from the
message flow.

If this parameter is NULL, the trace level for the execution group is returned.

traceText (input)
A string of characters that ends with NULL (input). This string will be written
to service trace and provides an easy way to correlate trace entries with paths
through the source code. For example, there could be several paths through the
code that result in the same message (messageSource and messageNumber) being
written to trace. traceText can be used to distinguish between these different
paths. That is, the traceText string will be a static literal string in the source and
therefore the same string will be in both the source code file and the formatted
trace file.

User-defined extensions 267

Return values:

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;
const CciChar* traceText = CciString(">>_Switch_evaluate()",

BIP_DEF_COMP_CCSID);
cciServiceTraceW(&rc,(CciObject*)thisNode,traceText);
checkRC(rc);

cciThrowException
Use cciThrowException to throw an exception.

The exception is thrown by the broker interface, and includes the specified
arguments as exception data.

Syntax:
void cciThrowException(

int* returnCode,
CCI_EXCEPTION_TYPE type,
char* file,
int line,
char* function,
CciChar* messageSource,
int messageNumber,
char* traceText,

...);

Parameters:

returnCode
The return code from the function (output). The possible return code is
CCI_INV_DATA_POINTER.

type The type of exception (input). Valid values are:
v CCI_FATAL_EXCEPTION
v CCI_RECOVERABLE_EXCEPTION
v CCI_CONFIGURATION_EXCEPTION
v CCI_PARSER_EXCEPTION
v CCI_CONVERSION_EXCEPTION
v CCI_DATABASE_EXCEPTION
v CCI_USER_EXCEPTION

file The source file name where the exception was generated (input). The value
is optional, but it is useful for debugging purposes.

line The line number in the source file where the exception was generated
(input). The value is optional, but it is useful for debugging purposes.

function
The function name which generated the exception (input). The value is
optional, but it is useful for debugging purposes.

messageSource
The fully-qualified location and name of the Windows message source or
the Linux, UNIX, or z/OS message catalog.

268 User-defined Extensions

To use the current broker message catalog, specify BIPv600 on all operating
systems. Alternatively, you can create your own message catalog.

messageNumber
The message number identifying the exception (input). If messageNumber is
specified as zero, it is assumed that a message is not available. If
messageNumber is non-zero, the specified message is written into the broker
event log with any inserts provided in the variable argument list.

traceText
Trace information that is written into the broker service trace log (input).
The information is optional, but it is useful in debugging problems.

... A C variable argument list that contains any message inserts that
accompany the message (input). These inserts are treated as character
strings and the variable arguments are assumed to be of type pointer to
char.

char* characters must be strings in either ASCII (Latin) or EBCDIC (1047).

The last argument in this list must be (char*)0.

Return values:

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

cciThrowExceptionW
The cciThrowExceptionW exception is thrown by the broker interface and uses the
specified arguments as exception data.

Syntax:
void cciThrowExceptionW(

int* returnCode,
CCI_EXCEPTION_TYPE type,
const char* file,
int line,
const char* function,
const CciChar* messageSource,
int messageNumber,
const CciChar* traceText,

...
);

Parameters:

returnCode
The return code from the function (output). If the messageSource parameter
is null, the returnCode is set to CCI_INV_DATA_POINTER.

type The type of exception (input). Valid values are:
v CCI_FATAL_EXCEPTION
v CCI_RECOVERABLE_EXCEPTION
v CCI_CONFIGURATION_EXCEPTION
v CCI_PARSER_EXCEPTION
v CCI_CONVERSION_EXCEPTION
v CCI_DATABASE_EXCEPTION
v CCI_USER_EXCEPTION

User-defined extensions 269

|
|

file The source file name where the exception was generated (input). The value
is optional, but it is useful for debugging purposes.

line The line number in the source file where the exception was generated
(input). The value is optional, but it is useful for debugging purposes.

function
The function name which generated the exception (input). The value is
optional, but it is useful for debugging purposes.

messageSource
A string that identifies the Windows message source or the Linux and
UNIX message catalog. To use the current broker message catalog, specify
BIPv600 on all operating systems.

messageNumber
The message number identifying the exception (input). If messageNumber is
specified as zero, it is assumed that a message is not available. If
messageNumber is non-zero, the specified message is written into the broker
event log with any inserts provided in the variable argument list.

traceText
Trace information that is written into the service trace log (input). The
information is optional, but it is useful in debugging problems.

... A C variable argument list that contains any message inserts that
accompany the message (input). These inserts are treated as character
strings and the variable arguments are assumed to be of type pointer to
CciChar.

The last argument in this list must be (Ccichar*)0.

Return values:

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
void raiseExceptionWithBroker(CciChar* helpfulText,

char* file, /* which source file is broken */
int line, /* line in above file */
char* func /* function in above file */
){

int rc = CCI_SUCCESS;

/* Set up the message catalog name */
const char* catalog = "BIPv600";

/* Convert the catalog name to wide characters.
* BIP_DEF_COMP_CCSID is UTF-8 on distributed and LATIN1 on z/OS
*/
int maxChars = strlen(catalog)+1;
CciChar* wCatalog =(CciChar*)malloc(maxChars*sizeof(CciChar));
cciMbsToUcs(&rc, catalog, wCatalog, maxChars, BIP_DEF_COMP_CCSID);

/* The above might have failed, but we are already throwing an exception,
* so rc is now set to type success. */
rc = CCI_SUCCESS;

/* Throw the exception. The explanation will be added as the traceText and
* as an insert to the message
*/
cciThrowExceptionW(&rc,

CCI_FATAL_EXCEPTION,

270 User-defined Extensions

file, line, func,
wCatalog, BIP2111,
helpfulText,
helpfulText,
(CciChar*)0
);

/* The above might have failed, but we are already throwing an exception,
* so the value of rc is not important. */

}

ccilsTraceActive

Reports whether trace is active and the level at which trace is active.

Syntax:
CCI_TRACE_TYPE cciIsTraceActive(

int* returnCode,
CciObject* object);

Parameters:

returnCode
Receives the return code from the function (output). A NULL pointer input
signifies that the user-defined node does not wish to deal with errors. Any
exceptions thrown during the execution of this call will be re-thrown to the
next upstream node in the flow. If input is not NULL, output will signify the
success status of the call. If an exception occurs during execution, *returnCode
will be set to CCI_EXCEPTION on output. A call to CciGetLastExceptionData
will provide details of the exception.

object
The address of the object that is to be associated with the trace entry (input).
This object can be a CciNode* or a CciParser*. If it is a CciNode*, then the
name of that node is written to trace. If it is a CciParser*, then the name of the
node that created the parser is written to trace. This object is also used to
determine if the entry should be written to trace. The entry is only written if
trace is active for the node. Currently nodes inherit their trace setting from the
message flow.

If this parameter is NULL, the trace level for the execution group is returned.

Return values:

A CCI_TRACE_TYPE value indicating the level of trace that is currently active. The
CCI_TRACE_TYPE type has the following possible values:
v CCI_USER_NORMAL_TRACE
v CCI_USER_DEBUG_TRACE
v CCI_ SERVICE_NORMAL_TRACE
v CCI_SERVICE_DEBUG_TRACE
v CCI_TRACE_NONE

These return values are bitwise values. Combinations of these values are also
possible, for example:
v CCI_USER_NORMAL_TRACE + CCI_ SERVICE_NORMAL_TRACE
v CCI_USER_NORMAL_TRACE + CCI_SERVICE_DEBUG_TRACE
v CCI_USER_DEBUG_TRACE + CCI_ SERVICE_NORMAL_TRACE
v CCI_USER_DEBUG_TRACE + CCI_SERVICE_DEBUG_TRACE

User-defined extensions 271

CCI_TRACE_NONE is a zero value and all other values are non zero.

Two further values can be used as bitmasks when querying the active level of
trace. These are:
v CCI_USER_TRACE
v CCI_SERVICE_TRACE

For example, the expression (traceLevel & CCI_USER_TRACE) will evaluate to a non
zero value for traceLevel for the following return values:
v CCI_USER_NORMAL_TRACE + CCI_ SERVICE_NORMAL_TRACE
v CCI_USER_NORMAL_TRACE + CCI_SERVICE_DEBUG_TRACE
v CCI_USER_DEBUG_TRACE + CCI_ SERVICE_NORMAL_TRACE
v CCI_USER_DEBUG_TRACE + CCI_SERVICE_DEBUG_TRACE
v CCI_USER_NORMAL_TRACE
v CCI_USER_DEBUG_TRACE

The expression (traceLevel & CCI_USER_TRACE) will evaluate to zero for traceLevel
for the following return values:
v CCI_SERVICE_NORMAL_TRACE
v CCI_SERVICE_DEBUG_TRACE
v CCI_TRACE_NONE

Example:
CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;

const CCI_TRACE_TYPE traceActive = cciIsTraceActive(&rc, (CciObject*)thisNode);
checkRC(rc);

cciUcsToMbs

Converts Universal Character Set (UCS) data to multi-byte string data. This
function is, typically, used only for formatting diagnostic messages. Normal
processing is best done in UCS-2, which can represent all characters from all
languages.

The sample code (BipSampPluginUtil.c) shows more utilities for processing UCS-2
characters in a portable way.

Syntax:
int cciUcsToMbs(

int* returnCode,
const CciChar* ucsString,
char* mbString,
int mbStringLength,
int codePage);

Parameters:

returnCode
The return code from the function (output).

Possible return codes are:
v CCI_SUCCESS
v CCI_BUFFER_TOO_SMALL
v CCI_INV_CHARACTER
v CCI_FAILURE

272 User-defined Extensions

v CCI_INV_CODEPAGE

ucsString
The string to be converted, expressed as UCS-2 Unicode (input).

mbString
The location of the resulting string (input). The string has a trailing byte of
0, just as the Unicode has a trailing CciChar of 0.

mbStringLength
The length (in bytes) of the buffer that you have provided (input). Each
CciChar in the source string expands to one byte (for SBCS code pages), or
up to not more than the code page’s MB_CUR_MAX value (typically less
than five bytes), which defines an upper limit of the buffer size required.

codePage
The code page of the resulting string (input). The value of the code page
should be suitable for the compiler that is being used to compile the
user-defined node.

For an ASCII system, a value of 1208 (meaning code page ibm-1208, which
is UTF-8 Unicode) is a good choice if you are using cciUcsToMbs to
convert string constants for processing by WebSphere Message Broker. 1208
is appropriate for Linux and UNIX, and for Windows platforms.

On Linux and UNIX, nl_langinfo(CODEPAGE) gives you the code page that
has been selected by setlocale.

For OS/390 and z/OS, the default code page for WebSphere MQ, which is
500, should not be used. Instead, you should use a code page value of
1047.

Return values:

The converted length in bytes.

cciUserDebugTrace
Use cciUserDebugTrace to write a message from a message catalog (with inserts) to
user trace when user trace is active at debug level.

If user trace is not active at debug level, an entry is written to service trace when
service trace is active at any level.

Syntax:
void cciUserDebugTrace(

int* returnCode,
CciObject* object,
const CciChar* messageSource,
int messageNumber,
const char* traceText,
...

);

Parameters:

returnCode
Receives the return code from the function (output). A NULL pointer input
indicates that the user-defined node does not wish to deal with errors. Any
exceptions that are thrown during the execution of this call are re-thrown to
the next upstream node in the flow. If the input is not NULL, the output
signifies the success status of the call. If an exception occurs during execution,

User-defined extensions 273

*returnCode is set to CCI_EXCEPTION on output. Call
CciGetLastExceptionData to obtain details of the exception.

object
The address of the object that is to be associated with the trace entry (input).
This object can be a CciNode* or a CciParser*. If you specify a CciNode*, the
name of that node is written to trace. If you specify a CciParser*, the name of
the node that created the parser is written to trace. This object is also used to
determine if the entry should be written to trace. The entry is written only if
trace is active for the node. Nodes inherit their trace setting from the message
flow.

If this parameter is NULL, the trace level for the execution group is returned.

messageSource
The fully-qualified location and name of the Windows message source or the
Linux, UNIX, or z/OS message catalog.

To use the current broker message catalog, specify BIPv600 on all operating
systems. Alternatively, you can create your own message catalog.

When trace is formatted, a message from the NLS version of this catalog is
written.

The locale used is that of the environment where the trace is formatted. You
can run the broker on one platform, read the log on that platform, and then
format the log on a different platform. For example, if the broker is running on
Linux, UNIX, or z/OS but no .cat file is available, you could read the log, and
then transfer it to Windows where the log can be formatted by using the
.properties file.

If this parameter is NULL, the effect is the same as specifying an empty string.
That is, all other information is written to the log, and the catalog field has an
empty string value. Therefore, the log formatter cannot find the message
source and fails to format this entry.

messageNumber
The number that identifies the message within the specified messageSource
(input). If the messageSource does not contain a message that corresponds to
this messageNumber, the log formatter fails to format this entry.

traceText
A string of characters that ends with NULL (input). This string is written to
service trace and provides an easy way to correlate trace entries with paths
through the source code. For example, there could be several paths through the
code that result in the same message (messageSource and messageNumber) being
written to trace. traceText can be used to distinguish between these different
paths. That is, the traceText string is a static literal string in the source and
therefore the same string is in both the source code file and the formatted trace
file.

... A C variable argument list that contains any message inserts that accompany
the message (input). These inserts are treated as character strings and the
variable arguments are assumed to be of type pointer to char. The last
argument in this list must be (char*)0.

v For user-defined extensions that are running on distributed platforms, the char*
arguments must be in ISO-8859-1 (ibm-918) codepage.

v For user-defined extensions that are running on Z/OS platforms, the char*
arguments must be in EBCIDIC (1047).

274 User-defined Extensions

|
|

This includes all char* arguments in traceText and the variable argument list of
inserts (...).

Return values:

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
const CciChar* myMessageSource=CciString("SwitchMSG",BIP_DEF_COMP_CCSID);
CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;

const char* mbElementName = mbString((CciChar*)&elementName,BIP_DEF_COMP_CCSID);
const char* mbElementValue = mbString((CciChar*)&elementValue,BIP_DEF_COMP_CCSID);
const char* traceTextFormat = "Switch Element: name=%s, value=%s";
char* traceText = (char*)malloc(strlen(traceTextFormat) +

strlen(mbElementName) +
strlen(mbElementValue));

sprintf(traceText,traceTextFormat,mbElementName,mbElementValue);

cciUserDebugTrace(&rc,
(CciObject*)thisNode,
myMessageSource,
2,
traceText,
mbElementName,
mbElementValue,
(char*)0);

free((void*)mbElementName);
free((void*)mbElementValue);
free((void*)traceText);

cciUserDebugTraceW
Use cciUserDebugTraceW to write a message from a message catalog (with inserts)
to user trace when user trace is active at debug level. A message is also written to
service trace, if service trace is active.

If user trace is not active at debug level, an entry is written to service trace when
service trace is active at any level.

Syntax:
void cciUserDebugTraceW(

int* returnCode,
CciObject* object,
const CciChar* messageSource,
int messageNumber,
const CciChar* traceText,
...

);

Parameters:

returnCode
Receives the return code from the function (output). A NULL pointer input
signifies that the user-defined node does not wish to deal with errors. Any
exceptions thrown during the execution of this call will be re-thrown to the
next upstream node in the flow. If input is not NULL, output will signify the
success status of the call. If an exception occurs during execution, *returnCode
will be set to CCI_EXCEPTION on output. A call to CciGetLastExceptionData
will provide details of the exception.

User-defined extensions 275

object
The address of the object that is to be associated with the trace entry (input).
This object can be a CciNode* or a CciParser*. If it is a CciNode*, then the
name of that node is written to trace. If it is a CciParser*, then the name of the
node that created the parser is written to trace. This object is also used to
determine if the entry should be written to trace. The entry is only written if
trace is active for the node. Currently nodes inherit their trace setting from the
message flow.

If this parameter is NULL, the trace level for the execution group is returned.

messageSource
A string that identifies the Windows message source or the Linux and UNIX
message catalog (input). When trace is formatted, a message from the NLS
version of this catalog is written. The locale used is that of the environment
where the trace is formatted. It is possible to run the broker on one type of
platform, read the log on that platform, and then format the log on a different
platform. For example, if the broker is running on Linux or UNIX but there is
no .cat file available, the user could read the log, and then transfer it to
Windows where the log can be formatted by using the .properties file.

If this parameter is NULL, the effect is the same as specifying an empty string.
That is, all other information will be written to the log, and the catalog field
will have an empty string value. Therefore, the log formatter will not be able
to find the message source. Consequently, the log formatter will fail to format
this entry.

messageNumber
The number that identifies the message within the specified messageSource
(input). If the messageSource does not contain a message that corresponds to
this messageNumber, then the log formatter will fail to format this entry.

traceText
A string of characters that ends with NULL (input). This string will be written
to service trace and provides an easy way to correlate trace entries with paths
through the source code. For example, there could be several paths through the
code that result in the same message (messageSource and messageNumber) being
written to trace. traceText can be used to distinguish between these different
paths. That is, the traceText string will be a static literal string in the source and
therefore the same string will be in both the source code file and the formatted
trace file.

... A C variable argument list that contains any message inserts that accompany
the message (input). These inserts are treated as character strings and the
variable arguments are assumed to be of type pointer to CciChar.

The last argument in this list must be (CciChar*)0.

Return values:

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
const CciChar* myMessageSource=CciString("SwitchMSG",BIP_DEF_COMP_CCSID);
CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;
const CciChar* traceText = CciString("Found an element name and value",

BIP_DEF_COMP_CCSID);

cciUserDebugTraceW(&rc,

276 User-defined Extensions

(CciObject*)thisNode,
myMessageSource,
2,
traceText,
elementName,
elementValue,
(CciChar*)0);

cciUserTrace
Use cciUserTrace to write a message from a message catalog (with inserts) to user
trace. A message is also written to service trace, if service trace is active.

The message written to user trace has the following format:
<date-time stamp> <threadNumber> UserTrace <Message text with inserts> <Message Explanation>

Syntax:
void cciUserTrace(

int* returnCode,
CciObject* object,
const CciChar* messageSource,
int messageNumber,
const char* traceText,

...
);

Parameters:

returnCode
Receives the return code from the function (output). A NULL pointer input
signifies that the user-defined node does not wish to deal with errors. Any
exceptions thrown during the execution of this call are re-thrown to the next
upstream node in the flow. If input is not NULL, output signifies the success
status of the call. If an exception occurs during execution, *returnCode is set to
CCI_EXCEPTION on output. A call to CciGetLastExceptionData provides
details of the exception.

object
The address of the object that is to be associated with the trace entry (input).
This object can be a CciNode* or a CciParser*. If it is a CciNode*, the name of
that node is written to trace. If it is a CciParser*, the name of the node that
created the parser is written to trace. This object is also used to determine if
the entry should be written to trace. The entry is only written if trace is active
for the node. Currently, nodes inherit their trace setting from the message flow.

If this parameter is NULL, the trace level for the execution group is returned.

messageSource
The fully-qualified location and name of the Windows message source, or the
Linux, UNIX, or z/OS message catalog (input).

To use the current broker message catalog, specify BIPv600 on all operating
systems. Alternatively, you can create your own message catalog.

When trace is formatted, a message from the NLS version of this catalog is
written. The locale used is that of the environment where the trace is
formatted.

You can run the broker on one operating system, read the log on that
operating system, then format it on a different operating system. For example,
if the broker is running on Linux, but no .cat file is available, you could read
the log, and then transfer it to Windows, where the log can be formatted by
using the .properties file.

User-defined extensions 277

|
|

If this parameter is NULL, the effect is the same as specifying an empty string.
That is, all other information is written to the log, and the catalog field has an
empty string value. Therefore, the log formatter cannot find the message
source. Consequently, the log formatter fails to format this entry.

messageNumber
The number that identifies the message within the specified messageSource
(input). If the messageSource does not contain a message that corresponds to
this messageNumber, the log formatter fails to format this entry.

traceText
A string of characters that ends with NULL (input). This string is written to
service trace, and provides an easy way to correlate trace entries with paths
through the source code. For example, if several paths through the code result
in the same message (messageSource and messageNumber) being written to trace,
you can specify traceText to distinguish between these different paths. That is,
the traceText string is a static literal string in the source, and therefore the same
string appears in both the source code file and the formatted trace file.

... A C variable argument list that contains any message inserts that accompany
the message (input). These inserts are treated as character strings, and the
variable arguments are assumed to be of type pointer to char.

The last argument in this list must be (char*)0.
v For user-defined extensions that are running on distributed platforms, the char*

arguments must be in ISO-8859-1 (ibm-918) code page.
v For user-defined extensions that are running on z/OS platforms, the char*

arguments must be in EBCIDIC (1047).

These requirements include all char* arguments in traceText and the variable
argument list of inserts (...).

Return values:

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
const CciChar* myMessageSource=CciString("SwitchMSG",BIP_DEF_COMP_CCSID);
CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;

cciUserTrace(&rc,
(CciObject*)thisNode,
myMessageSource,
1,
"propagating to add terminal",
"add",
(char*)0);

checkRC(rc);

cciUserTraceW
Use cciUserTraceW to write a message from a message catalog (with inserts) to
user trace. A message is also written to service trace, if service trace is active.

The message written to user trace has the following format:
<date-time stamp> <threadNumber> UserTrace <Message text with inserts> <Message Explanation>

Syntax:

278 User-defined Extensions

void cciUserTraceW(
int* returnCode,
CciObject* object,
const CciChar* messageSource,
int messageNumber,
const CciChar* traceText,

...
);

Parameters:

returnCode
Receives the return code from the function (output). A NULL pointer input
signifies that the user-defined node does not wish to deal with errors. Any
exceptions that are thrown during the execution of this call are re-thrown to
the next upstream node in the flow. If input is not NULL, output indicates the
success status of the call. If an exception occurs during execution, *returnCode
is set to CCI_EXCEPTION on output. Call CciGetLastExceptionData to obtain
details of the exception.

object
The address of the object that is to be associated with the trace entry (input).
This object can be a CciNode* or a CciParser*. If you specify a CciNode*, the
name of that node is written to trace. If you specify a CciParser*, the name of
the node that created the parser is written to trace. This object is also used to
determine if the entry should be written to trace. The entry is written only if
trace is active for the node. Nodes inherit their trace setting from the message
flow.

If this parameter is NULL, the trace level for the execution group is returned.

messageSource
The fully-qualified location and name of the Windows message source or the
Linux, UNIX, or z/OS message catalog.

To use the current broker message catalog, specify BIPv600 on all operating
systems. Alternatively, you can create your own message catalog.

When trace is formatted, a message from the NLS version of this catalog is
written.

The locale used is that of the environment where the trace is formatted. You
can run the broker on one platform, read the log on that platform, and then
format the log on a different platform. For example, if the broker is running on
Linux, UNIX, or z/OS but no .cat file is available, you could read the log, and
then transfer it to Windows where the log can be formatted by using the
.properties file.

If this parameter is NULL, the effect is the same as specifying an empty string.
That is, all other information is written to the log, and the catalog field has an
empty string value. Therefore, the log formatter cannot find the message
source and fails to format this entry.

messageNumber
The number that identifies the message within the specified messageSource
(input). If the messageSource does not contain a message that corresponds to
this messageNumber, the log formatter fails to format this entry.

traceText
A string of characters that ends with NULL (input). This string is written to
service trace and provides an easy way to correlate trace entries with paths
through the source code. For example, there could be several paths through the

User-defined extensions 279

|
|

code that result in the same message (messageSource and messageNumber) being
written to trace. Use traceText to distinguish between these different paths. That
is, the traceText string is a static literal string in the source, and therefore the
same string is in both the source code file and the formatted trace file.

... A C variable argument list that contains any message inserts that accompany
the message (input). These inserts are treated as character strings and the
variable arguments are assumed to be of type pointer to CciChar.

The last argument in this list must be (CciChar*)0.

Return values:

None. If an error occurs, the returnCode parameter indicates the reason for the
error.

Example:
const CciChar* myMessageSource=CciString("SwitchMSG",BIP_DEF_COMP_CCSID);
const CciChar* text = CciString("propagating to add terminal",

BIP_DEF_COMP_CCSID);
const CciChar* insert = CciString("add", BIP_DEF_COMP_CCSID);
CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;
int rc = CCI_SUCCESS;

cciUserTrace(&rc,
(CciObject*)thisNode,
myMessageSource,
1,
text,
insert,
(CciChar*)0);

checkRC(rc);

C skeleton code

The following code provides a skeleton for code in a C user-defined node. It has
the minimum content that is required to compile a user-defined node successfully.

#ifdef __WIN32
#include <windows.h>
#endif
#include <BipCos.h>
#include <BipCci.h>
#include <BipCni.h>
#include <malloc.h>

#define BIP_DEF_COMP_CCSID 437
CciChar* constNodeFactory = 0;
CciChar* constNodeName = 0;
CciChar* constTerminalName = 0;
CciChar* constOutTerminalName = 0;

CciChar* CciString(
const char* source,
int codepage

){
/* Maximum number of characters in Unicode representation */
int maxChars = strlen(source) + 1 ;
CciChar* buffer = (CciChar*)malloc(maxChars * sizeof(CciChar)) ;
int rc ;
cciMbsToUcs(&rc, source, buffer, maxChars, codepage) ;
return buffer ;

}
void initNodeConstants(){

280 User-defined Extensions

constNodeFactory = CciString("myNodeFactory", BIP_DEF_COMP_CCSID);
constNodeName = CciString("myNode",BIP_DEF_COMP_CCSID);
constTerminalName = CciString("in",BIP_DEF_COMP_CCSID);
constOutTerminalName = CciString("out",BIP_DEF_COMP_CCSID);

}

typedef struct {
CciTerminal* iOutTerminal;

}MyNodeContext;

CciContext* createNodeContext(
CciFactory* factoryObject,
CciChar* nodeName,
CciNode* nodeObject

){

MyNodeContext * p = (MyNodeContext *)malloc(sizeof(MyNodeContext));

/*here we would create an instance of some data structure
where we could store context about this node instance.
We would return a pointer to this struct and that pointer
will be passed to our other implementation functions */

/* now we create an input terminal for the node*/
cniCreateInputTerminal(NULL, nodeObject, (CciChar*)constTerminalName);
p->iOutTerminal = cniCreateOutputTerminal(NULL, nodeObject, (CciChar*)constOutTerminalName);
return((CciContext*)p);

}

/**/
/* */
/* Plugin Node Implementation Function: cniEvaluate() */
/* */
/**/
void evaluate(

CciContext* context,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* message

){
/* we would place our node's processing logic in here*/
return;

}

int run(
CciContext* context,
CciMessage* localEnvironment,
CciMessage* exceptionList,
CciMessage* message

)
{

char* buffer="<doc><test>hello</test></doc>";
CciChar* wBuffer=CciString(buffer,BIP_DEF_COMP_CCSID);
//cniSetInputBuffer(NULL,message,(void*)wBuffer,strlen(buffer) * sizeof(CciChar));
cniSetInputBuffer(NULL,message,(void*)buffer,strlen(buffer));
cniFinalize(NULL,message,0);

cniPropagate(NULL,((MyNodeContext*)context)->iOutTerminal,localEnvironment,exceptionList,message);
return CCI_SUCCESS_CONTINUE;

}

#ifdef __cplusplus
extern "C"{
#endif
CciFactory LilFactoryExportPrefix * LilFactoryExportSuffix bipGetMessageflowNodeFactory()

User-defined extensions 281

{
CciFactory* factoryObject;

/* Before we proceed we need to initialize all the static constants */
/* that may be used by the plug-in. */
initNodeConstants();

/* Create the Node Factory for this plug-in */
/* If any errors/exceptions */
/* occur during the execution of this utility function, then as we have not */
/* supplied the returnCode argument, the exception will bypass the plugin */
/* and be directly handled by the broker. */
factoryObject = cniCreateNodeFactory(0, (unsigned short *)constNodeFactory);
if (factoryObject == CCI_NULL_ADDR) {

/* Any further local error handling can go here */
}
else {

/* Define the node supported by this factory */
static CNI_VFT vftable = {CNI_VFT_DEFAULT};
/* Setup function table with pointers to node implementation functions */
vftable.iFpCreateNodeContext = createNodeContext;
vftable.iFpEvaluate = evaluate;
vftable.iFpRun = run;

/* Define a node type supported by our factory. If any errors/exceptions */
/* occur during the execution of this utility function, then as we have not */
/* supplied the returnCode argument, the exception will bypass the plugin */
/* and be directly handled by the broker. */
cniDefineNodeClass(NULL, factoryObject, (CciChar*)constNodeName, &vftable);

}

/* Return address of this factory object to the broker */
return(factoryObject);

}
#ifdef __cplusplus
}
#endif

GNU makefile

The following file is a makefile that lists the files, dependencies, and rules by
which the C user-defined node is compiled.

.SUFFIXES : .so .a .o .c

R1INC = .
R1LIB = .

WMQI
MQSIDIR = /cmvc/back/inst.images/x86_linux_2/shipdata/opt/mqsi
MQSIINC = $(MQSIDIR)/include
MQSILIB = $(MQSIDIR)/lib

WMQ
MQIDIR = /usr/mqm

CC = /usr/bin/g++
LD = ${CC}

OBJ = .o
LIL = .lil
THINGSTOCLEAN = *${OBJ}
CFLAGS = -fpic -c #-pedantic -x c -Wall
CFLAGSADD = -I${R1INC} -I${MQSIINC} -I${MQSIINC}/plugin ${DEFINES}
DEFINES = -DLINUX

282 User-defined Extensions

LIBADD = -L${MQSILIB} -limbdfplg
LDFLAG = -shared ${LIBADD}

#CC = /usr/bin/gcc
#LD = ${CC}

OBJECTS = skeleton${OBJ}
.c.o : ; ${CC} ${CFLAGS} ${CFLAGSADD} $<

ALL : ${OBJECTS} Samples${LIL}
clean:
rm *${OBJ} *${LIL}

skeleton${OBJ}: skeleton.c

Samples${LIL}: ${OBJECTS}
${LD} -o $@ ${OBJECTS} ${LDFLAG}

Utility function return codes and values

By convention, the return code output parameter of all utility functions is set to
indicate successful completion, or otherwise. The following table lists all return
codes with their meanings. These return codes are defined in the BipCci.h header
file.

Table 1. Utility function return codes and values

Return code Explanation

CCI_BUFFER_TOO_SMALL The output buffer is not large enough to
store the requested data.

CCI_EXCEPTION An exception occurred.

CCI_EXCEPTION_CONFIGURATION A configuration exception was detected
when invoking the function. 1

CCI_EXCEPTION_CONVERSION A conversion exception was detected when
invoking the function. 1

CCI_EXCEPTION_DATABASE A database exception was detected when
invoking the function.

CCI_EXCEPTION_FATAL A fatal exception was detected when
invoking the function. 1

CCI_EXCEPTION_PARSER A parser exception was detected when
invoking the function. 1

CCI_EXCEPTION_RECOVERABLE A recoverable exception was detected when
invoking the function. 1

CCI_EXCEPTION_UNKNOWN An unknown exception was specified or
encountered.

CCI_EXCEPTION_USER A user exception was detected when
invoking the function. 1

CCI_FAILURE A function was unsuccessful.

CCI_FAILURE_CONTINUE cniRun() return value: rollback message
processing and continue thread execution

CCI_FAILURE_RETURN cniRun() return value: rollback message
processing and return thread to pool

User-defined extensions 283

Table 1. Utility function return codes and values (continued)

Return code Explanation

CCI_INV_CODEPAGE An invalid code page number was specified.

CCI_INV_CHARACTER An invalid character was detected in the
buffer to be converted.

CCI_INV_DATA_BUFLEN A data buffer length of zero was specified.

CCI_INV_DATA_POINTER A null pointer was specified for the address
of an output data area.

CCI_INV_ELEMENT_OBJECT A null pointer was specified for the element
object.

CCI_INV_FACTORY_NAME A factory name that is not valid (blank) was
specified.

CCI_INV_FACTORY_OBJECT A null pointer was specified for the factory
object.

CCI_INV_IMPL_FUNCTION An invalid combination of conditional
implementation functions was specified

CCI_INV_LENGTH A length of zero was specified.

CCI_INV_LOG_TYPE The specified log type is not valid.

CCI_INV_MESSAGE_CONTEXT A null pointer was specified for the message
context.

CCI_INV_MESSAGE_OBJECT A null pointer was specified for the message
object.

CCI_INV_NODE_ENV Attempt to dispatch a thread from a
non-input node.

CCI_INV_NODE_NAME A node name that is not valid (blank) was
specified.

CCI_INV_NODE_OBJECT A null pointer was specified for the node
object.

CCI_INV_OBJECT_NAME Characters specified in the object name were
not valid.

CCI_INV_PARSER_NAME A parser class name that is not valid (blank)
was specified.

CCI_INV_PARSER_OBJECT A null pointer was specified for the parser
object.

CCI_INV_SQL_EXPR_OBJECT A null pointer was specified for an SQL
expression value.

CCI_INV_STATEMENT A statement was not specified.

CCI_INV_TERMINAL_NAME A terminal name that is not valid (blank)
was specified.

CCI_INV_TERMINAL_OBJECT A null pointer was specified for the terminal
object.

CCI_INV_TRANSACTION_TYPE An invalid value was specified for the
transaction type.

CCI_INV_VFTP A null pointer was specified for the address
of the user-defined extension virtual
function pointer table.

CCI_MISSING_IMPL_FUNCTION A mandatory implementation function was
not defined in the function pointer table.

284 User-defined Extensions

Table 1. Utility function return codes and values (continued)

Return code Explanation

CCI_NAME_EXISTS A parser with the same class name already
exists.

CCI_NO_BUFFER_EXISTS No buffer exists for the specified parser
object.

CCI_NO_EXCEPTION_EXISTS No previous exception was found for this
thread.

CCI_NO_THREADS_AVAILABLE No threads were available to be dispatched.

CCI_NULL_ADDR A function that should return an address
was unsuccessful; zero is returned instead.

CCI_PARSER_NAME_TOO_LONG The name of the parser class is too long.

CCI_SUCCESS Successful completion.

CCI_SUCCESS_CONTINUE cniRun() return value: commit message
processing and continue thread execution

CCI_SUCCESS_RETURN cniRun() return value: commit message
processing and return thread to pool

CCI_TIMEOUT cniRun() return value: no message
processing but continue thread execution

Note:

1. This return code is returned only by cniGetLastExceptionData to
indicate the type of the last exception.

Available parsers
A parser is called by the broker only when that parser is required. The parser that
is called depends upon the parser that has been specified.

For certain implementation functions, it might be necessary to specify the name of
a parser supplied with WebSphere Message Broker. For example, functions include:
v cniCreateElementAfterUsingParser
v cniCreateElementAsFirsthChildUsingParser
v cniCreateElementAsLastChildUsingParser
v cniCreateElementAsLastChildFromBitstream
v cniCreateElementBeforeUsingParser

When using these functions, you must specify the correct class name of the parser.
The following tables provide a summary of the parsers, root element names, and
class names for different headers.

The following table shows the Body parsers.

Parser Root element name Class name

BLOB BLOB NONE

IDOC IDOC IDOC

JMSMap JMSMap JMS_MAP

JMSStream JMSStream JMS_STREAM

User-defined extensions 285

Parser Root element name Class name

MIME MIME MIME

MRM MRM MRM

XML XML xml

XMLNS XMLNS xmlns

XMLNSC XMLNSC xmlnsC

The following table shows the Header parsers.

Parser Root element name Class name

MQCFH MQPCF MQPCF

MQCIH MQCIH MQCICS

MQDLH MQDLH MQDEAD

MQIIH MQIIH MQIMS

MQMD MQMD MQHMD

MQMDE MQMDE MQHMDE

MQRFH MQRFH MQHRF

MQRFH2 MQRFH2 MQHRF2

MQRFH2C MQRFH2C MQHRF2C

MQRMH MQRMH MQHREF

MQSAPH MQSAPH MQHSAP

MQWIH MQWIH MQHWIH

SMQ_BMH SMQ_BMH SMQBAD

When using the MQMD parser, the MQMD is assumed to be a V2 MQMD.

The following table shows the Properties parser.

Parser Root element name Class name

Properties Properties PropertyParser

You can also create your own user-defined parsers, or you can make use of
user-defined parsers that have been supplied by independent software vendors.

XML, MRM, and XMLNSC parser constants

The names of the XML and MRM parser constants, together with their
corresponding values, and a link to the XMLNSC constants.

When you are writing user-defined extensions you might need to know the value
of various constants.

XML parser constants

Name Value

Element 0x01000000

286 User-defined Extensions

|
|

tag 0x01000000

ParserRoot 0x01000010

Content 0x02000000

pcdata 0x02000000

attr 0x03000000

Attribute 0x03000000

UnparsedEntityDecl 0x05000004

NotationDecl 0x05000008

EntityDecl 0x05000011

ParameterEntityDecl 0x05000012

ExternalEntityDecl 0x05000014

XmlDecl 0x05000018

DocTypeDecl 0x05000020

IntSubset 0x05000021

ExtSubset 0x05000022

AttributeList 0x05000024

AttributeDef 0x05000028

ExternalParameterEntityDecl 0x05000040

WhiteSpace 0x06000002

PublicId 0x06000004

SystemId 0x06000008

NotationReference 0x06000010

Version 0x06000011

Encoding 0x06000012

Standalone 0x06000014

Comment 0x06000018

EntityReferenceStart 0x06000020

EntityReferenceEnd 0x06000021

DocTypeComment 0x06000022

AsisElementContent 0x06000028

CDataSection 0x06000040

EntityDeclValue 0x06000041

AttributeDefValue 0x06000042

AttributeDefDefaultType 0x06000044

DocTypeWhiteSpace 0x06000080

ProcessingInstruction 0x07000002

ElementDef 0x07000004

DocTypePI 0x07000008

AttributeDefType 0x07000010

RequestedDomain 0x07000011

User-defined extensions 287

MRM parser constants

Name Value

PreDefStructureFav 0x01000000

PreDefStructure 0x01000001

SelfDefStructure 0x01000002

StructureInstance 0x01000004

MrmRoot 0x01000008

mtiSelfDefMessage 0x01000010

mtiPreDefMessage 0x01000012

mtiSelfDefIdentifier 0x02000001

mtiSdfFieldType 0x02000002

mtiSdfCharsCodepage 0x02000008

mtiSdfCharsEcho 0x02000010

mtiSdfCharsScale 0x02000011

mtiSdfCharsDateFmt 0x02000012

mtiSdfCharsTimeFmt 0x02000014

mtiSdfCharsTimeStampFmt 0x02000018

mtiSdfCharsBinaryFmt 0x02000020

mtiSdfCharsBinaryFmtContextLen 0x02000021

mtiSdfCharsBinaryFmtContext 0x02000022

mtiMixedContent 0x02000024

PreDefFieldFav 0x03000000

PreDefField 0x03000001

mtiSelfDefField 0x03000002

PreDefFieldInstance 0x03000004

SelfDefFieldInstance 0x03000008

Namespace 0x03000010

mtiPreDefStructureV 0x03000012

mtiSelfDefStructureV 0x03000014

mtiStructureInstanceV 0x03000016

mtiSelfDefMessageV 0x03000018

mtiPreDefMessageV 0x03000020

mtiUnresolvedChoice 0x04000001

Trace logging from a user-defined C extension

Message processing nodes and parsers that are written to the C programming
language API can write entries to trace.

There are two types of trace:
v Service Trace: entries usually describe what is happening within the code and

are only useful to the owner of the code, such as the user-defined extension
developer.

288 User-defined Extensions

v User Trace: entries usually describe what is happening at an external level and
are useful to the user of the code. Users of the code include message flow
designers, and broker domain administrators.

For each trace type, there are three levels:
v None
v Normal
v Debug

For C user-defined extensions, the following utility functions are available for each
trace type:
v cciServiceTrace and cciUserTrace: these functions write an entry to the

respective trace type only when trace has been activated, that is, trace is at
normal or debug level.

v cciServiceDebugTrace and cciUserDebugTrace: these functions write an entry to
the respective trace type only when trace is active at debug level.

To help avoid making function calls in the case where no trace is written, the
cciIsTraceActive utility function is provided. cciIsTraceActive reports whether
trace is active and the level at which trace is active.

The cci*Trace functions can be used by a user-defined extension regardless of the
trace settings. The functions determine if trace is active and only write entries
which are appropriate for the trace settings. When calling the cci*Trace functions,
some additional processing can be required. The cciIsTraceActive function is
provided to allow the user-defined extension to query the trace settings and avoid
this extra processing when trace is inactive.

In many cases, it is sufficient to treat the value returned from the cciIsTraceActive
function as a Boolean value. If the returned value is non zero, trace is active at
some level and it is appropriate to call any of the cci*Trace functions. The returned
value can also be inspected closely in the cases when details of the trace settings
are required.

Trace settings can be changed at any time so it is advisable to query them
regularly. For example, use cciIsTraceActive to query the trace settings when an
implementation function is entered.

Trace entries can be associated with certain objects, which allows for further
refinement of control for writing trace. A trace entry can be associated with a node
or parser and trace is written according to the trace setting for that object. The
object’s trace setting is inherited from the message flow to which the node or
parser belongs. If no object is specified, then the trace is associated with the
execution group.

Multicultural support considerations for message catalogs
WebSphere Message Broker converts any message that is loaded from the listed
supported code pages into the local code page of the running processes (brokers)
before output to the syslog.

You must provide symbolic links to your primary message catalogs for all locales
that you intend to support. WebSphere Message Broker uses the LC_MESSAGES
variable when opening message catalogs.

User-defined extensions 289

Multicultural support considerations on Windows

Windows When you build a message file for Windows that contains multiple
locales, ensure that the computer’s locale is set to a western European locale (for
example, English (United Kingdom)) before building the message catalogs. Use the
chcp (Change Code Page) command to ensure that the code page is 850.

Write or convert all your message files (those with file type .mc) to the following
code pages; each message file should be compiled separately by the message
compiler with the additional flag that is specified in the following table.

DBCS message files do not need to be in Unicode (no -U flag). Use the RC
command to ’resource compile’ all the files and then use the link command to
build a single message DLL.

Locale Code page Additional Flags

English (United States) 437 -U

German (Standard) 850 -U

Spanish (Modern Sort) 850 -U

French (Standard) 850 -U

Italian (Standard) 850 -U

Portuguese (Brazilian) 850 -U

Japan 932

Simplified Chinese (China) 1381

Traditional Chinese (Taiwan) 950

Korean 949

Multicultural support considerations on Linux and UNIX

When you build message catalogs for Linux and UNIX, ensure that the catalogs are
built in the code pages defined in the following table.

Locale Code page

English 437

German 850

Spanish 850

French 850

Italian 850

Portuguese (Brazilian) 850

Japan 932

Simplified Chinese (China) 1381

Traditional Chinese (Taiwan) 950

Korean 949

290 User-defined Extensions

Multicultural support considerations on z/OS

z/OS When you build message catalogs for z/OS, ensure that the catalogs are
built in the code pages defined in the following table.

Locale Code page

English 1047

Japan 939

Simplified Chinese (China) 1388

User-defined extensions 291

292 User-defined Extensions

Part 3. Appendixes

© Copyright IBM Corp. 2000, 2009 293

294 User-defined Extensions

Appendix. Notices for WebSphere Message Broker

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this information
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032,
Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2000, 2009 295

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information includes examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not

296 User-defined Extensions

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks in the WebSphere Message Broker information center

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at Copyright and trademark information at www.ibm.com/legal/
copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Intel and Pentium are trademarks of Intel Corporation in the United States and
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix. Notices for WebSphere Message Broker 297

http://www.ibm.com/legal/copytrade.shtml

298 User-defined Extensions

Index

A
application programming interfaces

C language user-defined node 108
C language user-defined parsers 179

C
C common API 249
classloading, user-defined Java node 76
compiling

user-defined C node or parser 53
user-defined Java node 74

I
installation

user-defined extension 88

M
message catalogs

creating 98
message flows

user-defined extensions 4
user-defined parsers 26

P
packaging user-defined Java node or

parser 75
PDE runtime capabilities

enabling 87

T
trademarks 297

U
user exit API 235
user exit implementation functions 235

bipInitializeUserExits 235
bipTerminateUserExits 236
cciInputMessageCallback 237
cciNodeCompletionCallback 238
cciPropagatedMessageCallback 239
cciTransactionEventCallback 240

user exit utility functions 241
cciGetNodeAttribute 242
cciGetNodeName 243
cciGetNodeType 244
cciGetSourceNode 245
cciGetSourceTerminalName 245
cciGetTargetNode 246
cciGetTargetTerminalName 246
cciRegisterUserExit 247

user-defined extensions 4
creating in C 31

user-defined extensions (continued)
creating in Java 59
error handling 8
exception handling 8
node factory 12
ODBC restrictions 12
parser factory 12
planning 5

user-defined nodes
C implementation functions 108
C node and parser implementation

functions 249
C skeleton code 280
C utility functions 109
changing 97
classloading, Java nodes 76
common utility functions 251

cciGetBrokerInfo 253
cciGetLastExceptionData 254
cciGetLastExceptionDataW 256
cciGetNodeType 244
cciLog 257
cciLogW 259
ccilsTraceActive 271
cciMbsToUcs 260
cciRegisterForThreadStateChange 261
cciRethrowLastException 263
cciServiceDebugTrace 264
cciServiceDebugTraceW 265
cciServiceTrace 266
cciServiceTraceW 267
cciThrowException 268
cciThrowExceptionW 269
cciUcsToMbs 272
cciUserDebugTrace 273
cciUserDebugTraceW 275
cciUserTrace 277
cciUserTraceW 278

compiling
C nodes 53
Java nodes 74

conversion
multi-byte strings to UCS 260
UCS to multi-byte strings 272

copying element tree
(cniCopyElementTree) 115

creating in Java 59
creating message catalogs 98
data buffer

output nodes 178
retrieving bytes 113
retrieving pointer 114
retrieving size 114

debug
cciServiceDebugTrace 264
cciServiceDebugTraceW 265
cciUserDebugTrace 273
cciUserDebugTraceW 275

deleting 97
designing 8

error and exception handling 8

user-defined nodes (continued)
designing (continued)

storage management 10
string handling 11
threading 11

developing 3
diagnostic information

cciGetLastExceptionData 254
cciGetLastExceptionDataW 256

error and exception handling 8
error logging

cciLog 257
cciLogW 259

event logging 98
event logs

cciLog 257
cciLogW 259

exceptions
cciRethrowLastException 263
cciThrowException 268
cciThrowExceptionW 269

execution model 7
input nodes 13

creating in C 31
creating in Java 60
extending capability in C 36
life cycle in C 13
life cycle in Java 15
planning 16
restrictions 60

installing 91
installing in a broker domain 88
message processing nodes 18

creating in C 39
creating in Java 65
extending capability in C 44
extending capability in Java 71
life cycle in C 18
life cycle in Java 20
planning 21

MRM parser constants 286
National Language Support 289
node and parser implementation

functions 249
cciRegCallback 249

node implementation functions
cniCreateNodeContext 126
cniDeleteNodeContext 130
cniEvaluate 143
cniGetAttribute 145
cniGetAttribute2 146
cniGetAttributeName 147
cniGetAttributeName2 148
cniRun 157
cniSetAttribute 163
retrieve attribute 145
retrieve attribute name 147
retrieve attribute name2 148
retrieve attribute2 146

node implementation functions in
C 108

© Copyright IBM Corp. 2000, 2009 299

user-defined nodes (continued)
node utility functions 109

broker information, retrieving 149
cciMessage object, retrieving 150
cniAddAfter 111
cniAddasFirstChild 112
cniAddasLastChild 112
cniAddBefore 113
cniBufferByte 113
cniBufferPointer 114
cniBufferSize 114
cniCopyElementTree 115
cniCreateElementAfter 116
cniCreateElementAfterUsingParser 116
cniCreateElementAsFirstChild 117
cniCreateElementAsFirstChildUsingParser 118
cniCreateElementAsLastChild 119
cniCreateElementAsLastChildFromBitstream 120
cniCreateElementAsLastChildUsingParser 122
cniCreateElementBefore 123
cniCreateElementBeforeUsingParser 123
cniCreateInputTerminal 124
cniCreateMessage 125
cniCreateNodeFactory 127
cniCreateOutputTerminal 128
cniDefineNodeClass 128
cniDeleteMessage 130
cniDetach 131
cniDispatchThread 131
cniElementAsBitstream 132
cniElementName 137
cniElementNamespace 138
cniElementType 139
cniElementValue group 140
cniElementValueState 141
cniElementValueType 142
cniElementValueValue 142
cniFinalize 144
cniFirstChild 145
cniGetBrokerInfo 149
cniGetEnvironmentMessage 150
cniGetMessageContext 150
cniGetParserClassName 151
cniGetThreadContext 152
cniIsTerminalAttached 152
cniLastChild 153
cniNextSibling 154
cniParent 154
cniPreviousSibling 155
cniPropagate 155
cniRootElement 156
cniSearchElement group 159
cniSearchElementInNamespace

group 160
cniSetElementName 163
cniSetElementNamespace 164
cniSetElementType 165
cniSetElementValue group 165
cniSetElementValueValue 167
cniSetInputBuffer 168
cniSqlCreateModifyablePathExpression 168
cniSqlCreateReadOnlyPathExpression 171
cniSqlCreateStatement 172
cniSqlDeletePathExpression 174
cniSqlDeleteStatement 174
cniSqlExecute 175
cniSqlNavigatePath 176

user-defined nodes (continued)
node utility functions (continued)

cniSqlSelect 177
cniWriteBuffer 178
creating SQL expressions 172
creating, input terminals 124
deleting SQL expressions 174
executing SQL expressions 175
input buffer 168
input terminals, creating 124
message context, retrieving

address 150
parser class name, retrieving 151
retrieving address, message

context 150
retrieving cciMessage object 150
retrieving parser class name 151
retrieving thread context 152
retrieving, broker information 149
selecting SQL expressions 177
SQL expressions, creating 172
SQL expressions, deleting 174
SQL expressions, executing 175
SQL expressions, selecting 177
terminals, checking if

attached 152
output nodes 25

creating in C 39
creating in Java 65
extending capability in C 44
extending capability in Java 71
life cycle 25
planning 25

packaging Java nodes 75
packaging node workbench

project 89
parsers available 285
plug-in, creating 80
projects, creating 79
rethrow exception

(cciRethrowLastException) 263
return codes 283
runtime environment 6
sample node files 105
samples 29
service trace

cciServiceDebugTrace 264
cciServiceDebugTraceW 265
cciServiceTrace 266
cciServiceTraceW 267

setting and getting 73
specific types 73
syntax elements

adding after 111
adding as first child 112
adding as last child 112
adding before 113
address of first child 145
address of last child 153
address of next sibling 154
address of parent 154
address of previous sibling 155
address, value object 142
attributes, setting 163
bitstream, retrieving as 132
creating after 116
creating after, using parser 116

user-defined nodes (continued)
syntax elements (continued)

creating as first child 117
creating as first child, using

parser 118
creating as last child 119
creating as last child, from

bitstream 120
creating as last child, using

parser 122
creating before 123
creating before, using parser 123
creating context 126
creating message 125
creating, node factories 127
creating, output terminals 128
declaring, input nodes 157
defining, node classes 128
deleting context 130
deleting message 130
detaching 131
dispatching, message flow

threads 131
element names, retrieving 137
finalizing processing 144
from bitstream, creating as last

child 120
input nodes, declaring 157
message flow threads,

dispatching 131
messages, propagating 155
names, setting 163
namespaces, retrieving 138
namespaces, setting 164
node classes, defining 128
node factories, creating 127
node processing 143
output terminals, creating 128
previous siblings, searching 159
propagating messages 155
retrieving as bitstream 132
retrieving element names 137
retrieving types 139
retrieving values 140
retrieving, namespaces 138
retrieving, root element 156
retrieving, states of values 141
retrieving, types of values 142
root element, retrieving 156
searching elements in namespace

group 160
searching previous siblings 159
setting names 163
setting namespaces 164
setting types 165
setting value addresses 167
setting values 165
setting, attributes 163
states of values, retrieving 141
types of values, retrieving 142
types, retrieving 139
types, setting 165
using parser, creating after 116
using parser, creating as first

child 118
using parser, creating as last

child 122

300 User-defined Extensions

user-defined nodes (continued)
syntax elements (continued)

using parser, creating before 123
value addresses, setting 167
value object address 142
values, retrieving 140
values, setting 165

testing 85
thread state change

(cciRegisterForThreadStateChange) 261
threading

(cciRegisterForThreadStateChange) 261
throw exception

cciThrowException 268
cciThrowExceptionW 269

trace active (ccilsTraceActive) 271
trace logging 288
trace utility functions 288
user interface representation 79
user trace

cciUserDebugTrace 273
cciUserDebugTraceW 275
cciUserTrace 277
cciUserTraceW 278

XML parser constants 286
user-defined parsers 26

C language API 179
changing 97
compiling 53
creating in C 47
data buffer

appending data 185
byte, retrieving 186
data, appending 185
pointer, retrieving 187
retrieving bytes 186
retrieving pointer 187
retrieving size 187
size, retrieving 187
writing to 231

deleting 97
designing 8

error and exception handling 8
storage management 10
string handling 11
threading 11

developing 3
error and exception handling 8
event logging 98
execution model 7
extending capability 50
installing in a broker domain 88
life cycle 26
packaging 75
parser implementation functions 179

context, deleting 195
cpiCreateContext 190
cpiDeleteContext 195
cpiElementValue 200
cpiNextParserClassName 204
cpiNextParserCodedCharSetId 205
cpiNextParserEncoding 206
cpiParseBuffer 209
cpiParseBufferEncoded 210
cpiParseBufferFormatted 212
cpiParserType 217
cpiSetElementValue 226

user-defined parsers (continued)
parser implementation functions

(continued)
cpiSetNextParserClassName 230
cpiWriteBuffer 231
cpiWriteBufferEncoded 232
cpiWriteBufferFormatted 233
creating context 190
deleting context 195
parsing preparation 209
retrieving values 200
values, retrieving 200
writing to data buffer 231

parser utility functions 180
adding after 181
adding as first child 182
adding as last child 183
adding before 184
addresses, retrieving first

child 203
addresses, retrieving last

child 203
addresses, retrieving next

sibling 207
addresses, retrieving parent 208
addresses, retrieving root

element 218
cpiAddAfter 181
cpiAddAsFirstChild 182
cpiAddAsLastChild 183
cpiAddBefore 184
cpiAppendToBuffer 185
cpiBufferByte 186
cpiBufferPointer 187
cpiBufferSize 187
cpiCreateAndInitializeElement 188
cpiCreateElement 191
cpiCreateParserFactory 192
cpiDefineParserClass 193
cpiElementCompleteNext 195
cpiElementCompletePrevious 196
cpiElementName 197
cpiElementNamespace 197
cpiElementType 199
cpiElementValue group 200
cpiElementValueValue 202
cpiFirstChild 203
cpiLastChild 203
cpiNextSibling 207
cpiParent 208
cpiParseFirstChild 213
cpiParseLastChild 214
cpiParseNextSibling 215
cpiParsePreviousSibling 216
cpiRootElement 218
cpiSetCharacterValueFromBuffer 219
cpiSetElementCompleteNext 220
cpiSetElementCompletePrevious 221
cpiSetElementName 222
cpiSetElementNamespace 223
cpiSetElementType 225
cpiSetElementValue group 227
cpiSetElementValueValue 228
cpiSetNameFromBuffer 229
creating default 191
creating parser factories 192
creating unattached 188

user-defined parsers (continued)
parser utility functions (continued)

defining parser class names 193
first child parsing 213
last child parsing 214
names, retrieving 197
namespaces, retrieving 197
next child complete flag 195
next sibling parsing 215
parser classes, defining

names 193
parser factories, creating 192
parsing previous sibling 216
parsing, first child 213
parsing, last child 214
parsing, next sibling 215
previous child complete flag 196
previous sibling parsing 216
retrieving first child address 203
retrieving last child address 203
retrieving names 197
retrieving namespaces 197
retrieving next sibling

address 207
retrieving parent address 208
retrieving root element

retrieving 218
retrieving types 199
set next child complete flag 220
set previous child complete

flag 221
types, retrieving 199

planning 28
return codes 283
runtime environment 6
sample parser files 107
samples 29
specific types 29
syntax elements

names, setting 222
namespaces, setting 223
setting names 222
setting namespaces 223
setting types 225
setting values 226
setting values from buffer 219
types, setting 225
values, setting 226
values, setting from buffer 219

Index 301

302 User-defined Extensions

����

Printed in USA

	Contents
	About this topic collection
	Part 1. Developing user-defined extensions
	Developing user-defined extensions
	User-defined extensions overview
	Planning user-defined extensions
	User-defined extensions in the runtime environment
	Designing user-defined extensions
	Node and parser factory behavior
	User-defined input nodes
	User-defined message processing nodes
	User-defined output nodes
	User-defined parsers

	Implementing the supplied user-defined extension samples
	Creating user-defined extensions
	Creating a user-defined extension in C
	Creating a user-defined extension in Java
	Creating the user interface representation of a user-defined node in the workbench

	Testing a user-defined node
	Enabling PDE runtime capabilities

	Packaging and distributing user-defined extensions
	Installing user-defined extension runtime files on a broker
	Packaging a user-defined node workbench project
	Installing a user-defined extension to current and past versions of the broker
	Updating a user-defined extension
	Deleting a user-defined extension from the broker
	Using event logging from a user-defined extension

	Part 2. Reference
	User-defined extensions
	Sample node files
	SupportPacs

	Sample parser files
	SupportPacs

	C Header files
	C language user-defined node API
	C node implementation functions
	C node utility functions
	cniAddAfter
	cniAddasFirstChild
	cniAddasLastChild
	cniAddBefore
	cniBufferByte
	cniBufferPointer
	cniBufferSize
	cniCopyElementTree
	cniCreateElementAfter
	cniCreateElementAfterUsingParser
	cniCreateElementAsFirstChild
	cniCreateElementAsFirstChildUsingParser
	cniCreateElementAsLastChild
	cniCreateElementAsLastChildFromBitstream
	cniCreateElementAsLastChildUsingParser
	cniCreateElementBefore
	cniCreateElementBeforeUsingParser
	cniCreateInputTerminal
	cniCreateMessage
	cniCreateNodeContext
	cniCreateNodeFactory
	cniCreateOutputTerminal
	cniDefineNodeClass
	cniDeleteMessage
	cniDeleteNodeContext
	cniDetach
	cniDispatchThread
	cniElementAsBitstream
	cniElementName
	cniElementNamespace
	cniElementType
	cniElementValue group
	cniElementValueState
	cniElementValueType
	cniElementValueValue
	cniEvaluate
	cniFinalize
	cniFirstChild
	cniGetAttribute
	cniGetAttribute2
	cniGetAttributeName
	cniGetAttributeName2
	cniGetBrokerInfo
	cniGetEnvironmentMessage
	cniGetMessageContext
	cniGetParserClassName
	cniGetThreadContext
	cniIsTerminalAttached
	cniLastChild
	cniNextSibling
	cniParent
	cniPreviousSibling
	cniPropagate
	cniRootElement
	cniRun
	cniSearchElement group
	cniSearchElementInNamespace group
	cniSetAttribute
	cniSetElementName
	cniSetElementNamespace
	cniSetElementType
	cniSetElementValue group
	cniSetElementValueValue
	cniSetInputBuffer
	cniSqlCreateModifyablePathExpression
	cniSqlCreateReadOnlyPathExpression
	cniSqlCreateStatement
	cniSqlDeletePathExpression
	cniSqlDeleteStatement
	cniSqlExecute
	cniSqlNavigatePath
	cniSqlSelect
	cniWriteBuffer

	C language user-defined parser API
	C parser implementation functions
	C parser utility functions
	cpiAddAfter
	cpiAddAsFirstChild
	cpiAddAsLastChild
	cpiAddBefore
	cpiAppendToBuffer
	cpiBufferByte
	cpiBufferPointer
	cpiBufferSize
	cpiCreateAndInitializeElement
	cpiCreateContext
	cpiCreateElement
	cpiCreateParserFactory
	cpiDefineParserClass
	cpiDeleteContext
	cpiElementCompleteNext
	cpiElementCompletePrevious
	cpiElementName
	cpiElementNameSpace
	cpiElementType
	cpiElementValue
	cpiElementValue group
	cpiElementValueValue
	cpiFirstChild
	cpiLastChild
	cpiNextParserClassName
	cpiNextParserCodedCharSetId
	cpiNextParserEncoding
	cpiNextSibling
	cpiParent
	cpiParseBuffer
	cpiParseBufferEncoded
	cpiParseBufferFormatted
	cpiParseFirstChild
	cpiParseLastChild
	cpiParseNextSibling
	cpiParsePreviousSibling
	cpiParserType
	cpiRootElement
	cpiSetCharacterValueFromBuffer
	cpiSetElementCompleteNext
	cpiSetElementCompletePrevious
	cpiSetElementName
	cpiSetElementNamespace
	cpiSetElementType
	cpiSetElementValue
	cpiSetElementValue group
	cpiSetElementValueValue
	cpiSetNameFromBuffer
	cpiSetNextParserClassName
	cpiWriteBuffer
	cpiWriteBufferEncoded
	cpiWriteBufferFormatted

	C user exit API
	C user exit implementation functions
	C user exit utility functions

	C common API
	C common implementation functions
	C common utility functions

	C skeleton code
	Utility function return codes and values
	Available parsers
	XML, MRM, and XMLNSC parser constants
	XML parser constants
	MRM parser constants
	

	Trace logging from a user-defined C extension
	Multicultural support considerations for message catalogs
	Multicultural support considerations on Windows
	Multicultural support considerations on Linux and UNIX
	Multicultural support considerations on z/OS

	Part 3. Appendixes
	Appendix. Notices for WebSphere Message Broker
	Trademarks in the WebSphere Message Broker information center

	Index
	A
	C
	I
	M
	P
	T
	U

