
WebSphere Message Broker

Message Flows

Version 6 Release 1

���

WebSphere Message Broker

Message Flows

Version 6 Release 1

���

Note

Before you use this information and the product that it supports, read the information in the Notices appendix.

This edition applies to version 6, release 1, modification 0, fix pack 2 of IBM WebSphere Message Broker and to all

subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this topic collection v

Part 1. Developing message flows . . 1

Developing message flows 3

Message flows overview 4

Getting started with Quick Start wizards 130

Designing a message flow 139

Managing message flows 214

Defining message flow content 227

Developing message flow applications using

WebSphere Adapters 245

Developing ESQL 257

Using XPath 411

Using TCP/IP in message flows 422

Developing Java 449

Developing message mappings 472

Defining a promoted property 554

Configure monitoring events for message flows 562

Collecting message flow accounting and statistics

data 564

Developing a user exit 570

Configuring aggregation flows 572

Configuring flows for message collection 593

Configuring timeout flows 603

Configuring flows to handle WebSphere MQ

message groups 609

Part 2. Working with Web services 613

Working with Web services 615

WebSphere Message Broker and Web services . . 615

What is SOAP? 617

What is WSDL? 629

What is SOAP MTOM? 633

WS-Addressing 635

WS-Security 645

WebSphere Service Registry and Repository . . . 666

External standards 681

Message flows for Web services 689

Part 3. Working with files 715

Working with files 717

How the broker processes files 717

How the file nodes and additional instances share

access to files 719

Using LocalEnvironment variables with file nodes 721

File name patterns 724

mqsiarchive subdirectory 726

Reading a file 727

Writing a file 735

Part 4. Deploying 743

Deploying 745

Deployment overview 746

Deploying a message flow application 757

Deploying a broker configuration 767

Deploying a publish/subscribe topology 768

Deploying a publish/subscribe topics hierarchy 770

Checking the results of deployment 772

Canceling a deployment that is in progress . . . 774

Renaming objects that are deployed to execution

groups 776

Removing a deployed object from an execution

group 776

Part 5. Debugging 779

Testing and debugging message flow

applications 781

Flow debugger overview 781

Debugging a message flow 783

Testing message flows using the Test Client . . . 806

Part 6. Reference 815

Message flows 819

Message flow preferences 819

Description properties for a message flow 819

Built-in nodes 822

User-defined nodes 1225

WebSphere Adapters properties 1225

Supported code pages 1329

WebSphere MQ connections 1357

Listing database connections that the broker holds 1358

Quiescing a database 1358

Support for UNICODE and DBCS data in

databases 1358

Data integrity within message flows 1359

Validation properties 1359

Parsing on demand 1363

Exception list structure 1364

Configurable message flow properties 1372

Message flow porting considerations 1374

Monitoring profile 1375

Message flow accounting and statistics data . . . 1381

Coordinated message flows 1398

Element definitions for message parsers 1399

Message mappings 1410

XML constructs 1433

Data sources on z/OS 1448

ESQL reference 1451

Syntax diagrams: available types 1452

© Copyright IBM Corp. 2000, 2008 iii

||

|
||

||

||

ESQL data types in message flows 1452

ESQL variables 1465

ESQL field references 1465

ESQL operators 1472

ESQL statements 1478

ESQL functions: reference material, organized by

function type 1564

ESQL constants 1662

Broker properties that are accessible from ESQL

and Java 1663

Special characters, case sensitivity, and comments

in ESQL 1666

ESQL reserved keywords 1668

ESQL non-reserved keywords 1668

Example message 1671

Message mappings 1673

Message Mapping editor 1673

Mapping node 1683

Migrating message mappings from Version 5.0 1691

Restrictions on migrating message mappings . . 1692

Flow application debugger 1697

Flow debugger shortcuts 1697

Flow debugger icons and symbols 1698

Java Debugger 1700

Part 7. Appendixes 1701

Appendix. Notices for WebSphere

Message Broker 1703

Trademarks in the WebSphere Message Broker

information center 1705

Index 1707

iv Message Flows

||

About this topic collection

This PDF has been created from the WebSphere Message Broker Version 6.1 (June

2008) information center topics. Always refer to the WebSphere Message Broker

online information center to access the most current information. The information

center is periodically updated on the document update site and this PDF and

others that you can download from that Web site might not contain the most

current information.

The topic content included in the PDF does not include the ″Related Links″

sections provided in the online topics. Links within the topic content itself are

included, but are active only if they link to another topic in the same PDF

collection. Links to topics outside this topic collection are also shown, but these

attempt to link to a PDF that is called after the topic identifier (for example,

ac12340_.pdf) and therefore fail. Use the online information to navigate freely

between topics.

Feedback: do not provide feedback on this PDF. Refer to the online information to

ensure that you have access to the most current information, and use the Feedback

link that appears at the end of each topic to report any errors or suggestions for

improvement. Using the Feedback link provides precise information about the

location of your comment.

The content of these topics is created for viewing online; you might find that the

formatting and presentation of some figures, tables, examples, and so on are not

optimized for the printed page. Text highlighting might also have a different

appearance.

© Copyright IBM Corp. 2000, 2008 v

ftp://ftp.software.ibm.com/software/integration/wbibrokers/docs

vi Message Flows

Part 1. Developing message flows

Developing message flows 3

Message flows overview 4

Message flow projects 5

Message flow nodes 5

Configurable services 50

Message flow version and keywords 50

Message flow connections 52

Threading 53

Execution model 53

The message tree 53

Parsers 74

Properties 109

Message flow transactions 113

Broker schemas 114

Generating events for monitoring 116

Message flow accounting and statistics data . . 119

Message flow aggregation 124

Message collection 126

Converting data with message flows 128

User exits 129

Getting started with Quick Start wizards 130

Quick Start wizards overview 131

Creating an application from scratch 131

Creating an application based on WSDL or XSD

files 132

Creating an application based on an existing

message set 134

Creating an application using WebSphere

Adapters 135

Creating an application using the Configure

New Web Service Usage wizard 135

Designing a message flow 139

Deciding which nodes to use 141

Using more than one input node 152

Defining input message characteristics 153

Using nodes for decision making 154

Using subflows 156

Optimizing message flow response times . . . 158

System considerations for message flow

development 160

Creating destination lists 162

Using WebSphere MQ cluster queues for input

and output 162

Using WebSphere MQ shared queues for input

and output (z/OS) 164

Validating messages 164

Viewing the logical message tree in trace output 167

Accessing databases from message flows . . . 170

Accessing databases from ESQL 172

Configuring globally coordinated message flows 173

Configuring JMSInput and JMSOutput nodes to

support global transactions 176

Configuring the broker to enable a JMS

provider’s proprietary API 182

Configuring message flows for data conversion 183

Using MQGet nodes 185

Exploiting user exits 198

Ensuring that messages are not lost 200

Providing user-defined properties to control

behavior 203

Handling errors in message flows 203

Managing message flows 214

Creating a message flow project 215

Deleting a message flow project 216

Creating a broker schema 217

Creating a message flow 218

Opening an existing message flow 219

Copying a message flow using copy 220

Renaming a message flow 221

Moving a message flow 222

Deleting a message flow 223

Deleting a broker schema 224

Version and keyword information for

deployable objects 224

Saving a message flow 225

Defining message flow content 227

Using the node palette 228

Adding a message flow node 231

Adding a subflow 234

Renaming a message flow node 234

Configuring a message flow node 235

Using dynamic terminals 237

Removing a message flow node 238

Connecting message flow nodes 239

Removing a node connection 242

Adding a bend point 242

Removing a bend point 243

Aligning and arranging nodes 244

Developing message flow applications using

WebSphere Adapters 245

Preparing your system to use WebSphere

Adapters nodes 245

Activating IBM Tivoli License Manager for

WebSphere Adapters 246

Adding external software dependencies for SAP 247

Configuring the SAP server to work with the

adapter 248

Adding external software dependencies for

Siebel 250

Configuring the Siebel application to work with

the adapter 251

Adding external software dependencies for

PeopleSoft 253

Creating a custom event project in PeopleTools 254

Connecting to an EIS using the Adapter

Connection wizard 256

Developing ESQL 257

ESQL overview 258

Managing ESQL files 268

Writing ESQL 280

Using XPath 411

XPath overview 411

© Copyright IBM Corp. 2000, 2008 1

||

|
||

 |
 | |

 |
 | |

 |
 | |

Multi-language node property fields 412

Namespace support 415

XPath Expression Builder 416

Creating XPath expressions 419

Selecting the grammar mode 420

Using TCP/IP in message flows 422

TCP/IP overview 422

TCP/IP nodes 425

Connection management 428

Scenarios for Message Broker and TCP/IP . . . 430

Working with TCP/IP 434

Developing Java 449

Managing Java Files 449

Writing Java 454

Developing message mappings 472

Message mappings overview 473

Creating message mappings 476

Message mapping scenarios 515

Defining a promoted property 554

Promoting a property 554

Renaming a promoted property 557

Removing a promoted property 558

Converging multiple properties 559

Configure monitoring events for message flows 562

Collecting message flow accounting and statistics

data 564

Starting to collect message flow accounting and

statistics data 564

Stopping message flow accounting and statistics

data collection 567

Viewing message flow accounting and statistics

data collection parameters 568

Modifying message flow accounting and

statistics data collection parameters 569

Resetting message flow accounting and statistics

archive data 569

Developing a user exit 570

Deploying a user exit 571

Configuring aggregation flows 572

Creating the aggregation fan-out flow 573

Creating the aggregation fan-in flow 577

Associating fan-out and fan-in aggregation

flows 581

Setting timeouts for aggregation 583

Using multiple AggregateControl nodes . . . 584

Correlating input request and output response

aggregation messages 585

Using control messages in aggregation flows 585

Handling exceptions in aggregation flows . . . 588

Using WebSphere MQ to store state in

aggregation nodes 590

Configuring flows for message collection 593

Creating a flow for message collection 593

Configuring the Collector node 595

Using control messages with the Collector node 602

Configuring timeout flows 603

Sending timeout request messages 603

Sending a message after a timed interval . . . 605

Sending a message multiple times after a

specified start time 606

Automatically generating messages to drive a

flow 608

Performance considerations for timeout flows 609

Configuring flows to handle WebSphere MQ

message groups 609

Receiving messages in a WebSphere MQ

message group 610

Sending messages in a WebSphere MQ message

group 611

Sending message segments in a WebSphere MQ

message 612

2 Message Flows

||
||
||
||
||
||

 |
 | |
 |
 | |
 |
 | |
 |
 | |

Developing message flows

A message flow is a sequence of processing steps that run in the broker when an

input message is received. The topics in this section describe how to create and

maintain message flows.

Concept topics:

v “Message flows overview” on page 4

v “Message flow projects” on page 5

v “Message flow nodes” on page 5

v “Message flow version and keywords” on page 50

v “Message flow connections” on page 52

v “Threading” on page 53

v “Execution model” on page 53

v “The message tree” on page 53

v “Parsers” on page 74

v “Properties” on page 109

v “Message flow transactions” on page 113

v “Broker schemas” on page 114

v “Generating events for monitoring” on page 116

v “Message flow accounting and statistics data” on page 119

v “Message flow aggregation” on page 124

v “Message collection” on page 126

v “Converting data with message flows” on page 128

v “User exits” on page 129

Task topics:

v “Getting started with Quick Start wizards” on page 130

v “Designing a message flow” on page 139

v “Managing message flows” on page 214

v “Defining message flow content” on page 227

v “Developing message flow applications using WebSphere Adapters” on page 245

v “Developing ESQL” on page 257

v “Using XPath” on page 411

v “Developing Java” on page 449

v “Developing message mappings” on page 472

v “Defining a promoted property” on page 554

v “Configure monitoring events for message flows” on page 562

v “Collecting message flow accounting and statistics data” on page 564

v “Developing a user exit” on page 570

v “Configuring aggregation flows” on page 572

v “Configuring flows for message collection” on page 593

v “Configuring timeout flows” on page 603

v “Configuring flows to handle WebSphere MQ message groups” on page 609

© Copyright IBM Corp. 2000, 2008 3

|

|

|

See also a section of topics that contain reference information about message flows.

The workbench provides a set of toolbar icons that invoke wizards that you can

use to create any of the resources associated with message flows, for example,

message flow projects and ESQL files. Hover your mouse pointer over each icon to

see its function.

The workbench lets you open resource files with other editors. Use only the

workbench message flow editor to work with message flow files, because this

editor correctly validates all changes that you make to these files when you save

the message flow.

When you have completed developing your message flow, deploy it to a broker to

start its execution.

Tip: You can debug your message flow using the flow debugger.

For a basic introduction to developing message flows, see the IBM Redbooks

publication WebSphere Message Broker Basics.

Message flows overview

A message flow is a sequence of processing steps that run in the broker when an

input message is received.

You define a message flow in the workbench by including a number of message

flow nodes, each of which represents a set of actions that define a processing step.

The connections in the flow determine which processing steps are carried out, in

which order, and under which conditions. A message flow must include an input

node that provides the source of the messages that are processed. You must then

deploy the message flow to a broker for execution.

When you want to exchange messages between multiple applications, you might

find that the applications do not understand or expect messages in exactly the

same format. You might need to provide some processing between the sending and

receiving applications that ensures that both can continue to work unchanged, but

can exchange messages successfully.

You define the processing that is required when you create and configure a

message flow. The way that you do this determines what actions are performed on

a message when it is received, and the order in which the actions are completed.

You can create a message flow using the built-in nodes, nodes that you or a vendor

have created (user-defined nodes), or other message flows (known as subflows).

When you want to invoke a message flow to process messages, you deploy it to a

broker, where it is executed within an execution group.

The mode in which your broker is working, can affect the number of execution

groups and message flows that you can deploy, and the types of node that you can

use. See Restrictions that apply in each operation mode.

The following topics describe the concepts that you need to understand to design,

create, and configure a message flow and its associated resources:

v Projects

v Nodes

v Version and keywords

4 Message Flows

|
|
|

http://www.redbooks.ibm.com/abstracts/sg247137.html

v “Message flow connections” on page 52

v “Execution model” on page 53

v “Threading” on page 53

v “Parsers” on page 74

v “Logical tree structure” on page 60

v “Properties” on page 109

v “Generating events for monitoring” on page 116

v Accounting and statistics data

v “Message flow transactions” on page 113

v Aggregation

v “Message collection” on page 126

v “Converting data with message flows” on page 128

v “Message flows, ESQL, and mappings” on page 49

v “Broker schemas” on page 114

v “Message mappings overview” on page 473

v “ESQL overview” on page 258

For a basic introduction to developing message flows, see the IBM® Redbooks®

publication WebSphere Message Broker Basics.

Message flow projects

A message flow project is a specialized container in which you create and maintain

all the resources associated with one or more message flows.

You can create a message flow project to contain a single message flow and its

resources, or you can group together related message flows and resources in a

single message flow project to provide an organizational structure to your message

flow resources.

Message flow project resources are created as files, and are displayed within the

project in the Broker Development view. These resources define the content of the

message flow, and additional objects that contain detailed configuration

information, in the form of ESQL modules and mappings, for one or more nodes

within the message flow.

Import one of the following samples from the Samples Gallery (see related links) to

see how the sample’s message flow resources are stored in a Message Flow project.

If the sample has a message set, its message set resources are stored in a Message

Set project.

v Video Rental sample

v Comma Separated Value (CSV) sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Message flow nodes

A message flow node is a processing step in a message flow.

A message flow node receives a message, performs a set of actions against the

message, and optionally passes the message on to the next node in the message

flow. A message flow node can be a built-in node, a user-defined node, or a

subflow node.

Developing message flows 5

|

http://www.redbooks.ibm.com/abstracts/sg247137.html
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.csv.doc/doc/overview.htm

A message flow node has a fixed number of input and output points known as

terminals. You can make connections between the terminals to define the routes

that a message can take through a message flow.

The mode that your broker is working in can affect the types of node that you can

use; see Restrictions that apply in each operation mode.

Built-in node

A built-in node is a message flow node that is supplied by WebSphere®

Message Broker. The built-in nodes provide input and output,

manipulation and transformation, decision making, collating requests, and

error handling and reporting functions.

 For information about all of the built-in nodes supplied by WebSphere

Message Broker, see “Built-in nodes” on page 822.

User-defined node

A user-defined node is an extension to the broker that provides a new

message flow node in addition to those supplied with the product. It must

be written to the user-defined node API provided by WebSphere Message

Broker for both C and Java™ languages. The following sample

demonstrates how you can write your own nodes in both C and Java

languages.

v User-defined Extension sample

You can view samples only when you use the information center that is

integrated with the Message Broker Toolkit.

Subflow

A subflow is a directed graph that is composed of message flow nodes and

connectors and is designed to be embedded in a message flow or in

another subflow. A subflow must include at least one Input node or one

Output node. A subflow can be executed by a broker only as part of the

message flow in which it is embedded, and therefore cannot be

independently deployed.

 A message is received by an Input node and processed according to the

definition of the subflow. That might include being stored through a

Warehouse node, or delivered to another message target, for example

through an MQOutput node. If required, the message can be passed

through an Output node back to the main flow for further processing.

The subflow, when it is embedded in a main flow, is represented by a

subflow node, which has a unique icon. The icon is displayed with the

correct number of terminals to represent the Input and Output nodes that

you have included in the subflow definition.

The most common use of a subflow is to provide processing that is

required in many places within a message flow, or is to be shared between

several message flows. For example, you might code some error processing

in a subflow, or create a subflow to provide an audit trail (storing the

entire message and writing a trace entry).

The use of subflows is demonstrated in the following samples:

v Error Handler sample

v Coordinated Request Reply sample

The Error Handler sample uses a subflow to trap information about errors

and store the information in a database. The Coordinated Request Reply

sample uses a subflow to encapsulate the storage of the ReplyToQ and

6 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.ude.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.coordinated_request_reply.doc/doc/overview.htm

ReplyToQMgr values in a WebSphere MQ message so that the processing

logic can be reused in other message flows and to allow alternative

implementations to be substituted. You can view samples only when you

use the information center that is integrated with the Message Broker

Toolkit.

 A node does not always produce an output message for every output terminal:

often it produces one output for a single terminal based on the message received

or the result of the operation of the node. For example, a Filter node typically

sends a message on either the true terminal or the false terminal, but not both.

If more than one terminal is connected, the node sends the output message on

each terminal, but sends on the next terminal only when the processing has

completed for the current terminal. Updates to a message are never propagated to

previously-executed nodes, only to nodes following the node in which the update

has been made. The order in which the message is propagated to the different

output terminals is determined by the broker; you cannot change this order. The

only exception to this rule is the FlowOrder node, in which the terminals indicate

the order in which the message is propagated to each.

The message flow can accept a new message for processing only when all paths

through the message flow (that is, all connected nodes from all output terminals)

have been completed.

The following sample uses Environment variables in the XML_Reservation sample

to store information that has been taken from a database table and to pass that

information to a node downstream in the message flow.

v Airline Reservations sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

WebSphere Adapters nodes

A WebSphere Adapters node is a message flow node that is used to communicate

with Enterprise Information Systems (EIS).

SAP, Siebel, and PeopleSoft adapters are supported by the following nodes:

v SAPInput node

v SAPRequest node

v SiebelInput node

v SiebelRequest node

v PeopleSoftInput node

v PeopleSoftRequest node

The TwineballInput and TwineballRequest nodes are sample nodes with their own

sample EIS. You can use the TwineBall nodes to see how adapters nodes work. You

cannot use the TwineBall nodes to connect to the external SAP, Siebel, and

PeopleSoft EIS systems.

The mode in which your broker is working, can affect the number of execution

groups and message flows that you can deploy, and the types of node that you can

use. See Restrictions that apply in each operation mode.

The following terms are associated with WebSphere Adapters:

EIS Enterprise information systems. This term is used to describe the

applications that comprise an enterprise’s existing system for handling

Developing message flows 7

|
|
|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm

company-wide information. An enterprise information system offers a

well-defined set of services that are exposed as local or remote interfaces or

both. Enterprise Resource Planning (ERP) and Customer Relationship

Management (CRM) are typical enterprise information systems.

EMD Enterprise Metadata Discovery. A specification that you can use to examine

an EIS and get details of business object data structures and APIs. An EMD

stores definitions as XML schemas by default, and builds components that

can access the EIS. In WebSphere Message Broker you use the Adapter

Connection wizard to examine an EIS. EMD can also be known as ESD

(Enterprise Service Discovery) or ODA (Object Discovery Agent).

Business object

A set of attributes that represent a business entity (such as Employee), an

action on the data (such as a create or update operation), and instructions

for processing the data. Components of the business integration system use

business objects to exchange information and trigger actions.

The WebSphere Adapters support two modes of communication:

v Inbound: An event is generated on the EIS and the adapter responds to the

event by sending a message to the message broker. The WebSphere Adapters

input nodes support inbound communication. When the EIS sends an event to

the adapter, a message is propagated from the WebSphere Adapters input node.

v Outbound: The message broker uses the adapter to send a request to the EIS.

The WebSphere Adapters request nodes support outbound communication.

When a message is propagated to the WebSphere Adapters request node, the

adapter sends a request to the EIS.

The WebSphere Adapters nodes need an adapter component to access the EIS. The

input nodes need an inbound adapter component, which allows the EIS to invoke

the message flow when an event occurs. The request nodes need an outbound

adapter component, which is used by the message flow to invoke a service in the

EIS.

The WebSphere Adapters nodes also need a message set to ensure that the

WebSphere Message Broker messages that are propagated to and from the nodes

reflect the logical structure of the data in the EIS.

For more information about support for adapters on different operating systems,

see WebSphere Message Broker Requirements.

The following topics provide an overview of the WebSphere Adapters:

v “Overview of WebSphere Adapter for SAP Software”

v “Overview of WebSphere Adapter for Siebel Business Applications” on page 36

v “Overview of WebSphere Adapter for PeopleSoft Enterprise” on page 43

Overview of WebSphere Adapter for SAP Software:

With WebSphere Adapter for SAP Software you can create integrated processes

that include the exchange of information with an SAP server, without special

coding.

 Using the adapter, an application component (the program or piece of code that

performs a specific business function) can send requests to the SAP server (for

example, to query a customer record in an SAP table or to update an order

document) or receive events from the server (for example, to be notified that a

8 Message Flows

|
|

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

customer record has been updated). The adapter creates a standard interface to the

applications and data on the SAP server, so that the application component does

not have to understand the lower-level details (the implementation of the

application or the data structures) on the SAP server.

WebSphere Adapter for SAP Software complies with the Java Connector

Architecture (JCA) 1.5, which standardizes the way in which application

components, application servers, and Enterprise Information Systems (EIS), such as

an SAP server, interact with each other.

The adapter, which you generate with the Adapter Connection wizard, uses a

standard interface and standard data objects. The adapter takes the standard data

object sent by the application component and calls the SAP function. The adapter

then returns a standard data object to the application component. The application

component does not have to deal directly with the SAP function; it is the SAP

adapter that calls the function and returns the results.

For example, the application component that needed the list of customers would

send a standard business object with the range of customer IDs to the SAP adapter.

The application component would receive, in return, the results (the list of

customers) in the form of a standard business object. The application component

would have no need to know how the function worked or how the data was

structured. The adapter would perform all the interactions with the actual SAP

function.

Similarly, the client application might want to know about a change to the data on

the SAP server (for example, a change to a particular customer). You can generate

an adapter component that listens for such events on the SAP server and notifies

client applications with the update. In this case, the interaction begins at the SAP

server.

For more information, see “Technical overview of Adapter for SAP Software.”

Technical overview of Adapter for SAP Software:

WebSphere Adapter for SAP Software provides multiple ways to interact with

applications and data on SAP servers. Outbound processing (from an application

to the adapter to the SAP server) and inbound processing (from the SAP server to

the adapter to an application) are supported.

 WebSphere Adapter for SAP Software connects to SAP systems running on SAP

Web application servers. The adapter supports Advanced Event Processing (AEP)

and Application Link Enabling (ALE) for inbound processing, and the Business

Application Programming Interface (BAPI), AEP, ALE, and Query Interface for SAP

Systems (QISS) for outbound processing. You set up the adapter to perform

outbound and inbound processing by using the Adapter Connection wizard to

generate business objects based on the services it discovers on the SAP server.

For outbound processing, the adapter client invokes the adapter operation to

create, update, or delete data on the SAP server or to retrieve data from the SAP

server.

For inbound processing, an event that occurs on the SAP server is sent from the

SAP server to the adapter. The ALE inbound interface to the adapter starts event

listeners that detect the events. Conversely, the Advanced event processing

Developing message flows 9

interface polls the SAP server for events. The adapter then delivers the event to an

endpoint, which is an application or other consumer of the event from the SAP

server.

You configure the adapter to perform outbound and inbound processing by using

the Adapter Connection wizard to create a message set that includes the interface

to the SAP application as well as business objects based on the functions or tables

that it discovers on the SAP server.

Overview of the outbound processing interfaces

WebSphere Adapter for SAP Software provides multiple interfaces to the SAP

server for outbound processing.

v Through its BAPI interfaces, the adapter issues remote function calls (RFCs) to

RFC-enabled functions, such as a Business Application Programming Interface

(BAPI) function. These remote function calls create, update, or retrieve data on

an SAP server and return the results to the calling application.

– The BAPI interface works with individual BAPIs (simple BAPIs). For

example, you might want to check to see whether specific customer

information exists in an SAP database.

– The BAPI work unit interface works with ordered sets of BAPIs. For example,

you might want to update an employee record. To do so, you use three

BAPIs:

1. To lock the record (to prevent any other changes to the record)

2. To update the record

3. To have the record approved
– The BAPI result set interface uses two BAPIs to select multiple rows of data

from an SAP database.

BAPI calls are useful when you need to perform data retrieval or manipulation

and a BAPI or RFC function that performs the task already exists.

v The Query interface for SAP Software retrieves data from specific SAP

application tables. It can return the data or check for the existence of the data.

You can use this type of interaction with SAP if you need to retrieve data from

an SAP table without using an RFC function or a BAPI.

v With the Application Link Enabling (ALE) interface, you exchange data using

SAP Intermediate Data structures (IDocs). For outbound processing, you send an

IDoc or a packet of IDocs to the SAP server.

The ALE interface, which is particularly useful for batch processing of IDocs,

provides asynchronous exchange. You can use the queued transactional (qRFC)

protocol to send the IDocs to a queue on the SAP server. The qRFC protocol

ensures the order in which the IDocs are received. It is often used for system

replications or system-to-system transfers.

v With the ALE pass-through IDoc interface, the adapter sends the IDoc to the

SAP server with no conversion of the IDoc. The Message tree contains a BLOB

field that represents the IDoc.

v With the Advanced event processing interface, you send data to the SAP server.

The data is then processed by an ABAP handler on the SAP server.

Overview of the inbound processing interfaces

WebSphere Adapter for SAP Software provides the following interfaces to the SAP

server for inbound processing.

10 Message Flows

|
|
|

v With the ALE inbound processing interface, the adapter listens for events and

receives one or more IDocs from the SAP server. As with ALE outbound

processing, ALE inbound processing provides asynchronous exchange.

You can use the qRFC interface to receive the IDocs from a queue on the SAP

server, which ensures the order in which the IDocs are received.

If you select assured-once delivery, the adapter uses a data source to persist the

event data, and event recovery is provided to track and recover events in case a

problem occurs when the adapter attempts to deliver the event to the endpoint.

v With the ALE pass-through IDoc interface, the SAP server sends the IDoc

through the adapter to the endpoint with no conversion of the IDoc. The

Message tree contains a BLOB field that represents the IDoc.

v The Advanced event processing interface polls the SAP server for events. It

discovers events waiting to be processed. It then processes the events and sends

them to the endpoint.

How the adapter interacts with the SAP server

The adapter uses the SAP Java Connector (SAP JCo) API to communicate with SAP

applications. An application sends a request to the adapter, which uses the SAP

JCo API to convert the request into a BAPI function call. The SAP system processes

the request and sends the results to the adapter. The adapter sends the results in a

response message to the calling application.

For more information, see the following topics.

v “The Adapter Connection wizard (SAP)”

v “The BAPI interface”

v “The ALE interfaces” on page 15

v “Query interface for SAP Software” on page 26

v “The Advanced event processing interface” on page 29

The Adapter Connection wizard (SAP):

The Adapter Connection wizard is a tool that you use to create services. The

Adapter Connection wizard establishes a connection to the SAP server, discovers

services (based on search criteria that you provide), and generates business objects

and interfaces based on the services discovered.

 Using WebSphere Message Broker, you establish a connection to the SAP server to

browse the metadata repository on the SAP server. The SAP metadata repository,

which is a database of the SAP data, provides a consistent and reliable means of

access to that data.

You specify connection information (such as the user name and password needed

to access the server), and you specify the interface that you want to use (for

example, BAPI). The service metadata that is associated with that interface is

displayed. You can then provide search criteria and select the information (for

example, you can list all BAPIs that relate to ″CUSTOMER″ by using the search

filter with ″BAPI_CUSTOMER*″, then select one or more BAPIs).

The result of running the Adapter Connection wizard is an adapter connection

project and a message set project that contain the interfaces and business objects

along with the adapter.

The BAPI interface:

Developing message flows 11

|
|
|

|
|
|

The WebSphere Adapter for SAP Software supports outbound processing for

simple BAPIs, BAPI units of work, and BAPI result sets. In outbound processing,

client applications call BAPIs and other RFC-enabled functions on the SAP server.

 The adapter models SAP BAPI function calls as business objects. These function

calls create, delete, update, or retrieve data on an SAP system. You can work with

individual BAPI functions (simple BAPIs), BAPI work units (ordered sets of BAPI

functions), or BAPI result sets (which return a set of data).

BAPI interface (Simple BAPIs)

A simple BAPI performs a single operation, such as retrieving a list of customers.

The adapter supports simple BAPI calls by representing each with a single

business object schema.

BAPI work unit interface

A BAPI work unit consists of a set of BAPIs that are processed in sequence to

complete a task. For example, to update an employee record in the SAP system,

the record needs to be locked before being updated. This task is accomplished by

calling three BAPIs, in sequence, in the same work unit. The following three BAPIs

illustrate the kind of sequence that forms such a unit of work:

v BAPI_ADDRESSEMP_REQUEST

v BAPI_ADDRESSEMP_CHANGE

v BAPI_ADDRESSEMP_APPROVE

The first BAPI locks the employee record, the second updates the record, and the

third approves the update. The advantage of using a BAPI unit of work is that the

client application can request the employee record change with a single call, even

though the work unit consists of three separate functions. In addition, if SAP

requires that the BAPIs be processed in a specific sequence for the business flow to

complete correctly, the work unit supports this sequence.

BAPI result set interface

BAPI result sets use the GetList and GetDetail functions to retrieve an array of

data from the SAP server. The information that is returned from the GetList

function is used as input to the GetDetail function.

For example, if you want to retrieve information on a set of customers, you use

BAPI_CUSTOMER_GETLIST, which acts as the query BAPI, and

BAPI_CUSTOMER_GETDETAIL, which acts as the result BAPI. The BAPIs perform

the following steps:

1. The BAPI_CUSTOMER_GETLIST call returns a list of keys (for example,

CustomerNumber).

2. Each key is mapped dynamically to the business object for

BAPI_CUSTOMER_GETDETAIL.

3. BAPI_CUSTOMER_GETDETAIL is processed multiple times, so that an array of

customer information is returned.

You use the Adapter Connection wizard to discover the

BAPI_CUSTOMER_GETLIST and BAPI_CUSTOMER_GETDETAIL functions and

build the key relationship between the two BAPIs. The wizard then generates

business object definitions for these BAPIs along with other SCA service resources.

12 Message Flows

|
|
|

At run time, the client sets the values in the BAPI_CUSTOMER_GETLIST business

object, and the adapter returns the corresponding set of customer detail records

from the SAP server.

For more information, see the following topics.

v “Outbound processing for the BAPI interface”

v “Business objects for the BAPI interface”

Outbound processing for the BAPI interface:

You use the BAPI interface for outbound processing, in which a broker sends a

request to the SAP server. The SAP server processes the request and returns the

response to the broker. Outbound processing can be used with simple BAPI

functions, BAPI work units, or BAPI result sets.

 The following list describes the sequence of processing actions that result from an

outbound request using the BAPI interface.

The broker that makes the BAPI call uses the interface information that was

generated by the Adapter Connection wizard.

1. The adapter receives a request from a broker in the form of a BAPI business

object.

2. The adapter converts the BAPI business object to an SAP JCo function call.

3. The adapter uses the Remote Function Call (RFC) interface to process the BAPI

or RFC function call in the SAP application.

4. After passing the data to the SAP server, the adapter handles the response from

SAP and converts it back into the business object format that is required by the

broker.

5. The adapter sends the response back to the broker.

Business objects for the BAPI interface:

A business object is a structure that consists of data, the action to be performed on

the data, and additional instructions for processing the data.

 The broker uses business objects to send data to SAP or obtain data (through the

adapter) from SAP. In other words, the broker sends a business object to the

adapter, and the adapter converts the data in the business object to a format that is

compatible with an SAP API call. The adapter then runs the SAP API with this

data.

The adapter uses the BAPI metadata that is generated by the Adapter Connection

wizard to construct a business-object definition. This metadata contains

BAPI-related information such as the operation of the business object, import

parameters, export parameters, table parameters, transaction information, and

dependent or grouped BAPIs.

The BAPI business-object definition that is generated by the Adapter Connection

wizard is modeled on the BAPI function interface in SAP. The business-object

definition represents a BAPI function, such as a BAPI_CUSTOMER_GETLIST

function call.

Developing message flows 13

How business-object definitions are created

You create business-object definitions by using the Adapter Connection wizard.

The wizard connects to the application, discovers data structures in the application,

and generates business-object definitions to represent them. It also generates other

resources that are needed by the adapter, such as the interface information that

indicates the input and output parameters.

Business object structure

The structure of a BAPI business object depends on the interface type (simple

BAPI, BAPI work unit, or BAPI result set).

For more information, see the following topics.

v “Business object structure for a simple BAPI”

v “Business object structure for a nested BAPI”

v “Business object structure for a BAPI transaction”

v “Business object structure for a BAPI result set” on page 15

Business object structure for a simple BAPI:

A business object for a simple BAPI call reflects a BAPI method or function call in

SAP. Each business object property maps to a BAPI parameter. The metadata of

each business-object property indicates the corresponding BAPI parameter. The

operation metadata determines the correct BAPI to call.

 For a simple BAPI that performs Create, Update, Retrieve, and Delete operations,

each operation is represented by a business object, with the business objects being

grouped together within a wrapper.

The business object wrapper can be associated with multiple operations, but for a

simple BAPI, each business object is associated with only one operation. For

example, while a wrapper business object can contain BAPIs for Create and Delete

operations, BAPI_CUSTOMER_CREATE is associated with the Create operation,

not the Delete operation.

The BAPI business objects are children of the business object wrapper, and,

depending on the operation to be performed, only one child object in this wrapper

needs to be populated at run time in order to process the simple BAPI call. Only

one BAPI, the one that is associated with the operation to be performed, is called

at a time.

Business object structure for a nested BAPI:

A nested BAPI business object contains structure parameters that can contain one

or more other structures as components.

 A BAPI business object can contain both simple parameters and structure

parameters. A business object that contains structure parameters can in turn

contain other structures, such as simple parameters and a business object.

Business object structure for a BAPI transaction:

14 Message Flows

A business object that represents a BAPI work unit (also known as a BAPI

transaction) is actually a wrapper object that contains multiple child BAPI objects.

Each child BAPI object within the wrapper object represents a simple BAPI.

 The adapter supports a BAPI work unit using a top-level wrapper business object

that consists of multiple child BAPIs, each one representing a simple BAPI in the

sequence. The BAPI wrapper object represents the complete work unit, while the

child BAPI objects contained within the BAPI wrapper object represent the

individual operations that make up the unit of work.

Business object structure for a BAPI result set:

The top-level business object for a result set is a wrapper that contains a GetDetail

business object. The GetDetail business object contains the results of a query for

SAP data. The GetDetail business object also contains, as a child object, the query

business object. The query business object represents a GetList BAPI. These two

BAPIs work together to retrieve information from the SAP server.

The ALE interfaces:

The SAP Application Link Enabling (ALE) interface and ALE pass-through IDoc

interface enable business process integration and asynchronous data

communication between two or more SAP systems or between SAP and external

systems. The data is exchanged in the form of Intermediate Documents (IDocs).

 The adapter supports outbound and inbound processing by enabling the exchange

of data in the form of business objects.

v For inbound processing, SAP pushes the data in IDocs to the SAP adapter. The

adapter converts the IDocs to business objects and delivers them to the

endpoint.

v For outbound processing, the SAP adapter converts the business object to an

IDoc and delivers it to SAP.

To use the ALE interface or ALE pass-through IDoc interface for inbound

processing, make sure that your SAP server is properly configured (for example,

you must set up a partner profile and register a program ID to listen for events).

Application systems are loosely coupled in an ALE integrated system, and the data

is exchanged asynchronously.

IDocs

Intermediate Documents (IDocs) are containers for exchanging data in a predefined

(structured ASCII) format across system boundaries. The IDoc type indicates the

SAP format that is to be used to transfer the data. An IDoc type can transfer

several message types (the logical messages that correspond to different business

processes). IDocs can be used for outbound and inbound processing.

For example, if an application developer wants to be notified when a sales order is

created on the SAP server, the developer runs the Adapter Connection wizard to

discover the ORDERS05 IDoc on the SAP server. The wizard then generates the

business object definition for ORDERS05. The wizard also generates other

resources, such as an EIS export component and SCA interfaces.

IDocs are exchanged for inbound and outbound events, and IDocs can be

exchanged either as individual documents or in packets.

Developing message flows 15

|
|

|
|
|

|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|

|
|

The processing of IDoc data depends on whether you are using the ALE interface

or the ALE pass-through IDoc interface.

v ALE interface

For outbound processing, the adapter uses the IDoc business object to populate

the appropriate RFC-enabled function call made to the SAP server.

For inbound processing, IDocs can be sent from the SAP server as parsed or

unparsed documents

– For parsed documents, the adapter parses the IDoc and creates a business

object that reflects the internal structure of the IDoc.

– For unparsed IDocs, the adapter processes the IDoc but does not convert the

data portion of the IDoc.
v ALE pass-through IDoc interface

For both outbound and inbound processing, the adapter does no conversion of

the IDoc, which is useful when the client wants to perform the IDoc parsing.

Transactional RFC processing

The adapter uses tRFC (transactional RFC) to guarantee delivery and to ensure that

each IDoc is exchanged only once with SAP. The tRFC component stores the called

RFC function in the database of the SAP system with a unique transaction

identifier (TID).

The most common reason for using transaction ID support is to ensure once-only

delivery of data. To make sure of this feature, select the transaction RAR file

(CWYAP_SAPAdapter_Tx.rar) when you configure the adapter.

The SAP transaction ID property is always generated by the Adapter Connection

wizard; however, it is supported only for outbound operations when the

CWYAP_SAPAdapter_Tx.rar version of the adapter is used.

The client application must determine how to store the SAP transaction ID and

how to relate the SAP transaction ID to the data being sent to the adapter. When

the events are successful, the client application should not resubmit the event

associated with this TID again to prevent the processing of duplicate events.

v If the client application does not send an SAP transaction ID with the business

object, the adapter returns one after running the transaction.

v If the client application has an SAP transaction ID, it must populate the SAP

transaction ID property with that value before running the transaction.

The SAP transaction ID can be used for cross-referencing with a global unique ID

that is created for an outbound event. You can create the global unique ID for

managing integration scenarios.

Queued RFC processing

The adapter uses qRFC (queued transactional RFC) to ensure that IDocs are

delivered in sequence to a queue on the SAP server or are received in sequence

from the SAP server.

For more information about ALE interfaces, see the following topics:

v “Outbound processing for the ALE interface” on page 17

v “Inbound processing for the ALE interface” on page 17

v “Pass-through support for IDocs, and MQSeries link for R/3 link migration” on

page 23

16 Message Flows

|
|

|

|
|

|
|

|
|

|
|

|

|
|

|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|

v “ALE business objects” on page 25

Outbound processing for the ALE interface:

The adapter supports outbound processing (from the adapter to the SAP server)

for the ALE interface and the ALE pass-through IDoc interface. ALE uses IDocs for

data exchange, and the adapter uses business objects to represent the IDocs.

 The following list describes the sequence of processing actions that result from an

outbound request using the ALE interface and ALE pass-through IDoc interface.

The client application that makes the request uses the interface information that

was generated by the Adapter Connection wizard.

1. The adapter receives a request, which includes an IDoc business object, from a

client application.

For pass-through IDocs, the Message tree contains a BLOB field that represents

the IDoc. No separate IDoc business object exists for pass-through IDocs.

2. The adapter uses the IDoc business object to populate the appropriate

RFC-enabled function call used by the ALE interface.

3. The adapter establishes an RFC connection to the ALE interface and passes the

IDoc data to the SAP system. If you are using the qRFC protocol, the adapter

passes the IDoc data in the order specified in the wrapper business object to

the specified queue on the SAP server.

4. After passing the data to SAP, the adapter performs one of the following steps:

v If the call is not managed by a J2C local transaction, the adapter releases the

connection to SAP and does not return any data to the caller. When no

exceptions are raised, the outbound transaction is considered successful. You

can verify whether the data is incorporated into the SAP application by

inspecting the IDocs that have been generated in SAP.

v If the call is managed by a J2C local transaction, the adapter returns the

transaction ID.

The adapter uses the tRFC protocol to support J2C local transactions.

Inbound processing for the ALE interface:

The adapter supports inbound processing (from the SAP server to the adapter) for

the ALE interface and the ALE pass-through IDoc interface.

 When you are configuring a module for the ALE interface or the ALE pass-through

interface, you indicate whether the IDocs are sent as a packet and, for the ALE

interface, you can specify whether they are sent parsed or unparsed. You make

these selections in the Adapter Connection wizard. When you use the ALE

pass-through IDoc interface, the Message tree contains a BLOB field that represents

the IDoc. No separate IDoc business object exists for pass-through IDocs.

The following list describes the sequence of processing actions that result from an

inbound request using the ALE interface.

1. The adapter starts event listeners to the SAP server.

2. Whenever an event occurs in SAP, the event is sent to the adapter through the

event listeners.

3. The adapter converts the event into a business object before sending it to the

endpoint.

Developing message flows 17

|
|

|
|
|

The adapter uses the event recovery mechanism to track and recover events in case

of abrupt termination. The event recovery mechanism uses a data source for

persisting the event state.

The following table provides an overview of the differences between the ALE

interface and the ALE pass-through IDoc interface for inbound processing.

 Interface When to use SplitIDoc = true SplitIDoc = false Parsed IDoc = true

ALE inbound This interface

converts the raw

incoming IDocs to

business objects,

which are readily

consumable by the

client at the endpoint.

On receiving the IDoc

packet from SAP, the

adapter converts the

IDocs to business

objects, one by one,

before sending each

one to the endpoint.

On receiving the IDoc

packet from SAP, the

adapter converts the

IDocs in the packet as

one business object

before sending it to

the endpoint.

The incoming IDoc is

only partially parsed

(the control record of

the IDoc is parsed

but the data record is

not). The client at the

endpoint is

responsible for

parsing the data

record.

ALE pass-through

IDoc

This interface wraps

the raw incoming

IDoc in a business

object before

delivering it to the

client at the endpoint.

The client is

responsible for

parsing the raw IDoc.

On receiving the IDoc

packet from SAP, the

adapter wraps each

raw IDoc within a

business object before

sending the objects,

one by one, to the

endpoint.

On receiving the IDoc

packet from SAP, the

adapter wraps the

raw IDoc packet in a

business object before

sending it to the

endpoint.

This attribute is not

applicable to the ALE

pass- through IDoc

interface. (Neither the

control record nor the

data record of the

IDoc is parsed.)

For more information, see the following topics.

v “Event error handling”

v “Event recovery” on page 19

v “Event processing for parsed IDoc packets” on page 20

v “Event processing for unparsed IDocs” on page 21

v “IDoc status updates” on page 22

Event error handling:

WebSphere Adapter for SAP Software provides error handling for inbound ALE

events by logging the errors and attempting to restart the event listener.

 When the adapter detects an error condition, it performs the following actions:

1. The adapter logs the error information in the event log or trace file.

Log and trace files are in the /profiles/profile_name/logs/server_name path of

the folder in which WebSphere Message Broker is installed.

2. The adapter attempts to restart the existing event listeners.

The adapter uses the activation specification values for RetryLimit and

RetryInterval.

v If the SAP application is not active, the adapter attempts to restart the

listeners for the number of times configured in the RetryLimit property.

v The adapter waits for the time specified in the RetryInterval parameter

before attempting to restart the event listeners.
3. If the attempt to restart the event listeners fails, the adapter performs the

following actions:

18 Message Flows

|
|

||||||

||
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|

v The adapter logs the error condition in the event log or trace file.

v The adapter cleans up the existing ALE event listeners.

v The adapter starts new event listeners.

The adapter uses the values of the RetryLimit and RetryInterval properties

when starting the new event listeners.

4. If all the retry attempts fail, the adapter logs the relevant message and CEI

events and stops trying to recover the ALE event listener.

You must restart the adapter or SCA application in this case.

Event recovery:

You can configure the adapter for ALE inbound processing so that it supports

event recovery in case of abrupt termination.

 When event recovery is specified, the adapter persists the event state in an event

recovery table that resides on a data source. Event recovery is not the default

behavior; you must specify it by enabling once-only delivery of events during

adapter configuration. You must also set up the data source before you can create

the event recovery table.

Data source

Event recovery for ALE inbound processing requires that a JDBC data source be

configured. You select a JDBC provider, then create a new data source.

Event recovery table

You can create the event recovery table manually, or you can have the adapter

create the event table. The value of the EP_CreateTable configuration property

determines whether the event recovery table is created automatically. The default

value of this property is True (create the table automatically).

To create the table manually, use the information provided in the following table.

 Table 1. Event recovery table fields

Table field name Type Description

EVNTID VARCHAR(255) Transaction ID for the tRFC (Transactional

Remote Function Call) protocol.

The tRFC protocol significantly improves the

reliability of the data transfer, but it does not

ensure that the order of ALE transactions

specified in the application is observed. Event

ordering is also affected by the number of event

listeners. However, at some point all ALE

transactions are transferred.

EVNTSTAT INTEGER Event processing status. Possible values are:

v 0 (Created)

v 1 (Executed)

v 3 (In Progress)

v -1 (Rollback)

Developing message flows 19

Table 1. Event recovery table fields (continued)

Table field name Type Description

XID VARCHAR(255) An XA resource keeps track of transaction IDs

(XIDs) in the event recovery table. The adapter

queries and updates that XID field.

The XA resource is used to enable assured once

delivery. Make sure the activation specification

property Assured Once Delivery is set to true.

BQTOTAL INTEGER Total number of IDocs in the packet.

BQPROC INTEGER Sequence number of the IDoc in the packet that

the adapter is currently processing.

EVNTDATA VARCHAR(255) Not used.

To use event recovery for multiple endpoints, you must configure a separate event

recovery table for each endpoint, although you can use the same data source to

hold all the event recovery tables.

Event processing for parsed IDoc packets:

An inbound event can contain a single IDoc or multiple IDocs, with each IDoc

corresponding to a single business object. The multiple IDocs are sent by the SAP

server to the adapter in the form of an IDoc packet. You can specify, during

adapter configuration, whether the packet can be split into individual IDocs or

whether it must be sent as one object (non-split).

 Event processing begins when the SAP server sends a transaction ID to the

adapter. The following sequence occurs.

1. The adapter checks the status of the event and takes one of the following

actions:

v If this is a new event, the adapter stores an EVNTID (which corresponds to

the transaction ID) along with a status of 0 (Created) in the event recovery

table.

v If the event status is -1 (Rollback), the adapter updates the status to 0

(Created).

v If the event status is 1 (Executed), the adapter returns an indication of

success to the SAP system.
2. The SAP system sends the IDoc to the adapter.

3. The adapter converts the IDoc to a business object and sends it to the endpoint.

For single IDocs and non-split IDoc packets, the adapter can deliver objects to

endpoints that support transactions as well as to endpoints that do not support

transactions.

v For endpoints that support transactions, the adapter delivers the object as

part of a unique XA transaction. When the endpoint processes the event and

the transaction is committed, the status of the event is updated to 1

(Executed).

The endpoint must be configured to support XA transactions.

v For endpoints that do not support transactions, the adapter delivers the

object to the endpoint and updates the status of the event to 1 (Executed).

The adapter delivers the business object without the quality of service (QOS)

that guarantees once-only delivery.

20 Message Flows

|

|

|
|
|

|
|
|
|

|

|
|
|
|

4. For split packets only, the adapter performs the following tasks:

a. The adapter updates the BQTOTAL column (or table field) in the event

recovery table to the number of IDocs in the packet. This number is used

for audit and recovery purposes.

b. The adapter sends the business objects to the message endpoint, one after

the other, and updates the BQPROC property to the sequence number of the

IDoc it is working on. The adapter delivers the objects to the appropriate

endpoint as part of a unique XA transaction (a two-phase commit

transaction) controlled by the application server.

c. When the endpoint receives the event and the transaction is committed, the

adapter increments the number in the BQPROC property.

The message endpoint must be configured to support XA transactions.If the

adapter encounters an error while processing a split IDoc packet, it can

behave in one of two ways, depending on the IgnoreIDocPacketErrors

configuration property:

v If the IgnoreIDocPacketErrors property is set to false, the adapter stops

processing any additional IDocs in the packet and reports errors to the

SAP system.

v If the IgnoreIDocPacketErrors property is set to true, the adapter logs an

error and continues processing the rest of the IDocs in the packet. The

status of the transaction is marked 3 (InProgress). In this case, the adapter

log shows the IDoc numbers that failed, and you must resubmit those

individual IDocs separately. You must also manually maintain these

records in the event recovery table.

This property is not used for single IDocs and for non-split IDoc packets.

d. The SAP system sends a COMMIT call to the adapter.

e. After the adapter delivers all the business objects in the IDoc packet to the

message endpoint, it updates the event status to 1 (Executed).

f. In case of abrupt interruptions during IDoc packet processing, the adapter

resumes processing the IDocs from the current sequence number. The

adapter continues updating the BQPROC property, even if

IgnoreIDocPacketErrors is set to true. The adapter continues the processing

in case you terminate the adapter manually while the adapter is processing

an IDoc packet.
5. If an exception occurs either while the adapter is processing the event or if the

endpoint generates an exception, the event status is updated to -1 (Rollback).

6. If no exception occurs, the SAP server sends a CONFIRM call to the adapter.

7. The adapter deletes the records with a 1 (Executed) status and logs a common

event infrastructure (CEI) event that can be used for tracking and auditing

purposes.

Event processing for unparsed IDocs:

Unparsed IDocs are passed through, with no conversion of the data (that is, the

adapter does not parse the data part of the IDoc). The direct exchange of IDocs in

the adapter enables high-performance, asynchronous interaction with SAP, because

the parsing and serializing of the IDoc occurs outside the adapter. The consumer of

the IDoc parses the IDoc.

 The adapter processes the data based on whether the packet IDoc is split or

non-split and whether the data needs to be parsed.

v The adapter can process packet IDocs as a packet or as individual IDocs. When

an IDoc is received by the adapter from SAP as a packet IDoc, it is either split

Developing message flows 21

and processed as individual IDocs, or it is processed as a packet. The value of

the SplitIDocPacket metadata at the business-object level determines how the

IDoc is processed.

In the case of split IDocs, the wrapper contains only a single, unparsed IDoc

object.

v The Type metadata specifies whether the data should be parsed. For unparsed

IDocs, this value is UNPARSEDIDOC; for parsed IDocs, the value is IDOC. This value

is set by the Adapter Connection wizard.

Unparsed data format

In the fixed-width format of an unparsed IDoc, the segment data of the IDoc is set

in the IDocData field of the business object. It is a byte array of fixed-length data.

The entire segment length might not be used. The adapter pads spaces to the fields

that have data; the rest of the fields are ignored, and an end of segment is set. The

end of segment is denoted by null.

The following figure shows a segment with fields demarcated by the ‘|’ symbol for

reference.

When the adapter processes this segment into unparsed data, it takes into account

only those fields that have data in them. It maintains the field width for each

segment field. When it finds the last field with data, it appends a null to mark the

end of segment.

The next segment data processed as unparsed data would be appended after the

null.

Limitations

The unparsed event feature introduces certain limitations on the enterprise

application for a particular IDoc type.

v The enterprise application supports either parsed or unparsed business-object

format for a given IDoc type or message type.

v For a given IDoc type, if you select unparsed business-object format for inbound,

you cannot have inbound and outbound interfaces in the same EAR file, because

outbound is based on parsed business objects.

v The DummyKey feature is not supported for unparsed IDocs.

IDoc status updates:

Figure 1. Example of a segment before processing

Figure 2. Example of a segment after processing

22 Message Flows

To monitor IDoc processing, you can configure the adapter to update the IDoc

status.

 When the adapter configuration property ALEUpdateStatus is set to true

(indicating that an audit trail is required for all message types), the adapter

updates the IDoc status of ALE business objects that are retrieved from the SAP

server. After the event is sent to the message endpoint, the adapter updates the

status of the IDoc in SAP to indicate whether the processing succeeded or failed.

Monitoring of IDocs applies only to inbound processing (when the IDoc is sent

from the SAP server to the adapter).

The adapter updates a status IDoc (ALEAUD) and sends it to the SAP server.

An IDoc that is not successfully sent to the endpoint is considered a failure, and

the IDoc status is updated by the adapter. Similarly, an IDoc that reaches the

endpoint is considered successfully processed, and the status of the IDoc is

updated.

The status codes and their associated text are configurable properties of the

adapter, as specified in the activation specification properties and shown in the

following list:

v ALESuccessCode

v ALEFailureCode

v ALESuccessText

v ALEFailureText

Perform the following tasks to ensure that the adapter updates the standard SAP

status code after it retrieves an IDoc:

v Set the AleUpdateStatus configuration property to true and set values for the

AleSuccessCode and AleFailureCode configuration properties.

v Configure the inbound parameters of the partner profile of the logical system in

SAP to receive the ALEAUD message type. Set the following properties to the

specified values:

 Table 2. Inbound properties of the logical system partner profile

SAP property Value

Basic Type ALEAUD01

Logical Message Type ALEAUD

Function module IDOC_INPUT_ALEAUD

Process Code AUD1

Pass-through support for IDocs, and MQSeries link for R/3 link migration:

Both the inbound and outbound SAP adapters support a pass-through mode for

IDocs.

 In this mode, the bit stream for the IDoc is provided without any form of parsing.

The bit stream can then be used directly in a message flow, and parsed by other

parsers, or sent unchanged over transports.

Developing message flows 23

Use the Adapter Connection wizard to select pass-through support: on the

Configure settings for adapter pane, select ALE pass-through IDoc as the interface

type.

A business object is created that contains one field, which is the bit stream of the

IDoc. You can transform this business object in a Compute node to an MQSeries®

link for R/3 format message, as shown in the following example.

DECLARE ns NAMESPACE

’http://www.ibm.com/xmlns/prod/websphere/j2ca/sap/sapmatmas05’;

CREATE COMPUTE MODULE test4_Compute

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 CALL CopyMessageHeaders();

 -- CALL CopyEntireMessage();

 set OutputRoot.MQSAPH.SystemNumber = ’00’;

 set OutputRoot.BLOB.BLOB =

InputRoot.DataObject.ns:SapMatmas05.IDocStreamData;

 RETURN TRUE;

 END;

 CREATE PROCEDURE CopyMessageHeaders() BEGIN

 DECLARE I INTEGER 1;

 DECLARE J INTEGER;

 SET J = CARDINALITY(InputRoot.*[]);

 WHILE I < J DO

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I = I + 1;

 END WHILE;

 END;

 CREATE PROCEDURE CopyEntireMessage() BEGIN

 SET OutputRoot = InputRoot;

 END;

END MODULE;

You can also create a request business object from an MQSeries link for R/3

message, as shown in the following example.

CREATE COMPUTE MODULE test4_Compute

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 set

OutputRoot.DataObject.ns:SapMatmas05.IDocStreamData =

InputRoot.BLOB.BLOB;

 RETURN TRUE;

 END;

END MODULE;

The name of the SapMatmas05 element depends on selections that you make when

you run the Adapter Connection wizard.

ALE pass-through IDoc business object structure:

During ALE processing, the adapter exchanges business objects with the SAP

application. The Message tree contains a BLOB field that represents the IDoc.

 The Message tree contains a transaction ID, a queue name, stream data, and the

IDoc type. The transaction ID (SAPTransactionID) is used to ensure once-only

delivery of business objects, and the queue name (qRFCQueueName) specifies the

name of the queue on the SAP server to which the IDocs should be delivered. If

you are not using transaction IDs or queues, these properties are blank.

24 Message Flows

|

|

|
|

|
|
|
|
|

ALE business objects:

A business object is a structure that consists of data, the action to be performed on

the data, and additional instructions for processing the data. The adapter client

uses business objects to send data to SAP or to obtain data (through the adapter)

from SAP.

 The adapter uses the IDoc metadata that is generated by the Adapter Connection

wizard to construct a business-object definition. This metadata contains

ALE-related information such as segment information, field names, and an

indication of whether the business object handles a single IDoc or an IDoc packet.

The Message tree contains a BLOB field that represents the IDoc.

How business-object definitions are created

You create business-object definitions by using the Adapter Connection wizard.

The wizard connects to the application, discovers data structures in the application,

and generates business-object definitions to represent them. It also generates other

resources that are needed by the adapter, such as the interface information that

indicates the input and output parameters.

For more information, see the following topics.

v “ALE business object structure”

v “Transaction ID support” on page 26

v “Dummy keys” on page 26

ALE business object structure:

During ALE processing, the adapter exchanges business objects with the SAP

application. The business object represents an individual IDoc or an IDoc packet.

This business object is a top-level wrapper object that contains one or more IDoc

child objects, each one corresponding to a single IDoc. The same business object

format is used for inbound and outbound processing.

 The wrapper business object contains a transaction ID, a queue name, and one or

more IDoc business objects. The transaction ID (SAPTransactionID) is used to

ensure once-only delivery of business objects, and the queue name

(qRFCQueueName) specifies the name of the queue on the SAP server to which

the IDocs should be delivered. If you are not using transaction IDs or queues,

these properties are blank.

For individual IDocs, the wrapper business object contains only one instance of an

IDoc business object. For IDoc packets, the wrapper business object contains

multiple instances of an IDoc business object.

The IDoc business object contains the following objects:

v The control record business object contains the metadata required by the adapter

to process the business object.

v The data record business object contains the actual business object data to be

processed by the SAP application and the metadata required for the adapter to

convert it to an IDoc structure for the RFC call.

Developing message flows 25

For an unparsed IDoc, in which the data part of the IDoc is not parsed by the

adapter, the IDoc business object contains a dummy key, a control record, and the

IDoc data.

Transaction ID support:

An SAP transaction ID is contained within the ALE wrapper business object. You

can use transaction ID support to ensure once-only delivery of ALE objects.

 The most common reason for using transaction ID support is to ensure once and

only once delivery of data. To make sure of this feature, select the transaction RAR

file (CWYAP_SAPAdapter_Tx.rar) when you configure the adapter..

The SAP transaction ID property is always generated by the Adapter Connection

wizard; however, it is supported only for outbound operations when the

CWYAP_SAPAdapter_Tx.rar version of the adapter is used.

The client application must determine how to store the SAP transaction ID and

how to relate the SAP transaction ID to the data being sent to the adapter. When

the events are successful, the client application should not resubmit the event

associated with this TID again to prevent the processing of duplicate events.

v If the client application does not send an SAP transaction ID with the business

object, the adapter returns one after executing the transaction.

v If the client application has an SAP transaction ID, it needs to populate the SAP

transaction ID property with that value before executing the transaction.

The SAP transaction ID can be used for cross-referencing with a global unique ID

that is created for an outbound event. The global unique ID is something you can

create for managing integration scenarios.

Dummy keys:

You use a dummy key to map a key field from an IDoc control or data record

business object to the dummyKey property of the top-level business object. The

dummyKey property is used for flow control and business process logic. You can

use the dummyKey when you need the top-level business object to participate in a

relationship.

 The adapter supports dummy key mapping in the following manner:

v You must configure the property-level application-specific information of the

dummyKey property as the path to the property from which the value should

be set. For example: dataRecord/SapOrders05e2edk01005/idocDocumentNumber

v Multiple cardinality objects are not supported. If the path contains a multiple

cardinality object, the value is ignored and the default first index is used.

v If the application-specific information is incorrect or if the mapped property

value is empty, the adapter causes the event to fail. This is also the case when

the application-specific information is configured to set an object type value as

the dummyKey.

Note: The dummyKey property can contain only a simple type.

Dummy key processing is not supported for unparsed IDocs.

Query interface for SAP Software:

26 Message Flows

|
|
|

The Query interface for SAP Software (QISS) provides you with the means to

retrieve data from application tables on an SAP server or to query SAP application

tables for the existence of data. The adapter can perform hierarchical data retrieval

from the SAP application tables.

 Query interface for SAP Software supports outbound interactions for read

operations (RetrieveAll and Exists) only. You can use this interface in local

transactions to look up records before write operations (Create, Update, or Delete).

For example, you can use the interface as part of a local transaction to do an

existence check on a customer before creating a sales order. You can also use the

interface in non-transaction scenarios.

Query interface for SAP Software supports data retrieval form SAP application

tables, including hierarchical data retrieval from multiple tables. The interface

supports static as well as dynamic specification of where clauses for the queries.

The Adapter Connection wizard finds the application data tables in SAP, interprets

the hierarchical relationship between tables, and constructs a representation of the

tables and their relationship in the form of a business object. The wizard also

builds a default where clause for the query.

You can control the depth of the data retrieval as well as the amount of

information using the maxRow and rowsSkip properties.

For more information, see the following topics.

v “Outbound processing for the query interface for SAP Software”

v “Business objects for the query interface for SAP Software” on page 28

Outbound processing for the query interface for SAP Software:

You use the Query interface for SAP Software for outbound processing only.

 The client application that makes the request uses the interface information that

was generated by the Adapter Connection wizard.

The following list describes the sequence of processing actions that result from an

outbound request using the query interface for SAP Software.

1. The adapter receives a request, which includes a table object, from a client

application.

The query business object can be within a container business object, or it can be

received as a table business object.

2. The adapter determines, from the table object sent with the query, the name of

the table to examine.

3. The adapter determines the columns to retrieve or examine.

4. The adapter determines the rows to retrieve or examine.

5. The adapter responds.

v In the case of a RetreiveAll operation, the adapter returns a result set in the

form of a container of query business objects, which represent the data for

each row retrieved from the table. If the query is received as a table business

object (not inside a container), the rows are returned one at a time, as they

are retrieved.

v In the case of the Exists operation, the adapter returns an indication of

whether the data exists in the SAP table.

Developing message flows 27

v If no data exists, the adapter generates an exception.

Business objects for the query interface for SAP Software:

A business object is a structure that consists of data, the action to be performed on

the data, and additional instructions, if any, for processing the data. The input to

the Query interface for SAP Software is a table business object. The table business

object represents the columns in a table on the SAP server. The adapter uses the

table business object to obtain data from tables on the SAP server.

 How data is represented in business objects

The adapter uses metadata that is generated by the Adapter Connection wizard to

construct a business-object definition.

The data in the business object represents the columns of the associated table in

SAP.

How business objects are created

You create business-object definitions by using the Adapter Connection wizard.

The wizard connects to the application, discovers data structures in the application,

and generates business-object definitions to represent them. It also generates other

resources that are needed by the adapter, such as the interface information that

indicates the input and output parameters.

Business object structure

The table business object can be part of a container.

The table business object contains columns selected from the specified SAP table.

In addition to column information, the table business object also contains a query

business object as the last parameter.

The properties of the query business object are sapWhereClause, sapRowsSkip, and

sapMaxRows:

v The sapWhereClause property retrieves information from SAP tables. The

default value is populated by the Adapter Connection wizard. The space

character is used as the delimiter to parse the sapWhereClause.

v The sapMaxRows property is the maximum number of rows to be returned. The

default value is 100.

v The sapRowsSkip property is the number of rows to skip before retrieving data.

The default value is 0.

The tables can be modeled as hierarchical business objects. You specify the

parent-child relationship of the tables in the Adapter Connection wizard.

Tables are linked by a foreign key to form parent-child relationships. The child

table business object has a foreign key that references a property in the parent

query business object.

In the KNA1 business object, notice the reference to SapAdrc, a child business

object. The SapAdrc table object, shown in the following figure, has a column

28 Message Flows

named AddressNumber. This column has an associated property (ForeignKey) that

contains a reference to the parent business object.

The return from the Query interface for SAP Software call for a RetrieveAll

operation is a container of table objects.

The Advanced event processing interface:

The Advanced event processing interface of the WebSphere Adapter for SAP

Software is used for both inbound and outbound processing.

 For inbound processing, it polls for events in SAP, converts them into business

objects, and sends the event data as business objects to WebSphere Message Broker.

For outbound processing, the adapter processes events sent from an application to

retrieve data from or update data in the SAP server.

For more information, see the following topics.

v “Outbound processing”

v “Inbound processing for the advanced event processing interface” on page 32

v “Business objects” on page 35

Outbound processing:

During outbound processing, business object data is converted into an ABAP

handler function, which is called on the SAP server. When the data is returned by

the ABAP handler function, the data is converted to a business object, and the

business object is returned as a response.

 The following list describes the sequence of processing actions that result from an

outbound request using the Advanced event processing interface.

1. The adapter receives the Advanced event processing record, which contains

business data along with the metadata.

2. The Advanced event processing interface of the adapter uses the metadata of

the business object to obtain the type of IDoc specified and to reformat the

business object data into the structure of that IDoc.

3. After it reformats the data, the adapter passes the business object data to an

object-specific ABAP handler (based on the operation), which handles the

integration with an SAP native API.

4. After the object-specific ABAP handler finishes processing the business object

data, it returns the response data in IDoc format to the adapter, which converts

it to the business object.

5. The adapter returns the results to the caller.

For more information, see the following topics.

v “ABAP handler overview”

v “ABAP handler creation” on page 31

v “Call Transaction Recorder wizard” on page 32

ABAP handler overview:

Developing message flows 29

An ABAP handler is a function module that gets data into and out of the SAP

application database. For each business object definition that you develop, you

must support it by developing a custom ABAP handler.

 ABAP handlers reside in the SAP application as ABAP function modules. ABAP

handlers are responsible for adding business-object data into the SAP application

database (for Create, Update, and Delete operations) or for using the

business-object data as the keys to retrieving data from the SAP application

database (for the Retrieve operation).

You must develop operation-specific ABAP handlers for each hierarchical business

object that needs to be supported. If you change the business object definition, you

must also change the ABAP handler.

An ABAP handler can use any of the SAP native APIs for handling the data. The

following list contains some of the native APIs.

v Call Transaction

Call Transaction is the SAP-provided functionality for entering data into an SAP

system. Call Transaction guarantees that the data adheres to the SAP data model

by using the same screens an online user sees in a transaction. This process is

commonly referred to as screen scraping.

v Batch data communication (BDC)

Batch Data Communication (BDC) is an instruction set that SAP can follow to

process a transaction without user intervention. The instructions specify the

sequence in which the screens in a transaction are processed and which fields

are populated with data on which screens. All of the elements of an SAP

transaction that are exposed to an online user have identifications that can be

used in a BDC.

v ABAP SQL

ABAP SQL is the SAP proprietary version of SQL. It is database- and platform-

independent, so that whatever SQL code you write, you can run it on any

database and platform combination that SAP supports. ABAP SQL is similar in

syntax to other versions of SQL and supports all of the basic database table

commands such as update, insert, modify, select, and delete. For a complete

description of ABAP SQL, see your SAP documentation.

Using ABAP SQL, an ABAP handler can modify SAP database tables with

business object data for create, update, and delete operations. It can also use the

business object data in the where clause of an ABAP select statement as the

keys.

Use of ABAP SQL to modify SAP tables is not recommended, because it might

corrupt the integrity of the database. Use ABAP SQL only to retrieve data.

v ABAP Function Modules and Subroutines

From the ABAP handler, you can call ABAP function modules or subroutines

that implement the required function.

The adapter provides the following tools to help in the development process:

v The adapter includes the Call Transaction Recorder wizard to assist you in

developing the ABAP handlers that use call transactions or BDC sessions.

v The Adapter Connection wizard generates the required business objects and

other resources for Advanced event processing. The business objects are based

on IDocs, which can be custom or standard.

v The adapter provides samples that you can refer to for an understanding of the

Advanced event processing implementation.

30 Message Flows

ABAP handler creation:

For each IDoc object definition that you develop, you must support it by

developing a custom ABAP handler.

 You can use either standard IDocs or custom IDocs for the Advanced event

processing interface. After defining the custom IDoc for an integration scenario,

create an ABAP handler (function module) for each operation of the business object

that needs to be supported.

Each function should have the following interface to ensure that adapter can call it:

*" IMPORTING

*" VALUE(OBJECT_KEY_IN) LIKE /CWLD/LOG_HEADER-OBJ_KEY OPTIONAL

*" VALUE(INPUT_METHOD) LIKE BDWFAP_PAR-INPUTMETHD OPTIONAL

*" VALUE(LOG_NUMBER) LIKE /CWLD/LOG_HEADER-LOG_NR OPTIONAL

*" EXPORTING

*" VALUE(OBJECT_KEY_OUT) LIKE /CWLD/LOG_HEADER-OBJ_KEY

*" VALUE(RETURN_CODE) LIKE /CWLD/RFCRC_STRU-RFCRC

*" VALUE(RETURN_TEXT) LIKE /CWLD/LOG_HEADER-OBJ_KEY

*" TABLES

*" IDOC_DATA STRUCTURE EDID4

*" LOG_INFO STRUCTURE /CWLD/EVENT_INFO

The following table provides information about the parameters:

 Table 3. Interface parameters

Parameter Description

OBJECT_KEY_IN Should be no value.

INPUT_METHOD Indicates whether the IDoc should be processed in a

dialog (that is, through Call Transaction).

Possible values are:

 ″ ″ - Background (no dialog)

 ″A″ - Show all screens

 ″E″ - Start the dialog on the screen where the error

occurred

 “N” Default

LOG_NUMBER Log Number.

OBJECT_KEY_OUT Customer ID returned from the calling transaction.

RETURN_CODE

 0 - Successful.

 1 - Failed to retrieve.

 2 - Failed to create, update, or delete.

RETURN_TEXT Message describing the return code.

IDOC_DATA Table containing one entry for each IDoc data segment.

The following fields are relevant to the inbound

function module:

 Docnum - The IDoc number.

 Segnam - The segment name.

 Sdata - The segment data.

LOG_INFO Table containing details regarding events processed

with either a success or error message.

Developing message flows 31

Call Transaction Recorder wizard:

The adapter provides the Call Transaction Recorder wizard to assist you in

developing the ABAP handlers that use call transactions or BDC sessions.

 The Call Transaction Recorder wizard enables you to generate sample code for call

transactions to facilitate development. It generates sample code stubs for each

screen that is modified during the recording phase.

To access this wizard, enter the /CWLD/HOME transaction in the SAP GUI.

The following example is sample code that is generated by the wizard. You can

adopt this code in the ABAP Handler.

* Customer master: request screen chnge/displ cent.

perform dynpro_new using ’SAPMF02D’ ’0101’ .

* Customer account number

perform dynpro_set using ’RF02D-KUNNR’ ’1’ .

* Function Command

perform dynpro_set using ’BDC_OKCODE’ ’/00’ .

* Function Command

perform dynpro_set using ’BDC_OKCODE’ ’/00’ .

* Customer master: General data, CAM address, communication

perform dynpro_new using ’SAPMF02D’ ’0111’ .

* Title

perform dynpro_set using ’SZA1_D0100-TITLE_MEDI’ ’Mr.’ .

* Function Command

perform dynpro_set using ’BDC_OKCODE’ ’=UPDA’ .

* Call Transaction

Call Transaction ’XD02’ using bdcdata

 mode input_mode

 update ’S’

 messages into bdc_messages.

The wizard does not generate the required business object. You use the Adapter

Connection wizard to generate the business object.

Inbound processing for the advanced event processing interface:

The adapter uses the Advanced event processing interface to poll for events on the

SAP server, to process the events, and to send them to an endpoint.

 The following list describes the sequence of processing actions that result from an

inbound request using the Advanced event processing interface.

1. A triggered event enters the event table with an initial status of pre-queued.

2. When the adapter polls for events, the status of the event changes from

pre-queued to queued if there are no database locks for the combination of the

user who created the event and the event key.

3. After the event is retrieved from the event table, the status of the event is

updated to InProgress.

32 Message Flows

If locks exist, the status of the event is set to locked and the event is re-queued

into the queue. Every event with a pre-queued or locked status is updated with

every poll. You can configure the polling frequency using the Poll Frequency

property.

4. After preprocessing all pre-queued events, the adapter selects the events.

The property Poll Quantity determines the maximum number of events

returned for a single poll call.

5. For each event, the adapter uses the remote function specified for the Retrieve

operation to retrieve the data and send it to the endpoint.

If the AssuredOnceDelivery property is set to true, an XID value is set for each

event in the event store. After each event is picked up for processing, the XID

value for that event is updated in the event table.

If before the event is delivered to the endpoint, the SAP connection is lost or

the application is stopped, and the event is consequently not processed

completely, the XID column ensures that the event is reprocessed and sent to

the endpoint. After the SAP connection is reestablished or the adapter starts up

again, it first checks for events in the event table that have a value in the XID

column. It then processes these events first and then polls the other events

during the poll cycles.

6. After each event is processed, it is updated or archived in the SAP application.

When the event is processed successfully, it is archived and then deleted from

the event table.

The adapter can also filter the events to be processed by business object type.

The filter is set in the Event Filter Type property. This property has a

comma-delimited list of business object types, and only the types specified in

the property are picked for processing. If no value is specified for the property,

no filter is applied and all the events are picked up for processing.

For more information, see the following topics.

v “Event detection”

v “Event triggers” on page 35

Event detection:

Event detection refers to the collection of processes that notify the adapter of SAP

application object events. Notification includes, but is not limited to, the type of

the event (object and operation) and the data key required for the external system

to retrieve the associated data.

 Event detection is the process of identifying that an event was generated in the

SAP application. Typically, adapters use database triggers to detect an event.

However, because the SAP application is tightly integrated with the SAP database,

SAP allows very limited access for direct modifications to its database. Therefore,

the event-detection mechanisms are implemented in the application transaction

layer above the database.

Adapter-supported event detection mechanisms

The four event-detection mechanisms that are supported by the adapter are

described in the following list:

v Custom Triggers, which are implemented for a business process (normally a

single SAP transaction) by inserting event detection code at an appropriate point

within the SAP transaction

Developing message flows 33

v Batch programs, which involve developing an ABAP program containing the

criteria for detecting an event

v Business workflows, which use the object-oriented event detection capabilities of

SAP

v Change pointers, a variation of business workflows, which use the concept of

change documents to detect changes for a business process

All these event-detection mechanisms support real-time triggering and retrieval of

objects. In addition, custom triggers and batch programs provide the ability to

delay the retrieval of events. An event whose retrieval is delayed is called a future

event.

Each event detection mechanism has advantages and disadvantages that need to be

considered when designing and developing a business object trigger. Keep in mind

that these are only a few examples of event detection mechanisms. There are many

different ways to detect events.

After you determine the business process to support (for example, sales quotes or

sales orders) and determine the preferred event-detection mechanism, implement

the mechanism for your business process.

When implementing an event detection mechanism, it is a good idea to support all

of the functionality for a business process in one mechanism. This limits the impact

in the SAP application and makes event detection easier to manage.

Event table

Events that are detected are stored in an SAP application table. This event table is

delivered as part of the ABAP component. The event table structure is as follows.

 Table 4. Event table fields

Name Type Description

event_id NUMBER Unique event ID that is a primary key for the

table.

object_name STRING Business graph name or business object name.

object_key STRING Delimited string that contains the keys for the

business object.

object_function STRING Operation corresponding to the event (Delete,

Create, or Update).

event_priority NUMBER Any positive integer to denote the priority of

the event.

event_time DATE Date and time when the event was generated.

event_status NUMBER Event processing status. Possible values are:

 0 - Ready for poll

 1 - Event delivered

 2 - Event prequeued

 3 - Event in progress

 4 - Event locked

 -1 - Event failed

Xid STRING Unique XID (transaction ID) value for

assured-once delivery.

event_user STRING User who created the event.

34 Message Flows

Table 4. Event table fields (continued)

Name Type Description

event_comment STRING Description of the event.

Event triggers:

After an event is identified by one of the event-detection mechanisms, it is

triggered by one of the adapter-delivered event triggers. Event triggers can cause

events to be processed immediately or in the future.

 The function modules that trigger events are described in the following list.

v /CWLD/ADD_TO_QUEUE

This function module triggers events to the current event table for immediate

processing.

v /CWLD/ADD_TO_QUEUE_IN_FUTURE

This function module triggers events to the future event table to be processed at

a later time.

Both functions are for real-time triggering.

Current event table

If the event will be triggered in real-time, /CWLD/ADD_TO_QUEUE_AEP

commits the event to the current event table (/CWLD/EVT_CUR_AEP).

Specifically, it adds a row of data for the object name, verb, and key that represents

the event.

Future event table

If an event needs to be processed at a future date, the processing that is described

in the following list occurs.

1. A custom ABAP handler calls /CWLD/ADD_TO_QUEUE_IN_FUTURE_AEP

with the event.

2. The /CWLD/ADD_TO_QUEUE_IN_FUTURE_AEP module commits the event

to the future event table (/CWLD/EVT_FUT_AEP). Specifically, it adds a row

of data for the object name, verb, and key that represents the event. In addition,

it adds a Date row

3. The adapter-delivered batch program /CWLD/
SUBMIT_FUTURE_EVENTS_AEP reads the future event table.

4. If scheduled to do so, the batch program retrieves events from the future event

table.

5. After it retrieves an event, the batch program calls /CWLD/
ADD_TO_QUEUE_AEP.

6. The /CWLD/ADD_TO_QUEUE_AEP module triggers the event to the current

event table.

/CWLD/ADD_TO_QUEUE_IN_FUTURE_AEP uses the system date as the current

date when it populates the Date row of the future event table.

Business objects:

Developing message flows 35

A business object is a structure that consists of data, the action to be performed on

the data, and additional instructions, if any, for processing the data.

 How data is represented in business objects

Advanced event processing business objects are based on custom IDocs, standard

IDocs, or extension IDocs available in the SAP system.

How business-object definitions are created

You create business-object definitions by using the Adapter Connection wizard.

The wizard connects to the application, discovers data structures in the application,

and generates business-object definitions to represent them. It also generates other

resources that are needed by the adapter, such as the interface information that

indicates the input and output parameters.

For custom interfaces that you want to support, as a first step, you need to define

the custom IDoc in the SAP system. You can then use the Adapter Connection

wizard to discover this custom IDoc and build the required resources, including

the business-object definition.

Overview of WebSphere Adapter for Siebel Business Applications:

With WebSphere Adapter for Siebel Business Applications, you can create

integrated processes that exchange information with a Siebel application, without

special coding.

 WebSphere Adapter for Siebel Business Applications provides a way to create

integrated processes that exchange information with a Siebel application. With the

adapter, an application can send requests to the Siebel Business Applications server

or receive notifications of changes from the server.

The adapter creates a standard interface to the applications and data on the Siebel

Business Applications server, so that the application does not have to understand

the lower-level details (the implementation of the application or the data

structures) on the Siebel Business Applications server. An application, for example,

can send a request to the Siebel Business Applications server, to query or update

an Account record, represented by a Siebel business component instance. It can

also receive events from the server, for example, to be notified that a customer

record has been updated. This provides you with improved business workflow and

processes to help manage your customer relations.

WebSphere Adapter for Siebel Business Applications complies with the Java

Connector Architecture (JCA). JCA standardizes the way application components,

application servers, and Siebel applications, such as Siebel Business Applications

server, interact with each other.

The adapter configuration, which you generate with the Adapter Connection

wizard, uses a standard interface and standard data objects. The adapter takes the

standard data object sent by the application component and calls the Siebel

Business Applications function. The adapter then returns a standard data object to

the application component. The application component does not have to deal

directly with the Siebel Business Applications function; it is the Siebel Business

Applications adapter that calls the function and returns the results.

36 Message Flows

For example, the application component that needs the list of customers sends a

standard business object with the range of customer IDs to Adapter for Siebel

Business Applications. In return, the application component receives the results

(the list of customers) in the form of a standard business object. The application

component does not need to know how the function worked or how the data was

structured. The adapter performs all the interactions with the actual Siebel

Business Applications function.

Similarly, the client application might want to know about a change to the data on

the Siebel Business Applications server (for example, a change to a particular

customer). You can generate an adapter component that polls for such events on

the Siebel Business Applications server and notifies client applications of the

update. In this case, the interaction begins at the Siebel Business Applications

server.

Technical overview of the Adapter for Siebel Business Applications:

WebSphere Adapter for Siebel Business Applications supports the exchange of

information between your existing applications and Siebel Business Applications.

The adapter supports Siebel entities, including business objects, business

components, and business services. This enables you to create business processes

that exchange data.

 The adapter supports outbound processing (requests for data or services from an

application to the Siebel application) and inbound processing (event notification

from a Siebel application server to an application).

With Adapter for Siebel Business Applications, you can use existing or

newly-created applications that run in a supported runtime environment to send

requests for data and services to Siebel Business Applications.

You can also add event-generation triggers to Siebel business objects to have

notifications of events, such as the creation, update, and deletion of a record, sent

to one or more of your applications.

For more information, see the following topics.

v “Outbound processing”

v “Inbound processing” on page 38

v “Business objects” on page 42

v “Adapter Connection wizard (Siebel)” on page 42

Outbound processing:

WebSphere Adapter for Siebel Business Applications supports synchronous

outbound processing. This means that when the component sends a request in the

form of a WebSphere business object hierarchy to the adapter, the adapter

processes the request and returns a WebSphere business object hierarchy that

represents the result of the operation.

 When the adapter receives a WebSphere business object hierarchy, the adapter

processes it as follows:

1. The adapter extracts metadata from the WebSphere business object hierarchy.

2. It identifies the appropriate Siebel objects to access (for example, Siebel

business objects and business components, or Siebel business services,

Developing message flows 37

integrations objects, and integration components) depending on the objects

against which the artifacts were generated.

3. The adapter extracts the outbound operation to perform from the WebSphere

business object hierarchy.

4. After accessing the required Siebel objects, the adapter retrieves, updates,

deletes, or creates a Siebel business component hierarchy or performs the

corresponding business service method on the integration component hierarchy.

5. If there are updates (Create, Update, Delete), the adapter populates that Siebel

object (business or integration component hierarchy) with data from the

hierarchy of WebSphere business objects.

Supported Outbound Operations

WebSphere Adapter for Siebel Business Applications supports the following

outbound operations as shown in the table below.

 Table 5. Supported outbound operations

Operation Description

Create Creates the business component.

Delete Deletes the business component and its children.

Exists Checks for the existence of incoming business objects.

The output business object, ″ExistsResult″ will be

returned with the boolean value populated.

Retrieve Specifies the value of the business component.

RetrieveAll Retrieves multiple instances of the same business

component and populates it as the container business

graph.

Update Updates the Siebel application with the incoming

business object.

Inbound processing:

WebSphere Adapter for Siebel Business Applications supports asynchronous

inbound processing, which means that the adapter polls the Siebel Business

Applications at specified intervals for events. When the adapter detects an event, it

converts the event data into a business object and sends it to the component.

 Before inbound processing can occur, a Siebel event business component must be

created in the Siebel application (IBM2 for Siebel version 7.x and IBM_EVENT for

Siebel version 8) and its name specified against the corresponding property in the

adapter activation specification.

When the adapter detects an event for Siebel event business components or

integration components, it processes the event by retrieving the updated data for

the Siebel event business component or integration component and converting it

into a business object. The adapter then sends the business object to the event

business component. For example, if an event business component (an account) is

updated, an event trigger adds an event record to the event business component.

The adapter polls the event business component, retrieves the event record, and

processes it.

When the adapter finds an event for a Siebel event business component, it

processes the event in the following way:

38 Message Flows

1. The adapter retrieves the event information from the Siebel event business

component.

2. The adapter retrieves the corresponding event business component instance

hierarchy.

3. The adapter populates the associated WebSphere business object or business

graph (if it was generated) with the values that it retrieves from the event

business component.

4. The adapter sends a notification to each registered application.

If an inbound event in the event table fails or is invalid, the event status is

updated to -1, which indicates an error in processing the event, and a resource

exception message is issued that explains the reason for the error.

Event store:

The event store is a persistent cache where event records are saved until the

polling adapter can process them. To keep track of inbound events as they make

their way through the system, the adapter uses an event store.

 The creation, update, or deletion of an event record in the Siebel business

application is an ’event’. Each time a business object is created, updated, or

deleted, the adapter updates the status of the event in an event store.

For example, if you have a customer component and a new customer has just been

added to it, this signals an update. If the adapter is configured to receive the

events about the new update, there will be triggers attached to the Siebel end and

connected to the customer component. The triggers add a record to the event

business component. The record contains information about the new customer,

such as the customer ID. This information is stored in the object key. The object

key is the unique identifier that provides the key name and value of the event

business component that was updated (for example, Id=1-20RT). The object name is

the WebSphere business object name that represents the customer component (for

example, AccountBG or Account). The adapter retrieves this event and the new

customer information that relates to it. It then processes the event and delivers it to

the export.

During inbound processing, the adapter polls the event business components from

the event store at regular intervals. Each time it polls, a number of events are

processed by the adapter. Events are processed in ascending order of priority and

ascending order of the event time stamp. In each poll cycle, new events are picked

up. The adapter retrieves the value set in the object key field for the event and

loads the business object that corresponds to it. The business object, or optionally

the business graph, is created from the retrieved information and is delivered to

the exports.

If you set the activation specification property AssuredOnceDelivery to true, a

transaction ID (XID) value is set for each event in the event store. After the event is

retrieved for processing, the XID value for it is updated in the event store and

displayed in the XID column in the event business component. The event is then

delivered to its corresponding export, and the status is updated to show that the

event has been successfully delivered. If the application is stopped or the event is

not processed completely, the XID column is filled with a value. This ensures that

the event is reprocessed and sent to the export. After the connection is

reestablished or the adapter starts again, the adapter checks for events in the event

Developing message flows 39

|
|
|

store that have a value in the XID column. The adapter processes these events first

and then polls the other events during the poll cycles.

The adapter can either process all events or process events filtered by business

object type. You set the filter through the activation specification property,

EventTypeFilter. This property contains a comma-delimited list of business object

types. Only the types specified in the property are processed. If the

EventTypeFilter property is not set, then all of the events are processed. If the

FilterFutureEvents property is set to true, the adapter filters events based on the

time stamp. The adapter compares the system time in each poll cycle to the time

stamp on each event. If an event is set to occur in the future, it is not processed

until that time.

After an event is successfully posted and delivered to the export, the entry is

deleted from the event store. Failed events (posting and delivery to the export is

unsuccessful), remain in the event store and are marked -1. This prevents duplicate

processing.

Event store structure for Siebel business objects and business components

The IBM2 event business component stores information about the event. The

information stored is used by the resource adapter during event subscription to

build the corresponding business object and send it to the registered exports. The

information that is stored, as well as the structure of the event store used by the

adapter, is shown in the following table.

 Table 6. Event store structure for IBM2 Siebel event business objects and business components

Field Description Example

Description Any comment associated with the

event.

Account Create Event

Event ID The ID of the event row. Automatically generated unique ID

in Siebel (for example: 1-XYZ)

Event timestamp The time stamp for the event. The

format is in mm/dd/yyyy hh:mm:ss

02/24/2007 11:37:56

Event type The type of event. Create, Update, or Delete

Object key A unique identifier of the business

object row for which the event was

created. It is a name value pair

consisting of the name of the

property (key name) and value.

Id=1-20RT

Object name The name of the business object or

business graph for which the event

was detected.

IOAccountPRMANIICAccount

Priority The event priority. 1

40 Message Flows

Table 6. Event store structure for IBM2 Siebel event business objects and business components (continued)

Field Description Example

Status The event status. This is initially set

to the value for a new event and

updated by the adapter as it

processes the event. The status can

have one of the following values:

v 0: Identifies a new event.

v 1: Identifies an event that has been

delivered to an export.

v -1: An error occurred while

processing the event.

This column cannot be null.

0

XID The transaction ID. This is to ensure

’assured once delivery’.

None

Event store structure for Siebel business services

The event is retrieved from the IBM2 event business component and the

information is used to retrieve the event business component. This creates a

business graph which is published to the registered exports.

 Table 7. Event store structure for IBM2 Siebel business services

Field Description Example

Description Any comment associated with the

event.

Account PRM ANI Event

Event ID The ID of the event row. Automatically generated unique ID

in Siebel (for example: 1-XYZ)

Event timestamp The time stamp for the event. The

format is in mm/dd/yyyy hh:mm:ss

02/24/2007 11:37:56

Event type The type of event. Create, Update, or Delete

Object key A unique identifier of the business

object row for which the event was

created. It is a name value pair

consisting of the name of the

property (key name) and value.

Name=TestName;Location=BGM,

where ’Name’ and ’Location’ are the

keys in the integration component.

’TestName’ and ’BGM’ are the values

specified, and ; is the event key

delimiter.

Object name The name of the business object or

business graph for which the event

was detected.

IOAccountPRMANIICAccount

Priority The event priority. 1

Developing message flows 41

Table 7. Event store structure for IBM2 Siebel business services (continued)

Field Description Example

Status The event status. This is initially set

to the value for a new event and

updated by the adapter as it

processes the event. The status can

have one of the following values:

v 0: Identifies a new event.

v 1: Identifies an event that has been

delivered to an export.

v -1: An error occurred while

processing the event.

This column cannot be null.

0

XID The transaction ID. This is to ensure

’assured once delivery’.

None

Business objects:

To send data or obtain data from Siebel Business Applications, the adapter uses

business objects. A business object is a structure that consists of data, the action to

be performed on the data, and additional instructions, if any, for processing the

data. The data can represent either a business entity, such as an invoice or an

employee record, or unstructured text.

 How business objects are created

You create business objects by using the Adapter Connection wizard, which

connects to the application, discovers data structures in the application, and

generates business objects to represent them. It also generates other resources that

are needed by the adapter.

The Siebel business objects are created with long names by default. To generate

business objects with shorter names, select Generate business objects with shorter

names on the Configure Objects screen of the Adapter Connection wizard. For

more information, see “Naming conventions for business objects representing

Siebel business services” on page 1288.

Business object structure

The adapter supports business objects that are hierarchically structured. The

top-level business object must have a one-to-one correspondence with the Siebel

business component, and collections that occur within the top-level object are

children of it. Information about the processed object is stored in the

application-specific information for the object and each of its attributes.

Adapter Connection wizard (Siebel):

The Adapter Connection wizard is a tool that you use to configure your adapter.

The wizard establishes a connection to the Siebel server, discovers business objects

and services (based on search criteria you provide), and generates business objects

based on the services discovered.

42 Message Flows

|

|
|
|
|

|
|
|
|
|

Using the Adapter Connection wizard, you establish a connection to the Siebel

server to browse the metadata repository on the Siebel server. You also specify

connection information, such as the Connection URL, user name, and password

needed to access the server.

The result of running the wizard is a message set project that contains the Siebel

business objects and services along with the adapter.

Overview of WebSphere Adapter for PeopleSoft Enterprise:

With the adapter for PeopleSoft Enterprise you can create integrated processes that

exchange information with PeopleSoft Enterprise through a standard interface. This

interface shields the client application from having to understand the lower level

details regarding implementation or the application or data structures it uses.

 With the adapter, a client application can send a request, for example to a

PeopleSoft Enterprise database to query a record in an HR table, or it can receive

events from the server, such as notification that an employee record has been

updated.

WebSphere Adapter for PeopleSoft Enterprise complies with the Java Connector

Architecture (JCA), which standardizes the way application components,

application servers, and enterprise information systems, such as a PeopleSoft

Enterprise server, interact with each other.

The adapter component, which you generate with the Adapter Connection wizard

uses a standard interface and standard data objects. The adapter component takes

the standard data object sent by the client application and calls the PeopleSoft

function. It then returns a standard data object to the client application. The client

application does not have to deal directly with the PeopleSoft function; it is the

adapter component that calls the function and returns the results.

For example, the client application that needed the list of employees would send a

standard business object with the range of skill codes to the PeopleSoft adapter

component. The client application would receive, in return, the results (the list of

employees) in the form of a standard business object. The client application would

have no need to know how the function worked or how the data was structured.

The adapter component would perform all the interactions with the actual

PeopleSoft function.

Similarly, the client application might want to know about a change to the data on

the PeopleSoft Enterprise server (for example, a change to the skills set of a

particular employee). You can generate an adapter component that listens for such

events on the PeopleSoft Enterprise server and notifies client applications with the

update. In this case, the interaction begins at the PeopleSoft Enterprise server.

For more information, see “Technical overview.”

Technical overview:

The adapter supports the exchange of business data between the PeopleSoft

Enterprise server and WebSphere Message Broker. It does so by connecting to two

layers of PeopleTools application programming interface classes that reveal the

underlying business data for integration.

Developing message flows 43

Adapter for PeopleSoft Enterprise establishes bidirectional connectivity with the

PeopleSoft Enterprise server by connecting to two PeopleTools application

programming interfaces as follows:

1. The adapter accesses the primary API layer to create a session instance and to

connect to the application server through the Jolt port.

2. The adapter then accesses the PeopleSoft Component Interface API, which

reveals underlying business objects, logic, and functionality.

In PeopleSoft, a component is a set of pages grouped together for a business

purpose (such as an employee profile), and a component interface is an API that

provides synchronous access to a component from an external application. After

the adapter connects to the component interface, the following entities are exposed

to the adapter and available for integration:

v All business objects in the component interface definition

v PeopleCode methods associated with the underlying components

v Records, except searches and menu-specific processing options

For more information, see the following topics.

v “Outbound processing”

v “Inbound processing” on page 45

v “Business objects” on page 46

Outbound processing:

The Adapter for PeopleSoft Enterprise supports synchronous outbound request

processing. Synchronous outbound processing means that when the client

application sends a request in the form of a business object to the adapter, the

adapter processes the request and returns a business object representing the result

of the operation to the client application.

 When the adapter receives a WebSphere business object hierarchy, adapter

processes it as follows:

1. The adapter extracts metadata from the WebSphere business object hierarchy

that identifies the appropriate PeopleSoft component interface to access.

2. The adapter extracts the outbound operation to perform from the WebSphere

business object hierarchy.

3. Once it accesses the component interface, the adapter sets the keys from values

specified in the business objects. If key values are not generated, for example

with a create operation, the PeopleSoft application generates key fields.

4. After it retrieves the PeopleSoft objects, the adapter instantiates an existing

component interface to delete, retrieve, update, or create a component interface.

5. If there are updates (Create, Update), the adapter populates the component

interface with data from the WebSphere business object hierarchy. If there are

Deletes, the adapter populates the component interface only with

StatusColumnName and value information.

The adapter processes attributes in the order defined in the business object. For

example, if there is a complex attribute between two simple attributes, the adapter

processes the simple attribute at the first position, then the complex attribute

followed by the simple attribute. After the changes are made, the component

interface is saved to commit the data to the PeopleSoft database. This pattern of

processing is used for Create and Update operations only.

44 Message Flows

Supported outbound operations

WebSphere Adapter for PeopleSoft Enterprise supports the following outbound

operations:

 Table 8. Supported outbound operations

Operation Description

Create Creates the business object.

Delete Deletes the business object and its children. Because the

adapter supports only logical deletes, objects are marked

as deleted but not removed.

Exists Checks for the existence of incoming business objects.

Retrieve Retrieves the PeopleSoft component, and maps

component data onto the business object hierarchy.

RetrieveAll Retrieves multiple instances of the PeopleSoft

component, and maps component data onto the business

object hierarchy.

Update Updates the corresponding PeopleSoft component with

the incoming business object.

Inbound processing:

The WebSphere Adapter for PeopleSoft Enterprise supports inbound event

processing.

 Inbound event processing means that the adapter polls the PeopleSoft Enterprise

server at specified intervals for events. When the adapter detects an event, it

converts the event data into a business object and sends it to the client application.

In order to use inbound event processing, you must create a custom event project

in PeopleSoft, as described in “Creating a custom event project in PeopleTools” on

page 254.

For more information, see “Event store.”

Event store:

The event store is a table that holds events that represent data changes until the

polling adapter can process them. The adapter uses the event store to keep track of

event entities.

 To use inbound processing, you must use PeopleTools Application Designer to

create a custom project for event notification. The custom project uses two

PeopleCode functions that determine the way future events are processed, and the

custom project creates the event store the adapter needs for inbound processing.

Each time a business object is created, updated, or deleted, the PeopleCode

function used in the project and then added to the component interface inserts a

new record in the event store, with the appropriate object name, keys, and status

value.

With inbound processing, the adapter polls the event entities from the event store

at configured poll intervals. In each poll call, a configured number of events are

processed by the adapter. The order of event processing is based on the ascending

order of priority and the ascending order of the event time stamp. The events with

Developing message flows 45

the status, Ready for poll (0), are picked up for polling in each poll cycle. The

adapter uses the object name and object key to retrieve the corresponding business

object.

If you set the activation specification property AssuredOnceDelivery to true, an

XID (transaction ID) value is set for each event in the event store, and it is used to

ensure that an event is delivered only once to the target application. After an event

is obtained for processing, the XID value for that event is updated in the event

store. The event is then delivered to its corresponding export, and its status is

updated to show that event delivery has been completed. If the application is

stopped before the event can be delivered to the export or if delivery has failed,

the event might not be processed completely. In this case, the XID value represents

in-progress status, and the XID column ensures that the event is reprocessed and

sent to the export. Once the database connection is re-established or the adapter

starts again, the adapter checks for events in the event table that have a value in

the XID column of Ready for Poll (0). The adapter processes these events first, and

then polls the other events during the poll cycles.

The adapter uses special processing for events that have status code (99), which

indicates that they will occur in the future. During a poll cycle, when the adapter

retrieves events with a future status, the adapter compares the system time with

the time stamp on each event. If the event time is earlier than or equal to the

system time, the adapter processes the event and changes the event status to

Ready for Poll (0).

If you want to the adapter to process future status events in the present time, use

the function IBM_PUBLISH_EVENT instead of IBM_FUTURE_PUBLISH_EVENT. Doing so

means that the event is identified as Ready to Poll (0) instead of Future (99).

As events are retrieved and processed from the event store, the status of the event

changes to reflect the cycle, as shown in the table below.

 Table 9. Event status values

Status short name Description Event table value

Error processing event An error occurred during

event processing.

-1

Ready for poll The event has not yet been

picked up by the adapter.

The event is ready to be

picked up.

0

Success The event has been delivered

to the event manager.

1

Deleted The event has been

processed successfully and

should be removed from the

event store.

4

Future Events These events should be

processed at a future date.

99

Business objects:

To send data or obtain data from PeopleSoft Enterprise, the adapter uses business

objects. A business object is a structure that consists of data, the action to be

46 Message Flows

performed on the data, and additional instructions, if any, for processing the data.

The data can represent either a business entity, such as an invoice or an employee

record, or unstructured text.

 How business objects are created

You create business objects by using the Adapter Connection wizard. The wizard

connects to the application, discovers data structures in the application, and

generates business objects to represent them. It also generates other resources that

are needed by the adapter.

Business object structure

The adapter supports business objects that are hierarchically structured. The

top-level business object must have a one-to-one correspondence with the

PeopleSoft component interface, and collections that occur within the top-level

object are children of it. Information about the processed object is stored in the

application-specific information for the object and each of its attributes.

The following table describes the attributes that comprise a business object.

 Attribute property Description

Name Indicates the name of the Business Object attribute.

Type Indicates the type of the Business Object attribute. The

adapter uses character mapping between PeopleSoft

component property types and the generated business

object attribute types. PeopleSoft component property

types map to generated attribute types in the following

manner:

 CHAR maps to attribute type String

 NUMBER maps to attribute type BigDecimal

 LONG maps to attribute type Long

 SIGN maps to attribute type BigDecimal

 DATE maps to attribute type Date

 TIME maps to attribute type Time

 DTTM maps to attribute type DateTime

Key Child business objects have their own keys that have

the primary key application-specific information. They

also inherit keys from their parent business object.

Cardinality Single cardinality for simple attributes; multiple

cardinality for container attributes.

Message flow node palette

The palette contains all of the built-in nodes, which are organized into categories,

or drawers. A drawer is a container for a list of icons, such as the Favorites

drawer. You can drag the nodes that you use most often into the Favorites drawer

for easy access. If you create your own nodes, you can also add them to the

palette. You can drag a node from the palette onto the canvas, and create a

connection between two nodes.

If you right-click the palette, you can add a selected node to the canvas, or

customize the appearance and behavior of the palette. The following example

shows the palette in List view, using small icons.

Developing message flows 47

The Customize Palette dialog box allows you to reorder node categories, set the

drawer behavior for individual categories, and rename or hide nodes or categories.

You cannot move any category above the Favorites category. You can hide the

Favorites category, but you cannot delete or rename it.

The Palette Settings dialog box allows you to set the palette layout, determine the

behavior of palette drawers, and choose a particular font.

48 Message Flows

The following topics explain how to change the palette layout and settings:

v “Changing the palette layout” on page 228

v “Changing the palette settings” on page 229

v “Customizing the palette” on page 229

Message flows, ESQL, and mappings

A message flow represents the set of actions performed on a message when it is

received and processed by a broker. The content and behavior of a message flow is

defined by a set of files that you create when you complete your definition and

configuration of the message flow content and structure:

v The message flow definition file <message_flow_name>.msgflow. This is a

required file and is created automatically for you. It contains details about the

message flow characteristics and contents (for example, what nodes it includes,

its promoted properties, and so on).

v The ESQL resources file <message_flow_name>.esql. This file is required only if

your message flow includes one or more of the nodes that must be customized

using ESQL modules. You can create this file yourself, or you can cause it to be

created for you by requesting specific actions against a node.

You can customize the following built-in nodes by creating free-form ESQL

statements that use the built-in ESQL statements and functions, and your own

user-defined functions:

– Compute

– Database

– Filter
v The message mappings file <message_flow_name><_nodename>.msgmap. This

file is required only if your message flow contains one or more of the nodes that

must be customized using mappings. You can create this file yourself, or you

can cause it to be created for you by requesting specific actions against a node.

A different file is required for each node in the message flow that uses the

Message Mapping editor.

You can customize the following built-in nodes by specifying how input values

map to output values:

 Node Usage

“DataDelete

node” on page

866

Use this node to delete one or more rows from a database table without creating an output

message.

Developing message flows 49

Node Usage

“DataInsert

node” on page

869

Use this node to insert one or more rows in a database table without creating an output message.

“DataUpdate

node” on page

872

Use this node to update one or more rows in a database table without creating an output message.

“Extract node”

on page 884

Use this node to create a new output message that contains a subset of the contents of the input

message. Use the Extract node only if no database is involved in the map.

The Extract node is deprecated in WebSphere Message Broker Version 6.0. Although message flows

that contain an Extract node remain valid in WebSphere Message Broker Version 6.0, where

possible, redesign your message flows so that any Extract node is replaced by a Mapping node.

“Mapping

node” on page

978

Use this node to construct output messages and populate them with information that is new,

modified from the input message, or taken from a database. You can also use the Mapping node to

update, insert or delete rows in a database table.

“Warehouse

node” on page

1213

Use this node to store all or part of a message in a database table without creating an output

message.

You can use built-in ESQL functions and statements to define message

mappings, and you can use your own ESQL functions.

Configurable services

Configurable services are typically runtime properties. You can use them to define

properties that are related to external services on which the broker relies; for

example, an SMTP server or a JMS provider.

Instead of defining properties on the node or message flow, you can create

configurable services so that nodes and message flows can refer to them to find

properties at run time. If you use this method, you can change the values of

attributes for a configurable service on the broker, which then affects the behavior

of a node or message flow without the need for redeployment.

Unless it is explicitly stated by the function that is using the configurable service,

you need to stop and start the execution group for the change of property value to

take effect.

Use the following commands to work with configurable services:

v Use the mqsicreateconfigurableservice command to create configurable services.

v Use the mqsideleteconfigurableservice command to delete configurable services.

v Use the mqsichangeproperties command to set attributes after you have created

the configurable services.

v Use the mqsireportproperties command to report attributes.

For a full list of configurable services and their properties, see Configurable

services properties.

Message flow version and keywords

When you are developing a message flow, you can define the version of the

message flow as well as other key information that you want to be associated with

it. After the message flow has been deployed, you can view the properties of the

message flow in the workbench. These properties include the deployment and

50 Message Flows

|

|
|
|

|
|
|
|
|

|
|
|

|

|

|

|
|

|

|
|

modification dates and times (the default information that is displayed) as well as

any additional version or keyword information that you have set.

You can define information to give details of the message flow that has been

deployed; therefore, you can check that it is the message flow that you expect.

Version

You can set the version of the message flow in the Version property.

You can also define a default message flow version in the Default version tag of

the message flow preferences. All new message flows that are created after this

value has been set have this default applied to the Version property at the message

flow level.

Keywords

Keywords are extracted from the compiled message flow (the .cmf file) rather than

the message flow source (the .msgflow file). Not all of the source properties are

added to the compiled file. Therefore, add message flow keywords in only these

places:

v The label property of a Passthrough node

v ESQL comments or string literals

v The Long Description property of the message flow

Any keywords that you define must follow certain rules to ensure that the

information can be parsed. The following example shows some values that you

might want to define in the Long Description property:

$MQSI Author=John Smith MQSI$

$MQSI Subflow 1 Version=v1.3.2 MQSI$

The following table contains the information that the workbench shows.

 Message flow name

Deployment Time 28-Aug-2004 15:04

Modification Time 28-Aug-2004 14:27

Version v1.0

Author John Smith

Subflow 1 Version v1.3.2

In this display, the version information has also been defined using the Version

property of the object. If the version information has not been defined using the

property, it is omitted from this display.

If message flows contain subflows, you can embed keywords in each subflow.

Restrictions within keywords

Do not use the following characters within keywords because they cause

unpredictable behavior:

^$.|\<>?+*=&[]

Developing message flows 51

You can use these characters in the values that are associated with keywords; for

example:

v $MQSI RCSVER=$id$ MQSI$ is acceptable

v $MQSI $name=Fred MQSI$ is not acceptable

Message flow connections

A connection is an entity that connects an output terminal of one message flow

node to the input terminal of another. It represents the flow of control and data

between two message flow nodes.

The connections of the message flow, represented by black lines within the

message flow editor view, determine the path that a message takes through the

message flow. You can add bend points to the connection to alter the way in which

it is displayed.

See “Bend points” for a description of bend points. See “Message flow node

terminals” for a description of terminals.

Bend points

A bend point is a point that is introduced in a connection between two message

flow nodes at which the line that represents the connection changes direction.

Use bend points to change the visual path of a connection to display node

alignment and processing logic more clearly and effectively. Bend points have no

effect on the behavior of the message flow; they are visual modifications only.

A connection is initially made as a straight line between the two connected nodes

or brokers. Use bend points to move the representation of the connection, without

moving its start and end points.

Message flow node terminals

A terminal is the point at which one node in a message flow is connected to

another node.

Use terminals to control the route that a message takes, depending whether the

operation performed by a node on that message is successful. Terminals are wired

to other node terminals using message flow node connections to indicate the flow

of control.

Every built-in node has a number of terminals to which you can connect other

nodes. Input nodes (for example, MQInput) do not have in terminals; all other

nodes have at least one in terminal through which to receive messages to be

processed. Most built-in nodes have failure terminals that you can use to manage

the handling of errors in the message flow. Most nodes have output terminals

through which the message can flow to a subsequent node.

If you have any user-defined nodes, these might also have terminals that you can

connect to other built-in or user-defined node terminals.

Dynamic terminals are terminals that you can add to certain nodes after you have

added them to a message flow in the Message Flow editor. For example, you can

add dynamic output terminals to the Route and DatabaseRoute nodes, or you can

add dynamic input terminals to the Collector node. You can also delete and

52 Message Flows

rename dynamic terminals. If a node has five or more terminals, they are displayed

in a group. For example, the following example shows a node with more than four

output nodes.

Threading

A message flow is inherently thread-safe, and message flows can be run

concurrently on more than one thread.

An instance of a message flow processing node is shared and used by all the

threads that service the message flow in which the node is defined.

The number of threads servicing a flow is configured using the Additional

instances property on the node.

Execution model

The execution model is the system used to start message flows through a series of

nodes.

When an execution group is initialized, the appropriate loadable implementation

library (LIL) files and Plug-in Archive (PAR) files are made available to the

runtime environment. The execution group runtime process starts, and creates a

dedicated configuration thread. In the message flow execution environment, the

message flow is thread-safe. You can run message flows concurrently on many

operating system threads, without having to consider serialization issues. Consider

the following points:

v An input message sent to a message flow is processed only by the thread that

received it.

v The memory requirements of an execution group are not unduly affected by

running message flows on more operating system threads.

v The message flow execution environment is conceptually similar to procedural

programming. Nodes that you insert into a message flow are similar to

subroutines called using a function call interface. However, rather than a

call-return interface, in which parameters are passed in the form of input

message data, the execution model is referred to as a propagation-and-return

model.

v A message flow is inherently thread-safe, and message flows can be run

concurrently on more than one thread.

The message tree

A message tree is a structure that is created, either by one or more parsers when

an input message bit stream is received by a message flow, or by the action of a

message flow node.

A message is used to describe:

v A set of business data that is exchanged by applications

v A set of elements that are arranged in a predefined structure

v A structured sequence of bytes

WebSphere Message Broker routes and manipulates messages after converting

them into a logical tree. The process of conversion, called parsing, makes obvious

Developing message flows 53

the content and structure of a message, and simplifies later operations. After the

message has been processed, the parser converts it back into a bit stream.

WebSphere Message Broker supplies a range of parsers to handle the many

different messaging standards in use. See Parsers.

After a message has been parsed, it can be processed in a message flow.

The logical tree has contents that are identical to the message, but the logical tree is

easier to manipulate within the message flow. The message flow nodes provide an

interface to query, update, or create the content of the tree.

How the message tree is populated

The message tree is initially populated by the input node of the message flow.

When the input node receives the input message, it creates and completes the

Properties tree (the first subtree of the message tree). See “Message tree structure”

on page 61.

The node then examines the contents of the input message bit stream and creates

the remainder of the message tree to reflect those contents. This process depends to

some extent on the input node itself, which is governed by the transport across

which the message is received:

WebSphere MQ Enterprise Transport and WebSphere MQ Telemetry Transport

protocols

If your application communicates with the broker across these protocols,

and your message flow includes the corresponding MQInput or

SCADAInput node, all messages that are received must start with a

Message Queue Message Descriptor (MQMD) header. If a valid MQMD is

not present at the start of the message, the message is rejected, and no

further processing takes place.

 The input node first invokes the MQMD parser and creates the subtree for

that header.

A message can have zero or more additional headers following the

MQMD. These headers are chained together, with the Format field of one

header defining the format of the following header, up to and including

the last header, which defines the format of the message body. If an

MQRFH and an MQRFH2 header exist in the chain, the name and value

data in either of these two headers can also contain information about the

format of the following data. If the value that is specified in Format is a

recognized parser, this value always takes precedence over the name and

value data.

The broker invokes the appropriate parser to interpret each header,

following the chain in the message. Each header is parsed independently.

The fields within a single header are parsed in an order that is governed

by the parser. You cannot predict the order that is chosen, but the order in

which fields are parsed does not affect the order in which the fields are

displayed within the header.

The broker ensures that the integrity of the headers that precede a message

body is maintained. The format of each part of the message is defined,

either by the Format field in the immediately preceding header (if the

following part is a recognized WebSphere MQ format), or by the values

that are set in the MQRFH or MQRFH2 header:

54 Message Flows

v The format of the first header is known because it must be MQMD.

v The format of any subsequent header in the message is set in the Format

field in the preceding header.

v The format of the body corresponds to the message domain and the

parser that must be invoked for the message body (for example,

XMLNSC). This information is set either in the MQRFH or MQRFH2

header, or in the Message Domain property of the input node that

receives the message.

This process is repeated as many times as required by the number of

headers that precede the message body. You do not need to populate these

fields yourself; the broker handles this sequence for you.

The broker completes this process to ensure that Format fields in headers

correctly identify each part of the message. If the broker does not complete

this process, WebSphere MQ might be unable to deliver the message. The

message body parser is not a recognized WebSphere MQ header format,

therefore the broker replaces this value in the last header’s Format field

with the value MQFMT_NONE. The original value in that field is stored in

the Domain field within the MQRFH or MQRFH2 header to retain the

information about the contents of the message body.

For example, if the MQRFH2 header immediately precedes the message

body, and its Format field is set to XMLNSC, which indicates that the

message body must be parsed by the XMLNSC parser, the MQRFH2

Domain field is set to XMLNSC, and its Format field is reset to

MQFMT_NONE.

These actions might result in information that is stored explicitly by an

ESQL or Java expression being replaced by the broker.

When all the headers have been parsed, and the corresponding sub-trees

have been created within the message tree, the input node associates the

specified parser with the message body. Specify the parser that is to be

associated with the message body content, either in a header in the

message (for example, the <mcd> folder within the MQRFH2 header), or

in the input node properties (if the message does not include headers). The

input node makes the association as described in the following list:

v If the message has an MQRFH or MQRFH2 header, the domain that is

identified in the header (either in Format or the name and value data)

determines the parser that is associated with this message.

The SCADAInput node creates WebSphere MQ format messages with

MQRFH2 headers from the input messages that the listener receives on

the TCP/IP port.

v If the message does not have an MQRFH or MQRFH2 header, or if the

header does not identify the domain, the Message Domain property of the

input node indicates the domain of the message, and the parser that is

to be used. You can specify a user-defined domain and parser.

v If the message domain cannot be identified by header values or by the

Message Domain property of the input node, the message is handled as a

binary object (BLOB). The BLOB parser is associated with the message.

A BLOB can be interpreted as a string of hexadecimal characters, and

can be modified or examined in the message flow by specifying the

location of the subset of the string.

Developing message flows 55

By default, the message body is not parsed straight away, for performance

reasons. The message body might not need to be parsed during the

message flow. It is parsed only when a reference is made to its contents.

For example, the message body is parsed when you refer to a field in the

message body, for example: Root.XMLNSC.MyDoc.MyField. Depending on the

paths that are taken in the message flow, this parse can take place at

different points. This ″parse when first needed″ approach is also referred to

as ’partial parsing’ or ’on demand parsing’, and in typical processing does

not affect the logic of a message flow. However, there are some

implications for error handling scenarios; see “Handling errors in message

flows” on page 203.

If you want a message flow to accept messages from more than one

message domain, include an MQRFH2 header in your message from which

the input nodes extract the message domain and related message definition

information (message set, message type, and message format).

If you set up the message headers or the input node properties to identify

a user-defined domain and parser, the way in which it interprets the

message and constructs the logical tree might differ from that described

here.

WebSphere MQ Multicast Transport, WebSphere MQ Real-time Transport,

WebSphere Broker File Transport, WebSphere Broker Adapters Transport,

WebSphere MQ Web Services Transport, and WebSphere Broker JMS Transport

protocols

If your application communicates with the broker across these supported

protocols, and your message flow includes the corresponding input nodes,

messages that are received do not have to include a particular header. If

recognized headers are included, the input node invokes the appropriate

parsers to interpret the headers and to build the relevant parts of the

message tree, as described for the other supported protocols.

 If there are no headers, or these headers do not specify the parser for the

message body, set the input node properties to define the message body

parser. If you do not set the node properties in this way, the message is

treated as a BLOB. You can specify a user-defined parser.

The specified parser is associated with the message body by the input

node (in the same way as it is for the WebSphere MQ Enterprise Transport

and WebSphere MQ Telemetry Transport protocols), and by default the

message body is not parsed immediately.

If you set up the message headers or the input node properties to identify

a user-defined domain and parser, the way in which it interprets the

message and constructs the logical tree might differ from that described

here.

All other protocols

If you want your message flow to accept messages from a transport

protocol for which WebSphere Message Broker does not provide built-in

support, or you want it to provide some specific processing on receipt of a

message, use either the Java or the C language programming interface to

create a new user-defined input node.

 This interface does not automatically generate a Properties subtree for a

message (this subtree is discussed in “Message tree structure” on page 61).

A message does not need to have a Properties subtree, but you might find

it useful to create one to provide a consistent message tree structure,

56 Message Flows

regardless of input node. If you are using a user-defined input node, you

must create a Properties subtree within the message tree yourself.

To process messages that do not conform to any of the defined message

domains, use the C language programming interface to create a new

user-defined parser.

Refer to the node interface to understand how it uses parsers, and whether

you can configure it to modify its behavior. If the node uses a user-defined

parser, the tree structure that is created for the message might differ

slightly from that created for built-in parsers. A user-defined input node

can parse an input message completely, or it can participate in partial

parsing in which the message body is parsed only when it is required.

You can also create your own output and message processing nodes in C

or Java.

 Properties versus MQMD folder behavior for various transports

Differences exist in the way the Properties folder and the MQMD folder are treated

with respect to which folder takes precedence for the same fields. This treatment is

characterized by the transport type (for example, HTTP or WebSphere MQ) that

you use.

When the message flow is sourced by an MQInput node then you have an MQMD

to parse. In this case the Properties folder is sourced by the MQMD values and so

the MQMD folder takes precedence over the Properties folder in terms of value

propagation between the folders. This scenario means that you can perform ESQL,

for example, SET OutputRoot.MQMD.CorrelId and this command updates the

Properties folder value.

When the message flow is sourced from a input node that is not the MQInput

node (such as the HTTPInput node or a user-defined input node), then no MQMD

is parsed. This scenario means the Properties folder is not sourced from an input

MQMD, it is created and populated with transport values that come from other

transport specific headers. When you create an MQMD folder in a message flow

that was not sourced from the WebSphere MQ transport, the MQMD header does

not take precedence over the Properties folder because the WebSphere MQ

transport did not populate the Properties folder. Therefore, in this case, the

Properties folder overwrites any values in MQMD.

The Properties folder is constructed and represents a message received on the

transport. In this scenario two entirely different transports are being used which

have different meanings and, therefore, different requirements of the Properties

folder. When sourced from an HTTPInput node, the HTTP headers have control

over the Properties folder for like fields. When sourced from an MQInput node the

MQMD has control over the Properties folder for like fields.

Therefore, it follows that when you add an MQMD folder to a tree that was

created by the HTTP Transport then this MQMD folder does not have control over

the Properties folder, and the value propagation direction is not MQMD to

Properties, it is Properties to MQMD. The correct approach here is for you to set

the Properties folders replyIdentifier field and to use this to populate the MQMD:

 SET OutputRoot.Properties.ReplyIdentifier = X’ ’;

The behavior is not unique to just the CorrelId to ReplyIdentifier fields. It applies

for all like fields between the MQMD and Properties folder:

Developing message flows 57

v CorrelId

v Encoding

v CodedCharSetId

v Persistence

v Expiry

v Priority

In summary:

1. When your message flow is sourced by an MQInput node then the MQMD

takes precedence over the Properties folder in terms of value propagation

between the folders.

2. When your message flow is sourced from an input node that is not the

MQInput node (such as the HTTPInput node or a user-defined input node), the

MQMD header does not take precedence over Properties folder .

3. When a MQMD folder is added in a tree that was created by the HTTP

Transport then this MQMD does not have control over the Properties folder

and the value propagation direction is not MQMD to Properties; it is Properties

to MQMD.

Example

SET OutputRoot.Properties = InputRoot.Properties;

SET OutputRoot.MQMD.Version = 2;

SET OutputRoot.MQMD.CorrelId = X’4d454e53414a453320202020202020202020202020202020’;

SET OutputRoot.MQMD.Encoding = 785;

SET OutputRoot.MQMD.CodedCharSetId = 500;

SET OutputRoot.MQMD.Persistence = 1;

SET OutputRoot.MQMD.Expiry = 10000;

SET OutputRoot.MQMD.Priority = 9;

SET OutputRoot.BLOB.BLOB = X’01’;

When sourced from an HTTPInput node none of these changes will take effect and

the MQMD output from the Compute node is:

(0x01000000):MQMD = (

 (0x03000000):Version = 2

 (0x03000000):CorrelId = X’00’

 (0x03000000):Encoding = 546

 (0x03000000):CodedCharSetId = 1208

 (0x03000000):Persistence = FALSE

 (0x03000000):Expiry = -1

 (0x03000000):Priority = 0

Message tree contents after an exception: The contents of the message tree are

updated if an exception is raised.

If no exception occurs while processing the message, the tree structure and content

received by an individual node is determined by the action of previous nodes in

the flow.

If an exception occurs in the message flow, the content of the four trees depends

on the following factors:

v If the exception is returned to the input node, and the input node catch terminal

is not connected, the trees are discarded. If the message is within a transaction, it

is returned to the input queue for further processing. When the message is

processed again, a new tree structure is created. If the message is not within a

transaction, it is discarded.

58 Message Flows

v If the exception is returned to the input node and the catch terminal is

connected, the Message and LocalEnvironment trees that were created originally

by the input node, and propagated through the out terminal, are restored, and

any updates that you made to their content in the nodes that followed the input

node are lost. The Environment tree is not restored, and its contents are

preserved. If the nodes following the input node include a Compute node that

creates a new LocalEnvironment or Message tree, those trees are lost. The

ExceptionList tree reflects the one or more exceptions that have been recorded.

v If the exception is caught within the message flow by a TryCatch node, the

Message and LocalEnvironment trees that were previously propagated through

the try terminal of the TryCatch node are restored and propagated through the

catch terminal. Any updates that you made to their content in the nodes that

followed the TryCatch node are lost. The Environment tree is not restored, and

its contents are preserved. If the nodes following the TryCatch node include a

Compute node that creates a new LocalEnvironment or Message tree, those trees

are lost. The ExceptionList tree reflects the one or more exceptions that have

been recorded.

Exception handling paths in a message flow: Exception handling paths start at a

failure terminal (most message processing nodes have these), the catch terminal of

an input node, a TryCatch node, or an AggregateReply node, but are no different

in principle from a normal message flow path. Such a flow consists of a sequence

of nodes connected together by the designer of the message flow. The exception

handling paths differ in the kind of processing that they do to record or react to

the exception. For example, they might examine the exception list to determine the

nature of the error, and take appropriate action or log data from the message or

exception.

The LocalEnvironment and message tree that are propagated to the exception

handling message flow path are those at the start of the exception path, not those

at the point when the exception is thrown. The figure below illustrates this point:

v A message (M1) and LocalEnvironment (L1) are being processed by a message

flow. They are passed through the TryCatch node to Compute1.

v Compute1 updates the message and LocalEnvironment and propagates a new

message (M2) and LocalEnvironment (L2) to the next node, Compute2.

v An exception is thrown in Compute2. If the failure terminal of Compute2 is not

connected (point B), the exception is propagated back to the TryCatch node, but

the message and LocalEnvironment are not. The exception handling path

starting at point A has access to the first message and LocalEnvironment, M1

and L1. The Environment tree is also available and retains the content it had

when the exception occurred.

v If the failure terminal of Compute2 is connected (point B), the message and

LocalEnvironment M2 and L2 are propagated to the node connected to that

failure terminal. The Environment tree is also available and retains the content it

had when the exception occurred.

Developing message flows 59

Logical tree structure

The logical tree structure is the internal (broker) representation of a message. It is

also known as the message assembly.

When a message arrives at a broker, it is received by an input node that you have

configured in a message flow. Before the message can be processed by the message

flow, the message must be interpreted by one or more parsers that create a logical

tree representation from the bit stream of the message data.

The tree format contains identical content to the bit stream from which it is

created, but it is easier to manipulate within the message flow. Many of the built-in

message flow nodes provide an interface for you to query and update message

content within the tree, and perform other actions against messages and databases

to help you to provide the required function in each node.

Several interfaces are provided:

v ESQL, a programming language that you can code in the Compute, Database,

and Filter nodes.

v Java, a programming language that you can code in the JavaCompute node.

v Mappings, a graphical method of achieving transformation from input to output

structures, available in the DataDelete, DataInsert, DataUpdate, Extract,

Mapping, and Warehouse nodes.

v XSL, a language for transforming XML that you can use in the XSLT node.

The tree structure that is created by the parsers is largely independent of any

message format (for example, XML). The exception to this is the subtree that is

created as part of the message tree to represent the message body. This subtree is

message dependent, and its content is not further described here.

The input node creates this message assembly, which consists of four trees:

v “Message tree structure” on page 61

v “Environment tree structure” on page 63

v “Local environment tree structure” on page 64

v “Exception list tree structure” on page 67

The first of these trees is populated with the contents of the input message bit

stream, as described in “How the message tree is populated” on page 54; the

remaining three trees are initially empty.

Each of the four trees created has a root element (with a name that is specific to

each tree). Each tree is made up of a number of discrete pieces of information

called elements. The root element has no parent and no siblings (siblings are

elements that share a single parent). The root is parent to a number of child

elements. Each child must have a parent, can have zero or more siblings, and can

have zero or more children.

The four trees are created for both built-in and user-defined input nodes and

parsers.

The input node passes the message assembly that it has created to subsequent

message processing nodes in the message flow:

v All message processing nodes can read the four trees.

60 Message Flows

v You can code ESQL in the Database and Filter nodes, or use mappings in the

nodes that support that interface to modify the Environment and

LocalEnvironment trees only.

v The Compute node differs from other nodes in that it has both an input message

assembly and at least one output message assembly. Configure the Compute

node to determine which trees are included in the output message assembly; the

Environment tree is an exception in that it is always retained from input

message assembly to output message assembly.

To determine which of the other trees are included, you must specify a value for

the Compute mode property of the node (displayed on the Advanced tab). The

default action is for only the message to be created. You can specify any

combination of message, LocalEnvironment, and ExceptionList trees to be

created in the output message assembly.

If you want the output message assembly to contain a complete copy of the

input message tree, you can code a single ESQL SET statement to make the copy.

If you want the output message to contain a subset of the input message tree,

code ESQL to copy those parts that you want. In both cases, your choice of

Compute mode must include Message.

If you want the output message assembly to contain all or part of the input

LocalEnvironment or ExceptionList tree contents, code the appropriate ESQL to

copy information you want to retain in that tree. Your choice of Compute mode

must include LocalEnvironment, or Exception, or both.

You can also code ESQL to populate the output message, Environment,

LocalEnvironment, or ExceptionList tree with information that is not copied

from the input tree. For example, you can retrieve data from a database, or

calculate content from the input message data.

v A similar capability exists in the JavaCompute node. See “Writing Java” on page

454 for more information.

Message tree structure:

The message tree is a part of the logical message tree in which the broker stores its

internal representation of the message body.

 The root of a message tree is called Root. The message tree is always present, and

is passed from node to node within a single instance of a message flow.

The message tree includes all the headers that are present in the message, in

addition to the message body. The tree also includes the Properties subtree

(described in “Parsers” on page 74), if that is created by the parser. If a supplied

parser has created the message tree, the element that represents the Properties

subtree is followed by zero or more headers.

If the message has been received across the WebSphere MQ Enterprise Transport,

WebSphere MQ Mobile Transport, or WebSphere MQ Telemetry Transport, the first

header (the second element) must be the MQMD. Any additional headers that are

included in the message appear in the tree in the same order as in the message.

The last element beneath the root of the message tree is always the message body.

If a user-defined parser has created the message tree, the Properties tree, if present,

is followed by the message body.

The message tree structure is shown below. If the input message is not a

WebSphere MQ message, the headers that are shown might not be present. If the

parser that created this tree is a user-defined parser, the Properties tree might not

Developing message flows 61

be present.

Root

BodyOther headersMQMDProperties

Element1/Format1

Element3/Field3Element2/Field2

The Body tree is a structure of child elements (described below) that represents the

message content (data), and reflects the logical structure of that content. The Body

tree is created by a body parser (either a supplied parser or a user-defined parser),

as described in “Parsers” on page 74.

Each element within the parsed tree is one of three types:

Name element

A name element has a string associated with it, which is the name of the

element. An example of a name element is XMLElement, as described in

“XML element” on page 1438. A name element also has a second string

associated with it, which is the namespace of the element; this string might

be empty.

Value element

A value element has a value associated with it. An example of a value

element is XMLContent, as described in “XML content” on page 1438.

Name-value element

A name-value element is an optimization of the case where a name

element contains only a value element and nothing else. The element

contains both a name and a value. An example of a name-value element is

XMLAttribute, as described in “XML attribute” on page 1436.

 For information about how the message tree is populated, see “How the message

tree is populated” on page 54.

Properties folder: The Properties folder is the first element of the message tree and

holds information about the characteristics of the message.

The root of the Properties folder is called Properties. It is the first element under

Root. All message trees that are generated by the built-in parsers include a

Properties folder for the message. If you create your own user-defined parser, you

can choose whether the parser creates a Properties folder. However, for consistency,

you should include this action in the user-defined parser.

The Properties folder contains a set of standard properties that you can manipulate

in the message flow nodes in the same way as any other property. Some of these

fields map to fields in the supported WebSphere MQ headers, if present, and are

passed to the appropriate parser when a message is delivered from one node to

another.

62 Message Flows

For example, the MQRFH2 header contains information about the message set,

message type, and message format. These values are stored in the Properties folder

as MessageSet, MessageType, and MessageFormat. To access these values using

ESQL or Java within the message processing nodes, refer to these values in the

Properties folder; do not refer directly to the fields in the headers from which they

are derived.

The Properties parser ensures that the values in the header fields match the values

in the Properties folder on input to, and output from, every node. For any field, if

only one header is changed (the Properties header or a specific message header),

that value is used. If both the Properties header and the specific message header

are changed, the value from the Properties folder is used.

When the message flow processing is complete, the Properties folder is discarded.

Environment tree structure:

The environment tree is a part of the logical message tree in which you can store

information while the message passes through the message flow.

 The root of the environment tree is called Environment. This tree is always present

in the input message; an empty environment tree is created when a message is

received and parsed by the input node. You can use this tree as you choose, and

create both its content and structure.

WebSphere Message Broker refers to (but never creates) a field in this tree in only

one situation. If you have requested data collection for message flow accounting

and statistics, and have indicated that accounting origin basic support is required,

the broker checks for the existence of the field

Environment.Broker.AccountingOrigin. If the field exists, the broker uses its value

to set the accounting origin for the current data record. For further information

about the use of this field, see “Setting message flow accounting and statistics

accounting origin” on page 566. (Contrast this with the “Local environment tree

structure” on page 64, which the broker uses in several situations.)

The environment tree differs from the local environment tree in that a single

instance of it is maintained throughout the message flow. If you include a

Compute node, a Mapping node, or a JavaCompute node in your message flow,

you do not have to specify whether you want the environment tree to be included

in the output message. The environment tree is included automatically, and the

entire contents of the input environment tree are retained in the output

environment tree, subject to any modifications that you make in the node. Any

changes that you make are available to subsequent nodes in the message flow, and

to previous nodes if the message flows back (for example, to a FlowOrder or

TryCatch node).

If you want to create your own information, create it in the environment tree

within a subtree called Variables.

The following figure shown an example of an environment tree:

Developing message flows 63

bread countrywine

Variables

Environment

colors

currencyname

cheese

You could use the following ESQL statements to create the content shown above.

 When the message flow processing is complete, the Environment tree is discarded.

Local environment tree structure:

The local environment tree is a part of the logical message tree in which you can

store information while the message flow processes the message.

 The root of the local environment tree is called LocalEnvironment. This tree is

always present in the input message: an empty local environment tree is created

when a message is received by the input node.

Use the local environment tree to store variables that can be referred to and

updated by message processing nodes that occur later in the message flow. You

can also use the local environment tree to define destinations (that are internal and

external to the message flow) to which a message is sent. WebSphere Message

Broker also stores information in LocalEnvironment in some circumstances, and

references it to access values that you might have set for destinations. (Contrast

this to the Environment tree structure, which the broker refers to in one situation

only, see “Environment tree structure” on page 63.)

The following figure shows an example of the local environment tree structure. The

children of Destination are protocol-dependent.

LocalEnvironment

Variables Wildcard AdapterDestination File SOAP
Service
Registry

Written
Destination

In the tree structure shown, LocalEnvironment has several children:

Variables

This subtree is optional. If you create local environment variables, store

SET Environment.Variables =

 ROW(’granary’ AS bread, ’riesling’ AS wine, ’stilton’ AS cheese);

SET Environment.Variables.Colors[] =

 LIST{’yellow’, ’green’, ’blue’, ’red’, ’black’};

SET Environment.Variables.Country[] = LIST{ROW(’UK’ AS name, ’pound’ AS currency),

 ROW(’USA’ AS name, ’dollar’ AS currency)};

64 Message Flows

them in a subtree called Variables. It provides a work area that you can use

to pass information between nodes. This subtree is never inspected or

modified by any supplied node.

 Variables in the local environment can be changed by any subsequent

message processing node, and persist until the message flow goes out of

scope and the node that created it has completed its work and returns

control to the previous node

The variables in this subtree are persistent only within a single instance of

a message flow. If you have multiple instances of a message passing

through the message flow, and need to pass information between them,

you must use an external database.

Destination

Destination

HTTP RouterList

Defaults

File SOAP MQ JMSDestinationList

DestinationDataDestinationDataDestinationData

Email

This subtree consists of a number of children that indicate the transport

types to which the message is directed (the Transport identifiers), or the

target Label nodes that are used by a RouteToLabel node.

v Transport information

Transport information is used by some input and output nodes,

including HTTP, MQ, JMS, SOAP, File, and e-mail.

HTTP

If the message flow starts with an HTTPInput node, a single name

element HTTP is added to Destination. The element

HTTP.RequestIdentifier is created and initialized so that it can be used

by an HTTPReply node. You can also create other fields in the HTTP

structure for use by the HTTPRequest node; for example, the URL of the

service to which the request is sent. The topic for each node contains

more information about the contents of Destination for the WebSphere

MQ Web Services Transport protocol.

MQ

If the message flow includes an MQOutput node, each element is a

name element, MQ (A deprecated alternative exists, called

MQDestinationList. Use MQ for all new message flows). If more than one

element exists, each is processed sequentially by the node. See the

example in “Populating Destination in the LocalEnvironment tree” on

page 311.

If you have included a user-defined output node in the message flow,

the contents of Destination (if supported) are defined by that node.

You can configure output nodes to examine the list of destinations and

send the message to those destinations, by setting the property

Destination Mode to Destination List. If you do so, you must create this

Developing message flows 65

subtree and its contents to define those destinations, giving it the name

Destination. If you do not do so, the output node cannot deliver the

messages.

If you prefer, you can configure the output node to send messages to a

single fixed destination, by setting the property Destination Mode to

Queue Name or Reply To Queue. If you select either of these fixed

options, the destination list has no effect on broker operations and you

do not have to create this subtree.

You can construct the MQ element to contain a single optional Defaults

element. The Defaults element, if created, must be the first child and

must contain a set of name-value elements that give default values for

the message destination and its PUT options for that parent.

You can also create a number of elements called DestinationData within

MQ. Each of these can be set up with a set of name-value elements that

defines a message destination and its PUT options.

The set of elements that define a destination is described in “Data types

for elements in the DestinationData subtree” on page 1401.

The content of each instance of DestinationData is the same as the

content of Defaults for each protocol, and can be used to override the

default values in Defaults. You can set up Defaults to contain values that

are common to all destinations, and set only the unique values in each

DestinationData subtree. If you do not set a value either in

DestinationData or Defaults, the value that you have set for the

corresponding node property is used. Similarly, if you specify a field

name or value with the wrong spelling or case, it is ignored, and the

value that you have set for the corresponding node property is used.

The information that you insert into DestinationData depends on the

characteristic of the corresponding node property: this information is

described in “Accessing the LocalEnvironment tree” on page 308.

v Routing information

The child of Destination is RouterList. It has a single child element called

DestinationData, which has a single entry called labelName. If you are

using a dynamic routing scenario involving the RouteToLabel and Label

nodes, you must set up the Destination subtree with a RouterList that

contains the reference labels.

WrittenDestination

Written
Destination

HTTP

HTTP

Request

MQ File Email SOAP

Reply TransportDestinationDataDestinationData

JMS

This subtree contains the addresses to which the message has been written.

Its name is fixed and it is created by the message flow when a message is

propagated through the Out terminal of a request, output, or reply node.

66 Message Flows

|
|

|
|
|
|

The subtree includes transport-specific information (for example, if the

output message has been put to a WebSphere MQ queue, it includes the

queue manager and queue names).

 You can use one of the following methods to obtain information about the

details of a message after it has been sent by the nodes:

v Connect a Compute node to the Out terminal.

v Configure a user exit to process an output message callback event, as

described in “Exploiting user exits” on page 198.

The topic for each node that supports WrittenDestination information

contains details about the data that it contains.

File This subtree contains information that is stored by the FileInput node.

 This information describes the file, and also contains data about the current

record.

More details about the information that is stored in this subtree are in

“Using LocalEnvironment variables with file nodes” on page 721.

SOAP This subtree contains information that is stored by SOAPInput,

SOAPAsyncResponse, or SOAPRequest nodes.

 More details about the information that is stored in this subtree are in

“WS-Addressing information in the LocalEnvironment” on page 642.

Service Registry

This subtree contains information for queries by the EndpointLookup and

RegistryLookup nodes.

 More details about the information that is stored in this subtree are in

“Dynamically defining the search criteria” on page 677, “EndpointLookup

node output” on page 678, and “RegistryLookup node output” on page

680.

Wildcard

This subtree contains information about the wildcard characters that are

stored by the FileInput node.

 On the FileInput node you can specify a file name pattern that contains

wildcard characters.

More details about the information that is stored in this subtree are in

“Using LocalEnvironment variables with file nodes” on page 721.

 When the message flow processing is complete, the local environment tree is

discarded.

The following samples demonstrate how to use LocalEnvironment to dynamically

route messages based on the destination list:

v Airline Reservations sample

v Message Routing sample

The following sample uses the local environment tree to store information that is

later added to the output message that is created by the message flow:

v User-defined Extension sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Exception list tree structure:

Developing message flows 67

|
|
|

|
|
|
|
|

|
|

||

|
|

|
|

||
|

|
|

|
|
|

|
|
|
|

|
|
|

|
|

|
|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.routing.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.ude.doc/doc/overview.htm

The exception list tree is a part of the logical message tree in which the message

flow writes information about exceptions that occur when a message is processed.

 The root of the exception list tree is called ExceptionList, and the tree consists of a

set of zero or more exception descriptions. The exception list tree is populated by

the message flow if an exception occurs. If no exception conditions occur during

message flow processing, the exception list that is associated with that message

consists of a root element only. This list is, in effect, an empty list of exceptions.

The exception list tree can be accessed by other nodes within the message flow

that receive the message after the exception has occurred. You can modify the

contents of the exception list tree only in a node that provides an interface to

modify the outbound message tree; for example, the Compute node.

If an exception condition occurs, message processing is suspended and an

exception is thrown. Control is passed back to a higher level; that is, an enclosing

catch block. An exception list is built to describe the failure condition, and the

whole message, together with the local environment tree, and the newly-populated

exception list, is propagated through an exception-handling message flow path.

The child of ExceptionList is always RecoverableException. Typically, only one

child of the root is created, although more than one might be generated in some

circumstances. The child of ExceptionList contains a number of children, the last of

which provides further information specific to the type of exception. The following

list includes some of the exception types that you might see:

v FatalException

v RecoverableException

v ConfigurationException

v SecurityException

v ParserException

v ConversionException

v DatabaseException

v UserException

v CastException

v MessageException

v SqlException

v SocketException

v SocketTimeoutException

v UnknownException

The following figure shows the structure of the exception list tree for a recoverable

exception:

68 Message Flows

The exception description structure can be both repeated and nested to produce an

exception list tree. In this tree:

v The depth (that is, the number of parent-child steps from the root) represents

increasingly detailed information for the same exception.

v The width of the tree represents the number of separate exception conditions

that occurred before processing was abandoned. This number is usually one, and

results in an exception list tree that consists of a number of exception

descriptions that are connected as children of each other.

v At the numbered points in the tree:

1. This child can be one of RecoverableException, ParserException,

DatabaseException, UserException, ConversionException, or

MessageException. All of these elements have the children shown; if present,

the last child is the same element as its parent.

2. This element might be repeated.

3. If present, this child contains the same children as its parent.

The children in the tree take the form of a number of name-value elements that

give details of the exception, and zero or more name elements whose name is

Insert. The NLS (National Language Support) message number identified in a

name-value element identifies a WebSphere Message Broker error message. The

Insert values are used to replace the variables within this message and provide

further detail about the cause of the exception.

The name-value elements within the exception list shown in the figure above are

described in the following table.

 Name Type Description

File1 String C++ source file name

Line1 Integer C++ source file line number

Function1 String C++ source function name

Type2 String Source object type

Name2 String Source object name

Label2 String Source object label

Recoverable
Exception (3)

ExceptionList

RecoverableException

Recoverable
Exception (1)

NumberSeverityCatalog TextLabelNameTypeFunctionLineFile

Line

Type Text

Insert
(2)

NumberSeverityCatalog TextLabelNameTypeFunctionFile

Developing message flows 69

Name Type Description

Text1 String Additional text

Catalog3 String NLS message catalog name4

Severity3 Integer

 1 = information

2 = warning

3 = error

Number3 Integer NLS message number4

Insert3 Type Integer The data type of the value:

 0 = Unknown

1 = Boolean

2 = Integer

3 = Float

4 = Decimal

5 = Character

6 = Time

7 = GMT Time

8 = Date

9 = Timestamp

10 = GMT Timestamp

11 = Interval

12 = BLOB

13 = Bit Array

14 = Pointer

Text String The data value

Notes:

1. Do not use the File, Line, Function, and Text elements for exception

handling decision making. These elements ensure that information can

be written to a log for use by IBM Service personnel, and are subject to

change in both content and order.

2. The Type, Name, and Label elements define the object (usually a

message flow node) that was processing the message when the

exception condition occurred.

3. The Catalog, Severity, and Number elements define an NLS message:

the Insert elements that contain the two name-value elements shown

define the inserts into that NLS message.

4. NLS message catalog name and NLS message number refer to a

translatable message catalog and message number.

When the message flow processing is complete, the exception list tree is discarded.

The following sample uses the exception list in the XML_Reservation message flow

to pass error information to the Throw node, which generates an error message

that includes the information from ExceptionList:

v Airline Reservations sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

70 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm

Correlation names

A correlation name is a field reference that identifies a well-defined starting point

in the logical message tree and is used in field references to describe a standard

part of the tree format.

When you access data in any of the four trees (message, environment, local

environment, or exception list), the correlation names that you can use depend on

the node for which you create ESQL or mappings, and whether the node creates an

output message. For example, a Trace node does not alter the content of the

message as it passes through the node, but a Compute node can construct a new

output message.

You can introduce new correlation names with SELECT expressions, quantified

predicates, and FOR statements. You can create non-correlation names in a node by

using reference variables.

Correlation names in nodes that do not create an output message: Most message

flow nodes do not create an output message; all ESQL expressions that you write

in ESQL modules or in mappings within these nodes refer to just the input

message. Use the following correlation names in the ESQL modules that you write

for Database and Filter nodes:

Root The root of the message passing through the node.

Body The last child of the root of the message; that is, the body of the message.

This name is an alias for Root.*[<].

 For a description of how to use the asterisk (*) in field references, see

“Using anonymous field references” on page 290.

Properties

The standard properties of the input message.

Environment

The structure that contains the current global environment variables that

are available to the node. Environment can be read and updated from any

node for which you can create ESQL code or mappings.

LocalEnvironment

The structure that contains the current local environment variables that are

available to the node. LocalEnvironment can be read and updated from

any node for which you can create ESQL code or mappings.

DestinationList

The structure that contains the current local environment variables

available to the node. Its preferred name is LocalEnvironment, although

the DestinationList correlation name can be used for compatibility with

earlier versions.

ExceptionList

The structure that contains the current exception list to which the node has

access.

 You cannot use these correlation names in the expression of any mapping for a

Mapping, Extract, Warehouse, DataInsert, DataUpdate, or DataDelete node.

Correlation names in nodes that create an output message: If you are coding

ESQL for a Compute node, the correlation names must distinguish between the

two message trees involved: the input message and the output message. The

correlation names in ESQL within these nodes are:

Developing message flows 71

InputBody

The last child of the root of the input message. This name is an alias for

InputRoot.*[<].

 For a description of how to use *, see “Using anonymous field references”

on page 290.

InputRoot

The root of the input message.

InputProperties

The standard properties of the input message.

Environment

The structure that contains the current global environment variables that

are available to the node. Environment can be read and updated.

InputLocalEnvironment

The structure that contains the local environment variables for the message

passing through the node.

InputDestinationList

The structure that contains the local environment variables for the message

passing through the node. Use the correlation name InputDestinationList

for compatibility with earlier versions; if compatibility is not required, use

the preferred name InputLocalEnvironment

InputExceptionList

The structure that contains the exception list for the message passing

through the node.

OutputRoot

The root of the output message.

 In a Compute node, the correlation name OutputBody is not valid.

OutputLocalEnvironment

The structure that contains the local environment variables that are sent

out from the node.

 While this correlation name is always valid, it has meaning only when the

Compute Mode property of the Compute node indicates that the Compute

node is propagating the LocalEnvironment.

OutputDestinationList

The structure that contains the local environment variables that are sent

out from the node. Use the correlation name OutputDestinationList for

compatibility with earlier versions; if compatibility is not required, use the

preferred name OutputLocalEnvironment

OutputExceptionList

The structure that contains the exception list that the node is generating.

 While this correlation name is always valid, it has meaning only when the

Compute Mode property of the Compute node indicates that the Compute

node is propagating the ExceptionList.

Predefined and self-defining messages

Both predefined and self-defining messages are supported.

Each message that flows through your broker domain has a specific structure that

is meaningful to the applications that send or receive that message.

72 Message Flows

WebSphere Message Broker refers to the structure as the message template. Message

template information comprises the message domain, message set, message type,

andphysical format of the message. Together these values identify the structure of

the data that the message contains.

The message domain identifies the parser that is used to parse and write instances

of the message. Message set, message type, and physical format are optional, and

are used by model-driven parsers such as the MRM parser.

You can use:

v Messages that you have modeled using the workbench; these are referred to as

predefined messages. A model-driven parser requires predefined messages.

v Messages that can be parsed without a model; these are called self-defining

messages.

Predefined messages: When you create a message using the workbench, you

define the fields (Elements) in the message, along with any special field types that

you might need, and any specific values (Value Constraints) to which the fields

might be restricted.

Every message that you model in the workbench must be a member of a message

set. You can group related messages together in a message set: for example, request

and response messages for a bank account query can be defined in a single

message set.

When you deploy a message set to a broker, the definition of that message set is

sent by the Configuration Manager to the broker in a form appropriate to the

parser that is used to parse and write the message. The broker can manage

multiple message dictionaries simultaneously.

For information about the benefits of predefining messages, see Why model

messages?

The Video Rental sample and the Comma Separated Value (CSV) sample

demonstrate how to model messages in XML, CWF, and TDS formats. The

EDIFACT sample, FIX sample, SWIFT sample, and X12 sample provide message

sets for industry-standard message formats, which might be useful if you use any

of those formats. You can view samples only when you use the information center

that is integrated with the Message Broker Toolkit.

Self-defining messages: You can create and route messages that are self-defining.

The best example of a self-defining message is an XML document.

Self-defining messages can also be modeled using the workbench. However, you

do not have to deploy these message sets to the brokers that support those

message flows. See Why model messages?.

The Large Messaging sample, the Airline Reservations sample, and several other

samples in the Samples Gallery use self-defining XML messages for the sake of

simplicity; they don’t require a message set. The Coordinated Request Reply

sample demonstrates how you can transform a message from self-defining XML to

a predefined binary format, and the Data Warehouse sample demonstrates how

you can extract information from an XML message and transform it into BLOB

format to store it in a database. You can view samples only when you use the

information center that is integrated with the Message Broker Toolkit.

Developing message flows 73

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.csv.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.edifact.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.fix.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.swift.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.x12.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.largemessaging.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.samplegallery/pages/intro.html
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.coordinated_request_reply.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.coordinated_request_reply.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.datawarehouse.doc/doc/overview.htm

Parsers

A parser is a program that interprets the bit stream of an incoming message, and

creates an internal representation of the message in a tree structure. The parser also

regenerates a bit stream for an outgoing message from the internal message tree

representation.

A parser is invoked when the bit stream that represents an input message is

converted to the internal form that can be handled by the broker; this invocation of

the parser is known as parsing. The internal form, a logical tree structure, is

described in “Logical tree structure” on page 60. The way in which the parser

interprets the bit stream is unique to that parser; therefore, the logical message tree

that is created from the bit stream varies from parser to parser.

Similarly, a parser is invoked when a logical tree that represents an output message

is converted into a bit stream; this invocation of the parser is known as writing.

The broker requires access to a parser for every message domain to which your

input messages and output messages belong. In addition, the broker requires a

parser for every identifiable message header that is included in the input or output

message. Parsers are invoked when required by the message flow.

Body parsers

WebSphere Message Broker provides built-in support for messages in the following

message domains by providing the message body parsers that are listed below:

v MRM (“MRM parser and domain” on page 98)

v XMLNSC, XMLNS, and XML (“XML parsers and domains” on page 81)

v SOAP (“SOAP parser and domain” on page 78)

v DataObject (“DataObject parser and domain” on page 100)

v JMSMap and JMSStream (“JMS parsers and domains” on page 101)

v MIME (“MIME parser and domain” on page 101)

v BLOB (“BLOB parser and domain” on page 106)

v IDOC (“IDOC parser and domain” on page 107)

See “Which body parser should you use?” on page 76 for a discussion about which

message body parser to use under what circumstances.

You specify which message domain to use for your message at the place in the

message flow where parsing or writing is initiated.

v To parse a message bit stream, typically you set the Message Domain property of

the input node that receives the message. But, if you are initiating the parse

operation in ESQL, use the DOMAIN clause of the CREATE statement.

The message tree that is created is described in “Message tree structure” on page

61.

The last child element of the Root element of the message tree takes the name of

the body parser that created the tree. For example, if the Message Domain

property was set to MRM, the last child element of Root is called MRM, which

indicates that the message tree is owned by the MRM parser.

v To write a message, the broker calls the owning body parser to create the

message bit stream from the message tree.

74 Message Flows

Some body parsers are model-driven, which means that they use predefined

messages from a message set when parsing and writing. The MRM, SOAP,

DataObject, IDOC, and (optionally) XMLNSC parsers are model-driven parsers. To

use these parsers, messages must be modeled in a message set and deployed to the

broker from the Message Broker Toolkit.

Other body parsers are programmatic, which means that the messages that they

parse and write are self-defining messages, and no message set is required. See

“Predefined and self-defining messages” on page 72.

When you use a model-driven parser, you must also specify the Message Set and,

optionally, the Message Type and Message Format so that the parser can locate the

deployed message definition with which to guide the parsing or writing of the

message.

To parse a message bit stream, typically you set the Message Set, Message Type, and

Message Format properties of the input node that receives the message. Or, if you

are initiating the parse operation in ESQL, you use the SETTYPE, and FORMAT

clauses of the CREATE statement. This information is copied into the Properties

folder of the message tree.

To write a message, the broker calls the owning body parser to create the message

bit stream from the message tree. If the parser is a model-driven parser, it uses the

MessageSet, MessageType, and MessageFormat fields in the Properties folder.

Whether Message Type or Message Format are needed depends on the message

domain.

Even if the body parser is not model-driven, it is good practice to create and use a

message set in the Message Broker Toolkit because it simplifies the development of

your message flow applications, even though the message set is not deployed in

the broker runtime environment. See Why model messages? for information about

the advantages of creating a message set.

Header parsers

WebSphere Message Broker also provides parsers for the following message

headers, which your applications can include in input or output messages:

v WMQ MQMD (“The MQMD parser” on page 1405)

v WMQ MQMDE (“The MQMDE parser” on page 1406)

v WMQ MQCFH (“The MQCFH parser” on page 1403)

v WMQ MQCIH (“The MQCIH parser” on page 1403)

v WMQ MQDLH (“The MQDLH parser” on page 1404)

v WMQ MQIIH (“The MQIIH parser” on page 1405)

v WMQ MQRFH (“The MQRFH parser” on page 1407)

v WMQ MQRFH2 and MQRFH2C (“The MQRFH2 and MQRFH2C parsers” on

page 1407)

v WMQ MQRMH (“The MQRMH parser” on page 1408)

v WMQ MQSAPH (“The MQSAPH parser” on page 1408)

v WMQ MQWIH (“The MQWIH parser” on page 1409)

v WMQ SMQ_BMH (“The SMQ_BMH parser” on page 1409)

v JMS header (Representation of messages across the JMS Transport)

Developing message flows 75

v HTTP headers (HTTP headers)

All header parsers are programmatic and do not use a message set when parsing

or writing.

User-defined parsers

To parse or write message body data or headers that the supplied parsers do not

handle, you can create user-defined parsers that use the WebSphere Message

Broker user-defined parser programming interface.

Tip: No parser is provided for messages, or parts of messages, in the WMQ format

MQFMT_IMS_VAR_STRING. Data in this format is often preceded by an MQIIH

header (format MQFMT_IMS). WebSphere Message Broker treats such data as a

BLOB message. If you change the CodedCharSetId or the encoding of such a

message in a message flow, the MQFMT_IMS_VAR_STRING data is not converted,

and the message descriptor or preceding header does not correctly describe

that part of the message. If you need the data in these messages to be

converted, use the MRM domain and create a message set to model the

message content, or provide a user-defined parser.

Which body parser should you use?

The characteristics of the messages that your applications exchange indicate which

body parser you must use.

WebSphere Message Broker provides a range of message parsers. Each parser

processes either message body data for messages in a particular message domain

(for example, XML), or particular message headers (for example, the MQMD).

Review the messages that your applications send to the broker, and determine to

which message domain the message body data belongs, using the following criteria

as a guide.

If your application data uses SOAP-based Web services, including SOAP with

Attachments (MIME) or MTOM

Use the SOAP domain. The SOAP domain has built-in support for

WS-Addressing and WS-Security standards.

If your application data is in XML format other than SOAP

The domain that you use depends on the nature of the XML documents

and the processing that you want to perform. See “Which XML parser

should you use?” on page 77

If your application data comes from a C or COBOL application, or consists of

fixed-format binary data

Use the MRM domain with a Custom Wire Format (CWF) physical format.

If your application data consists of formatted text, perhaps with field content

that is identified by tags, or separated by specific delimiters, or both

Use the MRM domain with a Tagged/Delimited String (TDS) physical

format.

If your application data is created using the JMS API

The domain that you use depends on the type of the JMS message. For a

full description of JMS message processing, see JMS message as input.

If your application data is from a WebSphere Adapter such as the adapters for

SAP, PeopleSoft, or Siebel

Use the DataObject domain.

76 Message Flows

If your application data is in SAP text IDoc format, such as those exported using

the WebSphere MQ Link for R3

Use the MRM domain with a Tagged/Delimited String (TDS) physical

format.

If your application data is in MIME format other than SOAP with Attachments

(for example, RosettaNet)

Use the MIME domain. If the message is multipart MIME, you might need

to parse specific parts of the message with other parsers. For example, you

might use the XMLNSC parser to parse the XML content of a RosettaNet

message.

If you do not know, or do not need to know, the content of your application

data Use the BLOB domain.

Which XML parser should you use?:

If your messages are general purpose XML documents, you can use one of the

dedicated XML domains (XMLNSC or XMLNS) to parse the message, or you can

use the MRM domain to parse the message.

Note: Although SOAP XML can be parsed using any namespace-aware XML

parser, use the dedicated SOAP domain to parse SOAP XML because the

SOAP domain provides full support for SOAP with Attachments, and

standards such as WS-Addressing and WS-Security.

Note: The XML domain is deprecated. Do not use it for developing new message

flows. The XML domain still works with existing message flows.

Which XML parser you choose depends on the nature of your XML messages, and

the transformation logic that you want to use. The differentiating features of each

domain are:

v The XMLNSC parser has a new architecture that gives significant performance

improvements over the XMLNS and XML parsers.

v The XMLNSC parser can be used with or without an XML Schema that is

generated from a message set. Using a message set with the XMLNSC parser

allows the parser to operate in validating mode which provides the following

capabilities:

– XML Schema 1.0 compliant validation when parsing and writing.

– The XML Schema indicates the real data type of a field in the message instead

of always treating the field as a character string.

– Base64 binary data can be automatically decoded.
v The MRM parser must be used with a message dictionary that is generated from

a message set. This message dictionary enables the MRM parser to provide the

following capabilities: For example:

– Validation against the dictionary when parsing and writing. Note that

validation is not XML Schema 1.0 compliant.

– The dictionary indicates the real data type of a field in the message instead of

always treating the field as a character string.

– Base64 binary data can be automatically decoded.
v The XMLNS parser is programmatic and does not use a model when parsing.

This means that:

– All data in an XML message is treated as character strings.

– Validation is not possible when parsing and writing.

Developing message flows 77

v The MRM parser uses information from the XML physical format of a message

set to simplify the task of creating transformation logic:

– Date and time information can be extracted from a data value using a

specified format string.

– When creating output messages, the MRM parser can automatically generate

the XML declaration, and other XML constraints.
v The XMLNSC and XMLNS parsers do not use XML physical format information

from a message set. Transformation logic must explicitly create all constructs in

an output message.

v The MRM parser discards some parts of an XML message when parsing; for

example, white space formatting, XML comments, XML processing instructions,

and inline DTDs. If you use this parser, you cannot create these constructs when

building an output message.

v The XMLNSC parser, by default, discards white space formatting, XML

comments, XML processing instructions, and inline DTDs. However, options are

provided to preserve all of these constructs, except inline DTDs. You can create

them all, except inline DTDs, when constructing an output message.

v The XMLNS parser preserves all parts of an XML document, including white

space formatting. You can create all XML constructs when constructing an

output message.

v The XMLNSC and MRM parsers build compact message trees that use fewer

syntax elements than the XMLNS parser for attributes and simple elements. This

makes these parsers more suitable than the XMLNS parser for parsing very large

XML messages.

v The XMLNS parser builds a message tree that conforms more closely than the

XMLNSC or MRM parsers to the XML Data Model. You might want to use this

parser if you are using certain XPath expressions to access the message tree, and

the relative position of parent and child nodes is important, or if you are

accessing text nodes directly.

Tip: If performance is critical, use the XMLNSC domain.

Tip: If you need to validate the content and values in XML messages, use the

XMLNSC domain.

Tip: If you need to preserve formatting in XML messages on output, use the

XMLNSC domain with the option to retain mixed content.

Tip: If you require message tree to conform as closely as possible to the XML data

model, perhaps because you are using certain XPath expressions to access the

message tree, use the XMLNS domain.

Tip: If you are taking non-XML data that has been parsed by the CWF or TDS

formats of the MRM domain, and merely transforming the data to the

equivalent XML, use the MRM domain. This can be achieved by adding an

XML physical format to the message set with default values, and changing

the Message Format in the Properties folder of the message tree.

SOAP parser and domain

You can use the SOAP parser to create a common WSDL-based logical tree format

for working with Web services, independent of the physical bitstream format.

Use the SOAP parser in conjunction with the SOAP nodes in your message flow.

78 Message Flows

Messages in the SOAP domain are processed by the SOAP parser. The SOAP

parser creates a common logical tree representation for all SOAP-based Web

services and validates the message against a WSDL definition. If a runtime

message is not allowed by the WSDL, an exception is thrown, otherwise the

portType and operation names from the WSDL are saved in the logical tree.

The SOAP domain offers WS-* processing, together with a canonical tree shape that

is independent of the wire format (XML or MIME).

The standards supported are:

v WSDL 1.1

v SOAP 1.1 and 1.2

v MIME 1.0

v Message Transmission Optimization Mechanism (MTOM) 1.0

A WSDL 1.1 definition must be deployed to describe the Web service messages that

the SOAP domain needs to parse and write at runtime. The SOAP parser is,

therefore, always model-driven. The bitstream format for these runtime messages

can be SOAP 1.1 or SOAP 1.2, optionally wrapped by MIME as an SwA (SOAP

with Attachments) or MTOM message.

When a message set that supports the SOAP domain is added to a broker archive

(bar) file, XML Schemas are created automatically from the message definition files

in the message set, and any WSDL files in the message set are added to the bar

file. The WSDL and XML Schema are deployed to the broker and used by the

SOAP parser.

If you want the SOAP domain to parse your SOAP Web service, you must:

1. Create a new message set, or locate an existing message set.

2. Ensure that either the message set has its Default message domain project set to

SOAP, or the SOAP check box (under Supported message domains) is selected, to

indicate that the message set supports the SOAP domain.

3. Import your WSDL file to create a message definition file. The WSDL is also

added to the message set. Message definition files for the SOAP envelope and

the SOAP logical tree are also added to the message set automatically.

4. Add the message set to a broker archive (bar) file, which generates the required

XML Schema and WSDL in a file with extension .xsdzip, and deploy the bar

file to the broker.

5. If you associate your WSDL with a SOAP node in your message flow, the

Message Set property is automatically set in the node. The Message domain

property is always pre-selected as SOAP.

Tip: The SOAP parser invokes the XMLNSC parser to parse and validate the XML

content of the SOAP Web service. See “XMLNSC parser” on page 85.

SOAP message details:

A SOAP message consists of an <Envelope>, which is the root element in every

SOAP message, and this contains two child elements, an optional <Header> and a

mandatory <Body>.

 If the SOAP message has attachments, the ’envelope’ is wrapped by MIME, or is

encoded as MTOM.

Developing message flows 79

For further information on the structure of a SOAP message, see “The structure of

a SOAP message” on page 617.

SOAP tree overview:

This tree format allows you to access the key parts of the SOAP message in a

convenient way.

 This is a diagrammatic representation of the SOAP domain tree:

 The SOAP tree contains the following elements:

SOAP.Header

Contains the SOAP header blocks (children of Envelope.Header)

SOAP.Body

Contains the SOAP payload (children of Envelope.Body)

 The content of the Body subtree depends on the WSDL style.

SOAP.Attachment

Contains attachments for an SwA message in their non encoded format.

ID0 ID1

as ID0as ID0

IDN

Root

Properties

Context

port
portType
operation

fred
(subtree)

bill
(subtree)

harry
(payload subtree)service

fileName

operationType= ='REQUEST_RESPONSE' 'ONE_WAY'

SOAP_Verson='1.1' '1.2'

prefix=uri
Namespace

XmlDeclaration

MIME_Headers BLOB

XMLNSC

BLOB(=X'...')

Content-Type=
Content-Transfer-Encoding=
Content-Id=

user can re-parse
as required - e.g.

Header Body Attachment

Set=myMS Type Format ContentType=top-level C-T

Transport headers SOAP

80 Message Flows

|

|

|

Note that attachments for an MTOM message are represented inline as part of

the SOAP content in a base 64 representation.

SOAP.Context

Contains the following information, set by the SOAP parser on input:

v * operation - the WSDL operation name

v * portType - the WSDL port type name

v * port - the WSDL port name (if known)

v * service - the WSDL service name (if known)

v * fileName - the original WSDL file name

v * operationType - one of ’REQUEST_RESPONSE’, ’ONE_WAY’,

’SOLICIT_RESPONSE’, ’NOTIFICATION’

v * SOAP_Version - one of ’1.1’ or ’1.2’

v * Namespace - nameValue children of Namespace associate a namespace

prefix to a URI

v * XmlDeclaration - represents the standard XML declaration.

Only Namespace, SOAP_Version, and XmlDeclaration influence the bitstream

generated for a SOAP tree; the other fields are for information only.

XML parsers and domains

You can use the XML domains that are described in this topic to parse and write

messages that conform to the W3C XML standard.

The term XML domains refers to a group of three WebSphere Message Broker

domains that are used to parse XML documents.

When reading an XML message, the parser that is associated with the domain

builds a message tree from the input bit stream. The input bit stream must be a

well-formed XML document that conforms to the W3C XML Specification (version

1.0 or 1.1).

When writing a message, the parser creates an XML bit stream from a message

tree.

The domains have different characteristics, and guidance about which domain to

choose is provided by “Which XML parser should you use?” on page 77.

XMLNSC domain

The XMLNSC domain is the recommended domain for parsing all general

purpose XML messages, including those messages that use XML

namespaces. See “XMLNSC parser” on page 85.

v The XMLNSC parser has an architecture that results in ultra-high

performance when parsing all kinds of XML.

v The XMLNSC parser reduces the amount of memory used by the logical

message tree that is created from the parsed message. The default

behavior of the parser is to discard non-significant white space and

mixed content, comments, processing instructions, and embedded DTDs;

however controls are provided to retain mixed content, comments, and

processing instructions, if required.

v The XMLNSC parser can operate as a model-driven parser, and can

validate XML messages against XML Schemas generated from a message

set, to ensure that your XML messages are correct.

Developing message flows 81

|
|
|
|
|
|
|
|
|
|
|
|

XMLNS domain

If the XMLNSC domain does not meet your requirements, use the

alternative namespace-aware domain and parser. See “XMLNS parser” on

page 94.

XML domain

The XML domain is not namespace-aware. It is deprecated and should not

be used to develop new message flows. See “XML parser” on page 98.

 The MRM domain also provides XML parsing and writing facilities. For guidance

on when you might use MRM XML instead of one of the XML parsers, see “Which

XML parser should you use?” on page 77.

By default, the three XML parsers are programmatic parsers and do not use a

message set at run time when parsing and writing. However, the XMLNSC parser

can operate as a model-driven parser and can validate XML messages for

correctness against XML Schemas generated from a message set. See “XMLNSC

validation” on page 89.

When you use the XMLNS or XML parsers, or the XMLNSC parser without a

message set, it is still good practice to create and use a message set in the Message

Broker Toolkit; this simplifies the development of your message flow applications,

even though the message set is not deployed to the broker run time.

For the advantages of creating a message set, see Why model messages?

The XML parsers are on-demand parsers. For more information, see “Parsing on

demand” on page 1363.

The information that is provided with WebSphere Message Broker provides a

summary of XML terminology, concepts, and message constructs. These aspects are

important when you use XML messages in your message flows.

Tip: For more detailed information about XML see the World Wide Web

Consortium (W3C) Web site.

Example XML message parsing: A simple XML message might take the following

form:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE Envelope

PUBLIC "http://www.ibm.com/dtds" "example.dtd"

[<!ENTITY Example_ID "ST_TimeoutNodes Timeout Request Input Test Message">]

>

<Envelope version="1.0">

 <Header>

 <Example>&Example_ID;</Example>

 <!-- This is a comment -->

 </Header>

 <Body version="1.0">

 <Element01>Value01</Element01>

 <Element02/>

 <Element03>

 <Repeated>ValueA</Repeated>

 <Repeated>ValueB</Repeated>

 </Element03>

 <Element04><P>This is bold text</P></Element04>

 </Body>

</Envelope>

82 Message Flows

http://www.w3.org/
http://www.w3.org/

The following sections show the output created by the Trace node when the above

message has been parsed in the XMLNS and XMLNSC parsers. They demonstrate

the differences in the internal structures that are used to represent the data as it is

processed by the broker.

Example XML Message parsed in the XMLNS domain: In the following example, the

white space elements within the tree are present because of the space, tab, and line

breaks that format the original XML document; for clarity, the actual characters in

the trace have been replaced with ″WhiteSpace″. White space within an XML

element does have business meaning, and is represented using the Content syntax

element. The XmlDecl, DTD, and comments, are represented in the XML domain

using explicit syntax elements with specific field types.

(0x01000010):XMLNS = (

 (0x05000018):XML = (

 (0x06000011): = ’1.0’

 (0x06000012): = ’UTF-8’

 (0x06000014): = ’no’

)

 (0x06000002): = ’WhiteSpace’

 (0x05000020):Envelope = (

 (0x06000004): = ’http://www.ibm.com/dtds’

 (0x06000008): = ’example.dtd’

 (0x05000021): = (

 (0x05000011):Example_ID = (

 (0x06000041): = ’ST_TimeoutNodes Timeout Request Input Test Message’

)

)

)

 (0x06000002): = ’WhiteSpace’

 (0x01000000):Envelope = (

 (0x03000000):version = ’1.0’

 (0x02000000): = ’WhiteSpace’

 (0x01000000):Header = (

 (0x02000000): = ’WhiteSpace’

 (0x01000000):Example = (

 (0x06000020): = ’Example_ID’

 (0x02000000): = ’ST_TimeoutNodes Timeout Request Input Test Message’

 (0x06000021): = ’Example_ID’

)

 (0x02000000): = ’WhiteSpace’

 (0x06000018): = ’ This is a comment ’

 (0x02000000): = ’WhiteSpace’

)

 (0x02000000): = ’WhiteSpace’

 (0x01000000):Body = (

 (0x03000000):version = ’1.0’

 (0x02000000): = ’WhiteSpace’

 (0x01000000):Element01 = (

 (0x02000000): = ’Value01’

)

 (0x02000000): = ’WhiteSpace’

 (0x01000000):Element02 =

 (0x02000000): = ’WhiteSpace’

 (0x01000000):Element03 = (

 (0x02000000): = ’WhiteSpace’

 (0x01000000):Repeated = (

 (0x02000000): = ’ValueA’

)

 (0x02000000): = ’WhiteSpace’

 (0x01000000):Repeated = (

 (0x02000000): = ’ValueB’

)

 (0x02000000): = ’WhiteSpace’

)

 (0x02000000): = ’WhiteSpace’

Developing message flows 83

(0x01000000):Element04 = (

 (0x01000000):P = (

 (0x02000000): = ’This is ’

 (0x01000000):B = (

 (0x02000000): = ’bold’

)

 (0x02000000): = ’ text’

)

)

 (0x02000000): = ’WhiteSpace’

)

 (0x02000000): = ’WhiteSpace’

)

Example XML Message parsed in the XMLNSC domain: The following trace shows

the elements that are created to represent the same XML structure within the

compact XMLNSC parser in its default mode. In this mode, the compact parser

does not retain comments, processing instructions, or mixed text.

The example illustrates the significant saving in the number of syntax elements

that are used to represent the same business content of the example XML message

when using the compact parser.

By not retaining mixed text, all of the white space elements that have no business

data content are no longer taking any runtime footprint in the broker message tree.

However, the mixed text in Element04.P is also discarded, and only the value of

the child folder, Element04.P.B, is held in the tree; the text This is and text in P is

discarded. This type of XML structure is not typically associated with business

data formats; therefore, use of the compact XMLNSC parser is typically desirable.

However, if you need this type of processing, either do not use the XMLNSC

parser, or use it with Retain mixed text mode enabled.

The handling of the XML declaration is also different in the XMLNSC parser. The

version, encoding, and standalone attributes are held as children of the

XmlDeclaration, rather than as elements with a particular field type.

(0x01000000):XMLNSC = (

 (0x01000400):XmlDeclaration = (

 (0x03000100):Version = ’1.0’

 (0x03000100):Encoding = ’UTF-8’

 (0x03000100):StandAlone = ’no’

)

 (0x01000000):Envelope = (

 (0x03000100):version = ’1.0’

 (0x01000000):Header = (

 (0x03000000):Example = ’ST_TimeoutNodes Timeout Request Input Test Message’

)

 (0x01000000):Body = (

 (0x03000100):version = ’1.0’

 (0x03000000):Element01 = ’Value01’

 (0x01000000):Element02 =

 (0x01000000):Element03 = (

 (0x03000000):Repeated = ’ValueA’

 (0x03000000):Repeated = ’ValueB’

)

 (0x01000000):Element04 = (

 (0x01000000):P = (

 (0x03000000):B = ’bold’

)

)

)

The following samples use the XML parser to process messages:

84 Message Flows

v Coordinated Request Reply sample

v Large Messaging sample

v Message Routing sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Some predefined message models are supplied with the Message Broker Toolkit

and can be imported using the New Message Definition File wizard and selecting

the IBM-supplied message option. See IBM supplied messages that you can import.

XMLNSC parser:

The XMLNSC parser is a flexible, general-purpose XML parser that offers high

performance XML parsing and optional XML Schema validation.

 The XMLNSC parser has a range of options that make it suitable for most XML

processing requirements. Some of these options are only available in the XMLNSC

parser.

Although the XMLNSC parser is capable of parsing XML documents without an

XML Schema, extra features of the parser become available when it operates in

model-driven mode. In model-driven mode, the XMLNSC parser is guided by an

XML Schema, which describes the shape of the message tree (the logical model).

XML Schemas are created automatically from the content of a message set when

the message set is added to a broker archive (bar) file. The XML Schemas are

deployed to the broker and used by the XMLNSC parser to validate your XML

messages. Validation is fully compliant with the XML Schema 1.0 specification.

For guidance on when to use the XMLNSC domain and parser, see “Which XML

parser should you use?” on page 77.

If you want the XMLNSC domain to parse a message, select Message Domain as

XMLNSC on the appropriate node in the message flow. Additionally, if you want the

XMLNSC parser to validate your messages, perform the additional steps that are

described in “XMLNSC validation” on page 89.

Features of the XMLNSC parser

 Feature Present Description

Namespace support Yes Namespace information is

used if it is present. No user

configuration is required. See

“XML parsers namespace

support” on page 97.

On-demand parsing Yes See “Parsing on demand” on

page 1363.

Compact message tree Yes Less memory is used when

building a message tree from

an XML document. See

“Manipulating messages in

the XMLNSC domain” on

page 364.

Developing message flows 85

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.coordinated_request_reply.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.largemessaging.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.routing.doc/doc/overview.htm

Feature Present Description

Opaque parsing Yes One or more elements can be

parsed opaquely. See

“XMLNSC opaque parsing”

on page 88.

Ultra high performance Yes The architecture of the

XMLNSC parser means that

the parser’s use of processor

resources is significantly less

than that of the other XML

parsers.

Validation Yes See the table that follows this

one.

Inline DTD support Partial Inline DTDs are processed

but discarded. See “XMLNSC

DTD support” on page 93.

XML Data Model compliance Partial The compact nature of the

message tree means that

some XPath queries are not

supported.

The following features are only available when message validation is enabled. See

“XMLNSC validation” on page 89.

 Feature Description

Message validation Validates compliance with the XML Schema

1.0 specification.

xsi:nil support Sets the value of an element to NULL if it

has xsi:nil=”true” and the XML Schema

indicates that it is nillable.

Default value support Sets the value of an empty element, or

missing attribute, to its default value,

according to XML Schema rules.

Use correct simple types Allows the use of the simple types that are

defined in the XML Schema when building

the message tree.

Base64 support Converts base64 data to BLOB when

parsing. Converts BLOB to base64 when

writing.

If you specify the SOAP domain as the owner of a SOAP Web Services message,

the SOAP parser invokes the XMLNSC parser in model-driven mode to parse the

XML content of the SOAP message.

If you specify the DataObject domain as the owner of a WebSphere Adapter

message, and the message is written to a destination other than a WebSphere

Adapter, the DataObject parser invokes the XMLNSC parser to write the message

as XML.

XMLNSC empty elements and null values:

Empty elements and null values occur frequently in XML documents.

86 Message Flows

A robust message flow must be able to recognise and handle empty elements and

null values. Similarly, elements in a message tree might have a NULL value, an

empty value, or no value at all. This topic explains the parsing and writing of

these values by the XMLNSC domain. For advice on good ESQL or Java coding

practices see “Null handling” on page 108.

Parsing

Description

XML input parsed by

XMLNSC

Value of ‘element’ in

message tree

Empty element value <element/> Empty string

Empty element value <element></element> Empty string

Folder with child elements <element><childElement/
></element>

No value

Nil element value <element xsi:nil=″true″/> Empty string or NULL

Note: Which value depends

on whether the element

definition is ’nillable’ in the

XML Schema

Note that both forms of an empty element result in the same value in the message

tree.

Writing

Description

Value of ‘element’ in

message tree

XML output from XMLNSC

parser

Empty element value Empty string <element/>

Null element value NULL <element/>

Folder with child elements No value <element><childElement/
></element>

Empty elements

An empty element can take two forms in an XML document:

- <element/>

- <element></element>

The XMLNSC parser treats both forms in the same way. The element is added to

the message tree with a value of “” (the empty string).

When a message tree is output by the XMLNSC parser, it always uses the first

form for elements that have a value of “” (the empty string).

Elements with an xsi:nil attribute

The following behavior is available only when validation is enabled in the message

flow.

If an element in the input document has an xsi:nil attribute with the value ‘true’,

and the ‘nillable’ property of the element definition in the XML schema is set to

‘true’, the XMLNSC parser sets the value of the message tree element to NULL.

Developing message flows 87

When a message tree is output by the XMLNSC parser, if the value of the element

is NULL and the element has no child elements, the element is written as

<element/>; but, if the element has an xsi:nil attribute, it is written exactly like any

other attribute.

Note that the XMLNSC parser only outputs xsi:nil attributes that are already in the

messsage tree. It does not automatically output xsi:nil attributes for all message

tree elements that have a NULL value and are ’nillable’.

XMLNSC opaque parsing:

Opaque parsing is a performance feature that is offered by the XMLNSC domain.

 If you are designing a message flow and you know that certain elements in a

message are never referenced by the message flow, specify that these elements

should be parsed opaquely. This reduces the costs of parsing and writing the

message, and might improve performance in other parts of the message flow.

Use the property Opaque Elements on the Parser options page of the relevant

message flow node to specify the elements that you want to be parsed opaquely.

This property specifies a list of element names. If an element in the input XML

message is named in this list, the element is parsed as a single string.

An opaque element cannot be queried like an ordinary element; its value is the

segment of the XML bit stream that belongs to the element, and it has no child

elements in the message tree, even though it can represent a large subtree in the

XML document.

When an opaque element is serialized, the value of the element is copied directly

into the output bit stream. The string is converted to the correct code page, but no

other changes are made. Because this might produce a bit stream that is not valid

XML, some care is required.

An element should not be parsed opaquely in any of the following cases:

v The message flow needs to access one of its child elements.

v The message flow changes the namespace prefix in a way that affects the opaque

element or one of its child elements and the element is to be copied to the

output bit stream.

v The element, or any child element, contains a reference to an internal entity that

is defined in an inline DTD and the element is to be copied to the output bit

stream.

v The element contains child attributes that have default values that are defined in

an inline DTD and the element is to be copied to the output bit stream.

Make sure that you check the above points before you specify an element for

opaque parsing.

There are some drawbacks to using opaque parsing. When it is enabled, some

parts of the message are never parsed. This might allow XML that is either badly

formed or not valid to pass through the message flow without being detected. For

this reason, if you enable validation, you cannot use opaque parsing.

The XMLNS domain offers a more limited opaque parsing facility, but this is

provided only to support existing applications. New message flows should use the

XMLNSC domain for opaque parsing.

88 Message Flows

Specifying opaque elements for the XMLNSC parser:

Specify an element as an opaque element so that its content is ignored by the

XMLNSC parser.

 To specify the elements that are to be skipped by the XMLNSC parser:

1. Right-click the selected message flow node and click Properties and select

Parser Options.

2. At the bottom of the XMLNSC Parser Options panel, is an area that lists the

elements that have already been selected as opaque elements. Click Add... to

add an element to this list. A new pane Add Opaque elements Entry opens.

3. In the Add Opaque elements Entry pane, specify the new XML element that

you want to be opaquely passed. Each opaque element must be specified as an

ESQL element name or an XPath expression of the form //prefix:name (or

//name, if your input document does not contain namespaces).

Note: A prefix is used rather than a full URI to identify the namespace; see

“XPath namespace support” on page 461 for further information.

Click Edit... or Delete... to edit the list of opaque elements.

XMLNSC validation:

The XMLNSC parser offers high-performance, standards-compliant XML Schema

validation at any point in a message flow.

 Validation of the input XML message or the message tree is performed against the

XML Schemas that are deployed.

Validation is not the same as parsing. When parsing, the XMLNSC parser always

checks that the input document is well-formed XML, according to the XML

specification. If validation is enabled, the XMLNSC parser also checks that the

XML document obeys the rules in the XML Schema.

Enabling XML Schema validation in a message flow

You must complete the following tasks to construct a message flow that validates

an XML document in accordance with an XML Schema:

v Enable validation at the appropriate point in the message flow. This is typically

achieved by setting the Validate property of the appropriate node to Content or

Content and Value. See “Validating messages” on page 164.

v Ensure that all required XML Schema files are deployed. See “Deploying XML

Schemas” below.

v Specify the message set in which the XML Schemas are deployed. Typically, you

specify the message set by selecting the Message Set property on the node.

Deploying XML Schemas

All XML Schemas that are used by WebSphere Message Broker must be created as

message definition files within a message set.

To create and deploy a message set for XML Schema validation:

1. Create a new message set or locate an existing message set.

Developing message flows 89

2. Ensure that the message set has its Default message domain set to XMLNSC, or that

the XMLNSC check box under Supported message domains is selected, to indicate

that the message set supports the XMLNSC domain.

3. Create a message definition file in the message set to represent your message. If

you have an existing XML Schema or DTD that describes your message, you

can import it. You can repeat this step for each message that you want to

validate.

4. Add the message set to a broker archive (bar) file, which generates the required

XML Schema in a file with extension .xsdzip, and deploy the bar file to the

broker.

Standards compliant validation

XMLNSC validation complies fully with XML Schema v1.0 as defined in the

specifications that are available at http://www.w3.org/TR/xmlschema-1/ and

http://www.w3.org/TR/xmlschema-2/, with the following minor exceptions:

v Any floating point value that is smaller than 10E-43 is treated as zero.

v Any member of a group or complex type, that has both minOccurs > 1024 and

maxOccurs > 1024, is validated as if minOccurs = 0 and maxOccurs is

unbounded.

Validating XML v1.1 documents

You can validate documents that conform to the XML v1.1 specification, but

support is limited by the fact that the XML Schema v1.0 documents must conform

to XML v1.0.

As an example, you cannot always declare an XML v1.1 tag name in XML Schema

v1.0. This limitation is not imposed by the XMLNSC parser implementation; it is a

limitation of XML Schema v1.0.

Interpreting validation errors

A validation error is an error that results when the XML document breaks the rules

that are defined in the XML schema. The XML Schema standard specifies exactly

what these rules are, and how they should be applied. Validation errors that the

XMLNSC parser issues contain information that links the error to the XML Schema

rule that has been violated.

All validation errors are reported in BIP5025 or BIP5026 messages. Both messages

begin with text in the following form:

XML schema validation error ’[cvc-error key: error description]’

Examples:

’cvc-minInclusive-valid: The value "2" is not valid with respect to the minInclusive facet

with value "3" for type "po:itemCountType".’

’cvc-complex-type.2.4.a: Expecting element with local name "numItems" but saw "totalValue".’

To find the XML Schema rule that has been violated, open the XML Schema

specification and search for the error key.

Example 1: Open http://www.w3.org/TR/xmlschema-1/ and search for

‘cvc-minInclusive-valid’. Follow the link to the XML Schema rules for the

minInclusive facet.

90 Message Flows

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-1/

Example 2: Open http://www.w3.org/TR/xmlschema-1/ and search for

‘cvc-complex-type’. Follow the link to the XML Schema rules for validating the

content of a complex type. In this case, the error key contains extra information.

The ‘2.4.a’ refers to the exact sub-rule that was violated. It should not be included

when searching for the rule.

If the XML Schema specification does not provide enough information, you can

find more information using a search engine. The XML Schema standard is very

widely used, and many online tutorials and other resources are available.

XMLNSC message tree options:

The XMLNSC options that are described below affect the parsing of an XML

document by the XMLNSC parser. They have no effect on XML output.

 Retain Mixed Content

Mixed content is XML text which occurs between elements.

 <parent>

 <childElement1>Not mixed content</childElement1>

 This text is mixed content

 <childElement2>Not mixed content</childElement2>

 </parent>

By default, the XMLNSC parser discards all mixed content. Mixed content is

retained in the message tree if you select Retain mixed content in the Parser options

page of the input node. For further information, see ’Handling mixed text’ in

“Manipulating messages in the XMLNSC domain” on page 364.

Retain Comments

By default, the XMLNSC parser discards all comments in the input XML.

Comments are retained in the message tree if you select Retain comments in the

Parser options page of the input node. For further information, see ’Handling

comments’ in “Manipulating messages in the XMLNSC domain” on page 364.

Retain Processing Instructions

By default, the XMLNSC parser discards all processing instructions in the input

XML. Processing instructions are retained in the message tree if you select Retain

processing instructions in the Parser options page of the input node. For further

information, see ’Handling processing instructions’ in “Manipulating messages in

the XMLNSC domain” on page 364.

Build tree using XML Schema data types

By default, the XMLNSC parser uses the CHARACTER data type for all element

and attribute values that the parser creates in the message tree. However, if you

are using the XMLNSC parser to validate the XML document, you can select Build

tree using XML Schema data types in the Parser options page of the input node. This

causes element and attribute values to be cast to the message broker data type that

most closely matches their XML Schema simple type. The exact mapping between

XML schema types and message broker types can be found in “XMLNSC data

types.”

XMLNSC data types:

Developing message flows 91

http://www.w3.org/TR/xmlschema-1/

The table shows the mapping between XML Schema simple types and the data

types that the XMLNSC parser uses in the message tree.

 XML Schema type Data type in message tree

anyURI CHARACTER

base64Binary BLOB

Boolean BOOLEAN

Byte INTEGER

Date DATE

dateTime TIMESTAMP

Decimal DECIMAL

Double FLOAT

duration INTERVAL

ENTITIES List of CHARACTER

ENTITY STRING

Float FLOAT

gDay DATE

gMonth DATE

gMonthDay DATE

gYear DATE

gYearMonth DATE

hexBinary BLOB

ID CHARACTER

IDREF CHARACTER

IDREFS List of CHARACTER

int INTEGER

Integer DECIMAL

language CHARACTER

Long INTEGER

Name CHARACTER

NCName CHARACTER

negativeInteger DECIMAL

NMTOKEN CHARACTER

NMTOKENS List of CHARACTER

nonNegativeInteger DECIMAL

nonPositiveInteger DECIMAL

normalizedString CHARACTER

NOTATION CHARACTER

positiveInteger DECIMAL

Qname CHARACTER

short INTEGER

string CHARACTER

Time DATETIME

92 Message Flows

XML Schema type Data type in message tree

Token CHARACTER

unsignedByte INTEGER

unsignedInt INTEGER

unsignedLong DECIMAL

unsignedShort INTEGER

Note: Base64 decoding is automatically performed by the XMLNSC parser.

List types

In the message tree, a list type is represented as a parent node with an anonymous

child node for each list item. This allows repeating lists to be handled without any

loss of information.

If a list element repeats, the occurrences appear as siblings of one another, and

each occurrence has its own set of child nodes representing its own list items.

XMLNSC DTD support:

The input XML message might contain an inline DTD.

 Parsing

If the input XML document has an inline DTD, the XMLNSC parser reads and uses

information in the DTD while parsing, but does not add the DTD information to

the message tree.

Internal entity definitions in the DTD are used to automatically expand entity

references that are encountered in the body of the document.

Attributes that are missing from the input document are automatically supplied

with the default value specified in the DTD.

The XMLNSC parser never adds the DTD to the message tree because the

information that it contains has already been used during the parse. This behavior

keeps the message tree compact and reduces CPU usage, and means that the

XMLNSC parser does not always produce exactly the same document as it parsed.

However, the business meaning of the output document is not altered.

If these restrictions are a problem, the XMLNS domain and parser provide full

support for parsing and writing of the DTD. See “XMLNS DTD support” on page

96.

Writing

The XMLNSC parser can output a DTD that contains entity definitions only. This

behavior allows the XMLNSC parser to be used for writing out XML documents

that use internal entities (the most common reason for using a DTD). See

“Manipulating messages in the XMLNSC domain” on page 364 for further details.

Developing message flows 93

External DTDs

No support is offered for external DTDs

XMLNS parser:

The XMLNS parser is a flexible, general-purpose XML parser.

 The XMLNS parser is not model-driven and does not use an XML Schema when

parsing XML documents.

For guidance on when to use the XMLNS domain and parser, see “Which XML

parser should you use?” on page 77.

If you want the XMLNS domain to parse a particular message, you must select

Message Domain as XMLNS on the appropriate node in the message flow.

Features of the XMLNS parser

 Feature Present Description

Namespace support Yes Namespace information is

used if it is present. No user

configuration is required. See

“Namespace support” on

page 415.

On-demand parsing Yes See “Parsing on demand” on

page 1363.

Compact message tree No

Opaque parsing Partial Limited support from ESQL

only for parsing a single

element opaquely. See

“XMLNS opaque parsing” on

page 95.

Ultra high performance No

Validation No

Inline DTD support Yes Inline DTDs are processed

and retained in the message

tree. See “XMLNS DTD

support” on page 96.

XML Data Model compliance Yes The resultant message tree

conforms to the XML Data

Model.

XMLNS empty elements and null values:

Empty elements and null values occur frequently in XML documents.

 A robust message flow must be able to recognise and handle empty elements and

null values. Similarly, elements in a message tree might have a NULL value, an

empty value, or no value at all. This topic explains the parsing and writing of

these values by the XMLNS domain. For advice on good ESQL or Java coding

practices see “Null handling” on page 108.

94 Message Flows

Parsing

Description

XML input parsed by

XMLNS

Value of ‘element’ in

message tree

Empty element value <element/> Empty string

Empty element value <element></element> Empty string

Folder with child elements <element><childElement/
></element>

No value

Nil element value <element xsi:nil=″true″/> Empty string

Note that both forms of an empty element result in the same value in the message

tree.

Note also that a NULL value is never put into the message tree by the XMLNS

parser.

Writing

Description

Value of ‘element’ in

message tree

XML output from XMLNS

parser

Empty element value Empty string <element/>

Null element value NULL <element/>

Folder with child elements No value <element><childElement/
></element>

Empty elements

An empty element can take two forms in an XML document:

- <element/>

- <element></element>

The XMLNS parser treats both forms in the same way. The element is added to the

message tree with a value of “” (the empty string).

When a message tree is output by the XMLNS parser, it always uses the first form

for elements that have a value of “” (the empty string).

Elements with an xsi:nil attribute

The XMLNS parser treats the xsi:nil attribute exactly like any other attribute. When

xsi:nil is encountered while parsing, it does not set the value of the parent element

to NULL. If you require this behavior you should use the XMLNSC parser. When

writing a message tree, if an xsi:nil attribute exists it will be output in the same

way as any other attribute.

XMLNS opaque parsing:

Opaque parsing is a performance feature that is offered by the XMLNS domain.

 XMLNS opaque parsing has been superseded by the opaque parsing feature of the

XMLNSC domain. Do not use the XMLNS parser for opaque parsing unless your

message flow requires features that are only offered by the XMLNS parser.

Developing message flows 95

If you are designing a message flow, and you know that a particular element in a

message is never referenced by the message flow, you can specify that that element

is to be parsed opaquely. This reduces the costs of parsing and writing the

message, and might improve performance in other parts of the message flow.

To specify that an XML element is to be parsed opaquely, use an ESQL CREATE

statement with a PARSE clause to parse the XML document. Set the FORMAT

qualifier of the PARSE clause to the constant, case-sensitive string

’XMLNS_OPAQUE’ and set the TYPE qualifier of the PARSE clause to the name of

the XML element that is to be parsed in an opaque manner.

The TYPE clause can specify the element name with no namespace (to match any

namespace), or with a namespace prefix or full namespace URI (to match a specific

namespace).

XMLNS opaque elements cannot be specified via the node properties.

Consider the following example:

DECLARE soap NAMESPACE ’http://schemas.xmlsoap.org/soap/envelope/’;

DECLARE BitStream BLOB ASBITSTREAM(InputRoot.XMLNS

 ENCODING InputRoot.Properties.Encoding

 CCSID InputRoot.Properties.CodedCharSetId);

--No Namespace

 CREATE LASTCHILD OF OutputRoot

 DOMAIN(’XMLNS’)

 PARSE (BitStream

 ENCODING InputRoot.Properties.Encoding

 CCSID InputRoot.Properties.CodedCharSetId

 FORMAT ’XMLNS_OPAQUE’

 TYPE ’Body’);

--Namespace Prefix

 CREATE LASTCHILD OF OutputRoot

 DOMAIN(’XMLNS’)

 PARSE (BitStream

 ENCODING InputRoot.Properties.Encoding

 CCSID InputRoot.Properties.CodedCharSetId

 FORMAT ’XMLNS_OPAQUE’

 TYPE ’soap:Body’);

--Namespace URI

 CREATE LASTCHILD OF OutputRoot

 DOMAIN(’XMLNS’)

 PARSE (BitStream

 ENCODING InputRoot.Properties.Encoding

 CCSID InputRoot.Properties.CodedCharSetId

 FORMAT ’XMLNS_OPAQUE’

 TYPE ’{http://schemas.xmlsoap.org/soap/envelope/}:Body’);

XMLNS DTD support:

The input XML might contain an inline DTD.

 Parsing

If the input XML document has an inline DTD, the XMLNS parser reads and uses

information in the DTD while parsing, and adds the DTD information to the

message tree.

96 Message Flows

Internal entity definitions in the DTD are used to automatically expand entity

references that are encountered in the body of the document.

Attributes that are missing from the input document are automatically supplied

with the default value specified in the DTD.

Writing

The XMLNS parser can output any inline DTD that has been constructed in the

message tree.

External DTDs

No support is offered for external DTDs

XML parsers namespace support:

Namespaces in XML messages are supported by the XMLNSC and XMLNS

parsers. Namespaces are not supported by the XML parser.

 Parsing

The XMLNS and XMLNSC parsers can parse any well-formed XML document,

whether or not the document contains namespaces. If elements or attributes have

namespaces, those namespaces are applied to the elements and attributes in the

message tree. Namespace prefix mappings are also carried in the message tree, and

are used when serializing the message tree back to XML.

v If an element or attribute in the input XML has a namespace, the corresponding

node in the message tree also has that namespace.

v If an element contains a namespace declaration (an xmlns attribute), a child

element that contains its prefix and namespace URI is created in the message

tree.

While the message is passing through a message flow, namespaces and namespace

mappings can be modified using ESQL or any of the other transformation

technologies that are offered by message broker.

Writing

Namespaces and their prefixes are preserved in the message tree when parsing,

and are used when the XMLNS and XMLNSC parsers convert a message tree to an

XML bitstream.

v When serializing a message tree, the parser scans for namespace declarations on

each XML element. If any are found, it uses them to select the namespace

prefixes in the output document.

v If an element in the message tree has a namespace, but there is no in-scope

namespace declaration for its namespace URI, a valid namespace prefix is

automatically generated and used in the output XML. Auto-generated prefixes

have the form NS1, NS2, and so on.

Tip: If an element in the message tree has a child element that is a ‘default

namespace’ declaration, every child of that element (whether an XML element

or an XML attribute, at any nesting depth) must have a namespace. If this

rule is not enforced message broker cannot generate correct XML output for

the message tree.

Developing message flows 97

XML parser:

The XML domain is very similar to the XMLNS domain, but the XML domain has

no support for XML namespaces or opaque parsing.

 The XML domain is deprecated, but existing message flows that use the XML

domain continue to work. Use the XMLNSC domain when developing new

message flows.

The XML parser is not model-driven and does not use an XML Schema when

parsing XML documents.

If you want the XML domain to parse a particular message, you must select

Message Domain as XML on the appropriate node in the message flow.

Tip: The XMLNSC and XMLNS parsers both support XML messages that do not

use namespaces, with no extra configuration.

Features of the XML parser

 Feature Present Description

Namespace support No

On-demand parsing Yes See “Parsing on demand” on

page 1363.

Compact message tree No

Opaque parsing No

Ultra high performance No

Validation No

Inline DTD support Yes Inline DTDs are processed

and retained in the message

tree.

XML Data Model compliance Yes The resultant message tree

conforms to the XML Data

Model.

MRM parser and domain

You can use the MRM domain to parse and write a wide range of message

formats.

The MRM domain can be used to parse and write a wide variety of message

formats. It is primarily intended for non-XML message formats, but it can also

parse and write XML. For guidance on when to consider using the MRM parser,

instead of one of the XML parsers, to parse XML, see “Which XML parser should

you use?” on page 77

The key features of the MRM domain are:

v Support for messages from applications that are written in C, COBOL, PL/I and

other languages, by using the Custom Wire Format (CWF) physical format. This

support includes the ability to create a message model directly from a C header

file or COBOL copybook.

98 Message Flows

v Support for text messages, perhaps with field content that is identified by tags,

separated by specific delimiters, or both, by using the Tagged Delimited String

(TDS) physical format. This includes industry standards such as CSV, HL7,

SWIFT, EDIFACT, and X12.

v Support for XML messages, including those that use XML namespaces, by using

the XML physical format.

WebSphere Message Broker uses the MRM parser to read and write messages that

belong to the MRM domain. When reading a message, the MRM parser constructs

a message tree from a bit stream. When writing a message, the MRM parser creates

a bit stream from a message tree. The MRM parser is always model-driven, and it

is guided by a message dictionary that describes the shape of the message tree (the

logical model) and the physical layout of the bytes or characters in the bit stream

(the physical format). A message dictionary is created automatically from the

content of a message set when it is added to the broker archive (bar) file.

Therefore, when you create a message set for use with the MRM domain, you must

define both the logical model and the appropriate physical format information.

The operation of the parser depends on the physical format that you have

associated with the input or output message:

v For a binary message, the parser reads a set sequence of bytes according to

information in the CWF physical format, and translates them into the fields and

values in the message tree.

v For a text message, the parser uses a key piece of TDS physical format

information called Data Element Separation to decide how to parse each portion

of the message bit stream. This informs the parser whether the message uses

delimiters, tags, fixed length elements, patterns, and so on. The parser then

reads the data according to information in the TDS physical format, and

translates it into the fields and values in the message tree.

v For an XML message, the parser reads the XML markup language (element tags

and attributes), guided by information in the XML physical format, and

translates them into the fields and values in the message tree.

Because the MRM parser is model-driven, it can perform validation of messages

against the model that is defined in the deployed dictionary. The level of

validation that is performed by the MRM parser is similar to that defined by XML

Schema 1.0, but is not fully compliant. If you use XML messages, and you want

fully compliant XML Schema 1.0 validation, use the XMLNSC domain.

The MRM parser is an on-demand parser. See “Parsing on demand” on page 1363.

If you want to use the MRM domain to parse a particular message:

1. Create a new message set with an appropriate CWF, TDS, or XML physical

format; or locate an existing message set.

2. Ensure that the message set has its Default message domain set to MRM, or that the

MRM check box under Supported message domains is selected to indicate that the

message set supports the MRM domain.

3. Create a message definition file in the message set to represent your message,

ensuring that both logical and physical format information is provided. If you

have an existing C, COBOL, XML Schema, or DTD description of your

message, you can import the description using a wizard.

4. Add the message set to a broker archive (bar) file which will generate a

message dictionary for use by the MRM parser, and deploy the bar file to the

broker.

Developing message flows 99

5. Select MRM as Message Domain on the appropriate node in your message flow.

6. Additionally set values for Message Set, Message Type, and Message Format on the

node. Message Type is the name of the message in the message definition file.

The following samples all use the MRM parser to process messages:

v Video Rental sample

v Comma Separated Value (CSV) sample

v EDIFACT sample

v FIX sample

v SWIFT sample

v X12 sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Some predefined message models are supplied with the Message Broker Toolkit

and can be imported using the New Message Definition File From IBM supplied

Message wizard. The CSV, ALE IDoc, and File IDoc models are specifically for use

with the MRM domain. See IBM supplied messages that you can import.

IBM supplies predefined message sets for industry standard formats SWIFT, X12,

EDIFACT, and FIX. Contact dubadapt@ie.ibm.com for more information.

DataObject parser and domain

Use the DataObject domain to parse and write messages for WebSphere Adapters.

The DataObject domain must be used when you use the WebSphere Adapter nodes

in your message flow.

WebSphere Message Broker uses the DataObject parser to read and write message

from Enterprise Information Systems (EIS) such as SAP, PeopleSoft, and Siebel.

Such messages belong to the DataObject domain.

When it receives a message from an adapter, the DataObject parser constructs a

message tree from the business object that it receives from the EIS. When it writes

a message, the DataObject parser creates from the message tree the business object

that it sends to the EIS. The DataObject parser is always model-driven, and it is

guided by the XML Schemas that model the EIS business objects. The XML

Schemas are created automatically from the content of a message set when the

message set is added to the broker archive (bar) file.

If you want to parse a message using the DataObject domain, you must:

1. Create a new message set, or locate an existing message set.

2. Ensure that either the message set has its Default message domain project set to

DataObject, or the DataObject check box (under Supported message domains) is

selected, to indicate that the message set supports the DataObject domain.

3. Create a message definition file in the message set to represent your EIS

business object. Use the New adapter connection wizard to connect to the EIS and

retrieve the Business object metadata.

4. Add the message set to a broker archive (bar) file, which generates XML

Schema for the DataObject parser to use, and deploy the bar file to the broker.

5. If you associate your adapter inbound or outbound message with an adapter

node in your message flow, the Message Set property is automatically set in the

node. The Message domain property is always pre-selected as DataObject.

100 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.csv.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.edifact.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.fix.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.swift.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.x12.doc/doc/overview.htm

Tip: If a message that belongs to the DataObject domain is written to a destination

other than a WebSphere Adapter, the DataObject parser invokes the XMLNSC

parser to write the message as XML.

The following adapter samples use the DataObject parser to process messages:

v SAP Connectivity sample

v Twineball Example EIS Adapter sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

JMS parsers and domains

The JMSMap and JMSStream domains can be used for modeling messages that are

produced by the implementations of the Java Messaging Service standard.

Use the JMSMap domain when handling JMS messages of type MapMessage. Use

the JMSStream domain when handling JMS messages of type StreamMessage.

These message types appear in the broker in XML format, and are therefore

supported in an identical way to XML domain messages.

For a full description of JMS MapMessage and StreamMessage processing, see

WebSphere Broker JMS Transport.

MIME parser and domain

Use the MIME domain if your messages use the MIME standard for multipart

messages.

The MIME (Multipurpose Internet Mail Extension) parser does not support the full

MIME standard, but does support common uses of MIME. You can send the

messages to the broker over HTTP or over other transport types, such as

WebSphere MQ. Use the MIME domain if your messages use the MIME standard

for multipart messages.

The MIME domain does not support Content-Type values with a media type of

message.

To specify that a message uses the MIME domain, select MIME as the Message

Domain on the relevant message flow node.

Use the MIME domain and parser to parse and write MIME messages. The MIME

parser creates a logical tree, and sets up the broker ContentType property. You can

use Compute nodes and JavaCompute nodes to manipulate the logical tree. Set the

Content-Type value using the ContentType property in the MIME domain.

Example MIME message

The following example shows a simple multipart MIME message. The message

shown is a SOAP with Attachments message with two parts: the root part and one

attachment part. The boundary string MIME_boundary delimits the parts.

Developing message flows 101

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.sapconnectivity.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.twineball.doc/doc/overview.htm

Example MIME logical tree

The following diagram shows a MIME logical tree. A MIME logical tree does not

need to contain all of the children that are shown in the diagram. The value of the

Content-Type header of a MIME message is the same as the ContentType field in

the Properties subtree. The Transport-headers are headers from the transport that is

used, such as an MQMD or HTTP.

MIME-Version: 1.0

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml

Content-Description: Optional description of message.

Optional preamble text

--MIME_boundary

Content-Type: text/xml; charset=UTF-8

Content-Transfer-Encoding: 8bit

Content-ID: <rootpart@example.com>

<?xml version=’1.0’ ?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header xmlns:ins="http://myInsurers.com">

 <ins:ClaimReference>abc-123</ins:ClaimReference>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body xmlns:ins="http://myInsurers.com">

 <ins:SendClaim>

 <ins:ClaimDetail>myClaimDetails</ins:ClaimDetail>

 <ins:ClaimPhoto>

 <href>cid:claimphoto@example.com</href>

 </ins:ClaimPhoto>

 </ins:SendClaim>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

--MIME_boundary

Content-Type: application/octet-stream

Content-Transfer-Encoding: binary

Content-ID: <claimphoto@example.com>

myBinaryData

--MIME_boundary--

Optional epilogue text

102 Message Flows

You can further parse the BLOB data in the tree (for example, by using an ESQL

CREATE statement) if you know about the format of that MIME part. You might

be able to find information about the format from its Content-Type field in the

logical tree. Alternatively, you might know the format that your MIME messages

take, and be able to parse them appropriately. For example, you might know that

the first MIME Part is always an XML message, and that the second MIME Part is

a binary security signature.

You must specify how to parse other message formats, such as tagged delimited or

binary data, within your message flow, because the MIME parser does not do this.

You must also specify how to handle encoded and signed message parts, because

the MIME parser does not process these.

Some pre-defined MIME message models are supplied with the workbench and

can be imported using the New Message Definition From IBM Supplied Message

wizard.

MIME messages:

MIME headers

A MIME message consists of both data and metadata. MIME metadata consists of

HTTP-style headers and MIME boundary delimiters. Each header is a

colon-separated name-value pair on a line. The ASCII sequence <CR><LF>

terminates the line. A sequence of these headers, called a header block, is

terminated by a blank line: <CR><LF><CR><LF>. Any headers that are in this HTTP

style can appear in a MIME document. Some common MIME headers are

described in MIME standard header fields.

Content-Type

The only header that must be present is the Content-Type header. This header

specifies the type of the data in the message. If the Content-Type value starts with

Root

Properties

MIME-Version

Domain

Content-Type

ContentType

Transport headers

Content-Description

MIME

Parts

Optional epiloguePartPart PartOptional preamble

Content-Type Content-Transfer-Encoding Content-ID Data

BLOB

Developing message flows 103

“multipart”, the message is a multipart MIME message. For multipart messages the

Content-Type header must also include a boundary attribute that gives the text

that is used to delimit the message parts. Each MIME part has its own

Content-Type field that specifies the type of the data in the part. This can also be

multipart, which allows multipart messages to be nested. MIME parts with any

other Content-Type values are handled as BLOB data.

If a MIME document is sent over HTTP, the Content-Type header appears in the

HTTP header block rather than in the MIME message body. For this reason, the

broker manages the value of the Content-Type header as the ContentType property

in the Properties folder of the logical tree. This allows the MIME parser to obtain

the Content-Type value for a MIME document that is received over HTTP. If you

need to either create a new MIME tree or modify the value of the Content-Type,

set the Content-Type value using the ContentType property in the MIME domain.

If you set the Content-Type value directly in the MIME tree or HTTP tree, this

value might be ignored or used inconsistently. The following ESQL is an example

of how to set the broker ContentType property:

SET OutputRoot.Properties.ContentType = ’text/plain’;

Parsing

The MIME domain does not enforce the full MIME specification. Therefore, you

can work with messages that might not be valid in other applications. For

example, the MIME parser does not insist on a MIME-Version header. The MIME

parser imposes the following constraints:

v The MIME headers must be properly formatted:

– Each header is a colon-separated name-value pair, on a line of its own,

terminated by the ASCII sequence <CR><LF>.

– The header line must use 7-bit ASCII.

– Semicolons are used to separate parameters:

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml

– A header might contain a comment in parentheses, for example:

MIME-Version: 1.0 (Generated by XYZ)

v A line that starts with white space is treated as a continuation of the previous

line. Therefore, a long header can be split across more than one line.

v If two or more headers in a header block have the same name, their values are

concatenated into a comma-separated list.

v A top-level MIME Content-Type header must be available. The header is not

case-sensitive. If the transport is HTTP, any Content-Type value in the HTTP

header is used as the top-level Content-Type. If the transport is not HTTP, the

Content-Type must appear in the initial header block of the MIME message.

v The Content-Type value is a media type followed by the / character and a

subtype. Examples of this are text/xml and multipart/related. The parser does

not validate subtypes. The Content-Type value can be followed by one or more

parameters that are separated by semicolons.

v If the media type of a message is multipart, a boundary attribute must provide

the text that is used to delimit the separate MIME parts.

v Each individual MIME part can have its own Content-Type header. The part

header can have a media type of multipart, so that multipart messages can be

nested. In this case, a valid boundary attribute must be provided, and its value

must be different from any that has been previously defined in the message.

MIME parts that have any other Content-Type value are handled as BLOB data.

104 Message Flows

v MIME multipart boundary delimiters are represented in 7-bit ASCII. The

boundary delimiter consists of a line starting with a hyphen pair, followed by a

boundary string. This sequence must not occur within the MIME message at any

point other than as a boundary. A MIME end-delimiter is a hyphen pair,

followed by the MIME boundary string, followed by a further hyphen pair. All

delimiter lines must end in the ASCII sequence <CR><LF>. An example of a

delimited message is:

--MIME_boundary

message data

--MIME_boundary

message data

--MIME_boundary--

where MIME_boundary is the boundary delimiter string, and message data

represents message data.

v The MIME media type message is not supported and results in an error at run

time.

v Any preamble data (text between the initial MIME header block and the first

boundary delimiter) or epilogue data (text after the final boundary delimiter) is

stored in the logical tree as a value-only element. Preamble data and epilogue

data can appear only as the first and last children, respectively, of a Parts node.

v The MIME parser does not support on demand parsing and ignores the Parse

Timing property. The parser does not validate MIME messages against a message

model, and ignores the Message Brokers Toolkit Validate property.

Special cases of multipart MIME

The MIME parser is intended primarily for use with multipart MIME messages.

However, the parser also handles some special cases:

v Multipart MIME with just one part. The logical tree for the MIME part saves the

Content-Type and other information as usual, but the Data element for the

attachment is empty.

v Single-part MIME. For single-part MIME, the logical tree has no Parts child. The

last child of the MIME tree is the Data element. The Data element is the parent

of the BLOB that contains the message data.

v MIME parts with no content.

Secure MIME (S/MIME)

S/MIME is a standard for sending secure e-mail. S/MIME has an outer level

Content-Type of multipart/signed with parameters protocol and micalg that define

the algorithms that are used to encrypt the message. One or more MIME parts can

have encoded content. These parts have Content-Type values such as

application/pkcs7-signature and a Content-Transfer-Encoding of base64. The MIME

domain does not attempt to interpret or verify whether the message is actually

signed.

MIME tree details:

Logical tree elements

A MIME message is represented in the broker as a logical tree with the following

elements:

v The root of the tree is a node called MIME.

Developing message flows 105

v All correctly formatted headers are stored in the logical tree, regardless of

whether they conform to the MIME standard. The headers appear in the logical

tree as name=value, as shown here:

Content-Type=text/xml

v A multipart MIME message is represented by a subtree with a root node called

Parts.

v Any preamble or epilogue data associated with a multipart MIME message is

represented by value-only elements appearing as the first and last children of

Parts.

v In the special case of single-part MIME, the content is represented by a subtree

with the root called Data.

v Each part of a multipart MIME message is represented by an element called Part

with a child element for each MIME header, and a last child called Data.

v The Data element represents the content of a MIME part. This makes it easier to

test for the presence of body content using ESQL because the Data element is

always the last child of its parent.

Writing MIME messages

When writing a message, the MIME parser creates a message bit stream using the

logical message tree. The MIME domain does not enforce all of the constraints that

the MIME specification requires, therefore it might generate MIME messages that

do not conform to the MIME specification. The constraints that the MIME parser

imposes are:

v The tree must have a root called MIME, and constituent Parts, Part, and Data

elements, as described in “Logical tree elements” on page 105.

v Exactly one Content-Type header must be present at the top level of the tree, or

be available via the ContentType property. Media subtypes are not validated.

v If the media type is multipart then there must also be a valid boundary

parameter.

v Any constituent MIME parts may have exactly one Content-Type header. If the

value of this header starts with multipart then it must also include a valid

boundary parameter. The value of this boundary parameter must not be the

same as other boundary parameter values in the definition.

v The MIME Content-Type value “message” is not supported and results in an

error at run time.

v All name-value elements in the tree are written as name: value followed by the

ASCII sequence <CR><LF>.

If you have other elements in the tree, the parser behaves in the same way as the

HTTP header parser:

v A name-only element or a NameValue element with a NULL value results in

Name: NULL .

v Any children of a name-value element are ignored.

The message flow must serialize subtrees if they exist. This can be done using the

ESQL command ASBITSTREAM.

BLOB parser and domain

The BLOB message domain includes all the messages with content that cannot be

interpreted and subdivided into smaller sections of information.

106 Message Flows

Messages in this domain are processed by the BLOB parser. The BLOB parser is a

program that interprets a bit stream or message tree that represents a message that

belongs to the BLOB domain, and generates the corresponding tree from the bit

stream on input, or a bit stream from the tree on output.

A BLOB message is handled as a single string of bytes, and although you can

manipulate it, you cannot identify specific pieces of the byte string using a field

reference, in the way that you can with messages in other domains.

You can process messages in the BLOB domain in the following ways:

v You can refer to the message content if you know the location (offset) of

particular information within the message. You can specify offset values in ESQL

statements within nodes in a message flow to manipulate the information.

v You can store the message in an external database, in whole or in part (where

the part is identified by the offset of the data that is to be stored).

v You can use the Mapping node to map to and from a predefined BLOB message,

and to map to and from items of BLOB data. The BLOB message cannot be:

– The message content in a message where Content Validation is defined as

Open or Open Defined (for example, the message body of a SOAP envelope)

– The message represented by a wildcard inside another message

The UnknownParserName field is ignored.

The BLOB message body parser does not create a tree structure in the same way

that other message body parsers do. It has a root element BLOB, which has a child

element, also called BLOB, which contains the data.

For example, InputBody.BLOB.BLOB[10] identifies the tenth byte of the message

body; substring(InputBody.BLOB.BLOB from 10 for 10) references 10 bytes of the

message data starting at offset 10.

If you want to use the BLOB parser to parse a particular message, select BLOB as

the Message Domain on the relevant node in your message flow.

The following sample demonstrates how you can extract information from an XML

message and transform it into BLOB format to store it in a database.

v Data Warehouse sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

IDOC parser and domain

The IDOC domain can be used to process messages that are sent to the broker by

SAP R3 clients across the WebSphere MQ link for R3. Such messages are known as

SAP ALE IDocs.

Note: The IDOC domain is deprecated and is not recommended for developing

new message flows. Instead use the MRM domain with a TDS physical

format. See “MRM parser and domain” on page 98.

A typical ALE IDoc message that has been sent from SAP to the WebSphere MQ

link for R3 consists of an MQMD header, an MQSAPH header, and the ALE IDoc

itself. The IDoc is made up of fixed size structures:

v The first structure is the Control Structure (DC). This is a complex element 524

bytes long that contains a fixed set of SAP-defined simple elements.

Developing message flows 107

|
|

|
|

|

|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.datawarehouse.doc/doc/overview.htm

v One or more Data Structures (DDs). Each DD is a complex element 1063 bytes

long that contains a fixed set of SAP-defined simple elements that occupies 63

bytes, followed by 1000 bytes of user-defined segment data.

WebSphere Message Broker uses the IDOC parser to read and write ALE IDocs

that belong to the IDOC domain. When reading a message, the IDOC parser

constructs a message tree from a bit stream. When writing a message, the IDOC

parser creates a bit stream from a message tree.

The IDOC parser processes the SAP-defined elements in the DC, and then, for each

DD, the IDOC parser processes the SAP-defined elements and then invokes the

MRM parser to process the user-defined segment data, using its CWF physical

format. The IDOC parser is therefore a model-driven parser, and requires that you

create a message set in which to model the IDoc message, and deploy it to the

broker.

If you want the IDOC domain to parse a particular message, you must:

1. Create a new message set with a CWF physical format, or locate an existing

message set.

2. Ensure that either the message set has its Default message domain project set to

IDOC, or the IDOC check box (under Supported message domains) is selected, to

indicate that the message set supports the IDOC domain.

3. Create message definition files in the message set to represent your message.

See Building the message model for the IDOC parser for the steps involved.

4. Add the message set to a broker archive (bar) file which generates a message

dictionary for use by the MRM parser, and deploy the bar file to the broker.

5. Select Message Domain as IDOC on the appropriate node in your message flow.

6. Additionally, select Message Set and Message Format on the node. (You do not

need to select Message Type).

Null handling

A business message might contain fields that are either empty or have a specific

out-of-range value. In these cases, the application that receives the message is

expected to treat the field as if it did not have a value. The logical message tree

supports this concept by allowing the value of any element to be set to NULL.

Ways to represent a null value: In an XML document, the usual way to represent

a null value is to leave the element or attribute empty.

For example:<price></price> or <element price=""/>

The xsi:nil attribute provides a way to make this more

explicit:price=<xsi:nil="true"/>

Some business messages use a special value to represent null:<price>-999</price>

This style of null representation is supported only by the MRM parser.

ESQL support for null values: Using ESQL, you can set the value of a message

tree element to NULL:SET OutputRoot.XMLNSC.myField VALUE = NULL;

Note that this is quite different from SET OutputRoot.XMLNSC.myField = NULL;

which would cause myField to be deleted from the message tree.

108 Message Flows

The same effect can be achieved using Java or a Mapping node.

XMLNSC parser support for null values: Typically, the XML parsers (XMLNSC,

XMLNS, and XML) do not create null values in the message tree; an empty

element or an empty attribute value merely produces an empty string value in the

message tree.

If validation is enabled, the XMLNSC parser detects and processes any xsi:nil

attributes in the input document. If the xsi:nil attribute is set to ’true’, and the

element is nillable, the attribute’s parent element in the message tree is given a

NULL value.

For more information about XML parser support for empty and null elements, see

“XMLNSC empty elements and null values” on page 86 and “XMLNS empty

elements and null values” on page 94.

MRM parser support for null values: XML physical format

When parsing, the MRM XML parser can detect and process xsi:nil attributes in the

input XML document. If the xsi:nil attribute is set to ’true’, and the element is

nillable, the attribute’s parent element in the message tree is given a NULL value.

For information about enabling xsi:nil support in the MRM parser, see XML Null

handling options.

The following topics provide more information about NULL handling in the MRM

parser:

All physical formats

The MRM parser can detect a null that is represented by an out-of-range value.

The ’null value’ must be specified in the physical format of the message set.

While parsing, the MRM parser checks the null value for each element in the

message. If the value in the bit stream matches the null value in the message set,

the MRM parser sets the value in the message tree to NULL.

The same check is performed when converting a message tree to a bit stream. If

the value in the message tree is NULL, the MRM parser outputs the null value

from the message set.

v Custom wire format: NULL handling

v MRM XML physical format: NULL handling

v TDS format: NULL handling

Properties

This topic discusses the following types of broker properties:

v “Built-in” or broker-supplied properties, which are sometimes known simply as

“broker properties”: see “Broker properties.”

v Promoted properties: see “Promoted properties” on page 110.

v User-defined properties: see “User-defined properties” on page 111.

Broker properties

For each broker, WebSphere Message Broker maintains a set of properties. You can

access some of these properties from your ESQL programs. A subset of the

Developing message flows 109

properties is also accessible from Java code. It can be useful, during the runtime of

your code, to have real-time access to details of a specific node, flow, or broker.

Four categories of broker properties exist.

v Properties relating to a specific node

v Properties relating to nodes in general

v Properties relating to a message flow

v Properties relating to the execution group

For a description of the broker, flow, and node properties that are accessible from

ESQL and Java, see “Broker properties that are accessible from ESQL and Java” on

page 1663.

Broker properties have the following characteristics.

v They are grouped by broker, execution group, flow, and node.

v They are case sensitive. Their names always start with an uppercase letter.

v They return NULL if they do not contain a value.

All nodes that allow user programs to edit ESQL support access to broker

properties. These nodes are:

v Compute nodes

v Database nodes

v Filter nodes

v All derivatives of these nodes

User-defined properties can be queried, discovered, and set at run time to

dynamically change the behavior of a message flow. You can use the Configuration

Manager Proxy (CMP) API to manipulate these properties, which can be used by a

systems monitoring tool to perform automated actions in response to situations

that it detects in the monitored systems. For more information, see “User-defined

properties” on page 111.

A complex property is a property to which you can assign multiple values. Complex

properties are displayed in a table in the Properties view, where you can add, edit,

and delete values, and change the order of the values in the table. You cannot

promote complex properties; therefore, they do not appear in the Promote

properties dialog box. Nor can you configure complex properties; therefore, they

are not supported in the Broker Archive editor. For an example of a complex

property, see the Query elements property of the DatabaseRoute node.

For more information about editing a node’s properties, see “Configuring a

message flow node” on page 235.

Promoted properties

A promoted property is a message flow node property that has been promoted to

the level of the message flow in which it is included.

A message flow contains one or more message flow nodes, each of which is an

instance of a message flow type (a built-in node, or a user-defined node). You can

promote the properties of a message flow node to apply to the message flow to

which it belongs. If you do this, any user of the message flow can set values for

the properties of the nodes in this higher message flow by setting them at the

message flow level, without being aware of the message flow’s internal structure.

110 Message Flows

|
|
|
|
|
|

You can promote compatible properties (that is, properties that represent

comparable values) from more than one node to the same promoted property; you

can then set a single property that affects multiple nodes.

For example, you might want to set the name of a data source as a property of the

message flow, rather than a property of each individual node in the message flow

that references that data source. You create a message flow that accesses a database

called SALESDATA. However, while you are testing the message flow, you want to

use a test database called TESTDATA. If you set the data source properties of each

individual node within the message flow to refer to SALESDATA, you can promote

the data source property for each node in the flow that refers to it, and update the

property to have the value TESTDATA which overrides the node data source

properties values while you test the message flow (the promoted property always

takes precedence over the settings for the properties within any relevant nodes).

A subset of message flow node properties is also configurable (that is, the

properties can be updated at deploy time). You can promote configurable

properties: if you do so, the promoted property (which can have a different name

from the property or properties that it represents) is the one that is available to

update at deploy time. Configurable properties are those associated with system

resources, for example queues and data sources: they can be set at deploy time by

an administrator rather than a message flow developer.

You cannot promote a complex property, so it does not appear in the Promote

properties dialog box. For more information about complex properties, see “Broker

properties” on page 109.

User-defined properties

A user-defined property (UDP) is a property that is defined when you construct a

message flow using the Message Flow editor. This property can be used by the

ESQL or Java program inside message flow nodes, such as a Compute node.

The advantage of UDPs is that their values can be changed by operational staff at

deployment and run time. You do not need to change your application programs.

For example, if you use the UDPs to hold data about your computer center, you

can configure a message flow for a particular computer, task, or environment at

deployment time, without having to change the code at the message node level.

When you launch the Message flow editor to either create a message flow or

modify an existing message flow, as well as deciding which nodes are required in

the message flow, you also have the option (provided by the tab) of defining and

giving initial values to some user-defined properties. Use the User Defined

Properties tab at the bottom of the edit window. See Message Flow editor for more

information.

As well as being defined using the Message flow editor, a UDP must also be

defined using either a DECLARE statement with the EXTERNAL keyword in any

ESQL program that uses it, or the getUserDefinedAttribute method in any

JavaCompute node that uses it.

See the “DECLARE statement” on page 1525 for details of the DECLARE

statement, and see “Accessing user-defined properties from a JavaCompute node”

on page 466 for more information about how to use a UDP in a JavaCompute

node.

Developing message flows 111

Any value that you give to a UDP when you define it in a message flow overrides

the value of that variable in your ESQL program.

The value of a UDP can also be modified at deployment time by using the Broker

Archive editor to edit the bar file. This value overrides any value that was given

when you defined the message flow.

The value of the UDP is set at the message flow level and is the same for all

eligible nodes that are contained in the flow. An eligible node is a node that

supports UDPs and is within the scope of the declaration that declares the UDP to

your application. For example, if you use the Message Flow editor to change the

value of a user property called timezone, which is declared in a schema called

mySchema, in a message flow called myFlow, the UDP is available at run time to all

the nodes in myFlow that support UDPs and that fall within mySchema.

Similarly, if you use the Message Flow editor to change the value of a user-defined

property in a subflow, the newly edited property is available to all the nodes in the

subflow that support UDPs and that are within the scope of the declaration. The

property is not available, for example, to nodes in the parent flow.

Controlling user-defined properties at run time

User-defined properties can be queried, discovered, and set at run time to

dynamically change the behavior of a message flow. You can use the Configuration

Manager Proxy (CMP) API to manipulate these properties, which can be used by a

systems monitoring tool to perform automated actions in response to situations

that it detects in the monitored systems.

For example, a message flow contains a Route node, which is used to differentiate

between the classes of customer that are defined in the message. The Route node

has a user-defined property called ProcessClasses, which is set with an initial value

of All. When ProcessClasses is set to All, the node routes messages from any class

of customer to its first terminal for immediate processing.

When certain conditions are detected (for example, the monitoring system detects

that the request load is causing the service level agreement to fall below its target),

the Route node must be set to pass requests from only ″Gold″ class customers for

immediate processing, while other customers’ requests are sent to another output

terminal, which queues them for later batch processing. Therefore, the monitoring

application sets ProcessClasses to Gold so that the Route node routes the less

critical messages to the second terminal.

To make it easier to know what a user-defined property does, and what values it

can have, adopt a suitable naming convention. For example, a user-defined

property named property01, with an initial value of valueA is not as useful as a

property named RouteToAorB with an initial value of RouteA.

For more information, see Setting user-defined properties dynamically at run time.

Precedence of UDP value overriding

You can define a user-defined property in four ways:

v In the ESQL code

v In the Message Flow editor

v Through a bar file override

v With the CMP API

112 Message Flows

|

|
|
|
|
|

You define a UDP in ESQL, in the Message Flow editor, or through a bar file

override before bar file deployment. A bar file override takes precedence over

changes in the Message Flow editor, and changes in the Message Flow editor take

precedence over changes in the ESQL code.

The BrokerProxy.deploy() call can take precedence over the bar file override, or the

bar file override can take precedence over the BrokerProxy.deploy() call. In both

cases, changes that are made survive when the broker is restarted.

The precedence of the values for user-defined properties is demonstrated in the

following sequence:

1. The user-defined property ProcessClasses is set to All in a message flow bar

file. After deployment of the bar file, the value of ProcessClasses is All.

2. The same user-defined property (ProcessClasses) is set to Gold by using the

CMP API to issue the call setUserDefinedProperty(“ProcessClasses”, “Gold”).

After successful execution of the BrokerProxy.deploy() call, the value of

ProcessClasses is Gold.

3. The broker is shut down and restarted. The value of ProcessClasses is still

Gold.

4. The original flow bar file is redeployed. After deployment, the value of

ProcessClasses is All.

Message flow transactions

A message flow can be one of two styles:

“Coordinated message flows”

These ensure that all updates to resources are committed or rolled back

together within a single transaction.

“Uncoordinated message flows” on page 114

These allow updates to resources to occur independently; the updates are

not affected by the overall success or failure of the message flow.

Coordinated message flows

You can configure a message flow that includes interaction with an external

database or other recoverable resource so that all of its processing is coordinated

within a single, global, transaction. This coordination ensures that either all

processing is successfully completed, or no processing is completed. The

transaction is committed (if all processing is successful), or rolled back (if at least

one part of the processing is unsuccessful). Therefore, all affected resources

(queues, databases, and so on) are maintained in a consistent state, and data

integrity is preserved.

Updates that are made by a coordinated message flow are committed when the

flow processes the input message successfully. The updates are backed out if both

of the following conditions are met:

v Any node within the flow throws an exception that is not caught by a node

other than the input node

v The input node’s Catch terminal is not connected

To configure a message flow as coordinated, set the Coordinated property on the

message flow.

Developing message flows 113

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|

|
|

For some input nodes, such as MQInput or SCADAInput nodes, set the

Transaction Mode property on the nodes in the flow to Automatic. The Automatic

option makes messages part of the global transaction, and marks the message flow

as transactional if the input message is persistent, or uncoordinated if the input

message is not persistent. Subsequent nodes in the flow that set the Transaction

Mode property to Automatic are included in the global transaction if the flow is

marked transactional by the input node.

Transaction coordination of message flows is provided on distributed systems by

WebSphere MQ, and on z/OS® systems by RRS. Message flows are always globally

coordinated on z/OS, regardless of the setting of the message flow’s Coordinated

property.

Uncoordinated message flows

Uncoordinated flows are flows for which the Coordinated property is not set.

Updates to resources that are used by a uncoordinated flow are managed by the

separate resource managers. Some resource managers, such as WebSphere MQ,

allow updates to be made non-transactionally, or as part of a resource-specific

transaction. Other resource managers, such as database managers, always use a

resource-specific transaction. A resource-specific transaction is a transaction with a

scope that is limited to the resources that are owned by a single resource manager,

such as a database or queue manager.

Resource-specific transactions are typically used when only one type of recoverable

resource is used in a flow. An example of such a flow is one that contains an

MQInput and an MQOutput node, but which does not access any databases. Do

not use resource-specific transactions when more than one resource exists and data

integrity must be maintained.

Updates that are made to a resource that is accessed non-transactionally are

committed immediately. An MQInput node that is configured to be

non-transactional removes messages from the queue immediately; if the flow fails,

the messages are lost.

Set the Transaction Mode property to Automatic to make some input nodes (such

as MQInput or SCADAInput) part of a transaction, depending on the persistence

of the input message. If the input message is persistent, messages are made part of

the transaction, and the flow is marked as transactional. If the message is not

persistent, the flow is marked as non-transactional.

The following sample demonstrates the use of globally-coordinated transactions

and the differences in the message flow when database updates are coordinated

(the main flow), and when they are not (the error flow).

v Error Handler sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Broker schemas

A broker schema is a symbol space that defines the scope of uniqueness of the

names of resources defined within it. The resources are message flows, ESQL files,

and mapping files.

114 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.doc/doc/overview.htm

The broker schema is defined as the relative path from the project source directory

to the flow name. When you first create a message flow project, a default broker

schema named (default) is created within the project.

You can create new broker schemas to provide separate symbol spaces within the

same message flow project. A broker schema is implemented as a folder, or

subdirectory, within the project, and provides organization within that project. You

can also use project references to spread the scope of a single broker schema across

multiple projects to create an application symbol space that provides a scope for all

resources associated with an application suite.

A broker schema name must be a character string that starts with a Unicode

character followed by zero or more Unicode characters or digits, and the

underscore. You can use the period to provide a structure to the name, for example

Stock.Common. A directory is created in the project directory to represent the

schema, and if the schema is structured using periods, further subdirectories are

defined. For example, the broker schema Stock.Common results in a directory

Common within a directory Stock within the message flow project directory.

If you create a resource (for example, a message flow) in the default broker schema

within a project, the file or files associated with that resource are created in the

directory that represents the project. If you create a resource in another broker

schema, the files are created within the schema directory.

For example, if you create a message flow Update in the default schema in the

message flow project Project1, its associated files are stored in the Project1

directory. If you create another message flow in the Stock.Common broker schema

within the project Project1, its associated files are created in the directory

Project1\Stock\Common.

Because each broker schema represents a unique name scope, you can create two

message flows that share the same name within two broker schemas. The broker

schemas ensure that these two message flows are recognized as separate resources.

The two message flows, despite having the same name, are considered unique.

If you move a message flow from one project to another, you can continue to use

the message flow within the original project if you preserve the broker schema. If

you do this, you must update the list of dependent projects for the original project

by adding the target project. If, however, you do not preserve the broker schema,

the flow becomes a different flow because the schema name is part of the fully

qualified message flow name, and it is no longer recognized by other projects. This

action results in broken links that you must manually correct. For further

information about correcting errors after moving a message flow, see “Moving a

message flow” on page 222.

Do not move resources by moving their associated files in the file system; you

must use the workbench to move resources to ensure that all references are

corrected to reflect the new organization.

The following scope and reuse conditions apply when you create functions,

procedures, and constants in a broker schema:

Functions

v Functions are locally reusable and can be called by module-scope

subroutines or mappings within the same schema.

Developing message flows 115

v Functions are globally reusable and can be called by other functions or

procedures in ESQL or mapping files within any schema defined in the

same or another project.

Procedures

v Procedures are locally reusable and can be called from module-scope

subroutines in ESQL files within the same schema.

v Procedures are globally reusable and can be called by other functions or

procedures in ESQL files within any schema defined in the same or

another project.

Procedures cannot be used in mapping files.

Constants

v Constants are locally reusable and can be used where they are defined in

any ESQL or mapping file within the same broker schema.

v Constants are not globally reusable; you cannot use a constant that is

declared in another schema.

 If you want to reuse functions or procedures globally:

v Specify the path of the function or procedure:

– If you want to reuse a function or procedure in an ESQL file, either provide a

fully-qualified reference, or include a PATH statement that defines the path.

If you choose to define the path, code the PATH statement in the same ESQL

file as that in which the function is coded, but not within any MODULE.

– If you want to reuse a function in a mapping file, do one of the following:

- Qualify the function in the Composition Expression editor.

- Select Organize Schema References in the outline view. This detects

dependent PATHs and automatically updates the reference.

- Select Modify Schema References in the outline view. You can then select

the schema in which the function is defined.

(You cannot reuse a procedure in a mapping file.)
v Set up references between the projects in which the functions and procedures are

defined and used.

Generating events for monitoring

You can configure your message flow to emit event messages that can be used to

support transaction monitoring, transaction auditing and business process

monitoring.

An event is a message published by a message flow when something interesting

happens. The message contains information about the source of the event, the time

of the event, and the reason for the event. The message can include the message

bitstream, and can also include selected fields from the message body. These fields

can be used to correlate messages that belong to the same transaction.

Events can be used to support transaction monitoring, transaction auditing and

business process monitoring.

Business process monitoring

The events published by a broker can be monitored by WebSphere Business

Monitor. Important fields in the message payload can be added to the events

116 Message Flows

emitted by your message flows, allowing them to be monitored. You can use the

following items to help you use WebSphere Business Monitor to monitor your

message flows:

Message Driven bean

The events must be submitted to the CEI repository in order for

WebSphere Business Monitor to monitor them. A message driven bean is

supplied for this purpose. The message driven bean subscribes to the event

topic and writes events that match its subscription to the CEI repository.

WebSphere Business Monitor Model

WebSphere Message Broker includes an example Monitor Model for use

with WebSphere Business Monitor. This model allows simple flow entry

and flow exit events to be monitored. It can be extended to allow

monitoring of events which include one or more fields from the message

payload. This model is supplied as an IBM Supplied Message.

The following sample provides a Message Driven Bean and a WebSphere Business

Monitor Model to help you use WebSphere Business Monitor to monitor events in

your message flows:

v WebSphere Business Monitor sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Transaction monitoring and auditing

The events published by WebSphere Message Broker can be written to a

transaction repository, creating an audit trail of the transactions that are processed

by a broker. A transaction repository can be used for monitoring, auditing and

replay of transactions. You can perform the following tasks to set up transaction

monitoring and auditing.

Design a monitoring profile for your transactions

By default, every flow entry event issued by WebSphere Message Broker

contains the message bitstream and a localTransactionId (for transports

which have a suitable id). In most cases this information is not sufficient to

allow querying of the logged transactions. Key fields and other correlation

data can be extracted from the message payload and placed into the

ApplicationData/SimpleContent element of the event. The logging

application or message flow can extract these fields and log them with the

message bitstream.

Subscribe to the event topic and write events to a repository

You can create a message flow that subscribes to the event topic and writes

events to a relational database. The details of the database schema depend

on the requirements of your organization, for example the number of key

fields and transaction ids.

Apply the monitoring profile to your message flows

For information about applying the monitoring profile to your message

flows, see “Configure monitoring events for message flows” on page 562.

Monitoring basics

Message flows can be configured to emit event messages that can be used to

support transaction monitoring, transaction auditing and business process

monitoring.

Developing message flows 117

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.WBMonitor.doc/doc/overview.htm

Events are emitted by the input node in message flows that have been configured

to enable monitoring. The following types of input node can emit events:

v “MQInput node” on page 1007

v “JMSInput node” on page 949

v “SOAPInput node” on page 1104

v “SOAPAsyncResponse node” on page 1092

v “HTTPInput node” on page 920

Event types

A message flow can emit the following types of event:

v Message flow entry (transaction start)

v Message flow exit (transaction end)

v Message flow failure (transaction rollback)

If you have enabled event monitoring for a message flow, the message flow emits a

pair of events for every message:

v A message flow entry event is emitted when a message arrives at one of the

message flow’s input nodes. A message flow entry event is always emitted if the

message flow is configured for monitoring.

v A message flow exit event is emitted if the message is processed successfully by

the message flow.

v A message flow failure event is emitted if the message flow failed to process the

message successfully and the message was backed out. A message flow failure

event is only issued if one of the following conditions are true:

– Neither the Failure or the Catch terminal of the input node is connected.

– An unhandled exception has occurred in the path from the Failure or Catch

terminal of the input node.

A message flow exit (transaction end) event signals that the message flow has

ended its own processing successfully. However, processing of the business

transaction might have failed, and the message flow might have handled the

failure before ending.

Event output options

Events are published to a topic, where they can be read by multiple subscribers.

The topic name is of the form:

$SYS/Broker/brokerName/Monitoring/executionGroupName/flowName

The hierarchical structure allows subscribers to filter the events which they receive.

One subscriber can receive events from all message flows in the broker, while

another receives only the events from a single execution group.

Message payload data captured in events

Events are generated at flow entry, flow exit and exception events. These events

are generated by the supported list of input nodes. The payload data in all events

is the sample data received by the input node, and therefore does not show any

transformations that have been made to the message data by the message flow.

118 Message Flows

|

|
|
|
|

Monitoring Profiles

A monitoring profile controls the content of the monitoring events emitted by one

or more message flows. The default monitoring profile with name

DefaultMonitoringProfile exists, and is the profile which is used by all message

flows. A new monitoring profile can be created using the

mqsicreateconfigurableservice command.

Message flow accounting and statistics data

Message flow accounting and statistics data is the information that can be collected

by a broker to record performance and operating details of message flow

execution.

These reports are not the same as the publish/subscribe statistics reports that you

can generate. The publish/subscribe statistics provide information about the

performance of brokers and the throughput between the broker and clients that are

connected to the broker. Message flow accounting and statistics reports provide

information about the performance and operating details of a message flow

execution.

Message flow accounting and statistics data records dynamic information about the

runtime behavior of a message flow. For example, it indicates how many messages

are processed and how large those messages are, as well as CPU usage and

elapsed processing times. The broker collects the data and records it in a specified

location when one of a number of events occurs (for example, when a snapshot

interval expires or when the execution group you are recording information about

stops).

The broker takes information about statistics and accounting from the operating

system. On some operating systems, such as Windows®, UNIX®, and Linux®,

rounding can occur because the system calls that are used to determine the CPU

times are not sufficiently granular. This rounding might affect the accuracy of the

data.

The following restrictions apply to data collection:

v If the message flow starts with a SCADAInput node or a Real-timeInput node,

no data is collected (and no error is reported).

v Data relating to the size of messages is not collected for WebSphere Adapters

nodes (for example, the SAPInput node), the FileInput node, the JMSInput node,

or any user-defined input node that does not create a message tree from a bit

stream.

Under some circumstances, message size is recorded for the Web Services nodes

(for example, the SOAPInput node), but the value might not reflect the real

input message size and should be ignored.

Collecting message flow accounting and statistics data is optional; by default it is

switched off. To use this facility, request it on a message flow or execution group

basis. The settings for accounting and statistics data collection are reset to the

defaults when an execution group is redeployed. Previous settings for message

flows in an execution group are not passed on to the new message flows deployed

to that execution group. Data collection is started and stopped dynamically when

you issue the mqsichangeflowstats command; you do not need to make any

change to the broker or to the message flow, or redeploy the message flow, to

request statistics collection.

Developing message flows 119

You can activate data collection on both your production and test systems. If you

collect the default level of statistics (message flow), the impact on broker

performance is minimal. However, collecting more data than the default message

flow statistics can generate high volumes of report data that might cause a small

but noticeable performance overhead.

When you plan data collection, consider the following points:

v Collection options

v Accounting origin

v Output formats

You can find more information on how to use accounting and statistics data to

improve the performance of a message flow in this developerWorks® article on

message flow performance.

The following SupportPac™ provides additional information about using

accounting and statistics:

v Using statistics and accounting SupportPac (IS11)

Message flow accounting and statistics collection options

The options that you specify for message flow accounting and statistics collection

determine what information is collected. You can request the following types of

data collection:

v Snapshot data is collected for an interval of approximately 20 seconds. The exact

length of the interval depends on system loading and the level of current broker

activity. You cannot modify the length of time for which snapshot data is

collected. At the end of this interval, the recorded statistics are written to the

output destination and the interval is restarted.

v Archive data is collected for an interval that you have set for the broker on the

mqsicreatebroker or mqsichangebroker command. You can specify an interval of

between 10 and 14400 minutes, the default value is 60 minutes. At the end of

this interval, the recorded statistics are written to the output destination and the

interval is restarted.

An interval is prematurely expired and restarted when any of the following

events occur:

– The message flow is redeployed.

– The set of statistics data to be collected is modified.

– The broker is shut down.

This preserves the integrity of the data already collected when that event occurs.

z/OS

On z/OS, you can set the command parameter to 0, which means that

the interval is controlled by an external timer mechanism. This support is

provided by the Event Notification Facility (ENF), which you can use instead of

the broker command parameter if you want to coordinate the expiration of this

timer with other system events.

You can request snapshot data collection, archive data collection, or both. You can

activate snapshot data collection while archive data collection is active. The data

recorded in both reports is the same, but is collected for different intervals. If you

activate both snapshot and archive data collection, be careful not to combine

information from the two different reports, because you might count information

twice.

You can use the statistics generated for the following purposes:

120 Message Flows

http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html
http://www.ibm.com/support/docview.wss?uid=swg24007228

v You can record the load that applications, trading partners, or other users put on

the broker. This allows you to record the relative use that different users make of

the broker, and perhaps to charge them accordingly. For example, you could

levy a nominal charge on every message that is processed by a broker, or by a

specific message flow.

Archive data provides the information that you need for a use assessment of this

kind.

v You can assess the execution of a message flow to determine why it, or a node

within it, is not performing as you expect.

Snapshot data is appropriate for performance assessment.

v You can determine the route that messages are taking through a message flow.

For example, you might find that an error path is taken more frequently than

you expect and you can use the statistics to understand when the messages are

routed to this error path.

Check the information provided by snapshot data for routing information; if this

is insufficient for your needs, use archive data.

Message flow accounting and statistics accounting origin

Accounting and statistics data can be accumulated and reported with reference to

an identifier associated with a message within a message flow. This identifier is the

accounting origin. This provides a method of producing individual accounting and

statistics data for multiple accounting origins that generate input to message flows.

The accounting origin can be a fixed value, or it can be dynamically set according

to your criteria.

For example, if your broker hosts a set of message flows associated with a

particular client in a single execution group, you can set a specific value for the

accounting origin for all these flows. You can then analyze the output provided to

assess the use that the client or department makes of the broker, and charge them

accordingly.

If you want to track the behavior of a particular message flow, you can set a

unique accounting origin for this message flow, and analyze its activity over a

given period.

To make use of the accounting origin, you must perform the following tasks:

v Activate data collection, specifying the correct parameter to request basic

support (the default is none, or no support). For details, see mqsichangeflowstats

command.

v Configure each message flow for which you want a specific origin to include

ESQL statements that set the unique value that is to be associated with the data

collected. Data for message flows for which a specific value has not been set are

identified with the value Anonymous.

The ESQL statements can be coded in a Compute, Database, or Filter node.

You can configure the message flow either to set a fixed value, or to determine a

dynamic value, and can therefore create a very flexible method of recording sets

of data that are specific to particular messages or circumstances. For more

information, refer to “Setting message flow accounting and statistics accounting

origin” on page 566.

You can complete these tasks in either order; if you configure the message flow

before starting data collection, the broker ignores the setting. If you start data

collection, specifying accounting origin support, before configuring the message

flow, all data is collected with the Accounting Origin set to Anonymous. The broker

Developing message flows 121

acknowledges the origin when you redeploy the message flow. You can also

modify data collection that has already started to request accounting origin

support from the time that you issue the command. In both cases, data that has

already been collected is written out and collection is restarted.

When data has been collected, you can review information for one or more specific

origins. For example, if you select XML publication messages as your output

format, you can start an application that subscribes to the origin in which you are

interested.

Output formats for message flow accounting and statistics data

When you collect message flow statistics, you can choose the output destination

for the data.

Select one of the following destinations:

v User trace

v XML publication

v SMF

Statistics data is written to the specified output location in the following

circumstances:

v When the archive data interval expires.

v When the snapshot interval expires.

v When the broker shuts down. Any data that has been collected by the broker,

but has not yet been written to the specified output destination, is written

during shutdown. It might therefore represent data for an incomplete interval.

v When any part of the broker configuration is redeployed. Redeployed

configuration data might contain an updated configuration that is not consistent

with the existing record structure (for example, a message flow might include an

additional node, or an execution group might include a new message flow).

Therefore the current data, which might represent an incomplete interval, is

written to the output destination. Data collection continues for the redeployed

configuration until you change data collection parameters or stop data collection.

v When data collection parameters are modified. If you update the parameters that

you have set for data collection, all data that is collected for the message flow

(or message flows) is written to the output destination to retain data integrity.

Statistics collection is restarted according to the new parameters.

v When an error occurs that terminates data collection. You must restart data

collection yourself in this case.

User trace

You can specify that the data that is collected is written to the user trace log. The

data is written even when trace is switched off. The default output destination for

accounting and statistics data is the user trace log. The data is written to one of the

following locations:

v

Windows

On Windows systems, if the broker workpath has been set using the

-w option of the mqsicreatebroker command, data is written to workpath\log. If

the broker workpath has not been specified, data is written to C:\Documents

and Settings\All Users\Application Data\IBM\MQSI\common\log,

v

Linux

UNIX

On Linux and UNIX systems, data is written to

/var/mqsi/common/log.

122 Message Flows

v

z/OS

On z/OS systems, data is written to /component_filesystem/log.

XML publication

You can specify that the data that is collected is published. The publication

message is created in XML format and is available to subscribers registered in the

broker network that subscribe to the correct topic.

The topic on which the data is published has the following structure:

$SYS/Broker/brokerName/StatisticsAccounting/recordType/executionGroupLabel/messageFlowLabel

The variables correspond to the following values:

brokerName

The name of the broker for which statistics are collected.

recordType

Set to Snapshot or Archive, depending on the type of data to which you

are subscribing. Alternatively, use # to register for both snapshot and

archive data if it is being produced.

executionGroupLabel

The name of the execution group for which statistics are collected.

messageFlowLabel

The label on the message flow for which statistics are collected.

Subscribers can include filter expressions to limit the publications that they receive.

For example, they can choose to see only snapshot data, or to see data that is

collected for a single broker. Subscribers can specify wild cards (+ and #) to receive

publications that refer to multiple resources.

The following examples show the topic with which a subscriber should register to

receive different sorts of data:

v Register the following topic for the subscriber to receive data for all message

flows running on BrokerA:

$SYS/Broker/BrokerA/StatisticsAccounting/#

v Register the following topic for the subscriber to receive only archive statistics

relating to a message flow Flow1 running on execution group Execution on

broker BrokerA:

$SYS/Broker/BrokerA/StatisticsAccounting/Archive/Execution/Flow1

v Register the following topic for the subscriber to receive both snapshot and

archive data for message flow Flow1 running on execution group Execution on

broker BrokerA

$SYS/Broker/BrokerA/StatisticsAccouting/#/Execution/Flow1

Message display, test and performance utilities SupportPac (IH03) can help you

with registering your subscriber.

SMF

On z/OS, you can specify that the data collected is written to SMF. Accounting

and statistics data uses SMF type 117 records. SMF supports the collection of data

from multiple subsystems, and you might therefore be able to synchronize the

information that is recorded from different sources.

Developing message flows 123

http://www.ibm.com/support/docview.wss?uid=swg24000637

When you want to interpret the information recorded, you can use any utility

program that processes SMF records.

Message flow aggregation

Aggregation is the generation and fan-out of related requests that are derived from

a single input message, and the fan-in of the corresponding replies to produce a

single aggregated reply message.

The initial request that is received by the message flow, representing a collection of

related request items, is split into the appropriate number of individual requests to

satisfy the subtasks of the initial request. This process is known as fan-out, and it

is provided by a message flow that includes aggregation nodes.

Replies from the subtasks are combined and merged into a single reply, which is

returned to the original requester (or another target application) to indicate

completion of the processing. This process is known as fan-in, and it is also

provided by a message flow that includes aggregation nodes.

A message aggregation is initiated by a message flow that contains the

AggregateControl node followed by an AggregateRequest node. The responses are

aggregated back together using a flow that contains the AggregateReply node. The

aggregation nodes work correctly only for transports that use a request/reply

model; for example, WebSphere MQ Enterprise Transport.

If you use WebSphere MQ Enterprise Transport, the responses that are received by

the fan-in flow must be valid reply messages that contain the reply identifier. You

must set the reply identifier to the value of the message in the request message’s

message descriptor (MQMD), then store the reply identifier in the correlation

identifier field (CorrelId) of the MQMD. If the CorrelId is set to MQCI_NONE, the

AggregateReply node issues an error because the reply message is not valid, and

cannot be matched to a request message.

WebSphere Message Broker provides three message flow nodes that support

aggregation:

v The AggregateControl node

v The AggregateRequest node

v The AggregateReply node

When you include these nodes in your message flows, the multiple fan-out

requests are issued in parallel from within a message flow. The standard operation

of the message flow is for each node to perform its processing in sequence.

You can also use these aggregation nodes to issue requests to applications outside

the broker environment. Messages can be sent asynchronously to external

applications or services; the responses are retrieved from those applications, and

the responses are combined to provide a single response to the original request

message.

These nodes can help to improve response time because slow requests can be

performed in parallel, and they do not need to follow each other sequentially. If

the subtasks can be processed independently, and they do not need to be handled

as part of a single unit of work, they can be processed by separate message flows.

You can design and configure a message flow that provides a similar function

without using the aggregation nodes, by issuing the subtask requests to another

124 Message Flows

application (for example, using the HTTPRequest node), and recording the results

of each request in the LocalEnvironment. After each subtask has completed, merge

the results from the LocalEnvironment in a Compute node, and create the

combined response message for propagating to the target application. However, all

the subtasks are performed sequentially, and they do not provide the performance

benefits of parallel operation that you can achieve if you use the aggregation

nodes.

Examples of aggregation flows that use the aggregation nodes are provided in the

following samples:

v Aggregation sample

v Airline Reservations sample

The Aggregation sample demonstrates a simple four-way aggregation, and the

Airline Reservations sample simulates requests that are related to an airline

reservation service, and illustrates the techniques that are associated with

aggregation flows. You can view samples only when you use the information

center that is integrated with the Message Broker Toolkit.

In previous releases of WebSphere Message Broker, the aggregation nodes used a

table in the broker database to persist aggregation requests. From WebSphere

Business Integration Message Broker Version 5.0 onwards, you can use WebSphere

MQ instead. The external functioning of aggregation nodes is unchanged, but you

can configure an execution group to use WebSphere MQ queues for storing

aggregations, instead of a database table. Using WebSphere MQ in this way

improves performance and means that you can run aggregation in a non-persistent

mode when persistence of aggregation requests is not required. For details of how

to migrate and configure an execution group to use WebSphere MQ, see “Using

WebSphere MQ to store state in aggregation nodes” on page 590. If you change

from using a database table to using WebSphere MQ to store aggregation state, no

migration of existing aggregations is performed. Therefore, you must ensure that

no outstanding aggregations exist, because these aggregations are not migrated.

The aggregation nodes store state for aggregations on WebSphere MQ queues. If

you do not specify a timeout on the AggregateControl node, or if you leave it set

to zero, aggregation requests that WebSphere MQ stores internally are never

cleaned up unless all reply messages return. This situation could lead to a gradual

build up of messages on the internal queues. Set the timeout to a value greater

than zero to ensure that requests are cleaned up and queues do not fill with

redundant requests. It is good practice to set the timeout value to a large value, for

example, 864000 seconds (24 hours), so that the queues clear old aggregation

messages even if timeouts are not required or expected.

The aggregation nodes use WebSphere MQ message expiry to manage timeout of

messages. For message expiry to work, the aggregation nodes must browse the

message queues. The aggregation nodes browse the queues automatically to ensure

that expired messages are processed.

z/OS

On z/OS, you can configure WebSphere MQ to run a scavenger process

that browses the queues instead of the aggregation nodes. To enable the scavenger,

set the broker’s queue manager property EXPRYINT to 5 seconds. If you do not set

EXPRYINT, or set it to a value higher than 10 seconds, the aggregation nodes

revert to browsing the aggregation queues automatically.

Developing message flows 125

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.aggregation.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm

Message collection

Message collection is the generation of a single message that can derive from

multiple messages from one or more sources. This single message containing

multiple source messages is known as a message collection.

You can use a Collector node to group together messages from one or more

sources into a message collection, so that they can be processed together by

downstream nodes. You can also manually build a message collection using a

JavaCompute node.

Structure of a message collection

A message collection tree contains sub-trees that hold the content of the individual

messages received by the Collector node. The message assembly that is propagated

from the Collector node to other nodes in your message flow contains the

following four components:

v Message (including transport headers)

v Local environment

v Global environment

v Exception list

The following figure an example of the message tree structure of a message

collection. The message collection in this example contains two messages, one

received from WebSphere MQ, and one from a file input source.

attribute
<name> / <value>

Root

Properties

Properties Properties

Collection

MRMMQMD XMLNSC

<folder name> <folder name>

Collection attributes (name/value pairs)

Example messages owned by collection

A message collection has a Properties header and a single folder element named

Collection. A message collection can also have zero or more attributes that are

name/value pairs; the name of an attribute must be unique within a message

126 Message Flows

collection. These are shown as <name> / <value> in the figure. A standard attribute

for the message collection is an attribute called CollectionName. If you use a

Collector node to generate a message collection, the value for the collection name

is generated based on the values you configure in the node. The collection name

attribute is not compulsory.

Within the Collection folder in the message collection tree structure are folders,

shown as <folder name> in the diagram. These folders contain the message tree of

each message added to the message collection. Each of these folders has a name,

but this name does not have to be unique within the message collection. The value

for the <folder name> is derived from the source of the input message. The

LocalEnvironment, Environment and ExceptionList trees are not included in the

structure, but are instead carried separately as a part of the message assembly.

There is no concept of a LocalEnvironment associated with each message in a

message collection.

You can not use a message collection as a source message for another message

collection. Nested message collections are not permitted. For example, If you

attempt to pass a message collection to a input terminal on a Collector node, an

error is generated.

Generating a message collection using a Collector node

You can use the Collector node to make multiple synchronous or asynchronous

requests in parallel. The results of these requests can be joined together

downstream if required. This is different from the behavior of the aggregation

nodes where there is a fixed pattern of request/response and where reply

messages are grouped by request id. In contrast, the collector node does not need

an initial fan-out stage and can group together unrelated input messages by

correlating their content. You can configure dynamic input terminals on a Collector

node to receive messages from different sources. You can also configure properties

on the Collector node, known as event handlers, to determine how messages are

added to a message collection, and when a message collection is complete.

Processing a message collection

A message collection is supported by the following nodes only:

v Compute

v JavaCompute

Errors are generated by other nodes if they receive a message collection.

You can use ESQL or XPATH expressions to access the content of messages in a

message collection by referencing the folder names. To access the contents of a

message in a message collection using ESQL you can use code similar to the

following ESQL:

InputRoot.<collection name>.<folder1>.XMLNSC

Examples of XPath expressions that you can use to access the message collection

are:

v /*: returns a list of all the messages in the message collection.

v /@*: returns a list of all the attributes of the message collection.

v /@Name: returns the value of the attribute Name.

Developing message flows 127

You might not be able to determine the order of the messages within a message

collection. If you generate a message collection using the Collector node, the

messages are arranged in the same order as the messages arrived at the node.

Converting data with message flows

Convert data that you are transferring between different environments.

Data conversion is the process by which data is transformed from the format

recognized by one operating system into that recognized by a second operating

system with different characteristics such as numeric order.

If you are using a network of systems that use different methods for storing

numeric values, or you need to communicate between users who view data in

different code pages, you must consider how to implement data conversion.

Numeric order

For numeric and encoding aspects, consider:

v Big Endian versus Little Endian

v Encoding values in WebSphere MQ (the Encoding field in the MQMD)

Encoding values are system specific. For example, Windows typically

has an encoding of 546, hexadecimal value X’00000222’. The three final

hexadecimal digits identify:

1. The float number format

This value can be 1 (IEEE format byte order normal), 2 (IEEE format

byte order reversed), or 3 (zSeries® format byte order normal).

Operations on floating point numbers, whether IEEE or z/Series

(S/390®) format, are subject to rounding error.

2. The packed decimal number format

This value can be 1 (byte order normal) or 2 (byte order reversed).

3. The hexadecimal number format

This value can be 1 (byte order normal) or 2 (byte order reversed).

The bit order within a byte is never reversed. Byte order normal means

that the least significant digit occupies the highest address.

Systems that process numbers in normal byte order are Big Endian

(z/Series, iSeries™, Linux, and UNIX). Systems that process numbers in

reversed byte order are Little Endian (mainly PCs).

For further details about numeric order, see ″Appendix D Machine

encodings″ of the Application Programming Reference section in the

WebSphere MQ Version 6 information center online.

Code page conversions

Code page conversion might be required for any of the following reasons:

v ASCII versus EBCDIC

v National languages

v Operating system specific code pages

For more information about code page support in WebSphere MQ, see the

Application Programming Reference section in the WebSphere MQ Version 6

information center online.

 When you use WebSphere Message Broker, you can use the data conversion

facilities of WebSphere MQ, WebSphere Message Broker, or both.

WebSphere MQ facilities

128 Message Flows

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

Headers and message body are converted according to the MQMD values,

and other header format names. You might have to set up data conversion

exits to convert the body of your messages.

When you use WebSphere MQ facilities, the whole message is converted to

the specified encoding and CCSID, according to the setting of the format in

the WebSphere MQ header.

For more detail about data conversion using WebSphere MQ facilities, see

″Appendix F Data conversion″ in the Application Programming Reference

section in the WebSphere MQ Version 6 information center online.

WebSphere Message Broker facilities

You can model your messages in the MRM through the workbench.

Predefined elements of the messages are converted according to their type

and physical layer characteristics. For further details, see Configuring

physical properties. You can also use self-defining messages. You can then

use the Compute or JavaCompute node to configure encoding and CCSIDs.

You do not need WebSphere MQ data conversion exits.

v String data is converted according to the CCSID setting.

v Decimal integer and float extended decimal types are converted

according to the CCSID setting.

v Decimal integer and float (other physical data types) are converted

according to the Encoding setting.

v Binary and Boolean data is not converted.

WebSphere Message Broker can also convert those WebSphere MQ headers

for which parsers are provided.

When you use WebSphere Message Broker facilities, the whole message is

not converted to the specified encoding and CCSID: you can specify a

different encoding, or CCSID, or both, in each header to perform a

different conversion for the following part of the message. The encoding

and CCSID in the last header defines the values for the message body.

User exits

A user exit is user-provided custom software, written in C, to track data passing

through message flows.

User-provided functions can be invoked at specific points during the life cycle of a

message while it passes through the message flow, and can invoke utility functions

to query information about the point in the flow, and the contents of the message

assembly. The utility function can also modify certain parts of the message

assembly. For more information about using user exits, see Why use a user exit?.

The user exits can be invoked when one or more of the following events occur:

v The end of a unit-of-work (UOW) or transaction (COMMIT or ROLLBACK).

v A message passes between two nodes.

v A message is successfully enqueued or sent to a transport in an output, reply, or

request node.

v A message is dequeued or received in an input, response, or TimeoutNotification

node.

Developing message flows 129

|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

In the basic message flow shown here, you can track messages at three levels:

v Transaction level

v Node level

v Input or output level

At the transaction level, you can track the following events:

v Messages being read into the flow

v Completion of the transaction

At the node level, you can track the following events:

v A message passing from one node to another

v Completion of processing for one node

At the message input or output level, you can track the following events:

v Messages being read into the flow

v Messages being written from the flow

Therefore, you can track five different types of event, which occur in the following

sequence:

1. A message is dequeued from the input source (read into the flow).

2. A message is propagated to the node for processing.

3. A request message is sent to the output node’s transport, and transport-specific

destination information is written to ″WrittenDestination″ in the

LocalEnvironment.

4. Node processing is completed.

5. The transaction ends.

Getting started with Quick Start wizards

A Quick Start wizard sets up the basic resources that are required to develop a

Message Broker application. The wizard sets up and gives names to containers for

the resources in which you subsequently develop your application.

The topics in this section describe how to use the Quick Start wizards.

Concept topics:

v “Quick Start wizards overview” on page 131

Task topics:

v “Creating an application from scratch” on page 131

v “Creating an application based on WSDL or XSD files” on page 132

v “Creating an application based on an existing message set” on page 134

v “Creating an application using WebSphere Adapters” on page 135

MQInput Compute MQOutput

130 Message Flows

|
|
|
|

|
|
|

|
|

|

|

|
|
|

|

|

Quick Start wizards overview

This concept topic describes the Quick Start wizards.

You can use a Quick Start wizard to set up the basic resources that are required to

develop a Message Broker application. The wizard sets up and gives names to

containers for the resources in which you subsequently develop an application. The

resources that can be set up are as follows:

Message flow project

A specialized container in which you create and maintain all the resources

associated with one or more message flows.

Message set project

A specialized container in which you create and maintain all the resources

that are associated with a message set.

Message set

A container for grouping messages and associated message resources

(elements, types, groups).

Message flow

A container for a sequence of processing steps that execute in the broker

when an input message is received.

Working set

A specialized container in which you can group related application

projects, so that you limit the number of resources that are displayed in the

Broker Development view.

 The Quick Start wizards are:

v Start from scratch, described in “Creating an application from scratch”

v Start from WSDL and/or XSD files, described in “Creating an application based

on WSDL or XSD files” on page 132

v Start from existing message set, described in “Creating an application based on

an existing message set” on page 134

v Start from adapter connection, described in “Creating an application using

WebSphere Adapters” on page 135

Creating an application from scratch

This task topic describes how to use the Start from scratch wizard to create the

basic resources that are required to develop a Message Broker application. The

Start from scratch wizard creates a message flow project, a message set project, sets

up the project dependency, creates a message set and, optionally, creates a message

flow and working set. To create these resources, perform the actions in this topic.

1. Switch to the Broker Application Development perspective.

2. Open the Start from scratch wizard by doing one of the following:

v At the top of the Broker Development view, click on the down arrow

.

A list containing the three Quick Start wizards is displayed.

– Click Start from scratch.
v Click File> New> Project or right-click anywhere in the Broker Development

view and then click New> Project on the pop-up menu. The New Project

window opens.

a. Expand Message Brokers. A list of wizards is displayed.

Developing message flows 131

b. Click the Start from scratch and click Next.

The New Message Broker Application panel of the wizard is displayed. In this

panel, you can type the names of the basic resources that are required to

develop a Message Broker application.

3. Type into the appropriate fields, the names of the message flow project, the

message set project, the message set, the message flow, and the name of the

working set that contains the two new projects. Default names of the message

flow project, the message flow, and the working set are already displayed in

the appropriate fields, but you can edit these fields by typing your own names

for these resources.

Note: You can change any of the names that are displayed by typing into the

appropriate field the name that you want. You can also clear either of the

check boxes that relate to the creation of a new message flow or a new

working set; if you do this, you cannot enter text into the associated

name field, and the associated resource file will not be created.

4. Click Next. The Message set Physical Formats panel is displayed. The panel

lists three physical formats: XML documents, Binary data (Custom Wire

Format), and Text data (TDS Format).

5. Select one or more of the check boxes to describe the type of message data that

you want to process. If you do not select a check box, XML documents is

selected by default.

6. Click Finish to complete the task. The Start from scratch wizard closes.

The wizard creates a message flow project, message set project, message set, and,

optionally, a message flow, with the names that you have specified. It also creates,

optionally, a new working set, with the name that you have specified. The working

set contains all of the resources you have created, and the Broker Development

view shows the new working set as the active working set. If you have chosen not

to create a new working set, the projects are created in the active working set

currently shown in the Broker Development view.

The XML, CWF or TDS formats are created with default names for the message

set.

The message flow, if created, is opened in the message flow editor.

If you have created a message flow, you can now go on to “Defining message flow

content” on page 227.

Creating an application based on WSDL or XSD files

This task topic describes how to create a new application that is based on existing

WSDL or XSD files.

 1. Switch to the Broker Application Development perspective.

 2. Open the New Message Broker Application wizard.

a. Click File> New> Project, or right-click anywhere in the Broker

Development view and then click New> Project. The New Project window

opens.

b. Double-click Message Brokers. A list of wizards is displayed.

c. Select Start from WSDL and/or XSD files and then click Next.

The first panel of the New Message Broker Application wizard is shown.

132 Message Flows

|

|
|
|

|

|

|

3. Set up the basic resources that are required to develop a Message Broker

application that uses existing WSDL and XSD files as a starting point.

v Type the name of your new application in the Message flow project name

field.

The name that you type is also displayed in the Message set project name

and Message set name fields, but with ’MessageSet’ appended.

Similarly, the name that you type is also displayed in the Message flow

name field (with ’Flow’ appended), and in the Working set name field.

v Click Next.

Note: You can change any of the names that are displayed by typing into

the appropriate field the name that you want. You can also clear

either of the check boxes that relate to the creation of a new message

flow or a new working set; if you do this, you cannot enter text into

the associated name field.
 4. Select the WSDL or XSD files that you want to use as the initial contents of

the message set.

v If you want to choose WSDL or XSD files that exist in your workspace, click

Use resources from the workspace.

You are presented with a list of resources from which you can choose.

Resources are filtered to only show artifacts in the active working set.

v If you want to choose WSDL or XSD files that exist outside your

workspace, click Use external resources and type a directory name in the

From directory field. Click Browse

You are presented with a list of the items in that directory. Make your

choice from this list.

In both cases, a two-pane view is displayed. On the left side, containers (for

example, projects, folders, and message sets) are displayed. On the right side,

the contents of these containers are shown. Depending on which button was

clicked, either a workspace view or a file system view of the resources is

displayed.

If the only use of the XSD file is from the WSDL bindings, you do not need to

select an XSD file that a selected WSDL files depends on.

The view incorporates an option that allows you to copy the source file into

the importFiles directory of the message set.

You can use this option as follows:

If you choose only WSDL files, you can select the check box.

If you choose only XSD files, the option is automatically selected and the

check box is greyed out. If you subsequently select a WSDL file, the check box

is enabled but the selection state is not changed; that is, the check box remains

selected.

Regardless of what you select, if the importFiles folder exists in the message

set project after the import, it is collapsed.

If you import only WSDL files, the wizard sets the default message domain to

SOAP.

 5. Click Next. If you selected one or more WSDL files, the WSDL files that you

selected are shown in a check box tree, with the acceptable bindings for each

file shown as children.

 6. (Optional) Select one or more bindings for each of the WSDL files that you

selected. If you do not select at least one binding for each WSDL file, an error

message is displayed and the Next and Finish buttons are disabled.

Developing message flows 133

|
|

7. Click Next. If you selected one or more XSD files, the XSD files that you

selected are displayed in the next pane, with the global elements for each file

shown as children.

 8. (Optional) Select the global elements from which you want to create message

definitions. Click Next.

 9. (Optional) If any errors or warnings are listed, either click Finish, if you want

the import to be attempted regardless of the errors or warnings listed, or click

Cancel to terminate the import. You can then correct any errors and attempt

the import again.

10. Click Finish.

After a WSDL file has been imported into a message set, you can drag and drop

the WSDL file onto the message flow editor.

Creating an application based on an existing message set

Before you start:

You must have completed the following task:

v Creating a message set

This task topic describes how to create a new application that is based on an

existing message set.

1. Switch to the Broker Application Development perspective.

2. Open the New Message Broker Application wizard.

a. Click File> New> Project, or right-click anywhere in the Broker

Development view and then click New> Project. The New Project window

opens.

b. Click Message Brokers. A list of wizards is displayed.

c. Select Start from existing message set and then click Next.

The first panel of the New Message Broker Application wizard is shown.

3. Set up the basic resources that are required to develop a Message Broker

application from an existing message set.

a. (Optional) If the message set that you want to use is in a .zip file, click

Import a message set from a ZIP file and either type the location of the

message set in the Zip file and Zipped message set fields, or click

Browse... and select and open the .zip file from the list that is displayed,

and then select the required message set. If the .zip file that you specify

does not contain a message set, you receive a message that tells you this. If

you want, you can then type a different location for the message set in the

Zip file field. Otherwise click Cancel.

b. (Optional) If the message set that you want to use is not in a .zip file, click

Create a new message set by copying an existing message set and type

into the Message set to copy field the name of the message set file that you

want to copy. A list is displayed of the message set names that you can

choose from. Message sets are filtered to only show artifacts in the active

working set.

c. Click Next.

A panel of the New Message Broker Application wizard is shown. In this panel,

you can type the names of the projects, the message flow, the message set, and

the working set that contains the two new projects.

134 Message Flows

|

|
|
|

|

|

|

4. Type into the appropriate fields, the names of the projects, the message flow,

the message set, and the working set that contains the two new projects.

Default names of the message flow project, the message flow, and the working

set are already displayed in the appropriate fields, but you can edit these fields

by typing your own names for these resources. Note, however, that if the

message set is copied from a .zip file that is a project interchange file, you

cannot edit the names of the message set project and the message set; the

names are imported from the .zip file.

5. Click Finish. The new message set project, message set, message flow project,

and message flow are created. A new working set is also created, if required.

The new projects appear in the specified working set. The contents of the

message set project and the message flow project are displayed in the Broker

Development view. The message flow is opened in the message flow editor.

Creating an application using WebSphere Adapters

Use the Start from adapter connection quick start wizard to create an application

that uses WebSphere Adapters.

Before you start:

v Read “WebSphere Adapters nodes” on page 7

v Prepare the environment for WebSphere Adapters nodes

v Perform the preparatory tasks listed in “Developing message flow applications

using WebSphere Adapters” on page 245
1. Switch to the Broker Application Development perspective.

2. At the top of the Broker Development view, from the list of Quick Start

wizards, click Start from adapter connection. If the list of wizards is not

displayed, click the down arrow

.

The Adapter Connection wizard opens.

3. Follow the instructions in the wizard.

4. Click Finish.

When you have completed the steps in the wizard, the specified message set

project contains a message set with a message type for each business object, and

the specified message flow project references the message set project.

Creating an application using the Configure New Web Service

Usage wizard

Use this topic to generate a message flow using the Configure New Web Service

usage wizard.

This task topic describes how to create a new application using the Configure New

Web Service Usage wizard.

1. Open a message set project containing a WSDL file.

2. Select a WSDL file from either the message set or the ImportFiles folder and

drag and drop the WSDL file onto the Message Flow Editor canvas. Validation

occurs and if any of the following errors occurs, a message appears in a

message box:

v WSDL file does not come either from a message set or ImportFiles folder of

the message set project.

Developing message flows 135

For a multiple-file WSDL the process also checks that either, imports inside

the main WSDL have been properly imported into the message set, or

imports are available in the ImportFiles folder.

v The message set that contains the WSDL file does not support any one of the

SOAP, XMLNSC, XMLNS, or MRM domains.

However, if the message set that contains the WSDL file does not support

only the SOAP domain, you are given an option to generate a flow based on

the HTTP nodes, and the process continues.

v There are no HTTP bindings in the WSDL file.

v There are no port types in the WSDL file.

Note that the WSDL file being dropped onto the Message Flow Editor canvas

should be WS-I compliant for the flow and sub-flows to be created correctly. If

there are no errors, the first page of a Configure New Web Service Usage

wizard appears. See Configure Web Service Usage details for further

information on the following fields.

3. In Web service usage, select Expose message flow as a web service or Invoke

web service from message flow. Selecting Expose message flow as a web

service means that you can use WebSphere Message Broker with other

applications on the web, whereas selecting Invoke web service from message

flow means that you use WebSphere Message Broker to start the web service.

4. Select the Port type you are going to use. By default, the initially selected port

type is the first one that has at least one http binding associated with it.

You receive an error message in the following circumstances:

v Selected port type does not contain at least one operation.

v No SOAP bindings (with HTTP transport) in the WSDL document are

associated with the port type.
5. Select the Binding you are going to use. You receive an error message in the

following circumstances:

v Selected binding has no operations associated with it.

v Selected binding has no ports associated with it.

The Service Port box lists all the WSDL ports that point to a selected binding.

6. Select the Binding operations that you require. By default, only those

operations implemented by the binding you choose are selected.

If you select one of the operations that is not implemented by the selected

binding, you receive a warning message, but you can continue.

7. Click Next to go to the second page . See File generation details for further

information on the following fields.

8. Select HTTP nodes if you have imported the WSDL file from a message set

and do not want the default value of SOAP nodes. If you select HTTP nodes

you see a message explaining the advantages of using the SOAP nodes. Using

SOAP nodes allows you to use features such as WS_Security and

WS_Addressing. However, if the message set does not support the SOAP

domain you receive an error message.

Note, that if you import the WSDL file from the ImportFiles folder, you cannot

select SOAP nodes.

All the file names that are about to be generated, together with their location

are listed on this page.

A Details pane appears if there are any warnings about the subflow that is

generated.

136 Message Flows

|
|

9. Click Finish to complete the wizard, create the subflow, and add appropriate

nodes to the main flow. See “Web service provider message flow generated” for

details about the subflow and nodes generated by the wizard if you selected

Expose message flow as a web service as the initial step.

See “Web service consumer message flow generated” on page 138 for details

about the subflow and nodes generated by the wizard if you selected Invoke

web service from message flow as the initial step.

Web service provider message flow generated

This provides additional information in relation to the Configure New Web Service

Usage wizard about the message flow generated when the flow is a web service

provider.

Note that the default name for the generated subflow is prefixed by the name of

the WSDL file you selected.

Generated message flow

The message flow generated consists of a:

SoapInput node

This SOAPInput node fills in the LocalEnvironment destination tree with the

SOAP operation so that it can be followed either by a:

v SOAPExtract node, or by a

v RouteToLabel node. In this case, appropriate Label nodes need to be in

place.

The out terminal of the SOAPInput node is connected to the in terminal of

the SOAPExtract node.

Subflow node

The subflow node name reflects the name of the WSDL file.

SOAPReply node

This node sends the response message back to the originating client.

 Typically, you connect the output of your node, or nodes, that handle your

operation, or operations, to the in terminal of the SOAPReply node.

Generated message subflow

The generated subflow is constructed as follows:

v The input node is connected to the SOAPExtract node, which removes the SOAP

envelope.

The SOAPExtract node also allows for routing of the SOAP messages, based on

the operation being performed. In particular, the SOAP message is routed to a

Label node within the message flow as identified by the SOAP operation within

the message.

v The Failure output terminal of the SOAPExtract node is connected to the Output

node used when a process fails named, for example, failure.

v A Label node is generated for each SOAP operation and each Label node is

connected to the corresponding Output node.

v Each Output node in the subflow corresponds to an output terminal for the

SOAPExtract node in the main message flow.

Therefore, there is one failure output terminal, plus one output terminal for

each operation.

Developing message flows 137

Typically, you connect the output terminal corresponding to the operation you

require to the node, or nodes, that handle this operation, for example, Compute

node.

Web service consumer message flow generated

This provides additional information in relation to the Configure New Web Service

Usage wizard about the message flow generated when the flow is a web service

consumer.

Note that the default name for the generated subflow is prefixed by the name of

the WSDL file you selected.

Generated message flow

The low generated consists of a single node that has a number of output terminals:

v Failure

v Error

v Fault

v One more, corresponding to the name of the selected operation.

Typically, your message flow feeds an input message to the in terminal of the

generated subflow node, and handles various outcomes of the web service

invocation.

The default name of the subflow node is a combination of selected operation and

WSDL file name. You can change the name of the corresponding .msgflow file on

the second page of the wizard; see Configure New Web Service Usage wizard: File

generation details.

The generated .msgflow file is placed into the gen folder of the message set project;

see “Generated message subflow” for details of this subflow.

Generated message subflow

The generated subflow is constructed as follows:

v A SOAPRequest node immediately follows an Input node. This is a synchronous

request and response node that blocks after sending the request, until the

response is received. The SOAPRequest node parses the response message.

v The Failure and Error terminals are connected to the Output nodes for failure

and error respectively.

v The Out terminal is connected to the SOAPExtract node.

The SOAPExtract node removes the SOAP envelope so that the body of a SOAP

message is extracted.

The SOAPExtract node also allows for routing of the SOAP messages, based on

the operation being performed. Note that only the selected operation and fault

are handled.

In particular, the SOAP message is routed to a Label node within the message

flow as identified by the SOAP operation or a ws__Fault label, if fault is

returned from the web service.

Each Label node is connected to the corresponding Output node.

The Failure terminal of the SOAPExtract node is connected to the Output node

for failure.

138 Message Flows

v Each Output node in the subflow corresponds to an output terminal for the

subflow node.

Therefore, there are three output terminals:

– Failure

– Fault

– One for the selected operation.

Designing a message flow

A message flow can perform a wide range of operations, depending on your

business and operational requirements. For best performance and capability, you

must design it to include the most appropriate nodes.

Before you start:

Read the following concept topic: “Message flow nodes” on page 5.

When you design a message flow, consider the following questions and options:

v The mode that your broker is working in can affect the types of node that you

can use and the number of message flows you can deploy. For more

information, see Restrictions that apply in each operation mode.

v Which nodes provide the function that you require. In many cases, you can

choose between several nodes that provide a suitable function. You might have

to consider other factors listed here to determine which node is best for your

overall needs. You can include built-in nodes, user-defined nodes, and subflow

nodes. For more information, see “Deciding which nodes to use” on page 141.

v Whether it is appropriate to include more than one input node. For more

information, see “Using more than one input node” on page 152.

v How to specify the characteristics of the input message. For more information,

see “Defining input message characteristics” on page 153.

v Whether to determine the path that a message follows through the message

flow, based on the content or the characteristics of the message. Several nodes

provide checks or examination of the message, and have output terminals that

can be connected to direct certain messages to different nodes. For more

information, see “Using nodes for decision making” on page 154.

v Whether you can use subflows that provide a well-defined subset of processing.

You might be able to reuse subflows that were created for another project (for

example, an error processing routine), or you might create a subflow in your

current project, and reuse it in several places within the same message flow. For

more information, see “Using subflows” on page 156.

v What response times your applications expect from the message flow. This factor

is influenced by several aspects of how you configure your nodes and the

message flow. For more information, see “Optimizing message flow response

times” on page 158.

v Whether your message flow processing makes demands on system resources

such as stack size. For more information, see “System considerations for message

flow development” on page 160.

v Whether you can use the destination list within the LocalEnvironment that is

associated with the message to determine the processing within the message

flow (for example, using RouteToLabel and Label nodes), or the target for the

output messages (for example, by setting the Destination Mode property of the

MQOutput node to Destination List). For more information, see “Creating

destination lists” on page 162.

Developing message flows 139

|
|
|

v Whether to use WebSphere MQ cluster queues. For more information, see

“Using WebSphere MQ cluster queues for input and output” on page 162.

v Whether to use WebSphere MQ shared queues on z/OS . For more information,

see “Using WebSphere MQ shared queues for input and output (z/OS)” on

page 164.

v Whether to validate input messages that are received by the input node, or

output messages that are generated by the Compute node, or both. For more

information, see “Validating messages” on page 164.

v Whether to view or record message structure in Trace node output. For more

information, see “Viewing the logical message tree in trace output” on page 167.

v Whether your message flows access data in databases. You must configure

brokers, databases, and database connections to enable this function, as

described in Configuring databases. You must also configure your message

flows; see “Accessing databases from message flows” on page 170.

If you include nodes that use ESQL, for information about how to code the

appropriate statements, see “Accessing databases from ESQL” on page 172. If

you want to access databases from Java nodes using JDBC, see “Interacting with

databases using the JavaCompute node” on page 467 or Extending the capability

of a Java message processing or output node.

You can also access databases through the Broker Application Development

perspective in the workbench; see “Adding database definitions to the Message

Broker Toolkit” on page 494.

v Whether your message flows access data in files. Using the FileInput and

FileOutput nodes, your message flows can read messages from files and write

messages to files in the local file system, or on a network file system that

appears local to the broker. For more information, see “Working with files” on

page 717.

v Whether your messages must be handled within a transaction. You can set the

properties of some built-in nodes to control how transactions are managed, and

how messages are processed within a transaction. For more information, see

“Configuring globally coordinated message flows” on page 173.

If you want to include JMSInput and JMSOutput nodes in your message flow

transactions, you must consider the additional information in “Configuring

JMSInput and JMSOutput nodes to support global transactions” on page 176.

v Whether you want your messages to go through data conversion. For

information about the available options, see “Configuring message flows for

data conversion” on page 183.

v Whether you want to use the MQGet node. For more information about how

messages are processed by the MQGet node, and a description of a request-reply

scenario using this node, see “Using MQGet nodes” on page 185.

v How your message flows can benefit from user exits. For more information, see

“Exploiting user exits” on page 198.

v What steps to take to ensure that messages are not lost. For more information,

see “Ensuring that messages are not lost” on page 200.

v How errors are handled within the message flow. You can use the facilities

provided by the broker to handle any errors that arise during message flow

execution (for example, if the input node fails to retrieve an input message, or if

writing to a database results in an error). However, you might prefer to design

your message flow to handle errors in a specific way. For more information, see

“Handling errors in message flows” on page 203.

140 Message Flows

v Whether you want a systems monitoring tool to be able to query, discover, and

set certain user-defined properties at run time. For more information, see Setting

user-defined properties dynamically at run time.

For a basic introduction to developing message flows, see the IBM Redbooks

publication WebSphere Message Broker Basics. (This link works only if you are

connected to the Internet.)

Deciding which nodes to use

WebSphere Message Broker includes a large number of message processing nodes

that you can use within your message flows.

Before you start:

Read the concept topic about message flow nodes.

WebSphere Message Broker also provides an interface that you can use to define

your own nodes, known as user-defined nodes.

The mode that your broker is working in can affect the types of node that you can

use; see Restrictions that apply in each operation mode.

Your decision about which nodes to use depends on the processing that you want

to perform on your messages.

Input and output nodes

Input and output nodes define points in the message flow to which client

applications send messages (input nodes, such as MQInput), and from

which client applications receive messages (output nodes, such as

MQOutput). Client applications interact with these nodes by putting

messages to, or getting messages from, the I/O resource that is specified

by the node as the source or target of the messages. Although a message

flow must include at least one input node, it does not need to include an

output node.

v If you are creating a message flow that you want to deploy to a broker,

you must include at least one input node to receive messages. The input

node that you choose depends on the source of the input messages, and

where in the flow you want to receive the messages:

MQInput

Use an MQInput node if the messages arrive at the broker on a

WebSphere MQ queue, and the node is to be at the start of a

message flow.

 The use of message flows that contain MQeInput nodes in

WebSphere Message Broker Version 6.1 is deprecated. Redesign

your message flows to remove the MQe nodes and replace them

with MQ nodes that are configured to your own specifications

and coordinated with your MQe Gateway configuration. For

more details, see Migrating a message flow that contains

WebSphere MQ Everyplace® nodes.

MQGet

Use an MQGet node if the messages arrive at the broker on a

WebSphere MQ queue and the node is not to be at the start of a

message flow.

Developing message flows 141

|
|
|

http://www.redbooks.ibm.com/abstracts/sg247137.html

SCADAInput

Use a SCADAInput node if the messages are sent by a telemetry

device.

HTTPInput

Use an HTTPInput node if the messages are sent by a Web

services client.

FileInput

Use a FileInput node if the messages are contents of files.

TCPIPClientInput or TCPIPServerInput

Use a TCPIPClientInput node or a TCPIPServerInput node to

create a TCP/IP connection when messages are sent through raw

TCP/IP sockets.

TCPIPClientReceive or TCPIPServerReceive

Use a TCPIPClientReceive node or a TCPIPServerReceive node

to read the messages that arrive in the message flow through a

TCP/IP connection.

Real-timeInput or Real-timeOptimizedFlow

Use one of these nodes if the messages are sent by a JMS or

multicast application.

 The Real-timeInput node is an input node and the

Real-timeOptimizedFlow node is a complete message flow that

provides a high performance publish/subscribe message flow.

JMSInput

Use a JMSInput node if the messages are sent by a JMS

application.

User-defined input node

Use a user-defined input node if the message source is a client

or application that uses a different protocol or transport.

Input node

If you are creating a message flow that you want to embed in

another message flow (a subflow) that you will not deploy as a

standalone message flow, you must include at least one Input

node to receive messages into the subflow.

 An instance of the Input node represents an In terminal. For

example, if you have included one instance of the Input node,

the subflow icon shows one In terminal, which you can connect

to other nodes in the main flow in the same way that you

connect any other node.

To deploy a message flow, it must have at least one input node.

If your message flow does not contain an input node, you are

prevented from adding it to the broker archive file. The input

node can be in the main flow, or in a message flow that is

embedded in the main flow.

You can use more than one input node in a message flow. For

more information, see “Using more than one input node” on

page 152.
v If you want to send the messages that are produced by the message flow

to a target application, you can include one or more output nodes. The

output node that you choose depends on the transport across which the

target application expects to receive those messages:

142 Message Flows

|
|
|
|

|
|
|
|

Publication

Use a Publication node to distribute the messages using the

publish/subscribe network for applications that subscribe to the

broker across all supported protocols. A Publication node is an

output node that uses output destinations that are identified by

subscribers whose subscriptions match the characteristics of the

current message.

MQOutput

Use an MQOutput node if the target application expects to

receive messages on a WebSphere MQ queue, or on the

WebSphere MQ reply-to queue that is specified in the input

message MQMD.

 The use of message flows that contain MQeOutput nodes in

WebSphere Message Broker Version 6.1 is deprecated. Redesign

your message flows to remove the MQe nodes and replace them

with MQ nodes that are configured to your own specifications

and coordinated with your MQe Gateway configuration. For

more details, see Migrating a message flow that contains

WebSphere MQ Everyplace nodes.

MQReply

Use an MQReply node if the target application expects to receive

messages on the WebSphere MQ reply-to queue that is specified

in the input message MQMD.

SCADAOutput

Use a SCADAOutput node if a telemetry device is the target of

the output messages, and the Publication node is not suitable.

HTTPReply

Use an HTTPReply node if the messages are in response to a

Web services client request.

HTTPRequest

Use an HTTPRequest node if your message flow interacts with a

Web service.

FileOutput

Use a FileOutput node if a file is the target of the output

messages.

TCPIPClientOutput or TCPIPServerOutput

Use a TCPIPClientOutput node or a TCPIPServerOutput node if

the messages are to be sent to the target application through raw

TCP/IP sockets.

Real-timeOptimizedFlow

Use a Real-timeOptimizedFlow node if the target application is a

JMS or multicast application.

JMSOutput

Use a JMSOutput node if the messages are for a JMS destination.

JMSReply

The JMSReply node has a similar function to the JMSOutput

node, but the JMSReply node sends JMS messages only to the

reply destination that is supplied in the JMSReplyTo header field

of the JMS message tree. Use the JMSReply node to treat a JMS

Developing message flows 143

|
|
|
|

message that is produced from a message flow as a reply to a

JMS input message, and when you have no other routing

requirements.

User-defined output node

Use a user-defined output node if the target is a client or

application that uses a different protocol or transport.

EmailOutput node

Use the EmailOutput node to send e-mail messages to one or

more recipients.

Output node

If you are creating a message flow that you want to embed in

another message flow (a subflow) that you will not deploy as a

standalone message flow, you must include at least one Output

node to propagate messages to subsequent nodes that you

connect to the subflow.

 An instance of the Output node represents an Out terminal. For

example, if you have included two instances of the Output node,

the subflow icon shows two Out terminals, which you can

connect to other nodes in the main flow in the same way that

you connect any other node.

WebSphere Adapters nodes

Use the WebSphere Adapters nodes to interact with Enterprise

Information Systems (EIS) such as SAP, Siebel, and PeopleSoft.

The following input and request nodes are available:

– SAPInput node

– SAPRequest node

– SiebelInput node

– SiebelRequest node

– PeopleSoftInput node

– PeopleSoftRequest node

– TwineballInput node

– TwineballRequest node

The WebSphere Adapters input nodes monitor an EIS for a

particular event. When that event occurs, business objects are

sent to the input node. The node constructs a tree representation

of the business objects and propagates it to the Out terminal so

that the data can be used by the rest of the message flow.

The WebSphere Adapters request nodes can send and receive

business data. They request information from an EIS and

propagate the data to the rest of the message flow.

Nodes for manipulating, enhancing, and transforming messages

 Most enterprises have applications that have been developed over many

years, on different systems, using different programming languages, and

different methods of communication. WebSphere Message Broker removes

the need for applications to understand these differences by providing the

ability to configure message flows that transform messages from one

format to another.

For example, personal names are held in many forms in different

applications. Family name first or last, with or without middle initials,

upper or lower case: these are just some of the permutations. Because you

can configure your message flow to know the requirements of each

144 Message Flows

application, each message can be transformed to the correct format without

modifying the sending or receiving application.

You can work with the content of the message to update it in several ways.

Your choices here might depend on whether the message flow must handle

predefined (modeled) messages, self-defining messages (for example,

XML), or both.

A message flow can completely rebuild a message, convert it from one

format to another (whether format means order of fields, byte order,

language, and so on), remove content from the message, or introduce

specific data into it. For example, a node can interact with a database to

retrieve additional information, or to store a copy of the message (whole or

part) in the database for offline processing.

The following examples show how important message transformation can

be:

v An order entry application has a Part ID in the body of the message, but

its partner stock application expects it in the message header. The

message is directed to a message flow that knows the two different

formats, and can therefore reformat the information as it is needed.

v A data-entry application creates messages containing stock trade

information. Some applications that receive this message need the

information as provided, but others need additional information added

to the message about the price to earnings (PE) ratio. The stock trade

messages are directed to a message flow that passes the message

unchanged to some output nodes, but calculates and adds the extra

information for the others. The message flow does this by looking up the

current stock price in a database, and uses this value and the trade

information in the original message to calculate the PE value before

passing on the updated message.

You can also create message flows that use these nodes to interact with

each other. Although the default operation of one message flow does not

influence the operation of another message flow, you can force this action

by configuring your message flows to store and retrieve information in an

external source, such as a database.

Compute

Use the Compute node to:

v Manipulate message content

v Transform the message in some way

v Interact with a database to modify the content of the message or

the database and pass on one or more new messages

You can use this node to manipulate predefined and self-defining

messages.

Use the ESQL editor to create an ESQL module, specific to this

node, that contains the statements that define the actions to

perform against the message or database. Do not use the ESQL

code that you develop for use in a Compute node in any other

type of node.

You can control the way in which the database is accessed by this

node by specifying user and password information for the data

source that you specify in the node property. Use the

mqsisetdbparms command to initialize and maintain these values.

Developing message flows 145

If your message manipulation requirements are complex, perform

these within a single Compute node. Fewer, more complex

Compute nodes perform better than a larger number of simpler

nodes because the broker parses the message on entry to each

Compute node.

JavaCompute

Use the JavaCompute node to:

v Examine an incoming message and, depending on its content,

propagate it unchanged to one of the node’s two output

terminals. The node behaves in a similar way to a Filter node,

but uses Java instead of ESQL to decide which output terminal

to use.

v Change part of an incoming message and propagate the changed

message to one of the output terminals.

v Interact with a database through a JDBC type 4 connection to

modify the content of the message or the database and pass on

one or more new messages

v Create and build a new output message that is totally

independent of the input message.

Mapping

Use the Mapping node to create a new message from the input

message by mapping the content of elements of the output

message from elements of the input message, or from database

content. You can also extract parts of the message, and optionally

change their content, to create a new output message that is a

partial copy of the message that is received by the node. The

Mapping node handles only predefined messages.

 You can control the way in which the database is accessed by this

node by specifying user and password information for the data

source that you specify in the node property. Use the

mqsisetdbparms command to initialize and maintain these values.

Use the Mapping editor to develop mappings to perform simple

manipulations on predefined messages. Do not use the mappings

that you develop for use in a Mapping node in any other type of

node.

Extract

The Extract node is deprecated in WebSphere Message Broker

Version 6.1. Although message flows that contain an Extract node

remain valid in WebSphere Message Broker Version 6.1, where

possible, redesign your message flows so that any Extract node is

replaced by a Mapping node.

 With an Extract node you can create a new output message from

specified elements of the input message. You can extract parts of

the message, and optionally change their content, to create a new

output message that is a partial copy of the message received by

the node. The Extract node handles only predefined messages.

Use the Mapping editor to develop mappings to perform simple

manipulations on predefined messages in the Extract node. Do not

use the mappings that you develop for use in an Extract node in

any other type of node.

146 Message Flows

Database

Use the Database node to interact with a database that is identified

by the node properties. The Database node handles both

predefined and self-defining messages. Use the ESQL editor to

code ESQL functions to update database content from the message,

insert new information into the database, and delete information

from the database, perhaps based on information in the message.

Do not use the ESQL code that you develop for use in a Database

node in any other type of node.

 This node provides a very flexible interface with a wide range of

functions. It also has properties that you can use to control the way

in which the interaction participates in transactions.

You can control the way in which the database is accessed by this

node by specifying user and password information for the data

source that you specify in the node properties. Use the

mqsisetdbparms command to initialize and maintain these values.

You can update only databases from this node; you cannot update

message content. If you want to update message content, use the

Compute or Mapping node.

DataDelete, DataInsert, DataUpdate

The DataDelete, DataInsert, and DataUpdate nodes are specialized

forms of the Database node that provide a single mode of

interaction (deletion of one or more rows, insertion of one or more

rows, or update of one or more existing rows).

 The DataDelete, DataInsert, and DataUpdate nodes handle only

predefined messages. Use a mapping editor to develop mappings

to perform these functions. Do not use the mappings that you

develop for these nodes in any other type of node. You can use

these nodes to control the transactional characteristics of the

updates that they perform.

You can control the way in which the database is accessed by this

node by specifying user and password information for the data

source that you specify in the node property. Use the

mqsisetdbparms command to initialize and maintain these values.

You can update only databases from these nodes; you cannot

update message content. If you want to update message content,

use the Compute or Mapping node.

Warehouse

The Warehouse node provides a store interface that you can use to

store all or part of the message in a database, for example, for

audit reasons. The Warehouse node handles only predefined

messages. Use the Mapping editor to develop mappings to perform

this action. Do not use the mappings that you develop for a

Warehouse node in any other type of node.

 You can control the way in which the database is accessed by this

node by specifying user and password information for the data

source that you specify in the node property. Use the

mqsisetdbparms command to initialize and maintain these values.

You can update only a database from this node; you cannot update

message content. If you want to update message content, use the

Compute or Mapping node.

Developing message flows 147

DatabaseRoute node

Use the DatabaseRoute node to route a message using information

from a database in conjunction with applied XPath routing

expressions. The node looks up a collection of named column

values from a located database row and synchronously applies one

or more XPath expressions to these acquired values. Use the

DatabaseRoute node to implement message routing with minimal

programming logic. For more advanced routing scenarios, use a

Compute node or a JavaCompute node.

DatabaseRetrieve node

Use the DatabaseRetrieve node to ensure that information in a

message is up to date. Use the node to modify a message using

information from a database. For example, you can add

information to a message using a key, such as an account number,

that is contained in a message. Use the DatabaseRetrieve node to

implement message routing with minimal programming logic. For

more advanced routing scenarios, use a Compute node or a

JavaCompute node.

XSLTransform

 Use the XSLTransform node (formerly known as the

XMLTransformation node) to transform an input XML message

into another format using XSLT style sheets and to set the message

domain, message set, message type, and message format for the

generated message. It is imperative that the data can be parsed

into a XML message. The style sheet, using the rules that are

defined within it, can perform the following actions:

v Sort the data

v Select data elements to include or exclude based on some criteria

v Transform the data into another format

The Xalan-Java transformation engine (Apache Xalan-java XSLT

processor) is used as the underlying transformation engine. For

more information about XML Transformations, the W3C

specification of the syntax, and semantics of the XSL

Transformations language for transforming XML documents into

other XML documents, see W3C XSL Transformations.

You can deploy style sheets and XML files to broker execution

groups, to help with style sheet and XML file maintenance.

JMSMQTransform

Use the JMSMQTransform node to transform a message with a JMS

message tree into a message that has a tree structure that is

compatible with the format of messages that are produced by the

WebSphere MQ JMS provider.

 The JMSMQTransform node can be used to send messages to

existing message flows and to interoperate with WebSphere MQ

JMS and WebSphere MQ Publish/Subscribe.

MQJMSTransform

Use the MQJMSTransform node to receive messages that have a

WebSphere MQ JMS provider message tree format, and transform

them into a format that is compatible with messages that are to be

sent to JMS destinations.

148 Message Flows

http://xml.apache.org/xalan-j
http://xml.apache.org/xalan-j
http://www.w3.org/TR/xslt

You can use the MQJMSTransform node to send messages to

existing message flows and to interoperate with WebSphere MQ

JMS and WebSphere MQ Publish/Subscribe.

MQOptimizedFlow

 Use the MQOptimizedFlow node to replace a publish/subscribe

message flow that consists of an MQInput node connected to a

Publication node, and that uses the JMS over WebSphere MQ

transport. The MQOptimizedFlow node cannot be used on z/OS

systems.

Use the MQOptimizedFlow node to improve performance,

particularly where a single publisher produces a persistent

publication for a single subscriber.

User-defined

Use a user-defined node to handle specific requirements that are

not met by the built-in nodes.

 For example, if your node accesses a database, include a

user-defined node to interact with the database. You can control

the way in which the database is accessed by this node by

specifying user and password information for the data source that

you specify in the node property. Use the mqsisetdbparms

command to initialize and maintain these values.

Nodes for making decisions

 You can use nodes that determine the order and flow of control within the

message flow in various ways to make decisions about how messages are

processed by the flow. You can also use nodes (TimeoutControl and

TimeoutNotification) that determine the time, and frequency of occurrence,

of events within the message flow. Routing is independent of message

transformation, although the route that a message takes might determine

exactly what transformation is performed on it.

For example, a money transfer application always sends messages to one

other application. You might decide that every message with a transfer

value of more than $10,000 must also be sent to a second application, to

enable all high-value transactions to be recorded.

In another example, a national auto club offers a premier service to specific

members for orders above a threshold value. Most orders are routed

through the typical channels, but, if the membership number and order

value meet certain criteria, the order gets special treatment.

You can also establish a more dynamic routing option by building

additional routing information into the message when it is processed.

Optional sets of rules are set up to receive messages according to values

(destinations) set into the message. You can establish these rules such that

a message is processed by one or more of the optional sets of rules, in an

order determined by the added message content.

Use the following nodes to make decisions about the route that a message

follows through the message flow:

Validate

Use the Validate node to check that the message that arrives on its

input terminal is as expected. You can check that the message has

the expected message template properties (that is, the message

domain, message set and message type) and that the content of the

Developing message flows 149

message is correct. You can check the message against one or more

of message domain, message set, or message type.

 The Validate node replaces the Check node, which is deprecated in

WebSphere Message Broker Version 6.1. The Validate node works

in the same way as the Check node, but it has additional

Validation properties to allow the validation of message content by

parsers that support that capability.

Filter Use the Filter node with an ESQL statement to determine the next

node to which the message is sent by this node. Do not use the

ESQL code that you develop for use in a Filter node in any other

type of node.

 The node’s terminals are True, False, Unknown, and Failure; the

message is propagated to the True terminal if the test succeeds,

and to the False terminal if it fails. If the statement cannot be

resolved (for example, it tests the value of a field that is not in the

input message), the message is propagated to the Unknown

terminal. If any other error is detected, the message is propagated

to the Failure terminal.

The test in the ESQL statement can depend on message content,

database content, or a combination of the two.

If you reference a database, you can control the way in which it is

accessed by this node by specifying user and password information

for each data source defined in the registry on the broker system.

Use the mqsisetdbparms command to initialize and maintain these

values.

Use this node in preference to the Compute node to provide

message selection and routing; the Filter node is more efficient for

this task.

FlowOrder

Connect the terminals of this node to force the message to be

processed by one sequence of nodes, followed by a second

sequence of nodes.

Passthrough

Use the Passthrough node to enable version control of a subflow at

run time. Use this node to add a label to your subflow. By

combining this label with keyword replacement from your version

control system, you can identify which version of a subflow is

included in a deployed message flow. You can use this label for

your own purposes. If you have included the correct version

keywords in the label, you can see the value of the label:

v Stored in the broker archive (bar) file, using the mqsireadbar

command

v As last deployed to a particular broker, on the properties of a

deployed message flow in the Message Broker Toolkit

v In the run time, if you enable user trace for that message flow

Route node

Use the Route node to direct messages that meet certain criteria

down different paths of a message flow. For example, you can

forward a message to different service providers, based on the

request details. You can also use the Route node to bypass

unnecessary steps. For example, you can check to see if certain

150 Message Flows

data is in a message, and perform a database lookup operation

only if the data is missing. If you set the Distribution Mode

property to All, you can trigger multiple events that each require

different conditions. For example, you can log requests that relate

to a particular account identifier, and send requests that relate to a

particular product to be audited.

 Use the Route node to implement message routing with minimal

programming logic. For more advanced routing scenarios, use a

Compute node or a JavaCompute node.

RouteToLabel and Label

Use the RouteToLabel node following a Compute node for complex

routing. Define a list of destinations in a Compute node that are

acted on by the RouteToLabel node, which interrogates the

destinations and passes the message on to the corresponding Label

node.

ResetContentDescriptor

Use the ResetContentDescriptor node to set new message

properties that are used when the message bit stream is next

parsed by a subsequent node in the message flow.

Nodes for controlling time-sensitive operations

You might want a batch job to run every day at a specific time, or

you might want information to be processed and published at

fixed intervals (for example, currency exchange rates are calculated

and sent to banks), or you might want to take a specified recovery

action if certain transactions are not completed within a defined

time. For all these cases two timeout nodes (TimeoutControl and

TimeoutNotification) are provided.

TimeoutControl

Use a TimeoutControl node and a TimeoutNotification

node together in a message flow to control events that

occur at a specific time or at defined time intervals. The

TimeoutControl node receives an input message that

contains a timeout request. All or part of this input

message is validated and stored to be propagated by an

associated TimeoutNotification node in the message flow.

The input message is also propagated unchanged to the

next node in the message flow.

 More than one TimeoutControl node can be associated

with each TimeoutNotification node.

TimeoutNotification

Use a standalone TimeoutNotification node to generate

messages that are propagated at configured times or time

intervals to the next node in the message flow for further

processing.

Nodes for collating requests

 Use the AggregateControl, AggregateReply, and AggregateRequest nodes

to collate related requests and responses. Use these nodes to generate

several requests in response to one input message, to control and

coordinate the responses that are received in response to those requests,

and to combine the information that is provided by the responses to

continue processing.

Developing message flows 151

Nodes for handling and reporting errors

 Use the following nodes to affect error handling and reporting:

Trace Include a Trace node to generate one or more trace entries to

record what is happening in the message flow at this point.

TryCatch

Include a TryCatch node to control the error processing when

exceptions are thrown.

Throw

Include a Throw node to force an exception to be thrown, and

specify the identity of the exception, to make it easier to diagnose

the problem.

Using more than one input node

You can include more than one input node in a single message flow.

Before you start:

Read the following concept topic:

v “Message flow nodes” on page 5

You might find this useful in the following situations:

v The message flow provides common processing for messages that are received

from multiple transports. For example, a single message flow might handle:

– Data in messages received from WebSphere MQ, and therefore through a

WebSphere MQ queue and an MQInput node

– Messages that are received from native IP connections (a Real-timeInput

node)
v You need to set standard properties on the MQInput node if input messages:

– are predefined, and

– are all received from WebSphere MQ, and

– do not include an MQRFH2 header.

If the required standard properties are not always the same for every message,

you can include more than one input node and configure each to handle a

particular set of properties.

This requirement is not necessary for self-defining messages.

v Each input node in a message flow causes the broker to start a separate thread

of execution. Including more than one input node might improve the message

flow performance. However, if you include multiple input nodes that access the

same input source (for example, a WebSphere MQ queue), the order in which

the messages are processed cannot be guaranteed. If you want the message flow

to process messages in the order in which they are received, this option is not

appropriate.

If you are not concerned about message order, consider using additional

instances of the same message flow rather than multiple input nodes. If you set

the Additional Instances property of the message flow when you deploy it to the

broker, multiple copies of the message flow are started in the execution group.

This is the most efficient way of handling multiple instances.

Look at the following sample :

v Scribble sample

152 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.scribble.doc/doc/overview.htm

This sample uses two input nodes: an MQInput node and a Real-timeInput node.

You can use these two input nodes to enable the sample’s message flow to accept

input from both WebSphere MQ transport and native IP connections. You can view

samples only when you use the information center that is integrated with the

Message Broker Toolkit.

Defining input message characteristics

When a message is received by an input node in a message flow, the node detects

how to interpret that message by determining the domain in which the message is

defined and starting the appropriate parser.

Before you start:

Read the following concept topic:

v “Parsers” on page 74

You can provide message domain information to the input node in one of two

ways:

1. You can configure the built-in input nodes to indicate the message domain, and

therefore the parser to be started, for each message that is received.

2. You can set values in the input message itself that specify this information.

Include an MQRFH2 header, which contains a folder that defines the message

characteristics. This approach is more flexible because it means that the input

node can start the appropriate parser based on the content of each message.

If the input message is defined in the MRM domain, and is therefore interpreted

by the MRM parser, you must specify the following additional properties:

v The Message set within which the message is defined

v The Message type, which is defined by the message model

v The Message format, which defines the physical characteristics of the message

The way that these properties are set depends upon the type of message, or node,

that you want to use:

v If the message is a WebSphere MQ message, these properties can be set either in

the input node or in the MQRFH2 header of the incoming message. If the

properties are set in both, the properties of the MQRFH2 header take

precedence. If the properties are not found in either the node or the MQRFH2

header, the default value is empty and the BLOB parser is used.

v If the message is a JMS message, the property that is set on the node takes

precedence. If the Message domain is empty, the Message domain is, by default,

derived according to certain criteria following a predetermined order of

precedence; see Order of precedence for deriving the message domain.

v If the input message belongs to a Message domain other than those for which a

parser is supplied, you must provide a user-defined parser to handle it, and a

user-defined input node to accept it for processing in the message flow. Check

the documentation provided with the user-defined parser and node for further

information.

v If the Message domain is in a TimeoutControl node, an empty Message domain

has either of the following results:

– If the Stored message location property is also empty, the full message is

stored. When the message comes back at TimeoutNotification, it is parsed in

the same way as the original message.

Developing message flows 153

– If the Stored message location property is not empty, a partial message is

stored and no parser is associated, so, by default, it is treated as BLOB.
v If the Message domain is in a ResetContentDescriptor node, an empty Message

domain has either of the following results:

– If Reset message domain is cleared, the domain is not reset.

– If Reset message domain is selected, the default is BLOB.
v If the input node cannot determine the message characteristics, the default value

is empty and the message is considered to be in the BLOB domain, and the

BLOB parser is started.

Import either of the following samples, or another sample that uses a Message set,

from the Samples Gallery, and look at the values on the Input Message Parsing

properties tab of the input node in the sample’s message flow.

v Video Rental sample

v Comma Separated Value (CSV) sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Using nodes for decision making

Before you start:

Read the concept topic about message flow nodes.

You can use several built-in nodes in different ways to control the path that a

message takes through the message flow.

These nodes let you decide how messages are processed by specifying the route

that each message takes through the message flow based on dynamic values such

as message structure and content.

For more information, see the following topics:

v “Testing the message structure (Validate node)”

v “Controlling the order of processing within a message flow” on page 155

v “Testing the message content (Filter node)” on page 155

v “Using the destination list to route messages (RouteToLabel and Label nodes)”

on page 156

Testing the message structure (Validate node)

Use the Validate node to test the characteristics of the message structure.

If you set the Validate node properties appropriately, you can request that one or

all of the message domain, message set, and message type are compared to a

specific value. If the message matches those values for which you have requested

the check, it is routed through the match terminal and is processed by the

sequence of nodes that you have connected to that terminal.

If the message does not match any one of those values for which you have

requested the check, it is routed through the failure terminal and is processed by

the sequence of nodes that you have connected to that terminal.

For example, you might design a message flow that provides additional processing

for all messages that are in the MRM domain. You can include a Validate node that

tests just that characteristic of the message, and passes it to a sequence of nodes

154 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.csv.doc/doc/overview.htm

that provide the specialized processing. If the message is not in the MRM domain,

the extra nodes are bypassed, and the failure terminal is wired up directly to the

node that follows the sequence required for MRM messages only.

Controlling the order of processing within a message flow

Use the FlowOrder node to control the order of processing within a message flow.

When you connect message flow nodes together, the broker determines the way in

which the different connections are processed. This includes the order in which

they are processed. If you have connected more than one node or sequence of

nodes to a single output terminal, you cannot predict whether one sequence is

processed before another for any given message.

If the order of processing is important in your message flow, use the FlowOrder

node to force a prescribed order of processing of the messages that are propagated

by this node.

The FlowOrder node has two output terminals that you can connect to control the

order in which subsequent nodes process the message. The output terminals,

named first and second, are always processed in that order.

When you connect a node or sequence of nodes to the terminal named first, the

input message is passed to the next node, and all processing defined by all

subsequent nodes in this sequence is completed before control returns to the

FlowOrder node.

The input message is then propagated to the next node in the sequence of nodes

connected to the terminal named second.

The message passed to both sequences of nodes, from the terminal named first and

the terminal named second, is identical. It is always the message that the

FlowOrder node receives as input. The message that the FlowOrder node

propagates to the terminal named second is in no way affected by the processing of

the message that has been performed by the sequence of nodes connected to the

terminal named first.

The FlowOrder node provides no other processing on the input message; it is used

only for imposing order on subsequent processing.

Testing the message content (Filter node)

This topic describes how you can use the Filter node to determine the path taken

by a message through the message flow based on its content.

You can customize the Filter node using ESQL statements to determine if the

message content meets some condition. The condition tested must yield a Boolean

result, that is it must be true or false (or unknown). You can create the test to

reference information from a database, if applicable.

You can connect nodes following the Filter node to the corresponding terminals of

the Filter node, and process the message according to its content.

Look at the following samples to see how to use the Filter node:

v Airline Reservations sample

v Error Handler sample

Developing message flows 155

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.doc/doc/overview.htm

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Using the destination list to route messages (RouteToLabel and

Label nodes)

You can determine the path that a message takes through the message flow using

the RouteToLabel and Label nodes.

These nodes provide a more flexible way to process messages than the Filter node,

which depends on the Boolean result of an ESQL expression for its logic.

When you use RouteToLabel and Label nodes, you must include a Compute node

that determines, using some combination of message content, database content,

and ESQL logic, how messages are to be processed next. Configure the Compute

node to create a destination list (within the DestinationList folder in the

LocalEnvironment subtree) that contains the destination for each message, specified

as the LabelName of a Label node. The Compute node passes the message to the

RouteToLabel node, which reads the destination list and propagates the message to

either the first or last item on the destination list, according to the value that is

specified for the RouteToLabel node’s Mode property. Although there is no limit to

the number of destinations that the Compute node writes in the destination list,

the RouteToLabel node propagates the message only to a single label node. This

use of the destination list is in contrast to its use to define the final recipients of

the output messages. For more information about the procedure for creating a

destination list, see “Creating destination lists” on page 162.

If you intend to derive destination values from the message itself, or from a

database, you might also need to cast values from one type to another. For more

information about the LocalEnvironment, see “Local environment tree structure”

on page 64. For more information about casting, see “Supported casts” on page

1644.

Look at the following sample to see how to use these nodes:

v Airline Reservations sample

The XML_PassengerQuery message flow in the previous sample demonstrates how

you can use the destination list in the LocalEnvironment to route messages based

on the information in the message itself. You can view samples only when you use

the information center that is integrated with the Message Broker Toolkit.

Using subflows

Subflows can be included in your message flows in exactly the same way as you

include built-in or user-defined nodes.

You can also connect subflows to other nodes in the same way. You can define a

subflow once, and use it in more than one message flow (and even in more than

one message flow project), so a subflow can provide the following benefits:

v Reusability and reduced development time.

v Consistency and increased maintainability of your message flows (consider a

subflow as analogous to a programming macro, or to inline code that is written

once but used in many places).

v Flexibility to tailor a subflow to a specific context (for example, by updating the

output queue or data source information).

156 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm

However, remember that a subflow is not a single node, and its inclusion increases

the number of nodes in the message flow, which might affect its performance.

Consider these examples of subflow use:

v You can define a subflow that provides a common sequence of actions that

applies to several message flows if an error is encountered; for example, you

might have a common error routine that writes the message to a database

through the Warehouse node, and puts it to a queue for processing by an error

recovery routine. The use of this routine in multiple message flows, or in several

places within one message flow, provides an efficient and consistent use of

resources and avoids reinventing such routines every time an error is

encountered.

v You might want to perform a common calculation on messages that pass

through several different message flows; for example, you might access currency

exchange rates from a database and apply these to calculate prices in several

different currencies. You can include the currency calculator subflow in each of

the message flows in which it is appropriate.

Use the Passthrough node to enable version control of a subflow at run time. The

Passthrough node allows you to add a label to your message flow or subflow. By

combining this label with keyword replacement from your version control system,

you can identify which version of a subflow is included in a deployed message

flow. You can use this label for your own purposes. If you have included the

correct version keywords in the label, you can see the value of the label:

v Stored in the broker archive (bar) file, using the mqsireadbar command

v As last deployed to a particular broker, on the properties of a deployed message

flow in the Message Broker Toolkit

v In the run time, if you enable user trace for that message flow

The message that it propagates on its Out terminal is the same message that it

received on its In terminal; for example, if you develop an error processing

subflow to include in several message flows, you might want to modify that

subflow. However, you might want to introduce the modified version initially to

just a subset of the message flows in which it is included. Set a value for the

instance of the Passthrough node that identifies which version of the subflow you

have included.

The use of subflows is demonstrated in the following samples:

v Error Handler sample

v Coordinated Request Reply sample

The Error Handler sample uses a subflow to trap information about errors and

store the information in a database. The Coordinated Request Reply sample uses a

subflow to encapsulate the storage of the ReplyToQ and ReplyToQMgr values in a

WebSphere MQ message so that the processing logic can be easily reused in other

message flows and to allow alternative implementations to be substituted.

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Adding keywords to subflows

You can embed keywords in each subflow that you use in a message flow. A

different keyword must be used in each instance of a subflow. This is because only

the first recorded instance of each keyword within the message flow .cmf file is

Developing message flows 157

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.coordinated_request_reply.doc/doc/overview.htm

available to Configuration Manager Proxy applications and to the toolkit. The

order that subflows appear in the .cmf file is not guaranteed.

Optimizing message flow response times

This topic describes how you can improve message flow response times.

Before you start:

Read the following concept topic:

v “Message flow nodes” on page 5

When you design a message flow, the flexibility and richness of the built-in nodes

often means that there are several ways to achieve the processing and therefore the

end results that you require. However, you can also find that these different

solutions deliver different performance and, if this is an important consideration,

you must design for performance as well as function.

Your applications can perceive performance in either of these ways:

1. The response time indicates how quickly each message is processed by the

message flow. The response time is particularly influenced by how you design

your message flows. Response time is discussed in this topic.

2. The throughput indicates how many messages of particular sizes can be

processed by a message flow in a given time. The throughput is mainly

affected by configuration and system resource factors, and is discussed in the

topic on optimizing message flow throughput along with other domain

configuration information. See Optimizing message flow throughput.

Several aspects influence message flow response times. However, as you create and

modify your message flow design to arrive at the best results that meet your

specific business requirements, you must also consider the eventual complexity of

the message flow. The most efficient message flows are not necessarily the easiest

to understand and maintain; experiment with the solutions available to arrive at

the best balance for your needs.

Several factors influence message flow response times:

The number of nodes that you include in the message flow

Every node increases the amount of processing required in the broker, so

consider the content of the message flow carefully, including the use of

subflows.

 Use as few nodes as possible in a message flow; every node that you

include in the message flow increases the amount of processing required in

the broker. The number of nodes within a single flow has an upper limit.

This limit is governed by system resources, particularly the stack size.

For more information about stack sizes, see “System considerations for

message flow development” on page 160.

How the message flow routes and processes messages

In some situations, you might find that the built-in nodes, and perhaps

other nodes that are available in your system, provide more than one way

of providing the same function. Choose the simplest configuration. For

example, if you want to define some specific processing based on the value

of a field in each message, you might design a message flow that has a

sequence of Filter nodes to handle each case. If appropriate, you can group

158 Message Flows

messages through the Filter node to reduce the number that each message

type has to pass through before being processed.

 For example, you might have a message flow that handles eight different

messages (Invoice, Despatch Note, and so on). You can include a Filter

node to identify each type of message and route it according to its type.

You can optimize the performance of this technique by testing for the most

frequent message types in the earliest Filter nodes. However, the eighth

message type must always pass through eight Filter nodes.

If you can group the message types (for example, if the message type is

numeric, and you can test for all types greater than four and not greater

than four), you can reduce the number of Filter nodes required. The first

Filter node tests for greater than four, and passes the message on to two

further Filter nodes (attached to the true and false terminals) that test for

less than two and less than six respectively. An additional four Filter nodes

can then test for one or two, three or four, and so on. Although the actual

number of Filter nodes required is the same, the number of nodes that

each message passes through is reduced.

You might find that using a RouteToLabel node with a set of Label nodes

provides a better alternative to a sequence of Filter nodes. Each message

passes through a smaller number of nodes, improving throughput.

However, you must also consider using a RouteToLabel node means using

a Compute node: the increase in the amount of processing required in the

broker that is caused by the node might outweigh the advantages. If you

are dealing with a limited number of message types, a small number of

Filter nodes is more efficient.

The following sample demonstrates how you can use the RouteToLabel

and Label nodes instead of using multiple Filter nodes in the

XML_PassengerQuery message flow.

v Airline Reservations sample

The following sample demonstrates how you can store routing information

in a database table in an in-memory cache in the message flow.

v Message Routing sample

You can view samples only when you use the information center that is

integrated with the Message Broker Toolkit.

If your message flow includes loops

Avoid loops of repeating nodes; these can be very inefficient and can cause

performance and stack problems. You might find that a Compute node

with multiple PROPAGATE statements avoids the need to loop round a

series of nodes.

The efficiency of the ESQL

Check all the ESQL code that you have created for your message flow

nodes. As you develop and test a node, you might maintain statements

that are not required when you have finalized your message processing.

You might also find that something you have coded as two statements can

be coded as one. Taking the time to review and check your ESQL code

might provide simplification and performance improvements.

 If you have imported message flows from a previous release, check your

ESQL statements against the ESQL available in Version 5.0 to see if you can

use new functions or statements to improve its efficiency.

Developing message flows 159

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.routing.doc/doc/overview.htm

The use of persistent and transactional messages

Persistent messages are saved to disk during message flow processing. This

situation is avoided if you can specify that messages either on input,

output, or both, are non-persistent. If your message flow is handling only

non-persistent messages, check the configuration of the nodes and the

message flow itself; if your messages are non-persistent, transactional

support might be unnecessary. The default configuration of some nodes

enforces transactionality; if you update these properties and redeploy the

message flow, response times might improve.

Message size

A larger message takes longer to process. If you can split large messages

into smaller chunks of information, you might be able to improve the

speed at which they are handled by the message flow. The following

sample demonstrates how to minimize the virtual memory requirements

for the message flow to improve a message flow’s performance when

processing potentially large messages.

v Large Messaging sample

You can view samples only when you use the information center that is

integrated with the Message Broker Toolkit.

Message format

Although WebSphere Message Broker supports multiple message formats,

and provides facilities that you can use to transform from one format to

another, this transformation increases the amount of processing required in

the broker. Make sure that you do not perform any unnecessary

conversions or transformations.

You can find more information on improving the performance of a message flow in

this developerWorks article on message flow performance.

System considerations for message flow development

Ensuring you configure your message flows to make the best use of your

computer’s resources is of paramount importance, especially if you are going to be

processing large messages. As well as designing your message flow to optimize

throughput, you need to ensure that particular areas of storage are efficiently used

so that your system does not suffer from capacity issues or processes abend due to

lack of resources.

Consider the following storage issues when developing your message flows:

v “Stack storage”

v “JVM heap sizing” on page 161

Stack storage

When a message flow thread starts, it requires storage to perform the instructions

that are defined by the message flow nodes. This storage comes from the execution

group’s heap and stack size. The default stack size that is allocated to a message

flow thread depends on the operating system that is used.

Windows

On Windows, each message flow thread is allocated 1 MB of stack space.

Linux

On Linux, each message flow thread is allocated 8 MB of stack space.

160 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.largemessaging.doc/doc/overview.htm
http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html

UNIX On UNIX, each message flow thread is allocated 1 MB of stack space.

z/OS

On z/OS, each message flow thread is allocated 512 KB of downward

stack space and 50 KB of upward stack space.

In a message flow, a node typically uses 2 KB of the stack space. A typical message

flow can therefore include 250 nodes on z/OS, 500 nodes on UNIX systems and

500 nodes on Windows. This amount can be higher or lower depending on the

type of nodes used and the processing that they perform.

In WebSphere Message Broker, any processing that involves nested or recursive

processing can cause extensive usage of the stack. For example, in the following

situations you might need to increase the stack size:

v When a message flow is processing a message that contains a large number of

repetitions or complex nesting

v When a message flow is executing ESQL that calls the same procedure or

function recursively, or when an operator (for example, the concatenation

operator) is used repeatedly in an ESQL statement

You can increase the stack size to improve performance. For details, see:

v Increasing the stack size on Windows, Linux, and UNIX systems.

v Increasing the stack size on z/OS.

JVM heap sizing

The Java Virtual Machine (JVM) heap is an independent memory allocation that

can reduce the capacity of the main memory heap.

Every execution group creates its own Java Virtual Machine (JVM). The execution

group uses the JVM to execute the internal administration threads that require

Java. This usage is typically minimal. The primary use of the JVM is for IBM

primitive nodes that make use of Java functionality. These primitives include:

v Java user-defined plugin nodes

v Publish/subscribe nodes together with some publish/subscribe functionality

v XSLT nodes

v HTTPRequest nodes

v Real-time nodes

From WebSphere Message Broker Version 6.1 onwards, the JVM is created with a

minimum of 32 MB of space, and a maximum of 256 MB, allocated and reserved

for its use. As with any JVM, you can pass parameters in to set the minimum and

maximum heap sizes.

You might need to increase the maximum heap size allocated if you plan to run

large messages through the Java primitive nodes listed above.

To give more capacity to a message flow that is going to process large messages,

reduce the minimum JVM heap size to allow the main memory heap to occupy

more address space. For details of how to reduce the minimum JVM heap size, see

Setting the JVM heap size.

Developing message flows 161

|
|
|
|

|
|

Creating destination lists

Create a list of destinations to indicate where a message is sent.

Before you start:

Read the concept topic “Message flow nodes” on page 5.

You can include a Compute node in your message flow, and configure it to create a

destination list within the LocalEnvironment subtree. You can then use the

destination list in the following nodes:

v The MQOutput and JMSOutput nodes, to put output messages to a specified list

of destinations.

v The RouteToLabel node, to pass messages to Label nodes.

For details about how this technique is used, look at the following sample:

– Airline Reservations sample

You can view samples only when you use the information center that is

integrated with the Message Broker Toolkit.

For more information about accessing the LocalEnvironment subtree, destination

list contents, and example procedures for setting values for each of these scenarios,

see “Accessing the LocalEnvironment tree” on page 308.

For more information about how to populate destination in the LocalEnvironment

subtree, and how to build JMS destination lists, see “Populating Destination in the

LocalEnvironment tree” on page 311.

You might find it useful to create the contents of the destination list from an

external database that is accessed by the Compute node. You can then update the

destinations without needing to update and redeploy the message flow.

The use of the destination list to define which applications receive the output

messages is in contrast to the publish/subscribe application model, in which the

recipients of the publications are those subscribers that are currently registered

with the broker. The processing that is completed by the message flow does not

have any effect on the current list of subscribers.

Using WebSphere MQ cluster queues for input and output

Design your broker domain to use WebSphere MQ queues, if appropriate for your

business needs.

The use of queue manager clusters brings the following significant benefits:

1. Reduced system administration

Clusters need fewer definitions to establish a network; you can set up and

change your network more quickly and easily.

2. Increased availability and workload balancing

You can benefit by defining instances of the same queue to more than one

queue manager, thus distributing the workload through the cluster.

If you use clusters with WebSphere Message Broker, consider the following queues:

162 Message Flows

|
|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm

For SYSTEM.BROKER queues:

The SYSTEM.BROKER queues are defined for you when you create

WebSphere Message Broker components, and are not defined as cluster

queues. Do not change this attribute.

For broker, Configuration Manager, and User Name Server connectivity:

If you define the queue managers that support your brokers, the

Configuration Manager, and the User Name Server to a cluster, you can

benefit from the simplified administration provided by WebSphere MQ

clusters. You might find this particularly relevant for the brokers in a

collective, which must all have WebSphere MQ interconnections.

For message flow input queues:

If you define an input queue as a cluster queue, consider the implications

for the order of messages or the segments of a segmented message. The

implications are the same as they are for any WebSphere MQ cluster

queue. In particular, the application must ensure that, if it is sending

segmented messages, all segments are processed by the same target queue,

and therefore by the same instance of the message flow at the same broker.

For message flow output queues:

v WebSphere Message Broker always specifies MQOO_BIND_AS_Q_DEF

when it opens a queue for output. If you expect segmented messages to

be put to an output queue, or want a series of messages to be handled

by the same process, you must specify DEFBIND(OPEN) when you

define that queue. This option ensures that all segments of a single

message, or all messages within a sequence, are put to the same target

queue and are processed by the same instance of the receiving

application.

v If you create your own output nodes, specify MQOO_BIND_AS_Q_DEF

when you open the output queue, and DEFBIND(OPEN) when you

define the queue, if you need to guarantee message order, or to ensure a

single target for segmented messages.

For publish/subscribe applications:

v If the target queue for a publication is a cluster queue, you must deploy

the publish/subscribe message flow to all the brokers on queue

managers in the cluster. However, the cluster does not provide any of

the failover function to the broker domain topology and function. If a

broker to which a message is published, or a subscriber registers, is

unavailable, the distribution of the publication or registration is not

taken over by another broker.

v When a client registers a subscription with a broker that is running on a

queue manager that is a member of a cluster, the broker forwards a

proxy registration to its neighbors within the broker domain; the

registration details are not advertised to other members of the cluster.

v A client might choose to become a clustered subscriber, so that its

subscriber queue is one of a set of clustered queues that receive any

given publication. In this case, when registering a subscription, use the

name of an ″imaginary″ queue manager that is associated with the

cluster; this is not the queue manager to which the publication will be

sent, but an alias for the broker to use. As an administrative activity, a

blank queue manager alias definition is made for this queue manager on

the broker that satisfies this subscription for all clustered subscribers.

When the broker publishes to a subscriber queue that names this queue

manager, resolution of the queue manager name results in the

Developing message flows 163

publication being sent to any queue manager that hosts the subscriber

cluster queue, and only one clustered subscriber receives the publication.

For example, if the clustered subscriber queue was SUBS_QUEUE and

the ″imaginary″ subscriber queue manager was CLUSTER_QM, the

broker definition would be:

DEFINE QREMOTE(CLUSTER_QM) RQMNAME(’ ’) RNAME(’ ’)

This sends broker publications for SUBS_QUEUE on CLUSTER_QM to

one instance of the cluster queue named SUBS_QUEUE anywhere in the

cluster.

To understand more about clusters, and the implications of using cluster queues,

see the Queue Manager Clusters section of the WebSphere MQ Version 6 information

center online.

Using WebSphere MQ shared queues for input and output

(z/OS)

On z/OS systems, you can define WebSphere MQ shared queues as input and

output queues for message flows.

Use the WebSphere MQ for z/OS product facilities to define these queues and

specify that they are shared.

For more information about configuring on z/OS, refer to the z/OS Concepts and

Planning section of the WebSphere MQ Version 6 information center online.

If you use shared queues, you can provide failover support between different

images running WebSphere Message Broker on a sysplex.

You cannot use shared queues for broker or User Name Server component queues

such as SYSTEM.BROKER.CONTROL.QUEUE.

Shared queues are available only on z/OS.

Validating messages

The broker provides validation based on the message set for predefined messages.

Before you start:

Read the concept topics about message flows and parsers, especially “MRM parser

and domain” on page 98 and “XMLNSC parser” on page 85.

Validation applies only to messages that you have modeled and deployed to the

broker. Specifically, the message domains that support validation are MRM,

XMLNSC, SOAP, and IDOC.

The broker does not provide any validation for self-defining messages. The MRM

and IDOC parsers validate predefined messages against the message dictionary

generated from a message set. The XMLNSC and SOAP domains validate

predefined messages directly against XML Schema generated from a message set.

Message flows are designed to transform and route messages that conform to

certain rules. By default, parsers perform some validity checking on a message, but

only to ensure the integrity of the parsing operation. However, you can validate a

164 Message Flows

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

message more stringently against the message model contained in the message set,

by specifying validation options on certain nodes in your message flow.

You can use validation options to validate the following messages:

v Input messages that are received by an input node

v Output messages that are created, for example, by a Compute, Mapping, or

JavaCompute node

These validation options can guarantee the validity of data entering and leaving

the message flow. The options provide you with some degree of control over the

validation performed to:

v Maintain a balance between performance requirements and security

requirements

v Validate at different stages of message flow execution; for example, on input of a

message, before a message is output, or at any point in-between

v Cope with messages that your message model does not fully describe

You can also specify what action to take when validation fails.

Message validation involves navigating a message tree, and checking the tree’s

validity.

Message validation is an extension of tree creation when the input message is

parsed, and of bit stream creation when the output message is written.

Validation options are available on the following nodes:

 Node type Nodes with validation options

Input node MQInput, SCADAInput, HTTPInput, JMSInput, TimeoutNotification,

SOAPInput, FileInput

Output node MQOutput, MQReply, SCADAOutput, HTTPReply, JMSOutput,

JMSReply, FileOutput, SOAPReply

Other nodes Compute, Mapping, JavaCompute, Validate, ResetContentDescriptor,

MQGet, HTTPRequest, XSLTransform, DatabaseRetrieve, SOAPRequest,

SOAPAsyncResponse

Validation options can also be specified on the ESQL CREATE statement and the

ASBITSTREAM function.

To validate input messages that are received on an input node, you can specify

validation properties on the input node. The input message is then validated when

the message bit stream is parsed to form the message tree.

You can also use the Parse Timing property of the input node to control whether

the entire message is parsed and validated at this time, or whether individual

fields in the message are parsed and validated only when referenced.

To validate output messages that are created by a transformation node, specify

validation properties either on the node itself, or on the output node that sends the

message. The validation takes place when the message bit stream is created from

the message tree by the output node.

Developing message flows 165

Alternatively, use a Validate node to validate a message tree at a particular place in

your message flow, or use the ESQL ASBITSTREAM function within a Compute,

Filter, or Database node.

A limited amount of validation occurs by default if you leave the validation

settings unaltered. At this default level, an exception is thrown if one of the

following is true:

v There is a data mismatch; for example, the parser cannot interpret the data that

is provided for the field type specified.

v The order of elements in the output message does not match the order of

elements in the logical message tree (MRM, CWF and TDS fixed length models

only).

Additionally, the MRM parser performs limited remedial action under the

following circumstances:

v Extraneous fields are discarded on output for fixed formats (CWF and TDS fixed

length models only).

v If mandatory content is missing, defaults are supplied, if available, on output for

fixed formats (CWF and TDS fixed length models only).

v If an element’s data type in the tree does not match that specified in the

dictionary, the data type is converted on output to match the dictionary

definition, if possible, for all formats.

However, by using validation options you can request more thorough validation of

messages. For example, you might want to validate one or more of the following

conditions, and throw an exception or log the errors:

v The whole message at the start of the message flow

v That complex elements have the correct Composition and Content Validation

v That all data fields contain the correct type of data

v That data fields conform to the value constraints in the message model

v That all mandatory fields are present in the message

v That only the expected fields are present in the message

v That message elements are in the correct order

The samples in the Samples Gallery illustrate some of these validation options.

When using validation options, it is important to understand the following

behavior:

v The Parse Timing property, which controls whether ’on demand’ parsing

(sometimes called partial parsing) takes place, has an effect on the timing of the

validation of input messages, including message headers.

For more information about the Parse Timing property, see “Parsing on

demand” on page 1363.

v If a message tree is passed to an output node, by default, the output node

inherits the validation options in force for the message tree. You can override

these options by specifying a new set of validation options on the output node.

v If a message tree is passed as input to a Compute, Mapping, XSLTransform,

DatabaseRetrieve, or JavaCompute node, any new output message trees that are

created by the node have the validation options specified by the node itself

(even if the whole message is copied). You can override this behavior, and

specify that the messages that are created by the node inherit the validation

options of the input message tree.

166 Message Flows

v (MRM domain only) When the bit stream is written, and validation options are

applied, the entire message is validated. The message tree might contain an

unresolved type (for example, if a Compute node copied an unresolved type

from an input message to an output message without resolving it). If such a

type is encountered, a validation error occurs because it is not possible to

validate the type. To prevent this, ensure that all unresolved types are resolved

before they are copied to output messages.

v (MRM domain only) You must not select the Truncate fixed length strings check

box, because validation is done before truncation, and a fixed length field fails

validation if its length exceeds the length that is defined in the message set. For

more information about the Truncate fixed length strings property, see Custom

Wire Format message set properties and TDS Format message set properties.

For information about how you can control validation by using different

properties, see “Validation properties” on page 1359.

Viewing the logical message tree in trace output

To view the structure of the logical message tree at any point in the message flow,

include a Trace node and write some or all of the message (including headers and

all four message trees) to the trace output destination.

You might find trace output useful to check or record the content of a message

before and after a node has made changes to it, or on its receipt by the input node.

For example, if you include a Compute node that builds a destination list in

LocalEnvironment, you might want a record of the structure that it has created as

part of an audit trail, or you might just want to check that the Compute node is

working as you expect it to.

1. Switch to the Broker Application Development perspective.

2. Open the message flow for which you want to view messages. Open an

existing message flow, or create a new message flow.

3. Include a Trace node wherever you want to view part or all of the message tree

structure. You can include as many Trace nodes as you choose; however, each

node introduces some overhead to the message flow processing.

4. Set the Trace node properties to trace the message, or parts of the message, that

you want to view. Specify the parts of the message using ESQL field references.

Several examples are included below.

5. If you have added a Trace node to investigate a particular behavior of your

message flow, and have now resolved your concerns or checked that the

message flow is working correctly, remove the Trace node or nodes, and

redeploy the message flow.

Assume that you have configured a message flow that receives an XML message

on a WebSphere MQ queue in an MQInput node. The input message includes an

MQRFH2 header. The message content is shown below:

You can include and configure a Trace node to produce output that shows one or

more of the trees created from this message: the message body, Environment,

LocalEnvironment, and Exception trees. If you choose to record the content of the

message body, the Properties tree and the contents of all headers (in this example,

<Trade type=’buy’

 Company=’IBM’

 Price=’200.20’

 Date=’2000-01-01’

 Quantity=’1000’/>

Developing message flows 167

at least an MQMD and an MQRFH2) are included. You specify what you want to

be recorded when you set the Trace node property Pattern. You can use most of

the correlation names to define this pattern (you cannot use those names that are

specific to the Compute node).

Message body

If you want the Trace node to write the message body tree including

Properties and all headers, set Pattern to $Root. If you want only the

message data, set Pattern to ${Body}.

 The trace output generated for the message tree of the message shown

above with Pattern set to $Root would look something like:

Environment

To trace any data in the environment tree, set Pattern to ${Environment}.

This setting produces output similar to the following:

 To trace particular variables in the variables folder of the environment tree,

you can use a more specific pattern, for example

${Environment.Variables.MyVariable1}. This setting returns the value only

(for example, it returns just the value 3).

Root

 Properties

 CreationTime=GMTTIMESTAMP ’1999-11-24 13:10:00’ (a GMT timestamp field)

 ... and other fields ...

 MQMD

 PutDate=DATE ’19991124’ (a date field)

 PutTime=GMTTIME ’131000’ (a GMTTIME field)

 ... and other fields ...

 MQRFH

 mcd

 msd=’xml’ (a character string field)

 .. and other fields ...

 XML

 Trade

 type=’buy’ (a character string field)

 Company=’IBM’ (a character string field)

 Price=’200’ (a character string field)

 Date=’2000-01-01’ (a character string field)

 Quantity=’1000’ (a character string field)

 (0x1000000)Environment = (

 (0x1000000)Variables = (

 (0x1000000)MyVariable1 = (

 (0x2000000) = ’3’

)

 (0x1000000)MyVariable2 = (

 (0x2000000) = ’Hello’

)

)

)

168 Message Flows

LocalEnvironment

To trace data in the LocalEnvironment tree, set Pattern to

${LocalEnvironment}. The output you get is similar to the following

example, which shows that a destination list has been created within the

LocalEnvironment tree:

 Another example, shown below, includes a WrittenDestination folder. This

example represents a trace that has been written by a Trace node that is

included after an MQOutput node, where the Out terminal of the

MQOutput node is connected to a sequence of nodes including the Trace

node. When an Out terminal is connected, the LocalEnvironment is

augmented with information about the action that the output node has

performed.

ExceptionList

To trace data in the exception list, set Pattern to ${ExceptionList}.

You can also view message structure within the message flow, and other

information, when you use the flow debugger.

(0x1000000)Destination = (

 (0x1000000)MQ = (

 (0x1000000)DestinationData = (

 (0x3000000)queuename = ’MQOUT’

)

)

 (0x1000000)MQDestinationList = (

 (0x1000000)DestinationData = (

 (0x3000000)queuename = ’OLDMQOUT’

)

)

 (0x1000000)RouterList = (

 (0x1000000)DestinationData = (

 (0x3000000)labelname = ’continue’

)

 (0x1000000)DestinationData = (

 (0x3000000)labelname = ’custdetails’

)

 (0x1000000)DestinationData = (

 (0x3000000)labelname = ’trade’

)

)

)

(0x1000000)Destination = (

 (0x1000000)MQ = (

 (0x1000000)DestinationData = (

 (0x3000000)queuename = ’MQOUT’

)

)

 (0x1000000)WrittenDestination = (

 (0x1000000)MQ = (

 (0x1000000)DestinationData = (

 (0x3000000)queueName = ’MQOUT’

 (0x3000000)queueManagerName = ’MQSI_SAMPLE_QM’

 (0x3000000)replyIdentfier = X’414d51204d5153495f53414d504c455f1f442f3b12600100’

 (0x3000000)msgId = X’414d51204d5153495f53414d504c455f1f442f3b12600100’

 (0x3000000)correlId = X’00’

 (0x03000000):GroupId = X’414d512042524f4b45523220202020203f59934620001803’

)

)

)

)

Developing message flows 169

Accessing databases from message flows

This topic describes how you can create and configure message flows to access

user databases.

Before you start:

Complete the following tasks:

v “Creating a message flow” on page 218

v Configuring databases

Read the following concept topic:

v “Message flow nodes” on page 5

You can access information in a database to enhance or influence the operation of

the message flow. You can also modify the contents of a database by inserting new

information or by removing or replacing existing information.

You can access a database from a message flow using the following nodes:

v Compute

v Database

v DatabaseRetrieve

v DatabaseRoute

v DataInsert

v DataDelete

v DataUpdate

v Filter

v JavaCompute

v Mapping

v Warehouse

For more details of these nodes, and how to configure them in message flows, see

“Built-in nodes” on page 822.

If you want the actions that the message flow takes against the database to be

coordinated with other actions, configure the message flow to support global

coordination of transactions. For information about how to do this, see

“Configuring globally coordinated message flows” on page 173.

To access a database from a message flow:

1. Identify the database that you want to access. You can access an existing

database or a new one that has been created for this purpose. See “Data sources

on z/OS” on page 1448 for more information on what to call a z/OS user

database.

If you want to create a new database, follow the instructions given in Creating

the databases.

If you want to use a database other than DB2®, refer to the database product

documentation for detailed instructions on how to do this.

Supported databases lists the database managers that are supported by

WebSphere Message Broker.

2. Define a connection to the data source name (DSN) to enable a connection to

the database, if one does not already exist:

a. Define a JDBC connection if you want to interact with a database directly

from a Java application. You can code Java in both a JavaCompute node and

in a Java user-defined node.

170 Message Flows

For more information, see Enabling JDBC connections to the databases.

b. Define an ODBC connection if you want to interact with a database in a

node that supports ESQL, including a JavaCompute node in which use the

MbSQLStatement interface.

For more information, see Enabling ODBC connections to the databases.
3. Authorize the broker to access the database.

Access to a user database from within a message flow is controlled by user ID

and password.

z/OS

On z/OS, you can specify these values:

v When you create the broker.

The broker started task ID is used to access user databases, irrespective of

the user ID and password specified on the mqsicreatebroker command in the

BIPCRBK JCL in the customization data set <hlq>.SBIPPROC.

v After you have created the broker.

Use the BIPSDBP JCL in the customization data set <hlq>.SBIPPROC to

customize the mqsisetdbparms command to specify a user ID and password

for a specific database. This changes the default values that were set when

you created the broker (described above).

You can create a user ID and password for any database (identified by DSN)

that is accessed by a message flow. You can, therefore, control access to a

database at an individual level if you choose. This includes databases that

you have created and configured on distributed systems that are accessed by

z/OS DB2 remote database access.

On distributed systems, you can specify these values:

v When you create the broker.

The mqsicreatebroker command has two parameters -u DataSourceUserid

and -p DataSourcePassword that you can use to identify the user ID that the

broker uses to access its own database. If you specify these parameters, they

are used as the default access control parameters for user databases that are

accessed by message flows.

If you do not specify DataSourceUserid and DataSourcePassword, the broker

uses the values specified for the parameters -i ServiceUserID and -a

ServicePassword (which identify the user under which the broker runs) as

the default values.

v After you have created the broker.

Use the mqsisetdbparms command to specify a user ID and password pair.

This changes the defaults that were set when you created the broker

(described above).

You can create a user ID and password pair for any database (identified by

DSN) that is accessed by a message flow. You can therefore control access to

a database at an individual level if you choose. This includes databases that

you have created and configured on z/OS that are accessed by brokers on

distributed systems.

If the user that created a table in a database is not the user that the broker is

using to access the database, you must specify the user ID that created the

database as the schema name in relevant ESQL statements, unless you have set

up an alias or synonym.

Developing message flows 171

If you access a database from a message flow using a Compute, Database, or Filter

node, use the New Database Definition File wizard to enable a connection to the

appropriate database. See “Adding database definitions to the Message Broker

Toolkit” on page 494 for further details.

The following samples access databases from message flows:

v Message Routing sample

v Data Warehouse sample

v Error Handler sample

v Airline Reservations sample

The Message Routing sample and the Data Warehouse sample use Compute nodes

to access the database, the Error Handler uses Database nodes to access the

database, and the Airline Reservations sample uses both Compute and Database

nodes. You can view samples only when you use the information center that is

integrated with the Message Broker Toolkit.

Accessing databases from ESQL

You can create and configure ESQL in message flows to access user databases.

Before you start:

v Create a message flow.

v Ensure that the databases are configured.

You can use a number of ESQL statements and functions to access databases:

INSERT statement

The INSERT statement adds a row to a database table.

UPDATE statement

The UPDATE statement changes one or more values stored in zero or more

rows.

DELETE FROM statement

The DELETE FROM statement removes zero or more rows.

SELECT function

The SELECT function retrieves data from a table.

CALL statement

The CALL statement invokes a stored procedure.

PASSTHRU statement

The PASSTHRU statement can be used to invoke administrative operations,

such as creating a table.

PASSTHRU function

The PASSTHRU function can be used to invoke complex selects.

You can access user databases from Compute, Database, and Filter nodes; you can

use the same ESQL statements and functions to access databases in all three types

of node. A single node can access multiple databases but the following restrictions

apply:

v Any node that accesses one or more databases must have its Data source

property set with the ODBC data source name (DSN) of a database; the database

must be accessible and operational, and the broker must be authorized to

connect to it.

172 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.routing.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.datawarehouse.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm

v All databases that are accessed from a single node must be compatible with each

other. If you use the same database manager on the same platform at the same

service level for all the databases, the data sources will be compatible. For

example, two DB2 database instances at the same DB2 fix pack level are

compatible but a DB2 database and an Oracle database are not compatible. If

you use data sources that are not compatible, when you put a message through

the message flow to test it, the message flow throws an error. If your data

sources are not compatible, you cannot access them from a single node; if this is

the case, use additional nodes in your message flow.

v All tables that are referred to in a single SELECT function’s FROM clause must

be in the same database.

To access databases, you must ensure that suitable ODBC data source names (DSN)

have been defined on the system on which the broker is running. On Linux

(zSeries platform) and Linux (POWER™ platform), the only supported database

manager is DB2 and ODBC is not used; the broker and message flows connect to

the databases directly. When you configure message flows, use the DB2 alias of the

database as the DSN.

If you have used the mqsisetdbparms command to set a user ID and password for

a particular database, the broker uses these values to connect to the database. If

you have not set values for a particular database, the broker uses the default

database user ID and password that you supplied on the mqsicreatebroker

command, or the user ID and password details that you specified if you have

modified the broker using the mqsichangebroker command.

z/OS

On z/OS systems, the broker uses the broker started-task ID to connect

to the database. You must also ensure that the database user IDs have sufficient

privileges to perform the operations your flow requires. If they do not have the

required privileges, errors will occur at run time.

For a description of database transactional issues, see The Transactional model.

Select the Throw exception on database error property check box and the Treat

warnings as errors property check box, and set the Transaction property to

Automatic, to provide maximum flexibility.

Configuring globally coordinated message flows

A coordinated message flow executes within a single transaction, which is started

when a message is received by an input node, and can be committed or rolled

back when all processing has completed. You can also control how database errors

are handled by the node that interacts with the database.

Before you start:

You must have completed the following tasks:

1. Configuring databases for global coordination of transactions.

2. Configuring global coordination of transactions (two-phase commit).

3. “Creating a message flow” on page 218.

If you want the actions of a message flow to be globally coordinated (that is, it

must complete all processing successfully, or complete none), ensure that your

configuration supports this action. For more information about global coordination

of message flow transactions, see The Transactional model.

Developing message flows 173

The following sample demonstrates the use of globally-coordinated transactions,

and the differences in the message flow when database updates are coordinated

(the main flow) and when they are not (the error flow).

v Error Handler sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

To configure a message flow for global coordination:

1. In the Message Broker Toolkit, switch to the Broker Application Development

perspective.

2. Open the message flow that you want to configure.

3. Set the Transaction property for the following nodes if they appear in this

message flow:

v Compute node

v Database node

v DataDelete node

v DataInsert node

v DataUpdate node

v Filter node

v Mapping node

v Warehouse node

You can set the Transaction property to the following values:

Automatic

Any updates, deletions, and additions performed by the node are

committed or rolled back when the message flow processing completes.

If the message flow completes successfully, all changes are committed.

If the message flow does not complete successfully, all changes are

rolled back.

 If you want all of the processing by the message flow to be

coordinated, you must select this value.

Commit

The action taken depends on the system to which the message flow has

been deployed:

v On distributed systems, any work that has been done to this data

source in this message flow to date, including any actions taken in

this node, is committed regardless of the subsequent success or

failure of the message flow.

Note: On systems other than z/OS, individual relational databases

might or might not support this mode of operation.

v

z/OS

On z/OS, actions that are taken in this node only are

committed, regardless of the subsequent success or failure of the

message flow. Any actions that are taken before this node, under

automatic transactionality, are not committed, but remain within a

unit of work, and might either be committed or rolled back,

depending on the success of the message flow.
To mix nodes with Automatic and Commit transactionality in the same

message flow, where the nodes operate on the same external database, use

separate ODBC connections: one for the nodes that are not to commit until the

completion of the message flow, and one for the nodes that are to commit

immediately. If you do not, the nodes that commit immediately will also

commit all operations that are carried out by preceding Automatic nodes.

174 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.doc/doc/overview.htm

Note: On systems other than z/OS, individual relational databases might or

might not support this mode of operation.

If you define more than one ODBC connection you might get database locking

problems. In particular, if a node with Automatic transactionality carries out an

operation, such as an INSERT or an UPDATE, that causes a database object

(such as a table) to be locked, and a subsequent node tries to access that

database object using a different ODBC connection, an infinite lock (deadlock)

occurs.

The second node waits for the lock acquired by the first to be released, but the

first node will not commit its operations and release its lock until the message

flow completes; this will never happen because the second node is waiting for

the first node’s database lock to be released.

Such a situation cannot be detected by any DBMS automatic

deadlock-avoidance routines because the two operations are interfering with

each other indirectly using the broker.

There are two ways to avoid this type of locking problem:

v Design your message flow so that uncommitted (automatic) operations do

not lock database objects that subsequent operations using a different ODBC

connection need to access.

v Configure your database’s lock timeout parameter so that an attempt to

acquire a lock fails after a specified length of time. If a database operation

fails because of a lock timeout, an exception is thrown that the broker

handles in the usual way.

For information concerning which database objects are locked by particular

operations, and how to configure your database’s lock timeout parameter,

consult your database product documentation.

4. Set the Transaction Mode property for the following nodes, if they are in this

message flow:

v MQInput node

v MQOutput node

v MQReply node

v SCADAInput node

v JMSInput node

v JMSOutput node

The following table provides a summary of the actions taken in response to

specific property settings for the input and output nodes.

 Message

persistence

a

Input node

Transaction Mode

MQOutput or

MQReply node

Transaction Mode

Message flow is globally

coordinated?

Yes Yes Automatic Yes

No Yes Automatic Yes

Yes No Automatic No

No No Automatic No

Yes Automatic Automatic Yes

No Automatic Automatic No

Any

b Any

b Yes Yes

Any

b Any

b No No

Notes:

Developing message flows 175

a. Persistence is relevant only for messages received across the

WebSphere MQ Enterprise Transport, WebSphere MQ Mobile

Transport, and WebSphere MQ Telemetry Transport protocols.

b. The MQOutput or MQReply node property setting overrides the

value set here.

c. The Transaction Mode settings of the JMSInput and JMSOutput

nodes are set differently to the preceding table. See “JMSInput node”

on page 949 and “JMSOutput node” on page 961.
The default on each input node is Yes, which means that the incoming

messages are processed under syncpoint. In addition, messages sent to the

output node are delivered under syncpoint. You can change this behavior if the

output node is an MQOutput or MQReply node, both of which have a

Transaction Mode property.

If you set the Transaction Mode on an input node to Automatic, the incoming

messages are processed under syncpoint only if they are defined as persistent.

Messages sent to the MQOutput node are delivered under syncpoint unless

you explicitly change the Transaction Mode in the MQOutput node.

5. Set the Treat warnings as errors and Throw exception on database error for

each node that accesses a database to indicate how you want that node to

handle database warnings and errors. Whether you select these properties, and

how you connect the failure terminals of the nodes, also affect the way in

which database updates are committed or rolled back.

6. Switch to the Broker Administration perspective.

7. Add the message flow to a broker archive.

8. Select the Configure tab below the broker archive editor view and select the

message flow. This displays the configurable properties for the message flow

within the broker archive. Select coordinatedTransaction to configure the

message flow as globally coordinated.

z/OS

On z/OS, transactions are always globally coordinated. The setting of

the coordinatedTransaction property for a message flow is ignored.

Coordination is always provided by RRS.

The message flow is now configured for global coordination.

Now, you can deploy the message flow to the broker. Ensure that the broker

environment (including the broker’s queue manager) and databases are correctly

configured for global coordination before you deploy the message flow.

If the broker environment and the databases are not correctly configured for global

coordination, the message flow transactions will not be globally coordinated.

Configuring JMSInput and JMSOutput nodes to support global

transactions

If you want to include JMSInput and JMSOutput nodes in globally-coordinated

transactions, additional configuration is required.

Complete the following steps:

1. Switch to the Broker Application Development perspective.

2. Set the message flow property Coordinated Transaction to yes in the bar file

properties.

3. For each JMSInput or JMSOutput node required in the global transaction, set

the Advanced property Transaction mode to Global in the message flow editor.

176 Message Flows

4. Create a Queue Connection Factory and either use the default name,

recoverXAQCF , or supply your own name. See the JMSInput or JMSOutput

node for further details about creating JNDI administered objects.

5. On distributed systems, you must set up a stanza for each JMS provider that

you want to use, prior to deployment.

The following table shows the switch files that are provided on each platform.

 Platform 32-bit file 64-bit file

Linux (x86 platform) libJMSSwitch.so

Windows JMSSwitch.dll

HP-UX (PA-RISC platform) libJMSSwitch.sl libJMSSwitch64.sl

AIX

Linux (x86-64 platform)

Solaris (SPARC platform)

libJMSSwitch.so libJMSSwitch64.so

HP-UX (Integrity platform)

Linux (POWER platform)

Linux (zSeries platform)

Solaris (x86-64 platform)

libJMSSwitch.so

Select the appropriate link for details of this task on the platform, or platforms,

that your enterprise uses:

v

Linux

UNIX

Linux and UNIX systems

v

Windows

Windows systems

For further information, see:

v “Configuring for coordinated transactions” on page 952 within the JMSInput

node topic

v “Configuring for coordinated transactions” on page 966 within the

JMSOutput node topic

z/OS

On z/OS, the only JMS provider supported is the IBM WebSphere

MQ Java Client and the only transport mode supported for that client is BIND

mode; no further configuration steps are required.

The JMS provider might supply additional jar files that are required for

transactional support; see the documentation supplied with the JMS provider for

more information. For example, on distributed systems, the WebSphere MQ JMS

provider supplies an extra jar file com.ibm.mqetclient.jar.

You must add any additional jar files to the broker shared_classes directory. On

Windows, this directory is C:\Documents and Settings\All Users\Application

Data\IBM\MQSI\shared-classes. For more information, see the section on making

the JMS provider client available to the JMS Nodes in “JMSInput node” on page

949.

Choice of JMS Provider

Any JMS provider that conforms to the Java Message Service Specification, version

1.1 and that supports the JMS XAResource API through the JMS session can be

used if transaction coordination is required.

If the message designer has specified a non XA-compliant provider, the non

transactional mode only is supported. In this case, you must set the Transaction

mode property to None for all JMSInput and JMSOutput nodes.

Developing message flows 177

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html

Linux and UNIX systems: configuring the queue manager to

coordinate JMS resources

Edit the queue manager qm.ini file to configure the queue manager.

You must specify a stanza in the broker’s queue manager .ini file for each JMS

provider that you want to use. Include one stanza for each new JMS provider,

where the JMS provider can be specified by any JMSInput or JMSOutput node that

is included in a message flow that is running on a broker.

The parameters that are supplied on XAOpenString are comma delimited and

positional. Represent missing optional parameters by a comma if you have

included other parameters later in the string.

The following stanza entry is an example you can add when using WebSphere MQ

Java as the JMS provider:

XAResourceManager:

 Name=WBIWMQJMS

 SwitchFile=/<Installation Path>/lib/JMSSwitch.so

 XAOpenString=<Initial Context Factory>,

 <location of JNDI bindings>’

 <LDAP Principal>,

 <LDAP Credentials>,

 <Recovery Connection Factory Name>,

 <JMS Principal>,

 <JMS Credentials>

 ThreadOfControl=THREAD

where:

<Installation Path>

Is the location of the WebSphere Message Broker installation. This value is

mandatory where the LDAP parameters are omitted, but a user-defined

Queue Connection Factory is specified for recovery.

<Initial Context Factory>

Is the Initial Context Factory identifier for the JMS provider; this value is

required.

<Location of JNDI bindings>

Is either the file path to the bindings file, or the LDAP directory location of

the JNDI administered objects that can be used to create an initial context

factory for the JMS connection. When supplying the file path to the

bindings file, do not include the file name. See the JMSInput or JMSOutput

node for further details on creating the JNDI administered objects; this

value is required.

<LDAP Principal>

Is an optional parameter used to specify the principal (user ID) that might

be required when an LDAP database is used to hold the JNDI

administered objects.

<LDAP Credentials>

Is an optional parameter used to specify the Credentials (password) that

might be required if a password protected LDAP database is used to hold

the JNDI administered objects.

<Recovery Connection Factory Name>

Is an optional parameter used to specify the name of a Queue Connection

Factory object in the JNDI administered objects for recovery purposes,

when the non default name is required.

178 Message Flows

<JMS Principal>

Is an optional parameter for the user ID required to connect to a JMS

provider, using a secure JMS Connection Factory.

<JMS Credentials>

Is an optional parameter for the password required to connect to the same

JMS provider in conjunction with the JMS principal.

The values for the Initial Context factory and Location of JNDI bindings in the

stanza must match those specified in the JMSInput or JMSOutput nodes in the

message flows.

Any LDAP parameters must match those that have been specified by using the

mqsicreatebroker or mqsichangebroker command.

The Recovery Factory Name must match a Queue Connection Factory name that is

created in the JNDI administered objects. If this is omitted, a default factory called

recoverXAQCF is used. In either case, this value must refer to a JNDI administered

object that has already been created.

The JMS Principal and JMS Credentials must be configured together

The following example shows the format of a stanza in the qm.ini file that

describes a JMS provider for global transactions:

XAResourceManager:

 Name=XAJMS_PROVIDER1

 SwitchFile=/opt/var/mqsi/lib/JMSSwitch.so

 XAOpenString= com.sun.jndi.fscontext.RefFSContextFactory,

 /Bindings/JMSProvider1_Bindings_Directory,

 ,

 ,

 ,

 myJMSuser1,

 passwd

 ThreadOfControl=THREAD

where:

XAJMS_PROVIDER1

Is the user-defined name for the resource manager

/opt/var/mqsi

Is the <Installation Path>

com.sun.jndi.fscontext.RefFSContextFactory

Is the <Initial Context Factory>

/Bindings/JMSProvider1_Bindings_Directory

Is the location of the bindings

myJMSuser1

Is the <JMS Principal>

passwd

Is the password used in <JMS Credentials>

In this example, the optional fields <LDAP Principal>, <LDAP Credentials>, and

<Recovery Connection Factory Name> are not required, therefore the positional

comma delimiters only are configured in the XAOpenString stanza.

Developing message flows 179

Windows systems: configure the queue manager to coordinate

JMS resources

Use WebSphere MQ Explorer to configure the queue manager.

You must specify a stanza in the broker’s queue manager .ini file for each JMS

provider that you want to use. Include one stanza for each new JMS provider,

where the JMS provider can be specified by any JMSInput or JMSOutput node that

is included in a message flow that is running on a broker.

The parameters that are supplied on XAOpenString are comma delimited and

positional. Represent missing optional parameters by a comma if you have

included other parameters later in the string.

The extra entry, called the XACloseString, should match the values provided for

the XAOpenString.

The following stanza entry is an example you can add when using WebSphere MQ

Java as the JMS provider:

XAResourceManager:

 Name=WBIWMQJMS

 SwitchFile=\<Installation Path>\lib\JMSSwitch.dll

 XAOpenString=<Initial Context Factory>,

 <location of JNDI bindings>’

 <LDAP Principal>,

 <LDAP Credentials>,

 <Recovery Connection Factory Name>,

 <JMS Principal>,

 <JMS Credentials>

 ThreadOfControl=THREAD

where:

<Installation Path>

Is the location of the WebSphere Message Broker installation. This value is

mandatory where the LDAP parameters are omitted, but a user-defined

Queue Connection Factory is specified for recovery.

<Initial Context Factory>

Is the Initial Context Factory identifier for the JMS provider; this value is

required.

<Location of JNDI bindings>

Is either the file path to the bindings file, or the LDAP directory location of

the JNDI administered objects that can be used to create an initial context

factory for the JMS connection. When supplying the file path to the

bindings file, do not include the file name. See the JMSInput or JMSOutput

node for further details on creating the JNDI administered objects; this

value is required.

<LDAP Principal>

Is an optional parameter used to specify the principal (user ID) that might

be required when an LDAP database is used to hold the JNDI

administered objects.

<LDAP Credentials>

Is an optional parameter used to specify the Credentials (password) that

might be required if a password protected LDAP database is used to hold

the JNDI administered objects.

180 Message Flows

<Recovery Connection Factory Name>

Is an optional parameter used to specify the name of a Queue Connection

Factory object in the JNDI administered objects for recovery purposes,

when the non default name is required.

<JMS Principal>

Is an optional parameter for the user ID required to connect to a JMS

provider, using a secure JMS Connection Factory.

<JMS Credentials>

Is an optional parameter for the password required to connect to the same

JMS provider in conjunction with the JMS principal.

The values for the Initial Context factory and Location of JNDI bindings in the

stanza must match those specified in the JMSInput or JMSOutput nodes in the

message flows.

Any LDAP parameters must match those that have been specified by using the

mqsicreatebroker or mqsichangebroker command.

The Recovery Factory Name must match a Queue Connection Factory name that is

created in the JNDI administered objects. If this is omitted, a default factory called

recoverXAQCF is used. In either case, this value must refer to a JNDI administered

object that has already been created.

The JMS Principal and JMS Credentials must be configured together

The following example shows the format of a stanza in the qm.ini file that

describes a JMS provider for global transactions:

XAResourceManager:

 Name=XAJMS_PROVIDER1

 SwitchFile=/opt/var/mqsi/lib/JMSSwitch.so

 XAOpenString= com.sun.jndi.fscontext.RefFSContextFactory,

 /Bindings/JMSProvider1_Bindings_Directory,

 ,

 ,

 ,

 myJMSuser1,

 passwd

 ThreadOfControl=THREAD

where:

XAJMS_PROVIDER1

Is the user-defined name for the resource manager

/opt/var/mqsi

Is the <Installation Path>

com.sun.jndi.fscontext.RefFSContextFactory

Is the <Initial Context Factory>

/Bindings/JMSProvider1_Bindings_Directory

Is the location of the bindings

myJMSuser1

Is the <JMS Principal>

passwd

Is the password used in <JMS Credentials>

Developing message flows 181

In this example, the optional fields <LDAP Principal>, <LDAP Credentials>, and

<Recovery Connection Factory Name> are not required, therefore the positional

comma delimiters only are configured in the XAOpenString stanza.

Configuring the broker to enable a JMS provider’s proprietary

API

Some JMS providers provide an alternative interface to the standard JMS

specification for particular JMS API calls. In these cases, IBM supplies a Java class

to interface with that proprietary API.

For example, BEA WebLogic uses a component called a Client Interposed Transaction

Manager to allow a JMS client to obtain a reference to the XAResource that is

associated with a user transaction.

If the WebSphere Message Broker JMS nodes use BEA WebLogic as the JMS

provider, and the nodes have to participate in a globally coordinated message flow,

you must modify the configurable services properties that are associated with that

vendor. The following table shows the properties that have been added to the

configurable service for BEA WebLogic.

 JMS provider Property Purpose Default value

BEA_WebLogic proprietaryAPIHandler The name of the IBM-supplied Java

class to interface with a JMS

provider’s proprietary API.

com.ibm.broker.apihandler.

BEAWebLogicAPIHandler

proprietaryAPIAttr1 The Initial Context Factory class name

for the vendor

weblogic.jndi.

WLInitialContextFactory

proprietaryAPIAttr2 The URL of the WebLogic bindings URL JNDI bindings

proprietaryAPIAttr3 The DNS name of the JMS server Server name

In the list of JMS provider configurable services, the name of the IBM-supplied

Java class is set to the default value for the proprietaryAPIHandler property.

Typically, you do not need to change this value, unless you are instructed to do so

by an IBM Service team representative.

v Use the mqsichangeproperties command to modify values of the properties for

this JMS provider.

The following example shows how to change the values of the properties

proprietaryAPIAttr2 and proprietaryAPIAttr3 for the JMS provider configurable

service definition called BEA_Weblogic, where these properties represent the

URL of the WebLogic bindings and the DNS Server name of the BEA WebLogic

JMS Server:

mqsichangeproperties WBRK61_DEFAULT_BROKER -c JMSProviders -o BEA_Weblogic

-n proprietaryAPIAttr2,proprietaryAPIAttr3 -v t3://9.20.94.16:7001,BEAServerName

v Use the mqsireportproperties command to display the properties for a JMS

provider.

The following example shows how to display the properties for all the broker’s

JMS provider resources (the default JMS provider resources and those

configurable services that are defined with the mqsicreateconfigurableservice

command):

mqsireportproperties WBRK61_DEFAULT_BROKER -c JMSProviders -o BEA_WebLogic –r

The result of this command has the following format:

182 Message Flows

|

|

|
|
|

|
|
|

|
|
|
|
|

|||||

|||
|
|

|
|

||
|
|
|

|||

|||
|

|
|
|
|

|
|

|
|
|
|
|

|
|

|
|

|
|
|
|

|

|

ReportableEntityName=’’

JMSProviders

 BEA_Weblogic=’’

 jarsURL=’default_Path’

 nativeLibs=’default_Path’

 proprietaryAPIAttr1=’weblogic.jndi.WLInitialContextFactory’

 proprietaryAPIAttr2=’t3://9.20.94.16:7001’

 proprietaryAPIAttr3=’BEAServerName’

 proprietaryAPIAttr4=’default_none’

 proprietaryAPIAttr5=’default_none’

 proprietaryAPIHandler=’com.ibm.broker.apihandler.BEAWebLogicAPIHandler’

The default location for the JMS provider JAR files is the broker’s shared-classes

directory. You can specify an alternative location for the JAR files by using the

mqsichangeproperties command, as shown in the following example:

mqsichangeproperties WBRK61_DEFAULT_BROKER -c JMSProviders -o BEA_WebLogic -n jarsURL

-v /var/mqsi/WebLogic

v Use the mqsicreateconfigurableservice command to add a JMS provider.

The following example shows how to add a JMS provider called BEAV91 for

broker WBRK61_DEFAULT_BROKER, specifying the name of an IBM-supplied

Java class called com.ibm.broker.apihandler.BEAWebLogicAPIHandler to handle

vendor-specific API calls:

mqsicreateconfigurableservice WBRK61_DEFAULT_BROKER -c JMSProviders -o BEAV91

-n proprietaryAPIHandler,proprietaryAPIAttr1,proprietaryAPIAttr2,proprietaryAPIAttr3

–v com.ibm.broker.apihandler.BEAWebLogicAPIHandler,weblogic.jndi.WLInitialContextFactory,

t3://9.20.94.16:7001,BEAServerName

v If you have defined a user-defined JMS provider configurable service, set the

value for the proprietaryAPIHandler property manually.

Configuring message flows for data conversion

If you exchange messages between applications that run on systems that are

incompatible in some way, you can configure your system to provide data

conversion as the message passes through the broker.

Data conversion might be necessary if either of the following two values are

different on the sending and receiving systems:

1. CCSID. The Coded Character Set Identifier refers to a set of coded characters

and their code point assignments. WebSphere Message Broker can process and

construct application messages in any code page for which WebSphere MQ

provides conversion to and from Unicode, on all operating systems. For more

information about code page support, see the Application Programming Reference

section of the WebSphere MQ Version 6 information center online.

This behavior might be affected by the use of other products in conjunction

with WebSphere Message Broker. Check the documentation for other products,

including any databases that you use, for further code page support

information.

2. Encoding. This setting defines the way in which a machine encodes numbers;

that is, binary integers, packed-decimal integers, and floating point numbers.

Numbers that are represented as characters are handled in the same way as all

other string data.

If the native CCSID and encoding on the sending and receiving systems are the

same, you do not need to call data conversion processes.

Developing message flows 183

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|

|
|
|
|

|
|

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

WebSphere Message Broker and WebSphere MQ provide data conversion facilities

to support message exchange between unlike systems. Your choice of which

facilities to use depends on the characteristics of the messages that are processed

by your message flows:

v Messages that contain text only

v Message that include numerics

v Messages that are self-defining

Messages that contain text only

 Read this section if your messages are WebSphere MQ messages that

contain all text (character data or string).

If WebSphere MQ supports the systems on which both sending and

receiving applications are running for data conversion, use WebSphere MQ

facilities which provide the most efficient data conversion option.

The default behavior of WebSphere MQ is to put messages to queues

specifying the local system CCSID and encoding. Applications issuing

MQGET can request that the queue manager provides conversion to their

local CCSID and encoding as part of get processing.

To use this option:

1. Design messages to be text-only. If you are using COBOL, move

numeric fields to USAGE DISPLAY to put them into string form.

2. Set the Format field in the MQMD to MQFMT_STRING (value

MQSTR).

3. Issue MQGET with MQGMO_CONVERT in the receiving application. If

you prefer, you can convert when the message is received by the

broker, by setting the Convert property of the MQInput node to yes (by

selecting the check box).

If you require more sophisticated data conversion than WebSphere MQ

provides in this way (for example, to an unsupported code page), use

WebSphere MQ data conversion exits. For more information about these,

see the Application Programming Reference section of the WebSphere MQ

Version 6 information center online.

Messages that include numerics

 Read this section if your messages include numeric data, or are text only

but are not WebSphere MQ messages.

If these messages can be predefined (that is, their content and structure is

known and predictable), use the facilities provided by WebSphere Message

Broker and the MRM.

All application messages are handled by the broker in Unicode, to which

they are converted on input, and from which they are converted on output.

You can configure message flows to influence the way in which output

messages are constructed.

To use this option:

1. Define the output message in the MRM domain. You can create this

definition in one of the following ways:

v Import an external message definition (for example a C header or

COBOL copybook).

v Create the message model in the message definition editor.
2. Configure a message flow to receive and process this message:

184 Message Flows

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

a. If you include an MQInput node, do not request conversion by this

node.

b. Include a Compute node in the message flow to create the output

message with the required content:

v If the output message is a WebSphere MQ message, code ESQL

in the Compute node to set the CCSID and encoding for the

target system in the MQMD.

For example, to set values for a target z/OS system running with

CCSID of 37 and encoding of 785:

SET OutputRoot.MQMD.CodedCharSetId = 37;

SET OutputRoot.MQMD.Encoding = 785;

v If the output message is not a WebSphere MQ message, code

ESQL in the Compute node to set the CCSID and encoding for

the target system in the Properties folder.

Messages that are self-defining

 Read this section if your messages are self-defining.

Self-defining messages are supported in the XML and JMS domains. These

messages are all text and can be handled by WebSphere MQ, if they

originate from, or are destined for, WebSphere MQ applications. If not, use

WebSphere Message Broker facilities by setting the CCSID and Encoding

fields in the Properties folder in the message when it passes through a

Compute node.

Using MQGet nodes

The following topics explain how the MQGet node processes messages, and how

you might use an MQGet node in a request-response flow:

v “How the MQGet node processes messages”

v “A request-response scenario using an MQGet node” on page 189

How the MQGet node processes messages

The MQGet node processes each message that it receives.

This topic contains the following sections:

v “Propagating the message”

v “Constructing OutputLocalEnvironment” on page 187

v “Constructing the Output message” on page 188

Propagating the message

1. If an MQ Message Descriptor header (MQMD) is present in the input tree, the

MQGet node uses it. If not, the node creates a default MQMD.

2. The node also creates a default MQ Get Message Options (MQGMO) structure

based on the values that you have set for the node properties. If an MQGMO is

present in the input tree, the node uses its content to modify the default one.

When you include an MQGMO to override the default one, you must specify

all the options that you are replacing. For example, if you set the option field to

MQGMO_CONVERT, that value overrides all options that you set with the

workbench. If you do not use an overriding MQGMO, WebSphere Message

Broker uses the following values:

v If Wait interval is not zero, MQGMO_WAIT is set; otherwise,

MQGMO_NOWAIT is used.

v If Transaction mode is set to Yes, MQGMO_SYNCPOINT is used.

Developing message flows 185

|
|
|
|
|
|
|
|

v If Transaction mode is set to No, MQGMO_NOSYNCPOINT is used.

v If Transaction mode is set to Automatic,

MQGMO_SYNCPOINT_IF_PERSISTENT is used.

v The only other option that is used by default in the node properties is

MQGMO_COMPLETE_MSG, which is set if Transaction mode is set to Yes or

No. This option is not set when your broker is running on z/OS.

v No other options are used by default.
3. The node makes the MQGet call to WebSphere MQ.

4. The node analyzes the completion code (CC), and propagates the message to

the appropriate terminal:

OK The node creates the output LocalEnvironment and the output message

trees using standard message-parsing techniques, then propagates the

message to the Out terminal.

Warning

The node creates the output LocalEnvironment and the output message

trees using BLOB as the message body type, then propagates the

message to the Warning terminal, if it is connected. If the Warning

terminal is not connected, no propagation occurs, and the flow ends.

Fail (no message)

The node creates the output LocalEnvironment and the output message

trees by copying the input trees, then propagates the message to the No

Message terminal, if it is connected. If the No Message terminal is not

connected, no propagation occurs. The output message that is

propagated to the No Message terminal is constructed from the input

message only, according to the values of the Generate Mode property,

and the Copy Message or Copy Local Environment properties.

Fail (other)

The node propagates the message to the Failure terminal. If the Failure

terminal is not connected, the broker throws an exception and returns

control to the closest previous node that can process it. For more

information, see “Handling errors in message flows” on page 203.

The following diagram shows this processing:

186 Message Flows

|
|
|
|
|
|
|

Does MQMD
exist in input tree?

Does GMO exist
in input tree?

Use default
MQMD.

Get MQMD
bitstream from
input MQMD.

Merge in
MQGMO
overrides

Evaluate

Propagate to No Message terminal.

Propagate to Out terminal. Propagate to Warning terminal.

Propagate to Failure terminal (or throw).

Yes

Yes

No

FAIL (other)

WarningOK

FAIL (no message)

No

Create default MQGMO
using node attributes.

MQGET

CC?

Create output LocalEnvironment,
and output Message trees (as
described in the following two

flowcharts) without a result body.

Create output LocalEnvironment,
and output Message trees (as
described in the following two

flowcharts) using standard
message-parsing attributes.

Create output LocalEnvironment,
and output Message trees (as
described in the following two
flowcharts) using BLOB as the

message body type.

.

Constructing OutputLocalEnvironment

1. If the Generate Mode property on the MQGet node is set to an option that does

not include LocalEnvironment, the node copies the input LocalEnvironment

tree to the output LocalEnvironment tree.

If this copy is made, any updates that are made in this node to the output

LocalEnvironment tree are not propagated downstream.

2. If the Copy Local Environment property is set to an option other than None,

the node copies the input LocalEnvironment tree to the output

LocalEnvironment tree.

Developing message flows 187

3. If the output data location points to the output LocalEnvironment tree, the

node applies changes in that tree by copying from the result tree.

4. The LocalEnvironment tree is propagated.

The following diagram shows this processing:

Does generateMode
include LocalEnv?

(If the output data location points
to the output local environment,
then changes are inserted here
by copying from the Result tree).

Propagate the
local environment.

Copy the input
local environment

into the output.

Set the output
local environment

to be the input one.

Is copyLocalEnv
set to none?

Input Local
Environment

Yes

Yes

No

No

Constructing the Output message

1. If the Generate Mode property on the MQGet node is set to an option that does

not include Message, the node copies the input message tree to the output

message tree. Go to step 5.

2. If the Output Data Location property is set to OutputRoot, the node creates the

output message tree entirely from the result tree. Go to step 5.

3. If the Copy Message property is set to a value other than None, the node

copies the input message tree to the output message tree.

4. If the Output Data Location property points to a part of the output message

tree, the node applies changes in that tree by copying from the result tree at the

point that is defined by the Result Data Location property.

5. The message tree is propagated.

The following diagram shows this processing:

188 Message Flows

Does generateMode
include message?

(If the output data location points
to a part of the output message tree,

then changes are inserted here
by copying from the Result tree).

Propagate
the message.

Copy input
message into output

message tree

Create the output
message entirely

from the result tree.

Set the output
message to be
the input one.

Is copyMessage
set to none?

Is output Data
Location set to
OutputRoot?

Yes

Yes

No

No

No

Yes

Input
Message

For an example of how this processing is implemented in a message flow, see “A

request-response scenario using an MQGet node.”

A request-response scenario using an MQGet node

This topic describes a scenario in which an MQGet node is used in a

request-response flow, and explains how the node processes the input messages to

construct the output messages, based on both the content of the LocalEnvironment

tree and the input parameters that you set.

A request-response flow is a specialized form of a point-to-point application. For a

general description of these applications, see Application communication models.

For an example of a request-response message flow, see the following sample:

Developing message flows 189

v Coordinated Request Reply sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

You can include an MQGet node anywhere in a message flow, including a flow

that implements a request-response scenario. The node receives an input message

on its input terminal from the preceding node in the message flow. It issues an

MQGET call to retrieve a message from the WebSphere MQ queue that you have

configured in its properties, and builds a result message tree. Finally, it uses the

input tree and the result tree to create an output tree that is then propagated to its

Output, Warning, or Failure terminal, depending on the configuration of the node

and the result of the MQGET operation.

How the MQGet node handles the LocalEnvironment:

The MQGet node examines the LocalEnvironment tree that is propagated from the

preceding node. It uses the content related to the MQGMO (MQ Get Message

Options) and the MQMD (MQ Message Descriptor header), and updates the

LocalEnvironment:

v The node reads the MQGMO structure from ${inputMQParmsLocation}.MQGMO.*.

v The node copies the WebSphere MQ completion and reason codes to

${outputMQParmsLocation}.CC and ${outputMQParmsLocation}.RC.

v The node writes the complete MQGMO that is used for the MQGET call into

${outputMQParmsLocation}.MQGMO if ${inputMQParmsLocation}.MQGMO exists in the

input tree.

v The node writes the MQMD that is passed to the MQGET call (that contains the

values that are specified in the input message or are generated by the node) into

${inputMQParmsLocation}.MQMD, deleting any existing content.

Set the value to ${inputMQParmsLocation} in the MQGet node property Input MQ

Parameters Location on the Request Properties tab.

Set the value to ${outputMQParmsLocation} in the MQGet node property Output

MQ Parameters Location on the Result Properties tab.

For more information about these properties, see “MQGet node” on page 993.

In summary:

${inputMQParmsLocation}

v QueueName: Optional override for MQGet node Queue Name property

v InitialBufferSize: Optional override for MQGet node Initial Buffer Size

property

v MQGMO.*: Optional MQGET message options that are used by the

MQGet node

${outputMQParmsLocation}

v CC: MQGET call completion code

v RC: MQGET call result code

v MQGMO.*: MQGET message options that are used if present in

${inputMQParmsLocation}

v MQMD: unparsed MQ Message Descriptor for received messages1

v Browsed: Set to true if the message is browsed. Not present if the

message is removed from the queue

190 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.coordinated_request_reply.doc/doc/overview.htm

You can parse the MQMD (for example, using ESQL), where

${outputMQParmsLocation} is LocalEnvironment.MQ.GET:

DECLARE ptr REFERENCE TO OutputLocalEnvironment.MyMQParms;

CREATE FIRSTCHILD OF ptr DOMAIN(’MQMD’) PARSE(InputLocalEnvironment.MQ.GET.MQMD)

How the MQMD for the MQGET call is constructed:

v A default MQMD is prepared. For further information about the MQMD, see the

Application Programming Reference section in the WebSphere MQ Version 6

information center online.

v If you do not supply an input MQMD, the default MQMD is used.

v If you do supply an input MQMD, the default MQMD is used after the

following modifications:

– If the property Use all input MQMD fields is set, all MQMD fields supplied

are copied into the default MQMD from the input MQMD.

– If the property Use all input MQMD fields is not set and the properties Get

by Message ID or Get by Correlation ID are selected, the respective IDs are

copied into the default MQMD from the input MQMD.

The following diagram shows how the MQGet node constructs the MQMD that is

used on the call to WebSphere MQ:

Developing message flows 191

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

Node Start

Does the input
MQMD location

point to anything?

Copy messageID, or
CorrelID, or both, from
the input MQMD into
the default MQMD.

Use default
MQMD.

Use input
MQMD
without

modification.

Throw exception.

Send MQMD to MQGET call.

Is one of

or

set?

GetbyMessageID

GetbyCorrelationID

Is one of
or

set?

GetbyMessageID

GetbyCorrelID

Is
set

to true?

Use complete

input MQMD

No

No

No

No

Yes

Yes

Yes

Yes

How the output message tree is constructed:

The following diagram outlines how the MQGet node constructs the output

message tree, combining the input tree from the previous node with the result tree

from the MQGET call:

192 Message Flows

Input Tree from
previous node

Result Tree from
MQGET call

Ouput Tree sent to
downstream nodes

In this example, the MQGet node properties are configured as shown in the

following table.

 Property Action

Copy Message Copy Entire Message

Generate Mode Message

Output Data Location OutputRoot.XMLNS.A

Result Data Location ResultRoot.XMLNS.C

The MQGet node constructs the output tree according to the following sequence:

1. The whole of the input tree is copied to the output tree, including the XML

branch with child A, and A’s child B.

2. From the result tree, the XML branch’s child C, and C’s child D, are put into

the output tree at position OutputRoot.XMLNS.A. Any previous content of A

(values and children) is lost, and replaced with C’s content, including all values

and children it has, in this case child D.

3. The position in the output tree retains the name A.

The following diagram illustrates this:

Developing message flows 193

InputRoot

OutputRoot

ResultRoot

Properties

Properties

PropertiesMQMD

MQMD

MQMD

Child1

Child1

Child1

XML

XML

XML

A

A (C)

C

B

D

D

For some examples of message trees that are constructed by the MQGet node

according to the rules described above, see “MQGet node message tree examples.”

MQGet node message tree examples:

The tables below show examples of message trees that are constructed by the

MQGet node according to the rules described in “A request-response scenario

using an MQGet node” on page 189.

 With a message assembly like this: The message that the MQGet node returns is:

InputRoot

MQMD

{input message MQMD}

MQRFH2

{input message MQRFH2}

XMLNS

{input message body}

InputLocalEnvironment

MQ

GET

MQGMO

MatchOptions =

MQMO_MATCH_CORREL_ID

MQMD (with no children)

MyData

MQMD

{input MQMD} (with CorrelID =

{correct Correlation ID as binary})

ResultRoot

MQMD

{result message MQMD}

MQRFH2

{result message MQRFH2}

XML {result message body}

194 Message Flows

With the following node property settings: The resulting output message assembly is:

Input MQMD Location

InputLocalEnvironment.MyData.MQMD

Copy Message

Copy Entire Message

Copy Local Environment

Copy Entire LocalEnvironment

Generate Mode

Message and LocalEnvironment

Output Data Location

InputLocalEnvironment.MyData.ReturnedMessage

OutputRoot

MQMD

{input message MQMD}

MQRFH2

{input message MQRFH2}

XMLNS

{input message body}

OutputLocalEnvironment

MQ

GET

MQGMO

{MQGMO used

for MQGET}

MQMD

{MQMD used

for MQGET}

CC = 0

RC = 0

MyData

MQMD

{input MQMD} (with

CorrelID = {correct

Correlation ID as

binary})

ReturnedMessage

MQMD

{result message

MQMD}

MQRFH2

{result message

MQRFH2}

XML {result message

body}

Developing message flows 195

With the following node property settings: The resulting output message assembly is:

Result Data Location

ResultRoot.XML

OutputRoot

MQMD

{input message MQMD}

MQRFH2

{input message MQRFH2}

XMLNS

{input message body}

OutputLocalEnvironment

MQ

GET

MQGMO

{MQGMO used

for MQGET}

MQMD

{MQMD used

for MQGET}

CC = 0

RC = 0

MyData

MQMD

{input MQMD} (with

CorrelID = {correct

Correlation ID as

binary})

ReturnedMessage (with any

attributes and value from

ResultRoot.XML)

{result message body}

This tree is effectively the result of doing an

assignment from ${resultDataLocation} to

${outputDataLocation}. The value of the source

element is copied, as are all children including

attributes.

196 Message Flows

With the following node property settings: The resulting output message assembly is:

Copy Local Environment

None

OutputRoot

MQMD

{input message MQMD}

MQRFH2

{input message MQRFH2}

XMLNS

{input message body}

OutputLocalEnvironment

MQ

GET

MQGMO

{MQGMO used

for MQGET}

MQMD

{MQMD used

for MQGET}

CC = 0

RC = 0

MyData

ReturnedMessage (with any

attributes and value from

ResultRoot.XML)

{result message body}

This tree has the MQMD that is used for the

MQGET call in the OutputLocalEnvironment,

because the input MQ parameters location had an

MQMD element under it. Even though the input

tree is not copied, the presence of the MQMD

element causes the MQMD that is used for the

MQGET call to be placed in the output tree.

Developing message flows 197

With the following node property settings: The resulting output message assembly is:

Output Data Location

<blank>

Copy Local Environment

Copy Entire Local Environment

OutputRoot

MQMD

{result message MQMD}

MQRFH2

{result message MQRFH2}

XMLNS

{result message body}

OutputLocalEnvironment

MQ

GET

MQGMO

{MQGMO used

for MQGET}

MQMD

{MQMD used

for MQGET}

CC = 0

RC = 0

MyData

MQMD

{input MQMD} (with

CorrelID = {correct

Correlation ID as

binary})

The value that you set for the Copy Message

property makes no difference to the eventual

output tree in this case.

Exploiting user exits

Your message flows can benefit from user exits.

Before you start:

v Read “User exits” on page 129.

v Read Why use a user exit?

The following diagram illustrates how a user exit works. The numbered events are

described after the diagram. The MQInput node is used as an example, but the

function applies to all input nodes, including user-defined input nodes. Similarly,

the Compute and MQOutput nodes could be replaced by any equivalent nodes.

198 Message Flows

|
|
|
|

1. (cciInputMessageCallback) The message is dequeued from the input source

(read into the flow).

Built-in nodes and user-defined nodes differ slightly in the way in which user

exits are called. For built-in input nodes, the user exit is called as soon as

possible after the data has been read from the external source. For user-defined

input nodes, the user exit is called just before the node propagates the message.

2. (cciPropagatedMessageCallback) The message is propagated to the node for

processing.

3. (cciOutputMessageCallback). A request message is sent to the output node’s

transport, and transport-specific destination information is written to

WrittenDestination in the LocalEnvironment (for example, this information

includes the queueName and msgId for an MQ message). The call is made

when a node successfully puts a message to a transport, from either an output

or a request node. The outputMessageEvent is called by built-in nodes only.

The topic for each node that supports WrittenDestination information contains

details about the data that it contains.

4. (cciNodeCompletionCallback) Node processing completes.

5. (cciTransactionEventCallback) The user exit is called after the transaction has

completed, so that user exit processing is not part of that transaction. The user

exit is invoked even if no transactional processing is completed by the flow.

Where the message flow property Commit Count is greater than one,

many-to-one ratios exist between events 1 and 5. This ratio also exists for some

scenarios that are specific to the particular input node; for example, when an

MQInput node is configured with the Commit by Message Group property

selected.

You can write a user exit to track any number of these events. For each of these

events, the following data is available to the user exit. All access is read-only,

unless stated otherwise:

v The message is dequeued:

– Bit stream

– Input node

– Environment tree (read and write)
v The message is propagated to the node:

– Message tree (body element read and write)

– LocalEnvironment tree (read and write)

– Exception list

– Environment tree (read and write)

– Source node

Transaction Manager

MQInput

Commit/Rollback

Compute MQOutput

1

5

2

4

2

4

3

Developing message flows 199

|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|

|

– Target node
v A message is sent to a transport:

– Message tree (body element read and write)

– LocalEnvironment tree (read and write)

– Exception list

– Environment tree (read and write)

– Output or request node
v Node processing completes:

– Message tree (body element read and write)

– LocalEnvironment tree (read and write)

– Exception list

– Environment tree (read and write)

– Node

– Upstream node

– Exception (if any)
v The end of the transaction:

– Input node

– Exception (if any)

– Environment tree (read and write)

You can register multiple user exits, and, if they are registered, they are invoked in

a defined order (see mqsichangeflowuserexits command). Any changes that are

made to the message assembly (the message and environment) by a user exit are

visible to subsequent user exits.

When the user exit is invoked, it can query the following information:

v Message flow information:

– Message flow name

– Broker name

– Broker’s queue manager name

– Execution group name

– Message flow’s commit count property

– Message flow’s commit interval property

– Message flow’s coordinated transaction property
v Node information:

– Node name

– Node type

– Terminal name

– Node properties

The user exit can also perform the following tasks:

v Navigate and read the message assembly (Message, LocalEnvironment,

ExceptionList, Environment)

v Navigate and write the Message body, LocalEnvironment, and Environment tree

You can register the user exits on a dynamic basis, without needing to redeploy the

configuration.

Ensuring that messages are not lost

Messages that flow through your broker domain represent business data that you

want to safeguard.

Messages that are generated both by your applications and by runtime components

for inter-component communication are important to the operation of your brokers.

200 Message Flows

|
|
|
|
|
|

|

|
|
|

Messages used internally between components always use the WebSphere MQ

protocol. Application messages can use all supported transport protocols.

For application and internal messages traveling across WebSphere MQ, two

techniques protect against message loss:

v Message persistence

If a message is persistent, WebSphere MQ ensures that it is not lost when a

failure occurs, by copying it to disk.

v Syncpoint control

An application can request that a message is processed in a synchronized

unit-of-work (UOW)

For more information about how to use these options, refer to the System

Administration Guide section of the WebSphere MQ Version 6 information center

online.

Internal messages

WebSphere Message Broker components use WebSphere MQ messages to

communicate events and data between broker processes and subsystems, and the

Configuration Manager and User Name Server. The components ensure that the

WebSphere MQ features are exploited to protect against message loss. You do not

need to take any additional steps to configure WebSphere MQ or WebSphere

Message Broker to protect against loss of internal messages.

Application messages

If delivery of application messages is critical, you must design application

programs and the message flows that they use to ensure that messages are not lost.

The techniques used depend on the protocol used by the applications.

WebSphere MQ Enterprise Transport and WebSphere MQ Mobile Transport

If you are using the built-in input nodes that accept messages across the

WebSphere MQ or WebSphere MQ Everyplace protocols, you can use the

following guidelines and recommendations:

v Using persistent messages

WebSphere MQ messaging products provide message persistence, which

defines the longevity of the message in the system and guarantees

message integrity. Nonpersistent messages are lost in the event of system

or queue manager failure. Persistent messages are always recovered if a

failure occurs.

You can control message persistence in the following ways:

– Program your applications that put messages to a queue using the

MQI or AMI to indicate that the messages are persistent.

– Define the input queue with message persistence as the default

setting.

– Configure the output node to handle persistent messages.

– Program your subscriber applications to request message persistence.

When an input node reads a message is read from an input queue, the

default action is to use the persistence defined in the WebSphere MQ

message header (MQMD), that has been set either by the application

creating the message, or by the default persistence of the input queue.

The message retains this persistence throughout the message flow, unless

it is changed in a subsequent message processing node.

Developing message flows 201

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

You can override the persistence value of each message when the

message flow terminates at an output node. This node has a property

that allows you to specify the message persistence of each message

when it is put to the output queue, either as the required value, or as a

default value. If you specify the default, the message takes the

persistence value defined for the queues to which the messages are

written.

If a message passes through a Publication node, the persistence of

messages sent to subscribers is determined by the subscribers’

registration options. If a subscriber has requested persistent message

delivery, and is authorized to do so by explicit or implicit (inherited)

ACL, the message is delivered persistently regardless of its existing

persistence property. Also, if the user has requested nonpersistent

message delivery, the message is delivered nonpersistent regardless of its

existing persistence property.

If a message flow creates a new message (for example, in a Compute

node), the persistence in the MQMD of the new message is copied from

the persistence in the MQMD of the incoming message.

v Processing messages under syncpoint control

The default action of a message flow is to process incoming messages

under syncpoint in a broker-controlled transaction. This means that a

message that fails to be processed for any reason is backed out by the

broker. Because it was received under syncpoint, the failing message is

reinstated on the input queue and can be processed again. If the

processing fails, the error handling procedures that are in place for this

message flow (defined either by how you have configured the message

flow, or by the broker) are executed.

For full details of input node processing, see “Managing errors in the

input node” on page 206.

WebSphere MQ Telemetry Transport

If you are using the SCADAInput node that accepts messages from

telemetry devices across the MQIsdp protocol, this protocol does not have

a concept of queues. Clients connect to a SCADAInput node by specifying

the port number on which the node is listening. Messages are sent to

clients using a clientId. However, you can specify a maximum QoS

(Quality of Service) within a SCADA subscription message, which is

similar to persistence:

v QoS0 Nonpersistent.

v QoS1 Persistent, but might be delivered more than once

v QoS2 Once and once only delivery

If a persistent SCADA message is published, it might be downgraded to

the highest level that the client can accept. In some circumstances, the

message might become nonpersistent.

WebSphere MQ Real-time Transport, WebSphere MQ Multicast Transport, and

WebSphere MQ Web Services Transport

If you are using the Real-timeInput and Real-timeOptimizedFlow nodes

that accept messages from JMS and multicast applications, or you are using

the HTTPInput, HTTPRequest, SOAPInput, SOAPRequest nodes, or a

SOAPAsyncRequest and SOAPAsyncResponse node pair that accept

messages from Web services applications, no facilities are available to

protect against message loss. You can, however, provide recovery

procedures by configuring the message flow to handle its own errors.

202 Message Flows

Other transports and protocols

If you have created your own user-defined input nodes that receive

messages from another transport protocol, you must rely on the support

provided by that transport protocol, or provide your own recovery

procedures.

Providing user-defined properties to control behavior

User-defined properties can be set at design time, deployment time, or run time.

For example, user-defined properties can be queried, discovered, and set at run

time to dynamically change the behavior of a message flow. You can use the

Configuration Manager Proxy (CMP) API to manipulate these properties, which

can be used by a systems monitoring tool to perform automated actions in

response to situations that it detects in the monitored systems.

v You can use the Message Flow editor to define a user-defined property when

you construct a message flow. For more information, see Message Flow editor.

v You can set user-defined properties at deployment time to configure a message

flow, as described in “Configuring a message flow at deployment time using

UDPs” on page 410.

v You can use the Configuration Manager Proxy (CMP) API to manipulate

user-defined properties on a message flow dynamically at run time, as described

in Setting user-defined properties dynamically at run time.

Handling errors in message flows

The broker provides basic error handling for all your message flows. If basic

processing is not sufficient, and you want to take specific action in response to

certain error conditions and situations, you can enhance your message flows to

provide your own error handling.

For example, you might design a message flow that expects certain errors that you

want to process in a particular way, or a flow that updates a database and must

roll back those updates if other processing does not complete successfully.

The options that you can use to do this are quite complex in some cases. The

options that are provided for MQInput and TimeoutNotification nodes are

extensive because these nodes deal with persistent messages and transactions. The

MQInput node is also affected by configuration options for WebSphere MQ.

Because you can decide to handle different errors in different ways, there are no

fixed procedures to describe. This section provides information about the principles

of error handling, and the options that are available, and you must decide what

combination of choices that you need in each situation based on the details that are

provided in this section.

You can choose one or more of these options in your message flows:

v Connect the failure terminal of any node to a sequence of nodes that processes

the node’s internal exception (the fail flow).

v Connect the catch terminal of the input node or a TryCatch node to a sequence

of nodes that processes exceptions that are generated beyond it (the catch flow).

v Insert one or more TryCatch nodes at specific points in the message flow to

catch and process exceptions that are generated by the flow connected to the try

terminal.

Developing message flows 203

|

|

|
|
|
|
|

|
|

|
|
|

|
|
|

v Include a Throw node, or code an ESQL THROW statement, to generate an

exception.

v Connect the catch terminal of the AggregateReply node to process aggregation

exceptions if you are using aggregation.

v Ensure that all of the messages received by an MQInput node are processed

within a transaction, or are not processed within a transaction.

v Ensure that all of the messages received by an MQInput node are persistent, or

are not persistent.

If you include user-defined nodes in your message flow, you must refer to the

information provided with the node to understand how you might handle errors

with these nodes. The descriptions in this section cover only the built-in nodes.

When you design your error handling approach, consider the following factors:

v Most of the built-in nodes have failure terminals. The exceptions are the

AggregateControl, AggregateRequest, Input, Label, Output, Passthrough,

Publication, Real-timeInput, Real-timeOptimizedFlow, Throw, Trace, and

TryCatch nodes.

When an exception is detected within a node, the message and the exception

information are propagated to the node’s failure terminal. If the node does not

have a failure terminal, or it is not connected, the broker throws an exception

and returns control to the closest previous node that can process it. This might

be a TryCatch node, an AggregateReply node, or the input node.

If an MQInput node detects an internal error, its behavior is slightly different; if

the failure terminal is not connected, it attempts to put the message to the input

queue’s backout requeue queue, or (if that is not defined) to the dead letter

queue of the broker’s queue manager.

For more information, see “Handling MQInput errors” on page 208.

v A small number of built-in nodes have catch terminals. These are the

AggregateReply, HTTPInput, MQInput, SCADAInput, JMSInput, JMSOutput,

TimeoutNotification, and TryCatch nodes.

A message is propagated to a catch terminal only if it has first been propagated

beyond the node (for example, to the nodes connected to the out terminal).

v When a message is propagated to the failure or catch terminal, the node creates

and populates a new ExceptionList with an exception that represents the error

that has occurred. The ExceptionList is propagated as part of the message tree.

v The MQInput and TimeoutNotification nodes have additional processing for

transactional messages (other input nodes do not handle transactional messages).

For more information, see “Handling MQInput errors” on page 208 and

“Handling TimeoutNotification errors” on page 211.

v If you include a Trace node that specifies $Root or $Body, the complete message

is parsed. This might generate parser errors that are not otherwise detected.

The general principles of error handling are:

v If you connect the catch terminal of the input node, you are indicating that the

flow handles all of the exceptions that are generated anywhere in the out flow.

The broker performs no rollback and takes no action unless there is an exception

on the catch flow. If you want any rollback action after an exception has been

raised and caught, you must provide this in the catch flow.

204 Message Flows

v If you do not connect the catch terminal of the MQInput or the HTTPInput

node, you can connect the failure terminal and provide a fail flow to handle

exceptions generated by the node. The fail flow is started immediately when an

exception occurs in the node.

The fail flow is also started if an exception is generated beyond the MQInput

node (in either out or catch flows), the message is transactional, and the

reinstatement of the message on the input queue causes the backout count to

reach the backout threshold.

The HTTPInput and SCADAInput nodes do not propagate the message to the

failure terminal if an exception is generated beyond the node and you have not

connected the catch terminal.

v If a node propagates a message to a catch flow, and another exception occurs

that returns control to the same node again, the node handles the message as

though the catch terminal is not connected.

v If you do not connect either the failure or catch terminals of the input node, the

broker provides default processing (which varies with the type of input node).

v If you need a more comprehensive error and recovery approach, include one or

more TryCatch nodes to provide more localized areas of error handling.

v If you have a common procedure for handling particular errors, you might find

it appropriate to create a subflow that includes the sequence of nodes required.

Include this subflow wherever you need that action to be taken.

For more information, see “Connecting failure terminals” on page 206, “Managing

errors in the input node” on page 206, and “Catching exceptions in a TryCatch

node” on page 212.

If your message flows include database updates, the way in which you configure

the nodes that interact with those databases can also affect the way that errors are

handled:

v You can specify whether updates are committed or rolled back. You can set the

node property Transaction to specify whether database updates are committed

or rolled back with the message flow (option Automatic), or are committed or

rolled back when the node itself terminates (option Commit). You must ensure

that the combination of these property settings and the message flow error

processing give the correct result.

v You can specify how database errors are handled. You can set the properties

Treat warnings as errors and Throw exception on database error to change the

default behavior of database error handling.

For more information about coordinated database updates, see “Configuring

globally coordinated message flows” on page 173.

Message flows for aggregation involve additional considerations that are not

discussed in this topic. For information about message flows for aggregation, see

“Handling exceptions in aggregation flows” on page 588.

The following sample demonstrates how to use an error handling routine to trap

information about errors and to store that information in a database. The error

handling routine is a subflow that you can add, unchanged, to any message flow.

The sample also demonstrates how to configure message flows to control

transactionality; in particular, the use of globally coordinated transactions to ensure

overall data integrity.

v Error Handler sample

Developing message flows 205

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.doc/doc/overview.htm

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Connecting failure terminals

When a node that has a failure terminal detects an internal error, it propagates the

message to that terminal. If it does not have a failure terminal, or if you have not

connected the failure terminal, the broker generates an exception.

The nodes sometimes generate errors that you can predict, and it is in these cases

that you might want to consider connecting the failure terminal to a sequence of

nodes that can take sensible actions in response to the expected errors.

Examples of expected errors are:

v Temporary errors when the input node retrieves the message.

v Validation errors detected by an MQInput, Compute, or Mapping node.

v Messages with an internal or format error that cannot be recognized or

processed by the input node.

v Acceptable errors when a node accesses a database, and you choose not to

configure the node to handle those errors.

v ESQL errors during message flow development (some ESQL errors cannot be

detected by the editor, but are recognized only by the broker; these cause an

exception if you have not connected the failure terminal. You can remove the fail

flow when you have completely tested the runtime ESQL code).

You can also connect the failure terminal if you do not want WebSphere MQ to

retry a message or put it to a backout or dead letter queue.

Managing errors in the input node

When you design your message flow, consider which terminals on the input node

to connect.

v If the node detects an error, it always propagates the message to the Failure

terminal if the node has one and if you have connected a fail flow.

v If you connect the Catch terminal (if the node has one), this action indicates that

you want to handle all exceptions that are generated in the out flow. This

method handles errors that can be expected in the out flow. The broker does not

take any action unless there is an exception on the catch flow and the message is

transactional. Connect the Failure terminal to handle this case if you choose.

v If you do not connect the Catch terminal, or the node does not have a Catch

terminal, the broker provides default processing, which depends on the node

and whether the message is transactional. Processing for non-transactional

messages is described in this topic. Refer to “Handling MQInput errors” on page

208, and “Handling TimeoutNotification errors” on page 211 for details of how

these nodes handle transactional messages (other input nodes do not support

transactional messages).

All input nodes process non-transactional, non-persistent messages. The built-in

input nodes handle failures and exceptions associated with these messages in this

way:

v If the node detects an internal error:

– If you have not connected the Failure terminal, the node logs the error in the

local error log and discards the message.

206 Message Flows

The Real-timeInput and Real-timeOptimizedFlow nodes retry once before

they discard the message; that is, they retrieve the message again and attempt

to process it.

– If you have connected the Failure terminal, you are responsible for handling

the error in the fail flow. The broker creates a new ExceptionList to represent

the error and this is propagated to the Failure terminal as part of the message

tree, but neither the node nor the broker provide any further failure

processing.
v If the node has successfully propagated the message to the Out terminal and a

later exception results in the message being returned to the input node:

– If you have not connected the Catch terminal or the node does not have a

Catch terminal, the node logs the error in the local error log and discards the

message.

– If you have connected the Catch terminal, you are responsible for handling

the error in the catch flow. The broker creates a new ExceptionList to

represent the error and this is propagated to the Catch terminal as part of the

message tree, but neither the node nor the broker provide any further

exception processing.
v If the node has already propagated the message to the Catch terminal and an

exception is thrown in the catch flow:

– If you have not connected the Failure terminal, or the input node does not

have a Failure terminal, the node logs the error in the local error log and

discards the message.

– If you have connected the Failure terminal, you are responsible for handling

the error in the fail flow. The broker creates a new ExceptionList to represent

the error and this is propagated to the Failure terminal as part of the message

tree, but neither the node nor the broker provide any further failure

processing.

The HTTPInput and SCADAInput nodes do not propagate the message to the

Failure terminal if an exception is generated in the catch flow. The node logs

the error in the local error log and discards the message.
v If the node has propagated the message to the Failure terminal and an exception

is thrown in the fail flow, the node logs the error in the local error log and

discards the message.

In every situation in which it discards the message, the HTTPInput node waits

until the time specified by the node property Maximum client wait time expires,

and returns an error to the Web services client.

This action is summarized in the table below:

 Error event Failure terminal

connected

Failure terminal

not connected

Catch terminal

connected

Catch terminal

not connected

Node detects

internal error

Fail flow

handles the error

Node logs the

error and

discards the

message

Not applicable Not applicable

Node propagates

message to Out

terminal,

exception occurs

in out flow

Not applicable Not applicable Catch flow

handles the error

Node logs the

error and

discards the

message

Developing message flows 207

Error event Failure terminal

connected

Failure terminal

not connected

Catch terminal

connected

Catch terminal

not connected

Node propagates

message to

Catch terminal,

exception occurs

in catch flow

Fail flow

handles the error

(not HTTPInput

or SCADAInput)

Node logs the

error and

discards the

message

Not applicable Not applicable

Node propagates

message to

Failure terminal,

exception occurs

in fail flow

Not applicable Not applicable Node logs the

error and

discards the

message

Node logs the

error and

discards the

message

Handling MQInput errors:

The MQInput node takes the following actions when it handles errors with

persistent and transactional messages. Errors encountered with non-transactional

messages are handled as described in “Managing errors in the input node” on

page 206.

v The MQInput node detects an internal error in the following situations:

– A message validation error occurs when the associated message parser is

initialized.

– A warning is received on an MQGET.

– The backout threshold is reached when the message is rolled back to the

input queue.
v If the MQInput node detects an internal error, one of the following actions occur:

– If you have not connected the Failure terminal, the MQInput node attempts to

put the message to the input queue’s backout requeue queue, or (if that is not

defined) to the dead letter queue of the broker’s queue manager. If the put

attempt fails, the message is rolled back to the input queue. The MQInput

node writes the original error and the MQPUT error to the local error log.

The MQInput node now invokes the retry logic, described in “Retry

processing” on page 209.

– If you have connected the Failure terminal, you are responsible for handling

the error in the flow connected to the Failure terminal. The broker creates a

new ExceptionList to represent the error and this is propagated to the Failure

terminal as part of the message tree, but neither the MQInput node nor the

broker provide any further failure processing.
v If the MQInput node has successfully propagated the message to the out

terminal and an exception is thrown in the out flow, the message is returned to

the MQInput node:

– If you have not connected the Catch terminal, the message is rolled back to

the input queue. The MQInput node writes the error to the local error log and

invokes the retry logic, described in “Retry processing” on page 209.

– If you have connected the Catch terminal, you are responsible for handling

the error in the flow connected to the Catch terminal. The broker creates a

new ExceptionList to represent the error and this is propagated to the Catch

terminal as part of the message tree, but neither the MQInput node nor the

broker provide any further failure processing.
v If the MQInput node has already propagated the message to the Catch terminal

and an exception is thrown in the flow connected to the Catch terminal, the

message is returned to the MQInput node:

208 Message Flows

– The MQInput node writes the error to the local error log.

– The message is rolled back to the input queue.
v If the MQInput node has already propagated the message to the Failure terminal

and an exception is thrown in the flow connected to the Failure terminal, the

message is returned to the MQInput node and rolled back to the input queue.

The MQInput node writes the error to the local error log and invokes the retry

logic, described in “Retry processing.” The message is not propagated to the

Catch terminal, even if that is connected.

This action is summarized in the table below:

 Error event Failure terminal

connected

Failure terminal

not connected

Catch terminal

connected

Catch terminal

not connected

Node detects

internal error

Flow connected

to the Failure

terminal handles

the error

Message put to

alternative

queue; node

retries if the put

fails

Not applicable Not applicable

Node propagates

message to out

terminal,

exception occurs

in out flow

Not applicable Not applicable Flow connected

to the Catch

terminal handles

the error

Node retries

Node propagates

message to

Catch terminal,

exception occurs

in flow

connected to the

Catch terminal

Error logged,

message rolled

back

Error logged,

message rolled

back

Not applicable Not applicable

Node propagates

message to

Failure terminal,

exception occurs

in flow

connected to the

Failure terminal

Not applicable Not applicable Node retries Node retries

Retry processing:

The node attempts retry processing when a message is rolled back to the input

queue. It checks whether the message has been backed out before, and if it has,

whether the backout count has reached (equalled) the backout threshold. The

backout count for each message is maintained by WebSphere MQ in the MQMD.

You specify (or allow to default to 0) the backout threshold attribute BOTHRESH

when you create the queue. If you accept the default value of 0, the node increases

this to 1. The node also sets the value to 1 if it cannot detect the current value.

This means that if a message has not been backed out before, it is backed out and

retried at least once.

1. If the node has propagated a message to the out terminal many times following

repeated failed attempts in the out flow, and the number of retries has reached

the backout threshold limit, it attempts to propagate the message through the

Failure terminal if that is connected. If you have not connected the Failure

terminal, the node attempts to put the message to another queue.

Developing message flows 209

If a failure occurs beyond the Failure terminal, further retries are made until

the backout count field in the MQMD reaches twice the backout threshold set

for the input queue. When this limit is reached, the node attempts to put the

message to another queue.

2. If the backout threshold has not been reached, the node gets the message from

the queue again. If this fails, this is handled as an internal error (described

above). If it succeeds, the node propagates the message to the out flow.

3. If the backout threshold has been reached:

v If you have connected the Failure terminal, node propagates the message to

that terminal. You must handle the error on the flow connected to the Failure

terminal.

v If you have not connected the Failure terminal, the node attempts to put the

message on an available queue, in order of preference:

a. The message is put on the input queue’s backout requeue name (queue

attribute BOQNAME), if one is defined.

b. If the backout queue is not defined, or it cannot be identified by the

node, the message is put on the dead letter queue (DLQ), if one is

defined. (If the broker’s queue manager has been defined by the

mqsicreatebroker command, a DLQ with a default name of

SYSTEM.DEAD.LETTER.QUEUE has been defined and is enabled for this

queue manager.)

c. If the message cannot be put on either of these queues because there is an

MQPUT error (including queue does not exist), or because they cannot be

identified by the node, it cannot be handled safely without risk of loss.

The message cannot be discarded, therefore the message flow continues

to attempt to backout the message. It records the error situation by

writing errors to the local error log. A second indication of this error is

the continual incrementing of the BackoutCount of the message in the

input queue.

If this situation has occurred because neither queue exists, you can define

one of the backout queues mentioned above. If the condition preventing

the message from being processed has cleared, you can temporarily

increase the value of the BOTHRESH attribute. This forces the message

through normal processing.
4. If twice the backout threshold has been reached or exceeded, the node attempts

to put the message on an available queue, in order of preference, as defined in

the previous step.

Handling message group errors:

WebSphere MQ supports message groups. You can specify that a message belongs

to a group and its processing is then completed with reference to the other

messages in the group (that is, either all messages are committed or all messages

are rolled back). When you send grouped messages to a broker, this condition is

upheld if you have configured the message flow correctly, and errors do not occur

during group message processing.

To configure the message flow to handle grouped messages correctly, follow the

actions described in the “MQInput node” on page 1007. However, correct

processing of the message group cannot be guaranteed if an error occurs while one

of the messages is being processed.

If you have configured the MQInput node as described, under normal

circumstances all messages in the group are processed in a single unit of work

210 Message Flows

which is committed when the last message in the group has been successfully

processed. However, if an error occurs before the last message in the group is

processed, the unit of work that includes the messages up to and including the

message that generates the error is subject to the error handling defined by the

rules documented here, which might result in the unit of work being backed out.

However, any of the remaining messages within the group might be successfully

read and processed by the message flow, and therefore are handled and committed

in a new unit of work. A commit is issued when the last message is encountered

and processed. Therefore if an error occurs within a group, but not on the first or

last message, it is possible that part of the group is backed out and another part

committed.

If your message processing requirements demand that this situation is handled in a

particular way, you must provide additional error handling to handle errors within

message groups. For example, you could record the failure of the message group

within a database, and include a check on the database when you retrieve each

message, forcing a rollback if the current group has already encountered an error.

This would ensure that the whole group of messages is backed out and not

processed unless all are successful.

Handling TimeoutNotification errors: The TimeoutNotification node takes the

following actions when it handles errors with transactional messages. Errors

encountered with non-transactional messages are handled as described in

“Managing errors in the input node” on page 206.

v If the TimeoutNotification node detects an internal error, one of the following

actions occur:

– If you have not connected the Failure terminal the following happens:

1. The TimeoutNotification node writes the error to the local error log.

2. The TimeoutNotification node repeatedly tries to process the request until

the problem has been resolved.
– If you have connected the Failure terminal, you are responsible for handling

the error in the flow connected to the Failure terminal. The broker creates a

new ExceptionList to represent the error and this is propagated to the Failure

terminal as part of the message tree, but neither the TimeoutNotification node

nor the broker provide any further failure processing. The message is written

to the Failure terminal as part of the same transaction, and if the failure flow

handles the error successfully the transaction is committed.
v If the TimeoutNotification node has successfully propagated the message to the

Out terminal and an exception is thrown in the flow connected to the Out

terminal, the message is returned to the TimeoutNotification node. The

TimeoutNotification node writes the error to the local error log and does one of

the following:

– If you have not connected the Catch terminal, the TimeoutNotification node

tries to process the message again until the problem is resolved.

– If you have connected the Catch terminal, you are responsible for handling

the error in the flow connected to the Catch terminal. The broker creates a

new ExceptionList to represent the error and this is propagated to the Catch

terminal as part of the message tree, but neither the TimeoutNotification node

nor the broker provide any further failure processing. The message is written

to the Catch terminal as part of the same transaction, and if the flow

connected to the Catch terminal handles the error successfully the transaction

is committed.

Developing message flows 211

v If the TimeoutNotification node has already propagated the message to the

Catch terminal and an exception is thrown in the flow connected to the Catch

terminal, the message is returned to the TimeoutNotification node. The

TimeoutNotification node writes the error to the local error log and tries to

process the message again.

v If the TimeoutNotification node has already propagated the message to the

Failure terminal and an exception is thrown in the flow connected to the Failure

terminal, the message is returned to the TimeoutNotification node. The

TimeoutNotification node writes the error to the local error log and tries to

process the message again. The message is not propagated to the Catch terminal,

even if that is connected.

This action is summarized in the table below:

 Error event Failure terminal

connected

Failure terminal

not connected

Catch terminal

connected

Catch terminal

not connected

Node detects

internal error

Flow connected

to the Failure

terminal handles

the error

Error logged,

node retries

Not applicable Not applicable

Node propagates

message to out

terminal,

exception occurs

in out flow

Not applicable Not applicable Flow connected

to the Catch

terminal handles

the error

Error logged,

node retries

Node propagates

message to

Catch terminal,

exception occurs

in flow

connected to the

Catch terminal

Error logged,

node retries

Error logged,

node retries

Not applicable Not applicable

Node propagates

message to

Failure terminal,

exception occurs

in flow

connected to the

Failure terminal

Not applicable Not applicable Error logged,

node retries

Error logged,

node retries

Catching exceptions in a TryCatch node

You can design a message flow to catch exceptions before they are returned to the

input node. Within a single flow, you can include one or more TryCatch nodes to

provide a single point of failure for a sequence of nodes. With this technique, you

can provide very specific error processing and recovery.

A TryCatch node does not process a message in any way, it represents only a

decision point in a message flow. When the TryCatch node receives a message, it

propagates it to the Try terminal. The broker passes control to the sequence of

nodes connected to that terminal (the try flow).

If an exception is thrown in the try flow, the broker returns control to the TryCatch

node. The node writes the current contents of the ExceptionList tree to the local

error log, then writes the information for the current exception to ExceptionList,

overwriting the information stored there.

212 Message Flows

The node now propagates the message to the sequence of nodes connected to the

Catch terminal (the catch flow). The content of the message tree that is propagated

is identical to the content that was propagated to the Ttry terminal, which is the

content of the tree when the TryCatch node first received it. It enhances this tree

with the new exception information which it has written to ExceptionList. Any

modifications or additions the nodes in try flow made to the message tree are not

present in the message tree that is propagated to the catch flow.

However, if the try flow has completed processing that involves updates to

external databases, these are not lost. The updates persist while the message is

processed by the catch flow, and the decision about whether the updates are

committed or rolled back is made on the configuration of your message flow and

the individual nodes that interact with the databases. If the updates are committed

because of the configuration you have set, you must include logic in your catch

flow that rolls back the changes that were made.

To review the options for configuration, see “Configuring globally coordinated

message flows” on page 173.

The broker returns control to the next catch point in the message flow (which

might be another TryCatch node, but is always, in the last case, the input node) if

one of the following conditions is true:

v An exception is thrown in the catch flow of the TryCatch node (for example, if

you include a Throw node, or code an ESQL THROW statement, or if the broker

generates the exception).

v You do not connect the Catch terminal of the TryCatch node.

The following example shows how you can configure the flow to catch exceptions

in the input node. The MQInput node’s Catch terminal is connected to a Trace

node to record the error.

In the following example, the message flow has two separate processing flows

connected to the Filter node’s True and False terminals. Here a TryCatch node is

included on each of the two routes that the message can take. The Catch terminal

of both TryCatch nodes is connected to a common error processing subflow.

Developing message flows 213

If the input node in your message flow does not have a Catch terminal (for

example, Real-timeInput), and you want to process errors in the flow, you must

include a TryCatch node. The following example shows how you could connect a

flow to provide this error processing. In this example, you could configure the

ESQL in the Compute node on the catch flow to examine the exception that has

been caught and set the output queue name dynamically.

Managing message flows

How you can use tasks to manage message flows.

v “Creating a message flow project” on page 215

v “Deleting a message flow project” on page 216

v “Creating a broker schema” on page 217

v “Creating a message flow” on page 218

v “Opening an existing message flow” on page 219

v “Copying a message flow using copy” on page 220

v “Renaming a message flow” on page 221

v “Moving a message flow” on page 222

v “Deleting a message flow” on page 223

v “Version and keyword information for deployable objects” on page 224

v “Saving a message flow” on page 225

To learn more about message flows look at the following sample:

v Airline Reservations sample

In the previous sample you can explore message flow resources, and learn how to

create, delete, or rename the resources. You can view samples only when you use

the information center that is integrated with the Message Broker Toolkit.

For a basic introduction to developing message flows, see the IBM Redbooks

publication WebSphere Message Broker Basics.

214 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm
http://www.redbooks.ibm.com/abstracts/sg247137.html

Creating a message flow project

Before you start:

Read the concept topic about message flow projects.

A message flow project is a container for message flows; you must create a project

before you can create a message flow.

The project and its resources are stored in a file system or in a shared repository. If

you are using a file system, this can be the local file system or a shared drive. If

you store files in a repository, you can use any of the available repositories that are

supported by Eclipse, for example CVS.

To create a message flow project and other resource files that you need to start

developing applications, you can use a Quick Start wizard.

To create only a message flow project, perform the following actions:

1. Switch to the Broker Application Development perspective.

2. Click File → New → Message Flow Project or right-click any resource in the

Broker Development view and click New → Message Flow Project.

You can also press Ctrl+N. This displays a dialog that allows you to select the

wizard to create a new object. Click Message Brokers in the left view; the right

view displays a list of objects that you can create for WebSphere Message

Broker. Click Message Flow Project in the right view, then click Next. The New

Message Flow Project wizard displays.

3. Enter a name for the project. Choose a project name that reflects the message

flows that it contains. For example, if you want to use this project for financial

processing message flows, you might give it the name Finance_Flows.

4. Leave the Use default check box checked (it is checked when the dialog opens)

This applies if you want to use the default location for the new message project

directory, that is, in the \workspace subdirectory of your current installation.

You cannot edit the Directory entry field.

a. Alternatively, clear the Use default check box and specify a location for the

new message flow project files in the Directory entry field. This applies if

you do not want to use the default location.

b. Use the Browse button to find the desired location or type the location in.
5. Click Next if you want to specify that this message flow project depends on

other message flow projects, or on message set projects,

You are presented with a list of current projects. Select one or more message

flow projects, or one or more message set projects, or both, from the list to

indicate this new message flow project’s dependencies. Message flow projects

and message set projects are filtered to only show artifacts in the active

working set.

This message flow project depends on another message flow project if you

intend to use common resources within it. Common resources that you can

share between message flow projects are:

a. ESQL subroutines (defined in broker schemas)

b. Mappings

c. Message sets

d. Subflows

Developing message flows 215

|
|
|
|
|

For example, you might want to reuse a subflow that provides standard error

processing such as writing the message to a database, or recording a trace

entry.

This message flow project depends on a message set project if you intend to

refer to the message it defines within ESQL within the message flow nodes.

You can add dependencies after you have created the message flow project by

right-clicking the project in the Broker Development view and clicking

Properties. Click References and select the dependent message flow or

message set project from the list of projects displayed.

6. Click Finish to complete the task.

The project file is created within a directory that has the same name as your

message flow project in the specified location. All other files that you create (or

cause to be created) related to this message flow project are created in this same

directory.

A default broker schema (default) is also created within the project. You can

create and use different schemas within a single project to organize message flow

resources, and to provide the scope of resource names to ensure uniqueness.

Next: create a message flow

Deleting a message flow project

A message flow project is the container in which you create and maintain all the

resources associated with one or more message flows. These resources are created

as files, and are displayed within the project in the Broker Development view. If

you do not want to retain a message flow project, you can delete it.

Before you start:

v Create a message flow project

v Read the concept topic about message flow projects

Deleting a message flow project in the workbench deletes the project and its

resources; the Configuration Manager does not hold a copy. If you are using a

shared repository, the repository might retain a copy of a deleted resource.

In previous releases you could remove resources from the Control Center, which

removed the reference in your workspace, but retained the resource in the

Configuration Manager repository.

To delete a message flow project:

1. Switch to the Broker Application Development perspective.

2. Highlight the message flow project that you want to delete and click Edit →

Delete You can also press Del, or right-click the project in the Broker

Development view and click Delete

3. You must choose if you want the contents of the message flow project folder

deleted with this action on the displayed confirmation dialog. The dialog

contains two buttons:

a. The first confirms that all contents are to be deleted.

b. The second requests that the directory contents are not deleted. The default

action is not to delete the contents, and the second button is selected by

default when the dialog is initially displayed.

216 Message Flows

a. Select the appropriate button. If you choose not to delete the contents of the

message flow project directory, all the files and the directory itself are

retained.

If you later create another project with the same name, and specify the same

location for the project (or accept this as the default value), you can access

the files previously created.

If you choose to delete all the contents, all files and the directory itself are

deleted.
4. Click Yes to complete the delete request, or No to terminate the delete request.

When you click Yes, the requested objects are deleted.

If you maintain resources in a shared repository, a copy is retained in that

repository. You can follow the instructions provided by the repository supplier to

retrieve the resource if required.

If you are using the local drive or a shared drive to store your resources, no copy

of the resource is retained. Be very careful to select the correct resource when you

complete this task.

Creating a broker schema

If you want to organize your message flow project resources, and to define the

scope of resource names to ensure uniqueness, you can create broker schemas. A

default schema is created when you create the message flow project, but you can

create additional schemas if you choose.

Before you start:

v Create a message flow project

v Read the concept topic about broker schemas

To create a broker schema:

1. Switch to the Broker Application Development perspective.

2. Click File → New → BrokerSchema or right-click any resource in the Broker

Development view and click New → BrokerSchema.

You can also press Ctrl+N. This displays a dialog that allows you to select the

wizard to create a new object. Click Message Brokers in the left view. The right

view displays a list of objects that you can create for WebSphere Message

Broker. Click Broker Schema in the right view, then click Next. The New Broker

Schema wizard displays.

3. Enter the message flow project in which you want the new schema to be

created. If you have a message flow project or one of its resources highlighted

when you invoke the wizard, that project name appears in the dialog. If a name

does not appear in this field, or if you want to create the schema in another

project, click Browse and select the correct project from the displayed list. The

message flow project list is filtered to only show projects in the active working

set.

You can type the project name in, but you must enter a valid name. The dialog

displays a red cross and the error message The specified project does not

exist if your entry is not a valid project. You must specify a message flow

project; if you select a message set project, the Finish button remains disabled.

Developing message flows 217

|
|
|
|
|
|
|

|
|
|
|

4. Enter a name for the schema. Choose a name that reflects the resources that it

contains. For example, if you want to use this schema for message flows for

retail applications, you might give it the name Retail.

A broker schema name must be a character string that starts with a Unicode

character followed by zero or more Unicode characters or digits, and the

underscore. You can use the period to provide a structure to the name, for

example Stock.Common.

5. Click Finish to complete the task.

The schema directory is created in the project directory. If the schema is structured

using periods, further subdirectories are defined. For example, the broker schema

Stock.Common results in a directory Common within a directory Stock within the

message flow project directory.

Creating a message flow

Create a message flow to specify how to process messages in the broker. You can

create any number of message flows and deploy them to one or more brokers.

Before you start:

v Complete the following task: “Creating a message flow project” on page 215.

v Read the concept topic about “Broker schemas” on page 114.

The mode that your broker is working in can affect the number of message flows

that you can use; see Restrictions that apply in each operation mode.

The message flow and its resources are stored in a file system or in a shared

repository. If you are using a file system, this can be the local drive or a shared

drive. If you store files in a repository, you can use any of the available repositories

that are supported by Eclipse, for example CVS.

Use this process to create a complete message flow that you can deploy, or a

subflow that provides a subset of function (for example, a reusable error

processing routine) that you cannot deploy on its own.

To create a message flow and other resource files that you need to start developing

applications, you can use a Quick Start wizard.

To create only a message flow, perform the following actions:

1. Switch to the Broker Application Development perspective.

2. If you have not already created the message flow project in which you want to

create the message flow, then you can either create it now, see “Creating a

message flow project” on page 215, or you can create the message flow project

as an optional step in creating the message flow (see step 4). The project can be

empty, or can have message flows defined in it.

3. Perform one of the following actions to open a new message flow:

v Click File → New → Message Flow.

v Right-click any resource in the Broker Development view and click New →

Message Flow.

v Press Ctrl+N. This action displays a dialog box in which you can select the

wizard to create a new object:

a. Click Message Brokers in the left view. The right view displays a list of

objects that you can create for WebSphere Message Broker.

218 Message Flows

b. Click Message Flow in the right view, then click Next. The New Message

Flow wizard displays.
4. Identify the project in which you want to define the message flow. This field is

filtered to only show resources in the active working set.

v If you have a resource selected in the Broker Development view, the name of

the corresponding project is displayed in the Message Flow Project field.

v If you do not have a resource selected, the first field is blank.

– If you have already created the message flow project for this message

flow, you can perform either of the following actions:

- Type the name of the project into the field.

- Click the down-arrow and select the appropriate project from the list

displayed.
– If you have not already created the message flow project, select New. The

New Message Flow Project wizard starts, and you can use it to create the

message flow project for your new message flow, see “Creating a message

flow project” on page 215. When you have finished creating the new

message flow project, the New Message Flow Project wizard closes, and

the name of your new message flow project is displayed in the Message

Flow Project field of the New Message Flow window.

If your entry is not a valid project name, the window displays a red cross and

the error message The specified project does not exist .

5. In the Message flow Name field, enter the name of the new message flow. You

can use any valid character for the name, but it is helpful to choose a name

that reflects its function, for example, OrderProcessing.

6. Decide whether you want to use the default broker schema. When you create a

message flow project, a default schema is created within it, and this default

value is assumed unless you deselect it. You can create and use different

schemas within a single project to organize message flow resources, and to

provide the scope of resource names to ensure uniqueness.

v If you want the message flow to be created in the default broker schema,

ensure that you select Use default in the Flow organization section.

v If you want to use a different broker schema, deselect Use default. You can

now perform either of the following actions:

– Enter the name of the broker schema into the Schema field.

– Click Browse to select from any of the broker schemas in the message

flow project.
7. Click Finish.

The new message flow (<message_flow_name>.msgflow) is displayed within its

project in the Broker Development view. The Editor view is empty and ready to

receive your input.

Next, you can do either of the following tasks:

v “Saving a message flow” on page 225

v “Defining message flow content” on page 227

Opening an existing message flow

Open an existing message flow to change or update its contents, or to add or

remove nodes.

Before you start

Developing message flows 219

|
|

You must have completed the following task:

v “Creating a message flow” on page 218

To open an existing message flow:

1. Switch to the Broker Application Development perspective. The Broker

Development view is populated with all the message flow and message set

projects that you have access to. A message flow is contained in a file called

<message_flow_name>.msgflow.

2. Right-click the message flow that you want to work with, and click Open.

Alternatively you can double-click the message flow in the Broker

Development view.

The graphical view of the message flow is displayed in the editor view. You

can now work with this message flow; for example, you can add or remove

nodes, change connections between nodes, or modify node properties.

3. Click Open ESQL for any node in the flow that requires ESQL, or double-click

the ESQL file (the .esql file) in the Broker Development view to open it, if you

want to work with the ESQL file for this message flow.

4. Click Open Mappings for any node in the flow that requires mappings, or

double-click the mappings file (the .msgmap file) in the Broker Development

view to open it, if you want to work with the mappings file for this message

flow.

5. Click Open Java for any JavaCompute node in the flow, or double-click the

Java file in the Broker Development view to open it, if you want to work with

the Java file for this message flow.

Copying a message flow using copy

You might find it useful to copy a message flow as a starting point for a new

message flow that has similar function. For example, you might want to replace or

remove one or two nodes to process messages in a different way.

Before you start

To complete this task, you must have completed the following task:

v “Creating a message flow” on page 218

To copy a message flow:

1. Switch to the Broker Application Development perspective.

2. Select the message flow (<message_flow_name>.msgflow) that you want to

copy in the Broker Development view.

a. Right-click the file and click Copy from the menu.
3. Right-click the broker schema within the message flow project to which you

want to copy the message flow and click Paste. You can copy the message flow

within the same broker schema within the same message flow, or to a different

broker schema within the same message flow project, or to a broker schema in

a different message flow project.

When you copy a message flow, the associated files (ESQL and mapping, if

present) are not automatically copied to the same target message flow project. If

you want these files copied as well, you must do this explicitly following this

procedure.

You might also need to update nodes that have associated ESQL or mappings,

to ensure that modules are unique.

220 Message Flows

For example, if you have created a message flow (Test1 for example) that

contains a single Compute node, and you copy message flow Test1 and its

associated .esql file to the same broker schema within the same message flow

project (and give the new copy a different name, for example Test2), there are

now two modules named Test1_Compute within the single schema. One is

within Test1.esql, the second within Test2.esql.

This is not supported, and an error message is written to the Tasks view when

you have completed the copy action. You must rename the associated ESQL

modules within the .esql file and update the matching node properties to

ensure that every module within a broker schema is unique.

The message flow is copied with all property settings intact. If you intend to use

this copy of the message flow for another purpose, for example to retrieve

messages from a different input queue, you might have to modify its properties.

You can also use File → Save As to copy a message flow. This is described in

“Saving a message flow” on page 225.

Renaming a message flow

You can rename a message flow. You might want to do this if you have modified

the message flow to provide a different function and you want the name of the

message flow to reflect this new function.

Before you start

To complete this task, you must have completed the following task:

v “Creating a message flow” on page 218

To rename a message flow:

1. Switch to the Broker Application Development perspective.

2. Right-click the message flow that you want to rename

(<message_flow_name>.msgflow) in the Broker Development view, and click

Rename, or click File → Rename. If you have the message flow selected, you

can also press F2. The Rename Resource dialog is displayed.

3. Type in the new name for the message flow.

4. Click OK to complete this action, or Cancel to cancel the request. If you click

OK, the message flow is renamed.

After you have renamed the message flow, any references that you have to this

message flow (for example, if it is embedded in another message flow) are no

longer valid.

5. You must open the affected message flows and correct the references if you are

not sure where you have embedded this message flow.

a. Click File → Save All The save action saves and validates all resources.

Unresolved references are displayed in the Tasks view, and you can click

each error listed.

This opens the message flow that makes a non-valid reference in the editor

view

b. Right click the subflow icon and click Locate Subflow. The Locate Subflow

dialog is displayed, listing the available message flow projects.

c. Expand the list and explore the resources available to locate the required

subflow.

Developing message flows 221

d. Select the correct subflow and click OK. All references in the current

message flow are updated for you and the errors removed from the Tasks

view.

Moving a message flow

You can move a message flow from one broker schema to another within the same

project or to a broker schema in another project. You might want to do this, for

example, if you are reorganizing the resources in your projects.

Before you start:

Complete the following task:

v “Creating a message flow” on page 218

To move a message flow:

1. Switch to the Broker Application Development perspective.

2. Drag the message flow that you want to move from its current location to a

broker schema in the same or another message flow project. If the target

location that you have chosen is not valid, a black no-entry icon appears over

the target, an error dialog box is displayed, and the message flow is not moved.

You can move a message flow to another schema in the same project or to a

schema in another message flow project.

Alternatively, you can use the following method:

a. Right-click the message flow that you want to move

(message_flow_name.msgflow) in the Broker Development view and click

Move, or File → Move. The Move dialog box is displayed. This contains a

list of all valid projects to which you can move this message flow.

b. Select the project and the broker schema in the project to which you want to

move the message flow. You can move a message flow to another schema in

the same project or to a schema in another message flow project.

c. Click OK to complete the move, or Cancel to cancel the move. If you click

OK, the message flow is moved to its new location.

3. Check the Tasks view for any errors (indicated by the error icon

) or

warnings (indicated by the warning icon

) that are generated by the move.

The errors in the Tasks view include those that are caused by broker references.

When the move is complete, all references to this message flow (for example, if

this is a reusable error message flow that you have embedded in another

message flow) are checked.

If you have moved the message flow within the same broker schema (in the

same or another project), all references are still valid. However, if you move the

message flow from one broker schema to another (in the same or a different

project), the references are broken because the resources are linked by a

fully-qualified name of which the broker schema is a part. Information about

any broken references is written to the Tasks view; for example, Linked or

nested flow mflow1 cannot be located.

4. Double-click each error or warning to correct it. The message flow that contains

the error is opened in the editor view and the node in error is highlighted.

222 Message Flows

When you move a message flow, the associated files (for example, any ESQL or

mapping files) are not automatically moved to the target broker schema. If you

want to move these files as well, you must do so explicitly by following the

procedure in this topic.

Deleting a message flow

You can delete a message flow that you have created in a message flow project if

you no longer need it.

Deleting a message flow in the workbench deletes the project and its resources,

and the Configuration Manager does not hold a copy. If you are using a shared

repository, the repository might retain a copy of a deleted resource.

In previous releases you could remove resources from the Control Center, which

removed the reference in your workspace, but retained the resource in the

Configuration Manager repository.

Before you start

To complete this task, you must have completed the following task:

v “Creating a message flow” on page 218

To delete a message flow:

1. Switch to the Broker Application Development perspective.

2. Select the message flow in the Broker Development view

(<message_flow_name>.msgflow) and press the Delete key. A confirmation

dialog is displayed.

You can also right-click the message flow in the Broker Development view and

click Delete, or click Edit → Delete. The same dialog is displayed.

3. Click Yes to delete the message flow definition file or No to cancel the delete

request. When you click Yes, the requested objects are deleted.

If you maintain resources in a shared repository, a copy is retained in that

repository. You can follow the instructions provided by the repository supplier

to retrieve the resource if required.

If you are using the local file system or a shared file system to store your

resources, no copy of the resource is retained. Be very careful to select the

correct resource when you complete this task.

4. Check the Tasks view for any errors that are caused by the deletion. Errors are

generated if you delete a message flow that is embedded within another flow

because the reference is no longer valid.

a. Click the error in the Tasks view This opens the message flow that now has

a non-valid reference.

b. Either remove the node that represents the deleted message flow from the

parent message flow, or create a new message flow with the same name to

provide whatever processing is required.

When you delete the message flow, the files that are associated with the message

flow (the ESQL and mapping files, if present) are not deleted by this action. If you

want to delete these files also, you must do so explicitly.

Developing message flows 223

Deleting a broker schema

You can delete a broker schema that you have created in a message flow project if

you no longer need it.

Before you start:

v Create a broker schema

v Read the concept topic about broker schemas

To delete a broker schema:

1. Switch to the Broker Application Development perspective.

2. Select the broker schema in the Broker Development view and press the Delete

key. A confirmation dialog box is displayed.

You can also right-click the broker schema in the Broker Development view and

click Delete, or click Edit → Delete. The same dialog box is displayed.

If the broker schema contains resources, the Delete menu option is disabled,

and the Delete key has no effect. You must delete all resources within the

schema before you can delete the schema.

3. Click Yes to delete the broker schema directory or No to cancel the delete

request. When you click Yes, the requested objects are deleted.

If you maintain resources in a shared repository, a copy is retained in that

repository. You can follow the instructions provided by the repository supplier

to retrieve the resource, if required.

If you are using the local file system or a shared file system to store your

resources, no copy of the resource is retained. Be very careful to select the

correct resource when you complete this task.

Version and keyword information for deployable objects

This topic contains information about how to view the version and keyword

information of deployable objects.

v “Displaying object version in the Broker Archive editor”

v “Displaying version, deploy time, and keywords of deployed objects” on page

225

This topic also contains information on populating the Comment and Path

columns; see “Populating the Comment and Path columns” on page 225.

Displaying object version in the Broker Archive editor

A column in the Broker Archive editor called Version displays the version tag for

all objects that have a defined version. These are:

v .dictionary files

v .cmf files

v Embedded JAR files with a version defined in a META-INF/keywords.txt file

You cannot edit the Version column.

You can use the mqsireadbar command to list the keywords that are defined for

each deployable file within a deployable archive file.

224 Message Flows

Displaying version, deploy time, and keywords of deployed

objects

The Properties View displays, for any deployed object:

v Version

v Deploy Time

v All defined keywords

For example, if you deploy a message flow with these literal strings:

v $MQSI_VERSION=v1.0 MQSI$

v $MQSI Author=fred MQSI$

v $MQSI Subflow 1 Version=v1.3.2 MQSI$

the Properties View displays:

 Deployment Time Date and time of deployment

Modification Time Date and time of modification

Version v1.0

Author fred

Subflow 1 Version v1.3.2

You are given a reason if the keyword information is not available. For example, if

keyword resolution has not been enabled at deploy time, the Properties View

displays the message Deployed with keyword search disabled. Also, if you deploy

to a Configuration Manager that is an earlier version than Version 6.0, the

properties view displays Keywords not available on this Configuration Manager.

Populating the Comment and Path columns

If you add source files, the Path column is populated automatically.

To add a comment, double click on the Comment column and type the text that

you require.

Saving a message flow

You might want to save your message flow when you want to:

v Close the workbench.

v Work with another resource.

v Validate the contents of the message flow.

Before you start:

To complete this task, you must have completed the following task:

v “Creating a message flow” on page 218

To save a message flow:

1. Switch to the Broker Application Development perspective.

2. Select the editor view that contains the open message flow that you want to

save.

Developing message flows 225

3. If you want to save the message flow without closing it in the editor view,

press Ctrl+S or click File → Save name on the taskbar menu (where name is the

name of this message flow). You can also choose to save everything by clicking

File → Save All.

The message flow is saved and the message flow validator is invoked to

validate its contents. The validator provides a report of any errors that it finds

in the Tasks view. The message flow remains open in the editor view.

For example, if you save a message flow and have not set a mandatory

property, an error message appears in the Tasks view and the editor marks the

node with the error icon

. The message flow in the Broker Development

view is also marked with the error icon. This can occur if you have not edited

the properties of an MQInput node to define the queue from which the input

node retrieves its input messages.

(If you edit the properties of a node, you cannot click OK unless you have set

all mandatory properties. Therefore this situation can arise only if you have

never set any properties.)

You might also get warnings when you save a message flow. These are

indicated by the warning icon

. This informs you that, although there is not

an explicit error in the configuration of the message flow, there is a situation

that might result in unexpected results when the message flow completes. For

example, if you have included an input node in your message flow that you

have not connected to any other node, you get a warning. In this situation, the

editor marks the node with the warning icon. The message flow in the Broker

Development view is also marked with a warning icon.

4. If you save a message flow that includes a subflow, and the subflow is no

longer available, three error messages are added to the Tasks view that indicate

that the input and output terminals and the subflow itself cannot be located.

This can occur if the subflow has been moved or renamed.

To resolve this situation, right-click the subflow node in error and click Locate

Subflow. The Locate Subflow dialog is displayed, listing the available message

flow projects. Expand the list and explore the resources available to locate the

required subflow. Select the correct subflow and click OK. All references in the

current message flow are updated for you and the errors removed from the

Tasks view.

5. If you want to save the message flow when you close it, click the close view

icon

on the editor view tab for this message flow or click File → Close on

the taskbar menu. The editor view is closed and the file saved. The same

validation occurs and any errors and warnings are written to the Tasks view.

For information about using the File → Save As option to take a copy of the

current message flow, see “Copying a message flow using save.”

See “Correcting errors from saving a message flow” on page 227 for information

about handling errors from the save action.

Copying a message flow using save

You can copy a message flow by using the File → Save As option.

1. Click File → Save name As.

226 Message Flows

2. Specify the message flow project in which you want to save a copy of the

message flow. The project name defaults to the current project. You can accept

this name, or choose another name from the valid options that are displayed in

the File Save dialog.

3. Specify the name for the new copy of the message flow. If you want to save

this message flow in the same project, you must either give it another name, or

confirm that you want to overwrite the current copy (that is, copy the flow to

itself).

If you want to save this message flow in another project, the project must

already exist (you can only select from the list of existing projects). You can

save the flow with the same or another name in another project.

4. Click OK. The message flow is saved and the message flow editor validates its

contents. The editor provides a report of any errors that it finds in the Tasks

view. See “Correcting errors from saving a message flow” for information about

handling errors from the save action.

Correcting errors from saving a message flow

Correct the errors that are reported when you save a message flow.

To correct errors from the save or save as action:

1. Examine the list of errors and warnings that the validator has generated in the

Tasks view.

2. Double-click each entry in turn. The message flow is displayed in the editor

view (if it is not already there), and the editor selects the node in which the

error was detected. If the error has been generated because you have not set a

mandatory property, the editor also opens the Properties view or dialog box for

that node.

If you have included a user-defined node in your message flow, and have

defined one or more of its properties as configurable, you might get a warning

about a custom property editor. If you define a property as configurable, and

you have specified that it uses a custom property editor, the bar editor cannot

handle the custom property editor and handles the property as if it is type

String. This restricts your ability to make changes to this property at deploy

time.

3. Correct the error that is indicated by the message. For example, provide a value

for the mandatory property.

4. When you have corrected all the errors, you can save again. The editor

validates all the resources that you have changed, removes any corrected errors

from the Tasks view, and removes the corresponding graphical indication from

the nodes that you have modified successfully.

You do not have to correct every error to save your work. The editor saves your

resources even if it detects errors or warnings, so that you can continue to work

with them at a later date. However, you cannot deploy any resource that has a

validation error. You must correct every error before you deploy a resource.

Warnings do not prevent successful deployment.

Defining message flow content

This topic describes how to create the contents of the message flow.

Developing message flows 227

When you create a new message flow, the editor view is initially empty. You must

create the contents of the message flow by:

v “Adding a message flow node” on page 231

v “Adding a subflow” on page 234

v “Renaming a message flow node” on page 234

v “Configuring a message flow node” on page 235

v “Connecting message flow nodes” on page 239

v “Adding a bend point” on page 242

v “Aligning and arranging nodes” on page 244

When you finalize the content of the message flow, you might also need to

perform the following tasks:

v “Removing a message flow node” on page 238

v “Removing a node connection” on page 242

v “Removing a bend point” on page 243

To learn more about message flow content, you can import either of the following

samples:

v Airline Reservations sample

v Error Handler sample

Follow the supplied instructions to build the sample yourself. You can also try

adding and deleting nodes, adding subflows, and connecting nodes together. You

can view samples only when you use the information center that is integrated with

the Message Broker Toolkit.

For a basic introduction to developing message flows, see the IBM Redbooks

publication WebSphere Message Broker Basics.

Using the node palette

Before you start:

Read the concept topic about the node palette.

The node palette contains all of the built-in nodes, which are organized into

categories. You can add the nodes that you use most often to the Favorites

category by following the instructions in “Adding nodes to the Favorites category

on the palette” on page 230.

You can change the palette preferences in the Message Broker Toolkit. The changes

that you can make are described in the following topics.

v “Changing the palette layout”

v “Changing the palette settings” on page 229

v “Customizing the palette” on page 229

Changing the palette layout

You can change the layout of the palette in the Message Flow editor and the

Broker Topology editor.

1. Switch to the Broker Application Development perspective

2. Right-click the palette to display the pop-up menu.

228 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.doc/doc/overview.htm
http://www.redbooks.ibm.com/abstracts/sg247137.html

3. Click Layout.

4. Click one of the available views:

Columns

Displays named icons in one or more columns. Change the number of

columns by clicking on the right edge of the palette and dragging.

List Displays named icons in a single-column list. The list view is the

default layout.

Icons Only

Displays a list of icons only.

Details

Displays descriptions of the icons.

Changing the palette settings

Change the palette settings in the Message Flow editor and the Broker Topology

editor using the Palette Settings dialog box.

1. Switch to the Broker Application Development perspective.

2. Right-click the palette to display the pop-up menu.

3. Click Settings. The Palette Settings dialog box opens.

4. Use the dialog to change the appropriate setting:

v Click Change to change the font on the palette.

v Click Restore Default to restore the default palette settings.

v In the Layout list, click the appropriate radio button to change the palette

layout. (See “Changing the palette layout” on page 228 for more

information.)

v Select User large icons to toggle between large and small icons in the palette.

v In the Drawer options list, click the appropriate radio button to change the

way that drawers are handled in the palette. A drawer is a container for a

list of icons, such as the Favorites drawer on the Message Flow editor’s

palette, or the Entity drawer on the Broker Topology editor’s palette.

Customizing the palette

If you customize the message flow node palette, you can make it easier to find the

nodes that you use most often, saving time and on-screen space. For example:

v Change the order of the drawers in the palette so that the ones that you use

most often are at the top.

v Hide any drawers that you do not use, to save on-screen space.

v Pin open the drawers that contain the nodes that you use most often.

v Create your own drawers to hold user-defined nodes that you create.

Customize the palette for the Message Flow editor using the Customize Palette

dialog box:

1. Switch to the Broker Application Development perspective.

2. Right-click the palette, then click Customize. The Customize Palette dialog box

opens.

v To change the order of entries and drawers in the palette, click the

appropriate item in the list to highlight it, then click Move Down or Move

Up. You cannot move any category above the Favorites category.

Developing message flows 229

v To hide an entry or drawer, click the appropriate item in the list to highlight

it, then select the Hide check box.

v To create a new separator, click New → Separator.

v To create a new drawer:

a. Click New → Drawer.

b. Type a name and description for the drawer.

c. If required, select the Open drawer at start-up check box.

d. If required, select the Pin drawer open at start-up check box.
3. Click OK or Apply to save your changes.

You have customized the message flow node palette.

Adding nodes to the Favorites category on the palette

Before you start:

Read the concept topic about the message flow node palette.

The nodes on the palette are organized in categories. The first category is

Favorites, which is usually empty. You can drag the nodes that you use most often

to the Favorites category.

1. Switch to the Broker Application Development perspective.

2. On the palette, open the Favorites category.

3. On the palette, open the category that contains the node that you want to add

to the Favorites category.

4. Use the mouse to drag the node into the Favorites category, as shown in the

following example:

230 Message Flows

Alternatively, right-click the palette and choose the appropriate option to add or

remove nodes from the Favorites category.

Adding a message flow node

When you have created a new message flow, add nodes to define its function.

Before you start:

v Create a message flow or open an existing message flow

v Read the concept topic about message flow nodes

To add a node to a message flow:

1. Switch to the Broker Application Development perspective.

2. Open the message flow with which you want to work.

3. Open the Palette.

v Hover the mouse over the palette bar while it is in collapsed mode. The

palette bar expands. When you move the mouse away from the palette bar, it

collapses again.

v Click the Show Palette icon at the top of the palette bar. The palette bar

expands and it remains expanded when the mouse is moved away from the

palette bar. To collapse the palette bar again, click the Hide Palette icon at

the top of the palette bar while it is in expanded mode.
4. Click Selection above the palette of nodes.

5. Decide which node you want to add: a built-in node or a user-defined node.

You can select any of the nodes that appear in the node palette, but you can

add only one node at a time.

Developing message flows 231

Nodes are grouped in categories according to the function that they provide. To

see descriptions of the nodes in the palette, either hover the mouse over a node

in the palette, or switch to the Details view by following the instructions in

“Changing the palette layout” on page 228.

6. Drag the node from the node palette onto the canvas.

When you add a node to the canvas, the editor automatically assigns a name to

the node, but the name is highlighted and you can change it by entering a

name of your choice. If you do not change the default name at this time, you

can change it later. The default name is set to the type of node for the first

instance. For example, if you add an MQInput node to the canvas, it is given

the name MQInput; if you add a second MQInput node, the default name is

MQInput1; the third is MQInput2, and so on.

7. Repeat steps 5 on page 231 and 6 to add further nodes.

8. You can also add nodes from other flows into this flow:

a. Open the other message flow.

b. Select the node or nodes that you want to copy from the editor or outline

views, and press Ctrl+C or click Edit → Copy.

c. Return to the flow with which you are currently working.

d. Press Ctrl+V or click Edit → Paste. This action copies the node or nodes into

your current flow. The node names and properties are preserved in the new

copy.

When you have added the nodes that you want in this message flow, you can

connect them to specify the flow of control through the message flow, and you can

configure their properties.

Next: configure the nodes.

Adding a node using the keyboard

Before you start:

v Create a message flow or open an existing message flow

v Read the concept topic about message flow nodes

You can use the keyboard to perform tasks in the Message Flow editor, such as

adding a node to the canvas.

1. Switch to the Broker Application Development perspective.

2. Open the message flow to which you want to add a node.

3. Open the Palette view or the Palette bar.

4. Select a node in the Palette view or Palette bar using the up and down arrows

to highlight the node that you want to add to the canvas.

5. Add the Node to the canvas using one of the following methods:

v Press Alt + L, then press N.

v Press Shift + F10 to open the context-sensitive menu for the Palette, and

press N.

The node that you selected in the Palette bar or Palette view is placed on the

canvas in the Editor view.

When you add a node to the canvas, the editor automatically assigns a name to

the node, but the name is highlighted and you can change it by entering a

name of your choice. If you do not change the default name at this time, you

can change it later. The default name is set to the type of node for the first

instance. For example, if you add an MQInput node to the canvas, it is given

232 Message Flows

the name MQInput; if you add a second MQInput node, the default name is

MQInput1; the third is MQInput2, and so on.

You can move the node that you have placed on the canvas using the keyboard

controls described in Message Broker Toolkit keyboard shortcuts.

Dragging a resource from the Broker Development view

Drag a node or a related resource into the Message Flow editor.

Before you start:

v Create a message flow or open an existing message flow

v Read about message flow nodes

Drag a resource from the Broker Development view to an empty canvas to create a

new node, or drag a resource onto an existing node to modify that node. The

following resources are supported:

v An Adapter file

v An ESQL file

v A Java file

v A subflow

v A WSDL file

v An XSL file
1. Switch to the Broker Application Development perspective.

2. Open the message flow with which you want to work.

3. Drag one of the supported resources from the Broker Development view onto

the canvas.

v If you drop the resource on an empty canvas, a node is created and

configured automatically.

The following table shows the results when you drag a resource from the

Broker Development view onto an empty canvas:

 Resource Node created Property set

Adapter file A “PeopleSoftInput node” on page

1036, “SAPInput node” on page

1061, or “SiebelInput node” on page

1076 is created

Adapter component

ESQL file A “Compute node” on page 838 is

created

ESQL Module

Java file A “JavaCompute node” on page 943

is created

Java Class

WSDL file A “SOAPInput node” on page 1104

or “SOAPRequest node” on page

1116 is created

WSDL file name

XSL file An “XSLTransform node” on page

1216 is created

Stylesheet

v If you drop the resource onto an existing node, the relevant node property is

updated with the name of the resource file. For example, if you drop a Java

file onto a JavaCompute node, the Java Class property is set to the class

name of the Java file that you are dropping. If you drop an ESQL file over

any node that uses ESQL, such as a Database node, the ESQL Module

property is set.

Developing message flows 233

Adding a subflow

Within a message flow, you might want to include an embedded message flow,

also known as a subflow. For example, you might define a subflow that provides

error handling, and include it in a message flow connected to a failure terminal on

a node that can generate an error in some situations.

Before you start

To complete this task, you must have completed one of the following tasks:

v “Creating a message flow” on page 218

v “Opening an existing message flow” on page 219

When you add a subflow, it appears in the editor view as a single node.

You can embed subflows into your message flow if either of the following

statements is true:

v The flow that you want to embed is defined in the same message flow project.

v The flow is defined in a different message flow project, and you have specified

the dependency of the current message flow project on that other project.

To add a subflow to a message flow:

1. Switch to the Broker Application Development perspective.

2. Open the message flow that you want to work with.

3. Drag and drop the message flow from the Navigator view into the editor view.

Alternatively, highlight the embedding message flow and click Edit → Add

subflow, which displays a list of valid flows that you can add to the current

flow.

4. Select the flow that you want to add from the list. The subflow icon is

displayed with the terminals that represent the Input and Output nodes that

you have included in the subflow.

5. Click OK.

6. Repeat steps 3, 4, and 5 to add further subflow nodes.

7. Select and open (double-click) the flow by name in the Navigator view, or

right-click the embedded flow icon and select Open Subflow to work with the

contents of the embedded flow

When you have added the nodes that you want in this message flow, you can

connect them to specify the flow of control through the message flow, and you can

modify their properties.

Renaming a message flow node

Before you start:

v Create a message flow

v Read the concept topic about message flow nodes

You can change the name of any type of node (a built-in node, user-defined node,

or subflow node) to reflect its purpose. When you first add a node to the canvas,

the editor automatically assigns a name to the node, but the name is highlighted

and you can change it by entering a name of your choice. If you do not change the

default name at this time, you can change it later, as described in this topic. For

234 Message Flows

example, you might include a Compute node to calculate the price of a specific

part within an order, and you could change the name of the node to be

Calculate_Price.

When you rename a node, use only the supported characters for this entity. The

editor prevents you from entering unsupported characters.

To rename a node:

1. Switch to the Broker Application Development perspective.

2. Open the message flow with which you want to work.

3. You can rename a node in three ways:

v Right-click the node and click Rename. The name is highlighted; enter a

name of your choice and press Enter.

v Click the node to select it, then click the node’s name so that it is

highlighted; enter a name of your choice and press Enter.

v Click the node to select it, then on the Description tab of the Properties view,

enter a name of your choice in the Node name field.

The name that you enter must be unique within the message flow.

If you generate ESQL code for a Compute, Database, or Filter node, the code is

contained within a module that is associated with the node. The name of the

module within the ESQL file must match the name specified for the module in the

ESQL Module property of the corresponding node. Although you can modify the

module name, and change it from its default value (which is the name of the

message flow, concatenated with the name of the node with which the module is

associated), ensure that the module in the ESQL file matches the node property.

Configuring a message flow node

When you have included an instance of a node in your message flow, you can

configure its properties to customize how it works.

Before you start:

v Read the concept topic about message flow nodes

v Add a node

Viewing a node’s properties

To view a node’s properties:

1. Switch to the Broker Application Development perspective.

2. Open the message flow with which you want to work.

3. Open the palette.

4. Click Selection above the node palette.

5. Right-click a node and click Properties to open the Properties view.

For nodes that do not have an associated resource, you can also double-click

the node to display the properties. However, if you double-click any of the

nodes in the following table, you open the associated resource.

 Node Result of double-clicking the node

“Compute node” on page

838

Opens an ESQL file

Developing message flows 235

Node Result of double-clicking the node

“Database node” on page

846

Opens an ESQL file

“DataDelete node” on

page 866

Opens the New Message Map dialog box

“DataInsert node” on

page 869

Opens the New Message Map dialog box

“DataUpdate node” on

page 872

Opens the New Message Map dialog box

“Extract node” on page

884

Opens the New Message Map dialog box

“JavaCompute node” on

page 943

Opens the New JavaCompute Node Class wizard

“Mapping node” on page

978

Opens the New Message Map dialog box

“SOAPAsyncRequest

node” on page 1082

Opens the WSDL Selection dialog box

“SOAPInput node” on

page 1104

Opens the WSDL Selection dialog box

“SOAPRequest node” on

page 1116

Opens the WSDL Selection dialog box

“Warehouse node” on

page 1213

Opens the New Message Map dialog box

WebSphere Adapters

nodes

Opens the Adapter Component Selection dialog box

“XSLTransform node” on

page 1216

Opens the XSL Selection dialog box

The selected node’s properties are displayed.

Editing a node’s properties

Properties are organized into related groups and displayed on tabs. Each tab is

listed on the left of the Properties view. Click each tab to view the properties that

you can edit.

v Every node has at least one tab, Description, where you can change the name of

the node and enter short and long descriptions. The description fields are

optional because they are used only for documentation purposes.

v If a property is mandatory, that is, one for which you must enter a value, the

property name is marked with an asterisk, as shown in the following example:

Queue Name* ________________________________

For details of how to configure each individual built-in node, see the node

description. You can find a list of the nodes, with links to the individual topics, in

“Built-in nodes” on page 822.

If you have included a user-defined node, refer to the documentation that came

with the node to understand if, and how, you can configure its properties.

236 Message Flows

Editing complex properties

A complex property is a property to which you can assign multiple values.

Complex properties are displayed in a table in the Properties view, where you can

add, edit, and delete values, and change the order of the values in the table. This

example shows the Query elements complex property of the DatabaseRoute node.

v To add a value to a complex property, click Add, enter the required fields in the

dialog box that opens, then click OK. The values appear in the table. Repeat this

step to enter as many values as are required.

v To edit a value, click any element in a row, click Edit, edit any of the values in

the dialog box, then click OK.

v To delete a value, click any element in a row and click Delete. The entire row is

deleted.

v To change the order of values in the table, click any element in a row and click

the up icon

or down icon

to move the row.

Promoting properties

You can promote node properties to their containing message flow; for more

information, see “Promoting a property” on page 554. Use this technique to set

some values at the message flow level, without having to change individual nodes.

This can be useful, for example, when you embed a message flow in another flow,

and want to override some property such as output queue or data source with a

value that is correct in this context. You cannot promote complex properties. For a

full list of properties that are unavailable for promotion, as well as instructions for

how to promote properties, see “Promoting a property” on page 554.

Overriding properties at deployment time

You can override a small number of node property values when you deploy a

message flow. These property values are known as configurable properties, and

you can use them to modify some characteristics of a deployed message flow

without changing the message flow definitions. For example, you can update

queue manager and data source information.

Even though you can set values for configurable properties at deployment time,

you must set values for these properties within the message flow if they are

mandatory. Each built-in node reference topic contains a table of properties, which

identifies the configurable and mandatory properties.

Next: connect the nodes.

Using dynamic terminals

You can add, rename, and remove dynamic terminals on a node in the Message

Flow editor.

Before you start:

Developing message flows 237

v Add a node that supports dynamic terminals; for more details, see “Adding a

message flow node” on page 231 and “Message flow node terminals” on page

52.

Some message flow nodes support dynamic input or output terminals, including

the Collector, Route, and DatabaseRoute nodes. When you have added a node to

the flow editor, you can add, remove, or change dynamic terminals.

v Adding a dynamic terminal

1. Right-click the node and click Add Input Terminal or Add Output Terminal.

2. Enter a name for the new terminal and click OK. The name must be unique

for the terminal type. For example, if an input terminal called In already

exists, you cannot create a dynamic input terminal with the name In.

The new terminal is displayed on the node. If a node has five or more

terminals, they are displayed as a terminal group. The following example

shows a Route node with more than four output terminals.

To

connect a particular output terminal, click the terminal group to open the

Terminal Selection dialog box, or right-click the node and select Create

Connection.
v Renaming a dynamic terminal

1. Right-click the node and click Rename Input Terminal or Rename Output

Terminal. These options are available only if you have added one or more

appropriate terminals to this node.

2. Select from the list the name of the terminal that you want to change. Only

dynamic terminals are listed because you cannot change the name of a static

terminal.

3. Enter a new name for the terminal and click OK. Do not rename a dynamic

terminal if one of the node properties is configured to use that name.
v Removing a dynamic terminal

1. Right-click the node and click Remove Input Terminal or Remove Output

Terminal, These options are available only if you have added one or more

appropriate terminals to this node.

2. Select from the list the name of the terminal that you want to remove and

click OK. Only dynamic terminals are listed because you cannot remove a

static terminal. Do not remove a dynamic terminal if one of the node

properties is configured to use that terminal.

When you have added dynamic terminals to a node, connect them to other nodes

in the message flow; for more information, see “Connecting message flow nodes”

on page 239.

Removing a message flow node

When you have created and populated a message flow, you might need to remove

a node to change the function of the flow, or to replace it with another more

appropriate node. The node can be a built-in node, a user-defined node, or a

subflow node.

Before you start:

v Add a node

v Add a subflow

238 Message Flows

v Read the concept topic about message flow nodes

To remove a node:

1. Switch to the Broker Application Development perspective.

2. Open the message flow that you want to work with.

3. Select the node in the editor view and press the Delete key.

4. Highlight the node and click Edit → Delete

You can also right-click the node in the editor view and click Delete, or

right-click the node in the Outline view and click Delete. The editor removes

the node. If you have created any connections between that node and any other

node, those connections are also deleted when you delete the node.

5. If you delete a node in error, you can restore it by right-clicking in the editor

view and clicking Undo Delete. The node and its connections, if any, are

restored.

6.

You can also click Edit → Undo Delete or press Ctrl+Z.

7. If you undo the delete, but decide it is the correct delete action, you can

right-click in the editor view and click Redo Delete.

You can also click Edit → Redo Delete.

Connecting message flow nodes

When you include more than one node in your message flow, you must connect

the nodes to indicate how the flow of control passes from input to output. The

nodes can be built-in nodes, user-defined nodes, or subflow nodes.

Before you start:

v Add a node

v Add a subflow

v Read the concept topic about connections

Your message flow might contain just one MQInput node, one Compute node, and

one MQOutput node. Or it might involve a large number of nodes, and perhaps

embedded message flows, that provide a number of paths through which a

message can travel depending on its content. You might also have some error

processing routines included in the flow. You might also need to control the order

of processing.

You can connect a single output terminal of one node to the input terminal of more

than one node (this is known as fan-out). If you do this, the same message is

propagated to all target nodes, but you have no control over the order in which

the subsequent paths through the message flow are executed (except with the

FlowOrder node).

You can also connect the output terminal of several nodes to a single node input

terminal (this is known as fan-in). Again, the messages that are received by the

target node are not received in any guaranteed order.

When you have completed a connection, it is displayed as a black line, and is

drawn as close as possible to a straight line between the connected terminals. This

might result in the connection passing across other nodes. To avoid this, you can

add bend points to the connection.

Developing message flows 239

In the Message Flow editor, you can display node and connection metadata by

hovering the mouse over a node or subflow in a message flow. To view metadata

information for a node, subflow, or connection:

1. Switch to the Broker Application Development perspective.

2. Open a message flow.

3. In the Message Flow editor, hover the mouse over a node, a subflow, or a node

connection in the open message flow by placing the mouse over the element.

A custom tooltip is displayed below the element.

v To turn the pop-up window into a scrollable window, press F2.

v To hide the pop-up window, either press Esc or move the mouse away from the

node.

If you define a complex message flow, you might have to create a large number of

connections. The principle is the same for every connection. You create connections

either by using the mouse, or by using the Terminal Selection dialog. See “Creating

node connections with the mouse” and “Creating node connections with the

Terminal Selection dialog box” on page 241 for more information.

Creating node connections with the mouse

Use the mouse to connect one node to another.

Before you start:

Read the concept topic about connections.

1. Switch to the Broker Application Development perspective.

2. Open the message flow with which you want to work.

3. Click the terminal from which the connection is to be made; that is, the

terminal from which the message is propagated from the current node.

For example, you can click the Failure, Out, or Catch terminal of the MQInput

node. Hover the mouse over each terminal to see the name of the terminal. You

do not need to keep the mouse button pressed.

Alternatively, click Connection on the palette, then click the node from which

the connection is to be made. The Terminal Selection dialog box opens for you

to choose the terminal from which to make a connection. Click OK. If a node

has five or more input or output terminals (for example, if you have added

dynamic terminals), they are displayed in a group. The following example

shows a node with more than four output nodes.

To select a

particular output terminal, click the grouped output terminal to open the

Terminal Selection dialog box.

4. Click the input terminal of the next node in the message flow (to which the

message passes for further processing). The connection is made when you click

a valid input terminal. The connection appears as a black line between the two

terminals.

In the Message Flow editor, you can display node and connection metadata by

hovering the mouse over a node or subflow in a message flow. To view metadata

information for a node, subflow, or connection:

1. Switch to the Broker Application Development perspective.

2. Open a message flow.

240 Message Flows

3. In the Message Flow editor, hover the mouse over a node, a subflow, or a node

connection in the open message flow by placing the mouse over the element.

A custom tooltip is displayed below the element.

v To turn the pop-up window into a scrollable window, press F2.

v To hide the pop-up window, either press Esc or move the mouse away from the

node.

Next: add a bend point, as described in “Adding a bend point” on page 242.

Creating node connections with the Terminal Selection dialog

box

Use the Terminal Selection dialog box to connect one node to another.

Before you start:

Read the concept topic about connections.

1. Switch to the Broker Application Development perspective.

2. Open the message flow with which you want to work.

3. Click Connection above the node palette.

4. Click the node from which you want the connection to be made. The Terminal

Selection dialog box is displayed.

5. Select the terminal from the list of valid terminals on this node. Click OK. The

dialog box closes.

6. Click the node to which to make the connection. If this node has only one

input terminal, the connection is made immediately. If this node has more than

one input terminal, the Terminal Selection dialog box is displayed again, listing

the input terminals of the selected node. Click the correct terminal and click

OK.

Alternatively, you can make a connection in the following way:

1. Click Selection above the node palette.

2. Right-click the node from which you want to make the connection and click

Create Connection. The Terminal Selection dialog box is displayed.

3. Select the terminal from the list of valid terminals on this node. Click OK. The

dialog box closes.

4. Click the node to which to make the connection. If this node has only one

input terminal, the connection is made immediately. If this node has more than

one input terminal, the Terminal Selection dialog box is displayed again, listing

the input terminals of the selected node. Click the correct terminal and click

OK.

In the Message Flow editor, you can display node and connection metadata by

hovering the mouse over a node or subflow in a message flow. To view metadata

information for a node, subflow, or connection:

1. Switch to the Broker Application Development perspective.

2. Open a message flow.

3. In the Message Flow editor, hover the mouse over a node, a subflow, or a node

connection in the open message flow by placing the mouse over the element.

A custom tooltip is displayed below the element.

v To turn the pop-up window into a scrollable window, press F2.

Developing message flows 241

v To hide the pop-up window, either press Esc or move the mouse away from the

node.

Next: add a bend point, as described in “Adding a bend point.”

Removing a node connection

The message flow editor displays the nodes and connections in the editor view.

You can remove connections to change the way in which the message flow

processes messages.

Before you start:

v Connect the nodes

v Read the concept topic about connections

If you want to remove a connection that you have created between two nodes:

1. Switch to the Broker Application Development perspective.

2. Open the message flow that you want to work with.

3. Click Selection above the node palette.

4. Select the connection that you want to delete. When you hover your mouse

pointer over the connection, the editor highlights the connection that you have

selected by thickening its line, adding an arrowhead at the target terminal end,

and annotating the connection with the name of the two terminals connected,

for example Out->In.

When you select the connection, the editor appends a small black square at

each end and at every bend point of the connection, and a small arrowhead at

the target terminal end. The annotation disappears when you select the

connection.

5. Check that the selected connection is the one that you want to delete.

6. Right-click the connection and click Delete, press the Delete key, or click Edit →

Delete. If you want to delete further connections, repeat these actions from step

4.

7. If you delete a connection in error, you can restore it by right-clicking in the

editor view and clicking Undo Delete. The connection is restored.

8. If you undo the delete, but decide that it is the correct delete action, you can

right-click in the editor view and click Redo Delete. You can also delete a

connection by selecting it in the Outline view and pressing the Delete key.

If you delete a node, its connections are automatically removed; you do not have

to do this as a separate task.

Adding a bend point

When you are working with a message flow, and connecting your chosen nodes

together to determine the flow of control, you might find that a connection that

you have made crosses over an intervening node and makes the flow of control

difficult to follow.

To help you to display the message flow nodes and their connections in a clear

way, you can add bend points to the connections that you have made to improve

the organization of the display. The addition of bend points has no effect on the

execution of the nodes or the operation of the message flow.

242 Message Flows

Before you start:

v Connect the nodes

v Read the concept topic about bend points

To add a bend point:

1. Switch to the Broker Application Development perspective.

2. Open the message flow that you want to work with.

3. Click Selection above the node palette.

4. Select the connection to which you want to add a bend point. The editor

appends a small black square to each end of the connection to highlight it.

a. Check that this is the correct connection. The editor also adds a small point

(a handle) in the connection halfway between the in and out terminals that

are joined by this connection.
5. Hover your mouse pointer over this point until the editor displays a black

cross to indicate that you now have control of this bend point.

a. Hold down the left mouse button and move your mouse to move the black

cross and bend point across the editor view.
6. As you drag your mouse, the connection is updated, retaining its start and end

points with a bend point at the drag point. You can move this anywhere within

the editor view to improve the layout of your message flow.

7. Release the mouse button when the connection is in the correct place. The

editor now displays the bend point that you have created with a small square

(like those at the ends of the connection), and displays another two small

points within the connection, one between your newly-created bend point and

the out terminal, the other between the new bend point and the in terminal.

If you want to add more than one bend point to the same connection, repeat these

actions from step 4 using the additional small points inserted into the connection.

Next: align and arrange the nodes.

Removing a bend point

When you are working with a message flow in the editor view, you might want to

simplify the display of the message flow by removing a bend point that you

previously added to a connection between two nodes.

Before you start:

v Add a bend point

v Read the concept topic about bend points

To remove a bend point:

1. Switch to the Broker Application Development perspective.

2. Open the message flow that you want to work with.

3. Click Selection above the node palette.

4. Select the connection from which you want to remove the bend point. The

editor highlights the connection and its current bend points by thickening its

line and appending a small black square to each end of the connection, and by

indicating each bend point with a small black square. Check that this is the

correct connection.

5. Right-click over the selected connection, if you added this bend point in the

current edit session.

Developing message flows 243

a. Click Undo Create Bend Point.

The editor removes the selected bend point.

If you right-click in the editor view without a connection being selected, you

can also click Undo Create Bend Point from the menu. However, this removes

the last bend point that you created in any connection, which might not be the

one that you want to remove.

6. Move the bend point to straighten the line if you added this bend point in a

previous edit session, because you cannot use the undo action. When the line is

straight, the bend point is removed automatically.

When the bend point has been removed, the connection remains highlighted.

Both ends of the connection, and any remaining bend points, remain displayed

as small black squares. The editor also inserts small points (handles) into the

connection between each bend point and between each terminal and its

adjacent bend point, which you can use to add more bend points if you choose.

7. If you want to remove another bend point from the same connection, repeat

these actions from step 4 on page 243.

Aligning and arranging nodes

When you are working in the Message Flow editor, you can decide how your

nodes are aligned within the editor view.

This option is closely linked to the way in which your nodes are arranged. Again,

the default for this is left to right, which means that the in terminal of a node

appears on its left edge, and its out terminals appear on its right edge. You can

also change this characteristic of a node by rotating the icon display to right to left,

top to bottom, and bottom to top.

Before you start

To complete this task, you must have completed the following task:

v “Adding a message flow node” on page 231

To modify the way in which nodes and connections are displayed in the editor:

1. Switch to the Broker Application Development perspective.

2. Open the message flow that you want to work with.

3. Click Selection above the node palette.

4. Right-click in the editor window and select Manhattan Layout if you want the

connections between the nodes to be displayed in Manhattan style; that is with

horizontal and vertical lines joined at right angles.

5. If you want to change the layout of the complete message flow:

a. Right-click in the editor view and click Layout. The default for the

alignment is left to right, such that your message flow starts (with an input

node) on the left and control passes to the right.

b. From the four further options displayed, Left to Right, Right to Left, Top

to Bottom, and Bottom to Top, click the option that you want for this

message flow. The message flow display is updated to reflect your choice.

As a result of the change in alignment, all the nodes within the message

flow are also realigned.

244 Message Flows

For example, if you have changed from a left to right display (the default)

to a right to left display, each node in the flow has now also changed to

right to left (that is, the in terminal now appears on the right edge, the out

terminals appear on the left edge).
6. You might want to arrange an individual node in a different direction from that

in which the remaining nodes are arranged within the message flow, To do this:

a. Right-click the node that you want to change and click Rotate. This gives

you four further options: Left to Right, Right to Left, Top to Bottom, and

Bottom to Top.

b. Click the option that you want for this node. The option that represents the

current arrangement of the node is not available for selection.

If you change the alignment of the message flow, or the arrangement of an

individual node, or both, these settings are saved when you save the message flow.

They are applied when another user accesses this same message flow, either

through a shared repository or through shared files or import and export. When

you reopen the message flow, you see these changed characteristics. The alignment

and arrangement that you have selected for this message flow have no impact on

the alignment and arrangement of any other message flow.

In the Message Broker Toolkit Version 5.1 you can adjust the zoom by

right-clicking in the editor view and clicking Zoom in or Zoom out. Alternatively,

you can use the drop-down list on the editor toolbar to specify a zoom percentage.

You can also access the editor toolbar to select other options related to the display

and arrangement of nodes, for example, snap to grid. These are defined in

Message Flow editor.

Developing message flow applications using WebSphere Adapters

For information about how to develop message flow applications that use

WebSphere Adapters, see the following topics.

v “Preparing your system to use WebSphere Adapters nodes”

v “Activating IBM Tivoli License Manager for WebSphere Adapters” on page 246

v “Adding external software dependencies for SAP” on page 247

v “Configuring the SAP server to work with the adapter” on page 248

v “Adding external software dependencies for Siebel” on page 250

v “Configuring the Siebel application to work with the adapter” on page 251

v “Adding external software dependencies for PeopleSoft” on page 253

v “Creating a custom event project in PeopleTools” on page 254

v “Connecting to an EIS using the Adapter Connection wizard” on page 256

Preparing your system to use WebSphere Adapters nodes

Before you can connect to an Enterprise Information System (EIS), you must

prepare your system by adding external software dependencies and configuring

the EIS to work with the WebSphere Adapter.

Before you start:

v For general background information, read “WebSphere Adapters nodes” on page

7

v Check for the latest information about WebSphere Adapters at WebSphere

Adapters technotes.

Developing message flows 245

|

|
|
|

|

|
|

|
|

http://www.ibm.com/support/search.wss?tc=SSMKUK&rs=695&dc=DB520+DB560&rank=8
http://www.ibm.com/support/search.wss?tc=SSMKUK&rs=695&dc=DB520+DB560&rank=8

v Check for the latest information about support for adapters on different

operating systems at WebSphere Message Broker Requirements.

v Check the mode of your broker, because it can affect the number of execution

groups and message flows that you can deploy, and the types of node that you

can use. For more information, see Restrictions that apply in each operation

mode and Checking the operation mode of your broker.

v Enable the WebSphere Adapters nodes in the broker runtime environment; see

Preparing the environment for WebSphere Adapters nodes.

v If you want to use the IBM Tivoli® License Manager (ITLM), perform the steps

in “Activating IBM Tivoli License Manager for WebSphere Adapters.”

v To see how the WebSphere Adapters work, look at the following samples:

– Twineball Example EIS Adapter sample

– SAP Connectivity sample

You can view samples only when you use the information center that is

integrated with the Message Broker Toolkit.

Perform™ the following steps, in the order shown, to prepare your system to use

WebSphere Adapter nodes.

v SAP

1. Follow the instructions in “Adding external software dependencies for SAP”

on page 247.

2. Follow the instructions in “Configuring the SAP server to work with the

adapter” on page 248.
v Siebel

1. Follow the instructions in “Adding external software dependencies for

Siebel” on page 250.

2. Follow the instructions in “Creating the event store manually” on page 252.
v PeopleSoft

1. Follow the instructions in “Adding external software dependencies for

PeopleSoft” on page 253.

2. Follow the instructions in “Creating a custom event project in PeopleTools”

on page 254.

After you have prepared your system, connect to an EIS by following the

instructions in “Connecting to an EIS using the Adapter Connection wizard” on

page 256.

Activating IBM Tivoli License Manager for WebSphere

Adapters

If you want to use IBM Tivoli License Manager (ITLM), you must activate it for

each of the WebSphere Adapters.

ITLM enables you to monitor the usage of IBM (and other) software products. For

more information, see the IBM Tivoli License Manager information center or the

IBM Tivoli License Manager Web site.

The following steps describe how to activate the ITLM file for each of the adapters.

1. Locate the ITLM directory for the adapter.

v For SAP: install_dir/itlm/SAP

v For Siebel: install_dir/itlm/Siebel

246 Message Flows

|
|

|
|
|
|

|
|

|
|

|

|

|

|
|

|
|

|

|
|

|
|

|

|
|

|

|

|
|

|
|

|
|
|

http://www.ibm.com/software/integration/wbimessagebroker/requirements/
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.twineball.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.sapconnectivity.doc/doc/overview.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp?toc=/com.ibm.itlm.doc/toc.xml
http://www.ibm.com/software/tivoli/products/license-mgr

v For PeopleSoft: install_dir/itlm/PeopleSoft
2. Remove the inactive file extension from the file in the ITLM directory so that it

ends with .sys2.

After you have performed these steps, when you run ITLM, the adapter is visible.

Adding external software dependencies for SAP

Before you can develop message flows that use WebSphere Adapters nodes, you

must add prerequisite files to the runtime environment.

Before you start:

Ensure that you have the relevant prerequisite files for your SAP system:

v sapjco.jar

v On Windows:

– sapjcorfc.dll

– librfc32.dll
v On z/OS:

– libsapjcorfc.so

– librfccm.so

Download these files for your operating system from the external SAP Web site,

SAP Service Marketplace, and save them to a directory, such as C:\SAP_LIB. You

must have an SAPNet account to be able to access this Web site.

v On Windows, download the .dll files that come with the SAP JCo download.

v On z/OS, Linux, and UNIX, download the .so and .o files that come with the

SAP JCo download.

Locating the SAP support files in the runtime environment on Windows

To add the SAP prerequisite files to the runtime environment, take the following

steps.

1. Ensure that the broker has started.

2. Either open the Command Console, or open a Windows command prompt and

enter mqsiprofile to initialize the environment.

3. Enter the following command to display the locations of the prerequisite JAR

files and native libraries:

mqsireportproperties WBRK61_DEFAULT_BROKER -c AllTypes -o AllReportableEntityNames -r

The following example shows what typically is displayed when you run this

command:

ReportableEntityName=’’

 EISProviders

 PeopleSoft=’’

 jarsURL=’default_Path’

 nativeLibs=’default_Path’

 SAP=’’

 jarsURL=’default_Path’

 nativeLibs=’default_Path’

 Siebel=’’

 jarsURL=’default_Path’

 nativeLibs=’default_Path’

 Twineball=’’

 jarsURL=’default_Path’

 nativeLibs=’default_Path’

4. Set the location of the SAP prerequisite files using the following command:

Developing message flows 247

http://service.sap.com/connectors

mqsichangeproperties WBRK61_DEFAULT_BROKER -c EISProviders -o SAP -n jarsURL -v C:\SAP_LIB

mqsichangeproperties WBRK61_DEFAULT_BROKER -c EISProviders -o SAP -n nativeLibs -v C:\SAP_LIB

5. To check that the values have been set correctly, run the following command:

mqsireportproperties WBRK61_DEFAULT_BROKER -c EISProviders -o SAP -r

The following example shows what is displayed by the mqsireportproperties

command.

ReportableEntityName=’ ’

EISProviders

 SAP=’ ’

 jarsURL=’C:\SAP_LIB’

 nativeLibs=’C:\SAP_LIB’

BIP8071I: Successful command completion.

6. Restart the broker.

Next: configure the SAP system to work with the adapter

Configuring the SAP server to work with the adapter

Before you configure the WebSphere Adapter for SAP Software for Application

Link Enabling (ALE) processing, you must register a Remote Function Call (RFC)

destination on the SAP server, and configure a receiver port, logical system,

distribution model, and partner profile on the SAP server. Ask your system

administrator if these items have been configured.

Before you start:

Add the required external software dependencies for SAP.

Perform the following steps on the SAP server using the SAP graphical user

interface.

1. Register an RFC program ID:

a. Open transaction SM59 (Display and Maintain RFC Destinations).

b. Click Create.

c. Type a name for the RFC destination.

d. In the Connection Type field, select T.

e. In the Activation Type field, select Registered Server Program.

f. Type a Program ID.

You use this program ID when you configure the adapter. This value

indicates to the SAP gateway which RFC-enabled functions the program ID

listens for.

g. Enter a description in Description 1, such as RFC for Test Sample.

h. Enter a description in Description 2, such as your name.

i. Click MDMP & Unicode, and in the Communication Type with Target

System section, click Unicode.

j. Save your entry.
2. Set up a receiver port:

a. Open transaction WE21 (Ports in IDoc processing).

b. Select Transactional RFC, click Ports, and click the Create icon.

c. Type a name for the port and click OK.

d. Type the name of the destination that you created in the previous task (or

select it from the list).

248 Message Flows

e. Save your entry.
3. Specify a logical system:

a. Open transaction BD54 (Change View Logical Systems).

b. Click New Entries.

c. Type a name for the logical system and click the Save icon.

d. If you see the Prompts for Workbench request, click the New Request icon.

Then enter a short description and click Save.

e. Click the Continue icon.
4. Configure a distribution model:

a. Open transaction BD64 (Maintenance of Distribution Model).

b. Click Distribution Model → Switch processing model.

c. Click Create model view.

d. Type a name for the model view and click the Continue icon.

e. Select the distribution model that you created and click Add message type.

f. For outbound processing, type the logical system name that you created in

the previous task as Sender, and type the logical name of the SAP server as

Receiver, then select a message type (for example, MATMAS) and click the

Continue icon.

g. Select the distribution model again and click Add message type.

h. For inbound processing, type the logical name of the SAP server as Sender,

and the logical system name that you created in the previous task as

Receiver, then select a message type (for example, MATMAS) and click the

Continue icon.

i. Save your entry.
5. Set up a partner profile:

a. Open transaction WE20 (Partner Profiles).

b. Click the Create icon.

c. Type the name of the logical system that you created in the earlier task and,

for Partner Type, select LS.

d. For Post Processing: permitted agent, type US and your user ID.

e. Click the Save icon.

f. In the Outbound parameters section, click the Create outbound parameter

icon.

g. In the Outbound parameters window, type a message type (for example,

MATMAS05), select the receiver port that you created in the earlier task, and

select Transfer IDoc immed.

h. Click the Save icon.

i. Press F3 to return to the Partner Profiles view.

j. In the Inbound parameters section, click the Create inbound parameter icon.

k. In the Inbound parameters window, type a message type (for example,

MATMAS), and a process code (for example, MATM).

l. Click the Save icon.

m. Press F3 to return to the Partner Profiles view.

n. In the Inbound parameters section, click the Create inbound parameter

icon.

o. In the Inbound parameters window, type the following values: ALEAUD for

Message Type, and AUD1 for Process Code.

p. Click the Save icon.

Developing message flows 249

q. Press F3 to return to the Partner Profiles view.

r. Click the Save icon.

Next: connect to an EIS using the Adapter Connection wizard.

Adding external software dependencies for Siebel

Before you can develop message flows that use WebSphere Adapters nodes, you

must add prerequisite files to the runtime environment.

Before you start:

Ensure that you have the relevant prerequisite files for your Siebel system.

v Siebel Business Applications Versions 7.5 and earlier

– SiebelJI_language code.jar (for example, SiebelJI_enu.jar)

– SiebelJI_Common.jar
v Siebel Business Applications Versions 7.7x, 7.8x, and 8.0

– Siebel.jar

– SiebelJI_language code.jar (for example, SiebelJI_enu.jar)

Download these files from the Siebel application, and save them to a directory,

such as C:\Siebel_LIB.

The sample resources that you need to set up the Siebel system so that it can

communicate with the broker are in the following directory: install_dir\
ResrouceAdapters\Siebel_6.1.0.0\samples

Locating the Siebel support files in the runtime environment on Windows

To add the Siebel prerequisite files to the runtime environment, take the following

steps.

1. Ensure that the broker has started.

2. Either open the Command Console, or open a Windows command prompt and

enter mqsiprofile to initialize the environment.

3. Enter the following command to display the locations of the prerequisite JAR

files and native libraries:

mqsireportproperties WBRK61_DEFAULT_BROKER -c AllTypes -o AllReportableEntityNames -r

The following example shows what typically is displayed when you run this

command:

ReportableEntityName=’’

 EISProviders

 PeopleSoft=’’

 jarsURL=’default_Path’

 nativeLibs=’default_Path’

 SAP=’’

 jarsURL=’default_Path’

 nativeLibs=’default_Path’

 Siebel=’’

 jarsURL=’default_Path’

 nativeLibs=’default_Path’

 Twineball=’’

 jarsURL=’default_Path’

 nativeLibs=’default_Path’

4. Set the location of the Siebel prerequisite files using the following command:

mqsichangeproperties WBRK61_DEFAULT_BROKER -c EISProviders -o Siebel -n jarsURL -v C:\Siebel_LIB

mqsichangeproperties WBRK61_DEFAULT_BROKER -c EISProviders -o Siebel -n nativeLibs -v C:\Siebel_LIB

250 Message Flows

5. To check that the values have been set correctly, run the following command:

mqsireportproperties WBRK61_DEFAULT_BROKER -c EISProviders -o Siebel -r

The following example shows what is displayed by the mqsireportproperties

command.

ReportableEntityName=’ ’

EISProviders

 Siebel=’ ’

 jarsURL=’C:\Siebel_LIB’

 nativeLibs=’C:\Siebel_LIB’

BIP8071I: Successful command completion.

6. Restart the broker.

Next: configure the Siebel application to work with the adapter.

Configuring the Siebel application to work with the adapter

To configure the Siebel application, create an event table and a Siebel business

object.

Before you start:

1. Add the required external software dependencies for Siebel.

2. Before you configure the Siebel application to work with WebSphere Adapter

for Siebel Business Applications, you must create a user name and password so

that the Adapter Connection wizard can connect to Siebel Business Applications

to perform outbound operations, and retrieve Siebel business objects and

services.

You perform this task on the Siebel server, therefore ensure that you are

familiar with the Siebel tools that are required to complete it. For information

about using Siebel tools, refer to the Siebel tools documentation.

To open Siebel Sales Enterprise on your local database, you must have

administrative privileges.

To configure the Siebel application, you must create an event table and a Siebel

business object. WebSphere Message Broker contains resources that help you to

create the event components and triggers. This topic describes how to use those

resources. You can also create the event table and Siebel business object manually;

for more information, see “Creating the event store manually” on page 252.

1. Locate the samples folder at install_dir/WMBT610/ResourceAdapters/Siebel/
samples.

The samples folder contains two folders: Siebel7.x.x and Siebel8.0. Each version

has an Event_pkg folder, which contains a .sif file and a number of .js scripts.

You use the .sif file to create the event components; it can add business objects,

views, and all other Siebel objects to the Siebel repository. The .js scripts help

you to create Siebel triggers.

2. To use the .sif file:

a. Open Siebel tools and click Tools → Import.

b. Import the .sif file.

c. Merge the differences between the .sif file and the Siebel repository.

d. Recompile the repository into a Siebel repository file (.srf file).
3. Use the .js scripts to create Siebel triggers. The provided samples show how to

create entries in the inbound table when new Account objects are created.

Developing message flows 251

|

|
|

|

|

|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|

|

|

|

|

|

|
|

Creating the event store manually

To configure the Siebel application, create an event table and a Siebel business

object.

“Configuring the Siebel application to work with the adapter” on page 251

describes how to use the samples that are supplied with WebSphere Message

Broker to configure the Siebel application. This topic describes how to create the

event store manually.

The following steps describe how to create the event store to be used for inbound

operations in the Siebel application. You can substitute all references to Siebel Sales

Enterprise with the name of the Siebel application that you are using.

 1. Create a project called IBM, and lock the project with Siebel tools.

 2. Using the object wizard, create an event table called CX_IBM_EVENT in

which to store the events.

a. In the event table, create the columns that are shown in the following

table.

 Column Name Type Length Data Type Required Nullable Status

DESCRIPTION Data (public) 255 Varchar No Yes Active

EVENT_ID Data (public) 30 Varchar Yes No Active

EVENT_TYPE Data (public) 20 Varchar Yes No Active

OBJECT_KEY Data (public) 255 Varchar Yes No Active

OBJECT_NAME Data (public) 255 Varchar Yes No Active

PRIORITY Data (public) 10 Varchar No Yes Active

STATUS Data (public) 20 Varchar Yes No Active

XID Data (public) 255 Varchar Yes No Active

b. Create a new business component called IBM Event.

c. Create a new time stamp called Field Event, and map it to the CREATED

column from CX_IBM_EVENT. Make the Type of this field

DTYPE_UTCDATETIME.

d. Create a new business object called IBM Event.

e. Associate the IBM event business component to the IBM Event business

object.

f. Create an applet called IBM Event List Applet, and base it on the IBM

Event business component that you have created.

g. Create a view called IBM Event List View, and base it on the IBM Event

business object that you have created.

h. Create a screen called IBM Event Screen, and associate it with the IBM

Event List View in the Siebel tools.
 3. Create a page tab.

a. Click Start Application → Siebel Sales Enterprise.

b. Right-click the Page tab, and click New Record.

c. Specify IBM Event as the screen name, and IBM Event for the Text - String

Override field.

d. Leave the Inactive field blank.
 4. Create a new business object called Schema Version for your IBM project and

associate it with the Schema Version business component.

252 Message Flows

|
|
|

|
|
|
|

|
|
|

|

|
|

|
|

||||||||

|||||||

|||||||

|||||||

|||||||

|||||||

|||||||

|||||||

|||||||
|

|

|
|
|

|

|
|

|
|

|
|

|
|

|

|

|

|
|

|

|
|

a. Apply the physical schema for the new tables to your local database by

querying for the new table, CX_IBM_EVENT_Q and selecting the current

query to create a physical schema. Leave the table space and index space

blank.

b. Click Activate to activate the new schema.
 5. Add or modify the Siebel VB or e-scripts for the business component that

corresponds to the business objects that are used at your site. Siebel scripts

trigger event notification for business objects. Samples are located in the

Samples folder in your adapter installation.

 6. Create a new Siebel repository file by compiling the updated and locked

projects on your local database. The new repository file has an extension of

.srf.

 7. Create and populate a new responsibility.

a. Open Siebel Sales Enterprise on your local database.

b. Create a new responsibility called IBM Responsibility for IBM Event List

View.

c. Add the employees or teams who are responsible for reviewing events to

the newly created IBM Responsibility.

d. Create a user name called IBMCONN (or another user name to be used by

the adapter later). Add the user name to the newly created IBM

Responsibility and also to the Administrative Responsibility.

 8. Test the application in your local environment to ensure that you can see the

IBM Event List View. An event is generated in the view after you create a

record in the supported object. As part of the test, create a new Account

business component instance in Siebel. Confirm that a new Account event is

shown in the IBM Event List View (assuming that you have added the e-script

trigger to the Account business component). If a new Account event is not

displayed in the view, check for an error and fix it. For more information on

the errors that might be generated, check either the Siebel support site or

Siebel documentation.

 9. When the test that you perform in Step 8 is successful, add your new and

updated projects to your development server.

10. Activate the new table in the development server.

11. Compile a new Siebel repository (.srf) file on the server.

12. Back up the original repository file on the server.

13. Stop the Siebel server and replace the original repository file with the newly

created one.

14. Restart the Siebel server.

Adding external software dependencies for PeopleSoft

Before you can develop message flows that use WebSphere Adapters nodes, you

must add prerequisite files to the runtime environment.

Before you start:

Ensure that you have the relevant prerequisite files for your PeopleSoft system.

v psjoa.jar

v A JAR file that contains the component interface API classes

Save both support files to a directory such as C:\PeopleSoft_LIB. You can find the

psjoa.jar file in the following location on the PeopleSoft Application Server:

Developing message flows 253

|
|
|
|

|

|
|
|
|

|
|
|

|

|

|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|

|

|

|

|
|

|

peopleTools_installation_directory\web\PSJOA\psjoa.jar. Use PeopleTools to generate

the component interface JAR file for your business objects.

The sample resources that you need to set up the PeopleSoft system so that it can

communicate with the broker are in install_dir\ResrouceAdapters\
PeopleSoft_6.1.0.0\samples.

Locating the PeopleSoft support files in the run time on Windows

To add the PeopleSoft prerequisite files to the run time, follow the steps below.

1. Ensure that the broker has started.

2. Either open the Command Console, or open a Windows command prompt and

enter mqsiprofile to initialize the environment.

3. Enter the following command to display the locations of the prerequisite JAR

files and native libraries:

mqsireportproperties WBRK61_DEFAULT_BROKER -c AllTypes -o AllReportableEntityNames -r

The following example shows what typically is displayed when you run this

command:

ReportableEntityName=’’

 EISProviders

 PeopleSoft=’’

 jarsURL=’default_Path’

 nativeLibs=’default_Path’

 SAP=’’

 jarsURL=’default_Path’

 nativeLibs=’default_Path’

 Siebel=’’

 jarsURL=’default_Path’

 nativeLibs=’default_Path’

 Twineball=’’

 jarsURL=’default_Path’

 nativeLibs=’default_Path’

4. Set the location of the PeopleSoft prerequisite files using the following

command:

mqsichangeproperties WBRK61_DEFAULT_BROKER -c EISProviders -o PeopleSoft -n jarsURL -v C:\PeopleSoft_LIB

5. To check that the values have been set correctly, run the following command:

mqsireportproperties WBRK61_DEFAULT_BROKER -c EISProviders -o PeopleSoft -r

The following example shows what is displayed by the mqsireportproperties

command.

ReportableEntityName=’ ’

EISProviders

 PeopleSoft=’ ’

 jarsURL=’C:\PeopleSoft_LIB’

BIP8071I: Successful command completion.

6. Restart the broker.

Next: create a custom event project in PeopleTools.

Creating a custom event project in PeopleTools

The WebSphere Adapter requires an event project in PeopleSoft to perform

asynchronous inbound event processing. Use PeopleTools to create the custom

event project.

254 Message Flows

Before you start:

Add the required external software dependencies for PeopleSoft.

If your environment requires inbound event support, you must use a custom event

project in PeopleSoft. A sample event project, IBM_EVENT_V600, is provided with

the adapter. You can modify and use and the sample project, or you can create

your own project using PeopleTools. If you create your own project, make sure that

you complete the steps below.

 1. Use PeopleTools Application Designer to create and name a new project.

 2. Create the fields for the new project as described in the following table:

 Field name Field description

IBM_EVENT_ID A numeric value that is retrieved from

IBM_FETCH_ID record. This value is a

unique ID for the event.

IBM_OBJECT_NAME The name of the corresponding business

graph.

IBM_OBJECT_KEYS The get key property names in the

Component Interface, followed by the key

values in name-value pairs. This information

is used for the component’s retrieval from

the EIS.

IBM_EVENT_STATUS If the event is ready to be polled, the status

is set to 0 and the IBMPublishEvent function

is called.

IBM_OBJECT_VERB The verb that is set on the business object

graph that contains the retrieved business

object.

IBM_EVENT_DTTM The date on which the event is created. For

a future dated event, this is the effective

date.

IBM_NEXT_EVENT_ID The field that has the latest event ID under

the record IBM_FETCH_ ID. This field is

incremented for each event that is added to

the IBM_EVENT_TBL, and it populates the

IBM_EVENT_ID field within that table.

IBM_XID The transaction ID that is needed to provide

assured event delivery.

 3. Create a record named IBM_EVENT_TBL and add to it all the fields that you

have just created, except IBM_NEXT_EVENT_ID.

 4. Create a record named IBM_FETCH_ID and add to it only the

IBM_NEXT_EVENT_ID field.

 5. Open the IBM_FETCH_ID record, select the IBM_NEXT_EVENT_ID field,

view the PeopleCode, and select fieldformula.

 6. Copy the PeopleCode for a custom event project from “PeopleCode for a

custom event project” on page 1311 to the project that you are creating.

 7. Create a page under your project that contains the fields of the

IBM_EVENT_TBL record at level 0. The page can have any name.

 8. Create a component under your project that contains the page that you have

just created. The component can have any name.

Developing message flows 255

9. Create a Component Interface against this component and give it any name.

Confirm that you want to default the properties that are based on the

underlying component definition.

10. Build the entire project, selecting all create options.

11. Test and confirm that the Component Interface works, using the Component

Interface tester.

12. Generate the Java APIs for the Component Interface, then add the generated

classes to the adapter classpath. For complete information about building a

PeopleTools project and testing the PeopleSoft Component Interface, refer to

PeopleSoft documentation.

Connecting to an EIS using the Adapter Connection wizard

Use the Adapter Connection wizard to create the resources that enable the

WebSphere Adapters to connect to an Enterprise Information System (EIS).

Before you start:

v Read “WebSphere Adapters nodes” on page 7

v Prepare the environment for WebSphere Adapters nodes

v Perform the preparatory tasks listed in “Developing message flow applications

using WebSphere Adapters” on page 245

A message flow application that uses one of the WebSphere Adapters requires the

following resources:

v One or more message flows that contain one or more WebSphere Adapters

nodes

v A message set that contains the XML Schema Definitions (XSD) for the business

objects in the Enterprise Information System (EIS)

v An adapter component file for the WebSphere Adapter that is being used

The Adapter Connection wizard creates these resources automatically.

The following steps describe how to connect to an EIS.

1. Before you run the wizard, you need to gather the following information from

the EIS.

v SAP

– SAP system user name

– SAP system password

– SAP host name or IP address

– SAP Client ID (for example, 001)

– SAP system number (for example, 00)

– Language code (for example, EN)

For more information, see “SAP connection properties for the Adapter

Connection wizard” on page 1234.

v Siebel

– Siebel user name

– Siebel password

– Siebel host name or IP address

– Language code

For more information, see “Siebel connection properties for the Adapter

Connection wizard” on page 1291.

256 Message Flows

v PeopleSoft

– PeopleSoft user name

– PeopleSoft password

– PeopleSoft host name or IP address

– Port number (for example, 9000)

– Language code (for example, ENG)

For more information, see “PeopleSoft connection properties for the Adapter

Connection wizard” on page 1315.
2. Switch to the Broker Application Development perspective.

3. Click File → New → Adapter Connection. The Adapter Connection wizard

opens.

4. Follow the instructions in the wizard. To see a description of each field within

the wizard, hover the mouse over the field.

Ensure that inbound and outbound SAP IDocs have different names if they are

stored in the same message set. For more information, see An error is issued

when you use the message set that is generated by the Adapter Connection

wizard.

When you have completed the steps in the wizard, the specified message set

project contains a message set with a message type for each business object that is

to be used, and the specified message flow project references the message set

project.

When the Adapter Connection wizard completes, the workbench displays a

message that prompts you to drag the adapter component onto the message flow

canvas.

1. Ensure that a message flow is open in the Message Flow editor so that the

message flow canvas is available.

2. In the Broker Development view, expand the folders beneath the message set

until you see the adapter component, which will have a suffix of inadapter or

outadapter.

3. Drag the adapter component onto the message flow canvas. The component

appears as a message flow node.

4. Configure the node, as described in “Configuring a message flow node” on

page 235.

Developing ESQL

When you use the built-in nodes Compute, Database, and Filter, you must

customize them to determine the exact processing that they provide. To do this,

you must create, for each node, an ESQL module in which you code the ESQL

statements and functions to tailor the behavior of the node, referring to message

content, or database content, or both, to achieve the results that you require. ESQL

modules are maintained in ESQL files, managed through the Broker Application

Development perspective.

This section provides information on:

v “ESQL overview” on page 258

v “Managing ESQL files” on page 268

v “Writing ESQL” on page 280

Developing message flows 257

You can use the ESQL debugger, which is part of the flow debugger, to debug the

code that you write. The debugger steps through ESQL code statement by

statement, so that you can view and check the results of every line of code that is

executed.

Note: In previous releases there were several types of debugger, each of which

handled a specific type of code, such as ESQL, message flows, or Java. In

Version 6, these are integrated into a single debugger, which is known

simply as “the debugger”, and which handles all types of code.

ESQL overview

Extended Structured Query Language (ESQL) is a programming language defined

by WebSphere Message Broker to define and manipulate data within a message

flow.

This section contains introductory information about ESQL.

v For descriptions of ESQL user tasks, see “Writing ESQL” on page 280.

v For reference information about ESQL, see “ESQL reference” on page 1451.

Read the following information before you proceed:

v An overview of message flows, see “Message flows overview” on page 4.

v An overview of message trees, see “The message tree” on page 53, and the

topics within this container, paying special attention to “Logical tree structure”

on page 60.

ESQL is based on Structured Query Language (SQL) which is in common usage

with relational databases such as DB2. ESQL extends the constructs of the SQL

language to provide support for you to work with message and database content

to define the behavior of nodes in a message flow.

The ESQL code that you create to customize nodes within a message flow is

defined in an ESQL file, typically named <message_flow_name>.esql,, which is

associated with the message flow project. You can use ESQL in the following

built-in nodes:

v “Compute node” on page 838

v “Database node” on page 846

v “Filter node” on page 910

You can also use ESQL to create functions and procedures that you can use in the

following built-in nodes:

v “DataDelete node” on page 866

v “DataInsert node” on page 869

v “DataUpdate node” on page 872

v “Extract node” on page 884

v “Mapping node” on page 978

v “Warehouse node” on page 1213

To use ESQL correctly and efficiently in your message flows, you must also

understand the following concepts:

v Data types

v Variables

v Field references

v Operators

v Statements

258 Message Flows

v Functions

v Procedures

v Modules

Use the ESQL debugger, which is part of the flow debugger, to debug the code that

you write. The debugger steps through ESQL code statement by statement, so that

you can view and check the results of every line of code that is executed.

Note: In previous releases there were several types of debugger, each of which

handled a specific type of code, such as ESQL, message flows, or Java. In

Version 6, these separate debuggers are integrated into a single debugger,

which is known simply as “the debugger”, and which handles all types of

code.

ESQL data types

A data type defines the characteristics of an item of data, and determines how that

data is processed. ESQL supports six data types, listed below. Data that is retrieved

from databases, received in a self-defining message, or defined in a message model

(using MRM data types), is mapped to one of these basic ESQL types when it is

processed in ESQL expressions.

Within a broker, the fields of a message contain data that has a definite data type.

It is also possible to use intermediate variables to help process a message. You

must declare all such variables with a data type before use. A variable’s data type

is fixed; If you try to assign values of a different type you get either an implicit

cast or an exception. Message fields do not have a fixed data type, and you can

assign values of a different type. The field adopts the new value and type.

It is not always possible to predict the data type that results from evaluating an

expression. This is because expressions are compiled without reference to any kind

of message schema, and so some type errors are not caught until runtime.

ESQL defines the following categories of data. Each category contains one or more

data types.

v Boolean

v Datetime

v Null

v Numeric

v Reference

v String

ESQL variables

An ESQL variable is a data field that is used to help process a message.

You must declare a variable and state its type before you can use it. A variable’s

data type is fixed; if you code ESQL that assigns a value of a different type, either

an implicit cast to the data type of the target is implemented or an exception is

raised (if the implicit cast is not supported).

To define a variable and give it a name, use the DECLARE statement.

The names of ESQL variables are case sensitive; therefore, make sure that you use

the correct case in all places. The simplest way to guarantee that you are using the

correct case is always to define variables using uppercase names.

Developing message flows 259

The workbench marks variables that have not been defined. Remove all these

warnings before deploying a message flow.

You can assign an initial value to the variable on the DECLARE statement. If an

initial value is not specified, scalar variables are initialized with the special value

NULL, and ROW variables are initialized to an empty state. Subsequently, you can

change the variable’s value using the SET statement.

Three types of built-in node can contain ESQL code and therefore support the use

of ESQL variables:

v “Compute node” on page 838

v “Database node” on page 846

v “Filter node” on page 910

Variable scope, lifetime, and sharing

How widespread and for how long a particular ESQL variable is available, is

described by its scope, lifetime, and sharing:

A variable’s scope

is a measure of the range over which it is visible. In the broker

environment, the scope of variables is normally limited to the individual

node.

A variable’s lifetime

is a measure of the time for which it retains its value. In the broker

environment, the lifetime of a variable varies but is typically restricted to

the life of a thread within a node.

A variable’s sharing characteristics

indicate whether each thread has its own copy of the variable or one

variable is shared between many threads. In the broker environment,

variables are typically not shared.

Types of variable

External

External variables (defined with the EXTERNAL keyword) are also known

as user-defined properties (see “User-defined properties in ESQL” on page

261). They exist for the entire lifetime of a message flow and are visible to

all messages passing through the flow. You can define external variables

only at the module and schema level. You can modify their initial values

(optionally set by the DECLARE statement) at design time, using the

Message Flow editor, or at deployment time, using the BAR editor. You can

query and set the values of user-defined properties at run time by using

the Configuration Manager Proxy (CMP) API. For more information, see

Setting user-defined properties dynamically at run time.

Normal

“Normal” variables have a lifetime of just one message passing through a

node. They are visible to that message only. To define a “normal” variable,

omit both the EXTERNAL and SHARED keywords.

Shared

Shared variables can be used to implement an in-memory cache in the

message flow (see “Optimizing message flow response times” on page

158). Shared variables have a long lifetime and are visible to multiple

messages passing through a flow (see “Long-lived variables” on page 261).

They exist for the lifetime of the execution group process, the lifetime of

260 Message Flows

|
|
|
|

the flow or node, or the lifetime of the node’s SQL that declares the

variable (whichever is the shortest). They are initialized when the first

message passes through the flow or node after each broker startup.

 See also the ATOMIC option of the “BEGIN ... END statement” on page

1482. The BEGIN ATOMIC construct is useful when a number of changes

need to be made to a shared variable and it is important to prevent other

instances seeing the intermediate states of the data.

For information about specific types of variable, see:

v “User-defined properties in ESQL” (external variables)

v “Long-lived variables” (shared variables)

User-defined properties in ESQL:

User-defined properties (UDPs) can be accessed as variables in your ESQL

program by specifying the EXTERNAL keyword on a DECLARE statement. For

example, the ESQL statement DECLARE today EXTERNAL CHARACTER ’monday’ defines

a user-defined property called today with an initial value ’monday’.

 Before you can use a user-defined property, you must also define the property

when you construct a message flow that uses it by using the Message Flow editor.

When you define a UDP using the Message Flow editor, a value and property type

are also defined. The value might be a default value, which varies according to the

UDP’s type. The value that is assigned to the UDP in the Message Flow editor

takes precedence over any value that you have assigned to the UDP in your ESQL

program.

Before you deploy the message flow that uses the UDP, you can change the value

of the UDP by using the Broker Archive editor. If you try to deploy a message flow

that contains a UDP that has had no value assigned to it, a deployment failure

occurs. For more information, see “Configuring a message flow at deployment

time using UDPs” on page 410.

You can use UDPs to set configuration data and use them like typical properties.

No external calls to user-written plug-ins or parsing of environment trees are

involved, and parsing costs of reading data out of trees are removed. The value of

the UDP is stamped into the variable at deployment time.

UDPs can be queried, discovered, and set at run time to dynamically change the

behavior of a message flow. For more information, see “User-defined properties”

on page 111.

You can declare UDPs only in modules or schemas.

UDPs can be accessed by any of the following built-in nodes that use ESQL:

v Compute

v Database

v Filter

v Nodes that are derived from these node-types; for example, DataInsert,

DataDelete, and DataUpdate

For a description of how to access a UDP from a JavaCompute node, see

“Accessing user-defined properties from a JavaCompute node” on page 466.

Long-lived variables:

Developing message flows 261

|
|
|

You can use appropriate long-lived ESQL data types to provide an in-memory

cache of the data for a certain period of time.

 It is sometimes desirable to store data for longer than the lifetime of a single

message passing through a flow. One way to do this, is to store the data in a

database. Using a database is good for long-term persistence and transactionality,

but access (particularly write access) is slow.

Alternatively, you can use appropriate long-lived ESQL data types to provide an

in-memory cache of the data for a certain period of time. Using long-lived ESQL

data types makes access faster than from a database, though this is at the expense

of shorter persistence and no transactionality.

Long-lifetime variables are created by using the SHARED keyword on the

DECLARE statement. For further information see “DECLARE statement” on page

1525.

The following sample demonstrates how to define shared variables using the

DECLARE statement. The sample demonstrates how to store routing information

in a database table and use shared variables to store the database table in memory

in the message flow to improve performance.

v Message Routing sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Long-lived data types have an extended lifetime beyond that of a single message

passing through a node. Long-lived data types are shared between threads and

exist for the life of a message flow (strictly speaking the time between

configuration changes to a message flow), as described in this table:

 Scope Life Shared

Short lifetime variables

Schema & Module Node Thread within

node

Not at all

Routine Local Node Thread within

routine

Not at all

Block Local Node Thread within

block

Not at all

 Long lifetime variables

Node Shared Node Life of node All threads of flow

Flow Shared Flow Life of flow All threads of flow

Features of long-lived ESQL data types include:

v The ability to handle large amounts of long-lifetime data.

v The joining of data to messages is fast.

v On multiple processor machines, multiple threads are able to access the same

data simultaneously.

v Subsequent messages can access the data left by a previous message.

v Long lifetime read-write data can be shared between threads, because there is no

long term association between threads and messages.

262 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.routing.doc/doc/overview.htm

v In contrast to data stored in database tables in the environment, this type of data

is stored privately; that is, within the broker.

v The use of ROW variables can be used to create a modifiable copy of the input

message. See “ESQL ROW data type” on page 1460.

v It is possible to create shared constants.

A typical use of these data types might be in a flow in which data tables are

’read-only’ as far as the flow is concerned. Although the table data is not actually

static, the flow does not change it, and thousands of messages pass through the

flow before there is any change to the table data.

An example is a table which contains a day’s credit card transactions. The table is

created each day and that day’s messages are run against it. Then the flow is

stopped, the table updated and the next day’s messages run. These flows might

perform better if they cache the table data rather than read it from a database for

each message.

Another use of these data types might be the accumulation and integration of data

from multiple messages.

Broker properties

For each broker, WebSphere Message Broker maintains a set of properties. You can

access some of these properties from your ESQL programs. A subset of the

properties is also accessible from Java code. It can be useful, during the runtime of

your code, to have real-time access to details of a specific node, flow, or broker.

Four categories of broker properties exist.

v Properties relating to a specific node

v Properties relating to nodes in general

v Properties relating to a message flow

v Properties relating to the execution group

For a description of the broker, flow, and node properties that are accessible from

ESQL and Java, see “Broker properties that are accessible from ESQL and Java” on

page 1663.

Broker properties have the following characteristics.

v They are grouped by broker, execution group, flow, and node.

v They are case sensitive. Their names always start with an uppercase letter.

v They return NULL if they do not contain a value.

All nodes that allow user programs to edit ESQL support access to broker

properties. These nodes are:

v Compute nodes

v Database nodes

v Filter nodes

v All derivatives of these nodes

User-defined properties can be queried, discovered, and set at run time to

dynamically change the behavior of a message flow. You can use the Configuration

Manager Proxy (CMP) API to manipulate these properties, which can be used by a

systems monitoring tool to perform automated actions in response to situations

that it detects in the monitored systems. For more information, see “User-defined

properties” on page 111.

Developing message flows 263

|
|
|
|
|
|

A complex property is a property to which you can assign multiple values. Complex

properties are displayed in a table in the Properties view, where you can add, edit,

and delete values, and change the order of the values in the table. You cannot

promote complex properties; therefore, they do not appear in the Promote

properties dialog box. Nor can you configure complex properties; therefore, they

are not supported in the Broker Archive editor. For an example of a complex

property, see the Query elements property of the DatabaseRoute node.

For more information about editing a node’s properties, see “Configuring a

message flow node” on page 235.

ESQL field references

An ESQL field reference is a sequence of period-separated values that identify a

specific field (which might be a structure) within a message tree or a database

table. The path from the root of the information to the specific field is traced using

the parent/child relationships.

A field reference is used in an ESQL statement to identify the field that is to be

referenced, updated, or created within the message or database table. For example,

you might use the following identifier as a message field reference:

 You can use an ESQL variable of type REFERENCE to set up a dynamic pointer to

contain a field reference. This might be useful in creating a fixed reference to a

commonly-referenced point within a message; for example the start of a particular

structure that contains repeating fields.

A field reference can also specify element types, XML namespace identifications,

indexes and a type constraint. These are discussed in detail later.

The first name in a field reference is sometimes known as a Correlation name.

ESQL operators

An ESQL operator is a character or symbol that you can use in expressions to

specify relationships between fields or values.

ESQL supports the following groups of operators:

v Comparison operators, to compare one value to another value (for example, less

than). Refer to “ESQL simple comparison operators” on page 1472 for details of

the supported operators and their use.

v Logical operators, to perform logical operations on one or two terms (for

example, AND). Refer to “ESQL logical operators” on page 1476 for details of

the supported operators and their use.

v Numeric operators, to indicate operations on numeric data (for example, +).

Refer to “ESQL numeric operators” on page 1477 for details of the supported

operators and their use.

There are some restrictions on the application of some operators to data types; not

all lead to a meaningful operation. These are documented where they apply to

each operator.

Operators that return a Boolean value (TRUE or FALSE), for example the greater

than operator, are also known as predicates.

Body.Invoice.Payment

264 Message Flows

ESQL statements

An ESQL statement is an instruction that represents a step in a sequence of actions

or a set of declarations.

ESQL provides a large number of different statements that perform different types

of operation. All ESQL statements start with a keyword that identifies the type of

statement and end with a semicolon. An ESQL program consists of a number of

statements that are processed in the order they are written.

As an example, consider the following ESQL program:

 This program consists of two statements. The first starts with the keyword

DECLARE and ends at the first semicolon. The second statement starts with the

keyword SET and ends at the second semicolon. These two statements are written

on separate lines and it is conventional (but not required) that they be so. You will

notice that the language keywords are written in capital letters. This is also the

convention but is not required; mixed and lower case are acceptable.

The first statement declares a variable called x of type INTEGER, that is, it reserves

a space in the computer’s memory large enough to hold an integer value and

allows this space to be subsequently referred to in the program by the name x. The

second statement sets the value of the variable x to 42. A number appearing in an

ESQL program without decimal point and not within quotes is known as an

integer literal.

ESQL has a number of data types and each has its own way of writing literal

values. These are described in “ESQL data types” on page 259.

For a full description of all the ESQL statements, see “ESQL statements” on page

1478.

ESQL nested statements: An ESQL nested statement is a statement that is

contained within another statement.

Consider the following ESQL program fragment:

 In this example, you can see a single IF statement containing the optional ELSE

clause. Both the IF and ELSE portions contain three nested statements. Those

within the IF clause are executed if the operator> (greater than) returns the value

TRUE (that is, if Size has a value greater than 100.00); otherwise, those within the

ELSE clause are processed.

Many statements can have expressions nested within them, but only a few can

have statements nested within them. The key difference between an expression and

DECLARE x INTEGER;

SET x = 42;

IF Size> 100.00 THEN

 SET X = 0;

 SET Y = 0;

 SET REVERSE = FALSE;

ELSE

 SET X = 639;

 SET Y = 479;

 SET REVERSE = TRUE;

END IF;

Developing message flows 265

a statement is that an expression calculates a value to be used, whereas a statement

performs an action (usually changing the state of the program) but does not

produce a value.

ESQL functions

A function is an ESQL construct that calculates a value from a number of given

input values.

A function usually has input parameters and can, but does not usually have,

output parameters. It returns a value calculated by the algorithm described by its

statement. This statement is usually a compound statement, such as BEGIN... END,

because this allows an unlimited number of nested statements to be used to

implement the algorithm.

ESQL provides a number of predefined, or “built-in”, functions which you can use

freely within expressions. You can also use the CREATE FUNCTION statement to

define your own functions.

When you define a function, you must give it a unique name. The name is

handled in a case insensitive way (that is, use of the name with any combination

of upper and lower case letters matches the declaration). This is in contrast to the

names that you declare for schemas, constants, variables, and labels, which are

handled in a case sensitive way, and which you must specify exactly as you

declared them.

Consider the following ESQL program fragment:

 In this example, the function SQRT (square root) is given the value inside the

brackets (itself the result of an expression, a divide operation) and its result is used

in a further expression, a multiply operation. Its return value is assigned to the

variable Diameter. See “Calling ESQL functions” on page 1567 for information

about all the built-in ESQL functions.

In addition, an ESQL expression can refer to a function in another broker schema

(that is, a function defined by a CREATE FUNCTION statement in an ESQL file in

the same or in a different dependent project). To resolve the name of the called

function, you must do one of the following:

v Specify the fully-qualified name (<SchemaName>.<FunctionName>) of the called

function.

v Include a PATH statement to make all functions from the named schema visible.

Note that this technique only works if the schemas do not contain

identically-named functions. The PATH statement must be coded in the same

ESQL file, but not within any MODULE.

Note that you cannot define a function within an EVAL statement or an EVAL

function.

ESQL procedures

An procedure is a subroutine that has no return value. It can accept input

parameters from, and return output parameters to, the caller.

SET Diameter = SQRT(Area / 3.142) * 2;

266 Message Flows

Procedures are very similar to functions. The main difference between them is that,

unlike functions, procedures have no return value. Thus they cannot form part of

an expression and are invoked by using the CALL statement. Procedures

commonly have output parameters

You can implement a procedure in ESQL (an internal procedure) or as a database

stored procedure (an external procedure). The ESQL procedure must be a single

ESQL statement, although that statement can be a compound statement such as

BEGIN END. You cannot define a procedure within an EVAL statement or an

EVAL function.

When you define a procedure, give it a name. The name is handled in a case

insensitive way (that is, use of the name with any combination of upper and lower

case letters matches the declaration). That is in contrast to the names that you

declare for schemas, constants, variables, and labels, which are handled in a case

sensitive way, and which you must specify exactly as you declared them.

An ESQL expression can include a reference to a procedure in another broker

schema (defined in an ESQL file in the same or a different dependent project). If

you want to use this technique, either fully qualify the procedure, or include a

PATH statement that sets the qualifier. The PATH statement must be coded in the

same ESQL file, but not within a MODULE.

An external database procedure is indicated by the keyword EXTERNAL and the

external procedure name. This procedure must be defined in the database and in

the broker, and the name specified with the EXTERNAL keyword and the name of

the stored database procedure must be the same, although parameter names do not

have to match. The ESQL procedure name can be different to the external name it

defines.

Overloaded procedures are not supported to any database. (An overloaded

procedure is one that has the same name as another procedure in the same

database schema which has a different number of parameters, or parameters with

different types.) If the broker detects that a procedure has been overloaded, it

raises an exception.

Dynamic schema name resolution for stored procedures is supported; when you

define the procedure you must specify a wildcard for the schema that is resolved

before invocation of the procedure by ESQL. This is explained further in “Invoking

stored procedures” on page 332.

ESQL modules

A module is a sequence of declarations that define variables and their initialization,

and a sequence of subroutine (function and procedure) declarations that define a

specific behavior for a message flow node.

A module must begin with the CREATE node_type MODULE statement and end with

an END MODULE statement. The node_type must be one of COMPUTE, DATABASE,

or FILTER. The entry point of the ESQL code is the function named MAIN, which

has MODULE scope.

Each module is identified by a name which follows CREATE node_type MODULE. The

name might be created for you with a default value, which you can modify, or you

can create it yourself. The name is handled in a case insensitive way (that is, use of

the name with any combination of upper and lower case letters matches the

declaration). That is in contrast to the names that you declare for schemas,

Developing message flows 267

constants, variables, and labels, which are handled in a case sensitive way, and

which you must specify exactly as you declared them.

You must create the code for a module in an ESQL file which has a suffix of .esql.

You must create this file in the same broker schema as the node that references it.

There must be one module of the correct type for each corresponding node, and it

is specific to that node and cannot be used by any other node.

When you create an ESQL file (or complete a task that creates one), you indicate

the message flow project and broker schema with which the file is associated as

well as specifying the name for the file.

Within the ESQL file, the name of each module is determined by the value of the

corresponding property of the message flow node. For example, the property ESQL

Module for the Compute node specifies the name of the node’s module in the ESQL

file. The default value for this property is the name of the node. You can specify a

different name, but you must ensure that the value of the property and the name

of the module that provides the required function are the same.

The module must contain the function MAIN, which is the entry point for the

module. This is included automatically if the module is created for you. Within

MAIN, you can code ESQL to configure the behavior of the node. If you include

ESQL within the module that declares variables, constants, functions, and

procedures, these are of local scope only and can be used within this single

module.

If you want to reuse ESQL constants, functions, or procedures, you must declare

them at broker schema level. You can then refer to these from any resource within

that broker schema, in the same or another project. If you want to use this

technique, either fully qualify the procedure, or include a PATH statement that sets

the qualifier. The PATH statement must be coded in the same ESQL file, but not

within any MODULE.

Managing ESQL files

Within a message flow project, you can create ESQL files to contain the ESQL code

that you provide to modify or customize the behavior of Compute, Database, or

Filter nodes.

The ESQL code is contained within a module that is associated with the node.

Each module must be created within an ESQL file. The name of the module within

the ESQL file must match the name specified for the module in the ESQL Module

property of the corresponding node. Although you can modify the module name,

and change it from its default value (which is the name of the message flow,

concatenated with the name of the node with which the module is associated),

ensure that the module in the ESQL file matches the node property.

The following topics describe how you can manage these files:

v “Creating an ESQL file” on page 269

v “Opening an existing ESQL file” on page 270

v “Creating ESQL for a node” on page 271

v “Modifying ESQL for a node” on page 273

v “Saving an ESQL file” on page 274

v “Copying an ESQL file” on page 275

v “Renaming an ESQL file” on page 276

v “Moving an ESQL file” on page 277

268 Message Flows

v “Changing ESQL preferences” on page 277

v “Deleting ESQL for a node” on page 279

v “Deleting an ESQL file” on page 279

Creating an ESQL file

When you include a node in your message flow that requires ESQL to customize

its function (the Compute, Database, and Filter nodes), you must code the ESQL

statements that provide the customization in an ESQL module within an ESQL file.

You can use the same ESQL file for more than one module, if you choose.

Before you start

To complete this task, you must have completed the following task:

v “Creating a message flow project” on page 215

ESQL files are stored in a file system or in a shared repository. If you are using a

file system, this can be the local file system or a shared drive. If you store files in a

repository, you can use any of the available repositories that are supported by

Eclipse, for example CVS.

To create an ESQL file:

1. Switch to the Broker Application Development perspective.

2. Click File → New → Message Flow ESQL File.

You can also press Ctrl+N. This displays a dialog box that allows you to select

the wizard to create a new object. Click Message Brokers in the left view; the

right view displays a list of objects that you can create for WebSphere Message

Broker. Click Message Flow ESQL File in the right view, then click Next. The

New Message Flow ESQL File wizard is displayed.

3. Enter the name of the message flow project in which to create the ESQL file.

You must enter the name of an existing message flow project. The dialog box is

displayed with the current project name entered in the project name field. You

can accept this value or change it to specify a different project. You can also

click Browse to view a list of valid projects (projects that are defined and

displayed in the Navigator view), and select the appropriate value from that

list. The list is filtered to only show projects in the active working set.

If you type in the name of a project that does not exist, the error message The

specified project does not exist is displayed in the dialog box and you

cannot continue until you specify a valid project name.

4. If you want the ESQL file to be defined within a specific broker schema, enter

the name of the broker schema in the appropriate entry field, or click Browse

to select the broker schema from the list of valid broker schema for this project.

(If only the default broker schema is defined in this project, Browse is

disabled.)

5. Enter a name for the new ESQL file. If you enter a name that is already in use

for an ESQL file in this project, the error message The resource <name>.esql

already exists is displayed in the dialog box and you cannot continue until

you specify a valid name.

When creating ESQL files, the overall file path length must not exceed 256

characters, due to a Windows file system limitation. If you try to add a

message flow to a broker archive file with ESQL or mapping files with a path

length that exceeds 256 characters, the compiled message flow will not be

Developing message flows 269

|
|
|
|
|
|
|

|
|
|

generated and cannot be deployed. Therefore, make sure that the names of

your ESQL files, mapping files, projects, and broker schema are as short as

possible.

An ESQL file can also be created automatically for you. If you select Open ESQL

from the menu displayed when you right-click a Compute, Database, or Filter

node, and the module identified by the appropriate property does not already exist

within the broker schema, a module is automatically created for you. This is

created in the file <message_flow_name>.esql in the same broker schema within

the same project as the <message_flow_name>.msgflow file. If that ESQL file does

not already exist, that is also created for you.

The contents of a single ESQL file do not have any specific relationship with

message flows and nodes. It is your decision which modules are created in which

files (unless the specified module, identified by the appropriate property, is created

by default in the file <message_flow_name>.esql as described above). Monitor the

size and complexity of the ESQL within each file, and split the file if it becomes

difficult to view or manage.

If you create reusable subroutines (at broker schema level) within an ESQL file,

you might want to refer to these routines from ESQL modules in another project.

To do this, specify that the project that wants to invoke the subroutines depends

on the project in which the ESQL file containing them is defined. You can specify

this when you create the second project, or you can update project dependencies

by selecting the project, clicking Properties, and updating the dependencies in the

Project Reference page of the Properties dialog box.

Opening an existing ESQL file

You can add to and modify ESQL code that you have created in an ESQL file in a

message flow project.

Before you start

To complete this task, you must have completed the following task:

v “Creating an ESQL file” on page 269

To open an existing ESQL file:

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, double-click the ESQL file that you want to

open. The file is opened in the editor view.

3. Work with the contents of file to make your changes. The file can contain

modules relating to specific nodes in a message flow, PATH statements, and

declarations at broker schema level such as reusable constants and procedures.

Scroll through the file to find the specific content that you want to work with.

4. You can select the content that you want to work with by selecting its name in

the Outline view. The code for the selected resource is highlighted.

You can also open an ESQL file when you have a message flow open in the editor

view by selecting an appropriate node (of type Compute, Database, or Filter),

right-clicking, and selecting Open ESQL. In this case, the ESQL file that contains

this module is opened, and the module for the selected node is highlighted in the

editor view.

270 Message Flows

Creating ESQL for a node

Create ESQL to customize the behavior of a Compute, Database, or Filter node

within an ESQL file.

Before you start

Complete the following task:

v “Creating an ESQL file” on page 269

Within the ESQL file, create a module that is associated with a node in your

message flow. A module can be associated with only one node of a particular type

(Compute, Database, or Filter). Within the module you can create and use

functions and procedures as well as the supplied statements and functions. You

can also create local constants and variables.

If you have created constants, functions, or procedures at the broker schema level,

you can also refer to these within the module. You can define routines at a level at

which many different modules can use them, which can save you development

time and maintenance effort.

To create ESQL for a node:

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, double-click the message flow that includes

the node for which you want to create ESQL. The message flow opens in the

editor view.

3. Right-click the node (which must be Compute, Database, or Filter) and then

click Open ESQL. The default ESQL file for this message flow,

message_flow_name.esql, is opened in the editor view. The file is created if it

does not already exist.

If you have already created the file, it is opened in the editor view and a new

module is created and highlighted. If the file is created for you, it contains a

skeleton module for this node at the end. Its exact content depends on the type

of node.

The following module is created for a Compute node:

CREATE COMPUTE MODULE module_name

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 -- CALL CopyMessageHeaders();

 -- CALL CopyEntireMessage();

 RETURN TRUE;

 END;

 CREATE PROCEDURE CopyMessageHeaders() BEGIN

 DECLARE I INTEGER 1;

 DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

 WHILE I < J DO

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I = I + 1;

 END WHILE;

 END;

 CREATE PROCEDURE CopyEntireMessage() BEGIN

 SET OutputRoot = InputRoot;

 END;

END MODULE;

Developing message flows 271

The module name is determined by the value that you have set for the

corresponding node property. The default is message_flow_name_node_type. The

Main function contains calls to two procedures, described below, that are

declared within the Compute node module following the function Main. These

calls are commented out. If you want to include the function that they provide,

uncomment the lines and place them at the appropriate point in the ESQL that

you create for Main.

CopyMessageHeaders

This procedure loops through the headers contained in the input

message and copies each one to the output message.

CopyEntireMessage

This procedure copies the entire contents of the input message,

including the headers, to the output message.
If you create an ESQL module for a Database node, the following module is

created:

For a Filter node, the module is identical to that created for the Database node

except for the first line, which reads:

4. Add ESQL to this file to customize the behavior of the node.

Start by adding ESQL statements within the Main function, that is after the

BEGIN statement, and before RETURN TRUE. You can add DECLARE

statements within the module that are not within the Main function. To add a

new line into the file, press Enter.

To help you to code valid ESQL, the editor displays a list of valid statements

and functions at the point of the cursor. To invoke this assistance, click Edit →

Content Assist. On some systems, you can use the key combination Ctrl+Space.

Scroll through the list displayed to find and highlight the one that you want,

and press Enter. The appropriate code is inserted into your module, and the list

disappears.

Content assistance is provided in the following areas:

v Applicable keywords, based on language syntax.

v Blocks of code that go together, such as BEGIN END;.

v Constants that you have defined, identifiers, labels, functions, and

procedures that can be used, where the routines can be in any projects, even

if the current project does not reference them.

v Database schema and table names after the database correlation name, as

well as table column names in INSERT, UPDATE, DELETE, and SELECT

statements, and, in most cases, the WHERE clauses of those statements.

v Elements of message field reference: runtime domain (parser) names, format

of type expression, namespace identifiers, namespace-qualified element and

attribute names, and format of index expression.

v Content in the Properties folder under the output message root.

CREATE DATABASE MODULE module_name

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 RETURN TRUE;

 END;

END MODULE;

CREATE FILTER MODULE module_name

272 Message Flows

v For the DECLARE NAMESPACE statement, target namespaces of message

sets and schema names.

Content assistance works only if the ESQL can be parsed correctly. Errors such

as END missing after BEGIN, and other unterminated block statements, cause

parser failures and no content assistance is provided. Try content assistance in

other areas around the statement where it does not work to narrow down the

point of error. Alternatively, save the ESQL file; saving the file causes validation

and all syntax errors are written to the Tasks view. Refer to the errors reported

to understand and correct the ESQL syntax. If you use content assistance to

generate most statements (such as block statements), these are correctly entered

and there is less opportunity for error.

5. When you have finished working with this module, you can close the ESQL

file. Save the file before you close it to retain all your changes and validate

your ESQL.

If you prefer, you can open the ESQL file directly and create the module within

that file using the editor. To do this:

1. Switch to the Broker Application Development perspective.

2. Select the ESQL file in which you want to create the module. Either

double-click to open this file in the editor view, or right-click and click Open.

3. In the editor view, position your cursor on a new line and use content

assistance to select the appropriate module skeleton for this type of node, for

example CREATE COMPUTE MODULE END MODULE;. You can type this in yourself if

you prefer, but you must ensure that what you type is consistent with the

required skeleton, shown above. Use content assistance to give you additional

help by inserting only valid ESQL, and by inserting matching end statements

(for example, END MODULE;) where these are required.

4. Complete the coding of the module as appropriate.

Whichever method you use to open the ESQL file, be aware that the editor

provides functions to help you to code ESQL. This section refers to content

assistance; other functions are available. For information about these functions, see

ESQL editor.

Modifying ESQL for a node

If you want to change the customization of a node that requires ESQL (Compute,

Database, or Filter), you can modify the ESQL statements within the module that

you created for that node.

Before you start

To complete this task, you must have completed the following task:

v “Creating ESQL for a node” on page 271

To modify ESQL code:

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, select the message flow that you want to

work with and double-click it. The message flow is opened in the editor view.

3. Right-click the node corresponding to the ESQL module that you want to

modify and click Open ESQL. The ESQL file is opened in the editor view. The

module for this node is highlighted.

4. Make the changes that you want in the module, by entering new statements

(remember that you can use Content Assist, available from the Edit menu or, on

Developing message flows 273

some systems, by pressing Ctrl+Space), changing existing statements by

overtyping, or deleting statements using the Delete or backspace keys. Note

that, to get Content Assist to work with message references, you must set up a

project reference from the project containing the ESQL to the project containing

the message set. For information about setting up a project reference, see

Project references.

5. You can change the name of the module that you are working with, by

over-typing the current name with the new one. Remember that, if you do that,

you must also change the node property ESQL Module to reflect the new name

to ensure that the correct ESQL code is deployed with the node.

6. When you have finished working with this module, you can close the ESQL

file. Save the file before you close it to retain all your changes and validate

your ESQL.

If you prefer, you can open the ESQL file directly by double-clicking it in the

Broker Development view. You can select the module that you want to work with

from the Outline view.

The editor provides functions that you can use to help you modify your ESQL

code. These functions are described in ESQL editor.

You can also modify the ESQL source by selecting Source → Format. This option

formats all selected lines of code (unless only partially selected, when they are

ignored), or, if no lines are selected, formats the entire file (correcting alignments

and indentation).

Adding comments to ESQL:

You can add comments to and remove comments from your ESQL code:

1. To change an existing line of code into a comment line, click Source →

Comment.

2. To change a comment line to a code line, click Source → Uncomment.

3. To create a new comment line, press Enter to create a new line and either type

the comment identifier -- or click Source → Comment. You can enter any text

after the identifier: everything you type is ignored by the ESQL editor.

Saving an ESQL file

When you edit your ESQL file, you can save it both to preserve the additions and

modifications that you have made and to force the editor to validate the file’s

content.

Before you start

To complete this task, you must have completed the following task:

v “Creating an ESQL file” on page 269

To save an ESQL file:

1. Switch to the Broker Application Development perspective.

2. Create a new ESQL file or open an existing ESQL file.

3. Make the changes to the contents of the ESQL file.

4. When you have finished working, save the file to retain all your changes by

clicking File → Save <filename>.esql or File → Save All (the menu always

shows the current filename correctly).

274 Message Flows

When you save the file, the validator is invoked by the editor to check that the

ESQL obeys all grammar and syntax rules (specified by the syntax diagrams

and explanations in “ESQL reference” on page 1451).

You can request additional validation when you set ESQL preferences. Click

Window → Preferences. The Preferences dialog is displayed:

5. Expand the item for ESQL and Mapping on the left and click Validation. You

can choose a value of warning (the default), error, or ignore for the following

four categories of error:

a. Unresolved identifiers

b. Message references do not match message definitions

c. Database references do not match database schema

d. Use of deprecated keywords

Validating message definitions can impact response times in the editor,

particularly if you have complicated ESQL that makes many references to a

complex message definition. You might choose to delay this validation. Invoke

validation when you have finished developing the message flow and are about

to deploy it, to avoid runtime errors. For each error found, the editor writes an

entry in the Tasks view, providing both the code line number and the reason

for the error.

6. If you double-click the error, the editor positions your cursor on the line in

which it found that error. The line is also highlighted by the error icon

in

the margin to the left.

The editor might also find potential error situations, that it highlights as

warnings (with the warning icon

), which it also writes to the tasks view.

For example, you might have included a BROKER SCHEMA statement that

references an invalid schema (namespace).

Check your code, and make the corrections required by that statement or

function.

Save As:

You can save a copy of this ESQL file by using File → Save As....

1. Click File → Save <name> As....

2. Specify the message flow project in which you want to save a copy of the ESQL

file. The project name defaults to the current project. You can accept this name,

or choose another name from the valid options that are displayed in the File

Save dialog.

3. Specify the name for the new copy of the ESQL file. If you want to save this

ESQL file in the same project, you must either give it another name, or confirm

that you want to overwrite the current copy (that is, copy the file to itself).

If you want to save this ESQL file in another project, the project must already

exist (you can only select from the list of existing projects). You can save the file

with the same or another name in another project.

4. Click OK. The message flow is saved and the message flow editor validates its

contents. The editor provides a report of any errors that it finds in the Tasks

view.

Copying an ESQL file

You might find it useful to copy an ESQL file as a starting point for a new ESQL

file that has similar function.

Developing message flows 275

Before you start

To complete this task, you must have completed the following task:

v “Creating an ESQL file” on page 269

To copy an ESQL file:

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, select the ESQL file

(<message_flow_name>.esql) that you want to copy. Right-click the file and

click Copy from the menu.

3. Right-click the broker schema within the message flow project to which you

want to copy the ESQL file and click Paste. You can copy the ESQL file to the

same broker schema within the same message flow project, or to a different

broker schema within the same message flow project, or to a broker schema in

a different message flow project.

When you copy an ESQL file, the associated files (message flow, and mapping

if present) are not automatically copied to the same target message flow project.

If you want these files copied as well, you must do this explicitly following this

procedure.

If you want to use this ESQL file with another message flow, ensure that the

modules within the ESQL file match the nodes that you have in the message

flow, and that the node properties are set correctly.

You can also use File → Save As to copy an ESQL file. This is described in “Saving

an ESQL file” on page 274.

Renaming an ESQL file

You can rename an ESQL file within the message flow project. You might want to

do this, for example, if you have renamed the message flow with which it is

associated.

Before you start

To complete this task, you must have completed the following task:

v “Creating an ESQL file” on page 269

To rename an ESQL file:

1. Switch to the Broker Application Development perspective.

2. In the Broker Development view, right-click the ESQL file that you want to

rename. Its default name is <message_flow_name>.esql. Click Rename or click

File → Rename. If you have selected the ESQL file, you can press F2. The

Rename Resource dialog is displayed.

3. Enter the new name for the ESQL file. Click OK to complete the action, or

Cancel to cancel the request. If you click OK, the ESQL file is renamed.

When the rename is done, any references that you have to this ESQL file are no

longer valid and you must correct them. If you are unsure where the references

are, click File → Save All. This saves and validates all resources. Unresolved

references are listed in the Tasks view, and you can click each error listed to

locate and update the references.

276 Message Flows

Moving an ESQL file

If you move a message flow from one broker schema to another, or from one

project to another, you might want to move any ESQL file that is associated with

that message flow.

Before you start

To complete this task, you must have completed the following task:

v “Creating an ESQL file” on page 269

To move an ESQL file:

1. Switch to the Broker Application Development perspective.

2. Move the ESQL file in one of the following ways:

a. Drag and drop the ESQL file that you want to move from its current

location to a broker schema within the same or another message flow

project.

If the target location that you have chosen is not valid (for example, if an

ESQL file of this name already exists in the broker schema), the invalid icon

is displayed and the move is not completed.

b. Right-click the ESQL file and click Move, or click File → Move. The Move

dialog is displayed.

Select the project and the broker schema from the list of valid targets that is

shown in the dialog.

Click OK to complete the move, or Cancel to cancel the request.

If you click OK, the ESQL file is moved to its new location.

3. Check the Tasks view for any errors (indicated by the error icon

) or

warnings (indicated by the warning icon

) generated by the move.

The errors in the Tasks view include those caused by broken references. When

the move is completed, all references to this ESQL file are checked. If you have

moved the file within the same named broker schema within the same message

flow project, all references are still valid. If you have moved the file to another

broker schema in the same or another message flow project, the references are

broken. If you have moved the file to the same named broker schema in

another message flow project, the references might be broken if the project

references are not set correctly to recognize external references in this file. These

errors occur because resources are linked by a fully-qualified name.

4. Double-click each error or warning to correct it. This opens the message flow

that has the error in the editor view and highlights the node in error.

When you move an ESQL file, its associated files (for example, the message flow

file) are not automatically moved to the same target broker schema. You must

move these files yourself.

Changing ESQL preferences

You can modify the way in which ESQL is displayed in the editor and validated by

the editor:

v “Changing ESQL editor settings”

v “Changing ESQL validation settings” on page 278

Changing ESQL editor settings:

Developing message flows 277

When you open an ESQL file in the editor view, you can tailor the editor

appearance by changing editor settings.

To change ESQL editor settings:

1. Switch to the Broker Application Development perspective.

2. Click Window → Preferences. The Preferences dialog is displayed.

3. Expand the item for ESQL on the left and click ESQL Editor.

4. Update the settings available for tab width and colors:

v Click the General tab to change the displayed tab width within the ESQL

editor.

v Click the Colors tab to change the color of the editor view background, and

of the entities displayed in the editor view. These include comments and

keywords within your ESQL code.
5. When you have completed your changes, click Apply to close the Preferences

dialog, apply your changes and leave the Preferences dialog open. Click OK to

apply your changes and close the dialog. Click Cancel to close the dialog and

discard your changes.

6. If you want to return your ESQL editor settings to the initial values, click

Restore Defaults. All values are reset to the original settings.

If you change the editor settings when you have an editor session active, the

changes are implemented immediately. If you do not have an editor session open,

you see the changes when you next edit an ESQL file.

To change font settings for the ESQL editor:

1. Click Window → Preferences. The Preferences dialog is displayed.

2. Expand the item for Workbench on the left of the Preferences dialog, and click

Colors and Fonts.

3. Expand Basic in the Colors and Fonts tab

4. Select a font or text color option and click on Change . The Font dialog will be

displayed.

5. When you have completed your changes, click Apply to close the Preferences

dialog, apply your changes and leave the Preferences dialog open. Click OK to

apply your changes and close the dialog. Click Cancel to close the dialog and

discard your changes.

6. If you want to return your ESQL editor settings to the initial values, click

Restore Defaults.

Changing ESQL validation settings:

You can specify the level of validation that the ESQL editor performs when you

save a .esql file. If the validation you have requested results in warnings, you can

deploy a bar file containing this message flow. However, if errors are reported, you

cannot deploy the bar file.

To change ESQL validation settings:

1. Switch to the Broker Application Development perspective.

2. Click Window → Preferences. The Preferences dialog is displayed.

3. Expand the item for ESQL on the left and click Validation.

4. Update the settings for what is validated, and for what warnings or errors are

reported. See ESQL editor for details of the settings and their values.

278 Message Flows

5. When you have completed your changes, click Apply to close the Preferences

dialog, apply your changes and leave the Preferences dialog open. Click OK to

apply your changes and close the dialog. Click Cancel to close the dialog and

discard your changes.

6. If you want to return your ESQL editor preferences to the initial values, click

Restore Defaults. All values are reset to the original settings.

If you make changes to the validation settings, the changes are implemented

immediately for currently open edit sessions and for subsequent edit sessions.

Deleting ESQL for a node

If you delete a node from a message flow, you can delete the ESQL module that

you created to customize its function.

Before you start

To complete this task, you must have completed the following task:

v “Creating ESQL for a node” on page 271

To delete ESQL code:

1. Switch to the Broker Application Development perspective.

2. Open the message flow that you want to work with by double-clicking it in the

Broker Development view. The message flow is opened in the editor view.

3. Select the node for which you want to delete the ESQL module, right-click and

click Open ESQL. The ESQL file is opened in the editor view, with the module

for this node highlighted.

4. Press the Delete or backspace key to delete the whole module.

5. When you have finished working with this module, you can close the ESQL

file. Save the file before you close it to retain all your changes. Save also

validates your ESQL: see “Saving an ESQL file” on page 274.

If you prefer, you can open the ESQL file directly by double-clicking it in the

Broker Development view. The ESQL file is opened in the editor view. Select the

module that you want to delete from the Outline view and delete it as described

above. You can also right-click on the module name in the Broker Development

view (the modules in the ESQL file are visible if you expand the view of the file by

clicking the + beside the file name) and click Delete.

Deleting an ESQL file

If you delete a message flow, or if you have deleted all the ESQL code in an ESQL

file, you can delete the ESQL file.

Before you start

To complete this task, you must have completed the following task:

v “Creating an ESQL file” on page 269

To delete an ESQL file:

1. Switch to the Broker Application Development perspective.

2. Within the Broker Development view, right-click the ESQL file that you want to

delete, and click Delete. A dialog is displayed that asks you to confirm the

deletion.

Developing message flows 279

You can also select the file in the Broker Development view, and click Edit →

Delete. A dialog is displayed that asks you to confirm the deletion.

3. Click Yes to delete the file, or No to cancel the delete request.

If you maintain resources in a shared repository, a copy is retained in that

repository. You can follow the instructions provided by the repository supplier

to retrieve the file if required.

If you are using the local file system or a shared file system to store your

resources, no copy of the file is retained. Be careful to select the correct file

when you complete this task.

Writing ESQL

How you can use ESQL to customize nodes.

When you create a message flow, you include input nodes that receive the

messages and, optionally, output nodes that send out new or updated messages. If

required by the processing that must be performed on the message, you can

include other nodes after the input node that complete the actions that your

applications need.

Some of the built-in nodes enable you to customize the processing that they

provide. The Compute, Database, and Filter nodes require you to provide a

minimum level of ESQL, and you can provide much more than the minimum to

control precisely the behavior of each node. This set of topics discusses ESQL and

the ways in which you can use it to customize these nodes.

The DataDelete, DataInsert, DataUpdate, Extract, Mapping, and Warehouse nodes

provide a mapping interface with which you can customize their function. The

ways in which you can use the mapping functions associated with these nodes are

described in developing message mappings, see “Developing message mappings”

on page 472.

ESQL provides a rich and flexible syntax for statements and functions that enable

you to check and manipulate message and database content. You can:

v Read the contents of the input message

v Modify message content with data from databases

v Modify database content with data from messages

v Construct new output messages created from all, part, or none of the input

message (in the Compute node only)

The following topics provide more information about these and other tasks that

you can perform with ESQL. Unless otherwise stated, these guidelines apply to

messages in all message domains except the BLOB domain, for which you can

implement a limited set of actions.

v “Tailoring ESQL code for different node types” on page 282

v “Manipulating message body content” on page 283

v “Manipulating other parts of the message tree” on page 303

v “Transforming from one data type to another” on page 314

v “Adding keywords to ESQL files” on page 322

v “Interaction with databases using ESQL” on page 322

v “Coding ESQL to handle errors” on page 334

v “Accessing broker properties from ESQL” on page 409

v “Configuring a message flow at deployment time using UDPs” on page 410

280 Message Flows

The following topics provide additional information specific to the parser that you

have specified for the input message:

v “Manipulating messages in the MRM domain” on page 387

v “Manipulating messages in the XML domain” on page 387

v “Manipulating messages in the XMLNS domain” on page 378

v “Manipulating messages in the XMLNSC domain” on page 364

v “Manipulating messages in the JMS domains” on page 404

v “Manipulating messages in the IDOC domain” on page 404

v “Manipulating messages in the MIME domain” on page 405

v “Manipulating messages in the BLOB domain” on page 407

ESQL examples

Most of the examples included in the topics listed previously show

parser-independent ESQL. If examples include a reference to MRM, they assume

that you have modeled the message in the MRM and that you have set the names

of the MRM objects to be identical to the names of the corresponding tags or

attributes in the XML source message. Some examples are also shown for the XML

domain. Unless stated otherwise, the principals illustrated are the same for all

message domains. For domain-specific information, use the appropriate link in the

previous list.

Most of the topics that include example ESQL use the ESQL sample message,

Invoice, as the input message to the logic. This message is provided in XML source

format (with tags and attributes), see “Example message” on page 1671. The

example message is shown in the following diagram.

The topics specific to the MRM domain use the message that is created in the

following sample:

v Video Rental sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

A few other input messages are used to show ESQL that provides function on

messages with a structure or content that is not included in the Invoice or Video

samples. Where this occurs, the input message is included in the topic that refers

to it.

Developing message flows 281

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.doc/doc/overview.htm

Tailoring ESQL code for different node types

When you code ESQL to configure Compute, Database, and Filter node behavior,

be aware of the limitations of each type of node:

Compute node

You can configure the Compute node to do any of the following

operations:

v Update data in a database.

v Insert data into a database.

v Delete data from a database.

v Update the Environment tree.

v Update the LocalEnvironment tree.

v Create one or more output messages, with none, some, or all the content

of the input message, and propagate these new messages to the next

node in the message flow.

If you want to propagate the input LocalEnvironment to the output

LocalEnvironment, remember to set the Compute node property Compute

mode to an appropriate value. The Environment is always propagated in

the output message.

Payment

Purchases

InvoiceDate TillNumber

CashierInvoiceTimeInvoiceNo

DirectMail

StoreRecord Error

Customer

Address Address

Address PostCode

FirstName Title PhoneHome Billing

LastName DOB PhoneWork

CardType CardName Expires

ValidCardNo

Invoice

Item Item Item

Title PublishDate QuantityAuthor

Publisher UnitPriceISBN

282 Message Flows

Database node

You can configure the Database node to do any of the following

operations:

v Update data in a database.

v Insert data into a database.

v Delete data from a database.

v Update the Environment tree.

v Update the LocalEnvironment tree.

v Propagate the input message to the next node in the message flow.

Filter node

You can configure the Filter node to do any of the following operations:

v Update data in a database.

v Insert data into a database.

v Delete data from a database.

v Update the Environment tree.

v Update the LocalEnvironment tree.

v Propagate the input message to the next node in the message flow (the

terminal through which the message is propagated depends on the

result of the filter expression).

View the remaining tasks in this section to find the details of how you can perform

these operations.

Manipulating message body content

The message body is always the last child of root, and is identified by its parser

name, for example XML or MRM.

The following topics describe how you can refer to, modify, and create message

body data. The information provided here is domain independent.

v “Referencing field types”

v “Accessing elements in the message body” on page 284

v “Accessing known multiple occurrences of an element” on page 288

v “Accessing unknown multiple occurrences of an element” on page 289

v “Using anonymous field references” on page 290

v “Creating dynamic field references” on page 291

v “Creating new fields” on page 292

v “Generating multiple output messages” on page 294

v “Using numeric operators with datetime values” on page 295

v “Calculating a time interval” on page 296

v “Selecting a subfield from a larger field” on page 297

v “Copying repeating fields” on page 298

v “Manipulating repeating fields in a message tree” on page 302

Referencing field types:

Some message parsers have complex models in which it is not enough to identify a

field simply by its name and an array subscript. In these cases, you associate an

optional field type with an element of data in the tree format.

Developing message flows 283

Each element within the parsed tree can be one of three types:

Name element

A name element has a string, which is the name of the element, associated

with it. An example of a name element is XMLElement, described in “XML

element” on page 1438.

Value element

A value element has a value associated with it. An example of a value

element is XMLContent, described in “XML content” on page 1438.

Name-value element

A name-value element is an optimization of the case where a name

element contains only a value element and nothing else. The element

contains both a name and a value. An example of a name-value element is

XMLAttribute, described in “XML attribute” on page 1436.

Accessing elements in the message body:

When you want to access the contents of a message, for reading or writing, use the

structure and arrangement of the elements in the tree that is created by the parser

from the input bit stream. Follow the relevant parent and child relationships from

the top of the tree downwards, until you reach the required element.

v If you are referring to the input message tree to interrogate its content in a

Compute node, use correlation name InputBody followed by the path to the

element to which you are referring. InputBody is equivalent to InputRoot

followed by the parser name (for example, InputRoot.MRM), which you can use if

you prefer.

v If you are referring to the output message tree to set or modify its content in the

Compute node, use correlation name OutputRoot followed by the parser name

(for example, OutputRoot.MRM).

v If you are referring to the input message to interrogate its contents in a Database

or Filter node, use correlation name Body to refer to the start of the message.

Body is equivalent to Root followed by the parser name (for example,

Root.XMLNS), which you can use if you prefer.

You must use these different correlation names because there is only one

message to which to refer in a Database or Filter node; you cannot create a new

output message in these nodes. Use a Compute node to create a new output

message.

When you construct field references, the names that you use must be valid ESQL

identifiers that conform to ESQL rules. If you enclose anything in double quotation

marks, ESQL interprets it as an identifier. If you enclose anything in single

quotation marks, ESQL interprets it as a character literal. You must enclose all

strings (character strings, byte strings, or binary (bit) strings) in quotation marks,

as shown in the examples below. To include a single or double quotation mark

within a string, include two consecutive single or double quotation marks.

Important: For a full description of field reference syntax, see “ESQL field

references” on page 1465.
For more information about ESQL data types, see “ESQL data types in message

flows” on page 1452.

Assume that you have created a message flow that handles the message Invoice,

shown in the figure in “Writing ESQL” on page 280. If, for example, you want to

interrogate the element CardType from within a Compute node, use the following

statement:

284 Message Flows

IF InputBody.Invoice.Payment.CardType=’Visa’ THEN

 DO;

 -- more ESQL --

END IF;

If you want to make the same test in a Database or Filter node (where the

reference is to the single input message), code:

IF Body.Invoice.Payment.CardType=’Visa’ THEN

 DO;

 -- more ESQL --

END IF;

If you want to copy an element from an input XML message to an output message

in the Compute node without changing it, use the following ESQL:

SET OutputRoot.XMLNS.Invoice.Customer.FirstName =

 InputBody.Invoice.Customer.FirstName;

If you want to copy an element from an input XML message to an output message

and update it, for example by folding to uppercase or by calculating a new value,

code:

SET OutputRoot.XMLNS.Invoice.Customer.FirstName =

 UPPER(InputBody.Invoice.Customer.FirstName);

SET OutputRoot.XMLNS.Invoice.InvoiceNo = InputBody.Invoice.InvoiceNo + 1000;

If you want to set a STRING element to a constant value, code:

SET OutputRoot.XMLNS.Invoice.Customer.Title = ’Mr’;

You can also use the equivalent statement:

SET OutputRoot.XMLNS.Invoice.Customer.Title VALUE = ’Mr’;

If you want to update an INTEGER or DECIMAL, for example the element

TillNumber, with the value 26, use the following assignment (valid in the Compute

node only):

The integer data type stores numbers using the 64-bit twos complement form,

allowing numbers in the range -9223372036854775808 to 9223372036854775807. You

can specify hexadecimal notation for integers as well as normal integer literal

format. The hexadecimal letters A to F can be written in upper or lower case, as

can the X after the initial zero, which is required. The example below produces the

same result as the example shown above:

The following examples show SET statements for element types that do not appear

in the example Invoice message.

To set a FLOAT element to a non-integer value, code:

To set a BINARY element to a constant value, code:

SET OutputRoot.MRM.Invoice.TillNumber=26;

SET OutputRoot.MRM.Invoice.TillNumber= 0x1A;

SET OutputRoot.MRM.FloatElement1 = 1.2345e2;

SET OutputRoot.MRM.BinaryElement1 = X’F1F1’;

Developing message flows 285

For BINARY values, you must use an initial character X (upper or lower case) and

enclose the hexadecimal characters (also upper or lower case) in single quotation

marks, as shown.

To set a BOOLEAN element to a constant value (the value 1 equates to true, 0

equates to false), code:

or

You can use the SELECT statement to filter records from an input message without

reformatting the records, and without any knowledge of the complete format of

each record. Consider the following example:

This writes all records from the input Invoice message to the output message if the

WHERE condition (LastName = Smith) is met. All records that do not meet the

condition are not copied from input to output. I is used as an alias for the

correlation name InputRoot.XMLNS.Invoice[].

The declared variable CurrentCustomer is initialized on the DECLARE statement:

this is the most efficient way of declaring a variable for which the initial value is

known.

You can use this alias technique with other SELECT constructs. For example, if you

want to select all the records of the input Invoice message, and create an additional

record:

You could also include an AS clause to place records in a subfolder in the message

tree:

If you are querying or setting elements that contain, or might contain, null values,

be aware of the following considerations:

Querying null values

When you compare an element to the ESQL keyword NULL, this tests

SET OutputRoot.MRM.BooleanElement1 = true;

SET OutputRoot.MRM.BooleanElement1 = 1;

-- Declare local variable

DECLARE CurrentCustomer CHAR ’Smith’;

-- Loop through the input message

SET OutputRoot.XMLNS.Invoice[] =

 (SELECT I FROM InputRoot.XMLNS.Invoice[] AS I

 WHERE I.Customer.LastName = CurrentCustomer

);

-- Loop through the input message

SET OutputRoot.XMLNS.Invoice[] =

 (SELECT I, ’Customer’ || I.Customer.LastName AS ExtraField

 FROM InputRoot.XMLNS.Invoice[] AS I

);

-- Loop through the input message

SET OutputRoot.XMLNS.Invoice[] =

 (SELECT I AS Order

 FROM InputRoot.XMLNS.Invoice[] AS I

);

286 Message Flows

whether the element is present in the logical tree that has been created

from the input message by the parser.

 For example, you can check if an invoice number is included in the current

Invoice message with the following statement:

 You can also use an ESQL reference. The following example illustrates this.

 For more information about declaring and using references, see “Creating

dynamic field references” on page 291. For a description of the

LASTMOVE and FIELDVALUE functions, see “LASTMOVE function” on

page 1612 and “FIELDTYPE function” on page 1608.

If the message is in the MRM domain, there are additional considerations

for querying null elements that depend on the physical format. For further

details, see “Querying null values in a message in the MRM domain” on

page 396.

Setting null values

There are two statements that you can use to set null values.

1. If you set the element to NULL using the following statement, the

element is deleted from the message tree:

If the message is in the MRM domain, there are additional

considerations for null values that depend on the physical format. For

further details, see “Setting null values in a message in the MRM

domain” on page 397.

This is called implicit null processing.

2. If you set the value of this element to NULL as follows:

 the element is not deleted from the message tree. Instead, a special

value of NULL is assigned to the element.

If the message is in the MRM domain, the content of the output bit

stream depends on the settings of the physical format null handling

properties. For further details, see “Setting null values in a message in

the MRM domain” on page 397.

IF InputRoot.XMLNS.Invoice.InvoiceNo IS NULL THEN

 DO;

 -- more ESQL --

END IF;

DECLARE cursor REFERENCE TO InputRoot.MRM.InvoiceNo;

IF LASTMOVE(cursor) = FALSE THEN

 SET OutputRoot.MRM.Analysis = ’InvoiceNo does not exist in logical tree’;

ELSEIF FIELDVALUE(cursor) IS NULL THEN

 SET OutputRoot.MRM.Analysis =

 ’InvoiceNo does exist in logical tree but is defined as an MRM NULL value’;

ELSE

 SET OutputRoot.MRM.Analysis = ’InvoiceNo does exist and has a value’;

END IF;

SET OutputRoot.XMLNS.Invoice.Customer.Title = NULL;

SET OutputRoot.XMLNS.Invoice.Customer.Title VALUE = NULL;

SET OutputRoot.XMLNS.Invoice.Customer.Title = NULL;

Developing message flows 287

This is called explicit null processing.

If you set an MRM complex element or an XML, XMLNS, or JMS parent

element to NULL without using the VALUE keyword, that element and all

its children are deleted from the logical tree.

Accessing known multiple occurrences of an element:

When you refer to or create the content of messages, it is very likely that the data

contains repeating fields. If you know how many instances there are of a repeating

field, and you want to access a specific instance of such a field, you can use an

array index as part of a field reference.

For example, you might want to filter on the first line of an address, to expedite

the delivery of an order. Three instances of the element Billling.Address are always

present in the sample message. To test the first line, write an expression such as:

The array index [1] indicates that it is the first instance of the repeating field that

you are interested in (array indices start at 1). An array index such as this can be

used at any point in a field reference, so you could, for example, filter on the

following test:

You can refer to the last instance of a repeating field using the special [<] array

index, and to instances relative to the last (for example, the second to last) as

follows:

v Field[<] indicates the last element.

v Field[<1] indicates the last element.

v Field[<2] indicates the last but one element (the penultimate element).

You can also use the array index [>] to represent the first element, and elements

relative to the first element in a similar way.

v Field[>] indicates the first element. This is equivalent to Field[1].

The following examples refer to the Invoice message using these indexes:

You can also use these special indexes for elements that repeat an unknown

number of times.

Deleting repeating fields:

IF Body.Invoice.Customer.Billing.Address[1] = ’Patent Office’ THEN

 DO;

 -- more ESQL --

END IF;

IF Body.Invoice."Item"[1].Quantity> 2 THEN

 DO;

 -- more ESQL --

END IF;

IF Body.Invoice.Customer.Billing.Address[<] = ’Hampshire’ THEN

 DO;

 -- more ESQL --

END IF;

IF Body.Invoice.Customer.Billing.Address[<2] = ’Southampton’ THEN

 DO;

 -- more ESQL --

END IF;

288 Message Flows

If you pass a message with several repeats of an element through a message flow

and you want to delete some of the repeats, be aware that the numbering of the

repeats is reordered after each delete. For example, if you have a message with five

repeats of a particular element, and in the message flow you have the following

ESQL:

You might expect elements one and four to be deleted. However, because repeating

elements are stored on a stack, when you delete one, the one above it takes its

place. This means that, in the above example, elements one and five are deleted. To

avoid this problem, delete in reverse order, that is, delete element four first, then

delete element one.

Accessing unknown multiple occurrences of an element:

You are very likely to deal with messages that contain repeating fields with an

unknown number of repeats. This is the situation with the Item field in the

example message in “Example message” on page 1671.

To write a filter that takes into account all instances of the Item field, you need to

use a construct that can iterate over all instances of a repeating field. The

quantified predicate allows you to execute a predicate against all instances of a

repeating field, and collate the results.

For example, you might want to verify that none of the items that are being

ordered has a quantity greater than 50. To do this you could write:

With the quantified predicate, the first thing to note is the brackets [] on the end of

the field reference after FOR ALL. These tell you that you are iterating over all

instances of the Item field.

In some cases, this syntax appears unnecessary because you can get that

information from the context, but it is done for consistency with other pieces of

syntax.

The AS clause associates the name I with the current instance of the repeating

field. This is similar to the concept of iterator classes used in some object oriented

languages such as C++. The expression in parentheses is a predicate that is

evaluated for each instance of the Item field.

A description of this example is:

Iterate over all instances of the field Item inside Body.Invoice. For each iteration:

1. Bind the name I to the current instance of Item.

2. Evaluate the predicate I.Quantity <= 50. If the predicate:

v Evaluates to TRUE for all instances of Item, return TRUE.

v Is FALSE for any instance of Item, return FALSE.

v For a mixture of TRUE and UNKNOWN, return UNKNOWN.

SET OutputRoot.MRM.e_PersonName[1] = NULL;

SET OutputRoot.MRM.e_PersonName[4] = NULL;

FOR ALL Body.Invoice.Purchases."Item"[]

 AS I (I.Quantity <= 50)

Developing message flows 289

The above is a description of how the predicate is evaluated if you use the ALL

keyword. An alternative is to specify SOME, or ANY, which are equivalent. In this

case the quantified predicate returns TRUE if the sub-predicate returns TRUE for

any instance of the repeating field. Only if the sub-predicate returns FALSE for all

instances of the repeating field does the quantified predicate return FALSE. If a

mixture of FALSE and UNKNOWN values are returned from the sub-predicate, an

overall value of UNKNOWN is returned.

In the following filter expression:

the sub-predicate evaluates to TRUE. However this next expression returns FALSE:

because the C Primer is not included on this invoice. If some of the items in the

invoice do not include a book title field, the sub-predicate returns UNKNOWN,

and the quantified predicate returns the value UNKNOWN.

To deal with the possibility of null values appearing, write this filter with an

explicit check on the existence of the field, as follows:

The predicate IS NOT NULL ensures that, if an Item field does not contain a Book,

a FALSE value is returned from the sub-predicate.

You can also manipulate arbitrary repeats of fields within a message by using a

SELECT expression, as described in “Referencing columns in a database” on page

324.

You can refer to the first and last instances of a repeating field using the [>] and

[<] array indexes, and to instances relative to the first and last, even if you do not

know how many instances there are. These indexes are described in “Accessing

known multiple occurrences of an element” on page 288.

Alternatively, you can use the CARDINALITY function to determine how many

instances of a repeating field there are. For example:

Using anonymous field references:

You can refer to the array of all children of a particular element by using a path

element of *. So, for example:

is a path that identifies the array of all children of InputRoot. This is often used in

conjunction with an array subscript to refer to a particular child of an entity by

position, rather than by name. For example:

FOR ANY Body.Invoice.Purchases."Item"[]

 AS I (I.Title = ’The XML Companion’)

FOR ANY Body.Invoice.Purchases."Item"[]

 AS I (I.Title = ’C Primer’)

FOR ANY Body.Invoice.Purchases."Item"[]

 AS I (I.Book IS NOT NULL AND I.Book.Title = ’C Primer’)

DECLARE I INTEGER CARDINALITY(Body.Invoice.Purchases."Item"[])

InputRoot.*[]

290 Message Flows

InputRoot.*[<]

Refers to the last child of the root of the input message, that is, the body of

the message.

InputRoot.*[1]

Refers to the first child of the root of the input message, the message

properties.

You might want to find out the name of an element that has been identified with a

path of this kind. To do this, use the FIELDNAME function, which is described in

“FIELDNAME function” on page 1607.

Creating dynamic field references:

You can use a variable of type REFERENCE as a dynamic reference to navigate a

message tree. This acts in a similar way to a message cursor or a variable pointer.

It is generally simpler and more efficient to use reference variables in preference to

array indexes when you access repeating structures. Reference variables are

accepted everywhere. Field references are accepted and come with a set of

statements and functions to allow detailed manipulation of message trees.

You must declare a dynamic reference before you can use it. A dynamic reference

is declared and initialized in a single statement. The following example shows how

to create and use a reference.

This example declares a dynamic reference, myref, which points to the first item in

the array within Purchases. The value in the first item is incremented by one, and

the pointer (dynamic reference) is moved to the next item. Once again the item

value is incremented by one. This process continues until the pointer moves

outside the scope of the message array (all the items in this array have been

processed) and the LASTMOVE function returns FALSE.

The examples below show further examples.

In the second example, ref2 is set to point to InputBody because the specified field

does not exist.

With the exception of the MOVE statement, which changes the position of the

dynamic reference, you can use a dynamic reference anywhere that you can use a

static reference. The value of the dynamic reference in any expression or statement

-- Declare the dynamic reference

DECLARE myref REFERENCE TO OutputRoot.XMLNS.Invoice.Purchases.Item[1];

-- Continue processing for each item in the array

WHILE LASTMOVE(myref)=TRUE

DO

-- Add 1 to each item in the array

 SET myref = myref + 1;

-- Move the dynamic reference to the next item in the array

 MOVE myref NEXTSIBLING;

END WHILE;

DECLARE ref1 REFERENCE TO InputBody.Invoice.Purchases.Item[1];

DECLARE ref2 REFERENCE TO

 InputBody.Invoice.Purchases.NonExistentField;

DECLARE scalar1 CHARACTER;

DECLARE ref3 REFERENCE TO scalar1;

Developing message flows 291

is the value of the field or variable to which it currently points. For example, using

the message in “Example message” on page 1671, the value of

Invoice.Customer.FirstName is Andrew. If the dynamic reference myref is set to

point at the FirstName field as follows:

the value of myref is Andrew. You can extend this dynamic reference as follows:

This changes the address in the example to Oaklands Hursley Village Hampshire

SO213JR.

The position of a dynamic reference remains fixed even if a tree is modified. To

illustrate this point the steps that follow use the message in “Example message” on

page 1671 as their input message and create a modified version of this message as

an output message:

1. Copy the input message to the output message.

2. To modify the output message, first declare a dynamic reference ref1 that

points at the first item, The XML Companion.

 The dynamic reference is now equivalent to the static reference

OutputRoot.XMLNS.Invoice.Purchases.Item[1].

3. Use a create statement to insert a new first item for this purchase.

 The dynamic reference is now equivalent to the static reference

OutputRoot.XMLNS.Invoice.Purchases.Item[2].

Creating new fields:

This topic provides example ESQL code for a Compute node that creates a new

output message based on the input message, to which are added a number of

additional fields.

The input message received by the Compute node within the message flow is an

XML message, and has the following content:

The Compute node is configured and an ESQL module is created that includes the

following ESQL. The code shown below copies the headers from the input message

to the new output message, then creates the entire content of the output message

body.

DECLARE myref REFERENCE TO Invoice.Customer;

SET myref.Billing.Address[1] = ’Oaklands’;

DECLARE ref1 REFERENCE TO

 OutputRoot.XMLNS.Invoice.Purchases.Item[1];

CREATE PREVIOUSSIBLING OF ref1 VALUES ’Item’;

<TestCase description="This is my TestCase">

 <Identifier>ES03B305_T1</Identifier>

 <Sport>Football</Sport>

 <Date>01/02/2000</Date>

 <Type>LEAGUE</Type>

</TestCase>

292 Message Flows

The output message that results from the ESQL shown above has the following

structure and content:

-- copy headers

DECLARE i INTEGER 1;

DECLARE numHeaders INTEGER CARDINALITY(InputRoot.*[]);

WHILE i < numHeaders DO

 SET OutputRoot.*[i] = InputRoot.*[i];

 SET i = i + 1;

END WHILE;

CREATE FIELD OutputRoot.XMLNS.TestCase.description TYPE NameValue VALUE ’This is my TestCase’;

CREATE FIRSTCHILD OF OutputRoot.XMLNS.TestCase Domain(’XMLNS’) NAME ’Identifier’

 VALUE InputRoot.XMLNS.TestCase.Identifier;

CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase Domain(’XMLNS’) NAME ’Sport’

 VALUE InputRoot.XMLNS.TestCase.Sport;

 CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase Domain(’XMLNS’) NAME ’Date’

 VALUE InputRoot.XMLNS.TestCase.Date;

 CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase Domain(’XMLNS’) NAME ’Type’

 VALUE InputRoot.XMLNS.TestCase.Type;

 CREATE FIELD OutputRoot.XMLNS.TestCase.Division[1].Number TYPE NameValue

 VALUE ’Premiership’;

 CREATE FIELD OutputRoot.XMLNS.TestCase.Division[1].Result[1].Number TYPE NameValue VALUE ’1’;

 CREATE FIELD OutputRoot.XMLNS.TestCase.Division[1].Result[1].Home TYPE Name;

 CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[1].Result[1].Home NAME ’Team’

 VALUE ’Liverpool’ ;

 CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[1].Result[1].Home NAME ’Score’

 VALUE ’4’;

 CREATE FIELD OutputRoot.XMLNS.TestCase.Division[1].Result[1].Away TYPE Name;

 CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[1].Result[1].Away NAME ’Team’

 VALUE ’Everton’;

 CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[1].Result[1].Away NAME ’Score’

 VALUE ’0’;

 CREATE FIELD OutputRoot.XMLNS.TestCase.Division[1].Result[2].Number TYPE NameValue VALUE ’2’;

 CREATE FIELD OutputRoot.XMLNS.TestCase.Division[1].Result[2].Home TYPE Name;

 CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[1].Result[2].Home NAME ’Team’

 VALUE ’Manchester United’;

 CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[1].Result[2].Home NAME ’Score’

 VALUE ’2’;

 CREATE FIELD OutputRoot.XMLNS.TestCase.Division[1].Result[2].Away TYPE Name;

 CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[1].Result[2].Away NAME ’Team’

 VALUE ’Arsenal’;

 CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[1].Result[2].Away NAME ’Score’

 VALUE ’3’;

 CREATE FIELD OutputRoot.XMLNS.TestCase.Division[2].Number TYPE NameValue

 VALUE ’2’;

 CREATE FIELD OutputRoot.XMLNS.TestCase.Division[2].Result[1].Number TYPE NameValue

 VALUE ’1’;

 CREATE FIELD OutputRoot.XMLNS.TestCase.Division[2].Result[1].Home TYPE Name;

 CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[2].Result[1].Home NAME ’Team’

 VALUE ’Port Vale’;

 CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[2].Result[1].Home NAME ’Score’

 VALUE ’9’ ;

 CREATE FIELD OutputRoot.XMLNS.TestCase.Division[2].Result[1].Away TYPE Name;

 CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[2].Result[1].Away NAME ’Team’

 VALUE ’Brentford’;

 CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Division[2].Result[1].Away NAME ’Score’

 VALUE ’5’;

Developing message flows 293

Generating multiple output messages:

You can use the PROPAGATE statement to generate multiple output messages in

the Compute node. The output messages that you generate can have the same or

different content. You can also direct output messages to any of the four alternate

output terminals of the Compute node, or to a Label node.

For example, if you want to create three copies of the input message received by

the Compute node, and send one to the standard ″Out″ terminal of the Compute

node, one to the first alternate ″out1″ terminal of the Compute node, and one to

the Label node ″ThirdCopy″, code the following ESQL:

In the above example, the content of OutputRoot is reset before each PROPAGATE,

because by default the node clears the output message buffer and reclaims the

memory when the PROPAGATE statement completes. An alternative method is to

instruct the node not to clear the output message on the first two PROPAGATE

<TestCase description="This is my TestCase">

 <Identifier>ES03B305_T1</Identifier>

 <Sport>Football</Sport>

 <Date>01/02/2000</Date>

 <Type>LEAGUE</Type>

 <Division Number="Premiership">

 <Result Number="1">

 <Home>

 <Team>Liverpool</Team>

 <Score>4</Score>

 </Home>

 <Away>

 <Team>Everton</Team>

 <Score>0</Score>

 </Away>

 </Result>

 <Result Number="2">

 <Home>

 <Team>Manchester United</Team>

 <Score>2</Score>

 </Home>

 <Away>

 <Team>Arsenal</Team>

 <Score>3</Score>

 </Away>

 </Result>

 </Division>

 <Division Number="2">

 <Result Number="1">

 <Home>

 <Team>Port Vale</Team>

 <Score>9</Score>

 </Home>

 <Away>

 <Team>Brentford</Team>

 <Score>5</Score>

 </Away>

 </Result>

 </Division>

</TestCase>

SET OutputRoot = InputRoot;

PROPAGATE;

SET OutputRoot = InputRoot;

PROPAGATE TO TERMINAL ’out1’;

SET OutputRoot = InputRoot;

PROPAGATE TO LABEL ’ThirdCopy’;

294 Message Flows

statements, so that the message is available for routing to the next destination. The

code to do this is:

If you do not initialize the output buffer, an empty message is generated, and the

message flow detects an error and throws an exception.

Also ensure that you copy all required message headers to the output message

buffer for each output message that you propagate.

If you want to modify the output message content before propagating each

message, code the appropriate ESQL to make the changes that you want before

you code the PROPAGATE statement.

If you set up the contents of the last output message that you want to generate,

and propagate it as the final action of the Compute node, you do not have to

include the final PROPAGATE statement. The default action of the Compute node

is to propagate the contents of the output buffer when it terminates. This is

implemented by the RETURN TRUE statement, included as the final statement in

the module skeleton.

For example, if you want to generate three copies of the input message, and not

perform any further action, include this code immediately before the RETURN

TRUE statement:

Alternatively, you can modify the default behavior of the node by changing

RETURN TRUE to RETURN FALSE:

Three output messages are generated by the three PROPAGATE statements. The

final RETURN FALSE statement causes the node to terminate but not propagate a

final output message. Note that the final PROPAGATE statement does not include

the DELETE NONE clause, because the node must release the memory at this

stage.

Using numeric operators with datetime values:

The following examples show the ESQL that you can code to manipulate datetime

values with numeric operators.

 Adding an interval to a datetime value

The simplest operation that you can perform is to add an interval to, or

subtract an interval from, a datetime value. For example, you could write

SET OutputRoot = InputRoot;

PROPAGATE DELETE NONE;

SET OutputRoot = InputRoot;

PROPAGATE TO TERMINAL ’out1’ DELETE NONE;

SET OutputRoot = InputRoot;

PROPAGATE TO LABEL ’ThirdCopy’;

SET OutputRoot = InputRoot;

PROPAGATE DELETE NONE;

PROPAGATE DELETE NONE;

SET OutputRoot = InputRoot;

PROPAGATE DELETE NONE;

PROPAGATE DELETE NONE;

PROPAGATE;

RETURN FALSE;

Developing message flows 295

the following expressions:

Adding or subtracting two intervals

You can combine two interval values using addition or subtraction. The

two interval values must be of compatible types. It is not valid to add a

year-month interval to a day-second interval as shown in the following

example:

 The interval qualifier of the resultant interval is sufficient to encompass all

the fields that are present in the two operand intervals. For example:

 results in an interval with qualifier DAY TO SECOND, because both day

and second fields are present in at least one of the operand values.

Subtracting two datetime values

You can subtract two datetime values to return an interval. You must

include an interval qualifier in the expression to indicate what precision

the result should be returned in. For example:

 returns the number of days since the 4th July 1776, whereas:

 returns the age of the day in minutes and seconds.

Scaling intervals

You can multiply or divide an interval value by an integer factor:

Calculating a time interval:

This ESQL example calculates the time interval between an input WebSphere MQ

message being put on the input queue, and the time that it is processed in the

current Compute node.

DATE ’2000-03-29’ + INTERVAL ’1’ MONTH

TIMESTAMP ’1999-12-31 23:59:59’ + INTERVAL ’1’ SECOND

The following example shows how to calculate a retirement date by adding the retirement

age to the birth date.

DECLARE retAge CHARACTER ’65’;

DECLARE birthDate DATE DATE ’1953-06-01’;

SET OutputRoot.XML.Test.retirementDate = birthDate + CAST(retAge AS INTERVAL YEAR);

The repetition of the word DATE in the above example is intentional. The first occurrence of

DATE specifies the data type of the declared variable, birthDate. The second occurrence

initializes the same variable with the constant character string that is enclosed in quotes as a

DATE.

INTERVAL ’1-06’ YEAR TO MONTH + INTERVAL ’20’ DAY

INTERVAL ’2 01’ DAY TO HOUR + INTERVAL ’123:59’ MINUTE TO SECOND

(CURRENT_DATE - DATE ’1776-07-04’) DAY

(CURRENT_TIME - TIME ’00:00:00’) MINUTE TO SECOND

INTERVAL ’2:30’ MINUTE TO SECOND / 4

296 Message Flows

(When you make a call to a CURRENT_ datetime function, the value that is

returned is identical to the value returned to another call in the same node. This

ensures that you can use the function consistently within a single node.)

 CALL CopyMessageHeaders();

 Declare PutTime INTERVAL;

 SET PutTime = (CURRENT_GMTTIME - InputRoot.MQMD.PutTime) MINUTE TO SECOND;

 SET OutputRoot.XMLNS.Test.PutTime = PutTime;

The output message has the format (although actual values vary):

<Test>

 <PutTime>INTERVAL '1:21.862' MINUTE TO SECOND</PutTime>

</Test>

The following code snippet sets a timer, to be triggered after a specified interval

from the start of processing, in order to check that processing has completed. If

processing has not completed within the elapsed time, the firing of the timer

might, for example, trigger some recovery processing.

The StartTime field of the timeout request message is set to the current time plus

the allowed delay period, which is defined by a user-defined property on the flow.

(The user-defined property has been set to a string of the form ″HH:MM:SS″ by the

administrator.)

DECLARE StartDelyIntervalStr EXTERNAL CHARACTER ’01:15:05’;

 CREATE PROCEDURE ValidateTimeoutRequest() BEGIN

 -- Set the timeout period

 DECLARE timeoutStartTimeRef REFERENCE TO

 OutputRoot.XMLNSC.Envelope.Header.TimeoutRequest.StartTime;

 IF LASTMOVE(timeoutStartTimeRef)

 THEN

 -- Already set

 ELSE

 -- Set it from the UDP StartDelyIntervalStr

 DECLARE startAtTime TIME CURRENT_TIME

 + CAST(StartDelyIntervalStr AS INTERVAL HOUR TO SECOND);

 -- Convert "TIME ’hh.mm.ss.fff’" to hh.mm.ss format

 -- needed in StartTime field

 DECLARE startAtTimeStr CHAR;

 SET startAtTimeStr = startAtTime;

 SET startAtTimeStr = SUBSTRING(startAtTimeStr FROM 7 FOR 8);

 SET OutputRoot.XMLNSC.Envelope.Header.TimeoutRequest.StartTime

 = startAtTimeStr;

 END IF;

 END;

Selecting a subfield from a larger field:

You might have a message flow that processes a message containing delimited

subfields. You can code ESQL to extract a subfield from the surrounding content if

you know the delimiters of the subfield.

If you create a function that performs this task, or a similar one, you can invoke it

both from ESQL modules (for Compute, Database, and Filter nodes) and from

mapping files (used by DataDelete, DataInsert, DataUpdate, Extract, Mapping, and

Warehouse nodes).

Developing message flows 297

The following function example extracts a particular subfield of a message that is

delimited by a specific character.

CREATE FUNCTION SelectSubField

 (SourceString CHAR, Delimiter CHAR, TargetStringPosition INT)

 RETURNS CHAR

-- This function returns a substring at parameter position TargetStringPosition within the

-- passed parameter SourceString. An example of use might be:

-- SelectSubField(MySourceField,’ ’,2) which will select the second subfield from the

-- field MySourceField delimited by a blank. If MySourceField has the value

-- "First Second Third" the function will return the value "Second"

 BEGIN

 DECLARE DelimiterPosition INT;

 DECLARE CurrentFieldPosition INT 1;

 DECLARE StartNewString INT 1;

 DECLARE WorkingSource CHAR SourceString;

 SET DelimiterPosition = POSITION(Delimiter IN SourceString);

 WHILE CurrentFieldPosition < TargetStringPosition

 DO

 IF DelimiterPosition = 0 THEN

 -- DelimiterPosition will be 0 if the delimiter is not found

 -- exit the loop

 SET CurrentFieldPosition = TargetStringPosition;

 ELSE

 SET StartNewString = DelimiterPosition + 1;

 SET WorkingSource = SUBSTRING(WorkingSource FROM StartNewString);

 SET DelimiterPosition = POSITION(Delimiter IN WorkingSource);

 SET CurrentFieldPosition = CurrentFieldPosition + 1;

 END IF;

 END WHILE;

 IF DelimiterPosition> 0 THEN

 -- Remove anything following the delimiter from the string

 SET WorkingSource = SUBSTRING(WorkingSource FROM 1 FOR DelimiterPosition);

 SET WorkingSource = TRIM(TRAILING Delimiter FROM WorkingSource);

 END IF;

 RETURN WorkingSource;

END;

Copying repeating fields:

You can configure a node with ESQL to copy repeating fields in several ways.

Consider an input XML message that contains a repeating structure:

...

 <Field_top>

 <field1></field1>

 <field1></field1>

 <field1></field1>

 <field1></field1>

 <field1></field1>

 </Field_top>

.....

You cannot copy this whole structure field with the following statement:

SET OutputRoot.XMLNS.Output_top.Outfield1 = InputRoot.XMLNS.Field_top.field1;

That statement copies only the first repeat, and therefore produces the same result

as this statement:

SET OutputRoot.XMLNS.Output_top.Outfield1[1] = InputRoot.XMLNS.Field_top.field1[1];

You can copy the fields within a loop, controlling the iterations with the

CARDINALITY of the input field:

298 Message Flows

SET I = 1;

SET J = CARDINALITY(InputRoot.XMLNS.Field_top.field1[]);

WHILE I <= J DO

 SET OutputRoot.XMLNS.Output_top.Outfield1[I] = InputRoot.XMLNS.Field_top.field1[I];

 SET I = I + 1;

END WHILE;

This might be appropriate if you want to modify each field in the output message

as you copy it from the input field (for example, add a number to it, or fold its

contents to uppercase), or after it has been copied. If the output message already

contained more Field1 fields than existed in the input message, the surplus fields

would not be modified by the loop and would remain in the output message.

The following single statement copies the iterations of the input fields to the

output fields, and deletes any surplus fields in the output message.

SET OutputRoot.XMLNS.Output_top.Outfield1.[] = InputRoot.XMLNS.Field_top.field1[];

The example below shows how you can rename the elements when you copy them

into the output tree. This statement does not copy across the source element name,

therefore each field1 element becomes a Target element.

SET OutputRoot.XMLNS.Output_top.Outfield1.Target[] =

 (SELECT I FROM InputRoot.XMLNS.Field_top.field1[] AS I);

The next example shows a different way to do the same operation; it produces the

same end result.

SET OutputRoot.XMLNS.Output_top.Outfield2.Target[]

 = InputRoot.XMLNS.Field_top.field1[];

The following example copies across the source element name. Each field1

element is retained as a field1 element under the Target element.

SET OutputRoot.XMLNS.Output_top.Outfield3.Target.[]

 = InputRoot.XMLNS.Field_top.field1[];

This example is an alternative way to achieve the same result, with field1

elements created under the Target element.

SET OutputRoot.XMLNS.Output_top.Outfield4.Target.*[]

 = InputRoot.XMLNS.Field_top.field1[];

These examples show that there are several ways in which you can code ESQL to

copy repeating fields from source to target. Select the most appropriate method to

achieve the results that you require.

The principals shown here apply equally to all areas of the message tree to which

you can write data, not just the output message tree.

A note about copying fields:

Be aware that, when copying an input message element to an output element, not

only the value of the output element but also its type is set to that of the input

element. This means that if, for example, you have an input XML document with

an attribute, and you want to set a Field element (rather than an attribute) in your

output message to the value of the input attribute, you have to include a TYPE

clause cast to change the element-type from attribute to Field.

For example, given an input like:

<Field01 Attrib01=’Attrib01_Value’>Field01_Value</Field01>

Developing message flows 299

To create an output like:

<MyField_A MyAttrib_A=’Attrib01_Value’ MyAttrib_B=’Field01_Value’ >

 <MyField_B>Field01_Value</MyField_BC>

 <MyField_C>Attrib01_Value</MyField_C>

 </MyField_A’>

You would use the following ESQL:

-- Create output attribute from input attribute

SET OutputRoot.XMLNSC.MyField_A.MyAttrib_A = InputRoot.XMLNSC.Field01.Attrib01;

-- Create output field from input field

SET OutputRoot.XMLNSC.MyField_A.MyField_B = InputRoot.XMLNSC.Field01;

-- Create output attribute from input field value, noting we have to

-- "cast" back to an attribute element

SET OutputRoot.XMLNSC.MyField_A.(XMLNSC.Attribute)MyAttrib_B =

 InputRoot.XMLNSC.Field01;

-- Create output field from input attribute value, noting we have to

-- "cast" back to a field element

SET OutputRoot.XMLNSC.MyField_A.(XMLNSC.Field)MyField_C =

 InputRoot.XMLNSC.Field01.Attrib01;

Working with elements of type list:

The XML Schema specification allows an element, or attribute, to contain a list of

values that are based on a simple type, with the individual values separated by

white space. In the message tree, an xsd:list element is represented as a name

node, with an anonymous child node for each list item. Repeating lists can be

handled without any loss of information.

Consider the following XML input message:

 <message1>

 <listE1>one two three</listE1>

 </message1>

This XML element produces the following message tree:

 MRM

 listEl (Name)

 "one" (Value)

 "two" (Value)

 "three" (Value)

Individual list items can be accessed as ElementName.*[n].

For example, use the following ESQL to access the third item of listE1:

 SET X = FIELDVALUE (InputBody.message1.listE1.*[3]);

An attribute can also be of type xsd:list.

Consider the following XML input message:

 <message1>

 <Element listAttr="one two three"/>

 </message1>

This XML element produces the following message tree:

300 Message Flows

MRM

 Element (Name)

 listAttr (Name)

 "one" (Value)

 "two" (Value)

 "three" (Value)

As before, individual list items can be accessed as AttrName.*[n].

For example, use the following ESQL to access the third item of listAttr:

 SET X = FIELDVALUE (InputBody.message1.Element.listAttr.*[3]);

A list element can occur more than once.

Consider the following XML message:

 <message1>

 <listE1>one two three/listE1>

 <listE1>four five six/listE1>

 </message1>

The message tree for this XML message is:

 MRM

 listE1 (Name)

 "one" (Value)

 "two" (Value)

 "three" (Value)

 listE1 (Name)

 "four" (Value)

 "five" (Value)

 "six" (Value)

Code the following ESQL to access the first item in the second occurrence of the

list:

 SET X = FIELDVALUE (InputBody.message1.listE1[2].*[1]);

Mapping between a list and a repeating element:

Consider the form of the following XML input message:

 <MRM>

 <inner>abcde fghij 12345</inner>

 </MRM>

where the element inner is of type xsd:list, and therefore has three associated

string values, rather than a single value.

To copy the three values into an output message, where each value is associated

with an instance of repeating elements as shown here:

 <MRM>

 <str1>abcde</str1>

 <str1>fghij</str1>

 <str1>12345</str1>

 </MRM>

you might expect that the following ESQL syntax works:

 DECLARE D INTEGER;

 SET D = CARDINALITY(InputBody.str1.*[]);

 DECLARE M INTEGER 1;

Developing message flows 301

WHILE M <= D DO

 SET OutputRoot.MRM.str1[M] = InputBody.inner.*[M];

 SET M = M + 1;

 END WHILE;

However, the statement:

 SET OutputRoot.MRM.str1[M] = InputBody.inner.*[M];

requests a tree copy from source to target. Because the target element does not yet

exist, the statement creates it, and its value and type are set from the source.

Therefore, to create the output message with the required format, given an input

element which is of type xsd:list, use the “FIELDVALUE function” on page 1610

to explicitly retrieve only the value of the source element:

 SET OutputRoot.MRM.str1[M] = FIELDVALUE(InputBody.inner.*[M]);

Manipulating repeating fields in a message tree:

This topic describes the use of the SELECT function, and other column functions,

to manipulate repeating fields in a message tree.

Suppose that you want to perform a special action on invoices that have a total

order value greater than a certain amount. To calculate the total order value of an

Invoice field, you must multiply the Price fields by the Quantity fields in all the

Items in the message, and total the result. You can do this using a SELECT

expression as follows:

The example assumes that you need to use CAST expressions to cast the string

values of the fields Price and Quantity into the correct data types. The cast of the

Price field into a decimal produces a decimal value with the natural scale and

precision, that is, whatever scale and precision is necessary to represent the

number. These CASTs would not be necessary if the data were already in an

appropriate data type.

The SELECT expression works in a similar way to the quantified predicate, and in

much the same way that a SELECT works in standard database SQL. The FROM

clause specifies what is being iterated, in this case, all Item fields in Invoice, and

establishes that the current instance of Item can be referred to using I. This form of

SELECT involves a column function, in this case the SUM function, so the SELECT

is evaluated by adding together the results of evaluating the expression inside the

SUM function for each Item field in the Invoice. As with standard SQL, NULL

values are ignored by column functions, with the exception of the COUNT column

function explained below, and a NULL value is returned by the column function

only if there are no non-NULL values to combine.

The other column functions that are provided are MAX, MIN, and COUNT. The

COUNT function has two forms that work in different ways with regard to

NULLs. In the first form you use it much like the SUM function above, for

example:

(

 SELECT SUM(CAST(I.Price AS DECIMAL) * CAST(I.Quantity AS INTEGER))

 FROM Body.Invoice.Purchases."Item"[] AS I

)

302 Message Flows

This expression returns the number of Item fields for which the Quantity field is

non-NULL. That is, the COUNT function counts non-NULL values, in the same

way that the SUM function adds non-NULL values. The alternative way of using

the COUNT function is as follows:

Using COUNT(*) counts the total number of Item fields, regardless of whether any

of the fields is NULL. The above example is in fact equivalent to using the

CARDINALITY function, as in the following:

In all the examples of SELECT given here, just as in standard SQL, you could use a

WHERE clause to provide filtering on the fields.

Manipulating other parts of the message tree

The following topics describe how you can access parts of the message tree other

than the message body data. These parts of the logical tree are independent of the

domain in which the message exists, and all these topics apply to messages in the

BLOB domain in addition to all other supported domains.

v “Accessing headers”

v “Accessing the Properties tree” on page 307

v “Accessing the LocalEnvironment tree” on page 308

v “Accessing the Environment tree” on page 312

v “Accessing the ExceptionList tree” on page 313

Accessing headers:

If the input message received by an input node includes message headers that are

recognized by the input node, the node invokes the correct parser for each header.

You can access these headers using ESQL.

 Parsers are supplied for most WebSphere MQ headers. The topics listed below

provide some guidance for accessing the information in the MQMD, MQRFH2, and

MQPCF headers, which you can follow as general guidance for accessing other

headers also present in your messages.

Every header has its own correlation name, for example, MQMD, and you must

use this name in all ESQL statements that refer to or set the content of this tree:

v “Accessing the MQMD header” on page 304

v “Accessing the MQRFH2 header” on page 304

v “Accessing the MQCFH header” on page 305

For further details of the contents of these and other WebSphere MQ headers for

which WebSphere Message Broker provides a parser, see “Element definitions for

message parsers” on page 1399.

Accessing transport headers:

SELECT COUNT(I.Quantity)

 FROM Body.Invoice.Purchases."Item"[] AS I

SELECT COUNT(*)

 FROM Body.Invoice.Purchases."Item"[] AS I

CARDINALITY(Body.Invoice.Purchases."Item"[]

Developing message flows 303

|

|

You can manipulate WebSphere MQ, HTTP, and JMS transport headers and their

properties without writing Compute nodes:

v Use the MQHeader node to add, modify, or delete MQ Message Descriptor

(MQMD) and MQ Dead Letter Header (MQDLH) headers.

v Use the HTTPHeader node to add, modify, or delete HTTP headers such as

HTTPRequest and HTTPReply.

v Use the JMSHeader node to modify contents of the JMS Header_Values and

Application properties so that you can control the node’s output without

programming.

Accessing the MQMD header:

Code ESQL statements to access the fields of the MQMD header.

 WebSphere MQ, WebSphere MQ Everyplace, and SCADA messages include an

MQMD header. You can refer to the fields within the MQMD, and you can update

them in a Compute node.

For example, you might want to copy the message identifier MSGID in the MQMD

to another field in your output message. To do that, code:

If you send a message to an EBCDIC system from a distributed system, you might

need to convert the message to a compatible CodedCharSetId and Encoding. To do

this conversion, code the following ESQL in the Compute node:

The MQMD properties of CodedCharSetId and Encoding define the code page and

encoding of the section of the message that follows (typically this is either the

MQRFH2 header or the message body itself).

Differences exist in the way the Properties folder and the MQMD folder are treated

with respect to which folder takes precedence for the same fields. For more

information, see “Properties versus MQMD folder behavior for various transports”

on page 57.

Accessing the MQRFH2 header:

Code ESQL statements to access the fields of the MQRFH2 header.

 When you construct an MQRFH2 header in a Compute node, it includes two types

of fields:

v Fields in the MQRFH2 header structure; for example, Format and

NameValueCCSID.

v Fields in the MQRFH2 NameValue buffer; for example, mcd and psc.

To differentiate between these two field types, insert a value in front of the

referenced field in the MQRFH2 field to identify its type; a value for the

NameValue buffer is not required because this is the default. The value that you

specify for the header structure is (MQRFH2.Field).

For example:

SET OutputRoot.MRM.Identifier = InputRoot.MQMD.MsgId;

SET OutputRoot.MQMD.CodedCharSetId = 500;

SET OutputRoot.MQMD.Encoding = 785;

304 Message Flows

|
|

|
|

|
|

|
|
|

v To create or change an MQRFH2 Format field, specify the following ESQL:

v To create or change the psc folder with a topic:

v To add an MQRFH2 header to an outgoing message that is to be used to make a

subscription request:

Variable J is initialized to the value of the cardinality of the existing headers in

the message. Using a variable is more efficient than calculating the cardinality on

each iteration of the loop, which happens if you code the following WHILE

statement:

The MQRFH2 header can be parsed using either the MQRFH2 parser or the

MQRFH2C compact parser. To consume less memory, use the MQRFH2C compact

parser by selecting the Use MQRFH2C compact parser for MQRFH2 Header check box

on the input node of the message flow. This results in paths that contain

MQRFH2C instead of MQRFH2; for example: SET OutputRoot.MQRFH2C.psc.Topic

= ’department’;

Target MQRFH2 fields are created only if the headers are copied, and the

MQRFH2C parser option is not selected on the MQInput node. In all other

circumstances, an MQRFH2C field is created on output.

Accessing the MQCFH header:

Code ESQL statements to access the fields of the MQCFH header (root name

MQPCF).

 Messages that are of PCF format (MQPCF, MQADMIN, and MQEVENT) include

the MQCFH header. You can process the contents of the MQCFH header, accessing

parameters, parameter lists, strings and groups.

v To access or to construct parameters in the header, use the following syntax:

SET OutputRoot.MQPCF.Parameter[nn] =

 Integer parameter ID

SET OutputRoot.MQRFH2.(MQRFH2.Field)Format = ’MQSTR ’;

SET OutputRoot.MQRFH2.psc.Topic = ’department’;

DECLARE I INTEGER 1;

DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

WHILE I < J DO

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I=I+1;

END WHILE;

SET OutputRoot.MQRFH2.(MQRFH2.Field)Version = 2;

SET OutputRoot.MQRFH2.(MQRFH2.Field)Format = ’MQSTR’;

SET OutputRoot.MQRFH2.(MQRFH2.Field)NameValueCCSID = 1208;

SET OutputRoot.MQRFH2.psc.Command = ’RegSub’;

SET OutputRoot.MQRFH2.psc.Topic = "InputRoot"."MRM"."topel";

SET OutputRoot.MQRFH2.psc.QMgrName = ’DebugQM’;

SET OutputRoot.MQRFH2.psc.QName = ’PUBOUT’;

SET OutputRoot.MQRFH2.psc.RegOpt = ’PersAsPub’;

WHILE I < CARDINALITY(InputRoot.*[]) DO

Developing message flows 305

If you access a 64-bit parameter, use the following syntax to differentiate from

32-bit parameters:

SET OutputRoot.MQPCF.Parameter64[nn] =

 Integer parameter ID

For example:

SET OutputRoot.MQPCF.Parameter[1] =

 MQCACF_AUTH_PROFILE_NAME;

v For parameter lists, use the following syntax:

SET OutputRoot.MQPCF.ParameterList64[nn] =

 Integer parameter ID

SET OutputRoot.MQPCF.ParameterList64[nn].*[xx] =

 Integer parameter values

For example:

SET OutputRoot.MQPCF.ParameterList[1] =

 MQIACF_AUTH_ADD_AUTHS;

SET OutputRoot.MQPCF.ParameterList[1].*[1] =

 MQAUTH_SET;

SET OutputRoot.MQPCF.ParameterList[1].*[2] =

 MQAUTH_SET_ALL_CONTEXT;

v A byte string is a byte array data type, and is supported with this syntax:

SET OutputRoot.MQPCF.Parameter[nn] =

 Integer parameter ID

SET OutputRoot.MQPCF.Parameter[nn].* =

 Integer, String or ByteArray Parameter value

v A group is implemented as a folder containing more PCF, and requires the

following syntax:

SET OutputRoot.MQPCF.Group[xx] =

 Group Parameter ID

For example:

SET OutputRoot.MQPCF.Group[1] =

 MQGACF_Q_ACCOUNTING_DATA;

SET OutputRoot.MQPCF.Group[1].Parameter[1] =

 MQCA_CREATION_DATE;

SET OutputRoot.MQPCF.Group[1].Parameter[1].* =

 ’2007-02-05’;

You can also use nested groups; for example;

SET OutputRoot.MQPCF.Group[1].Group[1] =

 MQGACF_Q_ACCOUNTING_DATA;

SET OutputRoot.MQPCF.Group[1].Group[1].Parameter[1] =

 MQCA_CREATION_DATE;

SET OutputRoot.MQPCF.Group[1].Group[1].Parameter[1].* =

 ’2007-02-05’;

v A filter is almost identical to a parameter, but it also includes an operator.

Therefore the syntax is a tree with named values:

SET OutputRoot.MQPCF.Filter[xx] =

 Integer parameter ID

SET OutputRoot.MQPCF.Filter[xx].Operator =

 Integer Filter name

SET OutputRoot.MQPCF.Filter[xx].Value =

 Byte, Integer or String Filter Value

v The following is sample code that can be used as an example to create an

MQPCF message in a Compute node:

306 Message Flows

|
|

CREATE NEXTSIBLING OF OutputRoot.Properties DOMAIN ’MQMD’;

CREATE NEXTSIBLING OF OutputRoot.MQMD DOMAIN ’MQADMIN’

NAME ’MQPCF’;

CREATE FIELD OutputRoot.MQPCF;

SET OutputRoot.MQMD.MsgType = MQMT_REQUEST;

SET OutputRoot.MQMD.ReplyToQ = ’REPLYQ’;

DECLARE refRequest REFERENCE TO OutputRoot.MQPCF;

SET refRequest.Type = 16; --MQCFT_COMMAND_XR z/OS

SET refRequest.StrucLength = MQCFH_STRUC_LENGTH;

SET refRequest.Version = 3; -- required for z/OS

SET refRequest.Command = MQCMD_INQUIRE_Q;

SET refRequest.MsgSeqNumber = 1;

SET refRequest.Control = MQCFC_LAST;

/* First parameter: Queue Name. */

SET refRequest.Parameter[1] = MQCA_Q_NAME;

SET refRequest.Parameter[1].* = ’QUEUENAME.*’;

SET refRequest.ParameterList[1] = MQIACF_Q_ATTRS;

SET refRequest.ParameterList[1].* = MQIACF_ALL;

Accessing the Properties tree:

The Properties tree has its own correlation name, Properties, and you must use this

in all ESQL statements that refer to or set the content of this tree.

 The fields in the Properties tree contain values that define the characteristics of the

message. For example, the Properties tree contains a field for the message domain,

and fields for the encoding and CCSID in which message data is encoded. For a

full list of fields in this tree, see “Data types for elements in the Properties subtree”

on page 1400.

You can interrogate and update these fields using the appropriate ESQL

statements. If you create a new output message in the Compute node, you must

set values for the message properties.

Setting output message properties:

If you use the Compute node to generate a new output message, you must set its

properties in the Properties tree. The output message properties do not have to be

the same as the input message properties.

For example, to set the output message properties for an output MRM message, set

the following properties:

 Property Value

Message domain MRM

Message set Message set identifier

Message type Message name¹

Message format Physical format name²

Notes:

1. For details of the syntax of Message type, see Specifying namespaces in

the Message Type property.

2. The name that you specify for the physical layer must match the name

that you have defined for it. The default physical layer names are

Binary1, XML1, and Text1.

Developing message flows 307

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

This ESQL procedure sets message properties to values passed in by the calling

statement. You might find that you have to perform this task frequently, and you

can use a procedure such as this in many different nodes and message flows. If

you prefer, you can code ESQL that sets specific values.

To set the output message domain, you can set the message property, or you can

code ESQL statements that refer to the required domain in the second qualifier of

the SET statement, the parser field. For example, the ESQL statement sets the

domain to MRM:

This ESQL statement sets the domain to XMLNS:

Do not specify more than one domain in the ESQL for any single message.

However, if you use PROPAGATE statements to generate several output messages,

you can set a different domain for each message.

For information about the full list of elements in the Properties tree, see “Data

types for elements in the Properties subtree” on page 1400.

Differences exist in the way the Properties folder and the MQMD folder are treated

with respect to which folder takes precedence for the same fields. For more

information, see “Properties versus MQMD folder behavior for various transports”

on page 57.

Accessing the LocalEnvironment tree:

The LocalEnvironment tree has its own correlation name, LocalEnvironment, and

you must use this name in all ESQL statements that refer to or set the content of

this tree.

 The LocalEnvironment tree is used by the broker, and you can refer to and modify

this information. You can also extend the tree to contain information that you

create yourself. You can create subtrees within this tree that you can use as a

scratchpad or working area.

The message flow sets up information in two subtrees, Destination and

WrittenDestination, below the LocalEnvironment root. You can refer to the content

of both of these, and you can write to the Destination tree to influence the way in

which the message flow processes your message. However, if you write to the

Destination tree, follow the defined structure to ensure that the tree remains valid.

The WrittenDestination subtree contains the addresses to which the message has

been written. Its name is fixed and it is created by the message flow when a

message is propagated through the Out terminal of a request, output, or reply

CREATE PROCEDURE setMessageProperties(IN OutputRoot REFERENCE, IN setName char,

 IN typeName char, IN formatName char) BEGIN

 /**

 * A procedure that sets the message properties

 **/

 set OutputRoot.Properties.MessageSet = setName;

 set OutputRoot.Properties.MessageType = typeName;

 set OutputRoot.Properties.MessageFormat = formatName;

END;

SET OutputRoot.MRM.Field1 = ’field1 data’;

SET OutputRoot.XMLNS.Field1 = ’field1 data’;

308 Message Flows

|
|
|

node. The subtree includes transport-specific information (for example, if the

output message has been put to a WebSphere MQ queue, it includes the queue

manager and queue names). You can use one of the following methods to obtain

information about the details of a message after it has been sent by the nodes:

v Connect a Compute node to the Out terminal.

v Configure a user exit to process an output message callback event, as described

in “Exploiting user exits” on page 198.

The topic for each node that supports WrittenDestination information contains

details about the data that it contains.

If you want the LocalEnvironment tree to be included in the output message that

is propagated by the Compute node, you must set the Compute node property

Compute mode to a value that includes LocalEnvironment (for example, All). If

you do not, the LocalEnvironment tree is not copied to the output message.

The information that you insert into DestinationData or Defaults depends on the

characteristic of the corresponding node property:

v If a node property is represented by a check box (for example, New Message

ID), set the Defaults or DestinationData element to Yes (equivalent to selecting

the check box) or No (equivalent to clearing the check box).

v If a node property is represented by a drop-down list (for example, Transaction

Mode), set the Defaults or DestinationData element to the appropriate character

string (for example Automatic).

v If a node property is represented by a text entry field (for example, Queue

Manager Name), set the Defaults or DestinationData element to the character

string that you would enter in this field.

If necessary, configure the sending node to indicate where the destination

information is. For example, for the output node MQOutput, set Destination Mode:

v If you set Destination Mode to Queue Name, the output message is sent to the

queue identified in the output node properties Queue Name and Queue

Manager Name. Destination is not referenced by the node.

v If you set Destination Mode to Destination List, the node extracts the destination

information from the Destination subtree. If you use this value you can send a

single message to multiple destinations, if you configure Destination and a

single output node correctly. The node checks the node properties only if a value

is not available in Destination (as described above).

v If you set Destination Mode to Reply To Queue, the message is sent to the

reply-to queue identified in the MQMD in this message (field ReplyToQ).

Destination is not referenced by the node.

To find more information about ESQL procedures that perform typical updates to

the LocalEnvironment see “Populating Destination in the LocalEnvironment tree”

on page 311. Review the ESQL statements in these procedures to see how to

modify LocalEnvironment. You can use these procedures unchanged, or modify

them for your own requirements.

To find more information about how to extend the contents of this tree for your

own purposes see “Using scratchpad areas in LocalEnvironment” on page 310.

For another example of how you can use LocalEnvironment to modify the

behavior of a message flow, refer to the XML_PassengerQuery message flow in the

following sample program:

v Airline Reservations sample

Developing message flows 309

|
|
|
|
|
|
|

|
|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm

The Compute node in this message flow writes a list of destinations in the

RouterList subtree of Destination that are used as labels by a later RouteToLabel

node that propagates the message to the corresponding Label node. You can view

samples only when you use the information center that is integrated with the

Message Broker Toolkit.

Using scratchpad areas in LocalEnvironment:

The LocalEnvironment tree includes a subtree called Variables. This is always

created, but is never populated by the message flow. Use this area for your own

purposes, for example to pass information from one node to another. You can

create other subtrees in the LocalEnvironment tree if you choose.

The advantage of creating your own data in a scratchpad in the LocalEnvironment

is that this data can be propagated as part of the logical tree to subsequent nodes

in the message flow. If you create a new output message in a Compute node, you

can also include all or part of the LocalEnvironment tree from the input message in

the new output message.

To ensure that the information in the LocalEnvironment is propagated further

down the flow, the Compute mode property of the Compute node must be set to

include LocalEnvironment as part of the output tree (for example, specify

LocalEnvironment and Message). See “Setting the mode” on page 841 for further

details about Compute mode.

However, any data updates or additions that you make in one node are not

retained if the message flows backwards through the message flow (for example, if

an exception is thrown). If you create your own data, and want that data to be

preserved throughout the message flow, you must use the Environment tree.

You can set values in the Variables subtree in a Compute node that are used later

by another node (Compute, Database, or Filter) for some purpose that you

determine when you configure the message flow.

Because LocalEnvironment is not in scope in a Compute node,

InputLocalEnvironment and OutputLocalEnvironment must be used instead.

For example, you might use the scratchpad in the LocalEnvironment to propagate

the destination of an output message to subsequent nodes in a message flow. Your

first Compute node determines that the output messages from this message flow

must go to WebSphere MQ queues. Include the following ESQL to insert this

information into the LocalEnvironment by setting the value of OutputLocation in

the OutputLocalEnvironment:

Your second Compute node can access this information from its input message. In

the ESQL in this node, use the correlation name InputLocalEnvironment to identify

the LocalEnvironment tree within the input message that contains this data. The

following ESQL sets queueManagerName and queueName based on the content of

OutputLocation in the LocalEnvironment, using InputLocalEnvironment:

IF InputLocalEnvironment.Variables.OutputLocation = ’MQ’ THEN

 SET OutputLocalEnvironment.Destination.MQ.DestinationData.queueManagerName = ’myQManagerName’;

 SET OutputLocalEnvironment.Destination.MQ.DestinationData.queueName = ’myQueueName’;

END IF;

SET OutputLocalEnvironment.Variables.OutputLocation = ’MQ’;

310 Message Flows

In the example queueManagerName and queueName are set for the Destination

subtree in the output message. The Compute mode of the second compute node

must be set to include the LocalEnvironment tree in the output message. Configure

the MQOutput node to use the destination list that you have created in the

LocalEnvironment tree by setting property Destination Mode to Destination List.

For information about the full list of elements in the DestinationData subtree, see

“Data types for elements in the DestinationData subtree” on page 1401.

Populating Destination in the LocalEnvironment tree:

Use the Destination subtree to set up the target destinations that are used by

output nodes, the HTTPRequest node, SOAPRequest node, the

SOAPAsyncRequest, and the RouteToLabel node. The following examples show

how you can create and use an ESQL procedure to perform the task of setting up

values for each of these uses.

 Copy and use these procedures as shown, or you can modify or extend them to

perform similar tasks.

Adding a queue name for the MQOutput node

Changing the default URL for a SOAPRequest node or a SOAPAsyncRequest

node request

Changing the default URL for an HTTPRequest node request

CREATE PROCEDURE addToMQDestinationList(IN LocalEnvironment REFERENCE, IN newQueue char) BEGIN

 /***

 * A procedure that will add a queue name to the MQ destination list

 * in the local environment.

 * This list is used by a MQOutput node that has its mode set to Destination list.

 *

 * IN LocalEnvironment: LocalEnvironment to be modified.

 * Set this to OutputLocalEnvironment when calling this procedure

 * IN queue: queue to be added to the list

 *

 ***/

 DECLARE I INTEGER CARDINALITY(LocalEnvironment.Destination.MQ.DestinationData[]);

 IF I = 0 THEN

 SET LocalEnvironment.Destination.MQ.DestinationData[1].queueName = newQueue;

 ELSE

 SET LocalEnvironment.Destination.MQ.DestinationData[I+1].queueName = newQueue;

 END IF;

 END;

CREATE PROCEDURE overrideDefaultSOAPRequestURL(IN LocalEnvironment REFERENCE, IN newUrl char) BEGIN

 /***

 * A procedure that will change the URL to which the SOAPRequest node or

 * SOAPAsyncRequest node will send the request.

 *

 * IN LocalEnvironment: LocalEnvironment to be modified.

 * Set this to OutputLocalEnvironment when calling this procedure

 * IN queue: URL to send the request to.

 *

 ***/

 set OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.WebServiceURL= newUrl;

END;

Developing message flows 311

|
|
|
|
|
|
|
|
|
|
|
|

|

Adding a label for the RouteToLabel node

Setting up JMS destination lists

The following example shows how to set up JMS destination lists in the

LocalEnvironment tree.

Accessing the Environment tree:

The Environment tree has its own correlation name, Environment, and you must

use this name in all ESQL statements that refer to, or set, the content of this tree.

 The Environment tree is always created when the logical tree is created for an

input message. However, the message flow neither populates it, nor uses its

contents. You can use this tree for your own purposes, for example, to pass

information from one node to another. You can use the whole tree as a scratchpad

or working area.

The advantage of creating your own data in Environment is that this data is

propagated as part of the logical tree to subsequent nodes in the message flow. If

you create a new output message in a Compute node, the Environment tree is also

copied from the input message to the new output message. (In contrast to the

LocalEnvironment tree, which is only included in the output message if you

explicitly request that it is).

CREATE PROCEDURE overrideDefaultHTTPRequestURL(IN LocalEnvironment REFERENCE, IN newUrl char) BEGIN

 /***

 * A procedure that will change the URL to which the HTTPRequest node will send the request.

 *

 * IN LocalEnvironment: LocalEnvironment to be modified.

 * Set this to OutputLocalEnvironment when calling this procedure

 * IN queue: URL to send the request to.

 *

 ***/

 set LocalEnvironment.Destination.HTTP.RequestURL = newUrl;

END;

CREATE PROCEDURE addToRouteToLabelList(IN LocalEnvironment REFERENCE, IN newLabel char) BEGIN

 /***

 * A procedure that will add a label name to the RouteToLabel list

 * in the local environment.

 * This list is used by a RoteToLabel node.

 *

 * IN LocalEnvironment: LocalEnvironment to be modified.

 * Set this to OutputLocalEnvironment when calling this procedure

 * IN label: label to be added to the list

 *

 ***/

 if LocalEnvironment.Destination.RouterList.DestinationData is null then

 set LocalEnvironment.Destination.RouterList.DestinationData."label" = newLabel;

 else

 create LASTCHILD OF LocalEnvironment.Destination.RouterList.DestinationData

 NAME ’label’ VALUE newLabel;

 end if;

END;

CREATE PROCEDURE CreateJMSDestinationList() BEGIN

 SET OutputLocalEnvironment.Destination.JMSDestinationList.DestinationData[1] = ’jndi://TestDestQueue1’;

 SET OutputLocalEnvironment.Destination.JMSDestinationList.DestinationData[2] = ’jndi://TestDestQueue2’;

 SET OutputLocalEnvironment.Destination.JMSDestinationList.DestinationData[3] = ’jndi://TestDestQueue3’;

END;

312 Message Flows

Only one Environment tree is present for the duration of the message flow. Any

data updates, or additions, that you make in one node are retained, and all of the

nodes in the message flow have access to the latest copy of this tree. Even if the

message flows back through the message flow (for example, if an exception is

thrown, or if the message is processed through the second terminal of the

FlowOrder node), the latest state is retained. (In contrast to the LocalEnvironment

tree, which reverts to its previous state if the message flows back through the

message flow.)

You can use this tree for any purpose you choose. For example, you can use the

following ESQL statements to create fields in the tree:

This information is now available to all nodes to which a message is propagated,

regardless of their relative position in the message flow.

For another example of how you can use Environment to store information used

by other nodes in the message flow, look at the Reservation message flow in the

following sample:

v Airline Reservations sample

The Compute node in this message flow writes information to the subtree

Environment.Variables that it has extracted from a database according to the value

of a field in the input message.

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Accessing the ExceptionList tree:

The ExceptionList tree has its own correlation name, ExceptionList, and you must

use this in all ESQL statements that refer to or set the content of this tree.

 This tree is created with the logical tree when an input message is parsed. It is

initially empty, and is only populated if an exception occurs during message flow

processing. It is possible that more than one exception can occur; if more than one

exception occurs, the ExceptionList tree contains a subtree for each exception.

You can access the ExceptionList tree in Compute, Database, and Filter nodes, and

you can update it in a Compute node. You must use the appropriate correlation

name; ExceptionList for a Database or Filter node, and InputExceptionList for a

Compute node.

You might want to access this tree in a node in an error handling procedure. For

example, you might want to route the message to a different path based on the

type of exception, for example one that you have explicitly generated using an

ESQL THROW statement, or one that the broker has generated.

The following ESQL shows how you can access the ExceptionList and process each

child that it contains:

SET Environment.Variables =

 ROW(’granary’ AS bread, ’reisling’ AS wine, ’stilton’ AS cheese);

SET Environment.Variables.Colors[] =

 LIST{’yellow’, ’green’, ’blue’, ’red’, ’black’};

SET Environment.Variables.Country[] = LIST{ROW(’UK’ AS name, ’pound’ AS currency),

 ROW(’USA’ AS name, ’dollar’ AS currency)};

Developing message flows 313

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm

The following example shows an extract of ESQL that has been coded for a

Compute node to loop through the exception list to the last (nested) exception

description and extract the error number. This error relates to the original cause of

the problem and normally provides the most precise information. Subsequent

action taken by the message flow can be decided by the error number retrieved in

this way.

For more information about the use of ExceptionList, look at the subflow in the

following sample which includes ESQL that interrogates the ExceptionList

structure and takes specific action according to its content:

v Error Handler sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Transforming from one data type to another

You can use ESQL to transform messages and data types in many ways. The

following topics provide guidance about the following:

v “Casting data from message fields”

v “Converting code page and message encoding” on page 315

v “Converting EBCDIC NL to ASCII CR LF” on page 318

v “Changing message format” on page 320

Casting data from message fields:

-- Declare a reference for the ExceptionList

-- (in a Compute node use InputExceptionList)

DECLARE start REFERENCE TO ExceptionList.*[1];

-- Loop through the exception list children

WHILE start.Number IS NOT NULL DO

 -- more ESQL

 -- Move start to the last child of the field to which it currently points

 MOVE start LASTCHILD;

END WHILE;

CREATE PROCEDURE getLastExceptionDetail(IN InputTree reference,OUT messageNumber integer,

OUT messageText char)

 /**

 * A procedure that will get the details of the last exception from a message

 * IN InputTree: The incoming exception list

 * IN messageNumber: The last message numberr.

 * IN messageText: The last message text.

 ***/

 BEGIN

 -- Create a reference to the first child of the exception list

 declare ptrException reference to InputTree.*[1];

 -- keep looping while the moves to the child of exception list work

 WHILE lastmove(ptrException) DO

 -- store the current values for the error number and text

 IF ptrException.Number is not null THEN

 SET messageNumber = ptrException.Number;

 SET messageText = ptrException.Text;

 END IF;

 -- now move to the last child which should be the next exceptionlist

 move ptrException lastchild;

 END WHILE;

 END;

314 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.doc/doc/overview.htm

When you compare an element with another element, variable or constant, ensure

that the value with which you are comparing the element is consistent (for

example, character with character). If the values are not consistent, the broker

generates a runtime error if it cannot provide an implicit casting to resolve the

inconsistency. For details of what implicit casts are supported, see “Implicit casts”

on page 1652.

You can use the CAST function to transform the data type of one value to match

the data type of the other. For example, you can use the CAST function when you

process generic XML messages. All fields in an XML message have character

values, so if you want to perform arithmetic calculations or datetime comparisons,

for example, you must convert the string value of the field into a value of the

appropriate type using CAST.

In the Invoice message, the field InvoiceDate contains the date of the invoice. If

you want to refer to or manipulate this field, you must CAST it to the correct

format first. For example, to refer to this field in a test:

This converts the string value of the InvoiceDate field into a date value, and

compares it to the current date.

Another example is casting from integer to character:

Converting code page and message encoding:

You can use ESQL within a Compute node to convert data for code page and

message encoding. If your message flow is processing WebSphere MQ messages,

you can use WebSphere MQ facilities (including get and put options and

WebSphere MQ data conversion exits) to provide these conversions. If you are not

processing WebSphere MQ messages, or you choose not to use WebSphere MQ

facilities, you can use WebSphere Message Broker facilities by coding the

appropriate ESQL in a Compute node in your message flow.

The contents of the MQMD, the MQRFH2, and the message body of a message in

the MRM domain that has been modeled with a CWF physical format can be

subject to code page and encoding conversion. The contents of a message body of

a message in the XML, XMLNS, and JMS domains, and those messages in the

MRM domain that have been modeled with an XML or TDS physical format, are

treated as strings. Only code page conversion applies; no encoding conversion is

required.

For messages in the MRM domain modeled with a CWF physical format, you can

set the MQMD CCSID and Encoding fields of the output message, plus the CCSID

and Encoding of any additional headers, to the required target value.

IF CAST(Body.Invoice.InvoiceDate AS DATE) = CURRENT_DATE THEN

DECLARE I INTEGER 1;

DECLARE C CHARACTER;

-- The following statement generates an error

SET C = I;

-- The following statement is valid

SET C = CAST(I AS CHARACTER);

Developing message flows 315

For messages in the MRM domain modeled with an XML or TDS physical format,

you can set the MQMD CCSID field of the output message, plus the CCSID of any

additional headers. XML and TDS data is handled as strings and is therefore

subject to CCSID conversion only.

An example WebSphere MQ message has an MQMD header, an MQRFH2 header,

and a message body. To convert this message to a mainframe CodedCharSetId and

Encoding, code the following ESQL in the Compute node:

The following example illustrates what you must do to modify a CWF message so

that it can be passed from WebSphere Message Broker to IMS™ on z/OS.

1. You have defined the input message in XML and are using an MQRFH2

header. Remove the header before passing the message to IMS.

2. The message passed to IMS must have MQIIH header, and must be in the

z/OS code page. This message is modeled in the MRM and has the name

IMS1. Define the PIC X fields in this message as logical type string for

conversions between EBCDIC and ASCII to take place. If they are logical type

binary, no data conversion occurs; binary data is ignored when a CWF message

is parsed by the MRM parser.

3. The message received from IMS is also defined in the MRM and has the name

IMS2. Define the PIC X fields in this message as logical type string for

conversions between EBCDIC and ASCII to take place. If they are logical type

binary, no data conversion occurs; binary data is ignored when a CWF message

is parsed by the MRM parser.

4. Convert the reply message to the Windows code page. The MQIIH header is

retained on this message.

5. You have created a message flow that contains the following nodes: :

a. The outbound flow, MQInput1 --> Compute1 --> MQOutput1.

b. The inbound flow, MQInput2 --> Compute2 --> MQOutput2.
6. Code ESQL in Compute1 (outbound) node as follows, specifying the relevant

MessageSet id. This code shows the use of the default CWF physical layer

name. You must use the name that matches your model definitions. If you

specify an incorrect value, the broker fails with message BIP5431.

SET OutputRoot.MQMD.CodedCharSetId = 500;

SET OutputRoot.MQMD.Encoding = 785;

SET OutputRoot.MQRFH2.CodedCharSetId = 500;

SET OutputRoot.MQRFH2.Encoding = 785;

316 Message Flows

Note the use of a variable, J, that is initialized to the value of the cardinality of

the existing headers in the message. This is more efficient than calculating the

cardinality on each iteration of the loop, which happens if you code the

following WHILE statement:

7. Create ESQL in Compute2 (inbound) node as follows, specifying the relevant

MessageSet id. This code shows the use of the default CWF physical layer

name. You must use the name that matches your model definition. If you

specify an incorrect value, the broker fails with message BIP5431.

-- Loop to copy message headers

DECLARE I INTEGER 1;

DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

WHILE I < J - 1 DO

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I=I+1;

END WHILE;

SET OutputRoot.MQMD.CodedCharSetId = 500;

SET OutputRoot.MQMD.Encoding = 785;

SET OutputRoot.MQMD.Format = ’MQIMS ’;

SET OutputRoot.MQIIH.Version = 1;

SET OutputRoot.MQIIH.StrucLength = 84;

SET OutputRoot.MQIIH.Encoding = 785;

SET OutputRoot.MQIIH.CodedCharSetId = 500;

SET OutputRoot.MQIIH.Format = ’MQIMSVS ’;

SET OutputRoot.MQIIH.Flags = 0;

SET OutputRoot.MQIIH.LTermOverride = ’ ’;

SET OutputRoot.MQIIH.MFSMapName = ’ ’;

SET OutputRoot.MQIIH.ReplyToFormat = ’MQIMSVS ’;

SET OutputRoot.MQIIH.Authenticator = ’ ’;

SET OutputRoot.MQIIH.TranInstanceId = X’00000000000000000000000000000000’;

SET OutputRoot.MQIIH.TranState = ’ ’;

SET OutputRoot.MQIIH.CommitMode = ’0’;

SET OutputRoot.MQIIH.SecurityScope = ’C’;

SET OutputRoot.MQIIH.Reserved = ’ ’;

SET OutputRoot.MRM.e_elen08 = 30;

SET OutputRoot.MRM.e_elen09 = 0;

SET OutputRoot.MRM.e_string08 = InputBody.e_string01;

SET OutputRoot.MRM.e_binary02 = X’31323334353637383940’;

SET OutputRoot.Properties.MessageDomain = ’MRM’;

SET OutputRoot.Properties.MessageSet = ’DHCJOEG072001’;

SET OutputRoot.Properties.MessageType = ’IMS1’;

SET OutputRoot.Properties.MessageFormat = ’Binary1’;

WHILE I < CARDINALITY(InputRoot.*[]) DO

Developing message flows 317

You do not have to set any specific values for the MQInput1 node properties,

because the message and message set are identified in the MQRFH2 header, and

no conversion is required.

You must set values for message domain, set, type, and format in the MQInput

node for the inbound message flow (MQInput2). You do not need to set conversion

parameters.

One specific situation in which you might need to convert data in one code page

to another is when messages contain new line indicators and are passing between

EBCDIC and ASCII systems. The required conversion for this situation is described

in “Converting EBCDIC NL to ASCII CR LF.”

Converting EBCDIC NL to ASCII CR LF:

This topic describes an example task that changes new line (NL) characters in a

text message to carriage return (CR) and line feed (LF) character pairs.

This conversion might be useful if messages from an EBCDIC platform (for

example, using CCSID 1047) are sent to an ASCII platform (for example, using

CCSID 437). Problems can arise because the EBCDIC NL character hex ’15’ is

converted to the undefined ASCII character hex ’7F’. There is no corresponding

code point for the NL character in the ASCII code page.

In this example, a message flow is created that interprets the input message as a

message in the BLOB domain. This is passed into a ResetContentDescriptor node

to reset the data to a message in the MRM domain. The message is called msg_nl

(a set of repeating string elements delimited by EBCDIC NL characters). A

Compute node is then used to create an output based on another message in the

MRM domain called msg_crlf (a set of repeating string elements delimited by CR

LF pairs). The message domain is then changed back to BLOB in another

ResetContentDescriptor node. This message flow is illustrated below.

-- Loop to copy message headers

DECLARE I INTEGER 1;

DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

WHILE I < J DO

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I=I+1;

END WHILE;

SET OutputRoot.MQMD.CodedCharSetId = 437;

SET OutputRoot.MQMD.Encoding = 546;

SET OutputRoot.MQMD.Format = ’MQIMS ’;

SET OutputRoot.MQIIH.CodedCharSetId = 437;

SET OutputRoot.MQIIH.Encoding = 546;

SET OutputRoot.MQIIH.Format = ’ ’;

SET OutputRoot.MRM = InputBody;

SET OutputRoot.Properties.MessageDomain = ’MRM’;

SET OutputRoot.Properties.MessageSet = ’DHCJOEG072001’;

SET OutputRoot.Properties.MessageType = ’IMS2’;

SET OutputRoot.Properties.MessageFormat = ’Binary1’;

318 Message Flows

The following instructions show how to create the messages and configure the

message flow.

1. Create the message models for the messages in the MRM domain:

a. Create a message set project called myProj.

b. Create a message set called myMessageSet with a TDS physical format (the

default name is Text1).

c. Create an element string1 of type xsd:string.

d. Create a complex type called t_msg_nl and specify the following complex

type properties:

v Composition = Ordered Set

v Content Validation = Closed

v Data Element Separation = All Elements Delimited

v Delimiter = <U+0085> (hex ’0085’ is the UTF-16 representation of a NL

character)

v Repeat = Yes

v Min Occurs = 1

v Max Occurs = 50 (the text of the message is assumed to consist of no

more than 50 lines)
e. Add Element string1 and set the following property:

v Repeating Element Delimiter = <U+0085>

f. Create a Message msg_nl and set its associated complex type to t_msg_nl

g. Create a complex type called t_msg_crlf and specify the following complex

type properties:

v Composition = Ordered Set

v Content Validation = Closed

v Data Element Separation = All Elements Delimited

v Delimiter <CR><LF> (<CR> and <LF> are the mnemonics for the CR and

LF characters)

v Repeat = Yes

v Min Occurs = 1

v Max Occurs = 50

h. Add Element string1 and set the following property:

v Repeating Element Delimiter = <CR><LF>

i. Create a Message msg_crlf and set complex type to t_msg_crlf.
2. Configure the message flow shown in the figure above:

a. Start with the MQInput node:

v Set Message Domain = BLOB

v Set Queue Name = <Your input message queue name>

b. Add the ResetContentDescriptor node, connected to the out terminal of

MQInput:

v Set Message Domain = MRM

v Select Reset Message Domain

Developing message flows 319

v Set Message Set = <Your Message Set ID> (this has a maximum of 13

characters)

v Select Reset Message Set

v Set Message Type = msg_nl

v Select Reset Message Type

v Set Message Format = Text1

v Select Reset Message Format

c. Add the Compute node, connected to the out terminal of

ResetContentDescriptor:

v Enter a name for the ESQL Module for this node, or accept the default

(<message flow name>_Compute).

v Right-click the Compute node and select Open ESQL. Code the following

ESQL in the module:

Note the use of a variable, J, initialized to the value of the cardinality of

the existing headers in the message. This is more efficient than calculating

the cardinality on each iteration of the loop, which happens if you code

the following WHILE statement:

d. Add the ResetContentDescriptor1 node, connected to the out terminal of the

Compute node:

v Set Message Domain = BLOB

v Select Reset Message Domain.
e. Finally, add the MQOutput node, connected to the out terminal of the

ResetContentDescriptor1 node. Configure its properties to direct the output

message to the required queue or queues.

Changing message format:

Use the Compute node to copy part of an input message to an output message.

The results of such a copy depend on the type of input and output parsers

involved.

Like parsers:

-- Declare local working variables

DECLARE I INTEGER 1;

DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

-- Loop to copy all message headers from input to output message

WHILE I < J DO

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I=I+1;

END WHILE;

-- Set new output message type which uses CRLF delimiter

SET OutputRoot.Properties.MessageType = ’t_msg_crlf’;

-- Loop to copy each instance of string1 child within message body

SET I = 1;

SET J = CARDINALITY("InputBody"."string1"[]);

WHILE I <= J DO

 SET "OutputRoot"."MRM"."string1"[I] = "InputBody"."string1"[I];

 SET I=I+1;

END WHILE;

WHILE I < CARDINALITY(InputRoot.*[]) DO

320 Message Flows

Where both the source and target messages have the same folder structure at root

level, a like-parser-copy is performed. For example:

This statement copies all the children in the MQMD folder of the input message to

the MQMD folder of the output message.

Another example of a tree structure that supports a like-parser-copy is:

To transform an input message in the MRM domain to an output message also in

the MRM domain, you can use either the Compute or the Mapping node. The

Mapping node can interpret the action that is required because it knows the format

of both messages. Content Assist in the ESQL module for the Compute node can

also use the message definitions for those messages. If the messages are not in the

same namespace, you must use the Compute node.

To use Content Assist with message references, you must set up a project reference

from the project containing the ESQL to the project containing the message set. For

information about setting up a project reference, see Project references.

If both input and output messages are not in the MRM domain, you must use the

Compute node and specify the structure of the messages yourself.

Unlike parsers:

Where the source and target messages have different folder structures at root level,

you cannot make an exact copy of the message source. Instead, the

unlike-parser-copy views the source message as a set of nested folders terminated

by a leaf name-value pair. For example, copying the following message from XML

to MRM:

produces a name element Name3, and a name-value element called Name31 with

the value Value31. The second XML pcdata (Value32) cannot be represented and is

discarded.

The unlike-parser-copy scans the source tree, and copies folders, also known as

name elements, and leaf name-value pairs. Everything else, including elements

flagged as special by the source parser, is not copied.

An example of a tree structure that results in an unlike-parser-copy is:

If the algorithm used to make an unlike-parser-copy does not suit your tree

structure, you should further qualify the source field to restrict the amount of tree

copied.

Be careful when you copy information from input messages to output messages in

different domains. You could code ESQL that creates a message structure or

content that is not completely consistent with the rules of the parser that processes

the output message. This action can result in an output message not being created,

or being created with unexpected content. If you believe that the output message

SET OutputRoot.MQMD = InputRoot.MQMD;

SET OutputRoot.XMLNS.Data.Account = InputRoot.XMLNS.Customer.Bank.Data;

<Name3><Name31>Value31</Name31>Value32</Name3>

SET OutputRoot.MRM.Data.Account = InputRoot.XMLNS.Data.Account;

Developing message flows 321

generated by a particular message flow does not contain the correct content, or

have the expected form, check the ESQL that creates the output message, and look

for potential mismatches of structure, field types, field names, and field values.

When copying trees between unlike parsers, you should set the message format of

the target parser. For example, if a message set has been defined with XMLNS and

CWF formats, the following commands are required to copy an input XMLNS

stream to the MRM parser and set the latter to be generated in CWF format:

-- Copy message to the output, moving from XMLNS to MRM domains

SET OutputRoot.MRM = InputRoot.XMLNS.rootElement;

-- Set the CWF format for output by the MRM domain

SET OutputRoot.Properties.MessageType = ’<MessageTypeName>’;

SET OutputRoot.Properties.MessageSet = ’<MessageSetName>’;

SET OutputRoot.Properties.MessageFormat = ’CWF’;

Adding keywords to ESQL files

You can add keywords to ESQL files to contain information that you want to

associate with a message flow.

Use one or more of the following methods:

Comment fields

 Add the keyword as a comment in the ESQL file:

-- $MQSI compiled by = John MQSI$

Static strings

 Include the keyword as part of a static string in the ESQL file:

SET target = ’$MQSI_target = production only MQSI$’

Variable string

 Include the keyword value as a variable string in the ESQL file:

$MQSI_VERSION=$id$MQSI$

In this example, when the message flow source is extracted from the file

repository, the repository’s plug-in has been configured to substitute the

identifier id with the actual version number. The identifier value that is

required depends on the capability and configuration of the repository, and

is not part of WebSphere Message Broker.

Restrictions within keywords

Do not use the following characters within keywords, because they cause

unpredictable behavior:

^$.|\<>?+*=&[]

You can use these characters in the values that are associated with keywords; for

example:

v $MQSI RCSVER=$id$ MQSI$ is acceptable

v $MQSI $name=Fred MQSI$ is not acceptable

Interaction with databases using ESQL

How to use ESQL statements and functions to access databases.

ESQL has a number of statements and functions for accessing databases:

v The “CALL statement” on page 1487 invokes a stored procedure.

322 Message Flows

v The “DELETE FROM statement” on page 1531 removes rows from a database

table.

v The “INSERT statement” on page 1538 adds a row to a database table.

v The “PASSTHRU function” on page 1659 can be used to make complex

selections.

v The “PASSTHRU statement” on page 1547 can be used to invoke administrative

operations (for example, creating a table).

v The “SELECT function” on page 1632 retrieves data from a table.

v The “UPDATE statement” on page 1560 changes one or more values stored in

zero or more rows.

You can access user databases from Compute, Database, and Filter nodes.

Note: There is no difference between the database access capabilities of these

nodes; their names are partly historical and partly based on typical usage.
You can use the data in the databases to update or create messages; or use the data

in the message to update or create data in the databases.

v Any node that uses any of the ESQL database statements or functions must have

its Data Source property set with the name (that is, the ODBC DSN) of a

database. The database must be accessible, operational, and allow the broker to

connect to it.

v All databases accessed from the same node must have the same ODBC

functionality as the database specified on the node’s Data Source property. This

requirement is always satisfied if the databases are of the same type (for

example, DB2 or Oracle), at the same level (for example, release 8.1 CSD3), and

on the same platform. Other database combinations may or may not have the

same ODBC functionality. If a node tries to access a database that does not have

the same ODBC functionality as the database specified on the node’s Data

Source property, the broker issues an error message.

v All tables referred to in a single SELECT FROM clause must be in the same

database.

You must ensure that suitable ODBC data sources have been created on the system

on which the broker is running. If you have used the mqsisetdbparms command to

set a user ID and password for a particular database, the broker uses these values

to connect to the database. If you have not set a user ID and password, the broker

uses the default database user ID and password that you supplied on the

mqsicreatebroker command (as modified by any subsequent mqsichangebroker

commands).

z/OS

On z/OS systems, use the JCL member BIPSDBP in the customization

data set <hlq>.SBIPPROC to perform the mqsisetdbparms command.

You must also ensure that the database user IDs have sufficient privileges to

perform the operations your flow requires. Otherwise errors will occur at runtime.

Select the Throw exception on database error property check box and the Treat

warnings as errors property check box, and set the Transaction property to

Automatic, to provide maximum flexibility.

v “Referencing columns in a database” on page 324

v “Selecting data from database columns” on page 325

v “Accessing multiple database tables” on page 329

v “Changing database content” on page 330

v “Checking returns to SELECT” on page 331

Developing message flows 323

v “Committing database updates” on page 332

v “Invoking stored procedures” on page 332

Referencing columns in a database:

While the standard SQL SELECT syntax is supported for queries to an external

database, there are a number of points to be borne in mind. You must prefix the

name of the table with the keyword Database to indicate that the SELECT is to be

targeted at the external database, rather than at a repeating structure in the

message.

The basic form of database SELECT is:

If necessary, you can specify a schema name:

where SCHEMA is the name of the schema in which the table TABLE1 is defined.

Include the schema if the user ID under which you are running does not match the

schema. For example, if your userID is USER1, the expression Database.TABLE1 is

equivalent to Database.USER1.TABLE1. However, if the schema associated with the

table in the database is db2admin, you must specify Database.db2admin.TABLE1.

If you do not include the schema, and this does not match your current user ID,

the broker generates a runtime error when a message is processed by the message

flow.

If, as in the two previous examples, a data source is not specified, TABLE1 must be

a table in the default database specified by the node’s data source property. To

access data in a database other than the default specified on the node’s data

source property, you must specify the data source explicitly. For example:

Qualify references to column names with either the table name or the correlation

name defined for the table by the FROM clause. So, where you could normally

execute a query such as:

you must write one of the following two forms:

This is necessary in order to distinguish references to database columns from any

references to fields in a message that might also appear in the SELECT:

SELECT ...

 FROM Database.TABLE1

 WHERE ...

SELECT ...

 FROM Database.SCHEMA.TABLE1

 WHERE ...

SELECT ...

 FROM Database.DataSource.SCHEMA.TABLE1

 WHERE ...

SELECT column1, column2 FROM table1

SELECT T.column1, T.column2 FROM Database.table1 AS T

SELECT table1.column1, table1.column2 FROM Database.table1

SELECT T.column1, T.column2 FROM Database.table1

 AS T WHERE T.column3 = Body.Field2

324 Message Flows

You can use the AS clause to rename the columns returned. For example:

The standard select all SQL option is supported in the SELECT clause. If you use

this option, you must qualify the column names with either the table name or the

correlation name defined for the table. For example:

When you use ESQL procedure and function names within a database query, the

positioning of these within the call affects how these names are processed. If it is

determined that the procedure or function affects the results returned by the query,

it is not processed as ESQL and is passed as part of the database call.

This applies when attempting to use a function or procedure name with the

column identifiers within the SELECT statement.

For example, if you use a CAST statement on a column identifier specified in the

Select clause, this is used during the database query to determine the data type of

the data being returned for that column. An ESQL CAST is not performed to that

ESQL data type, and the data returned is affected by the database interaction’s

interpretation of that data type.

If you use a function or procedure on a column identifier specified in the WHERE

clause, this is passed directly to the database manager for processing.

The examples in the subsequent topics illustrate how the results sets of external

database queries are represented in WebSphere Message Broker. The results of

database queries are assigned to fields in a message using a Compute node.

A column function is a function that takes the values of a single column in all the

selected rows of a table or message and returns a single scalar result.

Selecting data from database columns:

You can configure a Compute, Filter, or Database node to select data from database

columns and include it in an output message.

 The following example assumes that you have a database table called USERTABLE

with two char(6) data type columns (or equivalent), called Column1 and Column2.

The table contains two rows:

 Column1 Column2

Row 1 value1 value2

Row 2 value3 value4

Configure the Compute, Filter, or Database node to identify the database in which

you have defined the table. For example, if you are using the default database

(specified on the data source property of the node), right-click the node, select

Open ESQL, and code the following ESQL statements in the module for this node:

SELECT T.column1 AS price, T.column2 AS item

 FROM Database.table1 AS T WHERE...

SELECT T.* FROM Database.Table1 AS T

Developing message flows 325

This produces the following output message:

To trigger the SELECT, send a trigger message with an XML body that is of the

following form:

The exact structure of the XML is not important, but the enclosing tag must be

<Test> to match the reference in the ESQL. If the enclosing tag is not <Test>, the

ESQL statements result in top-level enclosing tags being formed, which is not valid

XML.

If you want to create an output message that includes all the columns of all the

rows that meet a particular condition, use the SELECT statement with a WHERE

clause:

The message fields are created in the same order as the columns occur in the table.

If you are familiar with SQL in a database environment, you might expect to code

SELECT *. This is not accepted by the broker because you must start all references

to columns with a correlation name. This avoids ambiguities with declared

variables. Also, if you code SELECT I.*, this is accepted by the broker but the * is

interpreted as the first child element, not all elements, as you might expect from

other database SQL.

SET OutputRoot = InputRoot;

DELETE FIELD OutputRoot.*[<];

SET OutputRoot.XML.Test.Result[] =

 (SELECT T.Column1, T.Column2 FROM Database.USERTABLE AS T);

<Test>

 <Result>

 <Column1>value1</Column1>

 <Column2>value2</Column2>

 </Result>

 <Result>

 <Column1>value3</Column1>

 <Column2>value4</Column2>

 </Result>

</Test>

Figure 3. Output message

<Test>

 <Result>

 <Column1></Column1>

 <Column2></Column2>

 </Result>

 <Result>

 <Column1></Column1>

 <Column2></Column2>

 </Result>

</Test>

-- Declare and initialize a variable to hold the

-- test vaue (in this case the surname Smith)

DECLARE CurrentCustomer STRING ’Smith’;

-- Loop through table records to extract matching information

SET OutputRoot.XML.Invoice[] =

 (SELECT R FROM Database.USERTABLE AS R

 WHERE R.Customer.LastName = CurrentCustomer

);

326 Message Flows

The assignment of the result set of a database into a parser-owned message tree

requires the result set to exactly match the message definition. Because the generic

XML parser is self-defining, the example creates a new subtree off the Invoice

folder, and the parser can parse the new elements in the subtree. If the structure of

the result set exactly matches the message definition, the result set can be assigned

directly into the OutputRoot message body tree.

If the structure of the result set does not exactly match the MRM message

definition, you must first assign the result set into a ROW data type, or an

Environment tree that doesn’t have any parsers associated with it.

The required data can then be assigned to OutputRoot to build a message tree that

conforms to the message definition.

Selecting data from a table in a case-sensitive database system:

If the database system is case-sensitive, you must use an alternative approach. This

approach is also necessary if you want to change the name of the generated field

to something different:

This example produces the same Figure 3 on page 326 shown above. Ensure that

references to the database columns (in this example, T.Column1 and T.Column2)

are specified in the correct case to match the database definitions exactly. If you do

not match the database definitions exactly (for example if you specify

T.COLUMN1), the broker generates a runtime error. Note the use of Column1 and

Column2 in the SELECT statement. You can use any values here; the values do not

have to match the names of the columns that you have defined in the database as

they do in this example.

Selecting bitstream data from a database:

These samples show how to retrieve XML bitstream data from a database and

include it in an output message. See “INSERT statement” on page 1538 for

examples that show how you can insert bitstream data into a database.

In the following example, bitstream data is held in a database column with a BLOB

data type. Note that the database table used in the example (TABLE1) is the one

created in the “INSERT statement” on page 1538 examples, and the table contains

the following columns:

v MSGDATA

v MSGCCSID

v MSGENCODING

If the bit stream from the database does not need to be interrogated or

manipulated by the message flow, the output message can be constructed in the

BLOB domain without any alteration.

In the following example, the message data, along with the MQMD header, is held

in a database column with a BLOB data type. To recreate the message tree,

including the MQMD header, from the bit stream, you can use a CREATE

statement with a PARSE clause and DOMAIN(’MQMD’). The output message can then

be modified by the message flow:

SET OutputRoot = InputRoot;

SET OutputRoot.XML.Test.Result[] =

 (SELECT T.Column1 AS Column1, T.Column2 AS Column2

 FROM Database.USERTABLE AS T);

Developing message flows 327

|
|
|
|

|

|

|

|
|
|
|
|

SET Environment.Variables.DBResult = THE(SELECT T.* FROM Database.TABLE1 AS T);

DECLARE resultRef REFERENCE TO Environment.Variables.DBResult;

IF LASTMOVE(resultRef) THEN

 DECLARE outMsg BLOB resultRef.MSGDATA ;

 DECLARE outCCSID INT resultRef.MSGCCSID;

 DECLARE outEncoding INT resultRef.MSGENCODING;

 DECLARE outMsgPriority INT resultRef.MSGPRIORITY;

 DECLARE outMsgSeqNum INT resultRef.MSGSEQNUMBER;

 SET OutputRoot.Properties.CodedCharSetId = outCCSID;

 SET OutputRoot.Properties.Encoding = outEncoding ;

 CREATE LASTCHILD OF OutputRoot DOMAIN(’MQMD’) PARSE(outMsg, outEncoding, outCCSID);

 SET OutputRoot.MQMD.StrucId = MQMD_STRUC_ID;

 SET OutputRoot.MQMD.Version = MQMD_VERSION_2;

 SET OutputRoot.MQMD.Priority = outMsgPriority;

 SET OutputRoot.MQMD.MsgSeqNumber = outMsgSeqNum;

 DECLARE HDRL INT ;

 SET HDRL = LENGTH(BITSTREAM(OutputRoot.MQMD));

 CREATE FIELD OutputRoot."BLOB"."BLOB";

 DECLARE MSGB BLOB;

 SET MSGB = SUBSTRING(outMsg FROM HDRL +1);

 SET OutputRoot."BLOB"."BLOB" = MSGB;

END IF;

If you want to interrogate or manipulate a bit stream extracted from a database,

you must re-create the original message tree. To re-create the XML message tree

from the bit stream you can use a CREATE statement with a PARSE clause. The

output message can then be modified by the message flow. The following example

shows how to re-create the message tree in the XMLNS domain:

CALL CopyMessageHeaders();

 SET Environment.Variables.DBResult = THE(SELECT T.* FROM Database.TABLE1 AS T);

 DECLARE resultRef REFERENCE TO Environment.Variables.DBResult;

 IF LASTMOVE(resultRef) THEN

 DECLARE outCCSID INT resultRef.MSGCCSID;

 DECLARE outEncoding INT resultRef.MSGENCODING;

 DECLARE outMsg BLOB resultRef.MSGDATA;

 SET OutputRoot.Properties.CodedCharSetId = outCCSID;

 SET OutputRoot.Properties.Encoding = outEncoding;

 CREATE LASTCHILD OF OutputRoot DOMAIN(’XMLNS’) PARSE(outMsg, outEncoding, outCCSID);

 -- Now modify the message tree fields

 SET OutputRoot.XMLNS.A.B = 4;

 SET OutputRoot.XMLNS.A.E = 5;

 END IF;

In the following example, the data is held in a database column with a character

data type, such as CHAR or VARCHAR. A cast is used to convert the data

extracted from the database into BLOB format. If the bitstream data from the

database does not need to be interrogated or manipulated by the message flow, the

output message can be constructed in the BLOB domain, without any alteration.

CALL CopyMessageHeaders();

 SET Environment.Variables.DBResult = THE(SELECT T.* FROM Database.TABLE1 AS T);

 DECLARE resultRef REFERENCE TO Environment.Variables.DBResult;

 IF LASTMOVE(resultRef) THEN

 DECLARE outCCSID INT resultRef.MSGCCSID;

 DECLARE outMsg BLOB CAST(resultRef.MSGDATA AS BLOB CCSID outCCSID);

328 Message Flows

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

SET OutputRoot.Properties.CodedCharSetId = outCCSID;

 SET OutputRoot.Properties.Encoding = resultRef.MSGENCODING;

 SET OutputRoot.BLOB.BLOB = outMsg;

 END IF;

In the following example, the data is held in a database column with a character

data type, such as CHAR or VARCHAR. A cast is used to convert the data

extracted from the database into BLOB format. To manipulate or interrogate this

data within the message flow, you must re-create the original message tree. In this

example, a CREATE statement with a PARSE clause is used to re-create the XML

message tree in the XMLNS domain.

CALL CopyMessageHeaders();

 SET Environment.Variables.DBResult = THE(SELECT T.* FROM Database.TABLE1 AS T);

 DECLARE resultRef REFERENCE TO Environment.Variables.DBResult;

 IF LASTMOVE(resultRef) THEN

 DECLARE outCCSID INT resultRef.MSGCCSID;

 DECLARE outEncoding INT resultRef.MSGENCODING;

 DECLARE outMsg BLOB CAST(resultRef.MSGDATA AS BLOB CCSID outCCSID);

 SET OutputRoot.Properties.CodedCharSetId = outCCSID;

 SET OutputRoot.Properties.Encoding = outEncoding;

 CREATE LASTCHILD OF OutputRoot DOMAIN(’XMLNS’) PARSE(outMsg, outEncoding, outCCSID);

 -- Now modify the message tree fields

 SET OutputRoot.XMLNS.A.B = 4;

 SET OutputRoot.XMLNS.A.E = 5;

 END IF;

Accessing multiple database tables:

You can refer to multiple tables that you have created in the same database. Use

the FROM clause on the SELECT statement to join the data from the two tables.

The following example assumes that you have two database tables called

USERTABLE1 and USERTABLE2. Both tables have two char(6) data type columns

(or equivalent).

USERTABLE1 contains two rows:

 Column1 Column2

Row 1 value1 value2

Row 2 value3 value4

USERTABLE2 contains two rows:

 Column3 Column4

Row 1 value5 value6

Row 2 value7 value8

All tables referenced by a single SELECT function must be in the same database.

The database can be either the default (specified on the “data source” property of

the node) or another database (specified on the FROM clause of the SELECT

function).

Configure the Compute, Filter, or Database node that you’re using to identify the

database in which you have defined the tables. For example, if you’re using the

default database, right-click the node, select Open ESQL, and code the following

Developing message flows 329

ESQL statements in the module for this node:

This results in the following output message content:

The example above shows how to access data from two database tables. You can

code more complex FROM clauses to access multiple database tables (although all

the tables must be in the same database). You can also refer to one or more

message trees, and can use SELECT to join tables with tables, messages with

messages, or tables with messages. “Joining data from messages and database

tables” on page 351 provides an example of how to merge message data with data

in a database table.

(defined by the data source property of the node).

If you specify an ESQL function or procedure on the column identifier in the

WHERE clause, this is processed as part of the database query and not as ESQL.

Consider the following example:

This attempts to return the rows where the value of Column2 converted to upper

case is VALUE2. However, only the database manager can determine the value of

T.Column2 for any given row, and therefore it cannot be processed by ESQL before

the database query is issued, because the WHERE clause determines the rows that

are returned to the message flow.

Therefore, the UPPER is passed to the database manager to be included as part of

its processing. However, if the database manager cannot process the token within

the select statement, an error is returned.

Changing database content:

You can code ESQL in the Compute, Database, and Filter nodes to change the

contents of a database in the following ways:

v Update data in a database

v Insert data into a database

v Delete data from a database

SET OutputRoot.XML.Test.Result[] =

 (SELECT A.Column1 AS FirstColumn,

 A.Column2 AS SecondColumn,

 B.Column3 AS ThirdColumn,

 B.Column4 AS FourthColumn

 FROM Database.USERTABLE1 AS A,

 Database.USERTABLE2 AS B

 WHERE A.Column1 = ’value1’ AND

 B.Column4 = ’value8’

);

<Test>

 <Result>

 <FirstColumn>value1</FirstColumn>

 <SecondColumn>value2</SecondColumn>

 <ThirdColumn>value7</ThirdColumn>

 <FourthColumn>value8</FourthColumn>

 </Result>

</Test>

 SET OutputRoot.XML.Test.Result =

 THE(SELECT ITEM T.Column1 FROM Database.USERTABLE1 AS T

 WHERE UPPER(T.Column2) = ’VALUE2’);

330 Message Flows

The following ESQL code includes statements that show all three operations. This

code is appropriate for a Database and Filter node; if you create this code for a

Compute node, use the correlation name InputRoot in place of Root.

Checking returns to SELECT:

If a SELECT function returns no data, or no further data, this result is handled as a

normal situation and no error code is set in SQLCODE, regardless of the setting of

the Throw Exception On Database Error and Treat Warnings As Errors properties

on the current node.

 To recognize that a SELECT function has returned no data, include ESQL that

checks what has been returned. You can use various methods:

1. EXISTS

This ESQL returns a Boolean value that indicates if a SELECT function returned

one or more values (TRUE), or none (FALSE).

IF EXISTS(SELECT T.MYCOL FROM Database.MYTABLE) THEN

...

2. CARDINALITY

If you expect an array in response to a SELECT, you can use CARDINALITY to

calculate how many entries have been received.

SET OutputRoot.XMLNS.Testcase.Results[] = (

 SELECT T.MYCOL FROM Database.MYTABLE)

......

IF CARDINALITY (OutputRoot.XMLNS.Testcase.Results[])> 0 THEN

........

3. IS NULL

If you have used either THE or ITEM keywords in your SELECT function, a

scalar value is returned. If no rows have been returned, the value set is NULL.

However, it is possible that the value NULL is contained within the column,

and you might want to distinguish between these two cases.

Distinguish between cases by including COALESCE in the SELECT function,

for example:

IF Root.XMLNS.TestCase.Action = ’INSERT’ THEN

 INSERT INTO Database.STOCK (STOCK_ID, STOCK_DESC, STOCK_QTY_HELD,

 BROKER_BUY_PRICE, BROKER_SELL_PRICE, STOCK_HIGH_PRICE, STOCK_HIGH_DATE,

 STOCK_HIGH_TIME) VALUES

 (CAST(Root.XMLNS.TestCase.stock_id AS INTEGER),

 Root.XMLNS.TestCase.stock_desc,

 CAST(Root.XMLNS.TestCase.stock_qty_held AS DECIMAL),

 CAST(Root.XMLNS.TestCase.broker_buy_price AS DECIMAL),

 CAST(Root.XMLNS.TestCase.broker_sell_price AS DECIMAL),

 Root.XMLNS.TestCase.stock_high_price,

 CURRENT_DATE,

 CURRENT_TIME);

ELSEIF Root.XMLNS.TestCase.Action = ’DELETE’ THEN

 DELETE FROM Database.STOCK WHERE STOCK.STOCK_ID =

 CAST(Root.XMLNS.TestCase.stock_id AS INTEGER);

 ELSEIF Root.XMLNS.TestCase.Action = ’UPDATE’ THEN

 UPDATE Database.STOCK as A SET STOCK_DESC = Root.XMLNS.TestCase.stock_desc

 WHERE A.STOCK_ID = CAST(Root.XMLNS.TestCase.stock_id AS INTEGER);

END IF;

Developing message flows 331

SET OutputRoot.XMLNS.Testcase.Results VALUE = THE (

 SELECT ITEM COALESCE(T.MYCOL, ’WAS NULL’)

 FROM Database.MYTABLE);

If this example returns the character string WAS NULL, it indicates that the

column contained NULL, and not that no rows were returned.

In previous releases, an SQLCODE of 100 was set in most cases if no data, or no

further data, was returned. An exception was raised by the broker if you chose to

handle database errors in the message flow.

Committing database updates:

When you create a message flow that interacts with databases, you can choose

whether the updates that you make are committed when the current node has

completed processing, or when the current invocation of the message flow has

terminated.

For each node, select the appropriate option for the Transaction property to specify

when its database updates are to be committed:

v Choose Automatic (the default) if you want updates made in this node to be

committed or rolled back as part of the whole message flow. The actions that

you define in the ESQL module are performed on the message and it continues

through the message flow. If the message flow completes successfully, the

updates are committed. If the message flow fails, the message and the database

updates are rolled back.

v Choose Commit if you want to commit the action of the node on the database,

irrespective of the success or failure of the message flow as a whole. The

database update is committed when the node processing is successfully

completed, that is, after all ESQL has been processed, even if the message flow

itself detects an error in a subsequent node that causes the message to be rolled

back.

The value that you choose is implemented for the database tables that you have

updated. You cannot select a different value for each table.

If you have set Transaction to Commit, the behavior of the message flow and the

commitment of database updates can be affected by the use of the PROPAGATE

statement.

If you choose to include a PROPAGATE statement in the node’s ESQL that

generates one or more output message from the node, the processing of the

PROPAGATE statement is not considered complete until the entire path that the

output message takes has completed. This path might include several other nodes,

including one or more output nodes. Only then does the node that issues the

PROPAGATE statement receive control back and its ESQL terminate. At that point,

a database commit is performed, if appropriate.

If one of the nodes on the propagated path detects an error and throws an

exception, the processing of the node in which you have coded the PROPAGATE

statement never completes. If the error processing results in a rollback, the message

flow and the database update in this node are rolled back. This behavior is consistent

with the stated operation of the Commit option, but might not be the behavior that

you expect.

Invoking stored procedures:

332 Message Flows

To invoke a procedure that is stored in a database, use the ESQL CALL statement.

The stored procedure must be defined by a “CREATE PROCEDURE statement” on

page 1511 that has:

v A Language clause of DATABASE

v An EXTERNAL NAME clause that identifies the name of the procedure in the

database and, optionally, the database schema to which it belongs.

When you invoke a stored procedure with the CALL statement, the broker ensures

that the ESQL definition and the database definition match:

v The external name of the procedure must match a procedure in the database.

v The number of parameters must be the same.

v The type of each parameter must be the same.

v The direction of each parameter (IN, OUT, INOUT) must be the same.

The following restrictions apply to the use of stored procedures:

v Overloaded procedures are not supported. (An overloaded procedure is one that

has the same name as another procedure in the same database schema with a

different number of parameters, or parameters with different types.) If the

broker detects that a procedure has been overloaded, it raises an exception.

v In an Oracle stored procedure declaration, you are not permitted to constrain

CHAR and VARCHAR2 parameters with a length, and NUMBER parameters

with a precision or scale, or both. Use %TYPE when you declare CHAR,

VARCHAR and NUMBER parameters to provide constraints on a formal

parameter.

Creating a stored procedure in ESQL:

When you define an ESQL procedure that corresponds to a database stored

procedure, you can specify either a qualified name (where the qualifier is a

database schema) or an unqualified name.

To create a stored procedure:

1. Code a statement similar to this example to create an unqualified procedure:

CREATE PROCEDURE myProc1(IN p1 CHAR) LANGUAGE DATABASE EXTERNAL NAME "myProc";

The EXTERNAL NAME that you specify must match the definition you have

created in the database, but you can specify any name you choose for the

corresponding ESQL procedure.

2. Code a statement similar to this example to create a qualified procedure:

CREATE PROCEDURE myProc2(IN p1 CHAR) LANGUAGE DATABASE EXTERNAL NAME "Schema1.myProc";

3. Code a statement similar to this example to create a qualified procedure in an

Oracle package:

CREATE PROCEDURE myProc3(IN p1 CHAR) LANGUAGE DATABASE EXTERNAL

 NAME "mySchema.myPackage.myProc";

For examples of stored procedure definitions in the database, see the “CREATE

PROCEDURE statement” on page 1511.

Calling a stored procedure:

1. Code a statement similar to this example to invoke an unqualified procedure:

CALL myProc1(’HelloWorld’);

Because it is not defined explicitly as belonging to any schema, the myProc1

procedure must exist in the default schema (the name of which is the user

name used to connect to the data source) or the command fails.

Developing message flows 333

2. The following example calls the myProc procedure in schema Schema1.

CALL myProc2(’HelloWorld’);

3. Code a statement similar to this example to invoke an unqualified procedure

with a dynamic schema:

DECLARE Schema2 char ’mySchema2’;

CALL myProc1(’HelloWorld’) IN Database.{’Schema2’};

This statement calls the myProc1 procedure in database Schema2, overriding the

default “username” schema.

Calling a stored procedure that returns two result sets:

To call a stored procedure that takes one input parameter and returns one output

parameter and two result sets:

1. Define the procedure with a CREATE PROCEDURE statement that specifies

one input parameter, one output parameter, and two result sets:

CREATE PROCEDURE myProc1 (IN P1 INT, OUT P2 INT)

 LANGUAGE DATABASE

 DYNAMIC RESULT SETS 2

 EXTERNAL NAME "myschema.myproc1";

2. To invoke the myProc1 procedure using a field reference, code:

/* using a field reference */

CALL myProc1(InVar1, OutVar2, Environment.ResultSet1[],

 OutputRoot.XMLNS.Test.ResultSet2[]);

3. To invoke the myProc1 procedure using a reference variable, code:

/* using a reference variable*/

DECLARE cursor REFERENCE TO OutputRoot.XMLNS.Test;

CALL myProc1(InVar1, cursor.OutVar2, cursor.ResultSet1[],

 cursor.ResultSet2[]);

Coding ESQL to handle errors

When you process messages in a message flow, errors can have a number of

different causes and the message flow designer must decide how to handle those

errors.

Introduction

When you process messages in message flows, errors can have the following

causes:

v External causes; for example, the incoming message is syntactically invalid, a

database used by the flow has been shut down, or the power supply to the

machine on which the broker is running fails.

v Internal causes; for example, an attempt to insert a row into a database table

fails because of a constraint check, or a character string that is read from a

database cannot be converted to a number because it contains alphabetic

characters.

Internal errors can be caused by programs storing invalid data in the database,

or by a flaw in the logic of a flow.

The message flow designer must decide how to handle errors.

Using default error-handling

The simplest strategy for handling ESQL errors is to do nothing and use the

broker’s default behavior. The default behavior is to cut short the processing of the

334 Message Flows

failing message and to proceed to the next message. Input and output nodes

provide options to control exactly what happens when processing is cut short.

If the input and output nodes are set to transactional mode, the broker restores the

state prior to the message being processed:

1. The input message that has apparently been taken from the input queue is put

back.

2. Any output messages that the flow has apparently written to output queues are

discarded.

If the input and output nodes are not set to transactional mode:

1. The input message that was taken from the input queue is not put back.

2. Any output messages that the flow has written to output queues remain on the

output queues.

Each of these strategies has its advantages. The transactional model preserves the

consistency of data, while the non-transactional model maximizes the continuity of

message processing. In the transactional model, the failing input message is put

back onto the input queue, and the broker attempts to process it again. The most

likely outcome of this scenario is that the message continues to fail until the retry

limit is reached, at which point the message is placed on a dead letter queue. The

reason for the failure to process the message is logged to the system event log

(Windows) or syslog (UNIX). Therefore, the failing message holds up the

processing of subsequent valid messages, and is left unprocessed by the broker.

Most databases operate transactionally so that all changes that are made to

database tables are committed if the processing of the message succeeds, or rolled

back if it fails, therefore maintaining the integrity of data. An exception to this

situation is if the broker itself, or a database, fails (for example, the power to the

computers on which they are running is interrupted). In these cases, changes might

be committed in some databases, but not in others, or the database changes might

be committed but the input and output messages are not committed. If these

possibilities concern you, make the flow coordinated and configure the databases

that are involved.

Using customized error handling: The following list contains some general tips

for creating customized error handlers.

v If you require something better than default error handling, the first step is to

use a handler; see “DECLARE HANDLER statement” on page 1530. Create one

handler per node to intercept all possible exceptions (or as many exceptions as

can be foreseen).

v Having intercepted an error, the error handler can use whatever logic is

appropriate to handle it. Alternatively, it can use a THROW statement or node to

create an exception, which could be handled higher in the flow logic, or even

reach the input node, causing the transaction to be rolled back; see “Throwing

an exception” on page 338.

v If a node generates an exception that is not caught by the handler, the flow is

diverted to the Failure terminal, if one is connected, or handled by default

error-handling if no Failure terminal is connected.

Use Failure terminals to catch unhandled errors. Attach a simple logic flow to

the Failure terminal. This logic flow could consist of a database or Compute

node that writes a log record to a database (possibly including the message’s bit

stream), or writes a record to the event log. The flow could also contain an

output node that writes the message to a special queue.

Developing message flows 335

The full exception tree is passed to any node that is connected to a Failure

terminal; see “Exception list tree structure” on page 67.

v Your error handlers are responsible for logging each error in an appropriate

place, such as the system event log.

For a detailed description of the options that you can use to process errors in a

message flow, see “Handling errors in message flows” on page 203. For examples

of what you can do, see “Throwing an exception” on page 338 and “Capturing

database state” on page 339.

Writing code to detect errors

The following sections assume that the broker detects the error. It is possible,

however, for the logic of the flow to detect an error. For example, when coding the

flow logic, you could use the following elements:

v IF statements that are inserted specifically to detect situations that should not

occur

v The ELSE clause of a case expression or statement to trap routes through the

code that should not be possible

As an example of a flow logic-detected error, consider a field that has a range of

possible integer values that indicate the type of message. It would not be good

practice to leave to chance what would happen if a message were to arrive in

which the field’s value did not correspond to any known type of message. One

way this situation could occur is if the system is upgraded to support extra types

of message, but one part of the system is not upgraded.

Using your own logic to handle input messages that are not valid

Input messages that are syntactically invalid (and input messages that appear to be

not valid because of erroneous message format information) are difficult to deal

with because the broker has no idea what the message contains. Typically, the best

way of dealing with these messages is to configure the input node to fully parse

and validate the message. However, this configuration applies only to predefined

messages, that is MRM or IDoc.

If the input node is configured in this way, the following results are guaranteed if

the input message cannot be parsed successfully:

v The input message never emerges from the node’s normal output terminal (it

goes to the Failure terminal).

v The input message never enters the main part of the message flow.

v The input message never causes any database updates.

v No messages are written to any output queues.

To deal with a failing message, connect a simple logic flow to the Failure terminal.

The only disadvantage to this strategy is that if the normal flow does not require

access to all of the message’s fields, the forcing of complete parsing of the message

affects performance.

Using your own logic to handle database errors

Database errors fall into three categories:

v The database is not working at all (for example, it’s off line).

v The database is working but refuses your request (for example, a lock contention

occurs).

336 Message Flows

v The database is working but what you ask it to do is impossible (for example, to

read from a non-existent table).

If you require something better than default error handling, the first step is to use

a handler (see “DECLARE HANDLER statement” on page 1530) to intercept the

exception. The handler can determine the nature of the failure from the SQL state

that is returned by the database.

A database is not working

If a database is not working at all, and is essential to the processing of

messages, there is typically not much that you can do. The handler, having

determined the cause, might perform any of the following actions:

v Use the RESIGNAL statement to re-throw the original error, therefore

allowing the default error handler to take over

v Use a different database

v Write the message to a special output queue

However, take care with this sort of strategy. The handler absorbs the

exception, therefore any changes to other databases, or writes to queues, are

committed.

A database refuses your request

The situation when a lock contention occurs is similar to the “Database not

working” case because the database will have backed out all the database

changes that you have made for the current message, not just the failing

request. Therefore, unless you are sure that this was the only update, default

error-handling is typically the best strategy, except possibly logging the error

or passing the message to a special queue.

Impossible requests

The case where the database is working but what you ask it to do is

impossible covers a wide variety of problems.

 If, as in the example, the database simply does not have a table of the name

that the flow expects, default error-handling is typically the best strategy,

except possibly logging the error or passing the message to a special queue.
Many other errors might be handled successfully, however. For example, an

attempt to insert a row might fail because there is already such a row and the

new row would be a duplicate. Or an attempt to update a row might fail

because there is no such row (that is, the update updated zero rows). In these

cases, the handler can incorporate whatever logic you think fit. It might insert

the missing row or utilize the existing one (possibly making sure the values in

it are suitable).

Note: For an update of zero rows to be reported as an error, the Treat

warnings as errors node property must be set to true, which is not the

default setting.

Using your own logic to handle errors in output nodes

Errors that occur in MQOutput nodes report the nature of the error in the SQL

state and give additional information in the SQL native error variable. Therefore, if

something better than default error handling is required, the first step is to use a

handler (see “DECLARE HANDLER statement” on page 1530) to intercept the

exception. Such a handler typically surrounds only a single PROPAGATE

statement.

Developing message flows 337

Using your own logic to handle other errors

Besides those errors covered above, a variety of other errors can occur. For

example, an arithmetic calculation might overflow, a cast might fail because of the

unsuitability of the data, or an access to a message field might fail because of a

type constraint. The broker offers two programming strategies for dealing with

these types of error.

v The error causes an exception that is either handled or left to roll back the

transaction.

v The failure is recorded as a special value that is tested for later.

In the absence of a type constraint, an attempt to access a non-existent message

field results in the value null. Null values propagate through expressions, making

the result null. Therefore, if an expression, however complex, does not return a

null value, you know that all the values that it needed to calculate its result were

not null.

Cast expressions can have a default clause. If there is a default clause, casts fail

quietly; instead of throwing an exception, they simply return the default value. The

default value could be an innocuous number (for example, zero for an integer), or

a value that is clearly invalid in the context (for example, -1 for a customer

number). Null might be particularly suitable because it is a value that is different

from all others, and it will propagate through expressions without any possibility

of the error condition being masked.

Handling errors in other nodes

Exceptions that occur in other nodes (that is, downstream of a PROPAGATE

statement) might be caught by handlers in the normal way. Handling such errors

intelligently, however, poses a problem: another node was involved in the original

error, therefore another node, and not necessarily the originator of the exception, is

likely to be involved in handling the error.

To help in these situations, the Database and Compute nodes have four terminals

called Out1, Out2, Out3, and Out4. In addition, the syntax of the PROPAGATE

statement includes target expression, message source, and control clauses to give

more control over these terminals.

Throwing an exception:

If you detect an error or other situation in your message flow in which you want

message processing to be ended, you can throw an exception in a message flow in

two ways:

1. Use the ESQL THROW EXCEPTION statement.

Include the THROW statement anywhere in the ESQL module for a Compute,

Database, or Filter node. Use the options on the statement to code your own

data to be inserted into the exception.

2. Include a THROW node in your message flow.

Set the node properties to identify the source and content of the exception.

Using either statement options or node properties, you can specify a message

identifier and values that are inserted into the message text to give additional

information and identification to users who interpret the exception. You can specify

any message in any catalog that is available to the broker. See Using event logging

from a user-defined extension for more information.

338 Message Flows

The situations in which you might want to throw an exception are determined by

the behavior of the message flow; decide when you design the message flow

where this action might be appropriate. For example, you might want to examine

the content of the input message to ensure that it meets criteria that cannot be

detected by the input node (which might check that a particular message format is

received).

The example below uses the example Invoice message to show how you can use

the ESQL THROW statement. If you want to check that the invoice number is

within a particular range, throw an exception for any invoice message received

that does not fall in the valid range.

Capturing database state:

This topic describes your options if an error occurs when accessing an external

database.

 If an error occurs when accessing an external database, you have two options:

v Let the broker throw an exception during node processing

v Process the exception within the node itself using ESQL statements

The first option is the default; ESQL processing in the current node is abandoned.

The exception is then propagated backwards through the message flow until an

enclosing catch node, or the input node for this message flow, is reached. If the

exception reaches the input node, any transaction is rolled back.

The second option requires an understanding of database return codes and a

logical course of action to take when an error occurs. To enable this inline database

error processing, you must clear the Filter, Database, or Compute node’s Throw

Exception On Database Error property. If you do this, the node sets the database

state indicators SQLCODE, SQLSTATE, SQLNATIVEERROR, and SQLERRORTEXT,

with appropriate information from the database manager instead of throwing an

exception.

The indicators contain information only when an error (not a warning) occurs,

unless you have selected the Treat Warnings As Errors property. In the case of

successful and success with information database operations, the indicators contain

their default success values.

You can use the values contained in these indicators in ESQL statements to make

decisions about the action to take. You can access these indicators with the

SQLCODE, SQLSTATE, SQLNATIVEERROR, and SQLERRORTEXT functions.

--Check for invoice number lower than permitted range

IF Body.Invoice.InvoiceNo < 100000 THEN

 THROW USER EXCEPTION CATALOG ’MyCatalog’ MESSAGE 1234 VALUES

 (’Invoice number too low’, Body.Invoice.InvoiceNo);

-- Check for invoice number higher than permitted range

ELSEIF Body.InvoiceNo> 500000 THEN

 THROW USER EXCEPTION CATALOG ’MyCatalog’ MESSAGE 1235 VALUES

 (’Invoice number too high’, Body.Invoice.InvoiceNo);

ELSE DO

 -- invoice number is within permitted range

 -- complete normal processing

ENDIF;

Developing message flows 339

If you are attempting inline error processing, you must check the state indicators

after each database statement is executed to ensure that you catch and assess all

errors. When processing the indicators, if you meet an error that you cannot

handle inline, you can raise a new exception either to deal with it upstream in a

catch node, or to let it through to the input node so that the transaction is rolled

back. You can use the ESQL THROW statement to do this.

You might want to check for the special case in which a SELECT returns no data.

This situation is not considered an error and SQLCODE is not set, so you must test

explicitly for it. This is described in “Checking returns to SELECT” on page 331.

Using ESQL to access database state indicators

The following ESQL example shows how to use the four database state functions,

and how to include the error information that is returned in an exception:

You do not have to throw an exception when you detect a database error; you

might prefer to save the error information returned in the LocalEnvironment tree,

and include a Filter node in your message flow that routes the message to error or

success subflows according to the values saved.

The following sample program provides another example of ESQL that uses these

database functions:

v Airline Reservations sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Using the SELECT function

The SELECT function is a convenient and powerful tool for accessing fields and

transforming data in a message tree.

The following topics show by example how to use the SELECT function to

transform a variety of messages. The examples are based on an XML input

message that has been parsed in the XMLNS domain. However, the techniques

shown in these topics can be applied to any message tree.

v “Transforming a simple message” on page 341

v “Transforming a complex message” on page 344

v “Returning a scalar value in a message” on page 346

DECLARE SQLState1 CHARACTER;

DECLARE SQLErrorText1 CHARACTER;

DECLARE SQLCode1 INTEGER;

DECLARE SQLNativeError1 INTEGER;

-- Make a database insert to a table that does not exist --

INSERT INTO Database.DB2ADMIN.NONEXISTENTTABLE (KEY,QMGR,QNAME)

 VALUES (45,’REG356’,’my TESTING 2’);

--Retrieve the database return codes --

SET SQLState1 = SQLSTATE;

SET SQLCode1 = SQLCODE;

SET SQLErrorText1 = SQLERRORTEXT;

SET SQLNativeError1 = SQLNATIVEERROR;

--Use the THROW statement to back out the database and issue a user exception--

THROW USER EXCEPTION MESSAGE 2950 VALUES

(’The SQL State’ , SQLState1 , SQLCode1 , SQLNativeError1 ,

SQLErrorText1);

340 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm

v “Joining data in a message” on page 348

v “Translating data in a message” on page 349

v “Joining data from messages and database tables” on page 351

Transforming a simple message:

When you code the ESQL for a Compute node, use the SELECT function to

transform simple messages.

 This topic provides examples of simple message transformation. Review the

examples and modify them for your own use. They are all based on the Invoice

message as input.

Consider the following ESQL:

When this ESQL code processes the Invoice message, it produces the following

output message:

Three Output fields are present, one for each Item field, because SELECT creates

an item in its result list for each item described by its FROM list. Within each

Output field, a Field is created for each field named in the SELECT clause. These

fields are in the order in which they are specified within the SELECT clause, not in

the order in which they appear in the incoming message.

The R that is introduced by the final AS keyword is known as a correlation name.

It is a local variable that represents in turn each of the fields addressed by the

FROM clause. The name chosen has no significance. In summary, this simple

transform does two things:

1. It discards unwanted fields.

2. It guarantees the order of the fields.

You can perform the same transform with a procedural algorithm:

 SET OutputRoot.XMLNS.Data.Output[] =

 (SELECT R.Quantity, R.Author FROM InputRoot.XMLNS.Invoice.Purchases.Item[] AS R

);

<Data>

 <Output>

 <Quantity>2</Quantity>

 <Author>Neil Bradley</Author>

 </Output>

 <Output>

 <Quantity>1</Quantity>

 <Author>Don Chamberlin</Author>

 </Output>

 <Output>

 <Quantity>1</Quantity>

 <Author>Philip Heller, Simon Roberts</Author>

 </Output>

</Data>

Developing message flows 341

These examples show that the SELECT version of the transform is much more

concise. It also executes faster.

The following example shows a more advanced transformation:

In this transform, an AS clause is associated with each item in the SELECT clause.

This clause gives each field in the result an explicit name rather than a field name

that is inherited from the input. These names can be paths (that is, a dot-separated

list of names), as shown in the example. The structure of the output message

structure can be different from the input message. Using the same Invoice message,

the result is:

The expressions in the SELECT clause can be of any complexity and there are no

special restrictions. They can include operators, functions, and literals, and they

can refer to variables or fields that are not related to the correlation name. The

following example shows more complex expressions:

DECLARE i INTEGER 1;

DECLARE count INTEGER CARDINALITY(InputRoot.XMLNS.Invoice.Purchases.Item[]);

WHILE (i <= count)

 SET OutputRoot.XMLNS.Data.Output[i].Quantity = InputRoot.XMLNS.Invoice.Purchases.Item[i].Quantity;

 SET OutputRoot.XMLNS.Data.Output[i].Author = InputRoot.XMLNS.Invoice.Purchases.Item[i].Author;

 SET i = i+1;

END WHILE;

SET OutputRoot.XMLNS.Data.Output[] =

 (SELECT R.Quantity AS Book.Quantity,

 R.Author AS Book.Author

 FROM InputRoot.XMLNS.Invoice.Purchases.Item[] AS R

);

<Data>

 <Output>

 <Book>

 <Quantity>2</Quantity>

 <Author>Neil Bradley</Author>

 </Book>

 </Output>

</Data>

<Data>

 <Output>

 <Book>

 <Quantity>2</Quantity>

 <Author>Neil Bradley</Author>

 </Book>

 </Output>

 <Output>

 <Book>

 <Quantity>1</Quantity>

 <Author>Don Chamberlin</Author>

 </Book>

 </Output>

 <Output>

 <Book>

 <Quantity>1</Quantity>

 <Author>Philip Heller, Simon Roberts</Author>

 </Book>

 </Output>

</Data>

342 Message Flows

Using the same Invoice message, the result in this case is:

As shown above, the AS clauses of the SELECT clause contain a path that

describes the full name of the field that is to be created in the result. These paths

can also specify (as is normal for paths) the type of field that is to be created. The

following example transform specifies the field types. In this case, XML tagged

data is transformed to XML attributes:

Using the same Invoice message, the result is:

SET OutputRoot.XMLNS.Data.Output[] =

 (SELECT ’Start’ AS Header,

 ’Number of books:’ || R.Quantity AS Book.Quantity,

 R.Author || ’:Name and Surname’ AS Book.Author,

 ’End’ AS Trailer

 FROM InputRoot.XMLNS.Invoice.Purchases.Item[] AS R

);

<Data>

 <Output>

 <Header>Start</Header>

 <Book>

 <Quantity>Number of books:2</Quantity>

 <Author>Neil Bradley:Name and Surname</Author>

 </Book>

 <Trailer>End</Trailer>

 </Output>

 <Output>

 <Header>Start</Header>

 <Book>

 <Quantity>Number of books:1</Quantity>

 <Author>Don Chamberlin:Name and Surname</Author>

 </Book>

 <Trailer>End</Trailer>

 </Output>

 <Output>

 <Header>Start</Header>

 <Book>

 <Quantity>Number of books:1</Quantity>

 <Author>Philip Heller, Simon Roberts:Name and Surname</Author>

 </Book>

 <Trailer>End</Trailer>

 </Output>

</Data>

SET OutputRoot.XMLNS.Data.Output[] =

 (SELECT R.Quantity.* AS Book.(XML.Attribute)Quantity,

 R.Author.* AS Book.(XML.Attribute)Author

 FROM InputRoot.XMLNS.Invoice.Purchases.Item[] AS R

);

<Data>

 <Output>

 <Book Quantity="2" Author="Neil Bradley"/>

 </Output>

 <Output>

 <Book Quantity="1" Author="Don Chamberlin"/>

 </Output>

 <Output>

 <Book Quantity="1" Author="Philip Heller, Simon Roberts"/>

 </Output>

</Data>

Developing message flows 343

Finally, you can use a WHERE clause to eliminate some of the results. In the

following example a WHERE clause is used to remove results in which a specific

criterion is met. An entire result is either included or excluded:

Using the same input message, the result is:

Transforming a complex message:

When you code the ESQL for a Compute node, use the SELECT function for

complex message transformation.

 This topic provides examples of complex message transformation. Review the

examples and modify them for your own use. They are all based on the Invoice

message as input.

In this example, Invoice contains a variable number of Items. The transform is

shown below:

The output message that is generated is:

SET OutputRoot.XMLNS.Data.Output[] =

 (SELECT R.Quantity AS Book.Quantity,

 R.Author AS Book.Author

 FROM InputRoot.XMLNS.Invoice.Purchases.Item[] AS R

 WHERE R.Quantity = 2

);

<Data>

 <Output>

 <Book>

 <Quantity>2</Quantity>

 <Author>Neil Bradley</Author>

 </Book>

 </Output>

</Data>

SET OutputRoot.XMLNS.Data.Statement[] =

 (SELECT I.Customer.Title AS Customer.Title,

 I.Customer.FirstName || ’ ’ || I.Customer.LastName AS Customer.Name,

 COALESCE(I.Customer.PhoneHome,’’) AS Customer.Phone,

 (SELECT II.Title AS Desc,

 CAST(II.UnitPrice AS FLOAT) * 1.6 AS Cost,

 II.Quantity AS Qty

 FROM I.Purchases.Item[] AS II

 WHERE II.UnitPrice> 0.0) AS Purchases.Article[],

 (SELECT SUM(CAST(II.UnitPrice AS FLOAT) *

 CAST(II.Quantity AS FLOAT) *

 1.6)

 FROM I.Purchases.Item[] AS II) AS Amount,

 ’Dollars’ AS Amount.(XML.Attribute)Currency

 FROM InputRoot.XMLNS.Invoice[] AS I

 WHERE I.Customer.LastName <> ’Brown’

);

344 Message Flows

This transform has nested SELECT clauses. The outer statement operates on the list

of Invoices. The inner statement operates on the list of Items. The AS clause that is

associated with the inner SELECT clause expects an array:

This statement tells the outer SELECT clause to expect a variable number of Items

in each result. Each SELECT clause has its own correlation name: I for the outer

SELECT clause and II for the inner one. Each SELECT clause typically uses its own

correlation name, but the FROM clause in the inner SELECT clause refers to the

correlation name of the outer SELECT clause:

This statement tells the inner SELECT clause to work with the current Invoice’s

Items. Both SELECT clauses contain WHERE clauses. The outer one uses one

criterion to discard certain Customers, and the inner one uses a different criterion

to discard certain Items. The example also shows the use of COALESCE to prevent

missing input fields from causing the corresponding output field to be missing.

Finally, it also uses the column function SUM to add together the value of all Items

in each Invoice. Column functions are discussed in “Referencing columns in a

database” on page 324.

<Data>

 <Statement>

 <Customer>

 <Title>Mr</Title>

 <Name>Andrew Smith</Name>

 <Phone>01962818000</Phone>

 </Customer>

 <Purchases>

 <Article>

 <Desc Category="Computer" Form="Paperback" Edition="2">The XML Companion</Desc>

 <Cost>4.472E+1</Cost>

 <Qty>2</Qty>

 </Article>

 <Article>

 <Desc Category="Computer" Form="Paperback" Edition="2">

 A Complete Guide to DB2 Universal Database</Desc>

 <Cost>6.872E+1</Cost>

 <Qty>1</Qty>

 </Article>

 <Article>

 <Desc Category="Computer" Form="Hardcover" Edition="0">JAVA 2 Developers Handbook</Desc>

 <Cost>9.5984E+1</Cost>

 <Qty>1</Qty>

 </Article>

 </Purchases>

 <Amount Currency="Dollars">2.54144E+2</Amount>

 </Statement>

</Data>

 (SELECT II.Title AS Desc,

 CAST(II.UnitPrice AS FLOAT) * 1.6 AS Cost,

 II.Quantity AS Qty

 FROM I.Purchases.Item[] AS II

 WHERE II.UnitPrice> 0.0)

 -- Note the use of [] in the next expression

 AS Purchases.Article[],

 (SELECT II.Title AS Desc,

 CAST(II.UnitPrice AS FLOAT) * 1.6 AS Cost,

 II.Quantity AS Qty

 -- Note the use of I.Purchases.Item in the next expression

 FROM I.Purchases.Item[] AS II

 WHERE II.UnitPrice> 0.0) AS Purchases.Article[],

Developing message flows 345

When the fields Desc are created, the whole of the input Title field is copied: the

XML attributes and the field value. If you do not want these attributes in the

output message, use the FIELDVALUE function to discard them; for example, code

the following ESQL:

That code generates the following output message:

Returning a scalar value in a message:

Use a SELECT statement to return a scalar value by including both the THE and

ITEM keywords.

 For example:

Use of the ITEM keyword:

SET OutputRoot.XMLNS.Data.Statement[] =

 (SELECT I.Customer.Title AS Customer.Title,

 I.Customer.FirstName || ’ ’ || I.Customer.LastName AS Customer.Name,

 COALESCE(I.Customer.PhoneHome,’’) AS Customer.Phone,

 (SELECT FIELDVALUE(II.Title) AS Desc,

 CAST(II.UnitPrice AS FLOAT) * 1.6 AS Cost,

 II.Quantity AS Qty

 FROM I.Purchases.Item[] AS II

 WHERE II.UnitPrice> 0.0) AS Purchases.Article[],

 (SELECT SUM(CAST(II.UnitPrice AS FLOAT) *

 CAST(II.Quantity AS FLOAT) *

 1.6)

 FROM I.Purchases.Item[] AS II) AS Amount,

 ’Dollars’ AS Amount.(XML.Attribute)Currency

 FROM InputRoot.XMLNS.Invoice[] AS I

 WHERE I.Customer.LastName <> ’Brown’

);

<Data>

 <Statement>

 <Customer>

 <Title>Mr</Title>

 <Name>Andrew Smith</Name>

 <Phone>01962818000</Phone>

 </Customer>

 <Purchases>

 <Article>

 <Desc>The XML Companion</Desc>

 <Cost>4.472E+1</Cost>

 <Qty>2</Qty>

 </Article>

 <Article>

 <Desc>A Complete Guide to DB2 Universal Database</Desc>

 <Cost>6.872E+1</Cost>

 <Qty>1</Qty>

 </Article>

 <Article>

 <Desc>JAVA 2 Developers Handbook</Desc>

 <Cost>9.5984E+1</Cost>

 <Qty>1</Qty>

 </Article>

 </Purchases>

 <Amount Currency="Dollars">2.54144E+2</Amount>

 </Statement>

</Data>

1 + THE(SELECT ITEM T.a FROM Body.Test.A[] AS T WHERE T.b = ’123’)

346 Message Flows

The following example shows the use of the ITEM keyword to select one item and

create a single value.

When the Invoice message is received as input, the ESQL shown generates the

following output message:

When the ITEM keyword is specified, the output message includes a list of scalar

values. Compare this message to the one that is produced if the ITEM keyword is

omitted, in which a list of fields (name-value pairs) is generated:

Effects of the THE keyword:

The THE keyword converts a list containing one item to the item itself.

The two previous examples both specified a list as the source of the SELECT in the

FROM clause (the field reference has [] at the end to indicate an array), so typically

the SELECT function generates a list of results. Because of this behavior, you must

specify a list as the target of the assignment (thus the ″Result[]″ as the target of the

assignment). However, you often know that the WHERE clause that you specify as

part of the SELECT returns TRUE for only one item in the list. In this case use the

THE keyword.

The following example shows the effect of using the THE keyword:

The THE keyword means that the target of the assignment becomes

OutputRoot.XMLNS.Test.Result (the ″[]″ is not permitted). Its use generates the

following output message:

SET OutputRoot.MQMD = InputRoot.MQMD;

SET OutputRoot.XMLNS.Test.Result[] =

 (SELECT ITEM T.UnitPrice FROM InputBody.Invoice.Purchases.Item[] AS T);

<Test>

 <Result>27.95</Result>

 <Result>42.95</Result>

 <Result>59.99</Result>

</Test>

<Test>

 <Result>

 <UnitPrice>27.95</UnitPrice>

 </Result>

 <Result>

 <UnitPrice>42.95</UnitPrice>

 </Result>

 <Result>

 <UnitPrice>59.99</UnitPrice>

 </Result>

</Test>

SET OutputRoot.MQMD = InputRoot.MQMD;

SET OutputRoot.XMLNS.Test.Result =

 THE (SELECT T.Publisher, T.Author FROM InputBody.Invoice.Purchases.Item[]

 AS T WHERE T.UnitPrice = 42.95);

Developing message flows 347

Selecting from a list of scalars:

Consider the following sample input message:

If you code the following ESQL statements to process this message:

the following output message is generated:

Joining data in a message:

The FROM clause of a SELECT function is not restricted to having one item.

Specifying multiple items in the FROM clause produces the typical Cartesian

product joining effect, in which the result includes an item for all combinations of

items in the two lists.

 Using the FROM clause in this way produces the same joining effect as standard

SQL.

The Invoice message includes a set of customer details, payment details, and

details of the purchases that the customer makes. Code the following ESQL to

process the input Invoice message:

The following output message is generated:

<Test>

 <Result>

 <Publisher>Morgan Kaufmann Publishers</Publisher>

 <Author>Don Chamberlin</Author>

 </Result>

</Test>

<Test>

 <A>1

 <A>2

 <A>3

 <A>4

 <A>5

</Test>

SET OutputRoot.XMLNS.Test.A[] =

 (SELECT ITEM A from InputBody.Test.A[]

 WHERE CAST(A AS INTEGER) BETWEEN 2 AND 4);

 <A>2

 <A>3

 <A>4

SET OutputRoot.XMLNS.Items.Item[] =

 (SELECT D.LastName, D.Billing,

 P.UnitPrice, P.Quantity

 FROM InputBody.Invoice.Customer[] AS D,

 InputBody.Invoice.Purchases.Item[] AS P);

348 Message Flows

Three results are produced, giving the number of descriptions in the first list (one)

multiplied by the number of prices in the second (three). The results systematically

work through all the combinations of the two lists. You can see this by looking at

the LastName and UnitPrice fields selected from each result:

You can join data that occurs in a list and a non-list, or in two non-lists, and so on.

For example:

The location of the [] in each case is significant. Any number of items can be

specified in the FROM clause, not just one or two. If any of the items specify [] to

indicate a list of items, the SELECT function returns a list of results (the list might

contain only one item, but the SELECT function can return a list of items).

The target of the assignment must specify a list (so must end in []), or you must

use the “THE function” on page 1615 if you know that the WHERE clause

guarantees that only one combination is matched.

Translating data in a message:

<Items>

 <Item>

 <LastName>Smith</LastName>

 <Billing>

 <Address>14 High Street</Address>

 <Address>Hursley Village</Address>

 <Address>Hampshire</Address>

 <PostCode>SO213JR</PostCode>

 </Billing>

 <UnitPrice>27.95</UnitPrice>

 <Quantity>2</Quantity>

 </Item>

 <Item>

 <LastName>Smith</LastName>

 <Billing>

 <Address>14 High Street</Address>

 <Address>Hursley Village</Address>

 <Address>Hampshire</Address>

 <PostCode>SO213JR</PostCode>

 </Billing>

 <UnitPrice>42.95</UnitPrice>

 <Quantity>1</Quantity>

 </Item>

 <Item>

 <LastName>Smith</LastName>

 <Billing>

 <Address>14 High Street</Address>

 <Address>Hursley Village</Address>

 <Address>Hampshire</Address>

 <PostCode>SO213JR</PostCode>

 </Billing>

 <UnitPrice>59.99</UnitPrice>

 <Quantity>1</Quantity>

 </Item>

</Items>

LastName Smith UnitPrice 27.95

LastName Smith UnitPrice 42.95

LastName Smith UnitPrice 59.99

OutputRoot.XMLNS.Test.Result1[] =

 (SELECT ... FROM InputBody.Test.A[], InputBody.Test.b);

OutputRoot.XMLNS.Test.Result1 =

 (SELECT ... FROM InputBody.Test.A, InputBody.Test.b);

Developing message flows 349

You can translate data from one form to another.

 A typical example of the requirement to translate data is if the items are known in

one message by names, and in another message by numbers. For example:

Consider the following input message:

This message has two sections; the first section is a list of items in which each item

has a catalogue number and a type; the second section is a table for translating

between descriptive type names and numeric type codes. Include a Compute node

with the following transform:

The following output message is generated:

Type Name Type Code

Confectionary 2000

Newspapers 3000

Hardware 4000

<Data>

 <Items>

 <Item>

 <Cat>1000</Cat>

 <Description>Milk Chocolate Bar</Description>

 <Type>Confectionary</Type>

 </Item>

 <Item>

 <Cat>1001</Cat>

 <Description>Daily Newspaper</Description>

 <Type>NewsPapers</Type>

 </Item>

 <Item>

 <Cat>1002</Cat>

 <Description>Kitchen Sink</Description>

 <Type>Hardware</Type>

 </Item>

 </Items>

 <TranslateTable>

 <Translate>

 <Name>Confectionary</Name>

 <Number>2000</Number>

 </Translate>

 <Translate>

 <Name>NewsPapers</Name>

 <Number>3000</Number>

 </Translate>

 <Translate>

 <Name>Hardware</Name>

 <Number>4000</Number>

 </Translate>

 </TranslateTable>

</Data>

SET OutputRoot.XMLNS.Result.Items.Item[] =

 (SELECT M.Cat, M.Description, T.Number As Type

 FROM

 InputRoot.XMLNS.Data.Items.Item[] As M,

 InputRoot.XMLNS.Data.TranslateTable.Translate[] As T

 WHERE M.Type = T.Name

);

350 Message Flows

In the result, each type name has been converted to its corresponding code. In this

example, both the data and the translate table were in the same message tree,

although this is not a requirement. For example, the translate table could be coded

in a database, or might have been set up in LocalEnvironment by a previous

Compute node.

Joining data from messages and database tables:

You can use SELECT functions that interact with both message data and databases.

 You can also nest a SELECT function that interacts with one type of data within a

SELECT clause that interacts with the other type.

Consider the following input message, which contains invoice information for two

customers:

Consider the following database tables, Prices and Addresses, and their contents:

<Result>

 <Items>

 <Item>

 <Cat>1000</Cat>

 <Description>Milk Chocolate Bar</Description>

 <Type>2000</Type>

 </Item>

 <Item>

 <Cat>1001</Cat>

 <Description>Daily Newspaper</Description>

 <Type>3000</Type>

 </Item>

 <Item>

 <Cat>1002</Cat>

 <Description>Kitchen Sink</Description>

 <Type>4000</Type>

 </Item>

 </Items>

</Result>

<Data>

 <Invoice>

 <CustomerNumber>1234</CustomerNumber>

 <Item>

 <PartNumber>1</PartNumber>

 <Quantity>9876</Quantity>

 </Item>

 <Item>

 <PartNumber>2</PartNumber>

 <Quantity>8765</Quantity>

 </Item>

</Invoice>

 <Invoice>

 <CustomerNumber>2345</CustomerNumber>

 <Item>

 <PartNumber>2</PartNumber>

 <Quantity>7654</Quantity>

 </Item>

 <Item>

 <PartNumber>1</PartNumber>

 <Quantity>6543</Quantity>

 </Item>

</Invoice>

</Data>

Developing message flows 351

If you code the following ESQL transform:

the following output message is generated. The input message is augmented with

the price and address information from the database table:

PARTNO PRICE

----------- ------------------------

 1 +2.50000E+001

 2 +6.50000E+00

PARTNO STREET CITY COUNTRY

------ ------------------- -------------- -------

1234 22 Railway Cuttings East Cheam England

2345 The Warren Watership Down England

-- Create a valid output message

SET OutputRoot.MQMD = InputRoot.MQMD;

-- Select suitable invoices

SET OutputRoot.XMLNS.Data.Statement[] =

 (SELECT I.CustomerNumber AS Customer.Number,

 A.Street AS Customer.Street,

 A.City AS Customer.Town,

 A.Country AS Customer.Country,

 -- Select suitable items

 (SELECT II.PartNumber AS PartNumber,

 II.Quantity AS Quantity,

 PI.Price AS Price

 FROM Database.db2admin.Prices AS PI,

 I.Item[] AS II

 WHERE II.PartNumber = PI.PartNo) AS Purchases.Item[]

 FROM Database.db2admin.Addresses AS A,

 InputRoot.XMLNS.Data.Invoice[] AS I

 WHERE I.CustomerNumber = A.PartNo

);

352 Message Flows

You can nest the database SELECT clause within the message SELECT clause. In

most cases, the code is not as efficient as the previous example, but you might find

that it is better if the messages are small and the database tables are large.

<Data>

 <Statement>

 <Customer>

 <Number>1234</Number>

 <Street>22 Railway Cuttings</Street>

 <Town>East Cheam</Town>

 <Country>England</Country>

 </Customer>

 <Purchases>

 <Item>

 <PartNumber>1</PartNumber>

 <Quantity>9876</Quantity>

 <Price>2.5E+1</Price>

 </Item>

 <Item>

 <PartNumber>2</PartNumber>

 <Quantity>8765</Quantity>

 <Price>6.5E+1</Price>

 </Item>

 </Purchases>

 </Statement>

 <Statement>

 <Customer>

 <Number>2345</Number>

 <Street>The Warren</Street>

 <Town>Watership Down</Town>

 <Country>England</Country>

 </Customer>

 <Purchases>

 <Item>

 <PartNumber>1</PartNumber>

 <Quantity>6543</Quantity>

 <Price>2.5E+1</Price></Item>

 <Item>

 <PartNumber>2</PartNumber>

 <Quantity>7654</Quantity>

 <Price>6.5E+1</Price>

 </Item>

 </Purchases>

 </Statement>

</Data>

Developing message flows 353

Manipulating messages in the XML domains

The following topics contain instructions on manipulating messages in the

XMLNSC, XMLNS, and XML domains.

v “Working with XML messages”

v “Manipulating messages in the XMLNSC domain” on page 364

v “Manipulating messages in the XMLNS domain” on page 378

v “Manipulating messages in the XML domain” on page 387

For information about dealing with MRM XML messages, see “Manipulating

messages in the MRM domain” on page 387.

Working with XML messages:

The following topics provide information about typical tasks for processing XML

messages.

 Some of this information is available publicly in Web pages and online tutorials. If

you are new to XML, you will find it useful to also read about the XML standard.

v “Constructing an XML message tree” on page 355

v “Working with namespaces” on page 355

v “Working with binary data” on page 356

v “XMLNSC: Working with CData” on page 358

v “XMLNSC: Working with XML messages and bit streams” on page 360

v “Working with large XML messages” on page 361

-- Create a valid output message

SET OutputRoot.MQMD = InputRoot.MQMD;

-- Select suitable invoices

SET OutputRoot.XMLNS.Data.Statement[] =

 (SELECT I.CustomerNumber AS Customer.Number,

 -- Look up the address

 THE (SELECT

 A.Street,

 A.City AS Town,

 A.Country

 FROM Database.db2admin.Addresses AS A

 WHERE A.PartNo = I.CustomerNumber

) AS Customer,

 -- Select suitable items

 (SELECT

 II.PartNumber AS PartNumber,

 II.Quantity AS Quantity,

 -- Look up the price

 THE (SELECT ITEM P.Price

 FROM Database.db2admin.Prices AS P

 WHERE P.PartNo = II.PartNumber

) AS Price

 FROM I.Item[] AS II) AS Purchases.Item[]

 FROM InputRoot.XMLNS.Data.Invoice[] AS I

);

354 Message Flows

For details about XML Schema, see XML Schema Part 0: Primer on the World Wide

Web Consortium (W3C) Web site.

Constructing an XML message tree:

 Order of fields in the message tree

When you create an XML output message in a Compute node, the order of your

lines of ESQL code is important, because the message elements are created in the

order that you code them.

Consider the following XML message:

<Order>

 <ItemNo>1</ItemNo>

 <Quantity>2</Quantity>

</Order>

If you want to add a DocType Declaration to this, insert the DocType Declaration

before you copy the input message to the output message.

For example:

SET OutputRoot.XMLNS.(XML.XmlDecl) = ’’;

SET OutputRoot.XMLNS.(XML.XmlDecl).(XML.Version) = ’1.0’;

SET OutputRoot.XMLNS.(XML.DocTypeDecl)Order =’’;

SET OutputRoot.XMLNS.(XML.DocTypeDecl).(XML.SystemId) = ’NewDtdName.dtd’;

SET OutputRoot = InputRoot;

 -- more ESQL --

If you put the last statement to copy the input message before the XML-specific

statements, the following XML is generated for the output message.

<Order>

 <ItemNo>1</ItemNo>

 <Quantity>2</Quantity>

</Order>

<?xml version="1.0"?>

This is not well-formed XML and causes an error when it is written from the

message tree to a bit stream in the output node.

Setting the field type

If you copy a message tree from input to output without changing the domain,

most of the syntax elements will be created by the parser (XMLNSC or XMLNS)

and their field types will be correct. However, if you construct your message tree

from a database query, or from another parser’s message tree, you must ensure

that you identify each syntax element correctly using its field type. You can find

full details of the field type constants used by XMLNSC and XMLNS in the

following topics:

v “XMLNSC: Using field types” on page 366

v “XML constructs” on page 1433

Working with namespaces:

The following example shows how to use ESQL to work with namespaces.

 Namespace constants are declared at the start of the main module so that you can

use prefixes in the ESQL statements instead of the full URIs of the namespaces.

Developing message flows 355

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/

The namespace constants affect only the ESQL; they do not control the prefixes

that are generated in the output message. The prefixes in the generated output

message are controlled by namespace declarations in the message tree. You can

include namespace declarations in the tree using the XML.NamespaceDecl field

type. These elements are then used to generate namespace declarations in the

output message.

When the output message is generated, if the parser encounters a namespace for

which it has no corresponding namespace declaration, a prefix is automatically

generated using prefixes of the form NSn where n is a positive integer.

CREATE COMPUTE MODULE xmlns_doc_flow_Compute

CREATE FUNCTION Main() RETURNS BOOLEAN

BEGIN

CALL CopyMessageHeaders();

-- Declaration of namespace constants --

These are only used by ESQL

DECLARE sp1 NAMESPACE ’http://www.ibm.com/space1’;

DECLARE sp2 NAMESPACE ’http://www.ibm.com/space2’;

DECLARE sp3 NAMESPACE ’http://www.ibm.com/space3’;

-- Namespace declaration for prefix ’space1’

SET OutputRoot.XMLNS.message.(XML.NamespaceDecl)xmlns:space1 = ’http://www.ibm.com/space1’;

SET OutputRoot.XMLNS.message.sp1:data1 = ’Hello!’;

-- Default namespace declaration (empty prefix)

SET OutputRoot.XMLNS.message.sp2:data2.(XML.NamespaceDecl)xmlns = ’http://www.ibm.com/space2’;

SET OutputRoot.XMLNS.message.sp2:data2.sp2:subData1 = ’Hola!’;

SET OutputRoot.XMLNS.message.sp2:data2.sp2:subData2 = ’Guten Tag!’;

SET OutputRoot.XMLNS.message.sp3:data3 = ’Bonjour!’;

SET OutputRoot.Properties.MessageDomain = ’XMLNS’;

RETURN TRUE;

END;

CREATE PROCEDURE CopyMessageHeaders()

BEGIN

DECLARE I INTEGER 1;

DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

WHILE I < J DO SET OutputRoot.*[I] = InputRoot.*[I];

 SET I = I + 1;

END WHILE;

END;

END MODULE;

When this ESQL is processed, the following output message is generated:

<message xmlns:space1-"http://www.ibm.com/space1">

 <space1:data1>Hello!</space1:data1>

 <data2 xmlns="http://www.ibm.com/space2">

 <subData1>Hola!</subData1>

 <subData2>Guten Tag!</subData2>

 </data2>

 <NS1:data3 xmlns="http://www.ibm.com/space3>Bonjour!</NS1:data3>

</message>

Working with binary data:

 Binary encodings for XML

If you need to include binary data or illegal characters in your XML documents,

the safest method is to encode the data as a binary string.

There are two methods of encoding binary data in an XML document.

356 Message Flows

hexBinary: <nonXMLChars>0001020304050607080B0C0E0F</nonXMLChars>

base64Binary: <nonXMLChars>AAECAwQFBgcICwwODw==</nonXMLChars>

The base64Binary encoding makes better use of the available XML characters, and

on average a base64-encoded binary field is 2/3 the size of its hexBinary

equivalent. Base64Binary is widely used by the MIME format and by various

XML-based standards.

You might prefer to use the simpler hexBinary encoding if you are sending data to

applications that cannot decode base64 data, and if the increase in message size is

not important.

Parsing binary data

The most straightforward way to parse any binary data is to use the XMLNSC

parser with a message set.

1. Locate or construct an XML Schema that describes your input XML.

2. Import the XML Schema to create a message definition file.

3. In your message flow, set the node properties as follows:

v On the Default page, set Message Domain to XMLNSC and Message Set to the

name of your message set.

v On the Validation page, set Validation to Content and Value.

v In the XMLNSC properties, select the check box option Build tree using XML

Schema types.

The XMLNSC parser automatically decodes your hexBinary or base64Binary data,

being guided by the simple type of the element or attribute that contains the

binary data. The message tree will contain the decoded BLOB value.

If you are using the XMLNS domain, you must parse the binary data as a string. It

will appear in the message tree as a CHARACTER value. If the data is encoded as

hexBinary, you can use the ESQL CAST function to convert to a BLOB value. If the

data is encoded as base64Binary, the easiest approach is to call a static Java method

from ESQL to decode the base64 data into a BLOB value.

Generating binary data

You can generate binary data in your output XML in either hexBinary or

base64Binary encoding.

For hexBinary, use the ESQL CAST statement to convert your BLOB data to a

hexBinary string.

For base64Binary, you have two options:

v Call a static Java method to encode your BLOB data as base64.

v Use the XMLNSC parser, and modify the type field on the syntax element, as

shown in this example:

-- ESQL code to generate base64-encoded binary data

DECLARE myBLOB BLOB;

-- Populate myBLOB with your binary data

CREATE LASTCHILD OF OutputRoot.XMLNSC.message

 NAME myBase64Element

 TYPE XMLNSC.Attribute + XMLNSC.base64Binary

 VALUE myBLOB;

Developing message flows 357

XMLNSC: Working with CData:

 What is a CData section?

An XML element can contain text content:

<element>text content</element>

However, some characters cannot appear in that content. In particular, ’<’ and ’&’

both have special meaning to an XML parser. If they are included in the text

content of an element, they change the meaning of the XML document.

For example, this is a badly formed XML document:

<element><text><content></element>

There are two ways to make the XML well-formed:

1. Use character entities:

<element><text><content></element>

2. Use a CData section:

<element><![CDATA[<text><content>]]></element>

What can you use a CData section for?

In a CData section, you can include XML markup in the value of an element.

However, non-valid XML characters cannot be included. Binary data also cannot be

included in a CData section.

The most common use for CData is to embed one XML document within another.

For example:

<outer>

 <embedXML>

 <![CDATA[<innerMsg></innerMsg>]]>

 </embedXML>

</outer>

You can even embed a badly-formed XML document in this way, because the XML

parser does not attempt to parse the content of a CData section.

<outer>

 <embedXML>

 <![CDATA[<badXML></wrongClosingTag>]]>

 </embedXML>

</outer>

The following are not valid within a CData section:

v Non-valid XML characters (see http://www.w3.org/TR/2006/REC-xml-
20060816/#charsets)

v The text string ’]]>’ (because this terminates the CData section)

Because of these restrictions, do not use a CData section to include arbitrary text in

your XML document, and do not try to use a CData section to hold binary data (

unless it is encoded as hexBinary or base64Binary).

How do you add a CData section to an output XML message?

Consider the following input message :

358 Message Flows

http://www.w3.org/TR/2006/REC-xml-20060816/#charsets
http://www.w3.org/TR/2006/REC-xml-20060816/#charsets

<TestCase>

 <Folder>

 <Field1>Value1</Field1>

 <Field2>Value2</Field2>

 <Field3>Value3</Field3>

 </Folder>

 <Folder2>

 <Field1>Value1</Field1>

 <Field2>Value2</Field2>

 <Field3>Value3</Field3>

 </Folder2>

 </TestCase>

The ESQL below shows how to serialize both a whole message and a folder:

 DECLARE wholeMsgBlob BLOB

 ASBITSTREAM(InputRoot.XMLNSC,

 InputRoot.Properties.Encoding,

 InputRoot.Properties.CodedCharSetId);

 DECLARE folderBlob BLOB

 ASBITSTREAM(InputRoot.XMLNSC.TestCase.Folder,

 InputRoot.Properties.Encoding,

 InputRoot.Properties.CodedCharSetId,

 ’’,’’,’’,FolderBitStream);

 DECLARE wholeMsgChar CHAR

 CAST(wholeMsgBlob AS CHAR CCSID InputRoot.Properties.CodedCharSetId);

 DECLARE folderChar CHAR

 CAST(folderBlob AS CHAR CCSID InputRoot.Properties.CodedCharSetId);

 SET OutputRoot.XMLNSC.Output.Field1.(XMLNSC.CDataField) = wholeMsgChar;

 SET OutputRoot.XMLNSC.Output.Field2.(XMLNSC.CDataField) = folderChar;

This example serializes both the InputRoot.XMLNSC and

InputRoot.XMLNSC.TestCase.Folder portions of the message tree.

The InputRoot.XMLNSC portion is the entire message; therefore, you do not need

to specify the FolderBitStream option.

The field InputRoot.XML.TestCase.Folder is not the root of the message; therefore

the option FolderBitStream should be specified. Because this is the seventh

parameter in the list, the messageSet, messageType and messageFormat parameters

were required (’’,’’,’’). Because the input was not in the MRM domain, these just

need to be zero length strings. The ASBITSTREAM function serializes these as

BLOBs and a CAST is needed to convert them into character strings that can be

inserted into the output message tree.

If the output message tree were examined before an MQoutput node, this would

show :

(0x01000010):XML = (

 (0x01000000):Output = (

 (0x01000000):Field1 = (

 (0x02000001): = ’<TestCase><Folder><Field1>Value1</Field1><Field2>Value2</Field2>

 <Field3>Value3</Field3></Folder><Folder2><Field1>Value1</Field1>

 <Field2>Value2</Field2><Field3>Value3</Field3><Folder2></TestCase>’

)

 (0x01000000):Field2 = (

 (0x02000001): = ’<Folder><Field1>Value 1<Field2>Value2</Field2>

 <Field3>Value 3</Field3></Folder>’

)

)

)

As can be seen, each CData section contains a single scalar value that is the

character representation of the portions of the XML message that are required.

Developing message flows 359

This tree produces the following XML output message :

<Output>

 <Field1><![CDATA[<TestCase><Folder><Field1>Value 1</Field1>

 <Field2>Value 2</Field2>

 <Field3>Value 3</Field3></Folder>

 <Folder2><Field1>Value 1</Field1>

 <Field2>Value 2</Field2>

 <Field3>Value 3</Field3></Folder2>

 </TestCase>]]

 <Field2><![CDATA[<Folder><Field1>Value 1</Field1>

 <Field2>Value 2</Field2>

 <Field3>Value 3</Field3></Folder>

 <Folder2><Field1>Value 1</Field1>

 <Field2>Value 2</Field2>

 <Field3>Value 3</Field3>

 </Folder2>]]

</Output>

XMLNSC: Working with XML messages and bit streams:

Use the ASBITSTREAM function and the CREATE statement to manage XML

message content.

 The ASBITSTREAM function

If you code the ASBITSTREAM function with the parser mode option set to

RootBitStream to parse a message tree to a bit stream, the result is an XML

document that is built from the children of the target element in the normal way.

This algorithm is identical to that used to generate the normal output bit stream.

Because the target element is not included in the output bit stream, you must

ensure that the children of the element follow the constraints for an XML

document.

One constraint is that there must be only one body element in the message. You

can use a well-formed bit stream obtained in this way to recreate the original tree

using a CREATE statement with a PARSE clause.

If you code the ASBITSTREAM function with the parser mode option set to

FolderBitStream to parse a message tree to a bit stream, the generated bit stream is

an XML document built from the target element and its children. Any

DocTypeDecl or XmlDecl elements are ignored, and the target element itself is

included in the generated bit stream.

The advantage of this mode is that the target element becomes the body element of

the document, and that body element can have multiple elements nested within it.

Use this mode to obtain a bit stream description of arbitrary sub-trees owned by

an XML parser. You can use bit streams obtained in this way to recreate the

original tree using a CREATE statement with a PARSE clause, and a mode of

FolderBitStream.

For further information about the ASBITSTREAM function, and some examples of

its use, see “ASBITSTREAM function” on page 1603.

The CREATE statement with a PARSE clause

If you code a CREATE statement with a PARSE clause with the parser mode

option set to RootBitStream to parse a bit stream to a message tree, the expected

bit stream is a normal XML document. A field in the tree is created for each field

360 Message Flows

in the document. This algorithm is identical to that used when parsing a bit stream

from an input node. In particular, an element named ’XML’, ’XMLNS’, or

’XMLNSC’ is created as the root element of the tree, and all the content in the

message is created as children of that root.

If you code a CREATE statement with a PARSE clause with the parser mode

option set to FolderBitStream to parse a bit stream to a message tree, the expected

bit stream is a normal XML document. Any content outside the body element

(such as an XML declaration or doctype) is discarded. The first element created

during the parse corresponds to the body of the XML document, and from there

the parse proceeds as normal.

For further information about the CREATE statement, and examples of its use, see

“CREATE statement” on page 1492.

Working with large XML messages:

 When an input bit stream is parsed and a logical tree is created, the tree

representation of an XML message is typically bigger, and in some cases much

bigger, than the corresponding bit stream.

The reasons for this expansion include:

v The addition of the pointers that link the objects together

v Translation of character data into Unicode, which can double the size

v The inclusion of field names that might have been implicit in the bit stream

v The presence of control data that is associated with the broker’s operation

Manipulating a large message tree can require a lot of storage. If you design a

message flow that handles large messages that are made up of repeating structures,

you can code ESQL statements that help to reduce the storage load on the broker.

These statements support both random and sequential access to the message, but

assume that you do not need access to the whole message at one time.

These ESQL statements cause the broker to perform limited parsing of the

message, and to keep in storage at one time, only that part of the message tree that

reflects a single record. If your processing requires you to retain information from

record to record (for example, to calculate a total price from a repeating structure

of items in an order), you can either declare, initialize, and maintain ESQL

variables, or you can save values in another part of the message tree; for example,

in LocalEnvironment.

This technique reduces the memory that is used by the broker to that needed to

hold the full input and output bit streams, plus that needed for the message trees

of just one record. This technique also provides memory savings when even a

small number of repeats is encountered in the message. The broker uses partial

parsing and the ability to parse specified parts of the message tree, to and from the

corresponding part of the bit stream.

To use these techniques in your Compute node, apply these general techniques:

v Copy the body of the input message as a bit stream to a special folder in the

output message. The copy creates a modifiable copy of the input message that is

not parsed and that therefore uses a minimum amount of memory.

v Avoid any inspection of the input message, which avoids the need to parse the

message.

Developing message flows 361

v Use a loop and a reference variable to step through the message one record at a

time. For each record:

– Use normal transforms to build a corresponding output subtree in a second

special folder.

– Use the ASBITSTREAM function to generate a bit stream for the output

subtree. The generated bit stream is stored in a BitStream element that is

placed in the position in the output subtree that corresponds to its required

position in the final bit stream.

– Use the DELETE statement to delete both the current input and output record

message trees when you have completed their manipulation.

– When you have completed the processing of all records, detach the special

folders so that they do not appear in the output bit stream.

You can vary these techniques to suit the processing that is required for your

messages.

The following ESQL code provides an example of one implementation, and is a

modification of the ESQL example in “Transforming a complex message” on page

344. It uses a single SET statement with nested SELECT functions to transform a

message that contains nested, repeating structures.

-- Copy the MQMD header

 SET OutputRoot.MQMD = InputRoot.MQMD;

-- Create a special folder in the output message to hold the input tree

-- Note : SourceMessageTree is the root element of an XML parser

 CREATE LASTCHILD OF OutputRoot.XMLNS.Data DOMAIN ’XMLNS’ NAME ’SourceMessageTree’;

-- Copy the input message to a special folder in the output message

-- Note : This is a root to root copy which will therefore not build trees

 SET OutputRoot.XMLNS.Data.SourceMessageTree = InputRoot.XMLNS;

-- Create a special folder in the output message to hold the output tree

 CREATE FIELD OutputRoot.XMLNS.Data.TargetMessageTree;

-- Prepare to loop through the purchased items

 DECLARE sourceCursor REFERENCE TO OutputRoot.XMLNS.Data.SourceMessageTree.Invoice;

 DECLARE targetCursor REFERENCE TO OutputRoot.XMLNS.Data.TargetMessageTree;

 DECLARE resultCursor REFERENCE TO OutputRoot.XMLNS.Data;

 DECLARE grandTotal FLOAT 0.0e0;

-- Create a block so that it’s easy to abandon processing

 ProcessInvoice: BEGIN

 -- If there are no Invoices in the input message, there is nothing to do

 IF NOT LASTMOVE(sourceCursor) THEN

 LEAVE ProcessInvoice;

 END IF;

 -- Loop through the invoices in the source tree

 InvoiceLoop : LOOP

 -- Inspect the current invoice and create a matching Statement

 SET targetCursor.Statement = THE (SELECT ’Monthly’ AS (XML.Attribute)Type,

 ’Full’ AS (0x03000000)Style[1],

 I.Customer.FirstName AS Customer.Name,

 I.Customer.LastName AS Customer.Surname, I.Customer.Title AS Cu
 (SELECT

 FIELDVALUE(II.Title) AS Title,

 CAST(II.UnitPrice AS FLOAT) * 1.6 AS Cost,

 II.Quantity AS Qty

 FROM I.Purchases.Item[] AS II

 WHERE II.UnitPrice> 0.0) AS Purchases.Article[],

 (SELECT

 SUM(CAST(II.UnitPrice AS FLOAT) *

362 Message Flows

CAST(II.Quantity AS FLOAT) *

 1.6)

 FROM I.Purchases.Item[] AS II) AS Amount,

 ’Dollars’ AS Amount.(XML.Attribute)Currency

 FROM sourceCursor AS I

 WHERE I.Customer.LastName <> ’White’);

 -- Turn the current Statement into a bit stream

 DECLARE StatementBitStream BLOB

 CAST(ASBITSTREAM(targetCursor.Statement OPTIONS

 FolderBitStream) AS BLOB);

 -- If the SELECT produced a result

 -- (that is, it was not filtered out by the WHERE clause),

 -- process the Statement

 IF StatementBitStream IS NOT NULL THEN

 -- create a field to hold the bit stream in the result tree

 CREATE LASTCHILD OF resultCursor

 Type XML.BitStream

 NAME ’StatementBitStream’

 VALUE StatementBitStream;

 -- Add the current Statement’s Amount to the grand total

 -- Note that the cast is necessary because of the behavior

 -- of the XML syntax element

 SET grandTotal = grandTotal

 + CAST(targetCursor.Statement.Amount AS FLOAT);

 END IF;

 -- Delete the real Statement tree leaving only the bit stream version

 DELETE FIELD targetCursor.Statement;

 -- Step onto the next Invoice,

 -- removing the previous invoice and any

 -- text elements that might have been

 -- interspersed with the Invoices

 REPEAT

 MOVE sourceCursor NEXTSIBLING;

 DELETE PREVIOUSSIBLING OF sourceCursor;

 UNTIL (FIELDNAME(sourceCursor) = ’Invoice’)

 OR (LASTMOVE(sourceCursor) = FALSE)

 END REPEAT;

 -- If there are no more invoices to process, abandon the loop IF NOT LASTMOVE(sourceC
 LEAVE InvoiceLoop;

 END IF;

 END LOOP InvoiceLoop;

 END ProcessInvoice;

 -- Remove the temporary source and target folders

 DELETE FIELD OutputRoot.XMLNS.Data.SourceMessageTree;

 DELETE FIELD OutputRoot.XMLNS.Data.TargetMessageTree;

 -- Finally add the grand total

 SET resultCursor.GrandTotal = grandTotal;

This ESQL code produces the following output message:

<Data>

 <Statement Type="Monthly" Style="Full">

 <Customer>

 <Name>Andrew</Name>

 <Surname>Smith</Surname>

 <Title>Mr</Title>

 </Customer>

Developing message flows 363

<Purchases>

 <Article>

 <Title>The XML Companion</Title>

 <Cost>4.472E+1</Cost>

 <Qty>2</Qty>

 </Article>

 <Article>

 <Title>A Complete Guide to DB2 Universal Database</Title>

 <Cost>6.872E+1</Cost>

 <Qty>1</Qty>

 </Article>

 <Article>

 <Title>JAVA 2 Developers Handbook</Title>

 <Cost>9.5984E+1</Cost>

 <Qty>1</Qty>

 </Article>

 </Purchases>

 <Amount Currency="Dollars">2.54144E+2</Amount>

 </Statement>

 <GrandTotal>2.54144E+2</GrandTotal>

 </Data>

Manipulating messages in the XMLNSC domain:

This topic provides information about on how to write ESQL for processing

messages that belong to the XMLNSC domain, and that are parsed by the

XMLNSC parser. Refer to “XMLNSC parser” on page 85 for background

information.

The following topics provide detailed information about the structure of the

message tree that the XMLNSC parser builds, and the field types that it uses.

v “XMLNSC: The XML declaration”

v “XMLNSC: The inline DTD” on page 365

v “XMLNSC: The message body” on page 366

v “XMLNSC: XML Schema support” on page 374

Information for users who are migrating from XML, XMLNS, or MRM XML is

available in “Migrating to XMLNSC” on page 377.

Further information about processing XML messages can be found in “Working

with XML messages” on page 354.

XMLNSC: The XML declaration:

The XML declaration is represented in the message tree by a syntax element with

field type XMLNSC.XMLDeclaration.

 If an XML declaration is created by the XMLNSC parser, its name is

‘XmlDeclaration’. However, when a message tree is being output the name is not

important: the XMLNSC parser recognizes this syntax element by its field type

only. The following example shows a typical declaration:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">

<s1>........</s1>

The XML Declaration has three optional attributes; Version, Standalone, and

Encoding. The XMLNSC parser does not define special field types for these

attributes. Instead, they are identified by their name, and by their position as a

child of the XML Declaration element.

364 Message Flows

ESQL example code to create an XML declaration

To construct the XML declaration that is shown in the previous example, code the

following ESQL statements:

CREATE FIRSTCHILD OF OutputRoot.XMLNSC TYPE XMLNSC.XmlDeclaration;

SET OutputRoot.XMLNSC.(XMLNSC.XmlDeclaration)*.(XMLNSC.Attribute)Version = ’1.0’;

SET OutputRoot.XMLNSC.(XMLNSC.XmlDeclaration)*.(XMLNSC.Attribute)Encoding = ’UTF-8’;

SET OutputRoot.XMLNSC.(XMLNSC.XmlDeclaration)*.(XMLNSC.Attribute)StandAlone = ’yes’;

The first line is optional; if it is omitted, the XMLNSC.XMLDeclaration element is

automatically created when it is referenced by the second line.

Java example code to create an XML declaration

To construct the XML declaration that is shown in the previous example, write the

following Java code:

//Create the XML domain root node

MBElement xmlRoot =

 root.createElementAsLastChild(MbXMLNSC.PARSER_NAME);

//Create the XML declaration parent node

MbElement xmlDecl =

 xmlRoot.createElementAsFirstChild(MbXMLNSC.XML_DECLARATION);

xmlDecl.setName("XmlDeclaration");

MbElement version =

 xmlDecl.CreateElementAsFirstChild(MbXMLNSC.ATTRIBUTE, "Version", "1.0");

MbElement encoding =

 xmlDecl.CreateElementAsFirstChild(MbXMLNSC.ATTRIBUTE, "Encoding", "utf-8");

MbElement standalone =

 xmlDecl.CreateElementAsFirstChild(MbXMLNSC.ATTRIBUTE, "Standalone", "yes");

Note: In both the ESQL example and the Java example, ’Version’, ’StandAlone’,

and ’Encoding’ can all be written in lowercase.

XMLNSC: The inline DTD:

 When parsing an XML document that has an inline DTD, the XMLNSC parser

does not put the DTD information into the message tree. However, using ESQL

you can add XML entity definitions to the message tree, and these are used when

the message tree is output by the XMLNSC parser.

ESQL example code for entity definition and entity reference

This example assumes that InputRoot.XMLNSC has been created from the

following XML message:

<BookInfo dtn="BookInfo" edn="author" edv="A.N.Other"/>

The following output message is generated:

<!DOCTYPE BookInfo [<!ENTITY author "A.N.Other">]>

<BookInfo><entref>&author;</entref></BookInfo>

The ESQL to create the output message is:

DECLARE cursor REFERENCE TO InputRoot.XMLNSC.BookInfo;

-- Create <!DOCTYPE BOOKInfo ...

SET OutputRoot.XMLNSC.(XMLNSC.DocumentType)* NAME = cursor.dtn;

-- Create <!ENTITY author "A.N.Other" > ...

SET

Developing message flows 365

|
|
|
|

OutputRoot.XMLNSC.(XMLNSC.DocumentType)* NAME = ’author’ VALUE = cursor.edv;

-- Create the entity reference

SET OutputRoot.XMLNSC.BookInfo.(XMLNSC.EntityReference)entref = ’author’;

Java example code to create an XML declaration

To construct the XML declaration that is shown above, the following Java is

required:

//Create the XML domain root node

MBElement xmlRoot =

 root.createElementAsLastChild(MbXMLNSC.PARSER_NAME);

//Create the XML declaration parent node

MbElement xmlDecl =

 xmlRoot.createElementAsFirstChild(MbXMLNSC.XML_DECLARATION);

xmlDecl.setName("XmlDeclaration");

MbElement version =

 xmlDecl.CreateElementAsFirstChild(MbXMLNSC.ATTRIBUTE, "Version", "1.0");

MbElement encoding =

 xmlDecl.CreateElementAsFirstChild(MbXMLNSC.ATTRIBUTE, "Encoding", "utf-8");

MbElement standalone =

 xmlDecl.CreateElementAsFirstChild(MbXMLNSC.ATTRIBUTE, "Standalone", "Yes");

XMLNSC: The message body:

The XMLNSC parser builds a message tree from the body of an XML document.

 The following topics describe how the XMLNSC parser builds a message tree from

the body of an XML document:

v “XMLNSC: Using field types”

v “XMLNSC: Attributes and elements” on page 369

v “XMLNSC: Namespace declarations” on page 370

v “XMLNSC: Element values and mixed content” on page 371

v “XMLNSC: Comments and Processing Instructions” on page 373

XMLNSC: Using field types:

The XMLNSC parser sets the field type on every syntax element that it creates.

 The field type indicates the type of XML construct that the element represents. The

XMLNSC parser uses the field type when writing a message tree. The field type

can be set using ESQL or Java to control the output XML. The field types that are

used by the XMLNSC parser must be referenced using constants with names

prefixed by ’XMLNSC.’

Tip: Field type constants that have the prefix ’XML.’ are for use with the XMLNS

and XML parsers only. They are not valid with the XMLNSC or MRM

parsers.

Field types for creating syntax elements

Use the following field type constants to create syntax elements in the message

tree. The XMLNSC parser uses these values when creating a message tree from an

input message.

366 Message Flows

XML construct

XMLNSC Field Type

constant Value

Simple Element XMLNSC.PCDataField

XMLNSC.CDataField

0x03000000

0x03000001

Attribute XMLNSC.SingleAttribute

XMLNSC.DoubleAttribute

0x03000101

0x03000100

Mixed content XMLNSC.PCDataValue

XMLNSC.CDataValue

0x02000000

0x02000001

Namespace Declaration XMLNSC.SingleNamespaceDecl

XMLNSC.DoubleNamespaceDecl

0x03000102

0x03000103

Complex element XMLNSC.Folder 0x01000000

Inline DTD XMLNSC.DocumentType 0x01000300

XML declaration XMLNSC.XmlDeclaration 0x01000400

Entity reference XMLNSC.EntityReference 0x02000100

Entity definition XMLNSC.SingleEntityDefinition

XMLNSC.DoubleEntityDefinition

0x03000301

0x03000300

Comment XMLNSC.Comment 0x03000400

Processing Instruction XMLNSC.ProcessingInstruction 0x03000401

Field types for path expressions (generic field types)

Use the field type constants that are listed below when querying the message tree

using a path expression. For example:

SET str = FIELDVALUE(InputRoot.e1.(XMLNSC.Attribute)attr1)

It is good practice to specify field types when querying a message tree built by the

XMLNSC parser. This makes your ESQL code more specific and more readable,

and it avoids incorrect results in some cases. However, care is required when

choosing which field type constant to use. When you use the XMLNSC parser, use

a generic field type constant when querying the message tree. This allows your

path expression to tolerate variations in the input XML.

The generic field type constants are listed below:

XML construct

XMLNSC Field Type

constant Purpose

Element XMLNSC.Field Matches normal text, CData,

or a mixture of both

Attribute XMLNSC.Attribute Matches single-quoted and

double-quoted attributes

Mixed content XMLNSC.Value Matches normal text, CData,

or a mixture of both

XML Declaration XMLNSC.NamespaceDecl Matches single- and

double-quoted declarations

If you write

InputRoot.e1.(XMLNSC.DoubleAttribute)attrName

Developing message flows 367

your path expression does not match a single-quoted attribute. If you use the

generic field type constant XMLNSC.Attribute, your message flow works with

either single-quoted or double-quoted attributes.

Note that you should always use the field type constants and not their numeric

values.

Field types for controlling output format

The following field types are provided for XML Schema and base64 support. Do

not use these field type constants in path expressions; use them in conjunction

with XMLNSC.Attribute and XMLNSC.Field to indicate the required output format

for DATE and BLOB values. See “XMLNSC: XML Schema support” on page 374

for further information.

 XMLNSC Field Type

constant Purpose Value

XMLNSC.gYear Value must be a DATE. If the

field type includes this value,

the DATE value is output

using the XML Schema gYear

format.

0x00000010

XMLNSC.gYearMonth Value must be a DATE. If the

field type includes this value,

the DATE value is output

using the XML Schema

gYearMonth format.

0x00000040

XMLNSC.gMonth Value must be a DATE. If the

field type includes this value,

the DATE value is output

using the XML Schema

gMonth format.

0x00000020

XMLNSC.gMonthDay Value must be a DATE. If the

field type includes this value,

the DATE value is output

using the XML Schema

gMonthDay format.

0x00000050

XMLNSC.gDay Value must be a DATE. If the

field type includes this value,

the DATE value is output

using the XML Schema gDay

format.

0x00000030

XMLNSC.base64Binary Value must be a BLOB. Value

is output with base64

encoding.

0x00000060

XMLNSC.List Element must be

XMLNSC.Attribute or

XMLNSC.Field. If the field

type includes this value, the

values of all child elements

in the message tree are

output as a space-separated

list.

0x00000070

368 Message Flows

Field types for direct output

The following field types allow you to output pre-constructed segments of an XML

document. No character escaping is done and, if you are not careful, you can

construct a badly-formed output document. Only use these constants after carefully

exploring alternative solutions.

 XMLNSC Field Type

constant Purpose Value

XMLNSC.Bitstream Value of syntax element must

be a BLOB. The value is

written directly to the output

bit stream. See “Working

with large XML messages”

on page 361 for more

information about its usage.

0x03000200

XMLNSC.AsisElementContent Value of syntax element must

be CHARACTER. The value

is written directly to the

output bit stream. No

character substitutions are

performed. Use this with

care.

0x03000600

XMLNSC: Attributes and elements:

The XMLNSC parser uses the following field types to represent attributes and

elements.

 Use the field type constants that are listed below when creating your own syntax

elements in the message tree.

 Table 10. Specific field type constants

XML Construct

XMLNSC Field Type

constant Value

Complex element XMLNSC.Folder 0x01000000

Simple element XMLNSC.PCDataField

XMLNSC.CDataField

0x02000000

0x02000001

Attribute XMLNSC.SingleAttribute

XMLNSC.DoubleAttribute

0x03000100

0x03000101

When accessing elements and attributes in the message tree, use generic field type

constants which match all of the alternative values. Because there is only one type

of Folder element, it is safe to use XMLNSC.Folder when querying the message

tree.

 Table 11. Generic field type constants

XML Construct

XMLNSC Field Type

constant Purpose

Element XMLNSC.Field Matches elements that

contain normal text, CData,

or a mixture of both

Attribute XMLNSC.Attribute Matches both single-quoted

and double-quoted attributes

Developing message flows 369

ESQL code examples

The following examples use this XML message:

<root id="12345">

 <id>ABCDE</id>

</root>

Note that the message contains an attribute and an element with the same name.

Example 1 : Query the value of an XML element

SET value = FIELDVALUE(InputRoot.XMLNSC.root.(XMLNSC.Field)id)

The result is that value is set to ’ABCDE’.

Example 2 : Query the value of an XML attribute

SET value = FIELDVALUE(InputRoot.XMLNSC.root.(XMLNSC.Attribute)id)

The result is that value is set to ’12345’.

Example 3 : Create the example message using ESQL

CREATE LASTCHILD OF OutputRoot.XMLNSC Name ’root’ Type ’XMLNSC.Folder’;

-- Note : XMLNSC.Attribute could be used here as well.

SET OuputRoot.XMLNSC.root.(XMLNSC.DoubleAttribute)id = ’12345’;

SET OuputRoot.XMLNSC.root.(XMLNSC.Field)id = ’ABCDE’;

The first line is optional because the element ’root’ is created automatically by the

following line if it does not already exist.

XMLNSC: Namespace declarations:

The XMLNSC parser provides full support for namespaces.

 The XMLNSC parser sets the correct namespace on every syntax element that it

creates while parsing a message, and stores namespace declarations in the message

tree. The parser uses the namespace declarations to select the appropriate prefixes

when outputting the message tree.

The XMLNSC parser uses the following field types to represent namespace

declarations. You should use the field type constants that are listed below when

creating your own namespace declarations in the message tree.

 Table 12. Specific field type constants

XML construct

XMLNSC field type

constant Value

Namespace declaration XMLNSC.SingleNamespaceDecl

XMLNSC.DoubleNamespaceDecl

0x03000102

0x03000103

When accessing elements and attributes in the message tree, do not use the

constants in the previous table. Instead, use the generic field type constant that

matches both of the values in the table above.

370 Message Flows

Table 13. Generic field type constants

XML construct

XMLNSC field type

constant Purpose

Namespace declaration XMLNSC.NamespaceDecl Matches both single-quoted

and double-quoted

namespace declarations

ESQL code examples

Example 1 : Declaring a non-empty prefix

DECLARE space1 NAMESPACE ’namespace1’;

SET OuputRoot.XMLNSC.root.(XMLNSC.NamespaceDecl)xmlns:ns1 = ’namespace1’;

SET OuputRoot.XMLNSC.root.space1:example = ’ABCDE’;

This creates the following XML message:

<root xmlns:ns1="namespace1">

 <ns1:example>ABCDE</ns1:example>

</root>

Note that the ESQL namespace constant ’space1’ is only ever used by ESQL; it

does not affect the namespace prefix in the output message.

Example 2 : Declaring an empty prefix

DECLARE space1 NAMESPACE ’namespace1’;

SET OuputRoot.XMLNSC.root.(XMLNSC.NamespaceDecl)xmlns = ’namespace1’;

SET OuputRoot.XMLNSC.root.space1:example = ’ABCDE’;

This creates the following XML message:

<root xmlns="namespace1">

 <example>ABCDE</example>

</root>

Note that the syntax element ’example’ must have a non-empty namespace. The

default namespace declaration means that any child element without a prefix is in

the namespace ’namespace1’.

Example 3 : Example of incorrect usage

DECLARE space1 NAMESPACE ’namespace1’;

SET OuputRoot.XMLNSC.root.(XMLNSC.NamespaceDecl)xmlns = ’namespace1’;

SET OuputRoot.XMLNSC.root.example = ’ABCDE’;

This causes the XMLNSC parser to issue the message BIP5014 when the it attempts

to output the message tree. The element ’example’ must not have an empty

namespace because it exists within the scope of a default namespace declaration.

XMLNSC: Element values and mixed content:

The XMLNSC parser is a compact parser so an element with single content is

parsed as a single syntax element; when an element has both child elements and

some text, the text is called ’mixed content’.

 Element with simple content

This means that the following XML fragment with a single content is parsed as a

single syntax element:

Developing message flows 371

<simpleElement>simpleValue</simpleElement>

 The value of this element can be queried with this ESQL:

SET val = FIELDVALUE(InputRoot.XMLNSC.(XMLNSC.Field)simpleElement);

To generate an element with simple content in the output:

SET OutputRoot.XMLNSC.(PCDataField)simpleElement VALUE = ’simpleValue’;

Note that XMLNSC.Field is used when querying the message tree, but

XMLNSC.PCDataField is specified when constructing the output message.

XMLNSC.PCDataField can be used to query the message tree; however, that would

not work if the input message used a CData section, as shown below:

<simpleElement><![CDATA[simpleValue]]></simpleElement>

Element with mixed content

If an element has child elements, it is typically a ’folder’, and does not have a

value. When an element has both child elements and some text, the text is called

’mixed content’.

<element>mixed1<child/>mixed2</element>

By default, mixed content is discarded because it is typically just formatting white

space and has no business meaning. Mixed content can be preserved if you select

the Retain mixed content check box on the Parser Options page of the node

properties.

If mixed content is being preserved, the XMLNSC parser creates a Value child

element for each distinct item of mixed content.

The mixed content can be queried with this ESQL:

XMLNSC.PCDataField

"simpleElement"
Name

Value

Field type

"simpleValue"

XMLNSC.PCDataValue XMLNSC.PCDataField

XMLNSC.CDataField

XMLNSC.PCDataValue

"" "child1"

"element"

""

"mixed1" ""

""

"mixed2"

372 Message Flows

SET mixed1 = FIELDVALUE(InputRoot.XMLNSC.(element).*[1];

The ESQL to construct the above XML fragment is:

CREATE ref REFERENCE TO OutputRoot.XMLNSC.element;

CREATE FIRSTCHILD OF ref TYPE XMLNSC.PCDataValue VALUE ’mixed1’;

CREATE LASTCHILD OF ref NAME ’child1’ TYPE XMLNSC.PCDataField VALUE ’’;

CREATE LASTSTCHILD OF ref TYPE XMLNSC.PCDataValue VALUE ’mixed2’;

The following ESQL enables the Retain mixed content option:

DECLARE X BLOB;

-- assume that X contains an XML document

CREATE LASTCHILD OF OutputRoot

 PARSE(X OPTIONS XMLNSC.MixedContentRetainAll);

Element containing a CData section

A CData section is an XML notation that allows XML markup characters to be

included in the content of an element.

The following two XML fragments are identical in their meaning:

<simpleElement>simpleValue</simpleElement>

<simpleElement><![CDATA[simpleValue]]></simpleElement>

If the CData section is the only text content, the XMLNSC parser remembers that

the input document contained a CData section by setting the field type to

XMLNSC.CDataField instead of XMLNSC.PCDataField.

If the CData section is not the only text content, it is created as a child value

element, with other child value elements representing the remaining text content.

An example is shown below:

<simpleElement><![CDATA[CDataValue]]>normalText</simpleElement>

See “XMLNSC: Working with CData” on page 358 for more information about the

correct use of CData in XML documents.

XMLNSC: Comments and Processing Instructions:

The XMLNSC parser discards comments and processing instructions because both

comments and processing instructions are auxiliary information with no business

meaning.

XMLNSC.CDataValue XMLNSC.PCDataField

XMLNSC.CDataField

"" ""

"simpleElement"

"CDataValue" normalText

""

Developing message flows 373

Comments

Comments can be preserved if you select the Retain comments check box on the

Parser Options page of the node properties.

If Retain comments is selected, each comment in the input document is represented

by a single syntax element with field type XMLNSC.Comment. The Retain

comments option can also be accessed using the following ESQL:

DECLARE X BLOB;

-- assume that X contains an XML document

CREATE LASTCHILD OF OutputRoot.XMLNSC

 PARSE(X DOMAIN XMLNSC

 NAME preserveComments

 OPTIONS XMLNSC.CommentsRetainAll);

-- do it again, this time discarding comments

CREATE LASTCHILD OF OutputRoot.XMLNSC

 PARSE(X DOMAIN XMLNSC

 NAME discardComments

 OPTIONS XMLNSC.CommentsRetainNone);

Processing Instructions

Processing instructions can be preserved if you select the Retain processing

instructions check box on the Parser Options page of the node properties.

If Retain processing instructions is selected, each processing instruction the input

document is represented by a single syntax element with field type

XMLNSC.ProcessingInstruction. The Retain processing instructions option can also be

accessed using the following ESQL:

DECLARE X BLOB;

-- assume that X contains an XML document

CREATE LASTCHILD OF OutputRoot.XMLNSC

 PARSE(X DOMAIN XMLNSC

 NAME preserveProcessingInstructions

 OPTIONS XMLNSC.ProcessingInstructionsRetainAll);

-- do it again, this time discarding processing instructions

CREATE LASTCHILD OF OutputRoot.XMLNSC

 PARSE(X DOMAIN XMLNSC

 NAME discardProcessingInstructions

 OPTIONS XMLNSC.ProcessingInstructionsRetainNone);

XMLNSC: XML Schema support:

The XMLNSC parser can parse and validate using an XML Schema.

 See “XMLNSC parser” on page 85 for information about how to configure the

XMLNSC parser to use an XML Schema.

The following topics describe how the XMLNSC parser uses the field type to hold

information about XML Schema simple types. This enables the parser to output

dates and binary elements in the same form in which they were parsed, and

according to the XML Schema specification. It also allows the message flow

developer to output dates, lists and binary data in the correct XML Schema format.

v “XMLNSC: base64 support” on page 375

v “XMLNSC: XML Schema date formatting” on page 375

v “XMLNSC: XML List type support” on page 376

374 Message Flows

XMLNSC: base64 support:

The XMLNSC parser can output binary data in base64-encoded format.

 If Validation is set to Content and Value, and Build tree using schema types is

enabled, the XMLSNC parser automatically decodes base64 data and creates a

BLOB value in the message tree. When outputting a message tree, the XMLNSC

parser will ’base64-encode’ a BLOB if the field type includes the constant

XMLNSC.base64Binary.

ESQL code example to output base64 data

DECLARE Base64Data BLOB ’0102030405060708090A0B0C0D0E0F’;

-- Add in the base64Binary field type

DECLARE base64FieldType INTEGER XMLNSC.Field + XMLNSC.base64Binary;

CREATE LASTCHILD OF OutputRoot DOMAIN ’XMLNSC’ NAME ’XMLNSC’;

CREATE LASTCHILD OF OutputRoot.XMLNSC TYPE base64FieldType NAME ’myBinaryData’ VALUE Base64Data;

Result : <myBinaryData>AQIDBAUGBwgJCgsMDQ4P</myBinaryData>

Note that this example does not depend on validation. The XMLNSC parser can

output base64 binary data even if Validation is set to None.

XMLNSC: XML Schema date formatting:

The XMLNSC parser can parse and write all of the XML Schema simple types.

 The rarely used types gYear, gYearMonthgMonthgMonthDay, and gDay do not

map directly to a message broker data type. For these simple types, the XMLNSC

parser adds one of the following constant values to the field type. This allows the

parser to output the data in the same format as it was received.

Field types for controlling date format

The following field types are provided for XML Schema date format support. Do

not use these field type constants in path expressions. Use them in conjunction

with constants XMLNSC.Attribute and XMLNSC.Field to indicate the required

output format for DATE values.

 XMLNSC Field Type

constant Purpose Value

XMLNSC.gYear Value must be a DATE. If the

field type includes this value,

the DATE value is output

using the XML Schema gYear

format.

0x00000010

XMLNSC.gYearMonth Value must be a DATE. If the

field type includes this value,

the DATE value is output

using the XML Schema

gYearMonth format.

0x00000040

XMLNSC.gMonth Value must be a DATE. If the

field type includes this value,

the DATE value is output

using the XML Schema

gMonth format.

0x00000020

Developing message flows 375

XMLNSC Field Type

constant Purpose Value

XMLNSC.gMonthDay Value must be a DATE. If the

field type includes this value,

the DATE value is output

using the XML Schema

gMonthDay format.

0x00000050

XMLNSC.gDay Value must be a DATE. If the

field type includes this value,

the DATE value is output

using the XML Schema gDay

format.

0x00000030

ESQL code example

DECLARE gYear DATE ’2007-01-01’;

-- Add in the gYear field type

DECLARE gYearFieldType INTEGER XMLNSC.Field + XMLNSC.gYear;

CREATE LASTCHILD OF OutputRoot DOMAIN ’XMLNSC’ NAME ’XMLNSC’;

CREATE LASTCHILD OF OutputRoot.XMLNSC TYPE gYearFieldType NAME ’gYear’ VALUE gYear;

Result : <gYear>2007</gYear>

XMLNSC: XML List type support:

The XMLNSC parser can automatically parse a space-separated list of values into

individual syntax elements in the message tree if you select certain options.

 An element or an attribute can have multiple values separated by spaces, as shown

in the examples below:

<listElement>one two three</listElement>

<element listAttribute="1 2 3"><childEL1/></element>

If your XML schema specifies a list type for an element or an attribute, and

Validation is set to Content and Value, and Build tree using schema types is

enabled, the XMLNSC parser automatically parses the space-separated list of

values into individual syntax elements in the message tree. The resulting message

tree looks like this:

 and for an attribute with a list value it looks like this:

one two

listElement

three

376 Message Flows

ESQL code examples

Access the individual values in a list

SET val = InputRoot.XMLNSC.listElement.*[1];

Result : val = ’one’

SET val = InputRoot.XMLNSC.element.(XMLNSC.Attribute)listAttr.*[3];

Result : val=’3’

Create a list element in the message tree

CREATE LASTCHILD OF OutputRoot.XMLNSC

 Name ’listElement’

 Type XMLNSC.List;

DECLARE listEl REFERENCE TO OutputRoot.XMLNSC.listElement;

DECLARE listValType INTEGER XMLNSC.PCDataValue;

CREATE LASTCHILD OF listEl TYPE listValType VALUE ’one’;

CREATE LASTCHILD OF listEl TYPE listValType VALUE ’two’;

CREATE LASTCHILD OF listEl TYPE listValType VALUE ’three’;

Migrating to XMLNSC:

 Reasons to migrate

The XMLNSC parser now offers the best combination of features and performance

for most applications. If your message flow uses the XMLNS or XML domain, you

might want to migrate a message flow to XMLNSC to take advantage of the XML

schema validation. If your message flow uses the MRM domain, you might want

to migrate to XMLNSC to obtain standards-compliant validation, and a large

reduction in CPU usage.

Migrating from the XMLNS or XML domain

The XMLNSC parser differs from the XMLNS parser in the following ways:

v The XMLNSC parser builds a compact message tree.

v It uses different field type constants.

v It discards inline DTDs

In most cases, the compact message tree has no affect on ESQL paths or XPath

expressions. Typically, a simple message tree query produces the same results in

XMLNSC as in the XMLNS or XML domain. Merely changing the correlation name

from XMLNS to XMLNSC is usually sufficient, but care must be taken with

complex XPath expressions that navigate to the value of an element and then to its

parent in a single query. These might produce different results in the XMLNSC

domain.

element

1 2

listAttr childEL1

3

Developing message flows 377

The field type constants that are used by the XMLNSC parser are completely

different from those used by XMLNS or XML. Every occurrence of XML.Attribute,

XML.XmlDecl, for example, must be changed to use the equivalent XMLNSC field

type constant.

The discarding of inline DTDs only affects message flows that process the DTD.

Migrating from MRM XML

The XMLNSC parser differs from the MRM XML parser in the following ways:

v The XMLNSC parser uses field types to identify the XML constructs in the

message tree. The MRM parser distinguishes attributes from elements by

matching the message tree against the message definition.

v When writing a message tree, the XMLNSC parser selects namespace prefixes

by detecting and using xmlns attributes in the message tree. The MRM XML

parser uses a table in the message set properties.

v The MRM parser does not include the root tag of the XML document in the

message tree.

Migrating a message flow from MRM to XMLNSC typically requires extensive

changes to your message flow. However, the migration usually delivers a large

reduction in CPU usage, and allows much more accurate control of the output

XML.

Manipulating messages in the XMLNS domain:

This topic provides information about how to write ESQL for processing messages

that belong to the XMLNS domain, and that are parsed by the XMLNS parser.

Most of the information in this topic, and the topics mentioned below, also applies

to the XML domain, unless it refers to features that are not supported in the XML

domain.

Refer to “XMLNS parser” on page 94 for background information.

The following topics provided detailed information about the structure of the

message tree that the XMLNS parser builds, and the field types that it uses.

v “XMLNS: The XML declaration”

v “XMLNS: The DTD” on page 380

v “XMLNS: The XML message body” on page 381

More information about processing XML messages can be found in “Working with

XML messages” on page 354.

XMLNS: The XML declaration:

The beginning of an XML message can contain an XML declaration.

 An example of a declaration is shown below:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">

<s1>........</s1>

The XML Declaration is represented by the following types of syntax element:

v “XML.XMLDecl” on page 379

378 Message Flows

v “XML.version”

v “XML.encoding”

v “XML.standalone”

“XMLNS: XML declaration example” on page 380 includes another example of an

XML declaration and the tree structure that it forms.

XML.XMLDecl:

The XML Declaration is represented in the message tree by a syntax element with

field type ’XML.XMLDecl’.

 If the XML declaration is created by the XMLNS parser its name is ‘XMLDecl’.

However, when a message tree is being output the name is not important; only the

field type is used by the parser.

An example of a declaration is shown below:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">

<s1>........</s1>

XML.version:

The XML version attribute in the XML declaration is represented in the message

tree by a syntax element with field type ‘XML.version’.

 The value of the XML version attribute is the value of the version attribute. It is

always a child of an XML.XmlDecl syntaxelement. In the example below, the

version element contains the string value 1.0:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">

<s1>........</s1>

XML.encoding:

The encoding attribute is represented by a syntax element with field type

‘XML.encoding’, and is always a child of an XML.XmlDecl syntax element.

 In the example shown below, the encoding attribute has a value of UTF-8.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">

<s1>........</s1>

You cannot specify WebSphere MQ encodings in this element.

In your ESQL, (XML,″Encoding″) must include quotation marks, because Encoding

is a reserved word.

XML.standalone:

The XML standalone element defines the existence of an externally-defined DTD.

In the message tree it is represented by a syntax element with field type

XML.standalone.

Developing message flows 379

The value of the XML standalone element is the value of the standalone attribute

in the XML declaration. It is always a child of an XML.XmlDecl syntax element.

The only valid values for the standalone element are yes and no. An example is

shown below:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">

<s1>........</s1>

A value of no indicates that this XML document is not standalone, and depends on

an externally-defined DTD. A value of yes indicates that the XML document is

self-contained. However, because the current release of WebSphere Message Broker

does not resolve externally-defined DTDs, the setting of standalone is irrelevant,

and is ignored.

XMLNS: XML declaration example:

The following example shows an XML declaration in an XML document:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

The following figure shows the tree structure that the XMLNS parser creates for

this declaration:

XMLNS: The DTD:

The document type declaration (DTD) of an XML message is represented by a

syntax element with field type XML.DocTypeDecl, and its children. These comprise

the DOCTYPE construct.

 Only internal (inline) DTD subsets are represented in the syntax element tree. An

inline DTD is a DTD that is declared within the XML document itself. It can be a

complete DTD definition, or it can extend the definition in an external DTD.

External DTD subsets (identified by the SystemID or PublicId elements described

below) can be referenced in the message, but those referenced are not resolved by

the broker.

The following field type constants can be used to reference the various parts of a

DTD in the message tree:

v “XML DocTypeDecl” on page 1440

v “XML NotationDecl” on page 1441

v “XML entities” on page 1441

v “XML ElementDef” on page 1443

v “XML AttributeList” on page 1443

v “XML AttributeDef” on page 1443

v “XML DocTypePI” on page 1444

Standalone
value="yes"

Encoding
value="UTF-8"

Version
value="1.0"

XmlDecl

380 Message Flows

v “XML WhiteSpace and DocTypeWhiteSpace” on page 1445

v “XML DocTypeComment” on page 1444

“XML DTD example” on page 1445 shows an example of an XML DTD.

See “XML document type declaration” on page 1440 for more information about

handling an inline DTD.

XMLNS: The XML message body:

Every XML message must have a body. The body consists of a hierarchy of XML

elements and other XML constructs that represent the message data.

 The XMLNS parser assigns a field type to every syntax element that it creates. The

value of the field type indicates the XML construct that it represents. In the

following topics, each field type is discussed, with a series of example XML

fragments.

The following common element types are discussed:

v “XML.element” on page 383

v “XML.Attribute” on page 383

v “XML.content” on page 384

“XML message body example” on page 387 provides an example of an XML

message body and the tree structure that is created from it using the syntax

elements types that are listed above.

More complex XML messages might use some of the following syntax element

types:

v “XML.CDataSection” on page 384

v “XML.EntityReferenceStart and XML.EntityReferenceEnd” on page 385

v “XML.comment” on page 385

v “XML.ProcessingInstruction” on page 386

v “XML.AsisElementContent” on page 386

v “XML.BitStream” on page 387

Accessing attributes and elements:

The XMLNS parser sets the field type on every message tree element that it

creates.

 The field type indicates the type of XML construct that the element represents. The

field types used by the XMLNS parser can be referenced using constants with

names prefixed with ‘XML.’ Field type constants with prefix ‘XML.’ are for use

with the XMLNS and XML parsers only; they do not work with the XMLNSC or

MRM parsers.

 XMLNS Field Type constant

Tag XML.Element

Attribute XML.Attribute

XML.Attr

Developing message flows 381

By using the field type in this way, the XMLNS parser can distinguish between an

element and an attribute that have the same name.

Example XML

<parent id="12345">

 <id>ABCDE</id>

</parent>

Example ESQL

SET value = FIELDVALUE(InputRoot.XMLNS.parent.(XML.Element)id)

Result : value is ’ABCDE’

SET value = FIELDVALUE(InputRoot.XMLNS.parent.(XML.Attr)id)

Result : value is ’12345’

Example using SELECT to access multiple attributes

In the example Invoice message, the element Title within each Item element has

three attributes: Category, Form, and Edition. For example, the first Title element

contains:

<Title Category="Computer" Form="Paperback" Edition="2">The XML Companion</Title>

The element InputRoot.XML.Invoice.Purchases.Item[1].Title has four children in

the logical tree: Category, Form, Edition, and the element value, which is “The

XML Companion”.

If you want to access the attributes for this element, you can code the following

ESQL. This extract of code retrieves the attributes from the input message and

creates them as elements in the output message. It does not process the value of

the element itself in this example.

-- Set the cursor to the first XML.Attribute of the Title.

-- Note the * after (XML.Attribute) meaning any name, because the name might not be known

DECLARE cursor REFERENCE TO InputRoot.XMLNS.Invoice.Purchases.Item[1].Title.(XML.Attribute)*;

WHILE LASTMOVE(cursor) DO

-- Create a field with the same name as the XML.Attribute

-- and set its value to the value of the XML.Attribute

 SET OutputRoot.XML.Data.Attributes.{FIELDNAME(cursor)} = FIELDVALUE(cursor);

-- Move to the next sibling of the same TYPE to avoid the Title value

-- which is not an XML.Attribute

 MOVE cursor NEXTSIBLING REPEAT TYPE;

END WHILE;

When this ESQL is processed by the Compute node, the following output message

is generated:

<Data>

 <Attributes>

 <Category>Computer</Category>

 <Form>Paperback</Form>

 <Edition>2</Edition>

 </Attributes>

</Data>

You can also use a SELECT statement:

SET OutputRoot.XMLNS.Data.Attributes[] =

 (SELECT FIELDVALUE(I.Title) AS title,

 FIELDVALUE(I.Title.(XML.Attribute)Category) AS category,

 FIELDVALUE(I.Title.(XML.Attribute)Form) AS form,

 FIELDVALUE(I.Title.(XML.Attribute)Edition) AS edition

 FROM InputRoot.XML.Invoice.Purchases.Item[] AS I);

382 Message Flows

This statement generates the following output message:

<Data>

 <Attributes>

 <title>The XML Companion</title>

 <category>Computer</category>

 <form>Paperback</form>

 <edition>2</edition>

 </Attributes>

 <Attributes>

 <title>A Complete Guide to DB2 Universal Database</title>

 <category>Computer</category>

 <form>Paperback</form>

 <edition>2</edition>

 </Attributes>

 <Attributes>

 <title>JAVA 2 Developers Handbook</title>

 <category>Computer</category>

 <form>Hardcover</form>

 <edition>0</edition>

 </Attributes>

</Data>

You can qualify the SELECT with a WHERE statement to narrow down the results

to obtain the same output message as the one that is generated by the WHILE

statement. This second example shows that you can create the same results with

less, and less complex, ESQL.

SET OutputRoot.XMLNS.Data.Attributes[] =

 (SELECT FIELDVALUE(I.Title.(XML.Attribute)Category) AS category,

 FIELDVALUE(I.Title.(XML.Attribute)Form) AS form,

 FIELDVALUE(I.Title.(XML.Attribute)Edition) AS edition

 FROM InputRoot.XML.Invoice.Purchases.Item[] AS I)

 WHERE I.Title = ’The XML Companion’);

This statement generates the following output message:

<Data>

 <Attributes>

 <Category>Computer</Category>

 <Form>Paperback</Form>

 <Edition>2</Edition>

 </Attributes>

 </Data>

XML.element: This syntax element represents an XML element (a tag). The name

of the syntax element corresponds to the name of the XML element in the message.

This element can have many children in the message tree, including attributes,

elements, and content.

XML.tag is supported as an alternative to XML.element for compatibility with

earlier versions of WebSphere Message Broker. Use XML.element in any new

message flows that you create.

XML.Attribute: Parsing

The XMLNS parser uses this field type for syntax elements that represent an XML

attribute. The name and value of the syntax element correspond to the name and

value of the XML attribute that is represented. Attribute elements have no children,

and must always be children of an element.

Writing

Developing message flows 383

When the XMLNS parser generates a bit stream from a message tree, occurrences

of ampersand (&), less than (<), greater than (>), double quotation mark (″), and

apostrophe (’), within the attribute value, are replaced by the predefined XML

entities &, <, >, ", and '.

The XML.attr field type constant is also supported for compatibility with earlier

versions of WebSphere Message Broker.

XML.content: The XMLNS parser uses this syntax element to represent character

data (including an XML attribute). The name and value of the syntax element

correspond to the name and value of the XML attribute that is represented.

Attribute elements have no children, and must always be children of an element.

Writing

When the XMLNS parser generates a bit stream from a message tree, occurrences

of ampersand (&), less than (<), greater than (>), double quotation mark (″), and

apostrophe (’), within the attribute value, are replaced by the predefined XML

entities &, <, >, ", and '.

XML.CDataSection: CData sections in the XML message are represented by a

syntax element with field type XML.CdataSection. The content of the CDataSection

element is the value of the CDataSection element without the <![CDATA[that

marks its beginning, and the]]> that marks its end.

For example, the following CData section

<![CDATA[<greeting>Hello, world!</greeting>]]>

is represented by a CDataSection element with a string value of:

"<greeting>Hello, world!</greeting>"

Unlike Content, occurrences of <,>, &, ″, and ’ are not translated to their XML

character entities (<, >, and &) when the CDataSection is output.

When to use XML.CDataSection

A CData section is often used to embed one XML message within another. Using a

CData section ensures that the XML reserved characters (<, >, and &) are not

replaced with XML character entities.

XML.AsIsElementContent also allows the output of unmodified character data, but

XML.CDataSection is usually a better choice because it protects the outer message

from errors in the embedded message.

Parsing the contents of a CDataSection

A common requirement is to parse the contents of a CData section to create a

message tree. This can be achieved by using the ESQL statement CREATE with the

PARSE clause. See “XMLNSC: Working with XML messages and bit streams” on

page 360.

XML.NamespaceDecl:

A namespace declaration is represented by a syntax element with field type

XML.NamespaceDecl.

384 Message Flows

Namespace declarations take one of two forms in the message tree:

v Declaration using a namespace prefix

<ns1:e1 xmlns:ns1="namespace1"/>

In the message tree, the syntax element for this namespace declaration is shown

in the following table:

 Namespace http://www.w3.org/2000/xmlns/

Name ns1

Value namespace1

v Declaration of a default namespace

A default namespace declaration is an xmlns attribute that defines an empty

prefix

<e1 xmlns="namespace1"/>

In the message tree, the syntax element for this namespace declaration is shown

in the following table:

 Namespace “”

Name xmlns

Value namespace1

Note that, in both cases, element ‘e1’ is in namespace ‘namespace1’.

XML.EntityReferenceStart and XML.EntityReferenceEnd: When an entity reference is

encountered in the XML message, both the expanded form and the original entity

name are stored in the syntax element tree. The name of the entity is stored as the

value of the EntityReferenceStart and EntityReferenceEnd syntax elements, and any

syntax elements between contain the entity expansion. Examples of the XML entity

references in an XML document, and in tree structure form, are shown below:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE example [<!ENTITY entityName "eValue">]>

<example>Test: &entityName;</example>

 The XML declaration and the document type declaration are not shown here. Refer

to “XMLNS: The XML declaration” on page 378 and “XMLNS: The DTD” on page

380 for details of those sections of the syntax element tree.

XML.comment: An XML.comment that is encountered outside the document type

declaration is represented by a syntax element with field type XML.comment. The

value of the element is the comment text from the XML message.

Element
-name="example"

Content
-value="Test:"

Content
-value="eValue"

EntityReferenceStart
-value="entityName"

EntityReferenceEnd
-value="entityName"

Developing message flows 385

If the value of the element contains the character sequence -->, the sequence is

replaced with the text -->. This ensures that the contents of the comment cannot

prematurely terminate the comment. Occurrences of <, >, &, ″, and ’ are not

translated to their escape sequences.

An example of the XML comment in an XML document is shown below:

<example><!-- This is a comment --></example>

XML.ProcessingInstruction: A processing instruction that is encountered outside the

document type declaration is represented by a syntax element with field type

XML.ProcessingInstruction. This is a name-value element; the name of the syntax

element is the processing instruction target name, and the value of the syntax

element is the character data of the processing instruction. The value of the syntax

element must not be empty. The name cannot be ‘XML’ in either uppercase or

lowercase.

If the value of the element contains the character sequence ?>, the sequence is

replaced with the text ?>. This ensures that the content of the processing

instruction cannot prematurely terminate the processing instruction. Occurrences of

<,>, &, ″, and ’ are not translated to their escape sequences.

An example of the XML processing instruction in an XML document is shown

below:

<example><?target This is a PI.?></example>

XML.AsisElementContent: XML.AsIsElementContent is a special field type. Use it

in a message flow to precisely control the XML that is generated in an output

message, without the safeguards of the Element, Attribute, and Content syntax

elements. The XMLNS parser never creates elements with this field type.

Try to avoid using AsisElementContent; there is usually a safer alternative

approach. If you do use AsisElementContent, it is your responsibility to ensure that

the output message is well-formed XML.

You might choose to use this syntax element if, for example, you want to suppress

the normal behavior in which occurrences of ampersand (&), less than (<), greater

than (>), quotation mark (″), and apostrophe (’) are replaced by the predefined

XML entities &, <, >, ", and '.

The following example illustrates the use of AsisElementContent. The statement:

Set OutputRoot.XMLNS.(XML.Element)Message.(XML.Content) = ’<rawMarkup>’;

generates the following XML in an output message:

<Message><rawMarkup></Message>

However, the statement

Set OutputRoot.XMLNS.(XML.Element)Message.(XML.AsisElementContent) = ’<rawMarkup>’;

generates the following XML in an output message:

<Message><rawMarkup></Message>

This shows that the value of an AsisElementContent syntax element is not

modified before it is written to the output message.

386 Message Flows

XML.BitStream: XML.Bitstream is a special field type. When writing an XML

message, the value of the BitStream element is written directly into the message,

and the name is not important. The BitStream element might be the only element

in the message tree.

The value of the element must be of type BLOB; any other data type generates an

error when writing the element. Ensure that the content of the element is

appropriate for use in the output message; pay special attention to the CCSID and

the encoding of the XML text in the BLOB.

Use of the BitStream element is similar to the use of the AsisElementContent

element, except that the AsisElementContent type converts its value into a string,

whereas the BitStream element uses its BLOB value directly. This is a specialized

element designed to aid the processing of very large messages.

The following ESQL excerpts demonstrate some typical use of this element. First,

declare the element:

DECLARE StatementBitStream BLOB

Initialize the contents of StatementBitStream from an appropriate source, such as

an input message. If the source field is not of type BLOB, use the CAST statement

to convert the contents to BLOB. Then create the new field in the output message;

for example:

CREATE LASTCHILD OF resultCursor

 Type XML.BitStream

 NAME ’StatementBitStream’

 VALUE StatementBitstream;

XML message body example: This topic shows the message tree that the XMLNS

parser creates for the following snippet from a simple XML document:

<Person age="32" height="172cm">

<Name>Cormac Keogh</Name>

</Person>

Manipulating messages in the XML domain:

The XML parser is very similar to the XMLNS parser, but it has no support for

namespaces or opaque parsing. For information about how to work with the XML

parser, refer to “Manipulating messages in the XMLNS domain” on page 378.

Manipulating messages in the MRM domain

Find out how to use messages that have been modeled in the MRM domain, and

that are parsed by the MRM parser.

Element
-name="person"

Content
-value="\n"

Content
-value="\n"

Element
-name="Name"

Content
-value="Cormac Keogh"

Attribute
-name="age"
-value="32"

Attribute
-name="height"
-value="172cm"

Developing message flows 387

The following topics show you how to deal with messages that have been modeled

in the MRM domain, and that are parsed by the MRM parser. The physical formats

associated with the message models do not affect this information unless

specifically stated. Use this information in conjunction with the information about

manipulating message body content; see “Manipulating message body content” on

page 283.

v “Accessing elements in a message in the MRM domain” on page 389

v “Accessing multiple occurrences of an element in a message in the MRM

domain” on page 389

v “Accessing attributes in a message in the MRM domain” on page 390

v “Accessing elements within groups in a message in the MRM domain” on page

392

v “Accessing mixed content in a message in the MRM domain” on page 393

v “Accessing embedded messages in the MRM domain” on page 395

v “Accessing the content of a message in the MRM domain with namespace

support enabled” on page 396

v “Querying null values in a message in the MRM domain” on page 396

v “Setting null values in a message in the MRM domain” on page 397

v “Working with MRM messages and bit streams” on page 398

v “Handling large MRM messages” on page 401

The following diagram shows the structure of the message, Customer, that is used

in the following sample:

v Video Rental sample

The message is used in the samples in the topics listed previously to show ESQL

that manipulates the objects that can be defined in a message model. You can view

samples only when you use the information center that is integrated with the

Message Broker Toolkit.

The message includes a variety of structures that demonstrate how you can classify

metadata to the MRM. Within an MRM message set, you can define the following

objects: messages, types, groups, elements, and attributes. Folder icons that

represent each of these types of objects are displayed for each message definition

file in the Broker Application Development perspective.

Each message definition file can contribute to a namespace; in this sample, each

namespace is completely defined by a single message definition file. You can

combine several message definition files to form a complete message dictionary,

which you can then deploy to a broker.

The video sample has three message definition files:

Customer

IdGroupAddress ID

FirstName LastNameTitle DrivingLicenceNoPassportNo CreditCardNo

VideoTitle DueDate Cost

Name Borrowed Magazine

HouseNo Street Town

388 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.doc/doc/overview.htm

Customer.mxsd

Resides in the no target namespace

Address.mxsd

Resides in the namespace http://www.ibm.com/AddressDetails

Borrowed.mxsd

Resides in the namespace http://www.ibm.com/BorrowedDetails

Look at the video rental message structure sample for detailed information about

the objects that are defined in this message model:

v Video Rental sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Accessing elements in a message in the MRM domain:

You can use ESQL to manipulate the logical tree that represents a message in the

message flow. This topic describes how to access data for elements in a message in

the MRM domain.

You can populate an element with data with the SET statement:

The field reference on the left hand side of the expression refers to the element

called Name within the MRM message domain. This statement takes the input

value for the Name field, converts it to uppercase, and assigns the result to the

same element in the output message.

The Name element is defined in the noTarget namespace. No namespace prefix is

specified in front of the Name part of the field reference in the example above. If

you have defined an MRM element in a namespace other than the noTarget

namespace, you must also specify a namespace prefix in the statement. For

example:

For more information about using namespaces with messages in the MRM domain,

see “Accessing the content of a message in the MRM domain with namespace

support enabled” on page 396.

Accessing multiple occurrences of an element in a message in the MRM

domain:

You can access MRM domain elements following the general guidance given in

“Accessing known multiple occurrences of an element” on page 288 and

“Accessing unknown multiple occurrences of an element” on page 289. Further

information specific to MRM domain messages is provided in this topic.

Consider the following statements:

SET OutputRoot.MRM.Name = UPPER(InputRoot.MRM.Name);

DECLARE brw NAMESPACE ’http://www.ibm.com/Borrowed’;

SET OutputRoot.MRM.brw:Borrowed.VideoTitle = ’MRM Greatest Hits’;

Developing message flows 389

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.doc/doc/overview.htm

The above SET statements operate on two occurrences of the element Borrowed.

Each statement sets the value of the child VideoTitle. The array index indicates

which occurrence of the repeating element you are interested in.

When you define child elements of a complex type (which has its Composition

property set to Sequence) in a message set, you can add the same element to the

complex type more than once. These instances do not have to be contiguous, but

you must use the same method (array notation) to refer to them in ESQL.

For example, if you create a complex type with a Composition of Sequence that

contains the following elements:

use the following ESQL to set the value of StringElement1:

You can also use the arrow notation (the greater than (>) and less than (<)

symbols) to indicate the direction of search and the index to be specified:

Refer to “Accessing known multiple occurrences of an element” on page 288 and

“Accessing unknown multiple occurrences of an element” on page 289 for

additional detail.

Accessing attributes in a message in the MRM domain:

When an MRM message is parsed into a logical tree, attributes and the data that

they contain are created as name-value pairs in the same way that MRM elements

are. The ESQL that you code to interrogate and update the data held in attributes

refers to the attributes in a similar manner.

 Consider the Video Rental sample MRM message. The attribute LastName is

defined as a child of the Name element in the Customer message. Here is an

example input XML message:

DECLARE brw NAMESPACE ’http://www.ibm.com/Borrowed’;

SET OutputRoot.MRM.brw:Borrowed[1].VideoTitle = ’MRM Greatest Hits Volume 1’;

SET OutputRoot.MRM.brw:Borrowed[2].VideoTitle = ’MRM Greatest Hits Volume 2’;

StringElement1

IntegerElement1

StringElement1

SET OutputRoot.MRM.StringElement1[1] =

 ’This is the first occurrence of StringElement1’;

SET OutputRoot.MRM.StringElement1[2] =

 ’This is the second occurrence of StringElement1’;

SET OutputRoot.MRM.StringElement1[>] =

 ’This is the first occurrence of StringElement1’;

SET OutputRoot.MRM.StringElement1[<2] =

 ’This is the last but one occurrence of

 StringElement1’;

SET OutputRoot.MRM.StringElement1[<1] =

 ’This is the last occurrence of StringElement1’;

390 Message Flows

When the input message is parsed, values are stored in the logical tree as shown in

the following section of user trace:

The following ESQL changes the value of the LastName attribute in the output

message:

Be aware of the ordering of attributes when you code ESQL. When attributes are

parsed, the logical tree inserts the corresponding name-value before the MRM

element’s child elements. In the previous example, the child elements Title and

FirstName appear in the logical message tree after the attribute LastName. In the

<Customer xmlns:addr="http://www.ibm.com/AddressDetails"

xmlns:brw="http://www.ibm.com/BorrowedDetails">

 <Name LastName="Bloggs">

 <Title>Mr</Title>

 <FirstName>Fred</FirstName>

 </Name>

 <addr:Address>

 <HouseNo>13</HouseNo>

 <Street>Oak Street</Street>

 <Town>Southampton</Town>

 </addr:Address>

 <ID>P</ID>

 <PassportNo>J123456TT</PassportNo>

 <brw:Borrowed>

 <VideoTitle>Fast Cars</VideoTitle>

 <DueDate>2003-05-23T01:00:00</DueDate>

 <Cost>3.50</Cost>

 </brw:Borrowed>

 <brw:Borrowed>

 <VideoTitle>Cut To The Chase</VideoTitle>

 <DueDate>2003-05-23T01:00:00</DueDate>

 <Cost>3.00</Cost>

 </brw:Borrowed>

 <Magazine>0</Magazine>

</Customer>

(0x0100001B):MRM = (

 (0x01000013):Name = (

 (0x0300000B):LastName = ’Bloggs’

 (0x0300000B):Title = ’Mr’

 (0x0300000B):FirstName = ’Fred’

)

 (0x01000013)http://www.ibm.com/AddressDetails:Address = (

 (0x0300000B):HouseNo = 13

 (0x0300000B):Street = ’Oak Street’

 (0x0300000B):Town = ’Southampton’

)

 (0x0300000B):ID = ’P’

 (0x0300000B):PassportNo = ’J123456TT’

 (0x01000013)http://www.ibm.com/BorrowedDetails:Borrowed = (

 (0x0300000B):VideoTitle = ’Fast Cars’

 (0x0300000B):DueDate = TIMESTAMP ’2003-05-23 00:00:00’

 (0x0300000B):Cost = 3.50

)

 (0x01000013)http://www.ibm.com/BorrowedDetails:Borrowed = (

 (0x0300000B):VideoTitle = ’Cut To The Chase ’

 (0x0300000B):DueDate = TIMESTAMP ’2003-05-23 00:00:00’

 (0x0300000B):Cost = 3.00

)

 (0x0300000B):Magazine = FALSE

SET OutputRoot.MRM.Name.LastName = ’Smith’;

Developing message flows 391

Broker Application Development perspective, the Outline view displays attributes

after the elements. When you code ESQL to construct output messages, you must

define name-value pairs for attributes before any child elements.

Accessing elements within groups in a message in the MRM domain:

When an input message is parsed, structures that you have defined as groups in

your message set are not represented in the logical tree, but its children are. If you

want to refer to or update values for elements that are children of a groups, do not

include the group in the ESQL statement. Groups do not have tags that appear in

instance messages, and do not appear in user trace of the logical message tree.

Consider the following Video message:

When the input message is parsed, values are stored in the logical tree as shown in

the following section of user trace:

<Customer xmlns:addr="http://www.ibm.com/AddressDetails"

xmlns:brw="http://www.ibm.com/BorrowedDetails">

 <Name LastName="Bloggs">

 <Title>Mr</Title>

 <FirstName>Fred</FirstName>

 </Name>

 <addr:Address>

 <HouseNo>13</HouseNo>

 <Street>Oak Street</Street>

 <Town>Southampton</Town>

 </addr:Address>

 <ID>P</ID>

 <PassportNo>J123456TT</PassportNo>

 <brw:Borrowed>

 <VideoTitle>Fast Cars</VideoTitle>

 <DueDate>2003-05-23T01:00:00</DueDate>

 <Cost>3.50</Cost>

 </brw:Borrowed>

 <brw:Borrowed>

 <VideoTitle>Cut To The Chase</VideoTitle>

 <DueDate>2003-05-23T01:00:00</DueDate>

 <Cost>3.00</Cost>

 </brw:Borrowed>

 <Magazine>0</Magazine>

</Customer>

392 Message Flows

Immediately following the element named ID, the MRM message definition uses a

group which has a Composition of Choice. The group is defined with three children:

PassportNo, DrivingLicenceNo, and CreditCardNo. The choice composition

dictates that instance documents must use only one of these three possible

alternatives. The example shown above uses the PassportNo element.

When you refer to this element in ESQL statements, you do not specify the group

to which the element belongs. For example:

If you define messages within message sets that include XML and TDS physical

formats, you can determine from the message data which option of a choice has

been taken, because the tags in the message represent one of the choice’s options.

However, if your messages have CWF physical format, or are non-tagged TDS

messages, it is not clear from the message data, and the application programs

processing the message must determine which option of the choice has been

selected. This is known as unresolved choice handling. For further information, see

the description of the value of Choice in Complex type logical properties.

Accessing mixed content in a message in the MRM domain:

When you define a complex type in a message model, you can optionally specify

its content to be mixed. This setting, in support of mixed content in XML Schema,

allows you to manipulate data that is included between elements in the message.

Consider the following example:

(0x0100001B):MRM = (

 (0x01000013):Name = (

 (0x0300000B):LastName = ’Bloggs’

 (0x0300000B):Title = ’Mr’

 (0x0300000B):FirstName = ’Fred’

)

 (0x01000013)http://www.ibm.com/AddressDetails:Address = (

 (0x0300000B):HouseNo = 13

 (0x0300000B):Street = ’Oak Street’

 (0x0300000B):Town = ’Southampton’

)

 (0x0300000B):ID = ’P’

 (0x0300000B):PassportNo = ’J123456TT’

 (0x01000013)http://www.ibm.com/BorrowedDetails:Borrowed = (

 (0x0300000B):VideoTitle = ’Fast Cars’

 (0x0300000B):DueDate = TIMESTAMP ’2003-05-23 00:00:00’

 (0x0300000B):Cost = 3.50

)

 (0x01000013)http://www.ibm.com/BorrowedDetails:Borrowed = (

 (0x0300000B):VideoTitle = ’Cut To The Chase ’

 (0x0300000B):DueDate = TIMESTAMP ’2003-05-23 00:00:00’

 (0x0300000B):Cost = 3.00

)

 (0x0300000B):Magazine = FALSE

SET OutputRoot.MRM.PassportNo = ’J999999TT’;

Developing message flows 393

The strings abc, ghi, and mno do not represent the value of a particular element

(unlike def, for example, which is the value of element Elem1). The presence of

these strings means that you must model Mess1 with mixed content. You can

model this XML message in the MRM using the following objects:

Message

The message Name property is set to Mess1 to match the XML tag.

 The Type property is set to tMess1.

Type The complex type Name property is set to tMess1.

 The Composition property is set to OrderedSet.

The complex type has mixed content.

The complex type contains the following objects:

Element

The Name property is set to Elem1 to match the XML tag.

 The Type property is set to simple type xsd:string.

Element

The Name property is set to Elem2 to match the XML tag.

 The Type property is set to simple type xsd:string.

Element

The Name property is set to Elem3 to match the XML tag.

 The Type property is set to simple type xsd:string.

If you code the following ESQL:

the mixed content is successfully mapped to the following output message:

<MRM>

 <Mess1>

 abc

 <Elem1>def</Elem1>

 ghi

 <Elem2>jkl</Elem2>

 mno

 <Elem3>pqr</Elem3>

 </Mess1>

</MRM>

SET OutputRoot.MRM.*[1] = InputBody.Elem3;

SET OutputRoot.MRM.Elem1 = InputBody.*[5];

SET OutputRoot.MRM.*[3] = InputBody.Elem2;

SET OutputRoot.MRM.Elem2 = InputBody.*[3];

SET OutputRoot.MRM.*[5] = InputBody.Elem1;

SET OutputRoot.MRM.Elem3 = InputBody*[1];

<MRM>

 <Mess1>

 pqr

 <Elem1>mno</Elem1>

 jkl

 <Elem2>ghi</Elem2>

 def

 <Elem3>abc</Elem3>

 </Mess1>

</MRM>

394 Message Flows

Accessing embedded messages in the MRM domain:

If you have defined a multipart message, you have at least one message embedded

within another. Within the overall complex type that represents the outer messages,

you can model the inner message in one of the following ways:

v An element (named E_outer1 in the following example) with its Type property

set to a complex type that has been defined with its Composition property set to

Message

v A complex type with its Composition property set to Message (named

t_Embedded in the following example)

The ESQL that you need to write to manipulate the inner message varies

depending on which of the above models you have used. For example, assume

that you have defined:

v An outer message M_outer that has its Type property set to t_Outer.

v An inner message M_inner1 that has its Type set to t_Inner1

v An inner message M_inner2 that has its Type set to t_Inner2

v Type t_Outer that has its first child element named E_outer1 and its second

child defined as a complex type named t_Embedded

v Type t_Embedded that has its Composition property set to Message

v Type t_Inner1 that has its first child element named E_inner11

v Type t_Inner2 that has its first child element named E_inner21

v Type t_outer1 that has its Composition property set to Message

v Element E_outer1 that has its Type property set to t_outer1

If you want to set the value of E_inner11, code the following ESQL:

If you want to set the value of E_inner21, code the following ESQL:

If you copy message headers from the input message to the output message, and

your input message type contains a path, only the outermost name in the path is

copied to the output message type.

When you configure a message flow to handle embedded messages, you can

specify the path of a message type in either an MQRFH2 header (if one is present

in the input message) or in the input node Message Type property in place of a

name (for example, for the message modeled above, the path could be specified as

M_Outer/M_Inner1/M_Inner2 instead of just M_Outer).

If you have specified that the input message has a physical format of either CWF

or XML, any message type prefix is concatenated in front of the message type from

the MQRFH2 or input node, giving a final path to use (for more information refer

to Multipart messages). The MRM uses the first item in the path as the outermost

message type, then progressively works inwards when it finds a complex type

with its Composition property set to Message.

If you have specified that the input message has a physical format of TDS, a

different process that uses message keys is implemented. This is described in TDS

format: Multipart messages.

SET OutputRoot.MRM.E_outer1.M_inner1.E_inner11 = ’FRED’;

SET OutputRoot.MRM.M_inner2.E_inner21 = ’FRED’;

Developing message flows 395

For more information about path concatenations, see Message set properties.

Accessing the content of a message in the MRM domain with namespace

support enabled:

Use namespaces where appropriate for messages that are parsed by the MRM

parser.

 When you want to access elements of a message and namespaces are enabled, you

must include the namespace when you code the ESQL reference to the element. If

you do not do so, the broker searches the no target namespace. If the element is

not found in the no target namespace, the broker searches all other known

namespaces in the message dictionary (that is, within the deployed message set).

For performance and integrity reasons, specify namespaces wherever they apply.

The most efficient way to refer to elements when namespaces are enabled is to

define a namespace constant, and use this in the appropriate ESQL statements.

This technique makes your ESQL code much easier to read and maintain.

Define a constant using the DECLARE NAMESPACE statement:

ns01 is interpreted correctly as a namespace because of the way that it is declared.

You can also use a CHARACTER variable to declare a namespace:

If you use this method, you must surround the declared variable with braces to

ensure that it is interpreted as a namespace.

If you are concerned that a CHARACTER variable might get changed, you can use

a CONSTANT CHARACTER declaration:

You can declare a namespace, constant, and variable within a module or function.

However, you can declare only a namespace or constant in schema scope (that is,

outside a module scope).

The following sample provides further examples of the use of namespaces:

v Video Rental sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Querying null values in a message in the MRM domain:

DECLARE ns01 NAMESPACE ’http://www.ns01.com’

.

.

SET OutputRoot.MRM.Element1 = InputBody.ns01:Element1;

DECLARE ns02 CHARACTER ’http://www.ns02.com’

.

.

SET OutputRoot.MRM.Element2 = InputBody.{ns02}:Element2;

DECLARE ns03 CONSTANT CHARACTER ’http://www.ns03.com’

.

.

SET OutputRoot.MRM.Element3 = InputBody.{ns03}:Element3;

396 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.doc/doc/overview.htm

If you want to compare an element to NULL, code the statement:

If nulls are permitted for this element, this statement tests whether the element

exists in the input message, or whether it exists and contains the MRM-supplied

null value. The behavior of this test depends on the physical format:

v For an XML element, if the XML tag or attribute is not in the bit stream, this test

returns TRUE.

v For an XML element, if the XML tag or attribute is in the bit stream and contains

the MRM null value, this test returns TRUE.

v For an XML element, if the XML tag or attribute is in the bit stream and does

not contain the MRM null value, this test returns FALSE.

v For a delimited TDS element, if the element has no value between the previous

delimiter and its delimiter, this test returns TRUE.

v For a delimited TDS element, if the element has a value between the previous

delimiter and its delimiter that is the same as the MRM-defined null value for

this element, this test returns TRUE.

v For a delimited TDS element, if the element has a value between the previous

delimiter and its delimiter that is not the MRM-defined null value, this test

returns FALSE.

v For a CWF or fixed length TDS element, if the element’s value is the same as the

MRM-defined null value for this element, this test returns TRUE.

v For a CWF or fixed length TDS element, if the element’s value is not the same as

the MRM-defined null value, this test returns FALSE.

If you want to determine if the field is missing, rather than present but with null

value, you can use the ESQL CARDINALITY function.

Setting null values in a message in the MRM domain:

To set a value of an element in an output message, you normally code an ESQL

statement similar to the following:

or its equivalent statement:

If you set the element to a non-null value, these two statements give identical

results. However, if you want to set the value to null, these two statements do not

give the same result:

1. If you set the element to NULL using the following statement, the element is

deleted from the message tree:

The content of the output bit stream depends on the physical format:

v For an XML element, neither the XML tag or attribute nor its value are

included in the output bit stream.

IF InputRoot.MRM.Elem2.Child1 IS NULL THEN

 DO:

 -- more ESQL --

END IF;

SET OutputRoot.MRM.Elem2.Child1 = ’xyz’;

SET OutputRoot.MRM.Elem2.Child1 VALUE = ’xyz’;

SET OutputRoot.MRM.Elem2.Child1 = NULL;

Developing message flows 397

v For a Delimited TDS element, neither the tag (if appropriate) nor its value

are included in the output bit stream. The absence of the element is typically

conveyed by two adjacent delimiters.

v For a CWF or Fixed Length TDS element, the content of the output bit

stream depends on whether you have set the Default Value property for the

element. If you have set this property, the default value is included in the bit

stream. If you have not set the property, an exception is raised.

This is called implicit null processing.

2. If you set the value of this element to NULL as follows:

 the element is not deleted from the message tree. Instead, a special value of

NULL is assigned to the element. The content of the output bit stream depends

on the settings of the physical format null-handling properties.

This is called explicit null processing.

Setting a complex element to NULL deletes that element and all its children.

Working with MRM messages and bit streams:

When you use the ASBITSTREAM function or the CREATE FIELD statement with

a PARSE clause note the following points.

The ASBITSTREAM function

If you code the ASBITSTREAM function with the parser mode option set to

RootBitStream, to parse a message tree to a bit stream, the result is an MRM

document in the format specified by the message format that is built from the

children of the target element in the normal way.

The target element must be a predefined message defined within the message set,

or can be a self-defined message if using an XML physical format. This algorithm

is identical to that used to generate the normal output bit stream. A well formed

bit stream obtained in this way can be used to recreate the original tree using a

CREATE statement with a PARSE clause.

If you code the ASBITSTREAM function with the parser mode option set to

FolderBitStream, to parse a message tree to a bit stream, the generated bit stream is

an MRM element built from the target element and its children. Unlike

RootBitStream mode the target element does not have to represent a message; it can

represent a predefined element within a message or self-defined element within a

message.

So that the MRM parser can correctly parse the message, the path from the

message to the target element within the message must be specified in the Message

Type. The format of the path is the same as that used by message paths except that

the message type prefix is not used.

For example, suppose the following message structure is used:

SET OutputRoot.MRM.Elem2.Child1 VALUE = NULL;

 Message

 elem1

 elem11

 elem12

398 Message Flows

To serialize the subtree representing element elem12 and its children, specify the

message path ’message/elem1/elem12’ in the Message Type.

If an element in the path is qualified by a namespace, specify the namespace URI

between {} characters in the message path. For example if element elem1 is

qualified by namespace ’http://www.ibm.com/temp’, specify the message path as

’message/{http://www.ibm.com/temp}elem1/elem12’

This mode can be used to obtain a bit stream description of arbitrary sub-trees

owned by an MRM parser. When in this mode, with a physical format of XML, the

XML bit stream generated is not enclosed by the ’Root Tag Name’ specified for the

Message in the Message Set. No XML declaration is created, even if not suppressed

in the message set properties.

Bit streams obtained in this way can be used to recreate the original tree using a

CREATE statement with a PARSE clause (using a mode of FolderBitStream).

The CREATE statement with a PARSE clause

If you code a CREATE statement with a PARSE clause, with the parser mode

option set to RootBitStream, to parse a bit stream to a message tree, the expected bit

stream is a normal MRM document. A field in the tree is created for each field in

the document. This algorithm is identical to that used when parsing a bit stream

from an input node

If you code a CREATE statement with a PARSE clause, with the parser mode

option set to FolderBitStream, to parse a bit stream to a message tree, the expected

bit stream is a document in the format specified by the Message Format, which is

either specified directly or inherited. Unlike RootBitStream mode the root of the

document does not have to represent an MRM message; it can represent a

predefined element within a message or self-defined element within a message.

So that the MRM parser can correctly parse the message the path from the message

to the target element within the message must be specified in the Message Type. The

format of the message path is the same as that used for the ASBITSTREAM

function described above.

Example of using the ASBITSTREAM function and CREATE statement with a

PARSE clause in FolderBitStream mode

The following ESQL uses the message definition described above. The ESQL

serializes part of the input tree using the ASBITSTREAM function, and then uses

the CREATE statement with a PARSE clause to recreate the subtree in the output

tree. The Input message and corresponding Output message are shown below the

ESQL.

CREATE COMPUTE MODULE DocSampleFlow_Compute

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 CALL CopyMessageHeaders();

 -- Set the options to be used by ASBITSTREAM and CREATE ... PARSE

 -- to be FolderBitStream and enable validation

 DECLARE parseOptions INTEGER BITOR(FolderBitStream, ValidateContent,

 ValidateValue, ValidateLocalError);

 -- Serialise the elem12 element and its children from the input bitstream

 -- into a variable

 DECLARE subBitStream BLOB

Developing message flows 399

CAST(ASBITSTREAM(InputRoot.MRM.elem1.elem12

 OPTIONS parseOptions

 SET ’DocSample’

 TYPE ’message/elem1/elem12’

 FORMAT ’XML1’) AS BLOB);

 -- Set the value of the first element in the output tree

 SET OutputRoot.MRM.elem1.elem11 = ’val11’;

 -- Parse the serialized sub-tree into the output tree

 IF subBitStream IS NOT NULL THEN

 CREATE LASTCHILD OF OutputRoot.MRM.elem1

 PARSE (subBitStream

 OPTIONS parseOptions

 SET ’DocSample’

 TYPE ’message/elem1/elem12’

 FORMAT ’XML1’);

 END IF;

 -- Convert the children of elem12 in the output tree to uppercase

 SET OutputRoot.MRM.elem1.elem12.elem121 =

 UCASE(OutputRoot.MRM.elem1.elem12.elem121);

 SET OutputRoot.MRM.elem1.elem12.elem122 =

 UCASE(OutputRoot.MRM.elem1.elem12.elem122);

 -- Set the value of the last element in the output tree

 SET OutputRoot.MRM.elem1.elem13 = ’val13’;

 RETURN TRUE;

 END;

 CREATE PROCEDURE CopyMessageHeaders() BEGIN

 DECLARE I INTEGER 1;

 DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

 WHILE I < J DO

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I = I + 1;

 END WHILE;

 END;

END MODULE;

Input message :

<message>

 <elem1>

 <elem11>value11</elem11>

 <elem12>

 <elem121>value121</elem121>

 <elem122>value122</elem122>

 </elem12>

 <elem13>value13</elem13>

 </elem1>

</message>

Output message :

<message>

 <elem1>

 <elem11>val11</elem11>

 <elem12>

 <elem121>VALUE121</elem121>

 <elem122>VALUE122</elem122>

 </elem12>

 <elem13>val13</elem13>

 </elem1

</message

400 Message Flows

Handling large MRM messages:

When an input bit stream is parsed, and a logical tree created, the tree

representation of an MRM message is typically larger, and in some cases much

larger, than the corresponding bit stream. The reasons for this include:

v The addition of the pointers that link the objects together.

v Translation of character data into Unicode that can double the original size.

v The inclusion of field names that can be contained implicitly within the bit

stream.

v The presence of control data that is associated with the broker’s operation

Manipulation of a large message tree can, therefore, demand a great deal of

storage. If you design a message flow that handles large messages made up of

repeating structures, you can code specific ESQL statements that help to reduce the

storage load on the broker. These statements support both random and sequential

access to the message, but assume that you do not need access to the whole

message at one time.

These ESQL statements cause the broker to perform limited parsing of the

message, and to keep only that part of the message tree that reflects a single record

in storage at a time. If your processing requires you to retain information from

record to record (for example, to calculate a total price from a repeating structure

of items in an order), you can either declare, initialize, and maintain ESQL

variables, or you can save values in another part of the message tree, for example

LocalEnvironment.

This technique reduces the memory used by the broker to that needed to hold the

full input and output bit streams, plus that required for one record’s trees. It

provides memory savings when even a small number of repeats is encountered in

the message. The broker makes use of partial parsing, and the ability to parse

specified parts of the message tree, to and from the corresponding part of the bit

stream.

To use these techniques in your Compute node apply these general techniques:

v Copy the body of the input message as a bit stream to a special folder in the

output message. This creates a modifiable copy of the input message that is not

parsed and which therefore uses a minimum amount of memory.

v Avoid any inspection of the input message; this avoids the need to parse the

message.

v Use a loop and a reference variable to step through the message one record at a

time. For each record:

– Use normal transforms to build a corresponding output subtree in a second

special folder.

– Use the ASBITSTREAM function to generate a bit stream for the output

subtree that is stored in a BitStream element, placed in the position in the tree,

that corresponds to its required position in the final bit stream.

– Use the DELETE statement to delete both the current input and the output

record message trees when you complete their manipulation.

– When you complete the processing of all records, detach the special folders so

that they do not appear in the output bit stream.

You can vary these techniques to suit the processing that is required for your

messages. The following ESQL provides an example of one implementation.

Developing message flows 401

The ESQL is dependant on a message set called LargeMessageExanple that has been

created to define messages for both the Invoice input format and the Statement

output format. A message called AllInvoices has been created that contains a

global element called Invoice that can repeat one or more times, and a message

called Data that contains a global element called Statement that can repeat one or

more times.

The definitions of the elements and attributes have been given the correct data

types, therefore, the CAST statements used by the ESQL in the XML example are

no longer required. An XML physical format with name XML1 has been created in

the message set which allows an XML message corresponding to these messages to

be parsed by the MRM.

When the Statement tree is serialized using the ASBITSTREAM function the

Message Set, Message Type, and Message Format are specified as parameters. The

Message Type parameter contains the path from the message to the element being

serialized which, in this case, is Data/Statement because the Statement element is a

direct child of the Data message.

The input message to the flow is the same Invoice example message used in other

parts of the documentation except that it is contained between the tags:

 <AllInvoices> </AllInvoices>

CREATE COMPUTE MODULE LargeMessageExampleFlow_Compute

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 CALL CopyMessageHeaders();

 -- Create a special folder in the output message to hold the input tree

 -- Note : SourceMessageTree is the root element of an MRM parser

 CREATE LASTCHILD OF OutputRoot.MRM DOMAIN ’MRM’ NAME ’SourceMessageTree’;

 -- Copy the input message to a special folder in the output message

 -- Note : This is a root to root copy which will therefore not build trees

 SET OutputRoot.MRM.SourceMessageTree = InputRoot.MRM;

 -- Create a special folder in the output message to hold the output tree

 CREATE FIELD OutputRoot.MRM.TargetMessageTree;

 -- Prepare to loop through the purchased items

 DECLARE sourceCursor REFERENCE TO OutputRoot.MRM.SourceMessageTree.Invoice;

 DECLARE targetCursor REFERENCE TO OutputRoot.MRM.TargetMessageTree;

 DECLARE resultCursor REFERENCE TO OutputRoot.MRM;

 DECLARE grandTotal FLOAT 0.0e0;

 -- Create a block so that it’s easy to abandon processing

 ProcessInvoice: BEGIN

 -- If there are no Invoices in the input message, there is nothing to do

 IF NOT LASTMOVE(sourceCursor) THEN

 LEAVE ProcessInvoice;

 END IF;

 -- Loop through the invoices in the source tree

 InvoiceLoop : LOOP

 -- Inspect the current invoice and create a matching Statement

 SET targetCursor.Statement =

 THE (

 SELECT

 ’Monthly’ AS Type,

 ’Full’ AS Style,

 I.Customer.FirstName AS Customer.Name,

 I.Customer.LastName AS Customer.Surname,

 I.Customer.Title AS Customer.Title,

 (SELECT

402 Message Flows

FIELDVALUE(II.Title) AS Title,

 II.UnitPrice * 1.6 AS Cost,

 II.Quantity AS Qty

 FROM I.Purchases.Item[] AS II

 WHERE II.UnitPrice> 0.0) AS Purchases.Article[],

 (SELECT

 SUM(II.UnitPrice *

 II.Quantity *

 1.6)

 FROM I.Purchases.Item[] AS II) AS Amount,

 ’Dollars’ AS Amount.Currency

 FROM sourceCursor AS I

 WHERE I.Customer.LastName <> ’White’

);

 -- Turn the current Statement into a bit stream

 -- The SET parameter is set to the name of the message set

 -- containing the MRM definition

 -- The TYPE parameter contains the path from the from the message

 -- to element being serialized

 -- The FORMAT parameter contains the name of the physical format

 -- name defined in the message

 DECLARE StatementBitStream BLOB

 CAST(ASBITSTREAM(targetCursor.Statement

 OPTIONS FolderBitStream

 SET ’LargeMessageExample’

 TYPE ’Data/Statement’

 FORMAT ’XML1’) AS BLOB);

 -- If the SELECT produced a result (that is, it was not filtered

 -- out by the WHERE clause), process the Statement

 IF StatementBitStream IS NOT NULL THEN

 -- create a field to hold the bit stream in the result tree

 -- The Type of the element is set to MRM.BitStream to indicate

 -- to the MRM Parser that this is a bitstream

 CREATE LASTCHILD OF resultCursor

 Type MRM.BitStream

 NAME ’Statement’

 VALUE StatementBitStream;

 -- Add the current Statement’s Amount to the grand total

 SET grandTotal = grandTotal + targetCursor.Statement.Amount;

 END IF;

 -- Delete the real Statement tree leaving only the bit stream version

 DELETE FIELD targetCursor.Statement;

 -- Step onto the next Invoice, removing the previous invoice and any

 -- text elements that might have been interspersed with the Invoices

 REPEAT

 MOVE sourceCursor NEXTSIBLING;

 DELETE PREVIOUSSIBLING OF sourceCursor;

 UNTIL (FIELDNAME(sourceCursor) = ’Invoice’)

 OR (LASTMOVE(sourceCursor) = FALSE)

 END REPEAT;

 -- If there are no more invoices to process, abandon the loop

 IF NOT LASTMOVE(sourceCursor) THEN

 LEAVE InvoiceLoop;

 END IF;

 END LOOP InvoiceLoop;

 END ProcessInvoice;

 -- Remove the temporary source and target folders

 DELETE FIELD OutputRoot.MRM.SourceMessageTree;

 DELETE FIELD OutputRoot.MRM.TargetMessageTree;

Developing message flows 403

-- Finally add the grand total

 SET resultCursor.GrandTotal = grandTotal;

 -- Set the output MessageType property to be ’Data’

 SET OutputRoot.Properties.MessageType = ’Data’;

 RETURN TRUE;

 END;

 CREATE PROCEDURE CopyMessageHeaders() BEGIN

 DECLARE I INTEGER 1;

 DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

 WHILE I < J DO

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I = I + 1;

 END WHILE;

 END;

END MODULE;

Manipulating messages in the JMS domains

This topic provides information specific to dealing with messages that belong to

the JMSMap and JMSStream domains. These messages are parsed by the generic

XML parser.

Messages that belong to the JMS domains are processed by the XML parser, so you

can follow the guidance provided for XML messages in “Manipulating messages in

the XML domain” on page 387, in conjunction with the information in

“Manipulating message body content” on page 283.

The JMSMap and JMSStream domains support MapMessage and StreamMessage

messages. Other kinds of JMS message are supported by other domains. For

further information about using JMS messages with WebSphere Message Broker,

see WebSphere Broker JMS Transport.

Manipulating messages in the IDOC domain

Use ESQL from a Compute node to copy the incoming IDoc to the outgoing IDoc,

and manipulate the message.

A valid IDoc message flows out of SAP and is sent to the MQSeries link for R/3.

When this IDoc has been committed successfully to the outbound WebSphere MQ

queue, the input node of the message flow reads it from that queue and generates

the syntax element tree.

The Compute node manipulates this syntax element tree and, when it has finished,

passes the output message to subsequent nodes in the message flow. When the

message reaches the output node, the IDOC parser is called to rebuild the bit

stream from the tree.

The message flow must create an output message in a similar format to the input

message.

See Field names of the IDOC parser structures for the field names in the DC

(Control Structure) and DD (Data Structure) that are recognized by the IDOC

parser

404 Message Flows

Use the following ESQL example from a Compute node:

The first line of the code copies the incoming IDoc to the outgoing IDoc.

The second line sets the tabname of the first DC.

The third line uses the second DD segment, which in this example is of type

E2MAKTM001, and sets the maktx field.

Accessing fields of the IDoc using ESQL:

Use the ESQL editor Content Assist to fill in the SAP-defined fields of the IDoc.

After the sdatatag tag in an ESQL statement, the next tag is MRM, which you must

enter manually, followed by the field name that is to be manipulated. Specify the

name of the field within the message segment here, not the name of the message

segment.

For example, the following code sets the segment name of the IDoc:

SET OutputRoot.IDOC.DD[I].segnam = ’E2MAKTM001’;

The following example sets the msgfn field within the E2MAKTM001 segment:

SET OutputRoot.IDOC.DD[I].sdatatag.MRM.msgfn = ’006’;

Manipulating messages in the MIME domain

This topic explains how to deal with messages that belong to the MIME domain,

and are parsed by the MIME parser. Use this information in conjunction with the

information in “Manipulating message body content” on page 283.

A MIME message does not need to be received over a particular transport. For

example, a message can be received over HTTP using an HTTPInput node, or over

WebSphere MQ using an MQInput node. The MIME parser is used to process a

message if one of the following conditions applies:

v The message domain is set to MIME in the input node properties.

v You are using WebSphere MQ, and the MQRFH2 header has a message domain

of MIME.

You can manipulate the logical tree using ESQL before passing the message on to

other nodes in the message flow. A message flow can also create a MIME domain

tree using ESQL. When a MIME domain message reaches an output node, the

MIME parser is called to rebuild the bit stream from the logical tree.

The following examples show how to manipulate MIME messages:

v “Creating a new MIME tree”

v “Modifying an existing MIME tree” on page 406

v “Managing Content-Type” on page 407

Creating a new MIME tree

A message flow often receives, modifies, and returns a MIME message. In this

case, you can work with the valid MIME tree that is created when the input

message is parsed. If a message flow receives input from another domain, such as

SET OutputRoot = InputRoot;

SET OutputRoot.IDOC.DC[1].tabnam = ’EDI_DC40 ’;

SET OutputRoot.IDOC.DD[2].sdatatag.MRM.maktx = ’Buzzing all day’;

Developing message flows 405

XMLNS, and returns a MIME message, you must create a valid MIME tree. Use

the following ESQL example in a Compute node to create the top-level structure

for a single-part MIME tree:

CREATE FIELD OutputRoot.MIME TYPE Name;

DECLARE M REFERENCE TO OutputRoot.MIME;

CREATE LASTCHILD OF M TYPE Name NAME ’Data’;

The message flow must also ensure that the MIME Content-Type is set correctly, as

explained in “Managing Content-Type” on page 407. The flow must then add the

message data into the MIME tree. The following ESQL examples show how you

can do this. In each case, a Data element is created with the domain BLOB.

v A bit stream from another part of the tree is used. This example shows how a bit

stream could be created from an XML message that is received by the message

flow. The flow then invokes the BLOB parser to store the data under the Data

element.

 DECLARE partData BLOB ASBITSTREAM(InputRoot.XMLNS);

 CREATE LASTCHILD OF M.Data DOMAIN(’BLOB’) PARSE(partData);

v Instead of parsing the bit stream, create the new structure, then attach the data

to it, as shown in this ESQL example:

DECLARE partData BLOB ASBITSTREAM(InputRoot.XMLNS);

CREATE LASTCHILD OF M.Data DOMAIN(’BLOB’) NAME ’BLOB’;

CREATE LASTCHILD OF M.Data.BLOB NAME ’BLOB’ VALUE partData;

Both of these approaches create the same tree structure. The first approach is better

because explicit knowledge of the tree structure that the BLOB parser requires is

not built into the flow.

More commonly, the Compute node must build a tree for a multipart MIME

document. The following ESQL example shows how you can do this, including

setting the top-level Content-Type property.

Modifying an existing MIME tree

This ESQL example adds a new MIME part to an existing multipart MIME

message. If the message is not multipart, it is not modified.

DECLARE part1Data BLOB ASBITSTREAM(InputRoot.XMLNS, InputProperties.Encoding, InputProperties.CodedCharSetId);

SET OutputRoot.Properties.ContentType = ’multipart/related; boundary=myBoundary’;

CREATE FIELD OutputRoot.MIME TYPE Name;

DECLARE M REFERENCE TO OutputRoot.MIME;

CREATE LASTCHILD OF M TYPE Name NAME ’Parts’;

CREATE LASTCHILD OF M.Parts TYPE Name NAME ’Part’;

DECLARE P1 REFERENCE TO M.Parts.Part[1];

CREATE FIELD P1."Content-Type" TYPE NameValue VALUE ’text/plain’;

CREATE FIELD P1."Content-Id" TYPE NameValue VALUE ’part one’;

CREATE LASTCHILD OF P1 TYPE Name NAME ’Data’;

CREATE LASTCHILD OF P1.Data DOMAIN(’BLOB’) PARSE(part1Data);

CREATE LASTCHILD OF M.Parts TYPE Name NAME ’Part’;

DECLARE P2 REFERENCE TO M.Parts.Part[2];

CREATE FIELD P2."Content-Type" TYPE NameValue VALUE ’text/plain’;

CREATE FIELD P2."Content-Id" TYPE NameValue VALUE ’part two’;

CREATE LASTCHILD OF P2 TYPE Name NAME ’Data’;

CREATE LASTCHILD OF P2.Data DOMAIN(’BLOB’) PARSE(part2Data);

406 Message Flows

Managing Content-Type

When you create a new MIME message tree, or when you modify the value of the

MIME boundary string, make sure that the MIME Content-Type header is set

correctly by setting the ContentType value in the broker Properties subtree. The

following example shows how to set the ContentType value for a MIME part with

simple content:

SET OutputRoot.Properties.ContentType = ’text/plain’;

Do not set the Content-Type value directly in the MIME tree or HTTP trees

because the value is ignored or used inconsistently.

Manipulating messages in the BLOB domain

This topic provides information specific to dealing with messages that belong to

the BLOB domain, and that are parsed by the BLOB parser.

You cannot manipulate the contents of a BLOB message, because it has no

predefined structure. However, you can refer to its contents using its known

position within the bit stream, and process the message with a minimum of

knowledge about its contents.

The BLOB message body parser does not create a tree structure in the same way

that other message body parsers do. It has a root element BLOB, that has a child

element, also called BLOB, that contains the data.

You can refer to message content using substrings if you know the location of a

particular piece of information within the BLOB data. For example, the following

expression identifies the tenth byte of the message body:

The following expression references 10 bytes of the message data starting at offset

10:

You can use the Mapping node to map to and from a predefined BLOB message,

and to map to and from items of BLOB data.

Simple example to write a string in the output message:

SET OutputRoot = InputRoot;

-- Check to see if the MIME message is multipart or not.

IF LOWER(InputProperties.ContentType) LIKE ’multipart/%’

THEN

 CREATE LASTCHILD OF OutputRoot.MIME.Parts NAME ’Part’;

 DECLARE P REFERENCE TO OutputRoot.MIME.Parts.[<];

 CREATE FIELD P."Content-Type" TYPE NameValue VALUE ’text/xml’;

 CREATE FIELD P."Content-ID" TYPE NameValue VALUE ’new part’;

 CREATE LASTCHILD OF P TYPE Name NAME ’Data’;

 -- This is an artificial way of creating some BLOB data.

 DECLARE newBlob BLOB ’4f6e652074776f2074687265650d0a’;

 CREATE LASTCHILD OF P.Data DOMAIN(’BLOB’) PARSE(newBlob);

END IF;

InputBody.BLOB.BLOB[10]

SUBSTRING(InputBody.BLOB.BLOB from 10 for 10)

Developing message flows 407

|
|

The following simple example allows you to write some character data in your

ESQL (for example, if you have read some character fields from a database) out as

a BLOB:

CALL CopyMessageHeaders();

 -- CALL CopyEntireMessage();

 DECLARE mystring CHARACTER;

 SET mystring=’hello’;

 SET OutputRoot.BLOB.BLOB=CAST (mystring AS BLOB CCSID 1208);

Using the CALL statement to invoke a user-written routine

The ESQL CALL statement invokes routines that have created and implemented in

different ways.

A routine is a user-defined function or procedure that has been defined by one of

the following statements:

v CREATE FUNCTION

v CREATE PROCEDURE

You can use the CALL statement to invoke a routine that has been implemented in

any of the following ways:

v ESQL.

v Java.

v As a stored procedure in a database.

v As a built-in (broker-provided) function.

(Although you can use CALL to invoke built-in (broker-provided) functions and

user-defined SQL functions, typically you would use their names in expressions

directly.)

For details of the syntax and parameters of the CALL statement, see “CALL

statement” on page 1487. For an example of the use of CALL, see the examples in

“CREATE PROCEDURE statement” on page 1511.

Calling an ESQL routine:

A routine is invoked as an ESQL method if the routine’s definition specifies a

LANGUAGE clause of ESQL or if the routine is a built-in function.

An exact one-to-one matching of the data types and directions of each parameter,

between the definition and the CALL, is required.

An ESQL routine is allowed to return any ESQL data type, excluding List and

Row.

Calling a Java routine:

A routine is invoked as a Java method if the routine’s definition specifies a

LANGUAGE clause of JAVA.

An exact one-to-one matching of the data types and directions of each parameter,

between the definition and the CALL, is required.

If the Java method has a void return type, the INTO clause cannot be used because

there is no value to return.

A Java routine can return any data type in the “ESQL-to-Java data-type mapping

table” on page 1462. Note that this excludes List and Row.

408 Message Flows

Calling a database stored procedure:

A routine is invoked as a database stored procedure if the routine’s definition has a

LANGUAGE clause of DATABASE.

When a call is made to a database stored procedure, the broker searches for a

definition (created by a CREATE PROCEDURE statement) that matches the

procedure’s local name. The broker then uses the following sequence to resolve the

name by which the procedure is known in the database and the database schema

to which it belongs:

1. If the CALL statement specifies an IN clause, the name of the data source, the

database schema, or both, is taken from the IN clause.

2. If the name of the data source is not provided by an IN clause on the CALL

statement, it is taken from the DATASOURCE attribute of the node.

3. If the database schema is not provided by an IN clause on the CALL statement,

but is specified on the EXTERNAL NAME clause of the CREATE PROCEDURE

statement, it is taken from the EXTERNAL NAME clause.

4. If no database schema is specified on the EXTERNAL NAME clause of the

CREATE PROCEDURE statement, the database’s user name is used as the

schema name. If a matching procedure is found, the routine is invoked.

The chief use of the CALL statement’s IN clause is that it allows the data source,

the database schema, or both to be chosen dynamically at run time. (The

EXTERNAL SCHEMA clause also allows the database schema which contains the

stored procedure to be chosen dynamically, but it is not as flexible as the IN clause

and is retained only for compatibility with earlier versions. Its use in new

applications is deprecated.)

If the called routine has any DYNAMIC RESULT SETS specified in its definition,

the number of expressions in the CALL statement’s ParameterList must match the

number of actual parameters to the routine, plus the number of DYNAMIC

RESULT SETS. For example, if the routine has three parameters and two

DYNAMIC RESULT SETS, the CALL statement must pass five parameters to the

called routine. The parameters passed for the two DYNAMIC RESULT SETS must

be list parameters; that is, they must be field references qualified with array

brackets []; for example, Environment.ResultSet1[].

A database stored procedure is allowed to return any ESQL data type, excluding

Interval, List, and Row.

Accessing broker properties from ESQL

It can be useful, during the runtime of your code, to have real-time access to

details of a specific node, flow, or broker. For an overview of broker properties, see

“Broker properties” on page 109.

You can use broker properties on the right side of regular SET statements. For

example:

DECLARE mybroker CHARACTER;

SET mybroker = BrokerName;

where BrokerName is the broker property that contains the broker’s name. However,

you cannot use broker properties on the left-hand side of SET statements. This is

because, at runtime, broker properties are constants: they cannot be assigned to,

Developing message flows 409

and so their values cannot be changed by SET statements. If a program tries to

change the value of a broker property, the error message Cannot assign to a

symbolic constant is issued.

Broker properties:

v Are grouped by broker, execution group, flow, and node.

v Are case sensitive. Their names always start with an uppercase letter.

v Return NULL if they do not contain a value.

If your ESQL code already contains a variable with the same name as one of the

broker properties, your variable takes precedence; that is, your variable masks the

broker property. To access the broker property, use the form

SQL.<broker_property_name>. For example: SQL.BrokerName.

“Broker properties that are accessible from ESQL and Java” on page 1663 shows

the broker, flow, and node properties that are accessible from ESQL and indicates

which properties are also accessible from Java.

Configuring a message flow at deployment time using UDPs

User-defined properties (UDPs) give you the opportunity to configure message

flows at deployment time, without modifying program code. You can give the

UDP an initial value when you declare it in your program, or when you use the

Message Flow editor to create or modify a message flow.

For an overview of user-defined properties, see “User-defined properties” on page

111.

See the “DECLARE statement” on page 1525 for an example of how to code a UDP

statement.

In ESQL, you can define UDPs at the module or schema level.

After a UDP has been defined by the Message Flow editor, you can modify its

value before you deploy it.

To configure UDPs:

1. Switch to the Broker Administration perspective.

2. Double-click the bar file in the Navigator view. The contents of the bar file are

shown in the Content editor.

3. Click the Configure tab at the bottom of the Content editor. This pane shows

the names of your message flows, which you can expand to show the

individual nodes that are contained in the flow.

4. Click a message flow name. The UDPs that are defined in that message flow

are displayed with their values.

5. If the value of the UDP is unsuitable for your current environment or task,

change it to the value that you want. The value of the UDP is set at the flow

level and is the same for all eligible nodes that are contained in the flow. If a

subflow includes a UDP that has the same name as a UDP in the main flow,

the value of the UDP in the subflow is not changed.

Now you are ready to deploy the message flow. See “Deploying a broker archive

file” on page 763.

410 Message Flows

|
|

|
|

Using XPath

XPath provides an alternative method to ESQL of entering expressions in the

property fields of specific built-in nodes.

In addition to ESQL as a message processing transformation language, WebSphere

Message Broker supports the entry of an alternative expression grammar in

property fields. For more information, see “ESQL-to-XPath mapping table” on page

1463.

You can use ESQL or XPath expressions in certain built-in nodes in your message

flows to query or update message trees that are specified as accessible, and that

you expect to be processed by a given node.

The following nodes support XPath in their properties:

v Collector node

v DatabaseRoute node

v DatabaseRetrieve node

v EmailOutput node

v FileOutput node

v HTTPInput node

v JavaCompute node

v JMSInput node

v MQInput node

v Route node

v SOAPEnvelope node

v SOAPExtract node

v SOAPInput node

v SOAPReply node

v SOAPRequest node

v SOAPAsyncRequest node

v SOAPAsyncResponse node

v WebSphere Adapter Request nodes

v WebSphere Service Registry and Repository EndpointLookup node

v WebSphere Service Registry and Repository RegistryLookup node

For more information about the associated properties in the nodes that use XPath,

see “Multi-language node property fields” on page 412.

This section provides information on:

v “XPath overview”

v “Namespace support” on page 415

v “XPath Expression Builder” on page 416

v “Creating XPath expressions” on page 419

v “Selecting the grammar mode” on page 420

XPath overview

The XML Path Language (XPath) is a language used to uniquely identify or

address parts of an XML document. An XPath expression can be used to search

through an XML document, and extract information from the nodes (any part of

the document, such as an element or attribute) in it. XPath can be used alone or in

conjunction with XSLT.

Some of the built-in nodes provided in the Message Broker Toolkit can use XPath

expressions to specify the part of a message that is processed by the node. For

Developing message flows 411

example, you can use an XPath expression to identify fields in a message and

determine if they match a specified value, or to set the field value, updating it with

the results of a database query.

For more information about the fields, in the built-in nodes, that can use XPath in

their properties, see “Multi-language node property fields.”

For further information on XPath 1.0 see XPath.

You can use the XPath Expression Builder to visually build XPath expressions to

set the relevant properties in your nodes. You launch the XPath Expression Builder

from buttons located along side property fields present in the Properties viewer,

for those nodes that support the use of XPath expressions as property values.

The XPath files in WebSphere Message Broker are supplied in three property

editors; see “XPath property editors” on page 1464 for more details.

The XPath editor supports both content-assist directly on the text field and also an

Edit... button that launches the XPath builder dialog. The dialog gives you a larger

area on which to build your XPath expressions.

The content assist based control contains two different proposal lists in the

following order:

1. Nodes and Variables

2. Functions and Operators

The node and variable proposals are displayed the first time that you use the

XPath editor. In this view, the status bar reads Press Ctrl+Space to show

Function and Operation Proposals.

Selecting Ctrl+Space in the function and operator level proposals selects the Node

and Variable proposals.

Multi-language node property fields

You can use ESQL or XPath expressions to specify the part of a message that is

processed by the node in the properties of some built-in nodes in the Message

Broker Toolkit.

The following list shows the nodes and associated properties that you can set

using ESQL or XPath expressions:

v WebSphere AdapterRequest node

– OutputDataLocation

v Collector node

– Correlation path; there is one for each dynamic input terminal.
v DatabaseRetrieve node

On the Basic tab:

– Value; when ValueType is set to Element.

On the Data Element Table tab:

– MessageElement

v DatabaseRoute node

On the Basic tab:

– Value; when ValueType is set to Element.

412 Message Flows

http://www.w3.org/TR/xpath

On the Filter Expression Table tab:

– filterPattern

v EmailOutput node

– Attachment

v FileOutput node

– DataLocation

– Request directory property location

– Request file name property location

v HTTPInput, JMSInput, and MQInput nodes

On the Security tab:

– Identity Token location

– Identity Password location

– Identity issued by

v Route node

On the Basic tab:

– filterPattern

v SOAPEnvelope node

– Envelope location

v SOAPExtract node

– Envelope destination

– Destination path mode

v SOAPInput, SOAPReply, SOAPRequest, SOAPAsyncRequest,

SOAPAsyncResponse nodes

On the WSSecurity tab:

– MessagePartReference

v WebSphere Service Registry and Repository nodes

– RegistryLookup node - User properties

– EndpointLookup node - User properties

For further information on these fields, see “Built-in nodes” on page 822 and

follow the link to the appropriate node.

The categories of field required to support XPath 1.0 and ESQL are:

v Read only path location.

This category is subdivided into:

– Fixed language: ESQL read-only path (field reference) field property.

– Fixed language: XPath 1.0 read-only path (path location) field property.

– Mixed language: ESQL or XPath 1.0 read-only path location field property
v Read write path location.

This category is subdivided into:

– Fixed language: ESQL read-write path (field reference) field property.

– Fixed language: XPath 1.0 read-write path (path location) field property.

– Mixed language: ESQL or XPath 1.0 read-write path location field property
v Expression.

This category is subdivided into:

– Fixed language: XPath 1.0 expression field property.

Developing message flows 413

The mapping between ESQL and XPath for the expression-field property

category is described in “ESQL-to-XPath mapping table” on page 1463.

A restricted set of expressions is supported by default to enable you to use either

XPath or ESQL; see “XPath expressions supported by default.”

If you want to use the full supported capabilities of the runtime in either language

you can change this setting; see “Selecting the grammar mode” on page 420 for

instructions on how to do this.

XPath expressions supported by default

XPath supports the following expressions by default:

Read-only fields

$Root, $Body, $Properties, $LocalEnvironment, $DestinationList,

$ExceptionList, $InputRoot , $InputBody, $InputProperties,

$InputLocalEnvironment, $InputDestinationList,

$InputExceptionList,$Environment.

 To exclude variables for a node property from the default list, specify a

comma separated string of variables. For example, specifying:

"com.ibm.etools.mft.ibmnodes.editors.xpath.XPathReadOnlyPropertyEditor", "InputRoot ,

 InputBody, InputProperties, InputLocalEnvironment, InputDestinationList,

 InputExceptionList"

restricts the XPath field to support only:

$Root, $Body, $Properties, $LocalEnvironment, $DestinationList, $ExceptionList’

$Environment

Read-write fields

$InputRoot , $InputBody, $InputProperties, $InputLocalEnvironment,

$InputDestinationList, $InputExceptionList, $OutputRoot ,

$OutputLocalEnvironment, $OutputDestinationList,

$OutputExceptionList, $Environment.

 To exclude variables for a node property from the default list, specify a

comma separated string of variables. For example, specifying:

"com.ibm.etools.mft.ibmnodes.editors.xpath.XPathReadWritePropertyEditor", "InputRoot ,

 InputBody, InputProperties, InputLocalEnvironment, InputDestinationList,

 InputExceptionList"

restricts the XPath field to support only:

$OutputRoot, $OutputLocalEnvironment, $OutputDestinationList, $OutputExceptionList,

 $Environment

Expression fields

$Root, $Body, $Properties, $LocalEnvironment, $DestinationList,

$ExceptionList, $InputRoot , $InputBody, $InputProperties,

$InputLocalEnvironment, $InputDestinationList, $InputExceptionList,

$OutputRoot , $OutputLocalEnvironment, $OutputDestinationList,

$OutputExceptionList, $Environment.

 To exclude variables for a node property from the default list, specify a

comma separated string of variables. For example, specifying:

"com.ibm.etools.mft.ibmnodes.editors.xpath.XPathPropertyEditor", "InputRoot ,

InputBody, InputProperties, InputLocalEnvironment, InputDestinationList,

InputExceptionList, OutputRoot , OutputLocalEnvironment, OutputDestinationList,

OutputExceptionList"

restricts the XPath field to support only:

414 Message Flows

$Root, $Body, $Properties, $LocalEnvironment, $DestinationList, $ExceptionList,

 $Environment.

Namespace support

The XPath Expression builder dialog contains a namespace settings table that:

v Supports simplified expressions that enable qualified namespace matching at

runtime

v Can be auto-generated based on imported schema definitions and generated

expressions (based on selections made in the dialog when you build an

expression)

v Allows you to add your own entries to the table

The table encapsulates deployable data passed to the runtime, as part of the nodes

attribute data, and is used by the node to modify expressions through prefix to

URI substitution. The final expressions support namespace matching as they are

exercised against a target tree when employed by their associated message

processing engine, that is, the XPath 1.0 runtime engine or ESQL runtime engine.

When you enter an ESQL field reference expression in a read-only path or

read-write path field, or an XPath 1.0 path expression in a read-only, read-write

path field or general expression field (general expressions can contain zero or more

path expressions) - WebSphere Message Broker understands the language from the

syntax you use.

XPath is the default for general expression fields that are validated by ensuring

they conform to the XPath 1.0 grammar. For path expression fields XPath is

assumed if the expression is valid and begins with a $ sign.

Note that the language you can use is dictated by the property editor in use for a

node’s property field.

Namespace prefixes are used in an XPath or ESQL expression to make the

statements shorter and easier to understand, while still supporting the ability to

qualify an element name match by also matching on its associated namespace URI.

For example, consider the message below where namespace prefix ’b’ is overridden

through an inner declaration

 <b:a xmlns:b=’xyz’>

 <!-- the namespace of elements ’a’ and ’c’ using prefix ’b’ is xyz -->

 <b:c>

 <b:d xmlns:b=’qrs’>

 <!-- the namespace of elements ’d’ and ’e’ using prefix ’b’ is now qrs -->

 <b:e>100</b:e>

 </b:d>

 </b:c>

 </b:a>

Note that the scope of a namespace declaration declaring a prefix extends from the

beginning of the start tag in which it appears to the end of the corresponding end

tag, excluding the scope of any inner declarations with the same namespace prefix.

In the case of an empty tag, the scope is the tag itself. >.

To navigate to element ’e’ in the above message use the following human readable

XPath expression:

 /b:a/b:c/b2:d/b2:e

Developing message flows 415

Note, that to prevent the auto-generated prefix to the URI map produced in the

expression dialog overloading the same prefix (in this case b), the inner ’b’ prefix is

appended with a numeric value to distinguish it from the outer ’b’ prefix. This

strategy is repeated for each prefix name clash.

This notation is similar to the equivalent human readable ESQL expression:

 Root.b:a.b:c.b2:d.b2:e

In order to support namespace prefixes within expressions, the XPath Expression

Builder Dialog auto-generates (based on the content of imported schema

definitions, through which expressions are generated) a prefix to a URI namespace

settings table.

Without the use of namespace prefixes to URI mapping data in this table, the

runtime would be forced to resort to a less desirable approach, where portable but

verbose XPath expressions would be required by it in order to provide namespace

matching support.

The previous expression:

 /b:a/b:c/b2:d/b2:e

would take the form:

 /*[namespace-uri()=’xyz’ and local-name()=’a’]/*[namespace-uri()=’xyz’

 and local-name()=’c’]/*[namespace-uri()=’qrs’ and

 local-name()=’d’]/*[namespace-uri()=’qrs’ and local-name()=’e’]

XPath Expression Builder

You can launch the XPath Expression builder in general, but not in all cases (for

example, the collector node) from any property field that supports or expects

XPath expressions as a value that can be entered into the field. The fields that are

supported by XPath specific property editors are listed in “Multi-language node

property fields” on page 412.

The use of the XPath Expression builder is optional, in that it is an aid to you in

developing message flow applications. The XPath Expression builder helps you to

construct message processing expressions in a given language, either XPath or

ESQL. You are free to enter expressions by hand, or use the XPath Expression

builder to help construct such expressions.

You can populate the fields, regardless of the state of the node; that is whether the

node is detached or connected, or fully, partially, or completely unconfigured.

You launch the XPath Expression Builder from buttons that are within:

v Table cells, located to the right of the text entry field within the cell.

v Add or Edit dialogs used to construct rows within tables, located to right of the

property field concerned.

v Tabs in the property viewer for a node, to the right of a property field.

Variables (or in ESQL terminology, correlation names) provide a list of all message

tree start points that are applicable for the property field concerned from which the

dialog was launched.

416 Message Flows

If a field is a read-only or a read-write path field, any expression must first start

with such a variable in order to indicate which tree in which message assembly the

path expression is mapping onto.

For XPath the variable names map to existing correlation names found in ESQL

field reference expressions, but to conform to the grammar they are signaled as

variable reference through the prefixing of the $ character.

For example:

ESQL Root.XMLNSC.CUST_DETAILS.NAME

XPATH

$Root/XMLNSC/CUST_DETAILS/NAME

The variable indicates which tree and where in the tree the expression is anchored.

The XPath Expression builder dialog supports validation, which you can turn off

on the XPath preferences page by removing the check from the Validate when

creating XPath expressions check box.

There are three main views when functions are supported.

Note, that what is provided in each view, or whether the view is even displayed, is

dependant on what type of property editor you have used to launch the dialog,

and its tailored settings; for example for path type fields you do not see a

functions pane. What operators are supported is variable as is the list of applicable

variables.

1. Data Types Viewer; this view shows the different schema types, elements, and

attributes that can be used within the XPath expression being created, as well

as the allowable variable references.

2. XPath Function; this view shows four main top level categories, which are:

v String

v Boolean

v Numeric

v NodeSet.

For information on the format of XPath 1.0 expressions see XPath and go to the

appropriate section, as follows:

String section-String-Functions

Boolean

section-Boolean-Functions

Numeric

section-Number-Functions

Nodeset

section-Node-Set-Functions
3. Operators; this view shows a list of all of the available operators that can be

used within the given XPath expression

Namespace settings

If you expand Namespace settings in the XPath Expression Builder dialog you see

a table of Prefix and Namespace pair strings; this table is automatically updated

Developing message flows 417

http://www.w3.org/TR/xpath

when XPath expressions are created. If the default prefix generated is not what you

want, you can change it by clicking the Change Prefix button.

To add a prefix and namespace map entry click the Add button and complete the

fields in the dialog.

To edit or delete an entry in the table, select the item and click the Edit or Delete

buttons respectively.

The Edit button opens another field dialog allowing you to change the prefix and

namespace.

For information on the preferences supplied with the XPath editor, see “XPath

editor preferences.”

XPath editor preferences

This topic describes the possible options available to you when you use the XPath

editor.

The following lists describe the custom preferences used in the XPath editor.

v Validation option:

Validation when building XPath expressions

Default: checked.

 This option is used to perform validation each time you update the

XPath expression. As validation requires re-parsing the expression

against the XML Schema document you can turn this option off, for

example, if you are dealing with very large complex XPath expressions.
v Content Assist display options:

Show XML Schema model groups

Default: not checked.

 This option allows you to view XML schema model groups, or not.

Show type in XML Schema tree

Default: checked.

 This option allows you to view the <type name> in both the Content

Assist view and the XPath expression builder, or not.

Show function parameters

Default: checked.

 This option allows you to have function parameters shown, or not.

Show function return type

Default: checked.

 This option allows you to have function return types shown, or not.

Show content assist description

Default: checked.

 This option allows you to view the description of a given selected entry

in the Content Assist view, or not..
v Auto-Activation option:

Enable auto activation

Default: checked.

418 Message Flows

When this option is active, the Content Assist field appears whenever

the cursor is after one of the following:

– / - Forward slash character

– [- left bracket character

– (- Left parentheses character

– , - Comma character

You set the delay time, before the Content Assist field appears, in the

Auto activation delay field. The time is in milliseconds and the range is

a positive number between zero and 9999.
v Content assist color options:

This preference allows you to customize the background and foreground colors

for the Content Assist fields. The default background color is (red, green, blue -

254, 241, 233) and the default foreground color is (red, green, blue - 0, 0, 0) -

black.

Creating XPath expressions

A number of built-in primitive nodes have properties that can be specified using

an XPath 1.0 expression; most common is where this language is used to form a

path expression to locate incoming message body elements received by a node.

Other less common node property fields support the entry of general XPath 1.0

expressions that support a wider range of the language to perform more complex

evaluations in the broker’s XPath 1.0 runtime engine.

The XPath Expression Builder provides a tree view of an expected message layout,

and supports the automatic generation of an XPath 1.0 path expression, through

the selection of an element within the given tree.

You can use XPath 1.0 path expressions in your flow to access specific parts of an

incoming message, create or locate parts of an outgoing message, and perform

complex message processing expression evaluations that might involve values

present in message trees accessible by a node. You can then process the message;

for example you can transform, filter or retrieve values from a message.

The Route node applies XPath 1.0 general expressions to the content of message

trees associated with the incoming message assembly for this node. Following

evaluation of an expression the result is cast as a Boolean (true or false) result, and

this in turn is used to determine if a copy of the incoming message is routed down

an output terminal associated with the processed expression.

If you have any XML schema definitions (.mxsd) files present in your workspace,

then any elements, attributes or data types defined in such definitions can be

loaded into the Data types viewer and selected to automatically generate a path

expressions mapping to the definition concerned.

Equally, depending on the XPath expressions supported by the property concerned,

you can select XPath functions and operators to include in an expression or you

can build your own expressions manually.

The Data types viewer contains a list of variables relating to trees that can be

accessed by expressions for the node property concerned.

Developing message flows 419

For example, $InputRoot gives access to the incoming message tree. The fixed

format of standard folders you can expect to exist under this tree, for example,

Properties and MQMD are described without the need to import an .mxsd definition

for them. These structures can be navigated in the viewer and, on selection of an

element within them, a path expressions is built automatically that maps to the

element in question through the XPath 1.0 language.

The Schema Viewer section provides a tree view of the input message. To visually

build your XPath expression follow these steps:

1. Add the relevant node to your message flow

2. In the Properties viewer, enter the correlation name, or press Ctrl + Space to

bring up content assist, or press Edit to use the Expression editor. Content

assist is also brought up by simply typing, for example, $ in cell-based property

fields. See “Correlation names” on page 71 for further information on

correlation names.

3. Expand the tree, navigate to the field for which you want to build the

expression, and click to select it. A field is either an element, or an attribute.

Double click the field to add it to the XPath Expression below. You can also

drag and drop fields, functions, and operators to the desired spots in the XPath

Expression when using the XPath Expression builder.

4. To set conditions, enter them in as you would a normal XPath Expression.

The complete XPath expression is shown either:

v In the XPath Expression pane if you are using the XPath Expression builder.

The Expression builder dialog is an optional aid to generating expressions that,

once complete, form the value in a node’s property field.

If you do not use the Expression builder dialog, the expressions entered

manually are validated using the property editor.

v In the Property field if it is in the node itself.

Note the messages displayed at the top of the XPath Editor window. These

messages alert you to the fact that a path or expression you have entered is not

valid even though the editor allows you to enter the expression, and even save it.

Example

Here is the corresponding XPath expression built in the XPath Expression Builder

to filter the Employee business objects for all employees who are managers:

$Body/getEmployeeInfo/Emp[isManager=true()].

v $Body: The body section of the message, that is, the last child of root.

v /getEmployeeInfo: The name of the operation in the interface.

v /Emp: The name of the input message type.

v [isManager=true()]: Checks whether the isManager field is set to true.

In this case the same expression works for both request and response flows,

because the input and output messages for the operation are identical.

See XPath for more information on XPath 1.0.

Selecting the grammar mode

WebSphere Message Broker supports the following field categories:

v Read-only path field

420 Message Flows

http://www.w3.org/TR/xpath

v Read-write path field

v Expression field

Each of these field types can be either fixed or mixed language, that is, ESQL or

XPath.

To see if you can use XPath on a property see “Multi-language node property

fields” on page 412.

If you use XPath syntax and the expressions are not supported for the property

you are using, the syntax is rejected during the validation process.

ESQL and XPath have similar restrictions on the syntax that is permitted for the

first two of these field types. There are restrictions to the third field type as well,

but as this type of field supports general expressions that can be used in either

language, the range of syntax available is greater than the first two.

WebSphere Message Broker uses code assistance in the grammar management of

XPath 1.0 to validate the syntax of expressions entered. This assistance is available,

regardless of the grammar mode you are using.

By default, you are operating in the restricted grammar mode.

Code assistance enables you to construct syntactically correct expressions but it

does not validate those expressions. Validation is performed by property editors in

which such expressions are entered.

If you attempt to use syntax that is not valid the property editor marks those

expressions as such, either from a syntax or schema validation perspective.

You receive error or warning messages depending upon the preference choices you

set in Windows>Preferences>Broker Development>XPath>Validation .

If particular checks are to be marked as errors under the above validation settings

then, when found, error markers are posted under the problems viewer. This

results in a message flow being marked as broken, and the flow is made

unavailable for import and compilation within a deployable bar file using the

broker archive editor.

If you want to use the appropriate unrestricted grammar to input in a specific field

type, property editors will not force a restricted form of ESQL or XPath 1.0

expressions to be entered for such fields that expect them.

Instead, you can enter the full range of syntax in the context of the field category

concerned, namely, path of general expression, without coming across the

validation checks applied. This means that you can deploy the full range of syntax,

if you need to, supported by the ESQL or XPath 1.0 runtime engines. Note,

however, that such expressions might not be in a form that can be converted to the

other language.

To use unrestricted grammar carry out the following procedure:

1. Select the Broker Administration perspective in the workbench.

2. Select Window -> Preferences and expand Broker Development.

3. Expand XPath and click on Grammar.

4. Remove the check from Use XPath and ESQL equivalent grammar.

Developing message flows 421

Note that expressions are still validated for valid syntax appropriate in the context

of the field type, but can now be in the full range of grammar as supported by the

runtime environment.

Using TCP/IP in message flows

You can use Message Broker to connect to applications that use raw TCP/IP

sockets for transferring data.

If you have existing applications that use raw TCP/IP sockets for transferring data,

you can use the Message Broker TCP/IP nodes to connect to the applications,

without needing to enable them for WebSphere MQ. This helps you to develop a

Message Broker solution quickly.

Message Broker implements access to the TCP/IP input and output streams

through the following nodes:

v “TCPIPClientInput node” on page 1126

v “TCPIPClientOutput node” on page 1137

v “TCPIPClientReceive node” on page 1146

v “TCPIPServerInput node” on page 1158

v “TCPIPServerOutput node” on page 1169

v “TCPIPServerReceive node” on page 1177.

For information on some of the ways in which you can use the Message Broker

TCP/IP support, see “Working with TCP/IP” on page 434.

The following topics contain information that you need to understand to use

TCP/IP in a Message Broker application:

v “TCP/IP overview”

v “TCP/IP nodes” on page 425

v “Connection management” on page 428

v “Scenarios for Message Broker and TCP/IP” on page 430.

TCP/IP overview

TCP/IP sockets provide a simple way of connecting computer programs together,

and this type of interface is commonly added to existing standalone applications.

TCP/IP provides a mechanism for transferring data between two applications,

which can be running on different computers. The transfer of data is bidirectional

and, as long as the TCP/IP connection is maintained, no data is lost and the

sequence of the data is kept. A significant advantage of using TCP/IP directly is

that it is very quick and simple to configure, which makes it a useful mechanism

for processes that do not require message persistence (for example, monitoring).

However, the use of TCP/IP sockets for transferring information between

programs does have some limitations:

v It is non-transactional

v It is not persistent (the data is written to an in-memory buffer between sender

and receiver)

v It has no built-in security

v It provides no standard way of signalling the start and end of a message.

422 Message Flows

|

|
|

|
|
|
|

|
|

|

|

|

|

|

|

|
|

|
|

|

|

|

|

|

|
|

|
|
|
|
|
|
|
|

|

|
|

|

|

For these reasons, it can be preferable (where possible) to use a transport

mechanism like WebSphere MQ, which has none of these limitations. However, if

you have existing applications that use raw TCP/IP sockets for transferring data,

you can use the Message Broker TCP/IP nodes to connect to the applications,

without needing to enable them for WebSphere MQ. This allows you to develop a

Message Broker solution quickly.

A TCP/IP connection between two applications has a client end and a server end,

which means that one application acts as a server and the other as a client. The

terms client and server refer only to the mechanism used to establish a connection;

they do not refer to the pattern of data exchange. When the connection has been

established, both client and server can perform the same operations, and can both

send and receive data. The following diagram illustrates the locations of client and

server applications:

Process Process

Computer Computer

Client App 1 Server App

Hostname A1 Hostname B

Port P1

The server application listens on a local port (on the computer that is running the

application) for requests for connections to be made by a client application. The

client application requests a connection from the server port, which the server then

accepts. When the server accepts the request, a port is created on the client

computer and is connected to the server port. A socket is created on both ends of

the connection, and the details of the connection are encapsulated by the socket.

The server port remains available to listen for further connection requests:

Process Process

Computer Computer

Client App 1 Server App

Hostname A1 Hostname B

Port P2
Port P1

Port P1*

Bidirectional
connection

The server can accept more connections from other client applications. These

connections can be in the same process, in a different process on the same

computer, or on a different computer:

Developing message flows 423

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

Process Process

Process

Computer Computer

Computer

Process

Client App 1 Server App

Client App 3

Hostname A1 Hostname B

Hostname A2

Client App 2

Port P2
Port P1

Port P1*
Port P1 **
Port P1 ***
Port P1 ****

Port P4

Port P5

Port P3

There can be only one server application, but any number of different client

processes can connect to the server application. Any of these applications (client or

server) can be multithreaded, which enables them to use multiple connections.

When the connection has been established, two data streams exist: one for inbound

data and another for outbound data:

Process Process

Client App 1 Server App

Port P2

Output

Input

Port P1*

Input

Output

The client and server ends of the connection are identical and both can perform the

same operations. The only difference between them is that the client’s output

stream is the server’s input stream, and the client’s input stream is the server’s

output stream.

These two streams of data are completely independent and can be accessed

simultaneously from both ends. It is not necessary for the client to send data

before the server.

The previous diagram can be simplified in the following way, showing that the

client and server have access to a socket that has an input stream and an output

stream:

424 Message Flows

|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|

Process

Socket

Port P2

Output

Input

TCP/IP nodes

Message broker implements access to the TCP/IP input and output streams

through a series of nodes.

There are two sets of TCP/IP nodes: server nodes and client nodes. Both sets have

identical function in terms of accessing the data streams; the only difference

between them is that one set uses client connections and the other set uses server

connections. This means that there is a difference between them in establishing the

connections, but there is no difference in the way they use the streams when the

connections have been established.

The main difference between the properties of the nodes is that the server nodes

do not allow the hostname to be changed (because it must always be localhost). All

server nodes using the same port must be in the same execution group because the

port is tied to the running process. Client nodes on the same port can be used in

different execution groups but client connections cannot be shared, because the

client connections are tied to a particular execution group (which maps to a

process). Within the two sets of nodes (client and server) there are three types of

nodes:

v TCPIPServerInput and TCPIPClientInput

v TCPIPServerReceive and TCPIPClientReceive

v TCPIPServerOutput and TCPIPClientOutput.

The input and receive nodes access the input stream to retrieve data, and the

output nodes access the output stream to send data. There is no single node that

can access both streams at the same time. To access both streams simultaneously,

multiple nodes must be connected together in a message flow.

Input nodes

The input node allows access to a connection’s input stream. It is triggered by the

arrival of data in the stream and starts processing the message flow. The input

node controls thread and transaction management. Even though the TCP/IP nodes

are not transactional in the way they interact with TCP/IP, other nodes in the same

flow can still be transactional (for example MQ and DB2). The input node does not

create a thread for every connection being used but instead waits for two

requirements to be met:

v A connection is available that still has an open input stream

v There is data available on the input stream (at least 1 byte).

For example, 1,000 TCP/IP connections can be handled by one input node that has

only one additional instance. This is possible because the node does not poll the

connections but gets triggered when the specified conditions are met.

Developing message flows 425

|

|

|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|

|

|
|
|
|

|

|
|
|
|
|
|
|

|

|

|
|
|

Process

Socket

TCPIP Input Node

Triggered by data on
connection

Message Tree Out

Input
Port P2

Receive nodes

The receive node is triggered to read data from a connection when a message

arrives on its In terminal. It waits for data to arrive and then sends it to the Out

terminal. The receive node can be configured to use a particular connection (by

specifying a connection’s ID) or to use any available connection. If it is configured

to use any available connection it receives data from the first connection that has

data available.

Process

Socket

TCPIP Receive Node

Message Tree In

Message Tree Out

Input
Port P2

Output nodes

The output node sends data to a connection. It is triggered by a message arriving

on its In terminal and then sends the data contained in the message to the stream.

The same message that is received in the node is sent out to the Out terminal.

Process

Socket

Message Tree In

TCPIP Output Node

Message Tree Out

Output

Port P2

426 Message Flows

|

|

|

|
|
|
|
|
|

|

|

|

|
|
|

|

|

Combining nodes

The six client and server nodes can be combined to provide more complex

function. For example, an output node followed by a receive node allows for a

synchronous request of data:

Process

Process

Socket

Socket

Message Tree In

TCPIP Output Node

TCPIP Receive Node

Message Tree Out

Message Tree Out

Output

Input

If the message flows used are single threaded and there is only ever one

connection, this combination of nodes requires no further configuration. Two

additional mechanisms are included to allow multithreading and multiple

connections:

v A connection ID to ensure that the same connection is used by multiple nodes

v The ability to reserve connections so that they can be accessed only when the ID

is specified.

One connection in multiple nodes

Every connection has a unique identifier assigned to it when it is created.

Whenever a node uses a connection, the ID used is written to the local

environment. Any nodes that use it later in the flow can access the same

connection by specifying the ID; the receive and output nodes find the ID by

searching in a specified location in the local environment. By default, the location a

node writes its connection details to is different from the location in which the next

node looks to see if there is an ID to use. The nodes can be configured to use the

ID that was output by a previous node. For example, the combination of the

output and receive nodes shown in “Combining nodes” could be configured so

that the receive node uses the WrittenDestination data from the preceding output

node.

The use of the ID enables a series of nodes to access the same connection, but does

not prevent two message flow threads accessing the same connection. When a

connection is used for the first time it can be reserved so that no other nodes can

access it unless they know the ID. For example, the combination of the output and

receive nodes shown in “Combining nodes” reserves the connection so that no

Developing message flows 427

|

|
|
|

|

|

|
|
|
|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

other threads can access it before the receive node uses it. By default, the receive

node then releases the connection when it has finished.

The ability to reserve connections (and access them by specifying the correct ID)

enables you to build up complex interactions with TCP/IP connections that span

whole flows and even multiple flows. This allows the TCP/IP interactions to be

used with other asynchronous transport mechanisms like WebSphere MQ.

Reserved connections must be released at some point, otherwise they remain

unavailable indefinitely. For more information about reserved and available

connections, see “Connection management.”

Correlating replies across flows

The TCP/IP nodes can be used in asynchronous patterns, in which data is sent out

through a TCP/IP output node and received back through a TCP/IP input node.

These span two message flows, which means that any state in the first flow is lost

and is not accessible from the second flow. The TCP/IP nodes allow you to store

some reply details on a connection, and these are then available for the input node

to use when a new event arrives on the same connection. By default this data is

taken from the local environment, but you can configure the nodes to take the data

from any location, including the Correlid field and message IDs in WebSphere MQ

headers.

Connection management

TCP/IP connections are requested by the client connection manager and accepted

by the server connection manager.

The execution group process contains the connection manager, which makes the

connections. This means that only one execution group can have server nodes

using a specific port at any given time; deployment to a second execution group

would cause a deployment error. It also means that client nodes can be deployed

to different execution groups, but each execution group has its own pool of

connections (and therefore its own minimum and maximum number of

connections).

TCP/IP nodes do not directly create or manage any TCP/IP connections, but

acquire them from the connection manager’s internal pool. For example, two

output nodes using the same connection details share the same connection

manager. The TCP/IP nodes can define the connection details to be used by

specifying one of the following things:

v Hostname and port

v Name of a configurable service.

If a hostname and port are specified, the node uses these values when requesting

connections. If a configurable service is specified, the node obtains the values for

the port and hostname from the values defined in the configurable service. The

connection manager allows other configurable parameters in addition to the

hostname and port, and all of these can be defined when using a configurable

service. When the hostname and port are specified on the node, the connection

manager obtains the rest of the required values from the default configurable

service. However, if there is a configurable service defined that is using the

hostname and port number, the values from that configurable service are used.

428 Message Flows

|
|

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|

The connection manager is created when the first node that requires connections

from it is deployed. The connection manager is destroyed when the last remaining

node using it has been removed from the execution group (so the connection

manager is no longer being used by any deployed nodes). For example, this can

happen when existing flows are redeployed, because redeployment involves

deleting all existing nodes before recreating them.

Server connections

The server connection manager starts listening for server connections when it

starts, and keeps accepting connections until the maximum number of connections

(set in the configurable service) is reached. Any attempts to make connections after

this point are refused. TCP/IP servers do not create connections; they only accept

connection requests from other applications. This means that it is not possible to

force the creation of connections within a message flow.

Client connections

The client connection manager starts up, makes a client connection, and keeps

doing so until the minimum number of connections (defined in the configurable

service) is reached. By default the minimum is zero, which means that no

connections are made. Whenever the number of connections drops below the

minimum value, the connection manager starts creating more client connections.

The client output and receive nodes initiate the creation of new client connections

whenever there are none available for them to use, unless the maximum number

(defined in the configurable service) has been reached.

Reserving and releasing connections

Each connection has an input stream and an output stream, both of which have

two main states within the connection manager: available or reserved.

When a node requests a connection for input or output, without specifying the ID

of a particular connection, it is given any available connection on the required

stream. If no connections are available, and if the node is a client node, a new

connection is made, but only if the maximum number of connections has not yet

been reached. Any connection in the available state can be used by only one node

at a time, but when a node has finished using it, any other node (from any flow or

thread) can access it.

You can restrict access to a stream on a connection by reserving the connection.

When a connection is in the reserved state, no other node can access the stream

without specifying the ID of the connection. For example, an input node can

request an available connection, and, when it has finished reading the data, put the

stream into the reserved state. While the stream is in the reserved state, no input

node (including the node that put the stream into the reserved state) can access it,

because input nodes can access only available streams. The only nodes that can

access the stream must be passed the connection ID, which is written to the

outgoing local environment when the data is passed down the message flow. This

enables receive nodes to read more data on the same connection, as long as the

receive node is configured to use the ID from the input node’s local environment.

When a connection is reserved, ownership of the connection is given to a current

thread of processing. This processing can span separate message flows, if required.

The reserve mechanism provides the following options:

Developing message flows 429

|
|
|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|

v Leave unchanged

v Reserve

v Release

v Reserve and release at the end of the flow.

By default, the stream is left available (not reserved). This is the case for all nodes,

and, for many types of processing, this default can be left unchanged (for example,

when moving data from an input stream to a file). The main purpose of reserving

a stream is to allow a series of nodes to be connected together to give complex

processing on a stream in an ordered, controlled, synchronous sequence. If you

need to reserve a connection, the Reserve and release at end of flow option has the

benefit of ensuring that the connection’s stream is released when one iteration of

the flow has finished processing (including any error conditions that might occur).

A situation in which you would need to reserve a stream without releasing it at

the end of the flow is when the processing must span multiple message flows (for

example, for asynchronous request and reply). See the TCPIP Client Nodes sample

for an example of how to do this. A possible disadvantage of reserving a stream

between message flows is that there is the potential for a stream never to be

released. To avoid this, set an expiry time on the connection so that it is closed

after a specified period of inactivity.

Another benefit of reserving an input stream is that the connection cannot be

closed until it is either released or expired, even if an end application closes its end

of the connection. This is useful when the end of the stream is being used to

delimit messages in the stream.

Scenarios for Message Broker and TCP/IP

The following topics include example scenarios in which TCP/IP and Message

Broker might be used as part of a business solution:

v “Scenarios: TCP/IP”

v “Scenarios: Message Broker using TCP/IP” on page 433.

Scenarios: TCP/IP

This topic outlines two different scenarios to illustrate how TCP/IP might be used

as part of a business solution:

v “Expense submission”

v “Price-change notification” on page 432.

Expense submission

Scenario:

A company has an expense submission system based on a central expense

processing application that receives completed expense forms from end users. The

users complete the forms using a local application, which stores the form until it is

completed. When it has been completed, the form needs to be transferred to the

central system where it is processed. Any further notifications are sent to the user

by e-mail.

How TCP/IP is used:

430 Message Flows

|

|

|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|
|

|

|

|

|
|

|

|

|

|

|
|
|
|
|
|

|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.tcpipclientnodes.doc/doc/overview.htm

There is one client application for each end user and one central application

processing all of the expense forms. Each client application connects to a TCP/IP

server port on the server application and sends the expense form in a fixed field

size structure similar to a COBOL structure. The flow of processing is:

1. The user enters information into the form in the client expense application:

Process Process

Computer Computer

Client Expense
Application

Expense
processing

server

Hostname A1 Hostname B

Port P1

2. The user submits the completed form and the client application connects to the

server:

Process Process

Computer Computer

Client Expense
Application

Expense
processing

server

Hostname A1 Hostname B

Port P1

3. The client application sends the data to the server and receives an

acknowledgement:

Process Process

Computer Computer

Client Expense
Application

Expense
processing

server

Hostname A1 Hostname B

Port P1

Send Ack

Send data

4. The connection is closed by the client:

Developing message flows 431

|
|
|
|

|
|

|

|
|
|

|

|
|
|

|

|

Process Process

Computer Computer

Client Expense
Application

Expense
processing

server

Hostname A1 Hostname B

Port P1

Price-change notification

Scenario:

A company has a central server, which stores the catalogue price of everything that

the company sells. This information is required by all Point of Sale (PoS) terminals

in all the stores, and each PoS terminal must be notified when any price changes.

The PoS terminals connect to the central server and wait for any process changes.

The server sends any process changes to all connected client applications.

How TCP/IP is used:

1. When the PoS application starts up it connects to the central server:

Process Process

Computer Computer

PoS
Application

Central price
store server

Hostname A1 Hostname B

Port P1

2. Whenever the server has a new price it publishes it to all connected clients:

Process Process

Computer Computer

PoS
Application

Central price
store server

Hostname A1 Hostname B

Port P1Send data

3. The PoS stays connected until it shuts down.

See “Scenarios: Message Broker using TCP/IP” on page 433 for an example of how

these scenarios can be modified to use WebSphere Message Broker.

432 Message Flows

|

|

|

|

|
|
|
|
|

|

|
|

|

|
|

|

|

|
|

Scenarios: Message Broker using TCP/IP

This topic shows how Message Broker can be added to systems that use TCP/IP

for transport, to generate a more flexible architecture for communication between

components.

The scenarios in the “Scenarios: TCP/IP” on page 430 topic show how systems

might be created to use TCP/IP as a transport mechanism. The following sections

show how Message Broker can be added to those systems to generate a more

flexible architecture for communication between components:

v “Expense submission” illustrates TCP/IP to TCP/IP routing

v “Price-change notification” illustrates routing and transformation to other

formats.

Expense submission

The expense submission scenario shown in the “Scenarios: TCP/IP” on page 430

topic requires a direct connection from the client applications to the end server.

With that model it is difficult to add new consumers of the expense submission

information, and it is also difficult to change the end application that processes

them. However, by adding Message Broker as an intermediary router, the two

systems can be separated without any changes to their interfaces, as shown in the

following diagram:

Process Execution Group Process

Computer Computer Computer

Client
Expense

Application

Message
flow

Expense
processing server

Hostname A1 Hostname broker Hostname B

Port P2 Port P1

Price-change notification

The price change notification scenario shown in the “Scenarios: TCP/IP” on page

430 topic can be modified to use Message Broker for routing and transformation. It

could also allow support for other protocols like WebSphere MQ, which would

allow new applications to be written to different interfaces without having to

change the current client or server applications:

Developing message flows 433

|
|
|
|

|
|
|
|

|

|
|

|

|
|
|
|
|
|
|

|

|

|

|
|
|
|
|

Process

Process

Execution Group Process

Computer

Computer

Computer Computer

Old PoS

New PoS

Message
flow

Central price
store

Hostname A1

Hostname A2

Hostname broker Hostname B

Port P2 Port P1

Working with TCP/IP

This topic introduces the tasks that you can perform using Message Broker TCP/IP

support.

The following are some of the tasks that you can perform using the Message

Broker TCP/IP nodes and TCP/IP configurable services:

v “Transferring XML data from a TCP/IP server socket to a WebSphere MQ

queue” on page 435

v “Transferring binary (CWF) data from a TCP/IP server socket to a flat file” on

page 435

v “Receiving data on a TCP/IP server socket and sending data back to the same

connection” on page 436

v “Sending XML data from a WebSphere MQ queue to a TCP/IP client socket” on

page 437

v “Sending CWF data from a flat file to a TCP/IP client socket” on page 438

v “Sending data to a TCP/IP client connection and receiving data back on the

same connection (synchronous)” on page 439

v “Sending data to a TCP/IP client connection and receiving data back on the

same connection (asynchronous)” on page 440

v “Broadcasting data to all currently available connections” on page 441

v “Configuring a server socket so that connections expire after a specified time”

on page 441

v “Configuring a client socket to make 100 connections at deployment or startup

time” on page 442

v “Configuring a server socket to receive XML data ending in a null character” on

page 442

v “Configuring a server socket to receive XML data and find the end of a record

(using the message model)” on page 443

v “Configuring a server output node to close all connections” on page 443

434 Message Flows

|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|

|
|

|
|

|
|

|
|

|

v “Configuring a client socket to store reply correlation details” on page 444

v “Writing close connection details to a file” on page 444

v “Configuring a client node to dynamically call a port” on page 445

v “Configuring a server receive node to wait for data on a specified port” on page

446

v “Sending and receiving data through a TCP/IP client connection, delimiting the

record by closing the output stream (asynchronous)” on page 447

v “Sending and receiving data on the same TCP/IP client connection, closing

input and output streams (synchronous)” on page 448.

Transferring XML data from a TCP/IP server socket to a

WebSphere MQ queue

Transfer XML data from a TCP/IP server socket to a WebSphere MQ queue, by

creating a message flow with TCPIPServerInput and MQOutput nodes.

Scenario:

A client application opens a TCP/IP socket and sends an XML document. The end

of the document is signalled by the closure of the client connection.

The following steps describe how to write a message flow that can receive the

XML document and write it to a WebSphere MQ queue:

1. Create a message flow called TCPIP_Task1 using a TCPIPServerInput node and

an MQOutput node. For information on how to do this, see “Creating a

message flow” on page 218.

2. Connect the Out terminal of the TCPIPServerInput node to the In terminal of

the MQOutput node.

3. Set the following properties of the TCPIPServerInput node:

a. On the Basic tab, set the Connection details property to 14141

b. On the Input Message Parsing tab, set the Message domain property to

XMLNSC.
4. On the MQOutput node, set the Queue name property (on the Basic tab) to

TCPIP.TASK1.OUT1

5. Save the message flow.

Transferring binary (CWF) data from a TCP/IP server socket to a

flat file

Transfer binary Custom Wire Format (CWF) data from a TCP/IP server socket to a

flat file, using a message set and a message flow with TCPIPServerInput and

FileOutput nodes.

Scenario:

Developing message flows 435

|

|

|

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|
|

|
|
|

|

|

|

|
|

|
|

|

|
|

|
|
|

|

A client application opens a TCP/IP socket and sends a binary (CWF) document.

The end of the document is signalled by the closure of the client connection.

The following steps describe how to write a message flow that can receive the

binary document and write it to a flat file. Each message is written to a separate

file, whose name is based on the ID of the connection.

1. Create a message set called Task2_MsgSet. For information on how to do this,

see Creating a message set.

2. Create a message flow called TCPIP_Task2 using a TCPIPServerInput node and

a FileOutput node. For information on how to do this, see “Creating a message

flow” on page 218.

3. Connect the Out terminal of the TCPIPServerInput node to the In terminal of

the FileOutput node.

4. Set the following properties of the TCPIPServerInput node:

a. On the Basic tab, set the Connection details property to 14142

b. On the Input Message Parsing tab, set the following properties:

v Set the Message domain property to MRM

v Set the Message set property to Task2_MsgSet

v Set the Message type property to Task2_MsgType

v Set the Message format property to CWF1
5. Set the following properties of the FileOutput node:

a. On the Basic tab, set the following properties:

v Set the Directory property to c:\temp\task2

v Set the File name or pattern property to Task2.out
b. On the Request tab, set the Request file name property location property to

$LocalEnvironment/TCPIP/Input/ConnectionDetails/Id
6. Save the message flow.

7. Create a project reference between the message flow project and the message

set project:

a. Right-click the message flow project and then click Properties.

b. Click Project References.

c. Select the message set project that contains your message set

(Task2_MsgSet).

d. Click OK.

Receiving data on a TCP/IP server socket and sending data back

to the same connection

Receive data on a TCP/IP server socket and then send the data back to the same

connection, using a message flow with TCPIPServerInput and TCPIPServerOutput

nodes.

436 Message Flows

|
|

|
|
|

|
|

|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|
|

|

|
|

|
|
|

Scenario:

A client application opens a TCP/IP socket and sends an undefined document (of

any format or size). The end of the document is signalled by the client closing the

output stream (but not the connection) and then waiting for the same data to be

sent back.

The following steps describe how to write a message flow that can receive the data

and echo it back to the same connection:

1. Create a message flow called TCPIP_Task3 with a TCPIPServerInput node and

a TCPIPServerOutput node. For information on how to do this, see “Creating a

message flow” on page 218.

2. Connect the Out terminal of the TCPIPServerInput node to the In terminal of

the TCPIPServerOutput node.

3. Set the following properties of the TCPIPServerInput node:

a. On the Basic tab, set the Connection details property to 14143

b. On the Advanced tab, set the Input stream modification property to Reserve

input stream and release at end of flow.
4. Set the following properties of the TCPIPServerOutput node:

a. On the Basic tab, set the Connection details property to 14143

b. On the Request tab, set the ID location property to LocalEnvironment/
TCPIP/Input/ConnectionDetails/Id

c. On the Advanced tab, set the Close connection property to After data has

been sent.
5. Save the message flow.

Sending XML data from a WebSphere MQ queue to a TCP/IP

client socket

Send XML data from a WebSphere MQ queue to a TCP/IP client socket, using a

message flow with MQInput and TCPIPClientOutput nodes.

Scenario:

A server application listens on a TCP/IP socket and waits for a TCP/IP client to

connect and send data. The end of the document is signalled by the client closing

the connection.

The following steps describe how to write a message flow that can take a message

from a WebSphere MQ queue, make the client connection, and send the data to the

server application:

1. Create a message flow called TCPIP_Task4 with an MQInput node and a

TCPIPClientOutput node. For information on how to do this, see “Creating a

message flow” on page 218.

Developing message flows 437

|

|
|
|
|

|
|

|
|
|

|
|
|

|

|

|

|
|

|

|

|
|

|
|

|

|
|

|
|

|

|
|
|

|
|
|

|
|
|

2. Connect the Out terminal of the MQInput node to the In terminal of the

TCPIPClientOutput node.

3. Set the following properties of the MQInput node:

a. On the Basic tab, set the Queue name property to TCPIP.TASK4.IN1

b. On the Input message parsing tab, set the Message domain property to

XMLNSC.
4. Set the following properties of the TCPIPClientOutput node:

a. On the Basic tab, set the Connection details property to 14144

b. On the Advanced tab, set the Close connection property to After data has

been sent.
5. Save the message flow.

Sending CWF data from a flat file to a TCP/IP client socket

Send Custom Wire Format (CWF) data from a flat file to a TCP/IP client socket,

using a message flow with FileInput and TCPIPClientOutput nodes.

Scenario:

An application writes 100–byte binary records into a flat file.

The following steps describe how to open a new client TCP/IP connection and

send the binary data with a binary termination character x’00FF’. When the whole

file is finished the client connection is closed:

1. Create a message flow called TCPIP_Task5 with a FileInput node and a

TCPIPClientOutput node. For information on how to do this, see “Creating a

message flow” on page 218.

2. Connect the Out terminal of the FileInput node to the In terminal of the

TCPIPClientOutput node.

3. Connect the End of Data terminal of the FileInput node to the Close terminal of

the TCPIPClientOutput node.

4. Set the following properties of the FileInput node:

a. On the Basic tab, set the Input directory property to c:\temp\task5

b. On the Records and elements tab, set the following properties:

v Set the Record detection property to Fixed length

v Set the Length property to 100
5. Set the following properties of the TCPIPClientOutput node:

438 Message Flows

|
|
|

|

|

|

|
|

|

|

|
|

|

|

|
|

|

|

|
|
|

|
|
|

|
|

|
|
|

|

|

|

|

|

|

|

a. On the Basic tab, set the Connection details property to 14145

b. On the Advanced tab, set the Close connection property to After data has

been sent

c. On the Records and elements tab, set the following properties:

v Set the Record definition property to Record is delimited data

v Set the Delimiter property to Custom delimiter (Hexadecimal)

v Set the Custom delimiter property to 00FF
6. Save the message flow.

Sending data to a TCP/IP client connection and receiving data

back on the same connection (synchronous)

Send fixed size data to a TCP/IP client connection and receive fixed size data back

again on the same connection (synchronously), using a message flow with

MQInput, TCPIPClientOutput, TCPIPClientReceive, and MQOutput nodes.

The following steps describe how to create a message flow that sends data out

through a client connection and waits on the same connection for a reply to be

returned. The request is synchronous within the same flow, because the

TCPIPClientReceive node waits for data to be returned.

1. Create a message flow called TCPIP_Task6 with an MQInput node, a

TCPIPClientOutput node, a TCPIPClientReceive node, and an MQOutput node.

For information on how to do this, see “Creating a message flow” on page 218.

2. Connect the Out terminal of the MQInput node to the In terminal of the

TCPIPClientOutput node.

3. Connect the Out terminal of the TCPIPClientOutput node to the In terminal of

the TCPIPClientReceive node.

4. Connect the Out terminal of the TCPIPClientReceive node to the In terminal of

the MQOutput node.

5. On the MQInput node, set the Queue name property (on the Basic tab) to

TCPIP.TASK6.IN1

6. Set the following properties of the TCPIPClientOutput node:

a. On the Basic tab, set the Connection details property to 14146

b. On the Records and elements tab, set the following properties:

v Set the Record detection property to Fixed length

v Set the Length property to 100
7. Set the following properties of the TCPIPClientReceive node:

a. On the Basic tab, set the Connection details property to 14146

b. On the Advanced tab, set the following properties:

v Set the Output stream modification property to Reserve output stream

and release at end of flow

v Set the Input stream modification property to Reserve input stream and

release at end of flow

Developing message flows 439

|

|
|

|

|

|

|

|

|
|

|
|
|

|
|
|
|

|
|
|

|
|

|
|

|
|
|

|

|
|

|

|

|

|

|

|

|

|

|
|

|
|

c. On the Request tab, set the ID location property to $LocalEnvironment/
WrittenDestination/TCPIP/Output/ConnectionDetails[1]/Id

d. On the Records and elements tab, set the following properties:

v Set the Record detection property to Fixed length

v Set the Length property to 100
8. On the MQOutput node, set the Queue name property (on the Basic tab) to

TCPIP.TASK6.OUT1

9. Save the message flow.

See the TCPIP Client Nodes sample for more information.

Sending data to a TCP/IP client connection and receiving data

back on the same connection (asynchronous)

Send fixed size data to a TCP/IP client connection and receive fixed size data back

on the same connection (asynchronously), using a message flow with MQInput,

TCPIPClientOutput, TCPIPClientInput, and MQOutput nodes.

The following steps describe how to create a message flow to send data through a

client connection and wait on the same connection for a reply to be returned. The

request is performed asynchronously in two different flows (the TCPIPClientInput

does not wait for data to be returned on this connection, but instead it monitors all

available connections).

1. Create a message flow called TCPIP_Task7 with an MQInput node, a

TCPIPClientOutput node, a TCPIPClientInput node, and an MQOutput node .

For information on how to do this, see “Creating a message flow” on page 218.

2. Connect the Out terminal of the MQInput node to the In terminal of the

TCPIPClientOutput node.

3. Connect the Out terminal of the TCPIPClientInput node to the In terminal of

the MQOutput node.

4. On the MQInput node, set the Queue name property (on the Basic tab) to

TCPIP.TASK7.IN1

5. Set the following properties of the TCPIPClientOutput node:

a. On the Basic tab, set the Connection details property to 14147

b. On the Advanced tab, set the Output stream modification property to

Reserve output stream

c. On the Records and elements tab, set the following properties:

v Set the Record definition property to Fixed length

v Set the Length property to 100
6. Set the following properties of the TCPIPClientInput node:

a. On the Basic tab, set the Connection details property to 14147

b. On the Advanced tab, set the Output stream modification property to

Release output stream and reset Reply ID

c. On the Records and elements tab, set the following properties:

440 Message Flows

|
|

|

|

|

|
|

|

|

|
|

|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|

|

|
|

|

|

|
|

|

|

|

|

|

|
|

|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.tcpipclientnodes.doc/doc/overview.htm

v Set the Record detection property to Fixed length

v Set the Length property to 100
7. On the MQOutput node, set the Queue name property (on the Basic tab) to

TCPIP.TASK7.OUT1

8. Save the message flow.

See the TCPIP Client Nodes sample for more information.

Broadcasting data to all currently available connections

Broadcast data to all current connections, using a message flow with MQInput and

TCPIPServerOutput nodes.

Scenario:

Several applications connect into the message flow and wait to be sent data.

The following steps describe how to send data to all the connected client

applications:

1. Create a message flow called TCPIP_Task8 with an MQInput node and a

TCPIPServerOutput node. For information on how to do this, see “Creating a

message flow” on page 218.

2. Connect the Out terminal of the MQInput node to the In terminal of the

TCPIPServerOutput node.

3. On the MQInput node, set the Queue name property (on the Basic tab) to

TCPIP.TASK8.IN1

4. Set the following properties of the TCPIPServerOutput node:

a. On the Basic tab, set the Connection details property to 14148

b. On the Advanced tab, set the Send to: property (in the Broadcast options

group) to All available connections.
5. Save the message flow.

Configuring a server socket so that connections expire after a

specified time

Configure a TCP/IP server socket so that connections expire after a specified time,

using the mqsicreateconfigurableservice command.

Use the mqsicreateconfigurableservice command to set up connections that expire

when they have not been used for a specified length of time. The TCP/IP node can

specify either the port to be used or the name of the configurable service. For

example:

mqsicreateconfigurableservice BRK6 -c TCPIPServer -o Task9

-n Port,ExpireConnectionSec -v 14149,5

Developing message flows 441

|

|

|
|

|

|

|

|
|

|

|

|
|

|
|
|

|
|
|

|

|
|

|

|

|
|

|

|
|

|
|

|
|
|
|

|
|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.tcpipclientnodes.doc/doc/overview.htm

In this example, the TCPIPServer configurable service called Task9 is configured to

run on port 14149. The connections expire when they have not been used for 5

seconds.

Configuring a client socket to make 100 connections at

deployment or startup time

Configure a TCP/IP client socket to make 100 connections at deployment or

startup time, using the mqsicreateconfigurableservice command.

Use the mqsicreateconfigurableservice command to set up the client configuration

manager to establish 100 connections when it is created. By default the client

connections are not made until they are required by one of the TCP/IP nodes. For

example:

mqsicreateconfigurableservice BRK6 -c TCPIPClient -o Task10

-n Port,MinimumConnections -v 14150,100

In this example, the TCPIPClient configurable service called Task10 is configured

to run on port 14150, and 100 connections are created.

Configuring a server socket to receive XML data ending in a null

character

Configure a server TCP/IP socket to receive XML data ending in a null character,

using a message flow with TCPIPServerInput and MQOutput nodes.

Scenario:

A client application sends XML data that is delimited by a null character (hex code

‘00’).

The following steps describe how to break the record up based on the null

character and then parse the data.

1. Create a message flow called TCPIP_Task11 with a TCPIPServerInput node and

an MQOutput node. For information on how to do this, see “Creating a

message flow” on page 218.

2. Connect the Out terminal of the TCPIPServerInput node to the In terminal of

the MQOutput node.

3. Set the following properties of the TCPIPServerInput node:

a. On the Basic tab, set the Connection details property to 14151

b. On the Input Message Parsing tab, set the Message domain property to

XMLNSC.

c. On the Records and elements tab, set the following properties:

v Set the Record detection property to Delimited

v Set the Delimiter property to Custom delimiter

v Set the Custom delimiter property to 00

442 Message Flows

|
|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|
|

|
|
|

|

|

|

|
|

|

|

|

|

4. On the MQOutput node, set the Queue name property (on the Basic tab) to

TCPIP.TASK11.IN1

5. Save the message flow.

Configuring a server socket to receive XML data and find the end

of a record (using the message model)

Configure a server socket to receive XML data and use the message model to

determine the end of a record, using a message flow with TCPIPServerInput and

MQOutput nodes.

Scenario:

A client application sends an XML document with no clear indication of the end of

the record.

The following steps show how to break up the record using the XML parser to

signal when the whole XML document as been received. It uses the end XML tag

to signal the end of the message.

1. Create a message flow called TCPIP_Task12 with a TCPIPServerInput node and

an MQOutput node. For information on how to do this, see “Creating a

message flow” on page 218.

2. Connect the Out terminal of the TCPIPServerInput node to the In terminal of

the MQOutput node.

3. Set the following properties of the TCPIPServerInput node:

a. On the Basic tab, set the Connection details property to 14151

b. On the Input Message Parsing tab, set the Message domain property to

XMLNSC.

c. On the Records and elements tab, set the Record detection property to

Parsed record sequence
4. On the MQOutput node, set the Queue name property (on the Basic tab) to

TCPIP.TASK12.IN1

5. Save the message flow.

Configuring a server output node to close all connections

Configure a server output node to close all connections on a specified port.

The following steps show how to create a message flow that closes all TCP/IP

connections on port 14153:

1. Create a message flow called TCPIP_Task13 with an MQInput node and a

TCPIPServerOutput node. For information on how to do this, see “Creating a

message flow” on page 218.

2. Connect the Out terminal of the MQInput node to the Close terminal of the

TCPIPServerOutput node.

Developing message flows 443

|
|

|

|
|

|
|
|

|

|
|

|
|
|

|
|
|

|
|
|

|

|

|

|
|

|
|

|
|

|

|

|

|
|

|
|
|

|
|

3. On the MQInput node, set the Queue name property (on the Basic tab) to

TCPIP.TASK13.IN1

4. Set the following properties of the TCPIPServerOutput node:

a. On the Basic tab, set the Connection details property to 14153

b. On the Advanced tab, set the Send to: property (in the Broadcast options

group) to All available connections.
5. Save the message flow.

Configuring a client socket to store reply correlation details

Configure a client TCP/IP socket to store reply correlation details, using a message

flow with MQInput and TCPIPClientOutput nodes.

The following steps show how to set the Reply ID on a connection, which can be

used when a response is returned on the input stream:

1. Create a message flow called TCPIP_Task14 with an MQInput node and a

TCPIPClientOutput node. For information on how to do this, see “Creating a

message flow” on page 218.

2. Connect the Out terminal of the MQInput node to the In terminal of the

TCPIPClientOutput node.

3. On the MQInput node, set the Queue name property (on the Basic tab) to

TCPIP.TASK14.IN1

4. Set the following properties of the TCPIPClientOutput node:

a. On the Basic tab, set the Connection details property to 14154

b. On the Request tab, set the Reply ID location property to

$Root/MQMD/MsgId
5. Save the message flow.

Writing close connection details to a file

Configure a message flow to write details of a connection closure to a file, using

TCPIPServerInput, Compute, and FileOutput nodes.

The following steps show how to configure a message flow to write details of the

closure of any connection to a file:

444 Message Flows

|

|

|
|

|

|

|
|

|

|

|
|

|
|

|
|
|

|
|
|

|

|
|

|

|

|
|

|

|

|
|

|
|

1. Create a message flow called TCPIP_Task15 with a TCPIPServerInput node, a

Compute node, and a FileOutput node. For information on how to do this, see

“Creating a message flow” on page 218.

2. Connect the Close terminal of the TCPIPServerInput node to the In terminal of

the Compute node.

3. Connect the Out terminal of the Compute node to the In terminal of the

FileOutput node.

4. On the TCPIPServerInput node, set the Connection details property (on the

Basic tab) to 14155

5. On the Compute node, set the ESQL property (on the Basic tab) to:

BROKER SCHEMA Tasks

CREATE COMPUTE MODULE TCPIP_Task15_Compute

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 -- CALL CopyMessageHeaders();

 -- CALL CopyEntireMessage();

 Set OutputRoot.XMLNSC.CloseEvent = InputLocalEnvironment.TCPIP;

 RETURN TRUE;

 END;

 CREATE PROCEDURE CopyMessageHeaders() BEGIN

 DECLARE I INTEGER 1;

 DECLARE J INTEGER;

 SET J = CARDINALITY(InputRoot.*[]);

 WHILE I < J DO

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I = I + 1;

 END WHILE;

 END;

 CREATE PROCEDURE CopyEntireMessage() BEGIN

 SET OutputRoot = InputRoot;

 END;

END MODULE;

6. Set the following properties of the FileOutput node:

a. On the Basic tab, set the following properties:

v Set the Directory property to c:\temp\Task15

v Set the File name or pattern property to CloseEvents.txt
b. On the Records and elements tab, set the Record definition property to

Record is unmodified data.
7. Save the message flow.

Configuring a client node to dynamically call a port

Configure a client node to dynamically use a port and hostname set up in the local

environment, using a message flow with MQInput, Compute, and

TCPIPClientOutput nodes.

Developing message flows 445

|
|
|

|
|

|
|
|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|
|

|

|

|
|
|

The following steps show how to override the connection details specified on a

client output node to dynamically use a port and hostname that are specified in

the local environment:

1. Create a message flow called TCPIP_Task16 with an MQInput node, a Compute

node, and a TCPIPClientOutput node. For information on how to do this, see

“Creating a message flow” on page 218.

2. Connect the Out terminal of the MQInput node to the In terminal of the

Compute node.

3. Connect the Out terminal of the Compute node to the In terminal of the

TCPIPClientOutput node.

4. On the MQInput node, set the Queue name property (on the Basic tab) to

TCPIP.TASK16.IN1

5. On the Compute node, set the ESQL property (on the Basic tab) to:

BROKER SCHEMA Tasks

CREATE COMPUTE MODULE TCPIP_Task16_Compute

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 -- CALL CopyMessageHeaders();

 CALL CopyEntireMessage();

 set InputLocalEnvironment.Destination.TCPIP.Output.Hostname = ’localhost’;

 set InputLocalEnvironment.Destination.TCPIP.Output.Port = 14156;

 RETURN TRUE;

 END;

 CREATE PROCEDURE CopyMessageHeaders() BEGIN

 DECLARE I INTEGER 1;

 DECLARE J INTEGER;

 SET J = CARDINALITY(InputRoot.*[]);

 WHILE I < J DO

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I = I + 1;

 END WHILE;

 END;

 CREATE PROCEDURE CopyEntireMessage() BEGIN

 SET OutputRoot = InputRoot;

 END;

END MODULE;

6. On the TCPIPClientOutput node, set the Connection details property (on the

Basic tab) to 9999.

7. Save the message flow.

Configuring a server receive node to wait for data on a specified

port

Configure a TCPIPServerReceive node to block the message flow and wait for data

to arrive on any connection.

The following steps show how to configure a TCPIPServerReceive node to wait for

data on port 14157:

446 Message Flows

|
|
|

|
|
|

|
|

|
|
|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

|
|

|
|

1. Create a message flow called TCPIP_Task17 with an MQInput node and a

TCPIPServerReceive node. For information on how to do this, see “Creating a

message flow” on page 218.

2. Connect the Out terminal of the MQInput node to the In terminal of the

TCPIPServerReceive node.

3. On the MQInput node, set the Queue name property (on the Basic tab) to

TCPIP.TASK17.IN1

4. On the TCPIPServerReceive node, set the Connection details property (on the

Basic tab) to 14157

5. Save the message flow.

Sending and receiving data through a TCP/IP client connection,

delimiting the record by closing the output stream

(asynchronous)

Send data through a TCP/IP client connection and receive data back on the same

connection (asynchronously), using a message flow with MQInput,

TCPIPClientOutput, TCPIPClientInput, and MQOutput nodes.

The following steps describe how to create a message flow to send data through a

client connection and wait on the same connection for a reply to be returned. The

request is performed asynchronously in two different flows; the TCPIPClientInput

node does not wait for data to be returned on this connection, but monitors all

available connections. The outgoing record is delimited by closing the output

stream, and the reply message is delimited by the closing of the input stream by

the remote server. The connection is then completely closed by the node.

1. Create a message flow called TCPIP_Task18 with an MQInput node, a

TCPIPClientOutput, a TCPIPClientInput node, and an MQOutput node. For

information on how to do this, see “Creating a message flow” on page 218.

2. Connect the Out terminal of the MQInput node to the In terminal of the

TCPIPClientOutput node.

3. Connect the Out terminal of the TCPIPClientInput node to the In terminal of

the MQOutput node.

4. On the MQInput node, set the Queue name property (on the Basic tab) to

TCPIP.TASK18.IN1

5. Set the following properties of the TCPIPClientOutput node:

a. On the Basic tab, set the Connection details property to 14158

b. On the Advanced tab, select Close output stream after a record has been

sent.

Developing message flows 447

|
|
|

|
|
|

|

|
|

|
|

|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

|
|
|

|

|
|

|

|

|
|

c. On the Records and elements tab, set the Record definition property to

Record is unmodified data.
6. Set the following properties of the TCPIPClientInput node:

a. On the Basic tab, set the Connection details property to 14158

b. On the Advanced tab, set the Close connection property to After data has

been received.

c. On the Records and elements tab, set the Record detection property to End

of stream
7. On the MQOutput node, set the Queue name property (on the Basic tab) to

TCPIP.TASK18.OUT1

8. Save the message flow.

Sending and receiving data on the same TCP/IP client

connection, closing input and output streams (synchronous)

Send data through a TCP/IP client connection and wait on the same connection for

a reply to be returned, using a message flow with MQInput, TCPIPClientOutput,

TCPIPClientReceive, and MQOutput nodes.

The following steps describe how to create a message flow that sends out data

through a client connection and waits on the same connection for a reply to be

returned. The request is synchronous within the same flow, as a result of the

TCPIPClientReceive node waiting for data to be returned. The outgoing message is

delimited by closing the output stream, and the reply data is delimited by the

remote application closing the input stream.

1. Create a message flow called TCPIP_Task19 with an MQInput node, a

TCPIPClientOutput node, a TCPIPClientReceive node, and an MQOutput node.

For information on how to do this, see “Creating a message flow” on page 218.

2. Connect the Out terminal of the MQInput node to the In terminal of the

TCPIPClientOutput node.

3. Connect the Out terminal of the TCPIPClientOutput node to the In terminal of

the TCPIPClientReceive node.

4. Connect the Out terminal of the TCPIPClientReceive node to the In terminal of

the MQOutput node.

5. On the MQInput node, set the Queue name property (on the Basic tab) to

TCPIP.TASK19.IN1

6. Set the following properties of the TCPIPClientOutput node:

a. On the Basic tab, set the Connection details property to 14159

b. On the Advanced tab, set the following properties:

v Select Close output stream after a record has been sent

v Set the Input stream modification property to Reserve input stream and

release at end of flow. It is important to reserve the input stream so that

it is not closed before the receive node processes the return data.
c. On the Records and elements tab, set the Record definition property to

Record is Unmodified Data.

448 Message Flows

|
|

|

|

|
|

|
|

|
|

|

|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|

|

|
|

|

|

|

|

|
|
|

|
|

7. Set the following properties of the TCPIPClientReceive node:

a. On the Basic tab, set the Connection details property to 14159

b. On the Advanced tab, set the Close connection property to After data has

been received.

c. On the Request tab, set the ID location property to $LocalEnvironment/
WrittenDestination/TCPIP/Output/ConnectionDetails[1]/Id

d. On the Records and elements tab, set the Record detection property to

Connection closed.
8. On the MQOutput node, set the Queue name property (on the Basic tab) to

TCPIP.TASK19.OUT1

9. Save the message flow.

Developing Java

When you use the JavaCompute node, you customize it to determine the exact

processing that it provides.

To tailor the behavior of each node, create a Java class file that provides the

processing that you want. You manage Java files through the Java perspective.

You can add any valid Java code to a JavaCompute node, making full use of the

Java user-defined node API to process an incoming message. You can use the Java

editing facilities of the Eclipse platform to develop your Java code. These facilities

include:

v Code completion

v Integrated Javadoc documentation

v Automatic compilation

The Java user-defined node API includes some extra methods that simplify tasks

that involve message routing and transformation. These tasks include accessing

named elements in a message tree, setting their values, and creating elements,

without the need to navigate the tree explicitly.

Use the Debug perspective to debug a message flow that contains a JavaCompute

node. When control passes to a JavaCompute node during debugging, the

perspective opens the Java debugger, and you can step through the Java class code

for the node.

This section provides the following information on developing Java:

v “Managing Java Files”

v “Writing Java” on page 454

Managing Java Files

The Java code that you provide to modify or customize the behavior of a

JavaCompute node is stored in a Java project. WebSphere Message Broker uses the

Eclipse Java perspective for developing and administering Java files.

This section contains topics that describe how to manage these files:

v “Creating Java code for a JavaCompute node” on page 450

v “Opening an existing Java file” on page 451

v “Saving a Java file” on page 451

Developing message flows 449

|

|

|
|

|
|

|
|

|
|

|

v “Adding Java code dependencies” on page 452

v “Deploying JavaCompute node code” on page 453

Creating Java code for a JavaCompute node

Use these instructions to associate Java code with your JavaCompute node.

Before you start

To complete this task, you must have already created a JavaCompute node in your

message flow.

To associate Java code with a JavaCompute node, use one of the following

methods:

v Use the New Java Compute Node Class wizard to create template code. This is a

preferred method.

1. Right-click the node, click Open Java.

2. Navigate the New Java Compute Node Class wizard until you reach the Java

Compute Node Class Template page. On the Java Compute Node Class

Template page choose one of the following options:

– For a filter node template code, choose Filtering message class.

– To change an incoming message, choose Modifying message class.

– To create a new message, choose Creating message class.

You have created template code for your JavaCompute node.

v Associate a JavaCompute node with an existing Java class that the wizard has

previously generated, which allows you to share the same Java code between

multiple nodes. This is a preferred method. To associate a JavaCompute nodes

with an existing Java class perform the following steps:

1. Right-click the JavaCompute node, click Properties.

2. Enter the name of the Java class in the Java Class field.

3. Click OK.

You have associated your JavaCompute node with an existing Java class.

v Create a Java project from scratch. Before any classes are added to the project

you must perform the following steps:

1. Open the .project file in the text editor and ensure that the following builders

and natures are set:

<buildSpec>

 <buildCommand>

 <name>org.eclipse.jdt.core.javabuilder</name>

 <arguments>

 </arguments>

 </buildCommand>

 <buildCommand>

 <name>com.ibm.etools.mft.java.builder.javabuilder</name>

 <arguments>

 </arguments>

 </buildCommand>

 <buildCommand>

 <name>com.ibm.etools.mft.jcn.jcnbuilder</name>

 <arguments>

 </arguments>

 </buildCommand>

 <buildCommand>

 <name>com.ibm.etools.mft.bar.barbuilder</name>

 <arguments>

450 Message Flows

|

|
|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

</arguments>

 </buildCommand>

 </buildSpec>

 <natures>

 <nature>org.eclipse.jdt.core.javanature</nature>

 <nature>com.ibm.etools.mft.bar.barnature</nature>

 <nature>com.ibm.etools.mft.jcn.jcnnature</nature>

 </natures>

2. Add the following plug-ins to the build path of the Java project:

– <MB Installation Directory>\IBM\SDP70Shared\plugins\
com.ibm.etools.mft.jcn_6.1.0.v<pick the latest version of this

plug-in>\javacompute.jar

– <MB Installation Directory>\IBM\SDP70Shared\plugins\
com.ibm.etools.mft.jcn_6.1.0.v<pick the latest version of this

plug-in>\jplugin2.jar
3. Create the appropriate Java class and ensure that it extends from

com.ibm.broker.javacompute.MbJavaComputeNode.

You have created your Java project.

You can now perform the following tasks:

v “Opening an existing Java file”

v “Saving a Java file”

v “Adding Java code dependencies” on page 452

Opening an existing Java file

You can add to and modify Java code that you have created in a Java project.

Before you start

Before you start this task, complete the following tasks:

v Add a “JavaCompute node” on page 943 to your message flow.

v “Creating Java code for a JavaCompute node” on page 450

To open an existing Java file:

1. Switch to the Java perspective.

2. In the Package Explorer view, double-click the Java file that you want to open.

The file is opened in the editor view.

3. Work with the contents of the file to make your changes.

You can also open a Java file when you have a message flow open in the editor

view. Select the JavaCompute node, right-click and then select Open Java to open

the file.

Next:

You can now perform the following tasks:

v “Saving a Java file”

v “Adding Java code dependencies” on page 452

Saving a Java file

When you edit your Java files, save them to preserve the additions and

modifications that you have made.

Developing message flows 451

|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

|
|

|

Before you start

To complete this task, you must have completed the following tasks:

v Add a “JavaCompute node” on page 943 to your message flow.

v “Creating Java code for a JavaCompute node” on page 450

To save a Java file:

1. Switch to the Java perspective.

2. Create a new Java file or open an existing Java file.

3. Make the changes to the contents of the Java file.

4. When you have finished working, click File → Save or File → Save All to save

the file and retain all your changes.

Next:

You can now perform the following task:

v “Adding Java code dependencies”

Adding Java code dependencies

When you write your Java code for a JavaCompute node, you can include

references to other Java projects and JAR files.

Before you start

To complete this task, you must have completed the following tasks:

v Add a “JavaCompute node” on page 943 to your message flow.

v “Creating Java code for a JavaCompute node” on page 450

The Java code in a JavaCompute node might contain references to other Java

projects in your Eclipse workspace (internal dependencies), or to external JAR files,

for example the JavaMail API (external dependencies). If other JAR files are

referenced, you must add the files to the project class path.

1. Right-click the project folder of the project that you are working on and click

Properties.

2. Click Java Build Path on the left pane.

3. Click the Libraries tab.

4. Perform one of the following steps:

v To add an internal dependency, click Add JARs..., select the JAR file that you

want to add then click OK.

v To add an external dependency, click Add External JARs..., select the JAR file

that you want to add, then click Open. Copy the file to WorkPath/shared-
classes where WorkPath is the full path to the working directory of the

broker. If you do not copy the external dependencies here

ClassNotFoundException exceptions are generated at run time.

Tip:

The default value for WorkPath is one of the following values:

v

Windows

For Windows systems, the default workpath is c:\Documents

and Settings\All Users\Application Data\IBM\MQSI.

v

UNIX

For UNIX systems, the default workpath is /var/mqsi.

452 Message Flows

v

Linux

For Linux systems, the default workpath is /var/mqsi.

You have now added a code dependency.

Deploying JavaCompute node code

The Message Broker Toolkit handles the deploying of JavaCompute node code

automatically. When you create a bar file and add the message flow, the Message

Broker Toolkit packages the compiled Java code and its dependencies into the bar

file.

JavaCompute node classloading

When you include one or more JavaCompute nodes in a broker archive (bar) file,

the JAR files are loaded in a separate classloader. The classloader loads all classes

that are packaged within the deployed bar. These classes override any classes that

are in the shared classes directory or the CLASSPATH environment variable.

The broker uses the following classloader tree:

Bootstrap

System

Common

Broker Shared

JVM classloaders

EGShared

These components are in the classloader tree:

v Common classloader: loads the classes that are shared between the broker and

user code. For example, the classes that are contained in jplugin2.jar are

common to the broker and the user code.

v Broker classloader: loads the broker internal classes. These classes cannot be

accessed by user classes.

v Shared classloader : loads classes from JAR files that have been placed in the

workpath/shared-classes/ directory, and from the CLASSPATH environment

variable. These classes are available to all Java user-defined nodes and

JavaCompute nodes within the broker.

The CLASSPATH environment variable can contain the wildcard character (*) at

the end of a directory path specifier. The wildcard is expanded to include all

files in that directory with the extension .jar or .JAR.

v EGShared classloader: loads all classes that are deployed to the execution group

in the broker archive (bar) file, either by a JavaCompute node or an

ESQL-to-Java mapping.

This is used to support the deployment mechanism for the JavaCompute node.

Each time a BAR file is deployed, a new instance of the EGShared classloader is

Developing message flows 453

created and the old instance is discarded. This action allows the JavaCompute

node to reload modified versions of the same class without the need to restart

the broker.

The broker uses the following search path to find JavaCompute node classes:

1. The deployed JAR file

2. <WorkPath>/shared-classes/ to locate any JAR files

3. The CLASSPATH environment variable

Writing Java

When you create a message flow, you include input nodes that receive messages

and, optionally, output nodes that send out new or updated messages. If the

processing that must be performed on the message requires it, you can include

other nodes after the input node that are customized in Java to complete the

actions that your applications need.

Some of the built-in nodes allow you to customize the processing that they

provide. In a JavaCompute node, you can provide Java code that controls precisely

the behavior of the node. This set of topics discusses how you can use Java to

customize the JavaCompute node.

Using a JavaCompute node you can check and manipulate message content. You

can:

v Read the contents of the input message

v Construct new output messages that are created from all, part, or none of the

input message

Use the Debug perspective to debug a message flow that contains a JavaCompute

node. When control passes to a JavaCompute node during debugging, the

perspective opens the Java debugger, allowing you to step through the Java class

code for the node.

This section provides more information about writing Java:

v Manipulating message body data

v Manipulating other parts of the message tree

v Accessing broker properties

v Accessing user-defined properties

v “Adding keywords to JAR files” on page 466

v Interacting with databases

v “Calling an Enterprise Java Bean” on page 470

v Handling exceptions

v Logging errors

Manipulating message body data using a JavaCompute node

The message body is always the last child of root, and its parser name identifies it,

for example XML or MRM.

The following topics describe how to refer to, modify, and create message body

data. The information provided here is domain independent:

v “Accessing elements in a message tree from a JavaCompute node” on page 455

v “Transforming a message using a JavaCompute node” on page 457

454 Message Flows

v “Creating a simple filter using a JavaCompute node” on page 459

v “Propagating a message to the JavaCompute node Out and Alternate terminals”

on page 460

v “Extracting information from a message using XPath 1.0 and a JavaCompute

node” on page 460

Accessing elements in a message tree from a JavaCompute node:

Access the contents of a message, for reading or writing, using the structure and

arrangement of the elements in the tree that the parser creates from the input bit

stream.

 Follow the relevant parent and child relationships from the top of the tree

downwards until you reach the required element.

The message tree is passed to a JavaCompute node as an argument of the evaluate

method. The argument is an MbMessageAssembly object. MbMessageAssembly

contains four message objects:

v Message

v Local Environment

v Global Environment

v Exception List

These objects are read-only, except for Global Environment. If you try to write to

the read-only objects, an MbReadOnlyException is issued.

This topic contains the following information about accessing elements in a

message tree:

v “Traversing the element tree”

v “Accessing information about an element” on page 456

Traversing the element tree:

The following table shows the Java methods that you can use to access element

trees, and the equivalent ESQL field type constant for each point in the tree.

 Java accessor from MbMessageAssembly ESQL field type constant

getMessage().getRootElement() InputRoot

getMessage().getRootElement().getLastChild() InputBody

getLocalEnvironment().getRootElement() InputLocalEnvironment

getGlobalEnvironment().getRootElement() Environment

getExceptionList().getRootElement() InputExceptionList

Use the following methods to traverse a message tree from an element of type

MbElement:

getParent()

returns the parent of the current element

getPreviousSibling()

returns the previous sibling of the current element

getNextSibling()

returns the next sibling of the current element

Developing message flows 455

getFirstChild()

returns the first child of the current element

getLastChild()

returns the last child of the current element

The following example shows a simple XML message and the logical tree that

would be created from the message. The message has been sent using WebSphere

MQ. The logical tree diagram also shows the methods to call in order to navigate

around the tree.

<document>

 <chapter title=’Introduction’>

 Some text

 </chapter>

</document>

N: Root
V:

N: MQMD
V:

N: Properties
V:

N: XML
V:

N: document
V:

N: chapter
V:

N: title
V: Introduction

N: - Name
V: - Value

Key:

N:
V: Some text.

(1)
(2)
(3)
(4)
(5)

getFirstChild()
getLastChild()
getNextSibling()
getPreviousSibling()
getParent()

(1)

(3)

(4)

(3)

(3)

(4)

(4)

(5) (5)

(1)

(1)

(1) (5)

(5)

(5)

(5)

(5) (2)

(2)

(2)

(2)

The following Java code accesses the chapter element in the logical tree for an

XML message that does not contain white spaces. The XML parser retains white

space in the parsed tree, but the XMLNS and XMLNSC parsers do not.

MbElement root = assembly.getMessage().getRootElement();

MbElement chapter = root.getLastChild().getFirstChild().getFirstChild();

Accessing information about an element:

Use the following methods to return information about the referenced element:

getName()

returns the element name as a java.lang.String

getValue()

returns the element value

getType()

returns the generic type, which is one of the following types:

v NAME: an element of this type has a name, but no value.

456 Message Flows

v VALUE: an element of this type has a value, but no name.

v NAME/VALUE: an element of this type has both a value and a name.

getSpecificType()

returns the parser-specific type of the element

getNamespace()

returns the namespace URI of this element

Transforming a message using a JavaCompute node: These topics describe how

to transform messages using a JavaCompute node:

v “Creating a new message using a JavaCompute node”

v “Copying a message using a JavaCompute node”

v “Setting, copying, and moving message elements using a JavaCompute node” on

page 458

v “Creating new elements using a JavaCompute node” on page 458

Creating a new message using a JavaCompute node:

Many message transformation scenarios require a new outgoing message to be

built. The Create Message Class template in the JavaCompute node wizard generates

template code for this.

In the template code, the default constructor of MbMessage is called to create a

blank message, as shown in the following Java code:

MbMessage outMessage = new MbMessage();

The headers can be copied from the incoming message using the supplied utility

method, copyMessageHeaders(), as shown in this Java code:

copyMessageHeaders(inMessage, outMessage);

The new message body can now be created. First, add the top level parser element.

For XML, this is:

MbElement outRoot = outMessage.getRootElement();

MbElement outBody = outRoot.createElementAsLastChild(MbXMLNSC.PARSER_NAME);

The remainder of the message can then be built up using the createElement

methods and the extended syntax of the broker XPath implementation.

When you wish to create a BLOB message, that is handled as a single byte string

using the BLOB parser domain. The message data is added as a byte array to the

single element named ″BLOB″ under the parser level element as described below:

String myMsg = "The Message Data";

MbElement outRoot = outMessage.getRootElement();

// Create the Broker Blob Parser element

MbElement outParser = outRoot.createElementAsLastChild(MbBLOB.PARSER_NAME);

// Create the BLOB element in the Blob parser domain with the required text

MbElement outBodyEl2 = outParser.createElementAsLastChild(MbElement.TYPE_NAME_VALUE, "BLOB", myMsg.getBytes());

Copying a message using a JavaCompute node:

The incoming message and message assembly are read-only. In order to modify a

message, a copy of the incoming message must be made. The Modifying Message

Class template in the JavaCompute node wizard generates this copy. The following

copy constructors are called:

Developing message flows 457

MbMessage outMessage = new MbMessage(inAssembly.getMessage);

 MbMessageAssembly outAssembly = new MbMessageAssembly(inAssembly, outMessage);

The new outAssembly object is propagated to the next node.

Setting, copying, and moving message elements using a JavaCompute node:

Transform elements in the message as it passes through a JavaCompute node in

the message flow.

 v “Setting information about an element”

v “Moving and copying elements”

The Java API reference information provides details about each of the methods

used in the sections below.

Setting information about an element:

Use these methods to set information about the referenced element:

setName()

Sets the name of the element

setValue()

Sets the value of the element

setSpecificType()

Sets the parser-specific type of the element

setNamespace()

Sets the namespace URI of the element

Moving and copying elements:

Use a JavaCompute node to copy or detach an element from a message tree using

the following methods:

detach()

The element is detached from its parent and siblings, but any child

elements are left attached

copy() A copy of the element and its attached children is created

Use one of four methods to attach an element or subtree that you have copied on

to another tree:

addAsFirstChild(element)

Adds an unattached element as the first child of element

addAsLastChild(element)

Adds an unattached element as the last child of element

addBefore(element)

Adds an unattached element as the previous sibling of element

addAfter(element)

Adds an unattached element as the next sibling of element

Creating new elements using a JavaCompute node:

Use the following methods in a JavaCompute node to create new elements in a

message tree:

458 Message Flows

v createElementAsFirstChild()

v createElementAsLastChild()

v createElementBefore()

v createElementAfter()

The method returns a reference to the newly-created element. Each method has

three overloaded forms:

createElement...(int type)

Creates a blank element of the specified type. Valid generic types are:

v MbElement.TYPE_NAME. This type of element has only a name, for

example an XML element.

v MbElement.TYPE_VALUE. This type of element has only a value, for

example XML text that is not contained within an XML element.

v MbElement.TYPE_NAME_VALUE. This type of element has both a name

and a value, for example an XML attribute.

Specific type values can also be assigned. The meaning of this type

information is dependent on the parser. Element name and value

information must be assigned using the setName() and setValue() methods.

createElement...(int type, String name, Object value)

Method for setting the name and value of the element at creation time.

createElement...(String parserName)

A special form of createElement...() that is only used to create top-level

parser elements.

This example Java code adds a new chapter element to the XML example given in

“Accessing elements in a message tree from a JavaCompute node” on page 455:

MbElement root = outMessage.getRootElement();

MbElement document = root.getLastChild().getFirstChild();

MbElement chapter2 = document.createElementAsLastChild(MbElement.TYPE_NAME,"Chapter",null);

// add title attribute

MbElement title2 = chapter2.createElementAsFirstChild(MbElement.TYPE_NAME_VALUE,

 "title", "Message Flows");

This produces the following XML output:

<document>

 <chapter title="Introduction">

 Some text.

 </chapter>

 <chapter title="Message Flows"/>

</document>

Creating a simple filter using a JavaCompute node:

Before you start

To complete this task, you must have added a “JavaCompute node” on page 943 to

your message flow.

The JavaCompute node has two output terminals, Out and Alternate. To use the

JavaCompute node as a filter node, propagate a message to either the Out or

Alternate terminal based on the message content. Use the JavaCompute node

creation wizard to generate template code for a filter node:

Developing message flows 459

Select the Filtering Message Class template in the JavaCompute node creation

wizard to create a filter node.

The following template code is produced. It passes the input message to the Out

terminal without doing any processing on the message.

public class jcn2 extends MbJavaComputeNode {

 public void evaluate(MbMessageAssembly assembly) throws MbException {

 MbOutputTerminal out = getOutputTerminal("out");

 MbOutputTerminal alt = getOutputTerminal("alternate");

 MbMessage message = assembly.getMessage();

 // --

 // Add user code below

 // End of user code

 // --

 // The following should only be changed

 // if not propagating message to the ’out’ terminal

 out.propagate(assembly);

 }

}

The template produces a partial implementation of a method called evaluate(). The

broker calls evaluate() once for each message that passes through the node. The

parameter that is passed to evaluate() is the message assembly. The message

assembly encapsulates the message that is passed on from the previous node in the

message flow.

Add custom code to the template, and propagate messages to both the Out and

Alternate terminals to create a message filter.

Propagating a message to the JavaCompute node Out and Alternate terminals:

The JavaCompute node has two output terminals, Out and Alternate. Therefore,

you can use the node both as a filter node and as a message transformation node.

After you have processed the message, propagate the message to an output

terminal using a propagate() method. To propagate the message assembly to the

Out terminal use the following method:

out.propagate(assembly);

To propagate the message assembly to the Alternate terminal, use the following

method:

alt.propagate(assembly);

Extracting information from a message using XPath 1.0 and a JavaCompute

node:

XPath is a query language designed for use with XML documents, but you can use

it with any tree structure to query contents.

 WebSphere Message Broker uses XPath to select elements from the logical message

tree regardless of the format of the bit stream. The terminology used in this topic is

based on the terminology used in the W3C definition of XPath 1.0. For more

information about XPath, see “Using XPath” on page 411; and for more

460 Message Flows

|
|

information about the W3C definition of the XPath 1.0 standard, see XPath. For

examples of XPath use, see the MbXPath topic in the Java user-defined node API

documentation.

This topic contains the following information:

v “Using the evaluateXPath method to extract message information”

v “XPath variable binding”

v “XPath namespace support”

v “Updating a message using XPath extensions” on page 462

Using the evaluateXPath method to extract message information

The evaluateXPath() method is included in the Java user-defined node API. It

supports XPath 1.0, with the following exceptions:

v Namespace axis and namespace node type. The namespace axis returns the

actual XML namespace declaration nodes for a particular element. You can

therefore manipulate XML prefix or URI declarations within an XPath

expression. This axis returns an empty node set for bit streams that are not XML.

v If you use the id() function it throws an MbRecoverableException.

The evaluateXPath() method can be called on a MbMessage object (for absolute

paths), or on a MbElement object (for relative paths). The XPath expression is

passed to the method as a string parameter. A second form of this method is

provided that takes an MbXPath object. This object encapsulates an XPath

expression along with variable bindings and namespace mappings, if these are

required.

The evaluateXPath() method returns an object of one of these four types,

depending on the expression return type:

v java.lang.Boolean, representing the XPath Boolean type

v java.lang.Double, representing the XPath number type

v java.lang.String, representing the XPath string type

v java.util.List, representing the XPath node set. The List interface represents an

ordered sequence of objects, in this case MbElements. It allows direct access to

the elements, or the ability to get an Iterator or an MbElement array.

XPath variable binding

XPath 1.0 supports the ability to refer to variables that have been assigned before

the expression that contains them is evaluated. The MbXPath class has three

methods for assigning and removing these variable bindings from user Java code.

The value must be one of the four XPath 1.0 supported types:

v Boolean

v node set

v number

v string

XPath namespace support

For XML messages, namespaces are referred to using a mapping from an

abbreviated namespace prefix to the full namespace URI, as shown in the

following XML example:

Developing message flows 461

|

http://www.w3.org/TR/xpath

<ns1:aaa xmlns:ns1=’http://mydomain.com/namespace1’

 xmlns:ns2=’http://mydomain.com/namespace2’>

 <ns2:aaa>

 <ns1:bbb/>

 </ns2:aaa>

</ns1:aaa>

The namespace prefix is convenient for representing the namespace, but is

meaningful only within the document that defines that mapping. The namespace

URI defines the global meaning. Also, the concept of a namespace prefix is not

meaningful for documents that are generated in a message flow, because a

namespace URI can be assigned to a syntax element without an XMLNS mapping

having been defined.

For this reason, the XMLNSC and MRM parsers expose only the namespace URI to

the broker and to user code (ESQL or user-defined code). Using ESQL, you can set

up your own mappings to create abbreviations to these potentially long URIs.

These mappings are not related in any way to the prefixes that are defined in the

XML document (although they can be the same name).

Using the XPath processor you can map namespace abbreviations on to URIs that

are expanded at evaluation time. The MbXPath class contains methods to assign

and remove these namespace mappings. The XML example can be addressed using

the following code:

MbMessage msg = assembly.getMessage();

List chapters= (List)msg.evaluateXPath("/document/chapter");

// this returns a list of all chapters in the document (length 1)

MbElement chapter = (MbElement)chapters.get(0); // the first one

// values can also be extracted directly using XPath

String title = (String)msg.evaluateXPath("string(/document/chapter/@title)");

String chapterText = (String)msg.evaluateXPath("string(/document/chapter/text())");

Updating a message using XPath extensions

The XPath implementation in WebSphere Message Broker provides the following

extra functions for modifying the message tree:

set-local-name(object)

Sets the local part of the expanded name of the context node to the value

specified in the argument. object can be any valid expression, and is

converted to a string as if a call to the string function is used.

set-namespace-uri(object)

Sets the namespace URI part of the expanded name of the context node to

the value specified in the argument. object can be any valid expression, and

is converted to a string as if a call to the string function is used.

set-value(object)

This function sets the string value of the context node to the value

specified in the argument. object can be any valid expression, and is

converted to a string as if a call to the string function is used.

To allow for syntax element trees to be built as well as modified, the following axis

is available in addition to the 13 that are defined in the XPath 1.0 specification:

select-or-create::name or ?name

?name is equivalent to select-or-create::name. If name is @name, an attribute

462 Message Flows

is created or selected. This selects child nodes matching the specified name,

or creates new nodes according to the following rules:

v ?name selects children called name if they exist. If a child called name

does not exist, ?name creates it as the last child, then selects it.

v ?$name creates name as the last child, then selects it.

v ?^name creates name as the first child, then selects it.

v ?>name creates name as the next sibling, then selects it.

v ?<name creates name as the previous sibling, then selects it.

Manipulating other parts of the message tree using a

JavaCompute node

The following topics describe how to access parts of the message tree other than

the message body data. These parts of the logical tree are independent of the

domain in which the message exists, and all these topics apply to messages in all

supported domains, including the BLOB domain. You can access all parts of the

message tree using a JavaCompute node, including the Properties tree described in

“Message tree structure” on page 61, and the ExceptionList tree. Elements of the

message tree can be accessed in the same way as the message body data, using a

JavaCompute node.

v “Accessing headers using a JavaCompute node”

v “Updating the LocalEnvironment with the JavaCompute node” on page 464

v “Updating the Global Environment with the JavaCompute node” on page 465

Accessing headers using a JavaCompute node:

If an input node receives an input message that includes message headers that the

input node recognizes, the node invokes the correct parser for each header. Parsers

are supplied for most WebSphere MQ headers. The topics listed below provide

guidance for accessing the information in the MQMD and MQRFH2 headers that

you can follow when accessing other headers that are present in your messages.

v “Copying message headers using a JavaCompute node”

v “Accessing the MQMD header using a JavaCompute node”

v “Accessing the MQRFH2 header using a JavaCompute node” on page 464

For further details of the contents of these and other WebSphere MQ headers for

which WebSphere Message Broker provides a parser, see “Element definitions for

message parsers” on page 1399.

Copying message headers using a JavaCompute node: The Modifying Message Class

template in the JavaCompute node wizard generates the following code to copy

message headers using a JavaCompute node:

public void copyMessageHeaders(MbMessage inMessage, MbMessage outMessage) throws MbException

{

 MbElement outRoot = outMessage.getRootElement();

 MbElement header = inMessage.getRootElement().getFirstChild();

 while(header != null && header.getNextSibling() != null)

 {

 outRoot.addAsLastChild(header.copy());

 header = header.getNextSibling();

 }

}

Accessing the MQMD header using a JavaCompute node:

Developing message flows 463

WebSphere MQ, WebSphere MQ Everyplace, and SCADA messages include an

MQMD header. You can use a JavaCompute node to refer to the fields within the

MQMD, and to update them.

The following Java code shows how to add an MQMD header to your message:

public void addMqmd(MbMessage msg) throws MbException

{

 MbElement root = msg.getRootElement();

 // create a top level ’parser’ element with parser class name

 MbElement mqmd = root.createElementAsFirstChild("MQHMD");

 // specify next parser in chain

 mqmd.createElementAsFirstChild(MbElement.TYPE_NAME_VALUE,

 "Format",

 "XMLNS");

}

Accessing the MQRFH2 header using a JavaCompute node:

When you construct MQRFH2 headers in a JavaCompute node, there are two types

of field:

v Fields in the MQRFH2 header structure (for example, Format and

NameValueCCSID)

v Fields in the MQRFH2 NameValue buffer (for example mcd and psc)

The following code adds an MQRFH2 header to an outgoing message that is to be

used to make a subscription request:

public void addRfh2(MbMessage msg) throws MbException

{

 MbElement root = msg.getRootElement();

 MbElement body = root.getLastChild();

 // insert new header before the message body

 MbElement rfh2 = body.createElementBefore("MQHRF2");

 rfh2.createElementAsFirstChild(MbElement.TYPE_NAME_VALUE, "Version", new Integer(2));

 rfh2.createElementAsFirstChild(MbElement.TYPE_NAME_VALUE, "Format", "MQSTR");

 rfh2.createElementAsFirstChild(MbElement.TYPE_NAME_VALUE, "NameValueCCSID", new Integer(1208));

 MbElement psc = rfh2.createElementAsFirstChild(MbElement.TYPE_NAME, "psc", null);

 psc.createElementAsFirstChild(MbElement.TYPE_NAME, "Command", "RegSub");

 psc.createElementAsFirstChild(MbElement.TYPE_NAME, "Topic", "department");

 psc.createElementAsFirstChild(MbElement.TYPE_NAME, "QMgrName", "QM1");

 psc.createElementAsFirstChild(MbElement.TYPE_NAME, "QName", "PUBOUT");

 psc.createElementAsFirstChild(MbElement.TYPE_NAME, "RegOpt", "PersAsPub");

 MbXPath xp = new MbXPath("/MQMD/Format" + "[set-value(uMQHRF2u)]", root);

 root.evaluateXPath(xp);

}

Updating the LocalEnvironment with the JavaCompute node:

The LocalEnvironment tree is part of the logical message tree in which you can

store information while the message flow processes the message.

 The following information shows how to update the LocalEnvironment:

1. Make a new copy of the local environment to update it. Use the full version of

the copy constructor to create a new MbMessageAssembly object, as shown in

the following example:

464 Message Flows

MbMessage env = assembly.getLocalEnvironment();

MbMessage newEnv = new MbMessage(env);

newEnv.getRootElement().createElementAsFirstChild(

 MbElement.TYPE_NAME_VALUE,

 "Status",

 "Success");

MbMessageAssembly outAssembly = new MbMessageAssembly(

 assembly,

 newEnv,

 assembly.getExceptionList(),

 assembly.getMessage());

getOutputTerminal("out").propagate(outAssembly);

2. Edit the copy to update the LocalEnvironment.

Updating the Global Environment with the JavaCompute node:

The Global Environment tree is always created when the logical tree is created for

an input message. However, the message flow neither populates it nor uses its

contents. You can use this tree for your own purposes, for example to pass

information from one node to another. You can use the whole tree as a scratchpad

or working area.

The Global Environment can be altered across the message flow, therefore do not

make a copy of it to alter. The following Java code shows how to alter the Global

Environment:

MbMessage env = assembly.getGlobalEnvironment();

env.getRootElement().createElementAsFirstChild(MbElement.TYPE_NAME_VALUE, "Status", "Success");

getOutputTerminal("out").propagate(assembly);

Accessing broker properties from the JavaCompute node

For each broker, WebSphere Message Broker maintains a set of properties. You can

access some of these properties from your Java programs. It can be useful, during

the run time of your code, to have real-time access to details of a specific node,

flow, or broker.

There are four categories of broker property:

v Those relating to a specific node

v Those relating to nodes in general

v Those relating to a message flow

v Those relating to the execution group

“Broker properties that are accessible from ESQL and Java” on page 1663 includes

a table that shows the groups of properties that are accessible from Java. The table

also indicates if the properties are accessible from ESQL.

Broker properties:

v Are grouped by broker, execution group, flow, and node.

v Are case sensitive. Their names always start with an uppercase letter.

v Return NULL if they do not contain a value.

To access broker properties in a JavaCompute node, call methods on the following

classes:

Developing message flows 465

v MbBroker

v MbExecutionGroup

v MbMessageFlow

v MbNode

For example:

String brokerName = getBroker().getName();

Accessing user-defined properties from a JavaCompute node

Customize a JavaCompute node to access properties that you have associated with

the message flow in which the node is included.

To access these properties from a JavaCompute node, use the

getUserDefinedAttribute(name) method, where name is the name of the property

that you are accessing. The type of the object that is returned depends on the type

of the property that you are accessing. The object has one of a set of types:

v MbDate

v MbTime

v MbTimestamp

v Boolean

v byte[]

v String

v Integer 32-bit values

v Long 64-bit values

v Double

v BigDecimal

v BitSet

You can use the Configuration Manager Proxy (CMP) API to change the value of

user-defined properties. Use the getUserDefinedPropertyNames(),

getUserDefinedProperty(), and setUserDefinedProperty() methods to query,

discover, and set user-defined properties, as described in Setting user-defined

properties dynamically at run time.

Adding keywords to JAR files

If a bar file contains JAR files, you can associate keywords with the JAR files.

1. Add a file called META-INF/keywords.txt to the root of the JAR file.

2. Add your keywords to the META-INF/keywords.txt file, because this file is

parsed for keywords when it is deployed. Keywords have this format:

$MQSI keyword = value MQSI$

For example, a deployed bar file contains compute.jar, and compute.jar contains the

file META-INF/keywords.txt with the following contents:

META-INF/keywords.txt

$MQSI modified date = 3 Nov MQSI$

$MQSI author = john MQSI$

This content means that the keywords “modified date” and “author” are associated

with the deployed file compute.jar in the Configuration Manager Proxy and in the

Message Broker Toolkit.

You have now added keywords to your JAR file.

466 Message Flows

|
|
|
|
|

Next:

When you have added keywords to your JAR file, you can see this information in

the bar file editor.

Interacting with databases using the JavaCompute node

Access databases from Java code included in the JavaCompute node.

Choose from the following options for database interaction:

v Broker JDBCProvider for type 4 connections

v MbSQLStatement

v JDBC API in an unmanaged environment

v SQLJ

If you use JDBCProvider for type 4 connections or MbSQLStatement, the databases

that you access can participate in globally coordinated transactions. In all other

cases, database access cannot be globally coordinated.

Broker JDBCProvider for type 4 connections:

You can establish JDBC type 4 connections to interact with databases from your

JavaCompute nodes. The broker supports type 4 drivers, but does not supply

them. You must obtain these drivers from your database vendor; for information

about supported drivers, see Supported databases.

Use the broker JDBCProvider for type 4 connections to benefit from the following

advantages:

v Use broker configuration facilities to define the connection, and to provide

optional security, in preference to coding these actions.

v Configure the broker and the databases to coordinate access and updates with

other resources that you access from your message flows, except when the

broker is running on z/OS.

v Use the broker Java API getJDBCTyep4Connection to initiate the connection, and

then perform SQL operations using the standard JDBC APIs. The broker

manages the connections, thread affinity, connection pooling, and life cycle. If a

connection is idle for approximately one minute, or if the message flow

completes, the broker closes the connection.

If the broker is running on a distributed system, you can configure the databases

and the connections to be coordinated with other resource activity. Global

coordination on distributed systems is provided by WebSphere MQ, and can

include interactions with local or remote databases, including remote databases

that are defined on z/OS systems. If you establish a JDBC type 4 connection to a

database from a broker that is running on z/OS, coordination is not provided. For

information about setting up connections and coordination, see Enabling JDBC

connections to the databases.

Before you can include this function in the code that you write for the node, you

must configure the required environment. Decide whether your database requires

security of access, and whether you want the database updates to participate in

globally coordinated transactions. For the required and optional tasks, see Enabling

JDBC connections to the databases.

Developing message flows 467

When you have configured the JDBCProvider, you can establish a JDBC type 4

connection to the database using the getJDBCType4Connection call on the MbNode

interface. The following code provides an example of its use:

public class MyJavaCompute extends MbJavaComputeNode {

{

 public void evaluate(MbMessageAssembly inAssembly) throws MbException {

 MbOutputTerminal out = getOutputTerminal("out");

 MbMessage inMessage = inAssembly.getMessage();

 // create new message

 MbMessage outMessage = new MbMessage(inMessage);

 MbMessageAssembly outAssembly = new MbMessageAssembly(inAssembly,outMessage);

 try {

 // Obtain a java.sql.Connection using a JDBC Type4 datasource - in this example for a

 // JDBC broker configurable service called "MyDB2"

 Connection conn = getJDBCType4Connection("MyDB2",JDBC_TransactionType.MB_TRANSACTION_AUTO);

 // Example of using the Connection to create a java.sql.Statement

 Statement stmt = conn.createStatement(

 ResultSet.TYPE_SCROLL_INSENSITIVE,

 ResultSet.CONCUR_READ_ONLY);

 ResultSet srs0 = stmt.executeQuery(

 "SELECT NAME, CITY FROM MySchema.MyTable");

 stmt.executeUpdate("UPDATE MySchema.MyTable SET CITY = "Springfield" WHERE Name = "Bart");

 .

 // Perform other database updates

 .

 } catch (SQLException sqx){

 sqx.printStackTrace();

 } finally {

 // clear the outMessage

 outMessage.clearMessage();

 }

 }

}

In this example:

v MyDB2 is the name of the JDBCProvider configurable service. Use the name of

the service that you have created to connect to your database.

v MySchema is the name of the database schema (not the name of the database).

v MB_TRANSACTION_AUTO defines the level of transaction coordination that is

required by the node. Only this value is supported, and indicates that the

coordination in the node is inherited from that configured at message flow level.

Because the broker is managing the connections, your code must comply with the

following restrictions:

v Do not include any code that performs a COMMIT or a ROLLBACK function.

v Do not close the connection to the database.

Return a code that indicates success or failure of the actions taken by the node

when control is returned.

MbSQLStatement:

The MbSQLStatement class provides full transactional database access using ESQL

and ODBC. The broker resource manager coordinates database access when using

468 Message Flows

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

MbSQLStatement. Global coordination is provided by WebSphere MQ on

distributed platforms, and by RRS on z/OS. For information about how to set up

the ODBC resources that are required, see Enabling ODBC connections to the

databases.

Create instances of the MbSQLStatement class using the createSQLStatement()

method of MbNode, passing to the method the ODBC data source, a broker EQSL

statement, and, optionally, the transaction mode.

v Calling select() on this object returns the results of the query.

v Calling execute() on this object executes a query where no results are returned,

such as updating a table.

The following Java code shows how to access a database using MbSQLStatement:

MbMessage newMsg = new MbMessage(assembly.getMessage());

MbMessageAssembly newAssembly = new MbMessageAssembly(assembly, newMsg);

String table = "dbTable";

MbSQLStatement state = createSQLStatement("dbName",

 "SET OutputRoot.XMLNS.integer[] = PASSTHRU(’SELECT * FROM " + table + "’);");

state.setThrowExceptionOnDatabaseError(false);

state.setTreatWarningsAsErrors(true);

state.select(assembly, newAssembly);

int sqlCode = state.getSQLCode();

if(sqlCode != 0)

{

 // Do error handling here

}

getOutputTerminal("out").propagate(assembly);

JDBC API in an unmanaged environment:

You can access standard Java APIs in the code that you write for your

JavaCompute nodes, including JDBC calls. You can therefore use JDBC APIs to

connect to a database, write to or read from the database, and disconnect from the

database. The broker allows your JDBC connection code to invoke both type 2 and

type 4 JDBC drivers in this environment, but does not supply them. You must

obtain these drivers from your database vendor.

If you choose this method to access databases, the broker does not provide any

support for managing the transactions; your code must manage the local commit

and rollback of database changes. Your code must also manage the connection life

cycle, connection thread affinity, and connection pooling. You must also monitor

the access to databases when you use this technique to ensure that these

connections do not cause any interference with connections made by the broker. In

particular, be aware that type 2 drivers bridge to an ODBC connection that might

be in use in message flows that access databases from ESQL.

SQLJ:

SQLJ is a Java extension that you can use to embed static SQL statements within

Java code. Create SQLJ files using the workbench. The broker resource manager

does not coordinate database access when using SQLJ.

1. Enable SQLJ capability in the workbench:

a. Switch to the Broker Application Development perspective.

b. Select Window → Preferences.

Developing message flows 469

c. Expand Workbench.

d. Select Capabilities.

e. Expand Database Developer.

f. Select SQLJ Development.

g. Click OK.
2. Create a new SQLJ file within a Java project:

a. Right-click the Java project in which you want to create the file.

b. Select New → Other.

c. Expand Data.

d. Expand SQLJ.

e. Select SQLJ File.

f. Click Next.

g. Follow the directions given by the New SQLJ File wizard to generate the

SQLJ file.

You can now reference the class in this SQLJ file from a JavaCompute node class in

this project or in another referenced project.

Calling an Enterprise Java Bean

You can call an Enterprise Java Bean (EJB) from a JavaCompute node.

Before you start:

v Ensure that all required Java classes are in WebSphere Message Broker’s

shared-classes directory, or are referenced in the CLASSPATH environment

variable. You can use the wildcard character (*) at the end of a directory path

specifier to load all JARs in that directory path.

v Ensure that the user JAR files that are needed for EJB access are referenced in

CLASSPATH. For more information, see the documentation for the application

server that is hosting the EJB.

v If you are using a version of WebSphere Message Broker before Version 6.0 Fix

Pack 3, you must set the context loader by including the following statement in

the node’s Java code before the InitialContext is set:

Thread currentThread().setContextClassLoader(this.getClass().getClassLoader());

The following example shows how to call an EJB from a JavaCompute node:

public class CallAckNoAckEJB_JavaCompute extends MbJavaComputeNode {

 public void evaluate(MbMessageAssembly inAssembly) throws MbException {

 MbOutputTerminal out = getOutputTerminal("out");

 MbOutputTerminal alt = getOutputTerminal("alternate");

 MbMessage inMessage = inAssembly.getMessage();

 // create new message

 MbMessage outMessage = new MbMessage(inMessage);

 MbMessageAssembly outAssembly = new MbMessageAssembly(inAssembly,outMessage);

 try {

 // --

 // Add user code below

 String response = null;

 String responseMessage = null;

 Properties properties = new Properties();

470 Message Flows

|
|
|

properties.put(Context.PROVIDER_URL, "iiop://localhost:2809");

 properties.put(Context.INITIAL_CONTEXT_FACTORY, "com.ibm.websphere.naming.

WsnInitialContextFactory");

 try {

 Context initialContext = new InitialContext(properties);

 Object obj = initialContext.lookup("ejb/com/acme/ejbs/AckNoAckHome");

 AckNoAckHome ejbHome = (AckNoAckHome)javax.rmi.PortableRemoteObject.

narrow(obj,AckNoAckHome.class);

 AckNoAck ackNoAck = ejbHome.create();

 responseMessage = ackNoAck.getAck();

 response = "Ack";

 } catch(Exception e) {

 responseMessage = e.getMessage();

 response = "NoAck";

 }

 MbElement cursor = outMessage.getRootElement().getFirstElementByPath("/XML/AckNoAck");

 cursor.createElementAsLastChild(MbElement.TYPE_NAME,"Response",null);

 cursor.getLastChild().createElementAsLastChild(MbElement.TYPE_NAME,response,null);

 cursor.getLastChild().getLastChild().createElementAsLastChild(MbElement.TYPE_VALUE,null,

responseMessage);

 // End of user code

 // --

 // The following should only be changed

 // if not propagating message to the ’out’ terminal

 out.propagate(outAssembly);

 } finally {

 // clear the outMessage

 outMessage.clearMessage();

 }

 }

}

JavaCompute node Exception handling and the Failure terminal

You do not need to catch exceptions that are thrown in a JavaCompute node. The

broker handles exceptions automatically. If you catch an exception in your code,

throw it again, allowing the broker to construct an exception list and propagate the

message to the failure terminal, if one is connected. If you have not connected the

failure terminal, the exception is thrown back to a Catch node or an input node.

Logging errors with the JavaCompute node

The MbService class contains a number of static methods for writing to the event

log or syslog. Define message catalogs using Java resource bundles to store the

message text.

Three levels of severity are supported:

v Information

v Warning

v Error

The following sample demonstrates the use of resource bundles and logging:

v JavaCompute Node sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Developing message flows 471

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.javacomputenode.doc/doc/overview.htm

Developing message mappings

Message mappings define the blueprint for creating a message. The topics in this

section describe message mappings and explain how to develop them.

Concept topics:

v “Message mappings overview” on page 473

v “Message flows, ESQL, and mappings” on page 49

v “Advanced schema structures” on page 475

Task topics:

v “Creating message mappings” on page 476

v “Creating a message map file in the Broker Development view” on page 476

v “Creating a message map file from a Mapping node” on page 477

v “Configuring message mappings” on page 478

v “Mapping from source: by selection” on page 480

v “Mapping from source: by name” on page 480

v “Mapping a target element from source message elements” on page 481

v “Setting the value of a target element to a constant” on page 483

v “Setting the value of a target element to a WebSphere MQ constant” on page 483

v “Setting the value of a target element using an expression or function” on page

485

v “Deleting a source or target element” on page 486

v “Configuring conditional mappings” on page 487

v “Configuring mappings for repeating elements” on page 488

v “Populating a message map” on page 489

v “Configuring the LocalEnvironment” on page 490

v “Mapping headers and folders” on page 490

v “Adding messages or message components to the source or target” on page 492

v “Adding a database as a source or target” on page 492

v “Modifying databases using message mappings” on page 494

v “Creating and calling submaps and subroutines” on page 502

v “Transforming a SOAP request message” on page 510

v “Editing a default-generated map manually” on page 511

v “Message mapping tips and restrictions” on page 512

v “Message mapping scenarios” on page 515

There is also a section of topics that contain reference information about message

mapping:

v “Message mappings” on page 1410

v “Message Mapping editor” on page 1410

v “Mapping node” on page 1420

v “Migrating message mappings from Version 5.0” on page 1428

472 Message Flows

Message mappings overview

Message mappings define the blueprint for creating a message, where the created

message is known as the target message. Messages can contain the following

components:

v simple elements and attributes

v complex elements (structures)

v repeating simple or complex elements

v other (embedded) messages

Messages can contain protocol-specific headers, which might need to be

manipulated by WebSphere Message Broker. Dynamic setting of a message

destination (routing) within the WebSphere Message Broker might also be required.

Values for target message elements can be derived from:

v input message elements (the input message is also known as the source

message)

v database tables

v constant values

v WebSphere MQ constants

v functions supplied by the Mapping node

v user-defined functions

The logic to derive values can be simple or complex; conditional statements might

be needed, as might loops, summations and other functions. All of the above

mappings can be achieved using a Mapping node.

You can also create a reusable form of message map known as a submap. Submaps

can be called from message maps and ESQL code.

You must have message definitions for any messages that you want to include in a

message mapping. You can select the messages from your existing message

definitions when you create a new message map. The Mapping node supports the

following message domains:

 MRM

 XMLNSC

 XMLNS

 MIME

 JMSMap

 JMSStream

 XML

 BLOB

If you use an unsupported parser to perform mappings, for example IDOC or a

user-defined parser, error messages might be generated when messages pass

through your message flow. See “Change the target message domain” on page 512

for information about setting the message domain for the target message.

Find out more about message flows, ESQL, and mappings.

This section also contains information about “Advanced schema structures” on

page 475.

Developing message flows 473

|

Message flows, ESQL, and mappings

A message flow represents the set of actions performed on a message when it is

received and processed by a broker. The content and behavior of a message flow is

defined by a set of files that you create when you complete your definition and

configuration of the message flow content and structure:

v The message flow definition file <message_flow_name>.msgflow. This is a

required file and is created automatically for you. It contains details about the

message flow characteristics and contents (for example, what nodes it includes,

its promoted properties, and so on).

v The ESQL resources file <message_flow_name>.esql. This file is required only if

your message flow includes one or more of the nodes that must be customized

using ESQL modules. You can create this file yourself, or you can cause it to be

created for you by requesting specific actions against a node.

You can customize the following built-in nodes by creating free-form ESQL

statements that use the built-in ESQL statements and functions, and your own

user-defined functions:

– Compute

– Database

– Filter
v The message mappings file <message_flow_name><_nodename>.msgmap. This

file is required only if your message flow contains one or more of the nodes that

must be customized using mappings. You can create this file yourself, or you

can cause it to be created for you by requesting specific actions against a node.

A different file is required for each node in the message flow that uses the

Message Mapping editor.

You can customize the following built-in nodes by specifying how input values

map to output values:

 Node Usage

“DataDelete

node” on page

866

Use this node to delete one or more rows from a database table without creating an output

message.

“DataInsert

node” on page

869

Use this node to insert one or more rows in a database table without creating an output message.

“DataUpdate

node” on page

872

Use this node to update one or more rows in a database table without creating an output message.

“Extract node”

on page 884

Use this node to create a new output message that contains a subset of the contents of the input

message. Use the Extract node only if no database is involved in the map.

The Extract node is deprecated in WebSphere Message Broker Version 6.0. Although message flows

that contain an Extract node remain valid in WebSphere Message Broker Version 6.0, where

possible, redesign your message flows so that any Extract node is replaced by a Mapping node.

“Mapping

node” on page

978

Use this node to construct output messages and populate them with information that is new,

modified from the input message, or taken from a database. You can also use the Mapping node to

update, insert or delete rows in a database table.

“Warehouse

node” on page

1213

Use this node to store all or part of a message in a database table without creating an output

message.

You can use built-in ESQL functions and statements to define message

mappings, and you can use your own ESQL functions.

474 Message Flows

Advanced schema structures

This section contains information about the following subjects:

v “Substitution groups”

v “Wildcards”

v “Derived types”

v “List types”

v “Union types” on page 476

Substitution groups: A substitution group is an XML Schema feature that

provides a means of substituting one element for another in an XML message. The

element that can be substituted is called the head element, and the substitution

group is the list of elements that can be used in its place.

The head element and any mapped substitutions are shown by default in the

Source and Target panes of the Message Mapping editor. The mapped substitutions

are listed beneath the head element. You can show and hide the substituting

elements displayed in the Source and Target panes by selecting Show Substituting

Elements. You create mappings to or from members of substitution groups in the

same way as you would map other elements.

An abstract head element of a substitution group is not displayed and when

substitution is blocked, the substitution group folder is not displayed.

Wildcards: Any mapping that you perform to or from a wildcard results in a

submap call. Specify the wildcard replacement when you choose the parameter of

a submap call.

A wildcard element or attribute can be instantiated only with another element or

attribute. The Message Mapping editor allows only a global element or attribute as

a wildcard replacement.

Derived types: For an element of a given type, the base type and the mapped

derived types are shown by default in the Source and Target panes of the Message

Mapping editor. All attributes and elements of the base and derived types are

listed under each type respectively. You can show and hide the derived types

displayed in the Source and Target panes by selecting Show Derived Types.

You create mappings to or from a derived type and its contents in the same way

that you would map any type or type content. When you map a derived type

element, the Message Mapping editor generates ESQL code with the appropriate

xsi:type attribute.

List types: A list type is a way of rendering a repeating simple value. The

notation is more compact than the notation for a repeating element and provides a

way to have multi-valued attributes.

You map list type attributes or elements in the same way that you would map any

other simple type attribute or element. Mapping between two list type elements is

the same as mapping between any two simple type elements.

To transform between a list type and a non-list type, such as a repeating element,

write an ESQL function, then package the function as a map. The Message

Mapping editor automatically selects this submap as the default transformation for

the list type.

Developing message flows 475

|
|
|
|
|

|
|
|
|
|

Union types: A union type is the same as a union of two or more other simple

types and it allows a value to conform to any one of several different simple types.

Use the Message Mapping editor to create mappings to or from union type

attributes or elements in the same way as you would map atomic simple type

attributes or elements, as demonstrated in the following diagram:

<xsd:simpleType name="zipUnion">

 <xsd:union memberTypes="USState listOfMyIntType"/>

</xsd:simpleType>

<xsd:element name=zip type=zipUnion/>

Creating message mappings

The topics in this section describe how to create message mappings. Most actions

can be achieved either by using the menu bar, or by right-clicking and choosing an

action from a drop-down menu. For consistency, the following topics describe the

menu bar method.

v “Creating a message map file in the Broker Development view”

v “Creating a message map file from a Mapping node” on page 477

v “Configuring message mappings” on page 478

v “Mapping from source: by selection” on page 480

v “Mapping from source: by name” on page 480

v “Mapping a target element from source message elements” on page 481

v “Setting the value of a target element to a constant” on page 483

v “Setting the value of a target element to a WebSphere MQ constant” on page 483

v “Setting the value of a target element using an expression or function” on page

485

v “Creating a BLOB output message using a message map” on page 485

v “Mapping from a BLOB message to an output message” on page 486

v “Deleting a source or target element” on page 486

v “Configuring conditional mappings” on page 487

v “Configuring mappings for repeating elements” on page 488

v “Populating a message map” on page 489

v “Configuring the LocalEnvironment” on page 490

v “Mapping headers and folders” on page 490

v “Adding messages or message components to the source or target” on page 492

v “Adding a database as a source or target” on page 492

v “Modifying databases using message mappings” on page 494

v “Creating and calling submaps and subroutines” on page 502

v “Transforming a SOAP request message” on page 510

v “Editing a default-generated map manually” on page 511

Creating a message map file in the Broker Development view

You can create a message map file for use in your message flows in the Broker

Development view. If you want to add a database to your message map file, you

must have created a database definition for the database.

To create a message map (.msgmap) file in the Broker Development view:

1. From the Broker Application Development perspective, click File → New →

Message Map.

476 Message Flows

|

|

Alternatively, in the Broker Development view, right-click the message flow

project that you want to create the message map in and click New → Message

Map.

The New Message Map wizard opens.

2. Specify the Project, Name and Schema for the message map. The project list is

filtered to only show projects in the active working set.

3. Follow the on-screen instructions to complete the New Message Map wizard:

a. On the Select map kind and its source and target pane, select the type of

map you want to create.

v If you select the option Message map called by a message flow node, a

message map is created that can be accessed from a node. Properties are

associated with any source or target messages, and you can select to

include message headers and the LocalEnvironment with the message

body.

v If you select the option Submap called by another map, a message map

is created that can be referenced from another message map. This is

known as a submap and can contain components of a message body such

as global elements, global attributes, and global types. A submap does not

contain Properties, message headers or the LocalEnvironment.
b. Select the combination of Messages, Message Components or Data Sources

that you want to use as sources for your map from Select map sources and

select the combination of Messages, Message Components or Data Targets

that you want to use as targets for your map from Select map targets.

Messages and data targets are filtered to only show artifacts from the active

working set.

If you cannot find the Messages, Message Components, Data Sources or

Data Targets that you expect, select the Show all resources in workspace

check box.
4. Select Finish to create the new message map. The “Message Mapping editor”

on page 1410 opens with the selected sources and targets.

After you have created a message map file, configure the message mappings. You

must also configure the Mapping routine property on your mapping node to

match the name of your new mapping file.

Creating a message map file from a Mapping node

You can use a Mapping node to create a message map with messages and

databases as both sources and targets.

Before creating a message map file, ensure you complete the following tasks:

1. “Creating a message flow project” on page 215

2. “Creating a message flow” on page 218

3. Define message flow content that includes a Mapping node, see “Defining

message flow content” on page 227.

To create a message map (.msgmap) file from a Mapping node:

1. Open your message flow from the Broker Application Development

perspective.

2. Double-click the Mapping node, or right-click the Mapping node and click

Open Map. The New Message Map for Mapping Node wizard opens.

Developing message flows 477

|
|

|
|
|
|
|
|

|
|
|

3. Select the combination of Messages, Data Sources, or both, that you want to use

as sources for your map from Select map sources. Select the combination of

Messages, Data Targets, or both, that you want to use as targets for your map

from Select map targets.

If you cannot find the Messages, Data Sources or Data Targets that you expect,

select the Show all resources in workspace check box.

4. Click OK to create the new message map. The Message Mapping editor opens

with the selected sources and targets, for more information see “Message

Mapping editor” on page 1410.

After you have created a message map file, you can configure the message

mappings, see “Configuring message mappings.”

Configuring message mappings

Use the Message Mapping editor to configure a message mapping. The editor

provides the ability to set values for:

v Message destination

v Message content

v Message headers

See the “Mapping node” on page 978 topic for more information about how to set

the properties of a Mapping node.

Wizards and dialog boxes are provided for tasks such as adding mappable

elements and working with submaps. Mappings that are created with the Message

Mapping editor are validated and compiled automatically, ready to be added to a

broker archive (bar) file, and for subsequent deployment to WebSphere Message

Broker.

Use the Message Mapping editor to perform the following tasks.

Common tasks:

v “Mapping a target element from source message elements” on page 481

v “Mapping a target element from database tables” on page 498

v “Setting the value of a target element to a constant” on page 483

v “Setting the value of a target element using an expression or function” on page

485

v “Configuring conditional mappings” on page 487

v “Configuring mappings for repeating elements” on page 488

Message destination tasks: You might choose to map a destination so that the

destination can be set dynamically; to do this, set values in

LocalEnvironment.Destination. You can also retrieve information after a message

has been sent, by accessing information in LocalEnvironment.WrittenDestination.

v “Configuring the LocalEnvironment” on page 490

v “Mapping headers and folders” on page 490

Message content tasks:

v “Adding messages or message components to the source or target” on page 492

v “Adding a database as a source or target” on page 492

v “Showing or hiding substituting elements in the Message Mapping editor” on

page 479

478 Message Flows

|
|
|
|

|

|

|
|

v “Showing or hiding derived types in the Message Mapping editor”

Message header tasks:

v “Configuring message headers” on page 490

v “Mapping headers and folders” on page 490

Showing or hiding substituting elements in the Message Mapping editor:

You can use the Show Substituting Elements dialog box to show and hide

substituting elements in the Message Mapping editor.

 The head element and any mapped substitutions are shown by default in the

Message Mapping editor. You can use the Show Substituting Elements dialog to

show and hide the substituting elements in the Source and Target panes of the

Message Mapping editor. To show or hide substituting elements:

1. In either the Source or the Target pane, right click the element that you want to

show or hide the substituted elements for. If an element has substituted

elements, it is displayed as a substitutions folder in the Source or the Target

pane.

2. Click Show Substituting Elements on the context menu. The Show

Substituting Elements dialog box is displayed.

3. In the Show Substituting Elements dialog box, select elements to show them in

the Message Mapping editor, or clear them to hide them in the Message

Mapping editor. You cannot hide any element that is already used in a

mapping.

4. Click OK.

The elements that you have chosen to show or to hide are stored as preferences in

your workspace.

Showing or hiding derived types in the Message Mapping editor:

You can use the Show Derived Types dialog box to show and hide derived types

in the Message Mapping editor.

 For an element of a given type, only the base type and any mapped derived types

are shown in the Message Mapping editor. You can use the Show Derived Types

dialog to show and hide derived types in the Source and Target panes of the

Message Mapping editor. To show or hide derived types in the Message Mapping

editor:

1. In either the Source or the Target pane, right click the element that you want to

show or hide the derived types for. If an element has derived types it is

displayed as a specializations folder in the Source or the Target pane.

2. Click Show Derived Types on the context menu. The Show Derived Types

dialog box is displayed.

3. In the Show Derived Types dialog box, select elements to show them in the

Message Mapping editor, or clear them to hide them in the Message Mapping

editor. You cannot hide any element that is already used in a mapping.

4. Click OK.

The elements that you have chosen to show or to hide are stored as preferences in

your workspace.

Developing message flows 479

|

|

|

|

|

|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|

|
|

|

|
|

|
|
|
|
|

|
|
|

|
|

|
|
|

|

|
|

Mapping from source: by selection

The following steps describe how to map from source using Map from Source, or

using the drag and drop method.

Using Map from Source

1. Select the source and target elements that you want to map by clicking them.

(Ctrl+click to select multiple source or target elements.)

2. Click Map → Map from Source.

There are four possible scenarios that result in mapping by selection using Map

from Source.

v If more than one mappable source element is selected, the selected sources

are mapped to the selected target.

v If more than one mappable target element is selected, the selected source is

mapped to the selected targets.

v If one mappable source and one mappable target are selected, and neither

element has any children, the selected source is mapped to the selected

target.

v If one mappable source and one mappable target are selected, where both the

elements have children and the same type definition, the selected source is

mapped to the selected target.

Using the drag and drop method

Drag the appropriate source element or elements onto the target element or

elements (Ctrl+click to select multiple source or target elements.)

When you use the drag and drop method to map from source, mapping by

selection is always performed. You can use the drag and drop method in the

following scenarios:

v More than one mappable source element is selected. In this case, the selected

sources are mapped to the selected target.

v More than one mappable target element is selected. In this case, the selected

source is mapped to the selected targets.

v One mappable source and one mappable target are selected, and neither element

has any children. In this case, the selected source is mapped to the selected

target.

v The selected source and target elements have the same type definition, or when

the source type is derived from the target type. In this case the entire structure

below the element is copied.

In other scenarios, when a mapping by selection is not possible, the Map by Name

wizard opens to enable a Map by Name mapping to be performed instead.

Mapping from source: by name

The Map by Name wizard is used to map complex types by examining the names

of source and target elements to create mappings if the names match. The Map by

Name wizard can also be used to map database columns. The following steps

describe how to map from source using the Map by Name wizard.

Using the Map from Source wizard

480 Message Flows

1. Select the source and target complex elements, database, schema or table that

you want to map by clicking them.

2. Click Map → Map by Name. The Map by Name wizard opens to allow you to

perform mapping by name.

3. Choose the appropriate option from the Map from Source wizard:

v Map leaves. This option maps only the parts of the structure below the

element that match each other.

v Map immediate children. This option maps only the immediate children of

the source element to the immediate children of the target element that

match each other. This option is available only when the selected source and

target elements have immediate children that are mappable.
4. After selecting the Map leaves or Map immediate children option, specify how

names are matched.

v Map items of same names only. This option matches items of the same

name, and is selected by default. Two names are considered to be the same if

they contain the same alphanumeric characters in the same order. This

comparison is not case sensitive, so FIRST_NAME and FirstName are

considered to be a match.

v Map items of same and similar names. This option matches items with

similar names. Two names are considered to be similar if one name is a

truncation of the other, such as first_name and name, or PART_NUMBER

and partNum. Also, if one name is a contraction of another, such as

November and nvmbr, they are considered to be similar.
5. Verify that the mappings are relevant and edit them manually if necessary. You

might need to delete unwanted mappings and add extra mappings.

The Map by Name wizard opens automatically when you use the drag and drop

method to map from source where the source and target are complex types with

different type definitions or where the source type is not derived from the target

type.

Mapping a target element from source message elements

You can map:

v simple source elements to simple target elements

v source structures to target structures (where the source and target are of the

same type)

v source structures to target structures (where the source and target are of a

different type)

v multiple simple source elements to a simple target element

The following sections describe how to perform mapping for these particular

scenarios using the Message Mapping editor.

Mapping simple source elements to simple target elements

In the following example, the source element called Name does not contain the

same children as the target element called Name:

Developing message flows 481

Source Target

Name

 Title

 First_name

 Middle_name

 Last_name

Name

 Title

 First_names

 Last_name

To map one of the child elements, drag the element from the Source pane onto the

corresponding element in the Target pane; for example, drag the Last_name source

element onto the Last_name target element.

The mapping is represented by a line between the source element and the target

element and an entry for the mapping in Xpath format appears in the Spreadsheet

pane. A triangular icon indicates which elements in the Source and Target panes

have been mapped.

Mapping source structures to target structures (where the source and target are

of the same type)

In the following example, the source element called Name has the same structure

as the target element called Name:

 Source Target

Name

 Title

 First_name

 Middle_name

 Last_name

Name

 Title

 First_name

 Middle_name

 Last_name

To map the entire source structure to the target structure, drag the parent element

(Name) from the Source pane onto the corresponding element (Name) in the Target

pane. All the child elements are mapped.

Mapping source structures to target structures (where the source and target are

of a different type)

In the following example, the source element called Name has a different structure

to the target element called DifferentName:

 Source Target

Name

 Title

 First_name

 Middle_name

 Last_name

DifferentName

 Title

 FirstName

 LastName

To map the entire source structure to the target structure, drag the parent element

(Name) from the Source pane onto the corresponding element (DifferentName) in

the Target pane. The Map By Name wizards opens. Select Map leaves and Map

items of same and similar names to map all child elements in the target. The

source element Middle_name will not be mapped, as there is no target element

with the same or a similar name.

Mapping multiple source elements to a simple target element

In the following example, you want to concatenate the First_name and

Middle_name source elements to form a single target element called First_names:

482 Message Flows

Source Target

Name

 Title

 First_name

 Middle_name

 Last_name

Name

 Title

 First_names

 Last_name

To map multiple source elements to a simple target element, Ctrl+click the

appropriate source elements (First_name and Middle_name) and the target element

(First_names), then click Map → Map from Source. A concatenate function appears

in the Spreadsheet pane; you can edit this function to define how the concatenated

target element looks, for example, by adding a white space between the two source

elements.

To customize the target element (for example, to make the target value equal to the

source value plus one), see “Setting the value of a target element using an

expression or function” on page 485. You cannot map a simple element if one of its

ancestors also has a mapping. For example, you cannot map Properties from

source to target, then map Properties/MessageFormat.

Setting the value of a target element to a constant

Use the Message Mapping editor to set the value of a target element to a constant.

1. In the Target pane, right-click the target element or attribute and click Enter

Expression. If the target element or attribute has a default value, this value is

added to the Edit pane.

2. Enter the required constant in the Edit pane and click Enter. When entering the

constant, observe the following rules:

v Enclose string element values in single quotation marks.

v Enter numeric element values without quotation marks.

v For boolean element values enter 0 for false or 1 for true, without quotation

marks. Alternatively, you can enter the fn:false() function for false, or the

fn:true() function for true.

The Spreadsheet pane is updated with the value that you have defined.

You cannot set a value for a simple element if one of its ancestors also has a

mapping. For example, you cannot map Properties from source to target, then set a

value for Properties/MessageFormat.

You can also set a target element to a WebSphere MQ constant or an ESQL

constant.

Setting the value of a target element to a WebSphere MQ

constant

There are two ways to set the value of a target element to a WebSphere MQ

constant, depending on whether the target element has an entry in the Map Script

column of the Message Mapping editor Spreadsheet pane:

v If the target element has an entry in the Map Script column:

1. In the Spreadsheet pane, select the target element.

2. Enter $mq: followed by the WebSphere MQ constant in the Edit pane.

3. Press Enter.

The Spreadsheet pane is updated with the expression for a WebSphere MQ

constant.

v If the target element does not have an entry in the Map Script column:

Developing message flows 483

1. In the Target pane, right-click the target element and click Enter Expression.

2. Enter $mq: followed by the WebSphere MQ constant in the Edit pane.

3. Press Enter.

The Spreadsheet pane is updated with the expression for a WebSphere MQ

constant.

The following examples demonstrate how to enter a WebSphere MQ constant in

the Edit pane:

$mq:MQ_MSG_HEADER_LENGTH

$mq:MQMD_CURRENT_VERSION

When the map is saved a warning message is displayed if the expression entered

for the WebSphere MQ constant is incorrect, for example the constant is not

recognized. This is an example of the warning message: The target

″$target/purchaseOrder/comment″ is not referencing a valid variable.

Content Assist (Edit → Content Assist) provides a list of the WebSphere MQ

constants available.

1. Select $mq: (MQ constants)

2. Select Edit → Content Assist again to display a list of the available constants.

WebSphere MQ constants that can be used as values for target elements, grouped

by the parameter or field to which they relate, can be found in the WebSphere MQ

Constants book.

Setting the value of a target element to an ESQL constant

There are two ways to set the value of a target element to an ESQL constant,

depending on whether the target element has an entry in the Map Script column of

the Message Mapping editor Spreadsheet pane.

v If the target element has an entry in the Map Script column:

1. In the Spreadsheet pane, select the target element.

2. Enter $esql: followed by the ESQL constant in the Edit pane.

3. Press Enter.

The Spreadsheet pane is updated with the expression for a WebSphere MQ

constant.

v If the target element does not have an entry in the Map Script column:

1. In the Target pane, right-click the target element and click Enter Expression.

2. Enter $esql: followed by the ESQL constant in the Edit pane.

3. Press Enter.

The Spreadsheet pane is updated with the expression for a WebSphere MQ

constant.

The following examples demonstrate how to enter an ESQL constant in the Edit

pane:

$esql:ValidateLocalError

$esql:ParseComplete

When the map is saved a warning message is displayed if the expression entered

for the ESQL constant is incorrect, for example the constant is not recognized. This

is an example of the warning message: The target ″$target/purchaseOrder/
comment″ is not referencing a valid variable.

484 Message Flows

|
|
|
|

|

|

|

|

|
|

|

|

|

|

|
|

|
|

|

|

|
|
|
|

Content Assist (Edit → Content Assist) provides a list of the WebSphere MQ

constants available.

1. Select $esql: (ESQL Constants)

2. Select Edit → Content Assist again to display a list of the available constants.

Setting the value of a target element using an expression or

function

There are two ways to set the value of a target element to an expression,

depending on whether the target element has an entry in the Map Script column of

the Message Mapping editor Spreadsheet pane:

v If the target element has an entry in the Map Script column:

1. In the Spreadsheet pane, select the target element.

2. Enter the required expression in the Edit pane.

3. Press Enter.

The Spreadsheet pane is updated with the value or expression.

v If the target element does not have an entry in the Map Script column:

1. In the Target pane, right-click the target element and click Enter Expression.

If the target element has a default value, this value is added to the Edit pane.

2. Enter the required expression in the Edit pane.

3. Press Enter.

The Spreadsheet pane is updated with the value or expression.

The following examples demonstrate techniques for entering mapping expressions

in the Edit pane.

v If the target element is derived from a source element, drag the source element

or elements onto the Edit pane; for example:

$source/Properties/MessageSet

v Use arithmetic expressions, such as:

$source/Properties/Priority + 1

v Use mapping, Xpath or ESQL function names. Content Assist (Edit → Content

Assist) provides a list of available functions. For example:

esql:upper($source/Properties/ReplyIdentifier)

v You can perform casting in the Edit pane; for example:

xs:string($source/Properties/CodedCharSetId)

You cannot enter an expression for a simple element if one of its ancestors also has

a mapping. For example, you cannot map Properties from source to target, then set

a value of Properties/MessageFormat.

Creating a BLOB output message using a message map

Use the Message Mapping editor to create a bit stream from a message source, and

output it as a BLOB message.

Before you start:

Create a mapping that includes a BLOB message as a target; see “Creating a

message map file from a Mapping node” on page 477.

Take the following steps.

1. Right-click the BLOB message that you want to map in the Target pane, and

select Enter Expression from the menu.

Developing message flows 485

|
|

|

|

|
|
|

|

|
|

|

|
|

2. In the Edit pane, type esql:asbitstream().

3. Drag the source field to the Edit pane, placing it between the parentheses, for

example

esql:asbitstream($source/po:purchaseOrder)

Alternatively, you can use content assist to select the esql:asbitstream

function. In the Edit pane press Ctrl+Space to display a list of available

functions and associated parameters. The asbitstream function is an ESQL

Field function. The function can take other parameters; see “Predefined ESQL

mapping functions” on page 1422.

When you move the cursor out of the Edit pane, or press Enter, the mapping is

displayed between the fields in the Source and Target panes.

Mapping from a BLOB message to an output message

Use the Message Mapping editor to parse a BLOB message.

Before you start:

Create a mapping; see “Creating a message map file from a Mapping node” on

page 477.

Take the following steps.

1. Right-click the element in the target pane, and select Enter Expression from the

menu.

2. In the Edit pane, type msgmap:element-from-bitstream().

3. Drag the BLOB to the Edit pane, placing it between the parentheses, for

example

msgmap:element-from-bitstream($source/BLOB)

Alternatively, you can use content assist to select the msgmap:element-from-
bitstream function. In the Edit pane press Ctrl+Space to display a list of

available functions and associated parameters. The function can take other

parameters; see “Predefined mapping functions” on page 1426. When you

move the cursor out of the Edit pane, or press Enter, the mapping is displayed

between the fields in the Source and Target panes.

Deleting a source or target element

The following steps describe how to delete source and target elements using the

“Message Mapping editor” on page 1410:

v To delete a source path, modify the expression so that it no longer uses the

source value to compute the target.

If this is the last use of the source path, the line linking the source and target is

removed. If the expression no longer has any value, the target becomes

unmapped.

v To delete a target from the Edit pane, click the target and click Delete.

The target structure is preserved if possible.

– If you delete a ″for″ row, clicking Delete removes the single row.

– If you delete a ″condition″ or ″else″ row, clicking Delete:

- removes the entire block if there is at least one other ″condition″ or ″else″

row within the same ″if″ row

486 Message Flows

|

|
|

|

|
|
|
|
|

|
|

|
|

|

|
|

|

|
|

|

|
|

|

|
|
|
|
|
|

- removes the ″if″ row and the ″condition″ or ″else″ row, but preserves the

content of the ″condition″ or ″else″ row when the selected ″condition″ or

″else″ row is the last one within the ″if″ row

Deleting the ″if″ row preserves the content of the last ″condition″ or ″else″

row within the ″if″ row and deletes everything else in the ″if″ row.
v To delete a database source, click the SELECT statement then remove all

references to the source manually. Alternatively, delete the SELECT source in the

Source pane then remove all references to the source manually.

v To delete a database target, delete the INSERT, UPDATE or DELETE statement.

Alternatively, update or delete the statement in the Target pane.

Configuring conditional mappings

To set the value of a target element conditionally in a Mapping node:

1. In the Spreadsheet pane of the Message Mapping editor, select the target

element and click Map → If.

Two rows are added to the Spreadsheet pane, above the target element:

v In the first row, Map Script is set to ‘if’. You cannot enter anything in the

Value column of this row.

v In the second row, Map Script is set to ‘condition’. Its value is an expression

that is evaluated to see whether it is true. If true, the target element is set to

the value specified in its ‘Value’ column. Initially, its Value column is set to

‘fn:true()’, which means that the condition is always met, and the target

element is always set to the Value column.
2. Change the expression in the condition row’s Value column by selecting the

cell, or the condition row, in the Spreadsheet pane and setting the value in the

Edit pane.

Amend the expression in the Edit pane to specify the correct condition for the

statement by performing the following steps:

a. Select any database columns that are pertinent to the condition, and drag

them from the Source pane into the Edit pane.

b. Select any source message elements with values that are pertinent to the

condition, and drag them from the Source pane into the Edit pane.

c. Open Content Assist by clicking Edit → Content Assist and select the

functions to be applied to the condition.
3. Add further conditions by selecting the condition row in the Spreadsheet pane,

and clicking Map → Condition.

Two rows are added to Spreadsheet pane, below the target element:

v In the first row, Map Script is set to ‘condition’. Process this as described in

Step 2.

v In the second row, Map Script is set to the target element. Its Value cell is

initially blank. Set this value as described in “Setting the value of a target

element to a constant” on page 483, and “Setting the value of a target

element using an expression or function” on page 485.
4. To set the value of a target element when the ‘If’ condition is not true, select

the condition for the target element in the Spreadsheet pane, and click Map →

Else.

Two rows are added to Spreadsheet pane, below the target element:

v In the first row, Map Script is set to ‘else’. You cannot enter anything in the

Value column of this row.

Developing message flows 487

v In the second row, Map Script is set to the target element. Its value is initially

blank. Set this value as described in “Setting the value of a target element to

a constant” on page 483, and “Setting the value of a target element using an

expression or function” on page 485.

Configuring mappings for repeating elements

To configure the Mapping node to process repeating elements, use the ‘For’ option

in the Message Mapping editor Spreadsheet pane. The following combinations of

repeating elements are possible:

v repeating source and non-repeating target

v non-repeating source and repeating target

v repeating source and repeating target

By default, if the source is a database, it is processed as a repeating source.

Configuring a repeating source and a non-repeating target:

To map a repeating source element to a non-repeating target element, drag

elements between the Message Mapping editor Source and Target panes. The

following items appear in the Spreadsheet pane:

v A ‘for’ row with Value set to the repeating source element.

v An ‘if’ row.

v A ‘condition’ row with Value set to msgmap:occurrence($source/...) = 1.

v A row with Map Script set to the target field and Value set to the source field.

The first occurrence of the source field is mapped to the target field. The ‘for’ row

specifies that a loop is to be iterated for the specified repeating element. The ‘if’

and ‘condition’ rows restrict the logic to a single occurrence of the repeating

element (see “Configuring conditional mappings” on page 487 for more

information on conditional logic in a mapping node).

1. To map an occurrence other than the first, change the expression in the

‘condition’ row to msgmap:occurrence($source/...) = n, where n is the

occurrence that you want to map.

If the repeating source field is within one or more repeating structures, a

hierarchy of ‘for’, ‘if’, and ‘condition’ rows is placed in the Spreadsheet pane,

one for each level of repetition.

2. If the source field contains a numeric data type, mapping all occurrences of a

repeating source field to a non-repeating target results in the sum of all the

source elements. Perform this mapping by selecting the source element and

target element and clicking Map → Accumulate.

This action sets the following value in the Spreadsheet pane for the target

element:

fn:sum($source/...)

The result of the accumulate action is a numeric value. If your target has a

different data type, then you must cast the result to the appropriate type for the

selected target. For example, if your target is xs:string type, you must alter the

results of the accumulate action from fn:sum($source/x/y/z) to

xs:string(fn:sum($source/x/y/z)), in order to cast the result to the correct

data type for your target.

You cannot map different occurrences of a repeating source element to different

non-repeating target elements.

488 Message Flows

Configuring a non-repeating source and a repeating target:

To map a non-repeating source element to a repeating target element, drag

elements between the Message Mapping editor Source and Target panes. The first

occurrence of the target element is set to the value of the source element.

To map to an occurrence other than the first, complete the following steps:

1. If the target element is not shown in the Spreadsheet pane, right-click its lowest

ancestor row, then click Populate. Repeat this action until the target element is

shown.

2. Right-click the target element and click Insert After or Insert Before to select

the location to insert the repeating target elements. The Insert After or Insert

Before options are disabled if there is nothing valid to be inserted at the

selected location. Selecting either of these opens the Insert Statement wizard.

3. Select the element to insert from the list of valid items.

4. Enter the number of instances to be added and click OK. The number of

instances to be added must be less than or equal to the maximum occurrence

specified for the selected element.

The specified number of instances of the repeating target element are added to the

Spreadsheet pane. The inserted statements do not have a mapping expression and

any children are not displayed. Right-click each element, then click Populate to

display any child elements.

By repeating the Insert After and Insert Before action, it is possible to insert more

repeating elements in the target than the maximum occurrence specifies. Verify that

the number of repeating elements is valid, and delete any unwanted entries.

Configuring a repeating source and a repeating target:

To map a repeating source element to a repeating target element drag elements

between the Message Mapping editor Source and Target panes. The following

items appear in the Spreadsheet pane:

v A ‘for’ row with Value set to the repeating source element.

v A row with Map Script set to the target field and Value set to the source field.

All occurrences of the source element are mapped to the respective occurrences of

the target element. You can map repeating source structures to repeating target

structures if the source and target are of the same complex type.

Populating a message map

You can use the Populate wizard to add elements from the Target pane to the

Spreadsheet pane. The Populate wizard creates child structures for the selected

parent structure. When you add a message target to a message map, $target in the

Spreadsheet pane is populated by default with Properties and the message body

root. The Properties fields MessageSet, MessageType and MessageFormat, are

added together with their default values, unless the selected message is in the

BLOB domain. Other message elements and their children can be added to the

Spreadsheet pane without creating mappings by using the Populate wizard. The

following steps show how to populate the Spreadsheet pane with other message

elements using the Populate wizard:

Using the Populate wizard

Developing message flows 489

|
|

1. Right-click a parent element in the Spreadsheet pane and click Populate. The

Populate wizard is displayed.

2. Select the items you wish to create mappings for. Items required in the target

message are selected by default. The selected items are added to the

Spreadsheet pane.

3. Repeat Populate to add further child elements to the Spreadsheet pane.

If any target elements are missing warning messages are displayed in the Message

Mapping Editor. These warning messages indicate the name and expected position

of the missing elements. You can used the Populate wizard to add the missing

elements.

You can also use the Populate wizard to add target elements to the Spreadsheet

pane when there are existing mappings. Any existing mappings are not altered by

the wizard.

If the target map is a submap the Spreadsheet pane is populated by default with

the selected element or attribute root. You can use the Populate wizard in the

submap to add any child elements to the Spreadsheet pane in the same way.

Configuring the LocalEnvironment

You can set values in the LocalEnvironment in the same way as setting values in

other elements of a message. Add the LocalEnvironment to your message map

using the Add or Remove Headers and Folders dialog as described in “Mapping

headers and folders.” If you set any values in the target LocalEnvironment, set the

mapping mode property for the Mapping node to a value that contains

LocalEnvironment. To do this, select the mapping node in your message flow and

click Properties → Basic → Mapping Mode.

You cannot map Local Environment objects that are not listed.

Configuring message headers

You can set values for headers in the same way as setting values in other elements

of a message.

Add the appropriate headers to your message map using the Add or Remove

Headers and Folders dialog as described in “Mapping headers and folders.” If you

set any values in the target LocalEnvironment, set the Mapping mode property for

the Mapping node to a value that contains LocalEnvironment. To do this, select the

mapping node in your message flow and click Properties → Basic → Mapping

Mode.

You cannot map headers that are not listed.

Mapping headers and folders

The following types of message headers and folders can be included for source

and target messages in a message map (note that a submap does not include

message headers):

v LocalEnvironment

v Properties

v MQ Headers

v HTTP Headers

v JMS Transport Header

490 Message Flows

|
|
|
|
|
|

v Email Headers

If you choose not to map message headers or the LocalEnvironment explicitly in

your message map, then the output message is produced with the same message

headers as the input message. When you Populate the message map, the Properties

folder for the source and target are displayed in the message map, with

MessageSet and MessageType initially set based on the target message.

MessageFormat is set to the default wire format of the message set if the parser

domain is MRM. The other properties are blank initially, and the message headers

are copied from the input message.

Alternatively, if you choose to map any message headers or the LocalEnvironment

in your message map, then no message headers are copied from the input

message. You must add mappings for these headers to ensure that the target

message contains appropriate headers to make a valid output message.

If your target message contains an MQRFH2 header, you must select from either

the MQRFH2 or MQRFH2C parser in the Add or Remove Headers and Folders

dialog. For more information about the MQRFH2 and MQRFH2C parsers, see “The

MQRFH2 and MQRFH2C parsers” on page 1407.

Before mapping headers and folders, ensure you do the following:

1. Create a message flow project

2. Create a message flow

3. Define message flow content

4. Create a message map file from the navigator or create a message map from a

node.

To add message headers or other folders to a message map:

1. Right-click your message map in the Broker Development view and select

Open or right-click your mapping node and select Open Map to open the

Message Mapping editor.

2. Right-click $source in the Source pane and select Add or Remove Headers and

Folders to add message headers or other folders to the source message. The

Add or Remove Headers and Folders dialog opens.

3. Ensure that Selected headers and other folders is selected. If No folders (map

body element only) is selected your map is a submap, and can not have

headers associated with it. You can change the submap to a message map by

selecting Selected headers and other folders.

4. Select the headers that you want to map from the list. If you want to map MQ

Headers or HTTP Headers, you must select individual headers by expanding

the list. If you are using MQ Headers you must include the MQMD, therefore

this is automatically selected for you.

5. Click OK to add the selected message headers or folders to the message map.

6. Right-click $target in the Target pane and select Add or Remove Headers and

Folders to add message headers or other folders to the output message.

7. Repeat step 3 to 5 to add the headers and folders that you require to the target

message.

8. Configure the message header and folder mappings in the same way as other

mappings.

You can use Add or Remove Headers and Folders to remove message headers or

the LocalEnvironment folder. Right-click on either the $source or the $target to

Developing message flows 491

|

open the Select Message Headers dialog. Clear the headers or other folders to

remove them from the message map. Removing a message header or other folder

from the message map removes any associated mappings that you have created.

You can remove the Properties folder from the message map, but note that all

built-in parsers require some values in the Properties folder for the output

message.

You can map multiple instances of a header by right clicking on the header in the

Message Mapping editor Spreadsheet pane and selecting Insert Before or Insert

After . Select the header from the Insert Statement dialog.

Adding messages or message components to the source or

target

You can add additional messages or message components as sources or targets in

your message map. To add a message or message component to a source or target:

1. From the Message Mapping editor, click Map → Add Sources and Targets

The Add Map Sources and Targets wizard opens.

Alternatively, right-click in the Source pane and click Add Sources or

right-click in the Target pane and click Add Targets.

2. Select messages or message components from the message sets that are in your

Message Broker Toolkit workspace.

If you cannot find the messages or message components that you expect, select

the Show all resources in workspace check box.

If one does not already exist, a project reference is created from your message

flow project to the message set project that contains the selected messages or

message components.

You can also add sources and targets by dragging the resources from the Broker

Development view in the Broker Application Development perspective onto the

source or target pane of your message map. Select resources under Messages or

Elements and Attributes or Types from your Message Definitions and drag them

onto the source or target pane. If you add a message to the message map,

Properties are also added. If you add an element, attribute or type to the to the

message map a global element for a submap is created. Your message map must

use messages, global elements or global types, but not a combination of more than

one type.

A Mapping node can have only one source message, but can have several target

messages. Therefore, you cannot add a source message if one already exists.

Adding a database as a source or target

You can add a database as a source and database tables as targets to message maps

that support database mappings. You must have created a database definition for

your database before you can add it or the associated tables to a message map.

There are a number of different ways to add database sources and targets:

v You can specify the databases and database tables you want to use in the New

Message Map wizard when you create a new message map.

1. Create a new message map file in the Broker Application Development

perspective using File → New → Message Map or by right-clicking on your

mapping node and selecting Open Map.

2. From Select map sources, select the Database Sources for your message map.

492 Message Flows

3. From Select map targets, select the database tables to use as targets in your

message map. If you are not creating a message map from a DataDelete,

DataInsert or DataUpdate node, expand the relevant database operation and

select from the list of tables. You can select from the following database

operations:

– Table Inserts

– Table Updates

– Table Deletes

If you cannot find the Data Sources or Data Targets that you expect, select

the Show all resources in workspace check box.
v In an existing message map a database can be added as a source and database

tables added as a target using Add Sources and Targets.

1. From the Message Mapping editor, click Map → Add Sources and Targets.

Alternatively, right-click in the Source pane and click Add Sources or

right-click in the Target pane and click Add Targets.

2. From Select map sources, select the Database Sources for your message map.

3. From Data Targets, in Select map targets, select the database tables to use as

targets in your message map. If you are not creating a message map from a

DataDelete, DataInsert or DataUpdate node, expand the relevant database

operation and select from the list of tables. You can select from the following

database operations:

– Table Inserts

– Table Updates

– Table Deletes

If you cannot find the Data Sources or Data Targets that you expect, select

the Show all resources in workspace check box.
v Alternatively, in an existing message map, a database can be added as a source

using Select Data Source

1. Select the location to add a database table source to your mapping in the

Spreadsheet pane. For example, select $target.

2. Click Map → Select Data Source. Alternatively, right-click in the Spreadsheet

pane and click Select Data Source. The Select Database As Mapping Source

wizard opens.

3. Select your database from the list. If you cannot find the Data Sources or

Data Targets that you expect, select the Show all resources in workspace

check box.
v You can also add database sources and database table targets to your message

by dragging them from the Broker Development view in the Broker Application

Development perspective onto your message map.

1. From the Broker Application Development perspective, expand your

Database Connections category in the Broker Development view.

2. Open your message map.

3. To add a database as a source in your message map, drag your database file

from Database Connections onto the Source pane. The database file is called

<connectionname_database>.dbxmi. A $db:select is added to the source pane

of your message map.

4. To add a database table as a target in your message map, drag your database

table file from Database Connections onto the Target pane. The database

table file is called <connectionname_schema_table>.tblxmi. A $db:insert is

added to the target pane of your message map. If you want to perform a

Developing message flows 493

database operation other than insert on your database table, you must

change the database operation of the message map.

When the database has been added to the source:

v The Source pane contains a $db:select entry.

v The Spreadsheet pane contains a $db:select entry.

When the database table has been added as a target:

v The Target pane and Spreadsheet pane contain one of the following:

– a $db:insert entry

– a $db:update entry

– a $db:delete entry

You can change the database operation on a selected table by using the Change

Database Operation dialog.

You cannot add a database as a source or a target to an Extract node.

Modifying databases using message mappings

This following topics describe how to work with databases using message

mappings:

v “Adding database definitions to the Message Broker Toolkit”

v “Creating a message map file from a DataInsert node” on page 495

v “Creating a message map file from a DataUpdate node” on page 496

v “Creating a message map file from a DataDelete node” on page 496

v “Change database operation of a message map” on page 497

v “Mapping from a message and database” on page 497

v “Mapping a target element from database tables” on page 498

v “Deleting data from a database with a mapping node” on page 500

v “Creating a database to database mapping” on page 501

v “Adding a database as a source or target” on page 492

Adding database definitions to the Message Broker Toolkit:

Use the New Database Definition File wizard to add database definitions to the

Message Broker Toolkit.

You must have a database definition defined in the Message Broker Toolkit to

create database mappings. Database definitions are also used by other nodes such

as the Compute node to validate references to database sources and tables.

Database definitions are stored in a data design project. You must associate the

data design project with any message flow projects that you want to use the

database definitions with. The following steps describe how to add a database

definition to the Message Broker Toolkit:

 1. Switch to the Broker Application Development perspective.

 2. Click File → New → Database Definition. The New Database Definition File

wizard is displayed.

 3. Select an existing data design project or click New to create a new data design

project.

494 Message Flows

4. Select the database type and version that you want to connect to from the

Database and Version list. Ensure that you select a supported database from

the list. For a list of supported databases, see Supported databases.

 5. Click Next.

 6. Either select to create a new database connection or select a connection to use

from the list of existing connections. If you select to use an existing

connection, the existing database definition is overwritten.

 7. Click Next.

 8. If you selected to create a new connection:

a. Optional: You can enter a custom value for the Connection Name if you

clear the Use default naming convention check box.

b. Enter values for the Connection to the database, for example, Database

name, Host name and Port number.

c. Enter values for the User ID and Password to connect to the database. You

can use the Test Connection button to verify the settings you have selected

for your database. The default Port number for a DB2 database is 50000. If

the connection fails, you can try to enter other values such as 50001, 50002

and so on, for the Port number, and then test the connection again.

d. Click Next. An error is generated if any of the connection details are

wrong. If you specify a Database that already has a database definition in

the data design project, click Yes in the Confirm file overwrite window to

overwrite the existing database definition.
 9. Alternatively, if you selected to use an existing connection:

a. Click Yes in the Confirm file overwrite window to overwrite the existing

database definition.

b. Enter values for the User ID and Password to connect to the database and

then Click Next.
10. Select one or more database schemas from the list and click Next.

11. Click Finish.

12. Add the data design project as a reference to the message flow project:

a. Right-click on the message flow project and click Properties.

b. Click Project References, and select the data design project from the list to

add as a referenced project.

c. Click OK.

A new database definition file is added to your data design project. The database

definition file name has the following format:<database>.dbm. Database definition

files are associated with the Data Project Explorer view and the Database Explorer

view. Tools are available in these views for working with your databases.

Database definition files in the Message Broker Toolkit are not automatically

updated. If a change is made to your database you must recreate the database

definition files.

Creating a message map file from a DataInsert node:

You can use a DataInsert node to create mappings to insert new data into a

database from a message, another database or both.

 Before creating a message map file, ensure you do the following:

1. Create a message flow project

Developing message flows 495

2. Create a message flow

3. Define message flow content that includes a DataInsert node

4. Create a database definition

To create a message map (.msgmap) file from a DataInsert node:

1. From the Broker Application Development perspective, open your message

flow, right-click your DataInsert node, and click Open Map. The New Message

Map for Data Insert Node wizard opens.

2. Select the combination of Messages, Data Sources or both that you want to use

as sources for your map from Select map sources.

If you cannot find the Messages or Data Sources that you expect, select the

Show all resources in workspace check box.

3. From the Select map targets pane, select the tables under Table Inserts into

which you want to insert new data. The tables that you select are added to the

new message map as targets.

4. Select OK to create the new message map. The “Message Mapping editor” on

page 1410 opens with the selected sources and targets.

After you have created a message map file, you can now configure the message

mappings.

Creating a message map file from a DataUpdate node:

You can use a DataUpdate node to create mappings to update existing data in a

database from a message, another database or both.

 Before creating a message map file, ensure you do the following:

1. Create a message flow project

2. Create a message flow

3. Define message flow content that includes a DataUpdate node

4. Create a database definition

To create a message map (.msgmap) file from a DataUpdate node:

1. From the Broker Application Development perspective, open your message

flow, right-click your DataUpdate node, and click Open Map. The New

Message Map for Data Update Node wizard opens.

2. Select the combination of Messages, Data Sources or both that you want to use

as sources for your map from Select map sources.

If you cannot find the Messages or Data Sources that you expect, select the

Show all resources in workspace check box.

3. From the Select map targets pane, select the tables under Table Updates in

which you want to update data. The tables that you select are added to the

new message map as targets.

4. Select OK to create the new message map. The “Message Mapping editor” on

page 1410 opens with the selected sources and targets.

After you have created a message map file, you can now configure the message

mappings.

Creating a message map file from a DataDelete node:

496 Message Flows

You can use a DataDelete node to create mappings to delete data from a database

based on information from an input message, another database or both.

 Before creating a message map file, ensure you do the following:

1. Create a message flow project

2. Create a message flow

3. Define message flow content that includes a DataDelete node

4. Create a database definition

To create a message map (.msgmap) file from a DataDelete node:

1. From the Broker Application Development perspective, open your message

flow, right-click your DataDelete node, and click Open Map. The New Message

Map for Data Delete Node wizard opens.

2. Select the combination of Messages, Data Sources or both that you want to use

as sources for your map from Select map sources.

If you cannot find the Messages or Data Sources that you expect, select the

Show all resources in workspace check box.

3. From the Select map targets pane, select the tables under Table Deletes from

which you want to delete data. The tables that you select are added to the new

message map as targets.

4. Select OK to create the new message map. The “Message Mapping editor” on

page 1410 opens with the selected sources and targets.

After you have created a message map file, you can now configure the message

mappings.

Change database operation of a message map:

If you have created a message map that performs a database operation such as

data insert, data update or data delete on a database table you might want to

change the database operation that the map performs. You might also have created

a database mapping by dragging a table from the Broker Development view onto a

message map and want to change the default insert operation to another database

operation.

To change the database operation of a database table in your message map:

1. From the Broker Application Development perspective, open your message

map.

2. Right-click on the target database table in the target pane and click Change

Database Operation. The Select Database Operation dialog is displayed.

3. Select the database operation you want to perform on the selected table:

v Insert

v Update

v Delete
4. Click OK to change the database operation on the selected table.

If you change the database operation of your message map to or from data delete

you must recreate any mappings to your target database columns.

Mapping from a message and database:

Developing message flows 497

You can create a message map that uses both a message and a database as a

source.

 Before creating a message map file, ensure you do the following:

1. Create a message flow project

2. Create a message flow

3. Define message flow content

4. Create database definitions

The following instructions describe how to specify a message and a database as the

data source.

1. Right-click a node that supports mapping, such as the Mapping node, and click

Open Map.

2. Follow the on-screen instructions to complete the New Message Map wizard:

a. Select the combination of Messages and Data Sources that you want to use

as sources for your message map from Select map sources.

b. Select the combination of Messages, Data Targets or both that you want to

use as targets for your map from Select map targets.
3. Perform mapping as usual from the source message.

4. Follow the guidance in “Mapping a target element from database tables” to

create the mappings from the source database to the target message or database

table.

Mapping a target element from database tables:

To map a target element from a database table, set up the Mapping node to:

v retrieve the relevant rows from the database

v populate the message target elements with values from database

There are a number of ways to add a database as a source for a mapping, as

described in “Adding a database as a source or target” on page 492. After you

have added a database to the mapping, the Spreadsheet pane contains a $db:select

entry in the Map Script column. By default, its value is fn:true(), which means that

all rows are retrieved from the database table. In database SQL, you would restrict

the number of rows by adding a WHERE clause to a database call. In the Mapping

node the equivalent method of restricting the number of selected rows is to use a

$db:select expression.

These steps show the equivalent method of restricting the number of rows selected

in a Mapping node:

1. In the Spreadsheet pane, click the $db:select row. This causes fn:true() to be put

into the Edit pane.

2. Edit the expression in the Edit pane to specify the correct condition for the

database call. To help you achieve this, you can:

a. Select any database columns that are relevant to the rows that are retrieved,

and drag them from the Source pane to the Edit pane. These are the

database column names that are used in an SQL WHERE clause.

b. Select any source message elements with values that are relevant to the

rows that are retrieved, and drag them from the Source pane into the Edit

pane. These are values against which the selected database columns can be

matched.

c. Open Content Assist by clicking Edit → Content Assist.

498 Message Flows

d. From Content Assist, select the functions to apply to message elements in

the database call.

Here is an example of a $db:select entry where a database column is matched

against a constant or a field from an input message:

$db:select_1.BROKER50.JDOE.RESOLVEASSESSOR.ASSESSORTYPE = ’WBI’ or $db:select_1.BROKER50.JDOE.

RESOLVEASSESSOR.ASSESSORTYPE = $source/tns:msg_tagIA81CONF/AssessorType

A $db:select entry retrieves all qualifying rows, so it is possible that more than one

row is retrieved. By default, the selection is treated as repeating, which is indicated

by the ‘for’ row below $db:select in the Spreadsheet pane.

After you have configured the $db:select, populate the target message from the

database by dragging the database column from the Source Pane to the message

element in the Target pane. The mapping is indicated by a line between the

database column in the Source pane and the element in the Target pane. An entry

for this map in Xpath format also appears in the Spreadsheet pane. Triangular

icons appear in the Source and Target panes next to objects that have been

mapped.

Using database selects

By default a $db:select entry is accompanied by a ’for’ row that iterates over the

select result set. Ensure that your ’for’ row is in the correct position for your

mapping. The behavior of the map is determined by the position of the ’for’ row in

the Spreadsheet pane. For example, if the results of the $db:select statement

matched 5 rows in the database and the ’for’ row is located above the $target entry

in the Spreadsheet pane, then 5 complete messages are output by the mapping

node. If the ’for’ row is positioned within the message body, then one message is

generated with 5 repeating elements in the message body.

A mapping can contain multiple ’for’ rows associated with a $db:select entry that

perform a single database select and iterate over the results multiple times. For

example, multiple ’for’ rows can be used in conditional mappings, where an

individual ’for’ row is used with a ’condition’ or an ’else’.

A ’for’ row is not always required and can be deleted in the following

circumstances:

v If the database select returns only one row

v If you use an aggregate Xpath function on the select results

For example: fn:sum or fn:count.

Any $db:select expression must be within the scope of the $db:select entry in the

Spreadsheet pane, meaning that it must be a descendant of the select statement. If

a $db:select expression is out of scope the Message Mapping editor moves the

$db:select entry to a position where the $db:select expression is in scope. Ensure

that the position of the $db:select entry is correct for your messsage mapping.

Database table join

Database table join is supported for tables within the same database. For example,

consider the following two tables where PRODUCT_ID and PART_NUMBER

match:

Table Column Row 1 Row 2 Row 3 Row 4

ORDER PRODUCT_ID 456 456 345 123

 QUANTITY 100 200 300 400

Developing message flows 499

PRODUCT PART_NUMBER 123 456 789 012

 PART_NAME pen pencil paperclip glue

 PRICE 0.25 0.15 0.02 0.99

A $db:select expression with the following syntax joins the tables:

$db:select.MY_DB.SCHEMA1.ORDER.PRODUCT_ID=$db:select.MY_DB.SCHEMA2.PRODUCRT.PART_NUMBER

The $db:select expression in the example generates the following result set:

 Row 1 Row 2 Row 3

PRODUCT_ID 456 456 123

QUANTITY 100 200 400

PART_NUMBER 456 456 123

PART_NAME pencil pencil pen

PRICE 0.15 0.15 0.25

You can then use the ’for’ row to iterate through the results set in the same way as

results from a single table.

Deleting data from a database with a mapping node:

You can use a DataDelete or a Mapping node to delete data from a database, based

on information from an input message, another database or both.

 You must do the following before you can delete data from a database using a

mapping node:

1. Create a message flow project

2. Create a message flow

3. Define message flow content that includes a DataDelete or a Mapping node

4. Create a message map file from a DataDelete node or Create a message map

file from a Mapping node

You cannot create mappings to delete data from a database by dragging from the

source to the target. Instead, you select rows to delete based on the content of the

source. You can use an expression to match the content of the source to the target

field, for example, use the following instructions to delete all rows in the database

that match the content of a field from the input message:

1. Right-click your DataDelete or Mapping node, and click Open Map. The

“Message Mapping editor” on page 1410 opens with your selected sources and

targets.

2. Select $db:delete in the Spreadsheet pane.

3. Drag the appropriate source element from the message in the Source pane to

the Edit pane. For example, $source/shipTo/accNum.

4. Drag the appropriate target database field from the Target pane to the Edit

pane. For example, $db:delete.SAMPLE.MYSCHEMA.CUSTOMER.CONTACT_ID.

5. Change the expression in the Edit pane to set the target field to be equal to the

source element. For example, $source/shipTo/accNum =

$db:delete.SAMPLE.MYSCHEMA.CUSTOMER.CONTACT_ID.

You can use conditional mappings such as If statements to create more complex

mappings that define which data to delete from a database. You can also use

conditional statements in a Mapping node to perform different database operations

depending on the content of the input message. For example, you can add a Table

Inserts target, a Table Updates target and a Table Deletes target to a message map,

and then use conditional statements to define which of the operations to perform.

500 Message Flows

Creating a database to database mapping:

You can create a message map that uses a database as both the source and target.

The contents of the source database can be used to interact with the same or a

different database table. The message map can also include a message as a source,

but a message is not required. You can, for example, use a timer node to schedule

regular updates to a database.

 Before creating a message map file with a database to database mapping, ensure

you do the following:

1. Create a message flow project

2. Create a message flow

3. Define message flow content

4. Create database definitions

To create a database to database mapping:

1. Right-click a node that supports database mapping in your flow, such as the

Mapping node, and click Open Map. The New Message Map wizard opens for

your node.

2. Select the Data Sources and any Messages that you want to use as sources for

your map from Select map sources.

If you cannot find the Messages or Data Sources that you expect, select the

Show all resources in workspace check box.

3. From Select map targets expand the database operation that you want to

perform. You can select from the following database operations:

v Table Inserts

v Table Updates

v Table Deletes
4. Select the database tables that you want to map.

You can create a message map that performs a combination of database inserts,

updates or deletes by selecting database tables from different database

operations. For example, if you want to create a conditional mapping that

updates data in a database if it already exists, but inserts the data if it does not

already exist in the database, then you can select the same database table under

Table Inserts and Table Updates.

5. Select OK to create the new message map. The “Message Mapping editor” on

page 1410 opens with the selected sources and targets.

After you have created a message map file, you can now configure the message

mappings.

Storing a BLOB message in a database table using a message map:

Use the Message Mapping editor to create a bit stream from a BLOB message, and

store it in a database table.

 Before you start:

Create a mapping; see “Creating a message map file from a Mapping node” on

page 477.

Take the following steps.

Developing message flows 501

|

|

|
|

|

|
|

|

1. In the Target pane, right-click the column that will store the bitstream, and

select Enter Expression from the menu.

2. In the Edit pane, type esql:asbitstream(). You can use content assist;

asbitstream is a Field function.

3. Drag the source field, for example $source/po:purchaseOrder, to the Edit pane,

placing it between the parentheses. The entry in the Edit pane looks like this:

esql:asbitstream($source/po:purchaseOrder, ’purchaseOrder’,

’PurchaseOrder’, ’XML1’, 0, 0, $esql:FolderBitStream)

Alternatively, you can use content assist to select the esql:asbitstream

function. In the Edit pane press Ctrl+Space to display a list of available

functions and associated parameters. The asbitstream function is an ESQL

Field function. The function can take other parameters; see “Predefined ESQL

mapping functions” on page 1422.

When you move the cursor out of the Edit pane, or press Enter, the mapping is

displayed between the fields in the Source and Target panes.

Mapping from a BLOB field in a database table to an output message:

Use the Message Mapping editor to parse a bit stream from a field in a database

table into a folder in a target message.

 Before you start:

Create a mapping; see “Creating a message map file from a Mapping node” on

page 477.

Take the following steps.

1. Right-click the element in the target pane, and select Enter Expression from the

menu.

2. In the Edit pane, type msgmap:element-from-bitstream().

3. Drag the field from the database table to the Edit pane, placing it between the

parentheses, for example:

msgmap:element-from-bitstream($db:select.RESERVDB.USER.XMLFLIGHTTB.FLIGHTDATE)

Alternatively, you can use content assist to select the msgmap:element-from-
bitstream function. In the Edit pane press Ctrl+Space to display a list of

available functions and associated parameters. The function can take other

parameters; see “Predefined mapping functions” on page 1426. For example:

msgmap:element-from-bitstream($db:select.RESERVDB.USER.XMLFLIGHTTB.FLIGHTDATE,

’ReserveMessageSet’, ’FlightMessage’, ’XML1’, 0, 0, $esql:FolderBitStream)

When you move the cursor out of the Edit pane, or press Enter, the mapping is

displayed between the fields in the Source and Target panes.

Creating and calling submaps and subroutines

This following topics describe how to work with submaps and ESQL subroutines:

v “Creating a new submap” on page 503

v “Creating a new submap for a wildcard source” on page 504

v “Creating a submap to modify a database” on page 504

v “Converting a message map to a submap” on page 505

v “Converting an inline mapping to a submap” on page 506

v “Calling a submap” on page 506

502 Message Flows

|
|

|
|

|
|

|
|

|
|
|
|
|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|

|
|
|
|

|
|

|
|

v “Calling a submap from ESQL” on page 507

v “Calling an ESQL routine” on page 508

v “Creating and calling your own user-defined ESQL routine” on page 508

Creating a new submap:

This topic describes how to create a new submap. There are three ways to create a

new submap:

v Using File → New → Message Map

1. From the Broker Application Development perspective, click File → New →

Message Map. The New Message Map wizard opens.

2. Specify the project name and the name for the new submap.

3. Specify that the new map is a submap by selecting the option: Submap

called by another map.

4. Select the combination of Message Components or Data Sources that you

want to use as sources for your map from Select map sources and select the

combination of Message Components or Data Targets that you want to use as

targets for your map from Select map targets.

If you cannot find the Message Components, Data Sources or Data Targets

that you expect, select the Show all resources in workspace check box.

5. Click Finish.

The new submap opens in the Message Mapping editor.

v Using Create new submap

1. From the Broker Application Development perspective, open the message

map for the required node.

2. In the Source pane, expand the tree and select the source.

3. In the Target pane, expand the tree and select the target.

4. Right-click either the source or target, then click Create New Submap.

The new submap opens in the Message Mapping editor. If the original map file

was called simple_mapping.msgmap, the new submap is called

simple_mapping_submap0.msgmap.

v Using Convert to submap

1. From the Broker Application Development perspective, open the message

map.

2. Select one of the following types of submap to create a new submap from an

inline mapping:

– Element statement that maps a global element or an element of global

type

– Attribute statement that maps either a global attribute or an attribute of a

global type

– Database insert statement

– Database update statement

– Database delete statement
3. Right-click the mapping statement that you want to convert to a submap or

database submap in the Script pane, and click Convert to submap. A new

submap is created and a statement is added to the original message map to

call the new submap.

The new submap opens in the Message Mapping editor. If the original map file

was called simple_mapping.msgmap, the new submap is called

simple_mapping_submap0.msgmap.

Developing message flows 503

Creating a new submap for a wildcard source:

This topic describes how to map a wildcard value in the source to a wildcard

value in the target. You might expect a wild card in a Mapping node for example,

when you are using a SOAP message (where the Body element contains a

wildcard). This type of wildcard represents the payload of the message, where the

payload is a message that is defined elsewhere in the message set. The submap can

involve from 0 to n source wildcards and 0 or 1 target wildcards.

The “Message Mapping editor” on page 1410 shows three kinds of wildcard, all of

which allow you to create a submap:

Mapper construct Message model construct

Choose concrete item for

submap

Wildcard element Wildcard element Global element

Wildcard attribute Wildcard attribute Global attribute

Message with Wildcard

Message child

Group with Composition of

Message and Content

Validation of Open or Open

Defined

Message

 1. Switch to the Broker Application Development perspective.

 2. Open the message map for the required node.

 3. In the Source pane, expand the tree and select the source wildcard.

 4. In the Target pane, expand the tree and select the target wildcard.

 5. Right-click either the source or the target wildcard, and click Create new

submap. The Wildcard Specification wizard opens.

 6. From the Wildcard Specification wizard, select the concrete item that will

replace the source wildcard, according to the values shown in the table at the

beginning of this topic.

 7. Click Next.

 8. From the Wildcard Specification wizard, select the concrete item that will

replace the target wildcard, according to the values shown in the table at the

beginning of this topic.

 9. Click Finish.

10. Click OK. The submap opens in the Message Mapping editor.

11. From the submap, map the source message elements to the target message

elements as required.

12. Click OK.

Creating a submap to modify a database:

Use the Create New Database Submap wizard to create a submap to modify a

database.

You must have an existing message map from which to call the submap. The

following steps describe how to create a submap to modify a database:

1. In the Broker Application Development perspective, open the calling message

map.

504 Message Flows

2. In the Source pane, right-click the message component containing the fields to

be used to modify the database and click Create New Database Submap. The

source can be a wildcard, an element, or an attribute. The Create New Database

Submap wizard opens.

3. If the selected source is a wildcard, select a message or message component for

the source wildcard from Select a defined item to replace the source wildcard

pane. If you cannot find the message components that you expect, select the

Show all resources in workspace check box.

4. From Select database submap targets expand the database operation that you

want to perform. You can select from the following database operations:

v Table Inserts

v Table Updates

v Table Deletes

5. Select the database tables that you want to map. If you cannot find the Data

Targets that you expect, select the Show all resources in workspace check box.

6. Click OK. A new submap is created with the selected message or message

component in the Source pane, and the database table in the Target pane. In the

calling message map $db:call is added to the Target pane.

After you have created the submap file, configure the message mappings for the

database table.

Converting a message map to a submap:

You can convert between a message map and a submap in order to change the

usage of the map. You might convert a message map to a submap because you

want to reuse the same mappings for multiple nodes. Use the following

instructions to convert a message map to a submap for each message in the

message map.

1. From the Broker Application Development perspective right-click your message

map and click Open.

2. Right-click $source in the Source pane and select Add or Remove Headers and

Folders. The Add or Remove Headers and Folders dialog opens.

3. Select No folders (map body element only). Any previously selected headers

or folders are cleared.

4. Click OK to remove the headers and folders.

5. Repeat steps 2 to 4 to select to map body element only from your target

message under $target in the Target pane.

6. Delete target map statements for existing mappings to properties, message

headers or other folders such as LocalEnvironment. These mappings are

flagged with warning messages after the headers are removed.

7. Remove the reference to the new submap from any mapping nodes. If a

reference to the submap exists in the Mapping Routine property of a mapping

node an error message is displayed on the message flow.

8. Save the submap, and check for any broken references as indicated by errors or

warnings in the Problems view.

The submap is now ready to be used. See calling a submap for more information.

To convert a submap to a message map, click Add or Remove Headers and

Folders for the source and target messages, and select to map Selected headers.

You must ensure that no other maps call the changed map, check for errors in the

Developing message flows 505

Problems view to indicate this problem. See mapping headers and folders for more

information about mapping headers, Properties and the LocalEnvironment.

Converting an inline mapping to a submap:

You can convert between inline mappings in a message map and a submap in

order to change the usage of the map.

 You might convert parts of an existing message map to a submap because you

want to reuse the same mappings for multiple nodes. You can convert inline

mappings to submaps from messages or databases. You must select one of the

following types of statement to create a submap or a database submap:

v Element statement that maps a global element or an element of global type

v Attribute statement that maps either a global attribute or an attribute of a global

type

v Database insert statement

v Database update statement

v Database delete statement

The target that is added to the new submap is the global element, attribute, type,

or database insert, update, or delete that you select. The source that is added to the

new submap is the appropriate global element or type from the source from the

selected mappings that are included in the submap. If mappings included in the

selected statement do not reference any source, then only a target is added to the

submap. If the source contains a database select that is not referenced by any other

part of the original message map, a database select is added as a source to the

submap, and removed from the original message map. However, if the source

contains a database select that is referenced by any other part of the original

message map, then the original message map retains the select, and the submap

performs a separate select. If you do not want to perform two database select

operations, do not use a database submap under these conditions.

Use the following instructions to convert inline mappings in a message map to a

submap or database submap:

1. From the Broker Application Development perspective right-click your message

map and click Open.

2. Right-click the mapping statement that you want to convert to a submap or

database submap in the Script pane, and click Convert to submap. A new

submap is created and a statement is added to the original message map to call

the new submap.

The submap is now ready to be used.

Calling a submap:

Use the Call Existing Submap wizard to call a submap. The submap must already

be in the workspace.

If a submap does not exist, use the Create New Submap menu option to create a

submap that you can call. This action creates the new submap in the same folder

as the calling map. It also allocates a default map operation name to the new

submap. If the source or target in the calling map is a wildcard, a wizard allows

you to choose a replacement element.

506 Message Flows

You can also map from a wildcard to a wildcard.

The following steps describe how to call a submap:

1. In the Broker Application Development perspective, open the calling map.

2. In the Source and Target panes, select one or more sources and one target. Any

of the sources or the target can be a wildcard, an element, or an attribute.

3. Click Map → Call Existing Submap. The Call Existing Submap wizard opens.

4. Complete the wizard, following the on-screen instructions.

The call to the submap takes the following format:

��

BrokerSchemaName
 SubmapName

SourceParameterList
 ��

BrokerSchemaName:

�

 .

Identifier

SourceParameterList:

�

 ,

MappableReferenceExpression

Only source parameters appear in the call and only message parameters appear in

the list.

Calling a submap from ESQL:

You can use the Message Mapping editor to perform mappings to a certain level of

complexity. To create even more complex mappings, use ESQL. ESQL is

particularly suitable for interacting with databases.

 If a submap does not already exist, create one.

The following steps describe how to call a submap from ESQL. Calling a submap

from ESQL uses different parameters to when you call a submap from another

map due to this extra level of complexity (when calling a submap from ESQL, the

two local environment parameters are added at the end of the CALL statement).

1. Switch to the Broker Application Development perspective.

2. Right-click a node that supports ESQL and click Open ESQL. The ESQL file

opens for that node.

3. Add a CALL statement to call a submap. Alternatively, press Ctrl+Space to

access ESQL content assist, which provides a drop-down list that includes the

submap name and expected parameters.

The following syntax diagram demonstrates the CALL statement:

Developing message flows 507

�� CALL SubmapName

BrokerSchemaName

ParameterList
 ��

BrokerSchemaName:

�

 .

Identifier

ParameterList:

�

 ,

source path

,

target path

InputLocalEnvironment

�

�
OutputLocalEnvironment

Notes:

1. Only source parameters appear in the call and only message parameters

appear in the list.

2. If the submap builds a message target, include the target path and

OutputLocalEnvironment parameters. If the submap does not build a

message target (for example, if the submap interacts with a database),

these two parameters do not appear.

Calling an ESQL routine:

To call an existing ESQL routine from a mapping, select the routine from the Call

Existing ESQL Routine wizard. The ESQL routine must already exist in the

workspace.

1. Switch to the Broker Application Development perspective.

2. Open the required mapping.

3. In the Source pane, select the required source.

4. In the Target pane, select the required target.

5. Right-click either the Source or Target pane and click Call ESQL Routine. The

Call ESQL routine wizard opens.

6. Select the routine where the parameters and return types match the source and

target selection.

7. Click OK.

Creating and calling your own user-defined ESQL routine:

For complex mappings you can create user-defined ESQL functions that can be

called from the Message Mapping editor. This topic describes how to create a

user-defined ESQL function and how to use it in an existing message map.

1. Switch to the Broker Application Development perspective.

2. Create a new ESQL file, or open an existing ESQL file.

508 Message Flows

3. Enter your ESQL function in the ESQL file. Ensure that you do not enter the

ESQL in any existing modules.

4. Save the ESQL file.

5. Right-click your Mapping node and click Open Map to open your message

map in the Message Mapping editor.

6. Select the target that you want to generate using your ESQL function from the

appropriate target message or target database table.

7. In the Edit pane, enter the expression to call the ESQL function and any

parameters to pass to the function. For example:

esql:concatValues($source/Pager/Text, ’ Powered by IBM.’)

Where concatValues is the name of the user-defined ESQL function and the

following parameters:

v $source/Pager/Text is a field in the source message

v ’ Powered by IBM.’ is text

The following is the ESQL used for the user-defined ESQL function in the

preceding example:

CREATE FUNCTION concatValues(IN val INTEGER, IN str CHAR) RETURNS CHAR

 BEGIN

 return str || ’ plus int val ’ || CAST(val AS CHAR);

 END;

You can also use Edit → Content Assist to select user-defined ESQL functions.

The user-defined ESQL functions are located at the end of the list of ESQL

functions.

8. Save the message map file by clicking File → Save.

Calling a Java method:

To call an existing Java method from a mapping node, select the method from the

Call Existing Java Method wizard, or enter an XPath expression in the Edit pane.

 See “Message mapping tips and restrictions” on page 512 for information about the

type of methods that are available through the wizard, and through content assist.

Using the wizard:

To use the Call Existing Java Method wizard, take the following steps:

1. Switch to the Broker Application Development perspective.

2. Open the required message map.

3. If the method requires input parameters, select one or more fields in the Source

pane. Your choice determines which methods are subsequently displayed in the

wizard. If you select no source fields, the wizard shows only methods that take

no parameter. If you select two fields, the wizard displays only methods that

take two parameters, and so on.

4. In the Target pane, select the required target field to be mapped to the return

value of the Java method. The target field must be a simple, non-wildcard type.

5. Right-click either the Source or Target pane and click Call Java Method. The

Call Existing Java Method wizard opens.

6. Select the method and then click OK.

Entering an XPath expression:

Developing message flows 509

You can enter the expression directly, without using content assist. Enter a function

call expression, with the following syntax:

java:package_name.class_name.method_name (parameters)

You can omit the package name if there is no package, or you are using a default

package.

To use content assist, take the following steps:

1. Switch to the Broker Application Development perspective.

2. Open the required message map.

3. In the Edit pane, click Edit → Content Assist.

4. Select java: (Java Methods), and then click Edit → Content Assist. All

qualifying Java methods are displayed.

5. Select the method.

6. If the method requires input parameters, drag the appropriate source fields to

the method’s parameter area. The number of source fields included must match

the number of input parameters that the method takes.

This is an example of a method that takes one input parameter:

java:mypackage1.MyClass1.myMethod1($source/po:purchaseOrder/po:comment)

Separate parameters by a comma:

java:mypackage1.MyClass1.myMethod1($source/po:purchaseOrder/name,

 $source/po:purchaseOrder/phone)

Transforming a SOAP request message

SOAP is an XML-based language defined by the W3C for sending data between

applications. A SOAP message comprises an envelope containing:

v An optional header (containing one or more header blocks)

v A mandatory body.

For common envelope message formats, such as SOAP, where both the envelope

and the messages that can appear within that envelope have to be modeled, use

the Message Mapping editor to select from available messages at points in the

model that are defined with Composition=″message″ and Content

validation=″open″ or ″open defined″.

Define the mappings by selecting from the allowed constituent messages. For

example, in the case of SOAP, the outer level message is called Envelope and has

one mandatory child element called Body, which is modeled with

Composition=″message″. If the permitted content of Body is modeled by separate

messages Msg1 ... MsgN, define mappings for each separate message

(Envelope.Body.Msg1 to Envelope.Body.MsgN).

For complex type elements with type composition message, the Message Mapping

editor follows these rules:

 Content

validation Messages offered

Closed Messages available in any message sets in the workspace

Open defined Any message defined within the current message set

510 Message Flows

Content

validation Messages offered

Open The Message Mapping editor does not support open or open defined

content when the type composition is NOT message

Mapping an embedded message

When you are working with type composition message, with content open or

open-defined (and no children defined), map the embedded message using a

submap:

1. In the main map, expand the levels (both source and target) of Envelope and

Body until you find the wildcard message, and select this on both the source

and target sides.

2. Right-click either the source or target and click Create New Submap.

3. From the dialog box, select a source (for example reqmess) and a target (for

example rspmess).

4. With the submap open in the Message Mapping editor, make the appropriate

mappings between the source (reqmess) and target (rspmess).

Editing a default-generated map manually

Sometimes, the map that is generated by the Message Mapping editor does not do

everything that you want. If this is the case, there are a number of things that you

can change manually. You can edit the structure directly by inserting, moving,

copying, pasting, and deleting rows. The context menu provides a list of available

editing actions with their keyboard equivalents. Here are some specific operations

that you might want to perform:

v “Creating message headers”

v “Creating conditional mappings”

Creating message headers:

When you create a map from a mapping node or if you select the option Message

map called by a message flow node from the New Message Map wizard, the map

that is created allows additional elements including MQ, HTTP, and JMS headers

to be mapped.

If you use a Mapping node for a database to message mapping without specifying

a source message, the Message Mapping editor cannot generate an output header

for the map file that is created. To ensure that an output header is created perform

one of the following steps:

v When you create the message map add message headers to the target message

and ensure that all mandatory fields in the header are set.

v Add an additional source message to the map. The source message must be the

same message as the intended target message. You do not need to create any

mappings from the source message because the headers from the source

message are automatically copied to the output message tree.

Creating conditional mappings:

When a mapping involves one of the following items:

v schema choice group

v derived type element

Developing message flows 511

v substitution group member

v wildcard

v repeating element

the default mapping that is generated by the Message Mapping editor might be

placed under a ″condition″ statement. If the condition is not what you had

expected, edit the statements; here are the changes that you can make:

v Move statements in or out of a conditional block.

v Reorder conditions within an ″if″ statement.

v Create new conditions inside an ″if″ statement.

v Create new ″if″ statements.

See the “Configuring conditional mappings” on page 487 topic for more

information about conditional mappings.

Message mapping tips and restrictions

This topic contains information to help you use message mapping.

These tips assume that you have created a mapping node within the message flow,

opened the Message Mapping editor, and selected both a source and a target

message:

v “Source is a list and target is a list from source, but with a new entry at the top

of the list”

v “Change the target message domain”

v “Override the database schema name” on page 513

v “Map batch messages” on page 513

v “Mapping restrictions” on page 514

v “Requirements for calling a Java method” on page 514

Source is a list and target is a list from source, but with a new entry at

the top of the list

1. Expand the target to display the element for which you want to create a new

first instance. This might be a structure or a simple element.

2. Right-click the element and click If. A condition line appears immediately

below.

3. Right-click the element and click Copy. Move to the condition line and click

Paste. There are now two entries in the spreadsheet for your element.

4. Set the first of these entries to values of your choice.

5. Right-click the second entry and click For. A ’for’ line appears in the

spreadsheet.

6. Set the second entry to the value or values mapped from the source.

7. Set the ’for’ entry to the looping condition.

8. Click For, then drag the source field that represents the loop condition to the

Expression editor.

Change the target message domain

When you first create a mapping, you nominate a message set for the target

message. The parser that is associated with the output message is determined by

the Message Domain property of the message set. For example, when a message

512 Message Flows

set is first created, the default message domain is MRM. Therefore, the Mapping

node generates ESQL with the following format:

SET OutputRoot.MRM.Fielda...

If you change the runtime parser to XMLNSC, for example, the Mapping node

generates ESQL with the following format:

SET OutputRoot.XMLNSC.MessageA.FieldA...

The parser of the source message is determined by the contents of the MQRFH2

header or by the properties of the input node. The Mapping node generates a

target message with a parser that matches the message domain of the message set.

The Mapping node supports the following message domains:

 MRM

 XMLNSC

 XMLNS

 MIME

 JMSMap

 JMSStream

 XML

 BLOB

To change the message domain property of your message set:

1. Open the message set file messageset.mset.

2. Change the Message Domain property to a supported domain.

3. Save your message set, and save any message flows and message maps that

reference your message set, if they have not already been saved. Saving these

files generates updated ESQL for mapping the changed message set.

If you have made no updates to your flows or message maps after changing

the message domain of your message set, you must clean the related message

flow projects so that updated ESQL code can be generated:

a. Select a project and click Project → Clean Project.

b. Select Clean all projects or Clean selected projects.

c. Click OK.
4. Deploy the changed message set.

5. Deploy the message flow that contains the mappings, and test your ESQL in a

Compute node and in other nodes to ensure that the message flow still

functions as expected.

Override the database schema name

To change the database schema name that is generated in ESQL, use the Override

Database Schema wizard in the Specify Runtime Schema dialog box. The default

name is the schema name of the database definitions that are imported into the

Message Broker Toolkit. Use the Specify Runtime Schema dialog box to change the

value.

Map batch messages

You can configure a message mapping that sorts, orders, and splits the components

of a multipart message into a series of batch messages. These components can be

Developing message flows 513

|

messages or objects, and they can have different formats; in this case, each

component is converted and the message is reassembled before being forwarded.

1. Use a “RouteToLabel node” on page 1059 in the message flow to receive

multipart messages as input.

The RouteToLabel node is the next node in sequence after the “Mapping node”

on page 978, and causes the flow to jump automatically to the specified label.

You can specify a single RouteToLabel value in a splitting map for all maps

that output a message assembly. You can also use conditions to set the

RouteToLabel value, depending on the values in the source message.

2. Use the “Message Mapping editor” on page 1410 to build maps that transform

and propagate batch messages using a single node, without having to define an

intermediate data structure.

Multipart messages can also contain repeating embedded messages, where each

repeated instance of a message is propagated separately. Embedded messages must

be from the same message set as the parent message.

Mapping restrictions

Unless stated explicitly, you can achieve the required functionality by calling an

ESQL function or procedure. The following restrictions apply:

v Mixed content fields cannot be mapped.

v Exceptions cannot be thrown directly in mapping nodes.

v Self-defined elements cannot be manipulated in mapping nodes (support for

wildcards is limited if the wildcards represent embedded messages).

v The Environment tree cannot be manipulated in the Mapping node.

v User variables cannot be defined or set.

v CASE expressions cannot be emulated; you must use IF ... ELSE.

v Trees cannot be copied from input to output in order to modify elements within

the copied tree. For example, the following ESQL cannot be modeled in a

Mapping node:

SET OutputRoot.MQMD = InputRoot.MQMD; SET OutputRoot.MQMD.ReplyToQ = ’NEW.QUEUE’;

You must set each field in the structure individually if you intend to modify one

or more sibling fields.

Requirements for calling a Java method

All of the following conditions must be satisfied for the method to be shown in the

Call Existing Java Method wizard, or in content assist:

v The method must be public static, in a Java project.

v The default scope of the search is all methods in .java source files in the

workspace, excluding application libraries and application JAR files in the Java

build path, and all the JRE system libraries. To change the scope, change the

preferences in the Toolkit:

1. Click Window → Preferences.

2. Expand the Broker Development node, and then click Message Map Editor.

3. Select and clear the check boxes as appropriate.
v The method must have a return value.

v Return values and Java parameters must be one of the following data types:

514 Message Flows

Data types Equivalent XML schema type for mapping Comments

java.lang.Long byte, unsignedShort, long, unsignedByte,

short, int, unsignedInt

java.lang.Double float, double

java.math.BigDecimal nonNegativeInteger, negativeInteger, integer,

nonPositiveInteger, positiveInteger,

unsignedLong, decimal

java.lang.String NCName, Name, IDREF, normalizedString,

string, anyURI, NOTATION, token,

NMTOKEN, language, ID, ENTITIES,

QName, ENTITY

byte[] base64Binary, hexBinary

com.ibm.broker.plugin.MbDate date, gYear, gMonth, gDay, gYearMonth,

gMonthDay

com.ibm.broker.plugin.MbTime time

com.ibm.broker.plugin.MbTimestamp dateTime

java.lang.Boolean boolean

com.ibm.broker.plugin.MbElement A complex type Valid only for input

parameters, not return

values.

v The method must not have a throws clause.

v The number of source fields selected must match the number of input

parameters that the method takes.

v If you are using a working set, only the methods in the current working set are

displayed. Select the check box Show all resources in workspace to display all

the methods in the workspace. If you are not using a working set, all the

methods in the entire workspace are displayed. Content assist shows all

methods in the workspace, whether you are using a working set or not.

When you create the bar file you must select the Java project or JAR file that

contains the method that you are calling.

Message mapping scenarios

This section contains some message mapping scenarios that demonstrate how to

make the most of the message mapping functions:

v “Scenario A: Mapping an airline message”

v “Scenario B: Simple message enrichment” on page 524

v “Scenario C: Using a broker as auditor” on page 530

v “Scenario D: Complex message enrichment” on page 534

v “Scenario E: Resolving a choice with alternative message data” on page 552

v “Scenario F: Updating the value of a message element” on page 553

Scenario A: Mapping an airline message

This scenario demonstrates how to create, configure, and deploy a new message

mapping. The message flow that is used in this example reads an XML input

message (an airline message), then uses a Mapping node to achieve the following

transformations:

v Convert the input message from XML to COBOL

Developing message flows 515

v Modify an element in the input message from the results that are obtained by a

database lookup

v Concatenate two elements in the input message to form a single element in the

output message

Here are the steps that are involved in this scenario:

1. “Example names and values”

2. “Connect to the database and obtain the definition files” on page 518

3. “Create the message flow” on page 519

4. “Create the mapping file” on page 519

5. “Configure the mapping file” on page 520

6. “Deploy the mapping” on page 523

Now go to “Example names and values.”

Example names and values:

View the resources that are created for the airline message scenario.

 The following table describes the names and definitions of the resources that are

created.

 Resource Name Definition

Airline state

codes database

table file

.tblxmi file Contains the database table that holds

the two-character airline state codes (for

example, IL for Illinois)

Alias name AIRLINEDBALIAS The same as connection name and

database name in this case

Broker archive

(bar) file name

AIRLINE Contains the message flow and message

set projects, and the mapping file, and is

deployed to the default execution group

for the run time

COBOL

copybook

AirlineRequest.cbl Controls the structure of the COBOL

output message

Connection

name

AIRLINECONN The same as alias name and connection

name in this case

Database AIRLINEDB Contains the table XREF and is the same

as the connection name and the alias

name in this case

Database table

(table tree)

XREF Contains lookup information (in this case

the two-code airline city code

abbreviations STATE=Illinois,

ABBREV=IL)

Default project AIRLINE_MFP The default message flow project. You

copy the database definitions to this

project.

Default queue

manager

WBRK6_DEFAULT_QUEUE_MANAGER The default queue manager that controls

the message queue

ESQL select

operation

$db:select.AIRLINEDB.AIRLINE_SCHEMTREE.

XREF.ABBERV

The ESQL select operation that performs

a qualified database select operation

Input (XML)

message

c:\airline\data\AirlineRequest.xml The input message (in this case an XML

message)

516 Message Flows

Resource Name Definition

Input message

source fields

FirstName,LastName The source elements in the input

message that are concatenated

Input queue

name property

AIRLINE_Mapping_IN The input queue

Mapping node

rename

XML_TO_COBOL The name of the node in the message

flow that performs the mapping (the

node was renamed from its default

name)

Message

mapping file

name

AIRLINE.msgmap The file that contains the mapping

configuration used by the Mapping node

Message Set

property

AIRLINE_MSP2 The message set project name

Message Type

property

msg_AIRLINEREQUEST The message type

Message Format CWF1 The custom wire format (CWF) for

COBOL output message

Message flow

name

AIRLINE_Mapping The name of the message flow

Message flow

project

AIRLINE_MFP The name of the message flow project

Message set

projects

AIRLINE_MSP1,AIRLINE_MSP2 The names of the message set projects

Msg Domain

node property

MRM The message domain node property

Msg Set Name

node property

AIRLINE_MSP1 The message set name node property

Msg Type

property

AirlineRequest The message type property

Msg Format

node property

XML1 The input message format

Output message

target field

NAME The result of concatenating FirstName

and LastName in the input message.

NAME is the element that is created in

the output message.

Output queue

name property

AIRLINE_Mapping_OUT The output queue name

Resource folder airline\resources The folder where the mapping resources

are stored

Schema tree AIRLINE_SCHEMTREE The name of the schema tree

Source ABBREV The source

Source tree $source/AirlineRequest The source tree

Source message AirlineRequest The source message

Target STATE The target

Target message AIRLINEREQUEST The target message

Target tree $target/AIRLINEREQUEST The target tree

Developing message flows 517

Resource Name Definition

XPath

concatenation

function

fn:concat(fn:concat($source/

AirlineRequest/Purchase/

Customer/FirstName,’ ’),

$source/AirlineRequest/

Purchase/Customer/LastName)

The XPath function that concatenates

FirstName and LastName

Now go to “Connect to the database and obtain the definition files.”

Connect to the database and obtain the definition files:

Before you start:

Create a message flow project.

This topic demonstrates how to define a database connection to enable a message

flow to access a database table. The database must be defined to the Message

Broker Toolkit.

The Database Definition Wizard uses the JDBC interface to communicate with the

database server, so you need to ensure that the database client jar file on your local

or workbench host is at a compatible level to allow communication with the

database server. If necessary, consult your database vendor for further advice.

 1. Switch to the Broker Application Development perspective.

 2. Select the message flow project you want to create the database definition files

in and click File → New → Database Definition. The New Database Definition

File wizard opens.

 3. Select an existing Data design project or click New to create a new Data

design project.

 4. Select the database type and version that you want to connect to from the

Database and Version list.

 5. Click Next.

 6. Select to create a new database connection and click Next.

 7. Clear the Use default naming convention check box, and enter a connection

name, for example AIRLINEDBALIAS.

 8. Enter values for the Connection to the database, for example, Database name,

Host name and Port number.

 9. Enter values for the User ID and Password to connect to the database. You

can use the Test Connection button to verify the settings you have selected

for your database. The default Port number for a DB2 database is 50000. If the

connection fails, you can try to enter other values such as 50001, 50002 and so

on, for the Port number, and then test the connection again.

10. Click Next.

11. Select one or more database schemas from the list and click Next.

12. Click Finish.

13. Add the data design project as a reference to the message flow project:

a. Right-click on the message flow project and click Properties.

b. Click Project References, and select the data design project from the list to

add as a referenced project.

c. Click OK.

518 Message Flows

|
|
|
|

http://www.w3.org/TR/xpath

The database definition is added to a new Data design project. You have now

defined the database to the mapping tools.

Now go to “Create the message flow.”

Create the message flow:

Before you start:

1. Create a message flow project.

2. “Connect to the database and obtain the definition files” on page 518.

3. Create a message flow by adding an MQInput node, and renaming the node

(for example, to AIRLINE_Mapping_IN).

4. Set the queue name property (for example, to AIRLINE_Mapping_IN).

5. Add an MQOutput node to the message flow, and rename the node (for

example, to AIRLINE_Mapping_OUT).

This topic demonstrates how to specify a message flow project, add a Mapping

node, wire the nodes, and set the node properties.

 1. Switch to the Broker Application Development perspective.

 2. Open the message flow (for example, AIRLINE_Mapping) within the message

flow project (for example, AIRLINE_MFP). This message flow forms the

starting point for the mapping task.

 3. Open the palette of nodes and add a Mapping node to the message flow. You

might need to scroll down to find the Mapping node.

 4. Rename the Mapping node (for example, to XML_TO_COBOL) by

right-clicking the node and clicking Rename.

 5. Wire the node terminals (for example, AIRLINE_Mapping_IN>

XML_TO_COBOL> AIRLINE_Mapping_OUT).

 6. Modify the properties of the MQInput node (for example,

AIRLINE_Mapping_IN) by right-clicking the node and clicking Properties.

 7. Click OK.

 8. Modify the properties of the Mapping node (for example, XML_TO_COBOL).

 9. Set the data source as the database name (for example, AIRLINEDBALIAS)

10. Click OK.

You have now created the required message flow, wired the nodes, and set the

node properties.

Now go to “Create the mapping file.”

Create the mapping file:

Before you start:

Follow the instructions in these topics:

1. “Connect to the database and obtain the definition files” on page 518

2. “Create the message flow”

This topic demonstrates how to create a new mapping file, specify how it will be

used, and specify the source and target mappable elements.

1. Switch to the Broker Application Development perspective.

Developing message flows 519

2. From the message flow, right-click the mapping node (for example

XML_TO_COBOL) and click Open Map. The New Message Map wizard opens.

3. Select the combination of Messages, Data Sources or both that you want to use

as sources for your map from Select map sources (for example, AirlineRequest)

from the first message set project (for example, AIRLINE_MSP1). If you cannot

find the Messages, Data Sources or Data Targets that you expect, select the

Show all resources in workspace check box.

4. Select the combination of Messages, Data Targets or both that you want to use

as targets for your map from Select map targets (for example,

AIRLINEREQUEST) from the second message set project (for example,

AIRLINE_MSP2).

5. Click Finish.

You have now created the mapping file, defined its usage, and specified the source

and target mappable elements.

Now go to “Configure the mapping file.”

Configure the mapping file:

Before you start:

Follow the instructions in these topics:

1. “Connect to the database and obtain the definition files” on page 518

2. “Create the message flow” on page 519

3. “Create the mapping file” on page 519

This set of topics demonstrates how to configure the mapping file by:

1. Specifying a data source

2. Mapping the message properties

3. Writing an XPath function that concatenates the elements in the input message

4. Specifying an ESQL select command

Now go to “Specify the data source.”

Specify the data source:

Before you start:

Follow the instructions in these topics:

1. “Connect to the database and obtain the definition files” on page 518

2. “Create the message flow” on page 519

3. “Create the mapping file” on page 519

This topic demonstrates how to specify the database to use as the source for the

mapping.

1. From the Message Mapping editor Spreadsheet pane, select an item. The item

that you select determines the scope of the $db:select entry that is created by

the action. For example, you can select $target, an element, an attribute, a For

condition, or another $db:select entry. The Select database as mapping source

dialog box opens.

2. Right-click and click Select data source.

520 Message Flows

3. From the Select Database as mapping source page, select a database (for

example, AIRLINEDB) and click Finish. The Message Mapping editor adds the

sources of the database table (for example, the XREF table) to the tree in the

Message Mapping editor Source pane.

You have now added the data source to the Message Mapping editor Source pane.

Now go to “Map the message properties.”

Map the message properties:

This topic demonstrates how to map the message set, message type and message

format properties.

 Before you map the message properties, ensure you do the following:

1. “Connect to the database and obtain the definition files” on page 518

2. “Create the message flow” on page 519

3. “Create the mapping file” on page 519

4. “Specify the data source” on page 520

To map the message properties:

1. From the Message Mapping editor Spreadsheet pane, expand the entries by

clicking + to reveal the message properties.

2. Right-click $target and click Populate.

3. Right-click Properties and click Populate. The MessageSet, MessageType and

MessageFormat properties contain default values for the target message.

4. To change the format of the output message, change the MessageFormat

property to the appropriate value. You must use quotation marks around the

value of MessageFormat, because the values are string literals and without

quotation marks, the values will be interpreted as XPath locations.

5. From the Message Mapping editor Source pane, expand the properties for the

$source tree, and for each remaining property, map the source element to its

corresponding target element by dragging from source to target. Alternatively,

select Properties in both the source and the target panes and use Map by Name

to map all of the properties.

6. Save the map by clicking File → Save.

You have now mapped message set, message type and message format properties.

Now go to “Add the XPath concatenate function.”

Add the XPath concatenate function:

Before you start:

Follow the instructions in these topics:

1. “Connect to the database and obtain the definition files” on page 518

2. “Create the message flow” on page 519

3. “Create the mapping file” on page 519

4. “Specify the data source” on page 520

5. “Map the message properties”

Developing message flows 521

This topic demonstrates how to write an XPath function that concatenates the

FirstName and LastName from the input message, and adds a white space

separator in the target NAME element. When you add the XPath expression and

save the map, link lines are automatically generated between the source and target

to indicate that these elements are mapped.

1. From the Message Mapping editor Source pane, select the first source to

concatenate (for example, FirstName), Ctrl+click to select the second source to

concatenate (for example, LastName), and drag both elements onto the target

(for example, NAME) in the Target pane.

2. From the Message Mapping editor Spreadsheet pane, select the target (for

example, NAME).

3. From the Edit pane, enter the XPath function (for example,

fn:concat($source/AirlineRequest/Purchase/Customer/FirstName, ’ ’,

$source/AirlineRequest/Purchase/Customer/LastName)

4. Save the map by clicking File → Save.

You have now added an XPath function that concatenates the two source elements

in the input message into a single target element in the output message.

Now go to “Add the database Select operation.”

Add the database Select operation:

Before you start:

Follow the instructions in these topics:

1. “Connect to the database and obtain the definition files” on page 518

2. “Create the message flow” on page 519

3. “Create the mapping file” on page 519

4. “Specify the data source” on page 520

5. “Map the message properties” on page 521

6. “Add the XPath concatenate function” on page 521

This topic provides instructions on how to add a database select operation that

makes a qualified selection from a data source. In the spreadsheet pane the

$db:select statement has the default value fn:true(), which returns all entries in

the table. You must therefore replace this value with one that qualifies the

selection, for example:

$db:select.LAB13STA.ARGOSTR.XREF.STATE=$source/AirlineRequest/Purchase/Customer/State

The XPath in this example selects only the records from the database where the

value in the STATE column for each record matches the value of the State field

from the input message. In the spreadsheet pane the $db:select statement is

associated with a For entry which is used to iterate over the mappings for the

target message. For each row in the database matching the $db:select statement a

separate target message is created with the mappings beneath $target.

The following steps describe how to create message mappings to generate a target

message based on records in a database matching the contents of an input

message:

1. In the spreadsheet pane replace the existing value fn:true() with the value to

match in the database (for example a field in the input message as shown in

the preceding example).

522 Message Flows

2. Create mappings from the database fields in the Source pane to include in the

target message, by dragging them from the source pane onto the target

elements. A $db:select statement is added to the value column in the

spreadsheet pane (for example,

$db:select.AIRLINEDB.AIRLINE_SCHEMTREE.XREF.ABBREV).

3. Create any mappings you require from the source message to the target

message.

4. Save the mapping by clicking File → Save.

5. Save the message flow.

6. Check for any errors in the Problems view.

You have now made a qualified selection from the database.

Now go to “Deploy the mapping.”

Deploy the mapping:

Before you start:

Follow the instructions in these topics:

1. “Connect to the database and obtain the definition files” on page 518

2. “Create the message flow” on page 519

3. “Create the mapping file” on page 519

4. “Configure the mapping file” on page 520

This topic demonstrates how to deploy the mapping to the run time by creating a

broker archive (bar) file, which contains the message flow and message set projects

(including the mapping file), then deploying the bar file to the default execution

group.

1. From the Broker Administration perspective, right-click the project under the

Broker Archives heading.

2. Click New → Message Broker Archive.

3. Name the bar file (for example, AIRLINE).

4. Click Add to. The Add to broker archive page is displayed.

5. Select the message flow project and message set projects that are used by this

flow (for example, AIRLINE_MFP,AIRLINE_MSP1, AIRLINE_MSP2) and click

OK. The projects are added to the bar file. A status indicator and message

panel show when the process is complete.

6. Check to ensure that the required projects have been included in the bar file.

7. Save the bar file by clicking File → Save.

8. To deploy the bar file, right-click the bar file and click Deploy File. The Deploy

a bar file page is displayed.

9. Select the default execution group, and click OK. A message in the Broker

Administration message dialog box indicates successful deployment, and the

deployed message flow project and message set projects appear in the Domains

view. A message in the Event log also indicates successful deployment.

You have completed this scenario.

Developing message flows 523

Scenario B: Simple message enrichment

This scenario demonstrates simple message enrichment and uses the Message

Broker Toolkit to create message flows and message sets, and to create and deploy

broker archive (bar) files. The scenario also involves creating a Configuration

Manager and a broker, and inputting instance messages that can contain MQRFH2

headers.

This scenario uses repeating instances and requires the following mapping

functions:

v MRM in, MRM out (non-namespace)

v Map a simple and Complex element source - target

v Map the same element source - target

v Map a different element source - target

v Map an attribute source - target

v Map a one-sided element (edit mapping)

v Map a one-sided attribute (edit mapping)

v Perform arithmetic on numeric field mapping

v Map a repeating simple element - single instance

v Map all instances of a repeating simple element

v No MQRFH2 header

The names and values used for message flows, message sets, elements and

attributes, and the expressions and code samples are for illustrative purposes only.

Here are the steps that are involved in this scenario:

1. “Develop a message flow and message model for simple and complex element

mapping”

2. “Develop a message flow and message model for a target-only element” on

page 526

3. “Develop a message flow and message model for dealing with repeating

elements” on page 527

4. “Develop a message flow and message model for a simple message without an

MQRFH2 header” on page 529

Develop a message flow and message model for simple and complex element

mapping:

This is the first stage of the scenario to perform simple message enrichment. This

topic demonstrates how to develop a message flow and message model for simple

and complex element mapping, where there is the same source and target, a

different source and target, or an attribute source and target. This task also

involves changing field values and creating an instance document.

1. From the Broker Application Development perspective, create the following

resources:

a. a message set project (for more details, see Creating a message set).

b. a message set called MAPPING3_SIMPLE_messages. Ensure that the

message set is namespace enabled with XML wire format.

c. a message definition file (no target namespace) called SIMPLE.
2. Create a message called addev1 that has the following structure:

addev1

 ssat (xsd:string) local attribute

 ssel (xsd:string) local element

524 Message Flows

dsel1 (xsd:string) local element

 atel local complex element

 latt (xsd:string) attribute

 cel1 local complex element

 intel (xsd:int) local element

 strel (xsd:string) local element

 dsel2 (xsd:string) global element

 cel2 (cel2ct) global complex type

 intel (xsd:int) local element

 fltel (xsd:float) local element

3. Create a message flow project called MAPPING3_SIMPLE_flows.

4. Create a message flow called addev1 that contains the following mapping:

MQInput -> Mapping -> MQOutput.

5. Open the map in the Message Mapping editor and select message addev1 as

both source and target

6. Expand all levels of both messages and wire the elements as shown:

ssat --- ssat

ssel --- ssel

dsel1 -- dsel2

latt ---- latt

cel1 --- cel1

dsel2 -- dsel1

(cel2)

 intel ---- fltel

 fltel ---- intel

7. In the Spreadsheet pane, set the following expression:

dsel1 | esql:upper($source/addev1/dsel2)

@latt | esql:upper($source/addev1/atel/@latt)

(cel2)

 intel | $source/addev1/cel2/fltel + 10

 fltel | $source/addev1/cel2/intel div 10

8. Create an instance document with the appropriate RFH2 header and the

following data:

<addev1 ssatt="hello">

<ssel>this</ssel>

<dsel1>first</dsel1>

<atel latt="attrib"/>

<cel1>

<intel>2</intel>

<strel>lcomp</strel>

</cel1>

<dsel2>second</dsel2>

<cel2>

<intel>252</intel>

<fltel>3.89E+1</fltel>

</cel2>

</addev1>

You have created the following resources:

v message set MAPPING3_SIMPLE_messages, which you have populated with

message addev1

v message flow addev1 in project MAPPING3_SIMPLE_flows, which contains the

mapping addev1_Mapping.msgmap

v a file that contains an instance message

Now deploy the message set and message flow.

Deploy the message set and message flow:

Developing message flows 525

This is the second stage of the scenario to perform simple message enrichment.

This topic demonstrates how to deploy the message set and message flow and run

the data through the broker.

1. Create a broker archive (bar) file called addev1.

2. Add the message set MAPPING3_SIMPLE_messages and the message flow

addev1 to the bar file.

3. Deploy the bar file to the broker.

4. Put the instance document on the input queue.

The output message looks like this:

<addev1 ssat="hello">

<ssel>this</ssel>

<dsel1>SECOND</dsel1>

<atel latt="ATTRIB"/>

<cel1>

<intel>2</intel>

<strel>lcomp</strel>

</cel1>

<dsel2>first</dsel2>

<cel2>

<intel>48</intel>

<fltel>2.5E+1</fltel>

</cel2>

</addev1>

Now go to “Develop a message flow and message model for a target-only

element.”

Develop a message flow and message model for a target-only element:

Before you start

Perform the steps in the following topic:

1. “Develop a message flow and message model for simple and complex element

mapping” on page 524

This is the third stage of the scenario to perform simple message enrichment. This

topic demonstrates how to develop a message flow and message model for a

target-only element. It also involves attributing a mapping and creating an instance

document.

1. Create a message called addev2, which has the following structure:

addev2

 matt (xsd:string) local attribute

 ssel (xsd:string) local element

 csel local complex element

 elatt (xsd:string) local attribute

2. Create a second message called trigger, which has the following structure:

trigger

 start (xsd:string) local element

3. Create a message flow called addev2, which contains the following mapping:

MQInput -> Mapping -> MQOutput.

4. Open the map and select trigger as the source and addev2 as the target.

5. In the Spreadsheet pane, expand the target message fully and set the target

fields as shown:

526 Message Flows

matt | ’first attribute’

ssel | ’string element’

elatt | ’second attribute’

6. Expand the Properties folder in the Spreadsheet pane and set the following

value:

MessageType | ’addev2’

7. Create an instance document with the appropriate RFH2 header and the

following data:

<trigger>

<start>yes</start>

</trigger>

You have created the following resources:

v two messages called addev2 and trigger

v a message flow called addev2, which contains the mapping

addev2_Mapping.msgmap

v a file that contains an instance message

Now deploy the message set and message flow.

Deploy the message set and message flow:

This is the fourth stage of the scenario to perform simple message enrichment. This

topic demonstrates how to deploy the message set and message flow and run the

data through the broker.

1. Create a broker archive (bar) file called addev2.

2. Add the message set MAPPING3_SIMPLE_messages and the message flow

addev2 to the bar file.

3. Deploy the bar file to the broker.

4. Put the instance document on the input queue.

The output message looks like this:

<addev2 matt="first attribute">

<ssel>string element</ssel>

<csel elatt="second attribute"></csel>

</addev2>

Now go to “Develop a message flow and message model for dealing with

repeating elements.”

Develop a message flow and message model for dealing with repeating

elements:

Before you start

Perform the steps in the following topics:

1. “Develop a message flow and message model for simple and complex element

mapping” on page 524

2. “Develop a message flow and message model for a target-only element” on

page 526

This is the fifth stage of the scenario to perform simple message enrichment. This

topic demonstrates how to develop a message flow and message model for dealing

with repeating elements, a single instance and all instances.

1. Create a message called addev3, which has the following structure:

Developing message flows 527

addev3

 frepstr (xsd:string) local element, minOcc=3, maxOcc=3

 vrepstr (xsd:string) local element, minOcc=1, maxOcc=4

 urepstr (xsd:string) local element, minOcc=1, maxOcc=-1

2. Create a message flow called addev3, which contains the following mapping:

MQInput -> Mapping -> MQOutput.

3. Open the map and select addev3 as both source and target

4. In the upper pane, map each source to the corresponding target, as illustrated

in this example:

frepstr --- frepstr

vrepstr --- vrepstr

urepstr --- urepstr

5. In the Spreadsheet pane, expand fully the target addev3.

6. Highlight and delete the For item above the vrepstr entry.

7. Create an instance message with the appropriate RFH2 header and the

following data:

<addev3>

<frepstr>this</frepstr>

<frepstr>that</frepstr>

<frepstr>other</frepstr>

<vrepstr>only one</vrepstr>

<vrepstr>extra</vrepstr>

<urepstr>first</urepstr>

<urepstr>second</urepstr>

<urepstr>third</urepstr>

<urepstr>fourth</urepstr>

<urepstr>fifth</urepstr>

</addev3>

You have created the following resources:

v a message called addev3

v a message flow called addev3, which contains the mapping

addev3_Mapping.msgmap

v a file that contains an instance message

Now deploy the message set and message flow.

Deploy the message set and message flow:

This is the sixth stage of the scenario to perform simple message enrichment. This

topic demonstrates how to deploy the message set and message flow and run the

data through the broker.

1. Create a broker archive (bar) file called addev3.

2. Add the message set MAPPING3_SIMPLE_messages and the message flow

addev3 to the bar file.

3. Deploy the bar file to the broker.

4. Put the instance document on the input queue.

The output message looks like this:

<addev3>

<frepstr>this</frepstr>

<frepstr>that</frepstr>

<frepstr>other</frepstr>

<vrepstr>only one</vrepstr>

<urepstr>first</urepstr>

<urepstr>second</urepstr>

528 Message Flows

<urepstr>third</urepstr>

<urepstr>fourth</urepstr>

<urepstr>fifth</urepstr>

</addev3>

Now go to “Develop a message flow and message model for a simple message

without an MQRFH2 header.”

Develop a message flow and message model for a simple message without an

MQRFH2 header:

Before you start

You must complete the following tasks:

1. “Develop a message flow and message model for simple and complex element

mapping” on page 524

2. “Develop a message flow and message model for a target-only element” on

page 526

3. “Develop a message flow and message model for dealing with repeating

elements” on page 527

This is the seventh stage of the scenario to perform simple message enrichment.

This topic demonstrates how to develop a message flow and message model for a

simple message without an MQRFH2 header.

1. Create a message set called MAPPING3_SIMPLE_xml. A message set project is

also automatically created; this message set project has the same name as the

message set that you created.

2. On the message set parameters page, set the Message Domain property to XML.

3. Create a message definition file called SIMPLE.

4. Create a message called addev4 that has the following structure:

addev4

 str1 (xsd:string) local element

 cel local complex element

 int1 (xsd:int) local element

 bool1 (xsd:boolean) local element

5. Create a message flow called addev4 that contains the following connected

nodes: MQInput -> Mapping -> MQOutput.

6. Select the Input Message Parsing properties tab of the MQInput node, and set

the Message Domain property to XML.

7. Open the map and select addev4 as both source and target.

8. Map the inputs to the corresponding outputs, as shown in this example:

str1 --- str1

int1 --- int1

bool1 --- bool1

9. Create an instance message that has no MQRFH2 header, but contains the

following data:

<addev4>

<str1>this</str1>

<cel>

<int1>452</int1>

<bool1>0</bool1>

</cel>

</addev4>

You have created the following resources:

Developing message flows 529

v A message set called MAPPING3_SIMPLE_xml that contains the message

addev4

v A message flow called addev4 that contains the mapping

addev4_Mapping.msgmap

v A file that contains an instance message

Now deploy the message set and message flow.

Deploy the message set and message flow:

This is the final stage of the scenario to perform simple message enrichment. This

section describes how to deploy the message set and message flow, and how to the

run the data through the broker.

1. Create a broker archive (bar) file called addev4.

2. Add the message flow called addev4 to the bar file.

3. Deploy the bar file to the broker.

4. Put the instance document on the input queue.

The output message has the following content:

<addev4>

<str1>this</str1>

<cel>

<int1>452</int1>

<bool1>0</bool1>

</cel>

</addev4>

You have completed the scenario.

Scenario C: Using a broker as auditor

This scenario demonstrates how to use a broker as an auditor and uses the

Message Broker Toolkit to create message flows and message sets, and to create

and deploy broker archive (bar) files. It also involves creating a Configuration

Manager and a broker, and inputting instance messages that can contain MQRFH2

headers.

The scenario uses database updates that have been defined using mappings. The

broker receives a confirmation for a provisional booking, the message flow inserts

a row into a database table representing the confirmation, updates a counter in

another table representing the key of the confirmation, and deletes the provisional

booking from a third table.

This scenario uses the DataDelete, DataInsert and DataUpdate nodes in the

message flow, and requires the following mapping functions:

v Mapping in DataInsert node

v Combine input data into single insert

v Mapping in DataUpdate node

v Mapping in DataDelete node

v Bar file to override datasource

The names and values used for message flows, message sets, elements and

attributes, and the expressions and code samples are for illustrative purposes only.

Here are the steps that are involved in this scenario:

1. “Develop a message flow” on page 531

530 Message Flows

2. “Deploy the message set and message flow” on page 532

3. “Override the data source of one of the nodes” on page 533

4. “Create a bar file, edit the configuration and deploy” on page 533

Develop a message flow:

This is the first stage of the scenario to use a broker as an auditor. This topic

demonstrates how to develop a message flow to map several fields of input data

into a single insert record for a database. It also involves updating another table

and deleting a third table, as well as developing corresponding message models

and instance messages.

 1. Create a database called MAPDB and a table called CONFIRMATION, which

contains the following columns:

RESID INTEGER

 2. Populate the CONFIRMATION table with the value shown:

9052

 3. Create another table called RESERVATION, which contains the following

columns:

RESID INTEGER

NAME VARCHAR(20)

PARTY INTEGER

PAYMENT DECIMAL(8,2)

 4. Populate the RESERVATION table with the values shown:

8214,’ARCHIBALD’,2,0.0

2618,’HENRY’, 4, 120.0

9052,’THAW’, 3, 85.0

 5. Create another table called PROVISIONAL, which contains the following

columns:

RESID INTEGER

 6. Populate the PROVISIONAL table with the values shown:

 8214 2618

 7. Create a Windows ODBC Data Source Name for the database, and then create

a definition for the database in the workbench by clicking File → New →

Database Definition File.

 8. Create a message set project and a message set called

MAPPING3_AUDIT_messages (ensuring that the message set is namespace

enabled, with XML wire format) and create a message definition file called

AUDIT.

 9. Create a message called addev1, which has the structure:

addev1

 id (xsd:int) local element

 status (xsd:string) local element

 name (xsd:string) local element

 size (xsd:int) local element

 payment (xsd:decimal) local element

10. Create a message flow project called MAPPING3_AUDIT_flows.

11. Create a message flow called addev1, which contains the following mapping:

MQInput ->DataInsert -> DataUpdate -> DataDelete -> MQOutput.

12. For the DataInsert node, set the Data Source property to MAPDB.

13. Open the mapping for the DataInsert node and select

MAPPING3_AUDIT_messages addev1 as the source, and

MAPDB.SCHEMA.CONFIRMATION as the target.

14. Wire the source to the target as shown:

Developing message flows 531

addev1 MAPDB

 id -------------- RESID

15. For the DataUpdate node, set the Data Source property to MAPDB.

16. Open the mapping for the DataUpdate node and select

MAPPING3_AUDIT_messages addev1 as the source, and

MAPDB.SCHEMA.RESERVATION as the target.

17. Wire the source to the target as shown:

addev1 MAPDB

 id -------------- RESID

 name ---------- NAME

 size ------------ PARTY

 payment ------- PAYMENT

18. In the Spreadsheet pane, select $db:update and change fn:true() to

$db:update.MAPDB.MQSI.RESERVATION.RESID = $source/addev1/id and

$source/addev1/status = ’CONFIRM’.

19. For the DataDelete node, set the Data Source property to MAPDB.

20. Open the mapping for the DataDelete node and select

MAPPING3_AUDIT_messages addev1 as the source, and

MAPDB.SCHEMA.PROVISIONAL as the target.

21. In the Spreadsheet pane, select $db:delete and change fn:false() to

$db:delete.MAPDB.MQSI.PROVISIONAL.RESID = $source/addev1/id.

22. Create the following instance message with appropriate RFH2 headers:

<addev1>

<id>8214</id>

<status>CONFIRM</status>

<name>ARCHIBALD</name>

<size>2</size>

<payment>1038.0</payment>

</addev1>

You have created the following resources:

v a message set called MAPPING3_AUDIT_messages, which is populated with the

message addev1

v a message flow called addev1 in project MAPPING3_AUDIT_flows, which

contains the mapping files addev1_DataInsert.msgmap,

addev1_DataUpdate.msgmap, and addev1_DataDelete.msgmap

v the database MAPDB with populated tables CONFIRMATION, RESERVATION,

and PROVISIONAL

v a file that contains an instance message for test.

Now go to “Deploy the message set and message flow.”

Deploy the message set and message flow:

Before you start

Perform the steps in the topic “Develop a message flow” on page 531.

This is the second stage of the scenario to use a broker as an auditor. This topic

demonstrates how to deploy the message set and message flow and run the

instance messages through the broker.

1. Create a bar file called addev1.

2. Add the message set MAPPING3_AUDIT_messages and the message flow

addev1 to the bar file.

532 Message Flows

3. Deploy the bar file to the broker.

4. Put the instance document on the input queue.

The output messages are the same as the input. Database table contents look like

this:

CONFIRMATION

RESID

 9052

 8214

RESERVATION

RESID NAME PARTY PAYMENT

----------- -------------------- ----------- ----------

 8214 ARCHIBALD 2 1038.00

 2618 HENRY 4 120.00

 9052 THAW 3 85.00

PROVISIONAL

RESID

 2618

Now go to “Override the data source of one of the nodes.”

Override the data source of one of the nodes:

Before you start

Perform the steps in the following topics:

1. “Develop a message flow” on page 531

2. “Deploy the message set and message flow” on page 532

This is the third stage of the scenario to use a broker as an auditor. This topic

demonstrates how to override the data source of one of the nodes by changing the

configuration of its broker archive (bar) file.

1. Create a database called ALTDB, and a table called CONFIRMATION, which

contains the following columns:

RESID INTEGER

2. Create a Windows ODBC Data Source Name for the database, then register the

database with the Configuration Manager by clicking File → New → Database

Definition File.

You have created a database called ALTDB with a table called CONFIRMATION.

Now go to “Create a bar file, edit the configuration and deploy.”

Create a bar file, edit the configuration and deploy:

Before you start

Perform the steps in the following topics:

1. “Develop a message flow” on page 531

2. “Deploy the message set and message flow” on page 532

3. “Override the data source of one of the nodes”

Developing message flows 533

This is the final stage of the scenario to use a broker as an auditor. This topic

demonstrates how to create a broker archive (bar) file, edit the configuration and

deploy.

1. Add the message flow addev1 to the bar file again.

2. Select the Configure tab of the bar file editor and click the DataInsert icon.

3. Change the Data Source field from MAPDB to ALTDB, and save the bar file.

4. Deploy the bar file to the broker.

5. Put the instance document on the input queue.

The output message is the same as the input. In the ALTDB database the table

contents look like this:

CONFIRMATION

RESID

 8214

You have completed this scenario.

Scenario D: Complex message enrichment

This scenario demonstrates complex message enrichment and uses complex

message manipulation. Use the Message Broker Toolkit to create message flows

and message sets, and to create and deploy broker archive (bar) files. The scenario

also involves creating a Configuration Manager and a broker, and inputting

instance messages that can contain MQRFH2 headers.

This scenario requires the following mapping functions:

v MRM in, MRM out (namespace)

v Other nodes required to complete message

v Conditional mapping

v CASE mapping (both syntax formats)

v If/condition

v Combining multiple source fields into a single target field (inter namespace)

v Nested repeating complex and simple elements

v Target data derived from database

v String, numeric, datetime functions

v User-defined ESQL procedures and functions

v User-defined Java routines

The names and values used for message flows, message sets, elements and

attributes, and the expressions and code samples are for illustrative purposes only.

Here are the steps that are involved in this scenario:

1. “Develop a message flow that contains other nodes” on page 535

2. “Develop a message flow to map target fields from multiple other fields” on

page 537

3. “Develop a message flow and message model for mapping a complex nested,

repeating message” on page 539

4. “Develop a message flow for populating a target from a database” on page 545

5. “Develop a message flow using a user-defined ESQL function” on page 547

6. “Develop a message flow using a user-defined Java procedure” on page 549

534 Message Flows

Develop a message flow that contains other nodes:

This is the first stage of the scenario to perform complex message enrichment. This

topic demonstrates the following procedures:

v developing a message flow that contains other nodes (for example, a Filter node)

v using mappings with conditions

v developing corresponding message models, which use all main data types, and

instance messages
 1. From the Broker Application Development perspective, create the following

resources:

v a message set project and a message set called

MAPPING3_COMPLEX_messages, ensuring that the message set is

namespace enabled with XML wire format

v a message definition file called COMPLEX, which has a target namespace

www.complex.net, with prefix comp
 2. Create messages addev1, addev1s and addev1n with the following structures:

addev1

 bool (xsd:boolean) local element

 bin (xsd:hexBinary) local element

 dat (xsd:dateTime) local element

 dec (xsd:decimal) local element

 dur (xsd:duration) local element

 flt (xsd:float) local element

 int (xsd:int) local element

 str (xsd:string) local element

addev1s

 bin (xsd:hexBinary) local element

 dat (xsd:dateTime) local element

 dur (xsd:duration) local element

 str (xsd:string) local element

addev1n

 dec (xsd:decimal) local element

 flt (xsd:float) local element

 int (xsd:int) local element

 3. Create a message flow project called MAPPING3_COMPLEX_flows.

 4. Create a message flow called addev1 which contains:

MQInput ->Filter -> Mapping -> Compute

 \ \ --> RCD -> MQOutput

 \-> Mapping1-----------/

 5. In the Filter node, set the following ESQL:

IF Body.bool THEN

 RETURN TRUE;

 ELSE

 RETURN FALSE;

 END IF;

 6. In the Mapping node that is connected to the Filter true terminal (Mapping1),

open the map and select addev1 as source and addev1s as target.

 7. Wire the source to target as shown:

bin --- bin

dat --- dat

dur --- dur

str --- str

 8. In the Spreadsheet pane, expand Properties and set the following values:

MessageType | ’addev1s’

 9. Right-click the target dat and click If.

Developing message flows 535

10. Replace the condition fn:true() with $source/comp:addev1/str = ’dat’.

11. Set the value for dat to $source/comp:addev1/dat + xs:duration("P3M").

12. Right-click the condition and click Else.

13. Right-click the target dur and click If.

14. Replace the condition fn:true() with $source/comp:addev1/str = ’dur’.

15. Set the value for dur to $source/comp:addev1/dur + xs:duration("P1Y").

16. Right-click the condition and click Else.

17. Open the map for the node that is connected to the false terminal of the Filter

node (Mapping) and select addev1 as source and addev1n as target.

18. Wire the source to target as shown:

dec --- dec

flt --- flt

int --- int

19. In the Spreadsheet pane, expand Properties and set the following values:

MessageType | ’addev1n’

20. Set the ESQL in the Compute node to:

CALL CopyMessageHeaders();

 SET OutputRoot.MRM.dec = InputBody.dec * 10;

 SET OutputRoot.MRM.flt = InputBody.flt * 10;

 SET OutputRoot.MRM.int = InputBody.int * 10;

21. In the ResetContentDescriptor node, set the Message Domain to XMLNS and

select the Reset Message Domain check box.

22. Create three instance messages with the appropriate RFH2 headers:

<comp:addev1 xmlns:comp="http://www.complex.net">

<bool>1</bool>

<bin><![CDATA[010203]]></bin>

<dat>2005-05-06T00:00:00+00:00</dat>

<dec>19.34</dec>

<dur>P2Y4M</dur>

<flt>3.245E+2</flt>

<int>2104</int>

<str>dat</str>

</comp:addev1>

<comp:addev1 xmlns:comp="http://www.complex.net">

<bool>1</bool>

<bin><![CDATA[010203]]></bin>

<dat>2005-05-06T00:00:00+00:00</dat>

<dec>19.34</dec>

<dur>P2Y4M</dur>

<flt>3.245E+2</flt>

<int>2104</int>

<str>dur</str>

</comp:addev1>

<comp:addev1 xmlns:comp="http://www.complex.net">

<bool>0</bool>

<bin><![CDATA[010203]]></bin>

<dat>2005-05-06T00:00:00+00:00</dat>

<dec>19.34</dec>

<dur>P2Y4M</dur>

<flt>3.245E+2</flt>

<int>2104</int>

<str>dat</str>

</comp:addev1>

You have created the following resources:

v a message set called MAPPING3_COMPLEX_messages, which is populated with

the messages addev1, addev1s and addev1n

536 Message Flows

v a message flow called addev1 in the project MAPPING3_COMPLEX_flows,

which contains the mapping files addev1_Mapping.msgmap and

addev1._Mapping1.msgmap

v files that contain instance messages for test

Now deploy the message set and message flow.

Deploy the message set and message flow:

This is the second stage of the scenario to perform complex message enrichment.

This topic demonstrates how to deploy the message set and message flow and run

the instance messages through the broker.

1. Create a bar file called addev1.

2. Add the message set MAPPING3_COMPLEX_messages and the message flow

addev1 to the bar file.

3. Deploy the bar file to the broker.

4. Put the instance documents on the input queue.

The output messages look like this:

<comp:addev1s xmlns:comp="http://www.complex.net">

<bin><![CDATA[010203]]></bin>

<dat>2005-08-06T00:00:00-01:00</dat>

<dur>P2Y4M</dur>

<str>dat</str>

</comp:addev1s>

Now go to “Develop a message flow to map target fields from multiple other

fields.”

Develop a message flow to map target fields from multiple other fields:

Before you start

Perform the steps in the following topic:

1. “Develop a message flow that contains other nodes” on page 535

This is the third stage of the scenario to perform complex message enrichment.

This topic demonstrates how to develop a message flow to map target fields from

multiple other fields and also involves developing corresponding message models

and instance documents.

 1. In the COMPLEX message definition, in namespace www.complex.net, create

a message called addev2, which has the following structure:

addev2

 firstname (xsd:string) local element

 lastname (xsd:string) local element

 branch (xsd:string) local element

 accountno (xsd:string) local element

 balance (xsd:decimal) local element

 transvalue local complex element, base type xsd:decimal

 transdir (xsd:string) local attribute

 2. In the message set MAPPING3_COMPLEX_messages, create a new message

definition file called COMP2, which has the target namespace

www.comp2.net, with prefix c2.

 3. In the COMP2 message definition, create a message called addev2out, which

has the structure:

Developing message flows 537

addev2out

 accountdetails (xsd:string) local element

 transvalue (xsd:decimal) local element

 balance (xsd:decimal) local element

 4. Create a message flow called addev2, which contains the following mapping:

MQInput -> Mapping -> MQOutput.

 5. Open the map and select addev2 as the source and addev2out as the target.

 6. Wire the source to target as shown:

accountno --- accountdetails

balance --- balance

transvalue --- transvalue

 7. In the Spreadsheet pane, expand Properties and set the following values:

MessageType | ’addev2out’

 8. Set the accountdetails target to fn:concat($source/comp:addev2/accountno,

$source/comp:addev2/branch, $source/comp:addev2/lastname,

$source/comp:addev2/firstname).

 9. Right-click the target transvalue and click If.

10. Change the condition from fn:true() to $source/comp:addev2/transvalue/
@transdir = ’DEBIT’.

11. Select transvalue and set its value to $source/comp:addev2/transvalue * (-1).

12. Right-click the condition and click Else.

13. Right-click the target balance and click If.

14. Change the condition from fn:true() to $source/comp:addev2/transvalue/
@transdir = ’DEBIT’.

15. Select balance and set its value to $source/comp:addev2/balance -

$source/comp:addev2/transvalue.

16. Right-click the condition and click Condition.

17. Change the condition from fn:true() to $source/comp:addev2/transvalue/
@transdir = ’CREDIT’.

18. Select balance following the second condition and set its Value to

$source/comp:addev2/balance + $source/comp:addev2/transvalue.

19. Create two instance messages with the appropriate RFH2 headers:

<comp:addev2 xmlns:comp="http://www.complex.net">

<firstname>Brian</firstname>

<lastname>Benn</lastname>

<branch>52-84-02</branch>

<accountno>567432876543</accountno>

<balance>1543.56</balance>

<transvalue transdir="DEBIT">25.28</transvalue>

</comp:addev2>

<comp:addev2 xmlns:comp="http://www.complex.net">

<firstname>Brian</firstname>

<lastname>Benn</lastname>

<branch>52-84-02</branch>

<accountno>567432876543</accountno>

<balance>1543.56</balance>

<transvalue transdir="CREDIT">25.28</transvalue>

</comp:addev2>

You have created the following resources:

v a message called addev2 in the message definition called COMPLEX

v a message called addev2out in the message definition called COMP2

v a message flow called addev2, which contains the mapping file

addev2_Mapping.msgmap

538 Message Flows

v files that contain instance messages for test

Now deploy the message set and message flow

Deploy the message set and message flow:

This is the fourth stage of the scenario to perform complex message enrichment.

This topic demonstrates how to deploy the message set and message flow and run

the instance messages through the broker.

1. Create a bar file called addev2.

2. Add the message set MAPPING3_COMPLEX_messages and the message flow

addev2 to the bar file.

3. Deploy the bar file to the broker.

4. Put the instance documents on the input queue.

The output messages look like this:

<c2:addev2out xmlns:c2="http://www.comp2.net" xmlns:comp="http://www.complex.net">

<accountdetails>567432876543 52-84-02 Benn Brian</accountdetails>

<transvalue>-25.28</transvalue>

<balance>1518.28</balance>

</c2:addev2out>

Now go to “Develop a message flow and message model for mapping a complex

nested, repeating message.”

Develop a message flow and message model for mapping a complex nested,

repeating message:

Before you start

Perform the steps in the following topics:

1. “Develop a message flow that contains other nodes” on page 535

2. “Develop a message flow to map target fields from multiple other fields” on

page 537

This is the fifth stage of the scenario to perform simple message enrichment. This

topic demonstrates how to develop a message flow and message model for

mapping a complex nested, repeating message. It also involves developing

corresponding instance documents.

 1. In the COMPLEX message definition, in namespace ’www.complex.net’, create

a message called addev3, which has the following structure:

 addev3

 choice

 sstr (xsd:string) local element

 intrep (xsd:int) local element, minOcc=2, maxOcc=6

 dur (xsd:duration) local element

 choice

 comp1 local complex element

 dat1 (xsd:date) local element

 sval (xsd:string) local element

 comp2 local complex element

 bool1 (xsd:boolean) local element

 dat2 (xsd:date) local element

 comprep local complex element, minOcc=1, maxOcc=4

 int1 (xsd:int) local element

 dec1 (xsd:decimal) local element

 binel (xsd:hexBinary) local element

 lelem local complex element, base type xsd:string

 latt (xsd:int) local attribute

Developing message flows 539

lcomp local complex element

 head (xsd:string) local element

 incomp local complex element

 count (xsd:int) local element

 comp:gcompel global complex element, minOcc=0, maxOcc=-1

 fstr (xsd:string) local element

 multel local complex element

 in1 (xsd:boolean) local element

 in2 (xsd:string) local element

 in3 (xsd:float) local element

 footer (xsd:string) local element

 repstr (xsd:string) local element, minOcc=1, maxOcc=-1

 2. Create a message flow called addev3, which contains the following mapping:

MQInput> Mapping> MQOutput.

 3. Open the map and select addev3 as the source and target.

 4. Map each source element to its corresponding target element:

sstr --- sstr

intrep --- intrep

dur --- dur

dat1 --- dat1

sval --- sval

bool1 --- bool1

dat2 --- dat2

int1 --- int1

dec1 --- dec1

binel --- binel

lelem --- lelem

latt --- latt

head --- head

count --- count

fstr --- fstr

multel --- multel

footer --- footer

repstr --- repstr

 5. In the Spreadsheet pane, for the first condition, change fn:true() to

fn:exists($source/comp:addev3/sstr).

 6. For the second condition, change fn:true() to fn:exists($source/comp:addev3/
intrep).

 7. For the third condition, change fn:true() to fn:exists($source/comp:addev3/
dur).

 8. For the first complex choice condition, change fn:true() to

fn:exists($source/comp:addev3/comp1).

 9. For the second complex choice condition, change fn:true() to

fn:exists($source/comp:addev3/comp2).

10. For the third complex choice condition, change fn:true() to

fn:exists($source/comp:addev3/comprep).

11. Create the following instance messages, with appropriate RFH2 headers:

<comp:addev3 xmlns:comp="http://www.complex.net">

<sstr>first</sstr>

<comp1>

<dat1>2005-06-24</dat1>

<sval>date value</sval>

</comp1>

<binel><![CDATA[3132333435]]></binel>

<lelem latt="24">twenty four</lelem>

<lcomp>

<head>nesting start</head>

<incomp>

<count>3</count>

<comp:gcompel>

540 Message Flows

<fstr>first</fstr>

<multel>

<in1>1</in1>

<in2>C</in2>

<in3>2.45E+1</in3>

</multel>

</comp:gcompel>

<comp:gcompel>

<fstr>second</fstr>

<multel>

<in1>1</in1>

<in2>D</in2>

<in3>7.625E+3</in3>

</multel>

</comp:gcompel>

<comp:gcompel>

<fstr>third</fstr>

<multel>

<in1>0</in1>

<in2>C</in2>

<in3>4.9E+0</in3>

</multel>

</comp:gcompel>

</incomp>

<footer>nesting end</footer>

</lcomp>

<repstr>abc</repstr>

<repstr>def</repstr>

<repstr>ghi</repstr>

<repstr>jkl</repstr>

<repstr>mno</repstr>

</comp:addev3>

<comp:addev3 xmlns:comp="http://www.complex.net">

<intrep>45</intrep>

<intrep>12</intrep>

<intrep>920</intrep>

<comp2>

<bool1>1</bool1>

<dat2>2005-06-24</dat2>

</comp2>

<binel><![CDATA[3132333435]]></binel>

<lelem latt="24">twenty four</lelem>

<lcomp>

<head>nesting start</head>

<incomp>

<count>5</count>

<comp:gcompel>

<fstr>first</fstr>

<multel>

<in1>1</in1>

<in2>C</in2>

<in3>2.45E+1</in3>

</multel>

</comp:gcompel>

<comp:gcompel>

<fstr>second</fstr>

<multel>

<in1>1</in1>

<in2>D</in2>

<in3>7.625E+3</in3>

</multel>

</comp:gcompel>

<comp:gcompel>

<fstr>third</fstr>

<multel>

<in1>0</in1>

<in2>C</in2>

Developing message flows 541

<in3>4.9E+0</in3>

</multel>

</comp:gcompel>

<comp:gcompel>

<fstr>fourth</fstr>

<multel>

<in1>1</in1>

<in2>F</in2>

<in3>2.98E+1</in3>

</multel>

</comp:gcompel>

<comp:gcompel>

<fstr>fifth</fstr>

<multel>

<in1>0</in1>

<in2>D</in2>

<in3>8.57E-2</in3>

</multel>

</comp:gcompel>

</incomp>

<footer>nesting end</footer>

</lcomp>

<repstr>abc</repstr>

</comp:addev3>

<comp:addev3 xmlns:comp="http://www.complex.net">

<dur>P2Y2M</dur>

<comp3>

<int1>6</int1>

<dec1>2821.54</dec1>

</comp3>

<comp3>

<int1>41</int1>

<dec1>0.02</dec1>

</comp3>

<binel><![CDATA[3132333435]]></binel>

<lelem latt="24">twenty four</lelem>

<lcomp>

<head>nesting start</head>

<incomp>

<count>0</count>

</incomp>

<footer>nesting end</footer>

</lcomp>

<repstr>abc</repstr>

<repstr>def</repstr>

<repstr>ghi</repstr>

<repstr>jkl</repstr>

<repstr>mno</repstr>

<repstr>pqr</repstr>

<repstr>stu</repstr>

<repstr>vwx</repstr>

</comp:addev3>

You have created the following resources:

v a message called addev3 in the message definition COMPLEX

v a message flow called addev3, which contains the mapping file

addev3_Mapping.msgmap

v files that contain instance messages for test

Now deploy the message set and message flow.

Deploy the message set and message flow:

542 Message Flows

This is the sixth stage of the scenario to perform simple message enrichment. This

topic demonstrates how to deploy the message set and message flow and run the

instance messages through the broker.

1. Create a bar file called addev3.

2. Add the message set MAPPING3_COMPLEX_messages and the message flow

addev3 to the bar file.

3. Deploy the bar file to the broker.

4. Put the instance documents on the input queue.

The output messages look like this:

<comp:addev3 xmlns:comp="http://www.complex.net">

<sstr>first</sstr>

<comp1>

<dat1>2005-06-24</dat1>

<sval>date value</sval>

</comp1>

<binel><![CDATA[3132333435]]></binel>

<lelem latt="24">twenty four</lelem>

<lcomp>

<head>nesting start</head>

<incomp>

<count>3</count>

<comp:gcompel>

<fstr>first</fstr>

<multel>

<in1>1</in1>

<in2>C</in2>

<in3>2.45E+1</in3>

</multel>

</comp:gcompel>

<comp:gcompel>

<fstr>second</fstr>

<multel>

<in1>1</in1>

<in2>D</in2>

<in3>7.625E+3</in3>

</multel>

</comp:gcompel>

<comp:gcompel>

<fstr>third</fstr>

<multel>

<in1>0</in1>

<in2>C</in2>

<in3>4.9E+0</in3>

</multel>

</comp:gcompel>

</incomp>

<footer>nesting end</footer>

</lcomp>

<repstr>abc</repstr>

<repstr>def</repstr>

<repstr>ghi</repstr>

<repstr>jkl</repstr>

<repstr>mno</repstr>

</comp:addev3>

<comp:addev3 xmlns:comp="http://www.complex.net">

<intrep>45</intrep>

<intrep>12</intrep>

<intrep>920</intrep>

<comp2>

<bool1>1</bool1>

<dat2>2005-06-24</dat2>

</comp2>

Developing message flows 543

<binel><![CDATA[3132333435]]></binel>

<lelem latt="24">twenty four</lelem>

<lcomp>

<head>nesting start</head>

<incomp>

<count>5</count>

<comp:gcompel>

<fstr>first</fstr>

<multel>

<in1>1</in1>

<in2>C</in2>

<in3>2.45E+1</in3>

</multel>

</comp:gcompel>

<comp:gcompel>

<fstr>second</fstr>

<multel>

<in1>1</in1>

<in2>D</in2>

<in3>7.625E+3</in3>

</multel>

</comp:gcompel>

<comp:gcompel>

<fstr>third</fstr>

<multel>

<in1>0</in1>

<in2>C</in2>

<in3>4.9E+0</in3>

</multel>

</comp:gcompel>

<comp:gcompel>

<fstr>fourth</fstr>

<multel>

<in1>1</in1>

<in2>F</in2>

<in3>2.98E+1</in3>

</multel>

</comp:gcompel>

<comp:gcompel>

<fstr>fifth</fstr>

<multel>

<in1>0</in1>

<in2>D</in2>

<in3>8.57E-2</in3>

</multel>

</comp:gcompel>

</incomp>

<footer>nesting end</footer>

</lcomp>

<repstr>abc</repstr>

</comp:addev3>

<comp:addev3 xmlns:comp="http://www.complex.net">

<dur>P2Y2M</dur>

<comp3>

<int1>6</int1>

<dec1>2821.54</dec1>

</comp3>

<comp3>

<int1>41</int1>

<dec1>0.02</dec1>

</comp3>

<binel><![CDATA[3132333435]]></binel>

<lelem latt="24">twenty four</lelem>

<lcomp>

<head>nesting start</head>

<incomp>

<count>0</count>

544 Message Flows

</incomp>

<footer>nesting end</footer>

</lcomp>

<repstr>abc</repstr>

<repstr>def</repstr>

<repstr>ghi</repstr>

<repstr>jkl</repstr>

<repstr>mno</repstr>

<repstr>pqr</repstr>

<repstr>stu</repstr>

<repstr>vwx</repstr>

</comp:addev3>

Now go to “Develop a message flow for populating a target from a database.”

Develop a message flow for populating a target from a database:

Before you start

Perform the steps in the following topics:

1. “Develop a message flow that contains other nodes” on page 535

2. “Develop a message flow to map target fields from multiple other fields” on

page 537

3. “Develop a message flow and message model for mapping a complex nested,

repeating message” on page 539

This is the seventh stage of the scenario to perform complex message enrichment.

This topic demonstrates how to develop a message flow for populating a target

from a database. It also involves developing a corresponding message model and

instance documents.

 1. Create a database called MAPDB and create a table called TRANSACTION,

which has the following columns:

ACCOUNT VARCHAR(12)

TDATE DATE

VALUE DECIMAL(8,2)

 2. Populate the database with the values shown:

’12345678901’, ’2005-04-25’, -14.25

’12345678901’, ’2005-04-25’, 100.00

’12345678901’,’2005-05-15’, 2891.30

’12345678901’,’2005-06-11’, -215.28

 3. Create a Windows ODBC Data Source Name for the database and then add a

definition for the database to the workbench by clicking File → New →

Database Definition File.

 4. In the COMPLEX message definition, in namespace www.complex.net, create

a message called addev4in, which has the following structure:

addev4in

 account (xsd:string) local element

 tdate (xsd:date) local element

 5. In the COMP2 message definition, in namespace www.comp2.net, create a

message called addev4out, which has the following structure:

addev4out

 account (xsd:string) local element

 tdate (xsd:date) local element

 value (xsd:decimal) local element, minOcc=0, maxOcc=-1

 6. Create a message flow called addev4, which contains the following mapping:

MQInput> Mapping> MQOutput.

Developing message flows 545

7. Open the map and select addev4in as the source and addev4out as the target.

 8. Map the input to outputs as shown:

account --- account

tdate --- tdate

 9. In the Spreadsheet pane, right-click the target value and click Select Data

Source.

10. Select MAPDB from the dialog box and click Finish.

11. In the top pane, expand the MAPDB tree and wire the values as shown:

VALUE --- value

12. In the Spreadsheet pane, select the target $db:select and change fn:true() to:

$db:select.MAPDB.SCHEMA.TRANSACTION.ACCOUNT=$source/comp:addev4in/
account and $db:select.MAPDB.SCHEMA.TRANSACTION.TDATE=$source/
comp:addev4in/tdate

13. Expand the Properties tree and set the following values:

MessageType | ’addev4out’

14. Set the data source property for the Mapping node to MAPDB.

15. Create the following instance messages with appropriate RFH2 headers:

<comp:addev4in xmlns:comp="http://www.complex.net">

<account>12345678901</account>

<tdate>2005-05-15</tdate>

</comp:addev4in>

<comp:addev4in xmlns:comp="http://www.complex.net">

<account>12345678901</account>

<tdate>2005-04-25</tdate>

</comp:addev4in>

You have created the following resources:

v a message called addev4in in a message definition called COMPLEX

v a message called addev4out in a message definition called COMP

v a message flow called addev4, which contains the mapping file

addev4_Mapping.msgmap

v files that contain instance messages

Now deploy the message set and message flow.

Deploy the message set and message flow:

This is the eighth stage of the scenario to perform complex message enrichment.

This topic demonstrates how to deploy the message set and message flow and run

the instance messages through the broker.

1. Create a bar file called addev4.

2. Add the message set MAPPING3_COMPLEX_messages and the message flow

addev4 to the bar file.

3. Deploy the bar file to the broker.

4. Put the instance documents on the input queue.

The output messages look like this:

<c2:addev4out xmlns:c2="http://www.comp2.net" xmlns:comp="http://www.complex.net" >

<account>12345678901</account>

<tdate>2005-05-15</tdate>

<value>2891.3</value>

</c2:addev4out>

546 Message Flows

Now go to “Develop a message flow using a user-defined ESQL function.”

Develop a message flow using a user-defined ESQL function:

Before you start

Perform the steps in the following topics:

1. “Develop a message flow that contains other nodes” on page 535

2. “Develop a message flow to map target fields from multiple other fields” on

page 537

3. “Develop a message flow and message model for mapping a complex nested,

repeating message” on page 539

4. “Develop a message flow for populating a target from a database” on page 545

This is the ninth stage of the scenario to perform simple message enrichment. This

topic demonstrates how to develop a message flow using a user-defined ESQL

function. It also involves developing corresponding message models and instance

documents.

1. In the COMPLEX message definition, in namespace www.complex.net, create

messages called addev5in and addev5out, which have the following structures:

addev5in

 value1 (xsd:decimal) local element

 operator (xsd:string) local element

 value2 (xsd:decimal) local element

 rate (xsd:decimal) local element

addev5out

 grossvalue (xsd:decimal) local element

 netvalue (xsd:decimal) local element

2. Create a message flow called addev5, which contains the following mapping:

MQInput> Mapping> MQOutput.

3. Open the map and select addev5in as the source and addev5out as the target.

4. In the MAPPING3_COMPLEX_flows project, create an ESQL file called addev5

and put these functions in it:

CREATE FUNCTION calcGrossvalue(IN value1 DECIMAL, IN operator CHAR,

 IN value2 DECIMAL) RETURNS DECIMAL

 BEGIN

 DECLARE outval DECIMAL;

 CASE operator

 WHEN ’PLUS’ THEN

 SET outval = value1 + value2;

 WHEN ’MINUS’ THEN

 SET outval = value1 - value2;

 WHEN ’MULTIPLY’ THEN

 SET outval = value1 * value2;

 WHEN ’DIVIDE’ THEN

 SET outval = value1 / value2;

 ELSE

 THROW USER EXCEPTION MESSAGE 2949 VALUES(’Invalid Operator’, operator);

 SET outval = -999999;

 END CASE;

 RETURN outval;

 END;

CREATE FUNCTION calcNetvalue(IN value1 DECIMAL, IN operator CHAR, IN value2 DECIMAL,

 IN rate DECIMAL) RETURNS DECIMAL

 BEGIN

Developing message flows 547

DECLARE grossvalue DECIMAL;

 SET grossvalue=calcGrossvalue(value1, operator, value2);

 RETURN (grossvalue * rate);

 END;

5. In the Message Mapping editor Spreadsheet pane, expand the message and

select grossvalue.

6. In the Expression pane, enter the expression:

esql:calcGrossvalue($source/comp:addev5in/value1,

$source/comp:addev5in/operator,

$source/comp:addev5in/value2)

7. Select the target netvalue, and in the Expression pane, enter the following

expression:

esql:calcNetvalue($source/comp:addev5in/value1,

$source/comp:addev5in/operator,

$source/comp:addev5in/value2,

$source/comp:addev5in/rate)

8. Expand the Properties tree and set the following values:

MessageType | ’addev5out’

9. Create the following instance messages, with appropriate RFH2 headers:

<comp:addev5in xmlns:comp="http://www.complex.net">

<value1>125.32</value1>

<operator>PLUS</operator>

<value2>25.86</value2>

<rate>0.60</rate>

</comp:addev5in>

<comp:addev5in xmlns:comp="http://www.complex.net">

<value1>118.00</value1>

<operator>MINUS</operator>

<value2>245.01</value2>

<rate>0.30</rate>

</comp:addev5in>

<comp:addev5in xmlns:comp="http://www.complex.net">

<value1>254.02</value1>

<operator>MULTIPLY</operator>

<value2>3.21</value2>

<rate>0.75</rate>

</comp:addev5in>

<comp:addev5in xmlns:comp="http://www.complex.net">

<value1>1456.33</value1>

<operator>DIVIDE</operator>

<value2>18.58</value2>

<rate>0.92</rate>

</comp:addev5in>

<comp:addev5in xmlns:comp="http://www.complex.net">

<value1>254.02</value1>

<operator>MOD</operator>

<value2>3.21</value2>

<rate>0.75</rate>

</comp:addev5in>

You have created the following resources:

v messages called addev5in and addev5out in a message definition called

COMPLEX

v a message flow called addev5, which contains the mapping file

addev5_Mapping.msgmap and ESQL file addev5.esql

v files containing instance messages

Now deploy the message set and message flow.

548 Message Flows

Deploy the message set and message flow:

This is the tenth stage of the scenario to perform simple message enrichment. This

topic demonstrates how to deploy the message set and message flow and run the

instance messages through the broker.

1. Create a bar file called addev5.

2. Add the message set MAPPING3_COMPLEX_messages and the message flow

addev5 to the bar file.

3. Deploy the bar file to the broker.

4. Put the instance documents on the input queue.

The output messages look like this:

<comp:addev5out xmlns:comp="http://www.complex.net">

<grossvalue>151.18</grossvalue>

<netvalue>90.708</netvalue>

</comp:addev5out>

<comp:addev5out xmlns:comp="http://www.complex.net">

<grossvalue>-127.01</grossvalue>

<netvalue>-38.103</netvalue>

</comp:addev5out>

<comp:addev5out xmlns:comp="http://www.complex.net">

<grossvalue>815.4042</grossvalue>

<netvalue>611.55315</netvalue>

</comp:addev5out>

<comp:addev5out xmlns:comp="http://www.complex.net">

<grossvalue>78.38159311087190527448869752421959</grossvalue>

<netvalue>72.11106566200215285252960172228202</netvalue>

</comp:addev5out>

If there is no message output look for an entry in the event log like this:

BIP2949 (BRK.default) A user generated ESQL exception has been thrown. The additional

information provided with this exception is: ’’Invalid Operator’’ ’’MOD’’

’addev5.Mapping.ComIbmCompute’ ’%5’ ’%6’ ’%7’ ’%8’ ’%9’ ’%10’ ’%11’

This exception was thrown by a THROW EXCEPTION statement. This is the

normal behavior of the THROW statement; this is a user-generated exception, so

the user action is determined by the message flow and the type of exception that is

thrown.

Now go to “Develop a message flow using a user-defined Java procedure.”

Develop a message flow using a user-defined Java procedure:

Before you start

Perform the steps in the following topics:

1. “Develop a message flow that contains other nodes” on page 535

2. “Develop a message flow to map target fields from multiple other fields” on

page 537

3. “Develop a message flow and message model for mapping a complex nested,

repeating message” on page 539

4. “Develop a message flow for populating a target from a database” on page 545

5. “Develop a message flow using a user-defined ESQL function” on page 547

Developing message flows 549

This is the eleventh stage of the scenario to perform simple message enrichment.

This topic demonstrates how to develop a message flow using a user-defined Java

procedure. It also involves developing corresponding message models and instance

documents.

 1. In the COMPLEX message definition, in namespace www.complex.net, create

messages called addev6in and addev6out, which have the following

structures:

addev6in

 hexdata (xsd:hexBinary) local element

addev6out

 decval (xsd:decimal) local element

 fltval (xsd:float) local element

 intval (xsd:int) local element

 2. Create a message flow called addev6, which contains the following mapping:

MQInput> Mapping> MQOutput.

 3. Open the map and select addev6in as the source and addev6out as the target.

 4. In the MAPPING3_COMPLEX_flows project, create an ESQL file called

addev6 and put these functions in it:

CREATE PROCEDURE decFromBinary(IN hexval BLOB)

 RETURNS DECIMAL

 LANGUAGE JAVA

 EXTERNAL NAME "addev6.decFromBinary";

CREATE PROCEDURE fltFromBinary(IN hexval BLOB)

 RETURNS DECIMAL

 LANGUAGE JAVA

 EXTERNAL NAME "addev6.fltFromBinary";

CREATE PROCEDURE intFromBinary(IN hexval BLOB)

 RETURNS DECIMAL

 LANGUAGE JAVA

 EXTERNAL NAME "addev6.intFromBinary";

 5. Create a java source file called addev6.java, which has the following contents:

import java.lang.*;

import java.math.*;

public class addev6 {

 //

 // Return decimal element from binary string

 //

 public static BigDecimal decFromBinary(byte[] hexval) {

 // Look for element named decval

 String search = "decval";

 String snval = findElement(hexval ,search);

 // Convert the value to decimal type

 BigDecimal numval = new BigDecimal(snval);

 return numval;

 }

 //

 // Return float element from binary string

 //

 public static Double fltFromBinary(byte[] hexval) {

 // Look for element named fltval

 String search = "fltval";

 String snval = findElement(hexval ,search);

 // Convert the value to float type

 Double numval = new Double(snval);

 return numval;

 }

 //

 // Return integer element from binary string

 //

 public static Long intFromBinary(byte[] hexval) {

550 Message Flows

// Look for element named intval

 String search = "intval";

 String snval = findElement(hexval ,search);

 // Convert the value to integer type

 Long numval = new Long(snval);

 return numval;

 }

 //

 // Locate the named element and its value in the binary data

 //

 private static String findElement(byte[] hexval, String search) {

 // Convert bytes to string

 String hexstr = new String(hexval);

 // Fixed length label/value pairs (length=14)

 int nvals = hexstr.length() / 14;

 String numval = "";

 String[] label = new String[nvals];

 String[] value = new String[nvals];

 // Loop over number of label/value pairs

 for (int i=0; i < nvals; i ++) {

 // get start position

 int st = i * 14;

 // label is length 6

 int endl = st + 6;

 // value is length 8

 int endv = endl + 8;

 // extract label and value from string

 label[i] = hexstr.substring(st, endl);

 value[i] = hexstr.substring((endl+1), endv);

 // Check whether the current pair has the label requested

 if (label[i].compareTo(search) == 0) {

 // trim padding from the value

 numval = value[i].trim();

 }

 }

 return numval;

 }

}

 6. Compile the java code and add the location of the class file to the system

classpath. You might need to restart Windows if you edit the CLASSPATH.

 7. In the Spreadsheet pane of the Message Mapping editor, expand the target

message and set the target decval to the value esql:decFromBinary($source/
comp:addev6in/bval).

 8. Set the target fltval to esql:fltFromBinary($source/comp:addev6in/bval).

 9. Set the target intval to esql:intFromBinary($source/comp:addev6in/bval).

10. Expand the Properties target and set the values shown:

MessageType | ’addev6out

11. Create the following instance message, with appropriate RFH2 headers:

<comp:addev6in xmlns:comp="http://www.complex.net">

<bval>

<![CDATA[64656376616c20202031342e3238666c7476616c

2020312e34452b32696e7476616c2020202020313230]]>

</bval>

</comp:addev6in>

You have created the following resources:

v messages called addev6in and addev6out in a message definition called

COMPLEX

v a message flow called addev6, which contains the mapping file

addev6_Mapping.msgmap and ESQL file addev6.esql

Developing message flows 551

v a Java source file called addev6.java and a compiled class file called addev6.class

in a place where the system CLASSPATH can find it

v files that contain instance messages

Now deploy the message set and message flow.

Deploy the message set and message flow:

This is the final stage of the scenario to perform simple message enrichment. This

topic demonstrates how to deploy the message set and message flow and run the

instance message through the broker.

1. Create a bar file called addev6.

2. Add the message set MAPPING3_COMPLEX_messages and the message flow

addev6 to the bar file.

3. Deploy the bar file to the broker.

4. Put the instance documents on the input queue.

The output message looks like this:

<comp:addev6out xmlns:comp="http://www.complex.net">

<decval>14.28</decval>

<fltval>1.4E+2</fltval>

<intval>120</intval>

</comp:addev6out>

You have completed this scenario.

Scenario E: Resolving a choice with alternative message data

Before you start:

1. Create the appropriate message model, either by using the tooling or by

importing the message structure files (for example, C header or XML Schema

Definition files).

2. Create a message flow that has the following structure:

MQInput> Mapping node> MQOutput

This scenario demonstrates how to resolve a choice with alternative message data.

The message model used in this example is:

chsmess (message)

 head (xsd:string)

 choice (group)

 str1 (xsd:string)

 int1 (xsd:int)

 dur1 (xsd:duration)

 footer (xsd:string)

 1. Switch to the Broker Application Development perspective.

 2. Right-click the Mapping node and click Open Map.

 3. Accept the default project and name, and click Next.

 4. Accept the default usage and click Next.

 5. Clear the Based on records in a database check box and click Next.

 6. Select chsmess as the source message and the target message, and click OK.

 7. In the Connection pane, open the source and target trees by clicking on the

addition (+) icons.

 8. Open the chsmess tree in the Source and Target panes in the same way.

552 Message Flows

9. In both Source and Target panes, click the addition (+) icon adjacent to the

choice group.

10. Click head in the Message Mapping editor Source pane and drag it onto head

in the Target pane. A line joins them.

11. Repeat Step 10 for each corresponding element (str1, int1, dur1, and footer.)

12. In the Map Script | Value table, open the tree by clicking the $target + box.

13. Open the chsmess tree, then open the if. A set of condition elements appears.

14. Open each condition. One condition exists for each choice. Each condition has

the function fn:true().

15. Click the first function (for example, for str1) and change it in the Edit pane

to: $source/chsmess/head=’str1. If the input element head has a value str1,

the assignment str1 <- $source/chsmess/str1 takes place.

16. Click the second function (for example, for int1) and change it in the

Expression editor to: $source/chsmess/head=’int1’. If the input element head

has a value int1, the assignment int1 <- $source/chsmess/int1 takes place.

17. Click the third function (for example, for dur1) and change it in the

Expression editor to: $source/chsmess/head=’dur1’. If the input element head

has a value dur1, the assignment dur1 <- $source/chsmess/dur1 takes place.

18. Save the mapping by clicking File → Save.

You have completed this scenario. The message model contains a choice that has

been resolved using other data in the instance message.

Scenario F: Updating the value of a message element

Before you start:

1. Create the appropriate message model, either by using the tooling or by

importing the message structure files (for example, C header or XML Schema

Definition files).

2. Create a message flow that has the following structure:

MQInput> Mapping node> MQOutput

This scenario demonstrates how to update the value of a message element. The

message model used in this example is:

simple (message)

 int (xsd:int)

 str (xsd:str)

 1. Switch to the Broker Application Development perspective.

 2. Right-click the Mapping node and click Open Map.

 3. Select simple as the source message and the target message and click OK.

 4. In the connection pane, open the source and target trees by clicking the

addition (+) icons.

 5. Open the simple trees on both sides in the same way.

 6. Select int in the Message Mapping editor Source pane, and drag it onto int in

the Target pane. A line joins them.

 7. Select str in the Message Mapping editor Source pane and drag it onto str in

the Target pane. A line joins them.

 8. In the Map Script | Value table, open the tree by clicking the $target + box

 9. Open the simple tree in the same way; both int and str have values (for

example, int $source/simple/int str $source/simple/str.

10. Select the value for int. The value appears in the Expression Editing pane.

Developing message flows 553

11. Edit the value so that it is: $source/simple/int + 1 and press Enter. The

value in the table is updated (this increments the input value).

12. Select the value for str and edit it so that it is: esql:upper($source/simple/
str), and press Enter. The value in the table is updated (this converts the

input value to upper case).

13. Save the mapping by clicking File> Save.

You have completed this scenario. The input and output messages have the same

structure and format, but the element values have been modified.

Defining a promoted property

Before you start:

Read the concept topic about promoted properties.

When you create a message flow, you can promote properties from individual

nodes within that message flow to the message flow level. Properties promoted in

this way override the property values that you have set for the individual nodes.

You can perform the following tasks related to promoting properties:

v “Promoting a property”

v “Renaming a promoted property” on page 557

v “Removing a promoted property” on page 558

v “Converging multiple properties” on page 559

Some of the properties that you can promote to the message flow are also

configurable; you can modify them when you deploy the broker archive file in

which you have stored the message flow to each broker. If you set values for

configurable properties when you deploy a broker archive file, the values that you

set override values set in the individual nodes, and those that you have promoted.

Promoting a property

You can promote a node property to the message flow level to simplify the

maintenance of the message flow and its nodes, and to provide common values for

multiple nodes within the flow by converging promoted properties.

Before you start:

v Create a message flow

v Read the concept topic about promoted properties

The majority of message flow node properties are available for promotion, but you

cannot promote the following properties:

v Properties that name mapping modules

v A property group (but you can promote an individual property)

v A property that you cannot edit (for example, the Fix property of the MQInput

node)

v The description properties (Short Description and Long Description)

v Complex properties (for example, the Query elements property of the

DatabaseRoute node, or the Opaque elements property of the MQInput and

several other nodes)

To promote message flow node properties to the message flow level, perform these

steps.

554 Message Flows

1. Switch to the Broker Application Development perspective.

2. Open the message flow for which you want to promote properties.

3. Right-click the node whose properties you want to promote and click Promote

Property.

The Promote Property dialog box is displayed.

The left side of the dialog box lists all available properties for all the nodes

within the message flow. The properties for the node that you clicked are

expanded. You can expand the properties for all the nodes in the open message

flow, regardless of the node that you clicked initially.

The right side of the dialog box displays the name of the open message flow

and all the properties that are currently promoted to the message flow. If you

have not yet promoted any properties, only the message flow name is

displayed as the root of the promoted property tree, as shown in the example

above. If you have already promoted properties from this node, the properties

appear on the right, but not on the left.

4. Select the property or properties that you want to promote to the message flow.

You can select multiple properties by holding down Ctrl and selecting the

properties.

5. Click Promote. The Target Selection dialog box opens and displays valid targets

for the promotion.

6. Select the destination group or property for the properties that you want to

promote. You can group together related properties from the same or different

nodes in the message flow by dropping the selected properties onto a group or

Developing message flows 555

property that already exists, or you can create a new target for the promotion

by clicking New Group or New Property. You can rename groups and

properties by selecting them and clicking Rename.

7. Click OK to confirm your selections and close the Target Selection dialog box.

If you create a new group or property using the Target Selection dialog box, the

changes persist even if you select Cancel in the dialog box. When the dialog

box closes, groups or properties that you have created using the Target

Selection dialog box appear in the Promote Property dialog box. You can

remove any of these properties from the Promote Property dialog box by

selecting them and clicking Remove.

8. Click OK to commit your changes and close the Promoted Property dialog box.

If you click Apply, the changes are committed but the dialog box remains

open.

The message flow node properties are promoted to the message flow. When you

have promoted a property, you can no longer make any changes to that property

at the node level; you can update its value only at the message flow level. To view

the message flow’s properties, click the message flow (not the individual nodes) in

the Message Flow editor to display the properties in the Properties view. The

properties that you have promoted are organized in the groups that you created. If

you now set a value for one of these properties, that value appears as the default

value for the property whenever the message flow is included in other message

flows.

When you select an embedded message flow within another message flow (a

subflow) and view its properties, you see the promoted property values. If you

look inside the embedded flow (by selecting Open Subflow), you see the original

values for the properties. The value of a promoted property does not replace the

original property, but it takes precedence when you deploy the message flow.

Promoting properties by dragging

You can also promote properties from the Promote Property dialog box by

dragging the selected property or properties from the left pane of the Promote

Property dialog box to the right pane, as described in the following steps.

1. Select the property that you want to promote. You can select multiple

properties by holding down Ctrl, and selecting the properties.

2. You can promote the selected properties using the following methods:

v Drop the selected property or properties in an empty space.

A new group is created automatically for the message flow, and the property

is placed in it, with the original name of the property and the name of the

message flow node from which it came displayed beneath the property entry.

The name of the first group that is created is Group1 by default. If a group

called Group1 already exists, the group is given the name Group2, and so on.

You can rename the group by double-clicking it and entering new text, or by

selecting the group in the Promoted properties pane and clicking Rename.

When you create a new promoted property, the name that you enter is the

name by which the property is known within the system, and must meet

certain Java and XML naming restrictions. These restrictions are enforced by

the dialog box, and a message is displayed if you enter a name that includes

a non-valid character. For example, you cannot include a space or the double

quote symbol, ″.

If you are developing a message flow in a user-defined project that will be

delivered as an Eclipse plug-in, you can add translations for the promoted

properties that you have added. Translated names can contain characters,

556 Message Flows

such as space, that are restricted for system names. The option to provide

translated strings for promoted properties is not available if you are working

with a message flow in a message flow project.

v Drop the selected property or properties onto a group that already exists, to

group together related properties from the same or different nodes in the

message flow.

For example, you might want to group all promoted properties that relate to

database interactions. You can change the groups to which promoted

properties belong at any time by selecting a property in the Promoted

properties pane and dragging it onto a different group.

v Drop the selected property or properties onto a property that already exists,

to converge related properties from the same or different nodes in the

message flow.

For example, you might want to create a single promoted property that

overrides the property on each node that defines a data source.

For more information on converging properties, see “Converging multiple

properties” on page 559.

Promoting mandatory properties

If you promote a property that is mandatory (that is, an asterisk appears beside the

name in the Properties view), the mandatory characteristic of the property is

preserved. When a mandatory property is promoted, its value does not need to be

set at the node level. If the flow that contains the mandatory promoted property is

included as a subflow within another flow, the property must be populated for the

subflow node.

Promoting properties through a hierarchy of message flows

You can repeat the process of promoting message flow node properties through

several levels of message flow. You can promote properties from any level in the

hierarchy to the next level above, and so on through the hierarchy to the top level.

The value of a property is propagated from the highest point in the hierarchy at

which it is set down to the original message flow node when the message flow is

deployed to a broker. The value of that property on the original message flow

node is overridden.

Renaming a promoted property

If you have promoted a property from the node to the message flow level, it is

initially assigned the same name that it has at the node level. You can rename the

property to have a more meaningful name in the context of the message flow.

Before you start:

v Promote a property

v Read the concept topic about promoted properties

To rename a promoted property :

1. Switch to the Broker Application Development perspective.

2. Open the message flow for which you want to promote properties by

double-clicking the message flow in the Broker Development view. You can also

open the message flow by right-clicking it in the Broker Development view and

clicking Open The message flow contents are displayed in the editor view.

Developing message flows 557

If this is the first message flow that you have opened, the message flow control

window and the list of available built-in message flow nodes are also

displayed, to the left of the editor view.

3. In the editor view, right-click the symbol of the message flow node whose

properties you want to promote.

4. Select Promote Property.

The Promote Property dialog is displayed.

5. Promoted properties are shown in the Promoted properties pane on the right of

the Promote property dialog. Double-click the promoted property in the list of

properties that are currently promoted to the message flow level, or select the

property you want to rename and click Rename. The name is highlighted, and

you can edit it. Modify the existing text or enter new text to give the property a

new name, and press Enter.

6. Click Apply to commit this change without closing the Property Promotion

dialog. Click OK to complete your updates and close the dialog.

Removing a promoted property

If you have promoted a property from the node to the message flow level, you can

remove (delete) it if you no longer want to specify its value at the message flow

level. The property reverts to the value that you specified at the node level. If you

remove a promoted property that is a mandatory property, ensure that you have

set a value at the node level. If you have not, you cannot successfully deploy a

broker archive file that includes this message flow.

Before you start:

v Promote a property

v Read the concept topic about promoted properties

If you have promoted one or more message flow node properties, and want to

delete them:

1. Switch to the Broker Application Development perspective.

2. Open the message flow for which you want to promote properties by

double-clicking the message flow in the Broker Development view. You can also

open the message flow by right-clicking it in the Broker Development view and

clicking Open The message flow contents are displayed in the editor view.

558 Message Flows

If this is the first message flow that you have opened, the message flow control

window and the list of available built-in message flow nodes are also

displayed, to the left of the editor view.

3. In the Editor view, right-click the symbol of the message flow node whose

properties you want to promote.

4. Select Promote Property.

The Promote Property dialog is displayed.

5. Select the promoted property that you want to remove in the list of properties

on the right of the dialog, and click Remove. The property is removed from the

list on the right. It is restored to the list on the left, in its appropriate place in

the tree of properties for the node from which you promoted it. You can

promote this property again if you choose.

6. If you want to delete all the promoted properties within a single group, select

the group in the list on the right and click Remove. The group and all the

properties it contains are deleted from this list: the individual properties that

you promoted are restored to the nodes from which you promoted them.

7. Click Apply to commit this change without closing the Property Promotion

dialog. Click OK to complete your updates and close the dialog.

If you have included this message flow in a higher-level message flow, and have

set a value for a promoted property that you have now deleted, the embedding

flow is not automatically updated to reflect the deletion. However, when you

deploy that embedding message flow in the broker domain, the deleted property is

ignored.

Converging multiple properties

You can promote properties from several nodes in a message flow to define a

single promoted property, which applies to all those nodes.

Before you start:

v Create a message flow

v Read the concept topic about promoted properties

One example for the use of promoting properties is for database access. If a

message flow contains two Database nodes that each refer to the same physical

database, you can define the physical database just once on the message flow by

Developing message flows 559

promoting the Data Source property of each Database node to the message flow,

and setting the property at the message flow (promoted) level.

To converge multiple node properties to a single promoted property:

 1. Switch to the Broker Application Development perspective.

 2. Open the message flow in the Message Flow editor.

 3. Right-click the node whose properties you want to promote, then click

Promote Property.

The Promote Property dialog box is displayed.

 4. Select the property that you want to converge. The list on the left initially

shows the expanded list of all available properties for the selected node. If

you have already promoted properties from this node, they do not appear on

the left, but on the right.

The list on the left also includes the other nodes in the open message flow.

You can expand the properties listed under each node and work with all these

properties at the same time. You do not have to close the dialog box and

select another node from the Message Flow editor to continue promoting

properties.

You can select multiple properties to promote by selecting a property, holding

down Ctrl, and selecting one or more other properties.

If you have you selected multiple properties to converge, all the properties

that you have selected must be available for promotion. If one or more of the

selected properties is not available for promotion, the entire selection becomes

unavailable for promotion, and the Promote button in the right pane is

disabled.

 5. Click the Promote button to promote the property or properties

560 Message Flows

The Target Selection dialog box opens:

The Target Selection dialog box displays only the valid targets for the

promotion of the previously selected property or properties and allows you to

create a new target for the promotion, such as to a new group or to a new

property.

 6. To converge properties from the same or different nodes in the message flow,

expand the tree and click on a property that already exists. You can rename

the properties by selecting them and clicking Rename, or by double-clicking

the group or property.

 7. Click OK to confirm your selections.

Note: If you create a new group or property using the Target Selection dialog

box, the changes persist even if you select Cancel in the dialog box.

When the dialog box closes, groups or properties that you have created

using the Target Selection dialog box appear in the Promote properties

dialog box.

 8. Expand the property trees for all the nodes for which you want to promote

properties.

 9. Drag the first instance of the property that you want to converge from the list

on the left, and drop it onto the appropriate group in the list on the right.

v If the group already contains one or more promoted properties, the new

property is added at the end of the group. You can rename the new

property by double-clicking the property, or by selecting the property and

clicking Rename.

v If you want the promoted property to appear in a new group, drag the

property into an empty space below the existing groups to create a new

group. Alternatively:

a. Select the property that you want to promote, and click Promote. The

Target Selection dialog box opens.

b. Click New Group, and enter the name of the new group.

c. Click OK to confirm your changes.
v If you drag the property onto an existing promoted property of a different

type, a no-entry icon is displayed and you cannot drop the property. You

must create this as a new promoted property, or drop it onto a compatible

existing promoted property. Properties must be associated with the same

property editor to be compatible. For example, if you are using built-in

nodes, you can converge only like properties (string with string, Boolean

with Boolean).

If you are using user-defined nodes, you must check the compatibility of the

property editors for the properties that you want to converge. If you have

Developing message flows 561

written compiler classes for a node, you must also ensure that converged

properties have the same compiler class.

10. Drag all remaining instances of the property from each of the nodes in the list

on the left onto the existing promoted property. The new property is added

under the existing promoted property, and is not created as a new promoted

property.

11. Click Apply to commit this change without closing the Property Promotion

dialog box. Click OK to complete your updates and close the dialog box.

You can also converge properties from the Promote property dialog box by

dragging the selected property or properties from the left pane of the Promote

Property dialog box to the right pane:

a. Select the property that you want to promote. You can select multiple

properties to promote by selecting a property, holding down Ctrl, and

selecting one or more other properties.

b. Drop the selected property or properties onto a property in the right pane

to converge related properties from the same or different nodes in the

message flow.

For example, you might want to create a single promoted property that

overrides the property on each node that defines a data source.

You have promoted properties from several nodes to define a single promoted

property, which is used for all those nodes.

Configure monitoring events for message flows

Use the mqsichangeflowmonitoring command and create a monitoring profile to

configure your message flow to emit event messages that can be used for

monitoring.

Before you start:

Read the following concept topic:

v “Generating events for monitoring” on page 116

v “Monitoring basics” on page 117

You can enable events to be produced from message flows for monitoring using

the mqsichangeflowmonitoring command. You can also specify a monitoring

profile to be used by specific message flows. You can choose to use the default

monitoring profile, or you can create your own monitoring profile.

Use the following instructions to enable events for monitoring to be generated for

specific message flows:

1. If you want to use the default monitoring profile, you can skip this step. If you

do not want to use the default monitoring profile you must create a new

monitoring profile. To create a new monitoring profile:

a. Use the mqsicreateconfigurableservice command to create a configurable

service for the monitoring profile. If you have previously created a

configurable service for the monitoring profile you do not need to perform

this step. In the following command example, replace myBroker with the

name of your broker, and myMonitoringProfile with the name of your

monitoring profile.

mqsicreateconfigurableservice myBroker -c MonitoringProfiles -o myMonitoringProfile

562 Message Flows

b. Create an XML file containing the properties for the monitoring profile. This

XML file must conform to the monitoring profile schema. For information

about the properties you can define in the monitoring profile, see

“Monitoring profile” on page 1375. For details of the monitoring profile

schema, see “Monitoring profile schema” on page 1379.

c. Use the mqsichangeproperties command to populate the monitoring profile

from the XML file. In the following command example, replace myBroker

with the name of your broker, myMonitoringProfile with the name of your

monitoring profile, and myMonitoringProfile.xml with the name of the XML

file containing the properties for the monitoring profile.

mqsichangeproperties myBroker -c MonitoringProfiles -o myMonitoringProfile

-n profileProperties -p myMonitoringProfile.xml

2. You can use the mqsichangeflowmonitoring command or the broker archive

editor to associate a monitoring profile with a message flow.

v Use the mqsichangeflowmonitoring command to change the monitoring

settings for the message flows that you want to monitor.

The following examples show how to enable and modify monitoring for a

single message flow, or for a selection of message flows.

– Enable monitoring events, using the default monitoring profile, for all

message flows in all execution groups :

mqsichangeflowmonitoring myBroker -g -j -c active

– Modify the monitoring profile used by all message flows in all execution

groups:

mqsichangeflowmonitoring myBroker -g -j -m myMonitoringProfile

– Modify the monitoring profile used by a single message flow messageflow1

in execution group EG1:

mqsichangeflowmonitoring myBroker -e EG1 -f messageflow1 -m myMonitoringProfile

– Enable monitoring for all message flows in execution group EG1:

mqsichangeflowmonitoring myBroker -e EG1 -j -c active

v Use the Monitoring Profile Name field in the broker archive editor to

associate a monitoring profile with message flows that you want to monitor.

a. Switch to the Broker Application Development perspective.

b. In the Broker Development view, right-click the bar file and then click

Open with > Broker Archive Editor.

c. Click the Configure tab.

d. Click the flow on which you want to set the monitoring profile.

e. In the Monitoring Profile Name field, enter the name of a monitoring

profile.

f. Save the bar file.

When you have run the mqsichangeflowmonitoring successfully, the message flows

are configured to emit events using the new settings. You must run the

mqsichangeflowmonitoring command again if you update the settings in the

monitoring profile.

You can change the monitoring profile used by a message flow using the same

steps. To change the monitoring profile associated with your message flow:

1. Run the mqsideleteconfigurableservice command if you need to create a new

configurable service.

2. Run the mqsichangeproperties command to populate the monitoring profile

from the XML source file.

Developing message flows 563

|

|
|

|
|

|
|

3. Run the mqsichangeflowmonitoring command to associate the monitoring

profile with your message flow.

4. If your message flow is already deployed to an execution group you must run

the mqsireload to load the new changes.

If you want to change the contents of an existing profile that is already associated

with a message flow, run the commands in steps 2 and 4. The following example

shows the commands to update the contents of the myMonitoringProfile:

mqsichangeproperties myBroker -c MonitoringProfiles -o myMonitoringProfile -n profileProperties

-p myMonitoringProfile.xml

mqsireload myBroker -e EG1

You can remove a monitoring profile from a broker using the

mqsideleteconfigurableservice command. A monitoring profile is deleted in the

following example:

mqsideleteconfigurableservice myBroker -c MonitoringProfiles -o myMonitoringProfile

Message flows that were using the removed monitoring profile continue to emit

events. To trigger a refresh of the monitoring settings, you must use the

mqsichangeflowmonitoring command with the -c parameter to disable and

re-enable monitoring. Monitoring is disabled for message flow messageFlow1 in the

following example:

mqsichangeflowmonitoring myBroker -e EG1 -f messageFlow1 -c inactive

Collecting message flow accounting and statistics data

Before you start:

Read the concept topic about message flow accounting and statistics data.

You can collect statistics on message flow behavior.

The following topics describe the tasks that you can complete to control collection

of message flow accounting and statistics data:

v “Starting to collect message flow accounting and statistics data”

v “Stopping message flow accounting and statistics data collection” on page 567

v “Viewing message flow accounting and statistics data collection parameters” on

page 568

v “Modifying message flow accounting and statistics data collection parameters”

on page 569

v “Resetting message flow accounting and statistics archive data” on page 569

The topics listed here show examples of how to issue the accounting and statistics

commands. The examples for z/OS are shown for SDSF; if you are using another

interface, you must modify the example shown according to the requirements of

that interface. For details of other z/OS options, see Issuing commands to the

z/OS console.

Starting to collect message flow accounting and statistics

data

Before you start:

v Create a message flow

564 Message Flows

|
|

|
|

|
|
|

|
|
|
|

|

|

v Deploy a broker archive file

v Read the concept topic about message flow accounting and statistics collection

options

You can start collecting message flow accounting and statistics data for an active

broker at any time.

Select the granularity of the data that you want to be collected by specifying the

appropriate parameters on the mqsichangeflowstats command. You must request

statistics collection on a broker basis. If you want to collect information for more

than one broker, you must issue the corresponding number of commands.

To start collecting message flow accounting and statistics data:

1. Identify the broker for which you want to collect statistics .

2. Decide the resource for which you want to collect statistics. You can collect

statistics for a specific execution group, or for all execution groups for the

specified broker.

v If you indicate a specific execution group, you can request that data is

recorded for a specific message flow or all message flows in that group.

v If you specify all execution groups, you must specify all message flows.
3. Decide if you want to collect thread related statistics.

4. Decide if you want to collect node related statistics. If you do, you can also

collect information about terminals for the nodes.

5. Decide if you want to associate data collection with a particular accounting

origin. This option is valid for snapshot and archive data, and for message

flows and execution groups. However, when active, you must set its origin

value in each message flow to which it refers. If you do not configure the

participating message flows to set the appropriate origin identifier, the data

collected for that message flow is collected with the origin set to Anonymous.

See “Setting message flow accounting and statistics accounting origin” on page

566 for further details.

6. Decide the target destination:

v User trace log. This is the default setting. The output data can be processed

using mqsireadlog and mqsiformatlog.

v XML format publication message. If you chose this as your target destination,

register the following topic for the subscriber:

$SYS/Broker/brokerName/StatisticsAccounting/recordType/executionGroupLabel/messageFlowLabel

Where, brokerName, executionGroupLabel, and messageFlowLabel are the broker,

execution group and message flow on which you want to receive data.

recordType is the type of data collection on which you want to receive

publications (snapshot, archive, or # to receive both snapshot and archive).

v

z/OS

SMF (on z/OS only)
7. Decide the type of data collection that you want:

v Snapshot

v Archive

You can collect snapshot and archive data at the same time, but you have to

configure them separately.

8. Issue the mqsichangeflowstats command with the appropriate parameters to

reflect the decisions that you have made.

For example, to turn on snapshot data for all message flows in the default

execution group for BrokerA, and include node data with the basic message

flow statistics, enter:

Developing message flows 565

mqsichangeflowstats BrokerA -s -e default -j -c active -n basic

z/OS

Using SDSF on z/OS, enter:

/F BrokerA,cs s=yes,e=default,j=yes,c=active,n=basic

Refer to the mqsichangeflowstats command for further examples.

When the command completes successfully, data collection for the specified

resources is started:

v If you have requested snapshot data, information is collected for approximately

20 seconds, and the results are written to the specified output.

v If you have requested archive data, information is collected for the interval

defined for the broker (on the mqsicreatebroker or mqsichangebroker command,

or by the external timer facility ENF). The results are written to the specified

output, the interval is reset, and data collection starts again.

Next:

You can now perform the following tasks:

v “Setting message flow accounting and statistics accounting origin”

v “Stopping message flow accounting and statistics data collection” on page 567

v “Viewing message flow accounting and statistics data collection parameters” on

page 568

v “Modifying message flow accounting and statistics data collection parameters”

on page 569

v “Resetting message flow accounting and statistics archive data” on page 569

Setting message flow accounting and statistics accounting

origin

Before you start:

v Create a message flow

v Read the concept topic about message flow accounting and statistics accounting

origin

Accounting and statistics data is associated with an accounting origin.

When you request accounting origin support for collecting message flow

accounting and statistics data on the mqsichangeflowstats command, you must

also configure your message flows to provide the correct identification values that

indicate what the data is associated with. You can set a different value for every

message flow for which data collection is active, or the same value for a group of

message flows (for example, those in a single execution group, or associated with a

particular client, department, or application suite).

The accounting origin setting is not used until you deploy the message flow or

flows to the brokers on which they are to run. You can activate data collection, or

modify it to request accounting origin support, before or after you deploy the

message flow. You do not have to stop collecting data when you deploy a message

flow that changes accounting origin.

To configure a message flow to specify a particular accounting origin:

1. Switch to the Broker Application Development perspective.

2. Open the message flow that you want to work with.

3. Click Selection above the palette of nodes.

566 Message Flows

4. Right-click a Compute, Database, or Filter node in the editor view, and click

Open ESQL. The associated ESQL file is opened in the editor view, and your

cursor is positioned at the start of the correct module. You can include the

required ESQL in any of these nodes, so decide which node in each message

flow is the most appropriate for this action.

If you want to take advantage of the accounting origin support, you must

include one of these nodes in each message flow for which you want a specific

origin set. If you have not configured one of these three nodes in the message

flow, you must add one at a suitable point (for example, immediately following

the input node) and connect it to other nodes in the flow.

5. Update the ESQL in the node’s module to set an accounting origin. The broker

uses the origin identifier that is set in the Environment tree. You must set a

value in the field with correlation name

Environment.Broker.Accounting.Origin. This field is not created automatically

in the Environment tree when the message is first received in the broker. It is

created only when you set it in an ESQL module associated with a node in the

message flow.

If you do not set a value in the message flow, the default value Anonymous is

used for all output. If you set a value in more than one place in the message

flow, the value that you set immediately before the message flow terminates is

used in the output data.

The code that you need to add is of the form:

SET Environment.Broker.Accounting.Origin = "value";

You can set the identifier to a fixed value if you choose (as shown above), or

you can determine its value based on a dynamic value that is known only at

runtime. The value must be character data, and can be a maximum of 32 bytes.

For example, you might set its value to the contents of a particular field in the

message that is being processed (if you are coding ESQL for a Compute node,

you must use correlation name InputBody in place of Body in the following

example):

IF Body.DepartmentName <> NULL THEN

 SET Environment.Broker.Accounting.Origin = Body.DepartmentName;

END IF;

6. Save the ESQL module, and check that you have not introduced any errors.

7. Save the message flow, and check again for errors.

You are now ready to deploy the updated message flow. Accounting and statistics

data records that are collected after the message flow has been deployed will

include the origin identifier that you have set.

Stopping message flow accounting and statistics data

collection

You can stop collecting data for message flow accounting and statistics at any time.

You do not have to stop the message flow, execution group, or broker to make this

change, nor do you have to redeploy the message flow.

Before you start:

v Start to collect message flow accounting and statistics data

v Read the concept topic about message flow accounting and statistics data

You can stop collecting data for message flow accounting and statistics at any time.

You do not have to stop the message flow, execution group, or broker to make this

change, nor do you have to redeploy the message flow.

Developing message flows 567

You can modify the parameters that are currently in force for collecting message

flow accounting and statistics data without stopping data collection. See

“Modifying message flow accounting and statistics data collection parameters” on

page 569 for further details.

To stop collecting data:

1. Check the resources for which you want to stop collecting data.

You do not have to stop all active data collection. If you choose, you can stop a

subset of data collection. For example, if you started collecting statistics for all

message flows in a particular execution group, you can stop doing so for a

specific message flow in that execution group. Data collection for all other

message flows in that execution group continues.

2. Issue the mqsichangeflowstats command with the appropriate parameters to

stop collecting data for some or all resources.

For example, to switch off snapshot data for all message flows in all execution

groups for BrokerA, enter:

mqsichangeflowstats BrokerA -s -g -j -c inactive

z/OS

Using SDSF on z/OS, enter:

/F BrokerA,cs s=yes g=yes j=yes c=inactive

Refer to the mqsichangeflowstats command for further examples.

When the command completes successfully, data collection for the specified

resources is stopped. Any outstanding data that has been collected is written to the

output destination when you issue this command, to ensure the integrity of data

collection.

Viewing message flow accounting and statistics data

collection parameters

You can review and check the parameters that are currently in effect for message

flow accounting and statistics data collection.

Before you start:

v Start to collect message flow accounting and statistics data

v Read the concept topic about message flow accounting and statistics data

To view message flow accounting and statistics data collection parameters:

Issue the mqsireportflowstats command with the appropriate parameters to view

the parameters that are currently being used by the broker to control archive data

collection or snapshot data collection.

You can view the parameters in force for a broker, an execution group, or an

individual message flow.

For example, to view parameters for snapshot data for all message flows in all

execution groups for BrokerA, enter:

mqsireportflowstats BrokerA -s -g -j

z/OS

Using SDSF on z/OS, enter:

/F BrokerA,rs s=yes,g=yes,j=yes

Refer to the mqsireportflowstats command for further examples.

568 Message Flows

The command displays the current status, for example:

BIP8187I: Statistics Snapshot settings for flow MyFlow1 in execution

group default - On?: inactive,

ThreadDataLevel: basic, NodeDataLevel: basic,

OutputFormat: usertrace, AccountingOrigin: basic

Next:

You can now modify the data collection parameters.

Modifying message flow accounting and statistics data

collection parameters

You can modify the parameters that you have set for message flow accounting and

statistics data collection. For example, you can start collecting data for a new

message flow that you have deployed to an execution group for which you are

already collecting data.

You can modify parameters while data collection is active; you do not have to stop

data collection and restart it.

Before you start:

v Start to collect message flow accounting and statistics data

v Read the concept topic about message flow accounting and statistics data

To modify message flow accounting and statistics parameters:

1. Decide which data collection parameters you want to change. You can modify

the parameters that are in force for a broker, an execution group, or an

individual message flow.

2. Issue the mqsichangeflowstats command with the appropriate parameters to

modify the parameters that are currently being used by the broker to control

archive data collection or snapshot data collection.

For example, to modify parameters to extend snapshot data collection to a new

message flow MFlow2 in execution group EG2 for BrokerA, enter:

mqsichangeflowstats BrokerA -s -e EG2 -f MFlow2 -c active

z/OS

Using SDSF on z/OS, enter:

/F BrokerA,cs s=yes,e=EG2,f=MFlow2,c=active

If you want to specify an accounting origin for archive data for a particular

message flow in an execution group, enter:

mqsichangeflowstats BrokerA -a -e EG4 -f MFlowX -b basic

z/OS

Using SDSF on z/OS, enter:

/F BrokerA,cs a=yes,e=EG4,f=MFlowX,b=basic

Refer to the mqsichangeflowstats command for further examples.

When the command completes successfully, the new parameters that you have

specified for data collection are in force. These parameters remain in force until

you stop data collection or make further modifications.

Resetting message flow accounting and statistics archive data

You can reset message flow accounting and statistics archive data to purge any

accounting and statistics data not yet reported for that collecting interval. This

Developing message flows 569

removes unwanted data. You can request this at any time; you do not have to stop

data collection and restart it to perform reset. You cannot reset snapshot data.

Before you start:

v Start to collect message flow accounting and statistics data

v Read the concept topic about message flow accounting and statistics data

To reset message flow accounting and statistics archive data:

1. Identify the broker, and optionally the execution group, for which you want to

reset archive data. You cannot reset archive data on a message flow basis.

2. Issue the mqsichangeflowstats command with the appropriate parameters to

reset archive data.

For example, to reset archive data for BrokerA, enter:

mqsichangeflowstats BrokerA -a -g -j -r

z/OS

Using SDSF on z/OS, enter:

/F BrokerA,cs a=yes,g=yes,j=yes,r=yes

When this command completes, all accounting and statistics data accumulated so

far for this interval are purged and will not be included in the reports. Data

collection is restarted from this point. All archive data for all flows (indicated by -j

or j=yes) in all execution groups (indicated by -g or g=yes) is reset.

This command has a minimal effect on snapshot data because the accumulation

interval is much shorter than for archive data. It does not effect the settings for

archive or snapshot data collection that are currently in force. When the command

has completed, data collection resumes according to the current settings.

You can change any other options that are currently in effect when you reset

archive data, for example accounting origin settings or output type.

Developing a user exit

To develop a user exit, follow these steps:

1. Declare the user exit.

Declare a user exit by using the bipInitializeUserExits function to specify the

following properties:

a. Name (used to register and control the active state of the exit)

b. User context storage

c. A function to be invoked (for one or more Event Types)
2. Implement the user exit behavior.

When the user exit is declared, a set of functions is registered, and these

functions are invoked when specific events occur. The behavior of the user exit

is provided by implementing these functions. The following table lists the

events and their associated functions:

 Event Function

A message is dequeued from the input source cciInputMessageCallback

A message is propagated to the node for processing cciPropagatedMessageCallback

A request message is sent to the output node’s transport,

and transport-specific destination information is written

to ″WrittenDestination″ in the LocalEnvironment

cciOutputMessageCallback

570 Message Flows

|
|
|

|

Event Function

The node completes processing cciNodeCompletionCallback

The transaction ends cciTransactionEventCallback

3. Your user exit code must implement the cleanup function.

The user exit library must implement the bipTerminateUserExits function. This

function is invoked as the ExecutionGroup’s process is ending, and your user

exit must clear up any resources allocated during the bipInitializeUserExits

function.

4. Compile.

Use your existing process for your environment to compile your user exit. The

supported C compilers are shown in Optional software support. See Compiling

a C user-defined extension for more details.

Deploying a user exit

Deploy your user exit to the broker.

Before you start:

v Write and compile the user exit code. See “Developing a user exit” on page 570.

v Ensure that the exit:

1. Is in a library that has the extension .lel

2. Exports the functions bipInitializeUserExits and bipTerminateUserExits

You can set the state of the user exit dynamically to active, or inactive, on a

per-message flow basis without restarting the broker.

To deploy the user exit:

1. Install the user exit code on a broker.

The library containing the user exit code must be installed on a file system that

can be accessed by the broker. For example, the file must have read and

execute authority for the user ID under which the broker runs. The broker

looks in the following places for libraries containing user exits:

v The broker property UserExitPath defines a list of directories separated by

colons (semi-colons on Windows). Use the –x flag on the mqsicreatebroker or

mqsichangebroker command to set this property for 32-bit execution groups

for each broker.

Alternatively, you can append the directory containing the directory that

holds the extension files to the environment variable

MQSI_USER_EXIT_PATH associated with the environment in which the

broker is running.

If both are set, the environment variable takes precedence. All the directories

in the environment variable are searched in the order in which they appear

in the variable, then all the directories in the broker property are searched in

the order in which they appear in the property.

v For 64-bit extensions, you cannot use the –x parameter to modify the exit

path. Append the directory containing the directory that holds the extension

files to the environment variable MQSI_USER_EXIT_PATH64.
2. Load the user exit library into the broker’s processes.

When the user exit library has been installed on the broker, you must load it in

one of the following ways:

Developing message flows 571

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

v Stop and restart the broker.

v Run the mqsireload command to restart the execution group processes.
3. Activate the user exit.

User exits can be active or inactive, and are inactive by default. You can change

the state of a user exit dynamically by using the mqsichangeflowuserexits

command on a per-flow basis, without having to restart the broker. You can

also change the default state for a set of user exits to active on a per-broker

basis by using the mqsichangebroker command; in this case, you do not have

to restart the broker.

To set the default user exit state for a broker:

a. Stop the broker.

b. Set the activeUserExits property of the broker by using the

mqsichangebroker command.

c. Start the broker and check the system log to ensure that all execution

groups start without error. If any invalid user exit names are specified (that

is, the user exit is not provided by any library loaded by the execution

group), a BIP2314 message is written to the system log and all flows in the

execution groups fail to start unless you take one of the following actions:

v Provide a library in the user exit path that implements the exit; then run

the mqsireload command, or restart the broker, to load an exit from the

library.

v Run the mqsichangeflowuserexits command to remove the exit from both

the active and inactive lists.
You can also override the default user exit state for a broker. You can use the

mqsichangeflowuserexits command to activate, or deactivate, user exits on a

per-execution group or per-message flow basis, with the order of precedence

being message flow then execution group. When multiple exits are active for a

given flow, the broker starts them in the order that is defined by the

mqsichangeflowuserexits command.

Configuring aggregation flows

This topic describes how to configure aggregation flows.

Before you start:

Read the following concept topic:

v “Message flow aggregation” on page 124

Aggregation message flows let you generate and fan-out a number of related

requests, fan-in the corresponding replies, and compile those replies into a single

aggregated reply message, using the AggregateControl, AggregateRequest, and

AggregateReply nodes. For an overview of using aggregation in message flows, see

“Message flow aggregation” on page 124.

To configure aggregation flows see the following topics:

v “Creating the aggregation fan-out flow” on page 573

v “Creating the aggregation fan-in flow” on page 577

v “Associating fan-out and fan-in aggregation flows” on page 581

v “Setting timeouts for aggregation” on page 583

v “Using multiple AggregateControl nodes” on page 584

v “Correlating input request and output response aggregation messages” on page

585

572 Message Flows

v “Using control messages in aggregation flows” on page 585

v “Handling exceptions in aggregation flows” on page 588

The following sample demonstrates the use of aggregation message flows:

 Airline Reservations sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Creating the aggregation fan-out flow

The aggregation fan-out flow receives the initial input message and restructures it

to present a number of requests to a number of target applications.

Before you start:

v Read the aggregation overview.

v Create a message flow project.

You can include the fan-out and fan-in flow within the same message flow.

However, you might prefer to create two separate flows. For more information

about the benefits of configuring separate message flows, see “Associating fan-out

and fan-in aggregation flows” on page 581.

To review an example of a fan-out flow that is supplied with WebSphere Message

Broker, see the following sample:

v Airline Reservations sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

To create the fan-out flow:

1. Switch to the Broker Application Development perspective.

2. Create a new message flow to provide the fan-out processing.

3. Add the following nodes in the editor view and configure and connect them as

described:

Input node

The input node receives an input message from which multiple request

messages are generated. This node can be any one of the built-in nodes,

or a user-defined input node.

a. Select the input node to open the Properties view. The node

properties are displayed.

b. Specify the source of input messages for this node. For example,

specify the name of a WebSphere MQ queue in the Basic property

Queue Name from which the MQInput node retrieves messages.

c. Optional: specify values for any other properties that you want to

configure for this node. For example, set the Advanced property

Transaction mode to the default Yes, to ensure that aggregate

request messages are put under syncpoint. This option avoids the

situation where the AggregateReply node receives response

messages before it has received the control message that informs it

of the aggregation instance. Putting the fan-out flow under

transactional control ensures that the fan-out flow completes before

any response messages get to the AggregateReply.

Developing message flows 573

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm

d. Connect the input node’s Out terminal to the In terminal of an

AggregateControl node. This option represents the simplest

configuration; if appropriate, you can include other nodes between

the input node and the AggregateControl node. For example, you

might want to store the request for audit purposes (in a Warehouse

node), or add a unique identifier to the message (in a Compute

node).

e. Optional: if your fan-out and fan-in flows are combined within one

message flow, modify the Order Mode property on the Advanced

tab. Select the By Queue Order option and ensure that the Logical

Order option is also selected. These options force the input node to

be single threaded in order to maintain the logical order of the

messages that arrive on the queue. Any additional instance threads

that you make available are then shared amongst only the fan-in

input nodes to improve the performance of aggregation. If your

fan-in and fan-out flows are in separate message flows this step is

not required because you can make additional threads available

specifically to the fan-in flow.

AggregateControl node

The AggregateControl node updates the LocalEnvironment associated

with the input message with information required by the

AggregateRequest node. The AggregateControl node creates the

LocalEnvironment.ComIbmAggregateControlNode folder. This folder

and the fields within it are for internal use by WebSphere Message

Broker and you should not rely on their existence or values when

developing your message flows.

a. Select the AggregateControl node to open the Properties view. The

node properties are displayed.

b. Set the Aggregate Name property of the AggregateControl node to

identify this particular aggregation. It is used later to associate this

AggregateControl node with a specific AggregateReply node. The

Aggregate Name that you specify must be contextually unique

within a broker.

c. Optional: set the Timeout property to specify how long the broker

waits for replies to arrive before taking some action (described in

“Setting timeouts for aggregation” on page 583). If a timeout is not

set on the AggregateControl node then aggregate requests stored

internally will not be removed unless all aggregate reply messages

return. This situation might lead to a gradual build up of messages

on the internal queues. To avoid this situation, set the timeout to a

value other than zero (zero means never timeout) so that when the

timeout is reached the requests are removed and the queues do not

fill up with redundant requests. Even if timeouts are not required or

expected, it is good practice to set the timeout value to a large value

(for example: 864000 seconds which is 24 hours) so that the queues

occasionally get cleared of old aggregations.

d. Connect the Out terminal of the AggregateControl node to the In

terminal of one or more Compute nodes that provide the analysis

and breakdown of the request in the input message that is

propagated on this terminal.

574 Message Flows

Attention: The Control terminal of the AggregateControl node has

been deprecated at Version 6.0 and by default any connections from

this terminal to the AggregateReply node (either direct or indirect) are

ignored. This configuration maximizes the efficiency of aggregation

flows and does not damage the reliability of aggregations. This

configuation is the optimum configuration.

However, if you do want a control message to be sent from the

AggregateControl node to the AggregateReply node, you must connect

the Control terminal to the corresponding AggregateReply node on the

fan-in flow (either directly or indirectly, as described in “Associating

fan-out and fan-in aggregation flows” on page 581). If you connect it

indirectly to the AggregateReply node, for example through an

MQOutput node, you must include a Compute node to add the

appropriate headers to the message to ensure that it can be safely

transmitted.

In addition, for the Control terminal and connections from it to be

recognized, you must enable the environment variable

MQSI_AGGR_COMPAT_MODE. However, choosing this option has

implications regarding the performance and behavior of message

aggregations. For a full description of these implications and the

environment variable, see “Using control messages in aggregation

flows” on page 585.

Compute node

The Compute node extracts information from the input message and

constructs a new output message.

 If the target applications that handle the subtask requests can extract

the information that they require from the single input message, you do

not need to include a Compute node to split the message. You can pass

the whole input message to all target applications.

If your target applications expect to receive an individual request, not

the whole input message, you must include a Compute node to

generate each individual subtask output message from the input

message. Configure each Compute node in the following way, copying

the appropriate subset of the input message to each output message:

a. Select the Compute node to open the Properties view. The node

properties are displayed.

b. Select a value for the Basic property Compute Mode. This property

specifies which sections of the message tree are modified by the

node. The AggregateControl node inserts elements into the

LocalEnvironment tree in the input message that the

AggregateRequest node reads when the message reaches it. Ensure

that the LocalEnvironment is copied from the input message to the

output message in the Compute node. This configuration happens

automatically unless you specify a value that includes

LocalEnvironment (one of All, LocalEnvironment, LocalEnvironment

and Message, or Exception and LocalEnvironment).

If you specify one of these values, the broker assumes that you are

customizing the Compute node with ESQL that writes to

LocalEnvironment, and that you will copy over any elements within

that tree that are required in the output message.

Developing message flows 575

If you want to modify LocalEnvironment, add the following

statement to copy the required aggregate information from input

message to output message:

c. Optional: specify values for any other properties that you want to

configure for this node.

d. Connect the Out terminal of each Compute node to the In terminal

of the output node that represents the destination of the output

request message that you have created from the input message in

this node.

Output node

Include an output node for each output message that you generate in

your fan-out flow. Configure each node as described below, with the

appropriate modifications for each destination.

 The output node must be an output node that supports the

request/reply model, such as an MQOutput node, or a mixture of these

nodes (depending on the requirements of the target applications).

a. Select the output node to open the Properties view. The node

properties are displayed.

b. Specify the destination for the output messages for this node. For

example, specify the name of a WebSphere MQ queue in the Basic

property Queue Name to which the MQOutput node sends

messages. The target application must process its request, and send

the response to the reply destination indicated in its input message

(for example the WebSphere MQ ReplyToQueue).

c. Click Request in the left view and set values for these properties to

specify that replies are sent to the fan-in flow’s input queue.

d. Optional: specify values for any other properties that you want to

configure for this node.

e. Connect the Out terminal of the output node to the In terminal of

an AggregateRequest node. When the message is propagated

through the output node’s Out terminal, the built-in output node

updates the WrittenDestination folder within the associated

LocalEnvironment with additional information required by the

AggregateRequest node.

The information written by the built-in nodes is queue name, queue

manager name, message ID and correlation ID (from the MQMD),

and message reply identifier (set to the same value as message ID).

AggregateRequest node

Include an AggregateRequest node for each output message that you

generate in your fan-out flow.

a. Select the AggregateRequest node to open the Properties view. The

node properties are displayed.

b. Set the Basic property Folder Name to a value that identifies the

type of request that has been sent out. This value is used by the

AggregateReply node to match up with the reply message when it

is received in the fan-in flow. The folder name that you specify for

each request that the fan-out flow generates must be unique.

SET OutputLocalEnvironment.ComIbmAggregateControlNode =

 InputLocalEnvironment.ComIbmAggregateControlNode;

576 Message Flows

The AggregateRequest node writes a record in WebSphere MQ for each

message that it processes. This record enables the AggregateReply node

to identify which request each response is associated with. If your

output nodes are non-transactional, the response message might arrive

at the fan-in flow before this database update is committed. For details

on how you can use timeouts to avoid this situation, see “Setting

timeouts for aggregation” on page 583.

CAUTION:

Although the use of timeouts can help to avoid this situation

described above, configure your fan-out flow to be transaction so that

response messages cannot get to the fan-in flow before the

corresponding AggregateRequest nodes have committed their

database updates.

4. Press Ctrl-S or click File → Save name on the taskbar menu (where name is the

name of this message flow) to save the message flow and validate its

configuration.

To collect the aggregation responses initiated by your fan-out flow, create your

fan-in flow.

Creating the aggregation fan-in flow

The aggregation fan-in flow receives the responses to the request messages that are

sent out by the fan-out flow, and constructs a combined response message

containing all the responses received.

Before you start:

v Read the aggregation overview.

v Create a message flow project.

You can include the fan-out and fan-in flow within the same message flow.

However, you might prefer to create two separate flows. For more information

about the benefits of configuring separate message flows, see “Associating fan-out

and fan-in aggregation flows” on page 581. Do not deploy multiple copies of the

same fan-in flow either to the same or to different execution groups.

If you do not configure the fan-out flow to be transactional, the timeout values that

you have specified might result in the combined response message being generated

before the fan-in flow has received all the replies. For more information, see

“Creating the aggregation fan-out flow” on page 573.

To review an example of a fan-in flow see the following sample:

v Airline Reservations sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

To create the fan-in flow:

1. Switch to the Broker Application Development perspective.

2. Create a message flow to provide the fan-in processing.

3. Add the following nodes in the editor view and configure and connect them as

described:

Developing message flows 577

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm

Input node

The input node receives the responses to the multiple request messages

that are generated from the fan-out flow.

 This node must be an input node that supports the request/reply

model, such as an MQInput node, or a mixture of these nodes

(depending on the requirements of the applications that send these

responses). The response that is received by each input node must be

sent across the same protocol as the request to which it corresponds.

For example, if you include an MQOutput node in the fan-out flow, the

response to that request must be received by an MQInput node in this

fan-in flow.

a. Select the input node to open the Properties view. The node

properties are displayed.

b. Specify the source of input messages for this node. For example,

specify the name of a WebSphere MQ queue in the Basic property

Queue Name from which the MQInput node retrieves messages.

c. Optional: specify values for any other properties that you want to

configure for this node.

d. Connect the input node’s Out terminal to the In terminal of an

AggregateReply node.

Connect the terminals in this way to create the simplest

configuration; if appropriate, you can include other nodes between

the input node and the AggregateReply node. For example, you

might want to store the replies for audit purposes (in a Warehouse

node).

Include just one input node that receives all the aggregation response

messages at the beginnings of the fan-in flow as described above. If

you have multiple input nodes, threads that are started by a specific

reply input node can complete the aggregation and execution of the

message flow, while the others are sending their response messages to

the AggregateReply node, which subsequently become eligible to

timeout. A single input node creates a more sequential processing of

the replies for each aggregation; specify additional instances to provide

more processing power through this one node, see “Configurable

message flow properties” on page 1372.

AggregateReply node

The AggregateReply node receives the inbound responses from the

input node through its In terminal. The AggregateReply node stores

each reply message for subsequent processing.

 When all the replies for a particular group of aggregation requests have

been collected, the AggregateReply node creates an aggregated reply

message and propagates it through the Out terminal.

a. Select the AggregateReply node to open the Properties view. The

node properties are displayed.

b. Set the Aggregate Name property of the AggregateReply node to

identify this aggregation. Set this value to be the same value that

you set for the Aggregate Name property in the corresponding

AggregateControl node in the fan-out flow.

c. Optional: to retain an unrecognized message before propagating it

to the Unknown terminal, set a value for the Unknown Message

578 Message Flows

Timeout. If you are using separate fan-out and fan-in flows, set this

value to a non-zero number if the control message might be

delayed.

d. Optional: to explicitly handle unrecognized messages, connect the

Unknown terminal to another node, or sequence of nodes. If you do

not connect this terminal to another node in the message flow,

messages propagated through this terminal are discarded.

e. Optional: if you have specified a timeout value for this aggregation

in the AggregateControl node, and you want to explicitly handle

timeouts that expire before all replies are received, connect the

Timeout terminal to another node, or sequence of nodes. Partially

complete aggregated replies are sent to the Timeout terminal if the

timer expires. If you do not connect this terminal to another node in

the message flow, messages propagated through this terminal are

discarded.

f. Optional: specify values for any other properties that you want to

configure for this node.

g. Connect the Out terminal of the AggregateReply node to the In

terminal of a Compute node.

Attention: The Control terminal of the AggregateReply node was

deprecated at Version 6.0, and by default any connections to this

terminal (either direct or indirect) are ignored. This change maximizes

the efficiency of aggregation flows and does not damage the reliability

of aggregations. This configuration provides the optimum content.

However, if you want the AggregateReply node to receive, on its

Control terminal, the control message that was sent by the

corresponding AggregateControl node on the fan-out flow, you must

make the necessary connections as described in “Creating the

aggregation fan-out flow” on page 573. Keep the path from the

AggregateReply node to the output node as direct as possible to

maximize the performance of aggregations. Do not modify the content

of this control message.

In addition, for the Control terminal and connections to it to be

recognized, you must enable the environment variable

MQSI_AGGR_COMPAT_MODE. If you choose this option, the

performance and behavior of message aggregations might be impacted;

for a full description of these implications and the environment

variable, see “Using control messages in aggregation flows” on page

585.

Aggregated messages which are sent from the AggregateReply node

output terminals (Out and Timeout) are not validated. Any validation

of data should be done before messages are sent to the AggregateReply

node, as it ignores validation options when reconstructing the stored

messages.

Compute node

The Compute node receives the message that contains the combined

responses. Typically, the format of this combined message is not valid

for output, because the aggregated reply message has an unusual

structure and cannot be parsed into the bit stream required by some

nodes, for example the MQOutput node. The Out and Timeout

Developing message flows 579

terminals always propagate an aggregated reply message, which always

requires further processing before it can be propagated to an

MQOutput node. Therefore you must include a Compute node and

configure this node to create a valid output message.

a. Select the Compute node to open the Properties view. The node

properties are displayed.

b. Specify in the Basic property ESQL Module the name of the ESQL

module that customizes the function of this node .

c. Right-click the node and click Open ESQL to open the ESQL file

that contains the module for this node. The module is highlighted in

the ESQL editor view.

d. Code the ESQL to create a single output message from the

aggregated replies in the input message.

The structure of the aggregated reply message that is propagated

through the Out terminal. Information on how you can access its

contents are provided in “Accessing the combined message

contents.”

e. Optional: specify values for any other properties that you want to

configure for this node.

f. Connect the Out terminal of the Compute node to the In terminal of

the output node that represents the destination of the single

response message.

Output node

Include an output node for your fan-in flow. This node can be any of

the built-in nodes, or a user-defined output node.

a. Select the output node to open the Properties view. The node

properties are displayed.

b. Specify the destination for the output message for this node. For

example, specify in the Basic property Queue Name the name of a

WebSphere MQ queue to which the MQOutput node sends

messages.

c. Optional: specify values for any other properties that you want to

configure for this node.
4. Press Ctrl-S or click File → Save name on the taskbar menu (where name is the

name of this message flow) to save the message flow and validate its

configuration.

Accessing the combined message contents

The AggregateReply node creates a folder in the combined message tree below

Root, called ComIbmAggregateReplyBody. Below this, the node creates a number

of subfolders using the names that you set in the AggregateRequest nodes. These

subfolders are populated with the associated reply messages.

For example, the request messages might have folder names:

v TAXI

v HOTEL

The resulting aggregated reply message created by the AggregateReply node might

have a structure similar to that shown below:

580 Message Flows

Use ESQL within a Compute node to access the reply from the taxi company using

the following correlation name:

The folder name does not have to be unique. If you have multiple requests with

the folder name TAXI, you can access the separate replies using the array subscript

notation, for example:

InputRoot.ComIbmAggregateReplyBody.TAXI[1].xyz

InputRoot.ComIbmAggregateReplyBody.TAXI[2].xyz

Associating fan-out and fan-in aggregation flows

Associate the fan-out message flow processing with its corresponding fan-in

message flow processing by setting the Aggregate Name property of the

AggregateControl and AggregateReply nodes in your aggregation flow to the same

value.

If you did not configure this property when you created your fan-in and fan-out

flows, you must complete this task.

Before you start:

You must have completed the following tasks:

v “Creating the aggregation fan-out flow” on page 573

v “Creating the aggregation fan-in flow” on page 577

The Aggregate Name must be contextually unique within a broker. You can have

only one AggregateControl node and one AggregateReply node with a particular

Aggregate Name, although you can have more than one AggregateControl node

with the same Aggregate Name, as described in “Using multiple AggregateControl

nodes” on page 584. Do not deploy a fan-in flow to multiple execution groups on

the same broker; results are unpredictable.

ComIbmAggregateReplyBody ???

message body content message body content

TAXI HOTEL

Root

Properties

Properties Headers
(Optional)

XML Properties Headers
(Optional)

XML

InputRoot.ComIbmAggregateReplyBody.TAXI.xyz

Developing message flows 581

You can either create the fan-out and fan-in flows in the same message flow, or in

two different message flows. In either case, the two parts of the aggregation are

associated when you set the Aggregate Name property.

The way in which you configure your aggregation flow depends on a number of

factors:

v The design of your message flow.

v The hardware on which the broker is running.

v The timeout values that you choose (refer to“Setting timeouts for aggregation”

on page 583).

v How you expect to maintain the message flows.

You can include the fan-out and fan-in flow within the same message flow.

However, you might prefer to create two separate flows. The advantages of

creating separate fan-out and fan-in flows are:

v You can modify the two flows independently.

v You can start and stop the two flows independently.

v You can deploy the two flows to separate execution groups to take advantage of

multiprocessor systems, or to provide data segregation for security or integrity

purposes.

v You can allocate different numbers of additional threads to the two flows, as

appropriate, to maintain a suitable processing ratio.

The following sample shows the use of two flows for aggregation:

v Airline Reservations sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

To associate the fan-out flow with the fan-in flow:

1. Switch to the Broker Application Development perspective.

2. Open the message flow that contains your fan-out flow.

3. Select the AggregateControl node to open the Properties view. The node

properties are displayed.

4. Set the Aggregate Name property of the AggregateControl node to identify this

aggregation. The Aggregate Name that you specify must be contextually unique

within a broker.

5. If you have separate fan-out and fan-in flows:

a. Press Ctrl-S or click File → Save name on the taskbar menu (where name is

the name of this message flow) to save the message flow and validate its

configuration.

b. Open the message flow that contains your fan-in flow.
6. Select the AggregateControl node to open the Properties view. The node

properties are displayed.

7. Set the Aggregate Name property of the AggregateReply node to the same

value that you set for the Aggregate Name property in the corresponding

AggregateControl node in the fan-out flow.

8. Press Ctrl-S or click File → Save name to save the message flow and validate its

configuration.

In WebSphere Message Broker, fan-out and fan-in flows were also associated by

sending control messages from the AggregateControl node to the AggregateReply

582 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm

node. This facility is no longer available. For optimum performance, do not

connect the AggregateControl and AggregateReply node. However, if you do want

to use control messages in your aggregations, and you want to connect these two

nodes, refer to “Using control messages in aggregation flows” on page 585.

Setting timeouts for aggregation

You can use two properties of the aggregation nodes to set timeout values for

aggregated message processing.

Before you start:

To complete this task, you must have completed the following tasks:

v “Creating the aggregation fan-out flow” on page 573

v “Creating the aggregation fan-in flow” on page 577

There are two situations that might require the use of timeouts:

1. In certain situations you might need to receive an aggregated reply message

within a certain time. Some reply messages might be slow to return, or might

never arrive. For these situations:

a. Switch to the Broker Application Development perspective.

b. Open the fan-out message flow.

c. Set the Timeout property of the AggregateControl node to specify how long

(in seconds) the broker must wait for replies. By default, this property is set

to 0, which means that there is no timeout and the broker waits indefinitely.

If the timeout interval passes without all the replies arriving, the replies that

have arrived are turned into an aggregated reply message by the corresponding

AggregateReply node, and propagated to its timeout terminal. If you choose,

you can process this partial response message in the same way as a complete

aggregated reply message. If you prefer, you can provide special processing for

incomplete aggregated replies.

2. When a message arrives at the in terminal of an AggregateReply node, it is

examined to see if it is an expected reply message. If it is not recognized, it is

propagated to the unknown terminal. You might want the broker to wait for a

given period of time before doing this, because:

v The reply message might arrive before the work performed by the

AggregateRequest node has been transactionally committed. This situation

can be avoided by configuring the Transaction mode property of the Input

node as described in “Creating the aggregation fan-out flow” on page 573.

v The reply message might arrive before the control message. This situation

can be avoided by leaving the control terminal of the AggregateControl node

unconnected. For further information about the implications of connecting

the control terminal, see “Using control messages in aggregation flows” on

page 585.

These situations are most likely to happen if you send the request messages out

of syncpoint, and might result in valid replies being sent to the unknown

terminal. To reduce the chance of this event:

a. Switch to the Broker Application Development perspective.

b. Open the fan-in message flow.

c. Set the Unknown Message Timeout property on the AggregateReply node.

When you set this property, a message that cannot be recognized

immediately as a valid reply is held persistently within the broker for the

number of seconds that you specify for this property .

Developing message flows 583

If the unknown timeout interval expires, and the message is recognized, it is

processed. The node also checks to see if this previously unknown message is

the last reply needed to make an aggregation complete. If it is, the aggregated

reply message is constructed and propagated.

If the unknown timeout interval expires and the message is still not recognized,

the message is propagated to the unknown terminal.

Using multiple AggregateControl nodes

You might find it useful to design a fan-out flow with multiple AggregateControl

nodes, all with the same value set for the property Aggregate Name, but with

different values for the Timeout property. This is the only situation in which you

can reuse an Aggregate Name.

Before you start:

To complete this task, you must have completed the following task:

v “Creating a message flow project” on page 215

For example, if you have created an aggregation flow that books a business trip,

you might have some requests that need a reply within two days, but other, more

urgent requests, that need a reply within two hours.

To configure an aggregation flow that uses multiple AggregateControl nodes:

1. Switch to the Broker Application Development perspective.

2. Create or open the fan-out message flow.

3. Configure the required number of AggregateControl nodes. Set the Basic

property Aggregate Name of each node to the same value. For example, include

two nodes and enter the name JOURNEY as the Aggregate Name for both.

4. Set the value for the Timeout property in each node to a different value. For

example, set the Timeout in one node to two hours; set the Timeout in the

second node to two days.

5. Configure a Filter node to receive incoming requests, check their content, and

route them to the correct AggregateControl node.

6. Connect the nodes together to achieve the required result. For example, if you

have configured the Filter node to test for requests with a priority field set to

urgent, connect the true terminal to the AggregateControl node with the short

timeout. Connect the false terminal to the AggregateControl node with the

longer timeout. Connect the out terminals of the AggregateControl nodes to the

following nodes in the fan-out flow.

You must connect the two AggregateControl nodes in parallel, not in sequence.

This means that you must connect both to the Filter node (one to the true

terminal, one to the false), and both to the downstream nodes that handle the

requests for the fan-out. Each input message must pass through only one of the

AggregateControl nodes. If you connect the nodes such that a single message is

processed by more than one AggregateControl node, duplicate records are

created in the database by the AggregateRequest node and subsequent

processing results are unpredictable.

The following diagram shows an example fan-out message flow that uses this

technique.

584 Message Flows

Correlating input request and output response aggregation

messages

If you want to correlate initial request messages with their combined response

messages, you can do so using the ReplyIdentifier in the Properties folder of the

response message.

Before you start:

To complete this task, you must have completed the following tasks:

v “Creating the aggregation fan-out flow” on page 573

v “Creating the aggregation fan-in flow” on page 577

In some cases you might want to correlate aggregation request messages with the

combined response message produced by your fan-in flow, there are two ways of

doing this:

v Store some correlation information in one of the requests sent out as part of the

aggregation.

v Send the original request message directly back to the AggregateReply node as

one of the aggregation requests. To do this, the CorrelId must be set to the

MsgId, and the MQOutput node must have its MessageContext set to ’Pass all’.

Using control messages in aggregation flows

In WebSphere Message Broker the default behavior is that connections between

AggregateControl and AggregateReply nodes for sending control messages are

ignored. This configuration optimizes performance and removes the possibility that

response messages will be received by the AggregateReply node before the control

message.

Before you start:

To complete this task, you must have completed the following tasks:

v “Creating the aggregation fan-out flow” on page 573

v “Creating the aggregation fan-in flow” on page 577

Control messages are not necessary to make aggregations work correctly. However,

it is still possible for you to send control messages in your aggregation flows if it is

necessary. To send control messages in a message flow created in WebSphere

Message Broker Version 6.0, see “Configuring message flows to send control

messages” on page 586 and “Configuring a broker environment to send control

messages” on page 587.

Developing message flows 585

Important: If you created message flows in Version 5.0 and configured them to use

control messages, and you want to continue using control messages,

see “Configuring a broker environment to send control messages” on

page 587. Unless you complete this task, the connections between the

AggregateControl and AggregateReply nodes that were created in

earlier versions of the product will be ignored in Version 6.1.

For a working example of aggregation (without the use of control messages), see

the following sample:

v Airline Reservations sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Configuring message flows to send control messages

To configure message flows to send control messages from an AggregateControl

node to an AggregateReply node:

1. Switch to the Broker Application Development perspective.

2. If you have created the fan-out and fan-in flows in a single message flow:

a. Open the aggregation message flow.

b. Connect the Control terminal of the AggregateControl node to the Control

terminal of the AggregateReply node to make the association.
This connection is referred to as a direct connection between the two

aggregation nodes.

3. If you have created separate fan-out and fan-in message flows:

a. Open the fan-out message flow.

b. Configure the AggregateControl node as described in “Creating the

aggregation fan-out flow” on page 573.

c. At this stage, you can configure a Compute node that creates a valid output

message that contains the control message. For example, to pass the control

message to an MQOutput node, configure the Compute node to add an

MQMD to the message and complete the required fields in that header. For

example, you can code the following ESQL:

d. Configure an output node that represents the intermediate destination for

the control message. For example, to send the control message to an

intermediate WebSphere MQ queue, include an MQOutput node and

identify the target queue in the Basic properties Queue Manager Name and

Queue Name.

e. Connect the Control terminal of the AggregateControl node to the In

terminal of the Compute node, and connect the Out terminal of the

Compute node to the In terminal of the output node that represents the

intermediate destination for the control message.

f. Open the fan-in message flow.

g. Configure one input node to receive the reply messages, as described in

“Creating the aggregation fan-in flow” on page 577. This input node also

receives the control information from the AggregateControl node. For

example, set the Basic property Queue Name of the MQInput node to

receive the response and control message from an intermediate

WebSphere MQ queue.

SET OutputRoot.MQMD.Version = MQMD_CURRENT_VERSION;

SET OutputRoot.MQMD.Format = MQFMT_STRING;

586 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm

h. Add a Filter node to your fan-in flow after the input node and before the

AggregateReply node, as described in “Avoiding thread starvation on fan-in

flows” on page 588.

i. Connect the Out terminal of the input node to the In terminal of the Filter

node.

j. Connect the Out terminals of the Filter node to the Control terminal and in

terminal of the AggregateReply node.
This connection is referred to as an indirect connection between the two

aggregation nodes.

Configuring a broker environment to send control messages

By default, in WebSphere Message Broker Version 6.1, any connections from the

Control terminal of the AggregateRequest node to the AggregateReply node are

ignored. For these connections to be active, create the

MQSI_AGGR_COMPAT_MODE environment variable in the broker’s environment.

By default, the environment variable does not exist. The existence of the

environment variable means that connections from the AggregateControl node are

active, regardless of the value to which the environment variable is set.

When the MQSI_AGGR_COMPAT_MODE environment variable has not been

created, the default behavior for aggregation fan-out flows is used. If the Control

terminal of the AggregateControl node is connected, either directly or indirectly, to

the In terminal of the AggregateReply node, this connection is ignored and no

control message is sent.

If the MQSI_AGGR_COMPAT_MODE environment variable is created, the default

behavior for aggregation fan-out flows is not used, allowing you to send control

messages from the AggregateControl node to the AggregateReply node. If the

Control terminal of the AggregateControl node is connected, either directly or

indirectly, to the In terminal of the AggregateReply node, as described in “Creating

the aggregation fan-out flow” on page 573, this connection is recognized and a

control message is sent. Please note that this is not the optimal configuration and

might decrease performance.

To create the MQSI_AGGR_COMPAT_MODE variable to allow connections

between AggregateControl and AggregateReply nodes to be recognized:

v

Windows

On Windows:

1. Open System Properties by clicking Start → Control Panel → System.

2. Click the Advanced tab.

3. Click Environment Variables.

4. In the System variables pane, click New.

5. Under Variable name type MQSI_AGGR_COMPAT_MODE.

6. (Optional) You can type in the Variable value or leave it blank.

7. For the environment variable to take effect, restart the computer.

v

Linux

UNIX

z/OS

On Linux, UNIX and z/OS:

1. Edit the profile of the broker userid and include the following code: export

MQSI_AGGR_COMPAT_MODE=

2. Reload the profile.

3. Restart the broker.

Developing message flows 587

Avoiding thread starvation on fan-in flows

Follow this guidance to avoid thread starvation on fan-in flows if the Control

terminal of the AggregateControl node in your fan-out flow is connected to output

control messages to a queue.

By not connecting the Control terminal, you can overcome the issues that are

discussed here. For further information about connecting the Control terminal of

the AggregateControl node, see “Using control messages in aggregation flows” on

page 585.

The Aggregate Reply node has two input terminals: In and Control. The use of the

Control terminal is optional. If you use both of these terminals, the MQInput nodes

that supply the two terminals must not use threads from the message flow

additional instance pool. If the nodes do use these threads, they compete for

resources, and the Control terminal’s MQInput node typically takes all available

threads because it is activated before the In terminal.

Configure each MQInput node to use additional instances that are defined on the

node, not at the message flow level.

Handling exceptions in aggregation flows

When you use aggregation flows, exceptions might occur.

Before you start:

Complete the following tasks:

v “Creating the aggregation fan-out flow” on page 573

v “Creating the aggregation fan-in flow” on page 577

Dealing with exceptions

If an error is detected downstream of an AggregateReply node, the broker issues

an exception. Another node in the message flow might also issue an exception

using the ESQL THROW statement. In either case, when an exception occurs, it is

caught in one of two places:

v The input node on which the replies arrive

v The AggregateReply node

The following table lists events and describes what happens to an exception that

occurs downstream of the AggregateReply node.

 Event Message

propagated

Output

terminal

Exception caught

at

An expected reply arrives at the input

node and is passed to the In terminal

of the AggregateReply node. The reply

is the last one that is needed to make

an aggregation complete.

An aggregated

reply message that

contains all the

replies

Out Input node

An unexpected reply arrives at the

input node and is passed to the

AggregateReply node. The reply is not

recognized as a valid reply, and the

Unknown Message Timeout property

is set to 0.

Message received Unknown Input node

588 Message Flows

Event Message

propagated

Output

terminal

Exception caught

at

A timeout occurs because all the

replies for an aggregation have not yet

arrived.

An aggregated

reply message that

contains all the

replies that have

been received

Timeout AggregateReply

node

An unknown timeout occurs because a

retained message is not identified as a

valid reply.

Retained message Unknown AggregateReply

node

An aggregation is discovered to be

complete at some time other than

when the last reply arrived.

An aggregated

reply message that

contains all the

replies

Out AggregateReply

node

To handle errors that occur in aggregation flows, you must catch these exceptions

at all instances of each of these nodes in the message flow.

1. Switch to the Broker Application Development perspective.

2. Open the message flow with which you want to work.

3. To handle these exceptions yourself, connect the Catch terminal of each input

and AggregateReply node to a sequence of nodes that handles the error that

has occurred.

For a unified approach to error handling, connect the Catch terminals of all

these nodes to a single sequence of nodes, or create a subflow that handles

errors in a single consistent manner, and connect that subflow to each Catch

terminal.

4. If you want the broker to handle these exceptions using default error handling,

do not connect the Catch terminals of these nodes.

If you connect the Catch terminal of the AggregateReply node, and want to send

the message that is propagated through this terminal to a destination from which it

can be retrieved for later processing, include a Compute node in the catch flow to

provide any transport-specific processing. For example, you must add an MQMD

header if you want to put the message to a WebSphere MQ queue from an

MQOutput node.

The ESQL example below shows you how to add an MQMD header and pass on

the replies that are received by the AggregateReply node:

-- Add MQMD

SET OutputRoot.MQMD.Version = 2;

.

-- Include consolidated replies in the output message

SET OutputRoot.XMLNS.Data.Parsed = InputRoot.ComIbmAggregateReplyBody;

.

To propagate the information about the exception in the output message, set the

Compute mode property of the Compute node to a value that includes Exception.

Exceptions when dealing with unknown and timeout messages

When timeout messages or unknown messages from unknown timeout processing

are produced from an AggregateReply node they originate from a internal queue

and not from a MQInput node. This effects how the error handling should be

performed.

Developing message flows 589

If a message sent down the timeout thread causes an exception, the message rolls

back to the AggregateReply node and is sent to the catch terminal. If this terminal

is either unattached or an exception occurs while processing the message, the

timeout is rolled back onto the internal queue and is reprocessed. Potentially, this

will lead to an infinite loop which can only be stopped either by removing the

timeout message from the internal queue (not recommended), or by deploying a

version of the messages flow that fixes the problem.

To avoid this infinite loop take the following actions.

v Connect the catch terminal up to a error handling set of nodes.

v Ensure the error handling nodes cannot throw an exception by ensuring that the

perform very simple operations, for example, converting the message to a blob

and then writing it to a queue, or add in extra TryCatch nodes.

Note: The failure terminal is currently not used and messages will never be passed

to this terminal.

Using WebSphere MQ to store state in aggregation nodes

Before you start:

Read the concept topic about message flow aggregation.

To use WebSphere MQ to store state in aggregation nodes, perform the following

steps:

1. Migrate an existing broker or create a new broker.

2. Configure the broker environment to use WebSphere MQ for aggregation

nodes.

When you have performed these steps, aggregation will function as it did before,

but you might notice the following differences:

v Aggregation is much faster.

v Error messages reflect the use of WebSphere MQ instead of a database table.

v No control messages are sent between the request flow and the reply flow. If

required, you can force a control message to be sent. It is no longer necessary to

connect the AggregationControl node control terminal to the AggregationReply

node control terminal.

Migrating a broker for use with aggregation nodes

This topic describes how to migrate a broker for use with aggregation nodes that

use WebSphere MQ to store state. The aggregation nodes need new queues to be

created to store aggregation information. If you create a new broker, the queues are

created automatically. If you are using an existing broker, perform the following

steps:

Windows, Linux, and UNIX:

1. Stop the broker by issuing the mqsistop command.

2. Migrate the queues by issuing the mqsimigratequeues command.

3. Start the broker by issuing the mqsistart.

z/OS:

1. Stop the broker.

590 Message Flows

2. Re-run the mqsicustomize command.

3. Re-run the queue creation JCL (BIP$MQ01).

4. Start the broker.

Configuring a broker environment to use WebSphere MQ for

aggregation nodes

By default, all execution groups use a database table for storing aggregation

requests. If you prefer to use WebSphere MQ to store aggregation requests, set the

MQSI_AGGR_MQ environment variable. Use this variable to list the execution

groups that use WebSphere MQ instead of a database. The format of the value of

the variable is:

<List of Brokers>/<List of Execution groups>

where <List of Brokers> is a comma-separated list of brokers to use, and <List

of Execution groups> is a comma-separated list of execution groups. If an

execution group is running under a broker in the list and has an entry in the

execution list, it uses WebSphere MQ to store state for aggregations. You can use

an asterisk (*) as a wildcard in either the <List of Brokers> or the <List of

Execution groups>. If the wildcard appears in the list, any broker or execution

group is matched. The following table includes some examples that show how to

use the MQSI_AGGR_MQ variable:

 Value Result

/ All execution groups on the computer are enabled.

BROKER1/* All execution groups running on BROKER1 are enabled.

*/default All execution groups called ″default″ are enabled.

BROKER1/
default,eg1,eg2

Execution groups called ″default″, ″eg1″, and ″eg2″ on BROKER1

are enabled.

BROKER1,BROKER2/
default,eg1,eg2

Execution groups called ″default″, ″eg1″, and ″eg2″ on BROKER1

and on BROKER2 are enabled.

To create the MQSI_AGGR_MQ variable and configure it to use WebSphere MQ to

store aggregation state:

Windows:

1. Open the System properties by clicking Start → Control Panel → System.

2. Click the Advanced tab.

3. Click Environment Variables.

4. In the System variables pane, click New.

5. Under Variable name, enter MQSI_AGGR_MQ.

6. Set the value of the variable to specify which execution groups use WebSphere

MQ (refer to the examples in the table).

7. Restart the computer.

Linux and UNIX:

1. Edit the profile of the broker user ID and refer to the examples in the table to

set the value of the MQSI_AGGR_MQ variable:

export MQSI_AGGR_MQ=value

2. Reload the profile.

3. Restart the broker.

Developing message flows 591

z/OS:

1. Edit the broker ENVFILE and refer to the examples in the table to set the value

of the MQSI_AGGR_MQ variable:

MQSI_AGGR_MQ=value

2. Reload the profile.

3. Restart the broker.

Configuring a broker environment to send control messages

By default, when you use WebSphere MQ to store state, any connections from the

control terminal of the AggregateRequest node to the AggregateReply node are

ignored. For these connections to be active, create the

MQSI_AGGR_COMPAT_MODE environment variable in the broker’s environment.

By default, the environment variable does not exist. When you create this

environment variable, connections from the AggregateControl node are active,

regardless of the value of the environment variable.

When the MQSI_AGGR_COMPAT_MODE environment variable has not been

created, the default behavior for aggregation fan-out flows is used. If the control

terminal of the AggregateControl node is connected to the in terminal of the

AggregateReply node, either directly or indirectly, this connection is ignored and

no control message is sent.

If the MQSI_AGGR_COMPAT_MODE environment variable is created, the default

behavior for aggregation fan-out flows is not used, allowing you to send control

messages from the AggregateControl node to the AggregateReply node, but this

configuration might have an adverse effect on performance.

To create the MQSI_AGGR_COMPAT_MODE variable to allow connections

between AggregateControl and AggregateReply nodes to be recognized:

Windows:

1. Open the System properties by clicking Start → Control Panel → System.

2. Click the Advanced tab.

3. Click Environment Variables.

4. On the System variables pane, click New.

5. Under the Variable name, enter MQSI_AGGR_COMPAT_MODE.

6. Optional: Enter the variable value.

7. Restart the computer.

Linux and UNIX:

v Edit the profile of the broker user ID and include the following information:

export MQSI_AGGR_COMPAT_MODE=true

v Reload the profile.

v Restart the broker.

z/OS:

v Edit the profile ENVFILE and include the following information:

MQSI_AGGR_COMPAT_MODE=true

v Restart the broker.

592 Message Flows

Configuring flows for message collection

You can use the Collector node in a message flow to generate a message collection.

Before you start:

Read the concept topic about message collections.

You can use a Collector node to group together related messages from one or more

sources, into a single message known as a message collection. The messages are

added to the message collection based on conditions that you configure in the

Collector node. The message collection can then be routed for further processing to

other nodes in the message flow. You can also build a message collection manually

using a Compute node or JavaCompute node.

See the following topics for instructions on configuring message flows to generate

message collections:

v “Creating a flow for message collection”

v “Configuring the Collector node” on page 595

v “Using control messages with the Collector node” on page 602

The Collector node sample demonstrates the use of the Collector node for message

collection.

Creating a flow for message collection

Use a Collector node in your message flows to group messages from one or more

sources into a message collection. You can add dynamic input terminals to your

Collector node for each message source you want to configure for your message

flow.

Before you start:

To complete this task, you must have completed the following task:

v “Creating a message flow project” on page 215

Before completing this task, read the overview about message collection; see

“Message collection” on page 126.

To review an example of a message flow that uses message collections, see the

Collector node sample that is supplied with WebSphere Message Broker.

To create a message flow to generate and process message collections:

1. Switch to the Broker Application Development perspective.

2. Create a new message flow.

3. Add the following nodes in the editor view, and configure and connect them as

described:

Input nodes

The input nodes receive the messages from which message collections are

generated. You can use any of the built-in nodes, or user-defined input nodes.

a. Add an input node for each source of input messages for your message

flow, for example an MQInput node and a JMSInput node.

b. Select each input node to display its properties in the Properties view.

Developing message flows 593

c. Specify the source of input messages for this node. For example, specify the

name of a WebSphere MQ queue in the Basic property Queue Name from

which the MQInput node retrieves messages.

d. Optional: specify values for any other properties that you want to configure

for this node.

Collector node

The Collector node receives messages from input nodes or other nodes in the

message flow. You must add a dynamic input terminal to the Collector node for

each input message source before you can connect the input nodes or any

upstream nodes to the Collector node.

a. Add a Collector node to your message flow.

b. Right-click on the Collector node and click Add Input Terminal to add a

new dynamic input terminal to the Collector node. Add a new input

terminal for each input source that you plan to add to your message flow;

for more information about adding dynamic input see “Adding an input

terminal for each input source” on page 595.

c. Connect the out terminal of each input node to one of the dynamic input

terminals of the Collector node. Repeat this step for each input node,

connecting each input node to a different input terminal on the Collector

node. This represents the simplest configuration; if appropriate, you can

include other nodes between the input node and the Collector node. For

example, you might want to store the request for audit purposes (in a

Warehouse node), or add a unique identifier to the message (in a Compute

node).

Processing nodes

You can process message collections from a Collector node using the following

nodes only:

v Compute

v JavaCompute

You must connect either a Compute node or a JavaCompute node to the

Collector node in your message flow. Use these nodes to process the message

collection and propagate other messages. You can use ESQL or XPATH to

access the contents of the individual messages in the message collection for

processing

To process a message collection:

a. Add a Compute node or a JavaCompute node to your message flow.

b. Code your ESQL or Java to create single output messages from the message

collection.

c. Optional: specify values for any other properties that you want to configure

for this processing node.

d. Connect the out terminal of the processing node to the in terminal of an

output node or other processing node.

e. Optional: add other nodes to your message flow for further processing.

Output node

Include one or more output nodes for your message flow. This can be any of

the built-in nodes, or a user-defined output node. An output node can not

process a message collection, therefore ensure that you connect the output node

to a processing node that propagates single output messages.

To configure an output node:

a. Select each output node to display its properties in the Properties view.

594 Message Flows

b. Specify the destination properties for this node. For example, specify the

name of a WebSphere MQ queue in the Basic property Queue Name to

which the MQOutput node sends messages.

c. Optional: specify values for any other properties that you want to configure

for this node.

Error handling nodes

Include processing for handling errors and expired message collections:

a. Optional: add processing nodes to your message flow to handle expired

message collections. Connect these nodes to the Expire terminal.

b. Optional: add processing or error handling nodes to handle any exceptions

in your message flow. Connect these nodes to the Catch terminal.

If an error is detected downstream of the Collector node, the broker throws an

exception. The message collection is propagated to the Collector node’s Catch

terminal. Connect the Catch terminal to a sequence of nodes that handles the

errors to avoid losing any data, and ensure that no further exceptions can be

generated during error processing. The node connected to the Catch terminal

must be either a Compute node or a JavaCompute node to handle the message

collection.

4. Press Ctrl-S or click File → Save name on the taskbar menu (where name is the

name of this message flow) to save the message flow and validate its

configuration.

If you want to control when complete message collections are propagated, you

must also add additional nodes to your message flow. For information about using

control messages, see “Using control messages with the Collector node” on page

602.

Next: Configure the Collector node.

Configuring the Collector node

You can configure the Collector node to determine how messages are added to

message collections. You can also use properties on the Collector node to control

when message collections are propagated.

Before you start:

To complete this task, you must have completed the following task:

v “Creating a message flow project” on page 215

v Configure a flow for message collection

Use the following topics to configure the Collector node:

v “Adding an input terminal for each input source”

v “Setting event handler properties” on page 596

v “Setting the collection expiry” on page 599

v “Setting the collection name” on page 599

v “Setting the event coordination property” on page 600

v “Setting the persistence mode property” on page 601

Adding an input terminal for each input source

Add new dynamic input terminals to the Collector node for all of the sources of

messages for your message collections.

Developing message flows 595

Before you start:

To complete this task, you must have completed the following tasks:

v “Creating a message flow project” on page 215

v “Creating a flow for message collection” on page 593

To add a dynamic input terminal to the Collector node for each message source:

1. Right click the Collector node and select Add Input Terminal.

2. In the dialog box that is displayed, enter a name of your choice for the

terminal, and click OK. The name that you give to the input terminal is used as

the folder name in the message collection.

3. Repeat steps 1 and 2 to add further input terminals.

When you have created all the required input terminals on the Collector node, you

can set the event handler properties. For more information see, “Setting event

handler properties.”

Setting event handler properties

You can configure event handler properties for each dynamic input terminal on a

Collector node. These event handler properties determine how the messages

received by each terminal are added to message collections.

Before you start:

To complete this task, you must have completed the following tasks:

v “Creating a message flow project” on page 215

v “Creating a flow for message collection” on page 593

v “Adding an input terminal for each input source” on page 595

You can use one or more of the event handler properties to control the way that

messages are added to message collections, for each input terminal that you added

to the Collector node. Incomplete message collections are stored on a

WebSphere MQ queue. The message collections are stored in the order that they

are generated by the Collector node (first in, first out). Each message collection has

an event handler instance for each of the input terminals. The event handler

determines whether an incoming message on that terminal is added to a message

collection. The event handler instance maintains information about the state of the

collection, the number of messages received, the timer, and the correlation string.

When a new message is received on an input terminal, it is offered to the event

handler for each message collection waiting on the queue in turn. When the

message is accepted by one of the event handlers, it is added to the message

collection. The accepted message is not offered to any other message collections. If

all the event handlers reject the message, it is added to a new message collection,

which is added to the end of the queue.

The first message accepted into a collection determines the correlation string for

that message collection, if it is configured. Subsequent messages offered to that

message collection are only accepted if their correlation string matches that of the

collection. The first message accepted by each event handler starts the timeout

timer, if it is configured. Each message accepted by each event handler increments

the quantity count. An event handler becomes satisfied when the number of

messages accepted equals the configured quantity, or when the timeout value is

reached. When an event handler is satisfied, the event handler does not accept any

596 Message Flows

more messages. A message collection is complete only when all of the message

collection’s event handlers are satisfied. The message collection is then ready for

propagation.

You can configure the event handler properties using the Collection Definition

table, on the Basic tab of the Properties view.

To configure the event handler properties on the Collector node:

1. Switch to the Broker Application Development perspective.

2. Open the message flow with the Collector node.

3. Right-click the Collector node and select Properties.

4. Click on the Basic tab.

5. Use the following instructions to configure the event handler properties that

you want to set for each input terminal:

v If you want to add a set number of messages to each message collection

from one or more of the terminals, you must enter a value for Quantity in the

Collection Definition table. This value is used to specify the number of

messages that each configured input terminal accepts to complete a

collection. For example, if you have set Quantity to wait for 2 messages, on

three of the input terminals, the message collection is not complete until 2

messages have been received on each of the three input terminals. The

complete message collection contains 6 messages, 2 from each of the three

terminals. As soon as more than 2 messages are received on one of the input

terminals, the next message is added to a new message collection.

a. In the Collection Definition table, click in the row for the selected input

terminal within the Quantity column.

b. Enter a value for the number of input messages that you want to add to

a message collection. If you select Zero or choose to unset this property,

there is no limit to the number of messages accepted. In this case the

value set on the Timeout property must be greater than zero. If you accept

the default value of 1; only one message from the selected terminal is

added to a collection.

You must enter a value for Quantity if Timeout is not set.

v If you want to collect messages for a set amount of time before the message

collection is propagated you must enter a value for Timeout. This value is

used to specify the maximum time in seconds that the selected input

terminal accepts messages for, before completing a message collection. The

timeout interval starts when the first message has arrived at the selected

terminal. Any subsequent messages are added to the same message

collection. When the timeout interval ends, no more messages are added to

the message collection from this terminal. When the conditions on all the

terminals are satisfied, then the message collection is ready for propagation.

When the next message reaches the selected input terminal, a new message

collection is created and the timeout interval starts again. If a timeout is set

on multiple input terminals, each terminal collects messages for the

configured amount of time. During the timeout, messages from all the

terminals are added to the same message collection.

a. In the Collection Definition table, click in the row for the selected input

terminal within the Timeout column.

b. Enter a value for the length of time in seconds that you want to wait to

add messages to a message collection. For example, to wait for messages

to add to a message collection for an hour, enter a value of 3600. If you

accept the default value Zero, the timeout is disabled and there is no

Developing message flows 597

limit on the time to wait for messages. In this case the value set on the

Quantity property must be greater than zero.

You must enter a value for Timeout if Quantity is not set.

v If you want to add messages to different message collections based on the

content of the message you must enter an XPath value for the Correlation

path. This value is used to specify the path in the incoming message from

which to extract the correlation string. The correlation string is the value that

is extracted by the correlation path. If a correlation pattern is specified, then

the correlation string is matched against the correlation pattern. Messages are

only accepted into a message collection with the same correlation string. If

you specify a * in the name of the message collection, it is replaced by the

correlation string.

a. In the Collection Definition table, click in the row for the selected input

terminal within the Correlation path column.

b. Either select a predefined correlation path from the list, or enter your

own correlation path using XPath. The correlation path must begin with a

correlation name, which can be followed by zero or more path fields. For

more information about correlation names, see “Correlation names” on

page 71. For example, in the following message the correlation string is

foo in the name field:

<library>

 <name>foo</name>

 <more>

 ...

 </more>

</library>

In this example, the correlation path using XPath is $Body/library/name.

The variables $Root, $LocalEnvironment and $Environment are available

to allow the path to start at the roots of the message, local environment,

environment trees and message body.

If the correlation path evaluates to an empty string the unmatched message

is added to a default unnamed message collection.

If you define a value for Correlation path, you can optionally configure a

Correlation pattern.
v If you want to match a substring of the message content from the Correlation

path, you can define a pattern to match in the message using Correlation

pattern. The Correlation pattern contains a single wildcard character and

optional text. The correlation string, used for the name of the message

collection, is the part of the substring that matches the wildcard. For

example, if the correlation path contains the filename part1.dat in a file

header, and the correlation pattern is specified as*.dat, the correlation string

is part1.

If this property is set, only messages that have the same correlation string are

added to the same message collection. The first message added to a message

collection determines the correlation string that must be matched by all other

messages in that message collection.

a. In the Collection Definition table, click in the row for the selected input

terminal within the Correlation pattern column.

b. Enter a value for the correlation pattern. The Correlation pattern must

contain a single wildcard character: *. This wildcard character can

optionally be surrounded by other text.

If the correlation pattern fails to match the wildcard to a substring, then the

unmatched message is added to a default unnamed message collection.

598 Message Flows

6. Repeat step 5 on page 597 for each of the input terminals that you added to

your Collector node. You can configure different event handlers for different

input sources.

Note: Ensure that you set the event handler properties across different terminals

carefully to match the expected delivery of messages to the terminals on the

Collector node.

Next: Configure the collection expiry.

Setting the collection expiry

The collection expiry is a property on the Collector node to set a maximum

timeout for adding messages to a message collection.

Before you start:

To complete this task, you must have completed the following tasks:

v “Creating a message flow project” on page 215

v “Creating a flow for message collection” on page 593

When messages are added to a message collection, the incomplete message

collection is stored on a queue. If the message collection’s event handlers are not

satisfied, then the incomplete message collection is stored on the queue

indefinitely, and not propagated for further processing. If a Collector node has 2

input terminals, and one of the terminals stops receiving messages, for example if

the source application is not running, there is the potential for the queue of

incomplete message collections to grow indefinitely. To ensure that these

incomplete message collections are released after an appropriate amount of time,

configure the Collection Expiry property. You can configure this timeout, as a value

in seconds, in the Collection Expiry property on the Collector node. The collection

expiry timeout starts when the first message is accepted into a message collection.

The collection expiry overrides any individual event handler timers. When the

collection expiry timeout has passed for a message collection, the incomplete

message collection is propagated to the Expire terminal. Connect appropriate

processing nodes to the Expire terminal, to handle any expired message collections

in your message flow.

To configure a collection expiry:

1. Switch to the Broker Application Development perspective.

2. Open the message flow with the Collector node.

3. Right-click the Collector node and select Properties.

4. Click on the Basic tab.

5. In Collection Expiry, enter a time in seconds for the collection expiry timeout.

Next: Configure the collection name.

Setting the collection name

You can set a default name, or use a correlation string, for the name of your

message collections, using the Collection name property on the Collector node.

Before you start:

To carry out this task, you must first have completed the following tasks:

v “Creating a message flow project” on page 215

Developing message flows 599

v “Creating a flow for message collection” on page 593

Each message collection produced by the Collector node has a name. The collection

name is the value associated with the CollectionName attribute in the message

collection tree structure. Each message collection has only one name.

You can either use Collection name to set a default name to be used for each

message collection, or you can use the event handler properties to create a

correlation string to use for the message collection name. You can use the

correlation string to generate a unique name for the message collection, based on

the content of the input messages. To use the correlation string for the collection

name, you must enter the wildcard symbol *. If you leave Collection name blank, or

if it is set to * and the value of the correlation string is empty, the CollectionName

attribute of the message collection is set to an empty value.

Any * characters in the collection name are replaced with the correlation string.

The correlation string for each message collection is also copied into the

LocalEnvironment message associated with the propagated message collection. The

location of the correlation string in the LocalEnvironment is Wildcard/
WildcardMatch.

To configure the message collection name:

1. Switch to the Broker Application Development perspective.

2. Open the message flow with the Collector node.

3. Right-click the Collector node and select Properties.

4. Click on the Basic tab.

5. Enter a name, in Collection name, for the message collections generated by the

Collector node. If you have set a value for Correlation path on your input

terminals, you can use the * in the Collection name field to substitute the

correlation string into the collection name value. Leave the collection name

blank if you want to set your message collection name to an empty value.

Next: “Setting the event coordination property.”

Setting the event coordination property

Use the Event coordination property for controlling how message collections are

propagated from the Collector node.

Before you start:

To complete this task, you must have completed the following tasks:

v “Creating a message flow project” on page 215

v “Creating a flow for message collection” on page 593

In addition to the dynamic input terminals that you can add to the Collector node,

there is a static input terminal called Control. The purpose of this terminal is to

allow an external resource to trigger the output from the collector node. Details are

controlled via the Event coordination property settings.

Incomplete message collections that have exceeded the value for the Collection

expiry timeout are immediately propagated to the Expire terminal, regardless of

how you configure the Event coordination property.

To configure Event coordination:

600 Message Flows

1. Switch to the Broker Application Development perspective.

2. Open the message flow with the Collector node.

3. Right-click the Collector node and select Properties.

4. Click on the Advanced tab.

5. Set the Event coordination property on the Collector node. Select from the

following options:

v If you select Disabled, messages to the Control terminal are ignored and

message collections are propagated when they are complete.

v If you select All complete collections, complete message collections are

held on a queue. When a message is received on the Control terminal, all

message collections on the queue are propagated to the Out terminal.

v If you select First complete collection, complete message collections are

held on a queue. When a message is received on the Control terminal, the

first message collection on the queue is propagated to the Out terminal. If

the queue is empty when a message arrives on the Control terminal, the next

message collection that is completed is propagated to the Out terminal.

You have completed configuration of the Collector node.

Next: if you have configured your Collector node to use control messages, see

“Using control messages with the Collector node” on page 602.

Setting the persistence mode property

Use the Persistence Mode property to control whether incomplete message

collections are stored persistently on the Collector node’s queues.

Before you start:

To complete this task, you must have completed the following tasks:

v “Creating a message flow project” on page 215

v “Creating a flow for message collection” on page 593

The storage of incoming messages and the Collector node state is handled

internally using WebSphere MQ queues. By default incomplete message collections

are stored non-persistently. This means that incomplete message collections persist

if you restart your broker, but not if you restart your queue manager.

You can use the Persistence Mode property on the Collector node to store

incomplete message collections on a queue persistently. If you set the Persistence

Mode property to Persistent, incomplete message collections are not lost if you

restart your queue manager. However, if you do set the property to Persistent,

the overall performance of the Collector node might be reduced.

To configure the Persistence Mode:

1. Switch to the Broker Application Development perspective.

2. Open the message flow with the Collector node.

3. Right-click the Collector node and select Properties.

4. Click on the Advanced tab.

5. Set the Persistence Mode property on the Collector node. Select from the

following options:

v If you select Non Persistent, messages and collection state are stored by the

broker’s queue manager as non-persistent messages.

Developing message flows 601

v If you select Persistent, messages and collection state are stored by the

broker’s queue manager as persistent messages.

You have completed configuration of the Collector node.

Using control messages with the Collector node

You can send control messages to the Collector node in order to control how

complete message collections are propagated to other nodes in your message flow.

Before you start:

To complete this task, you must have completed the following tasks:

v “Creating a message flow project” on page 215

v “Creating a flow for message collection” on page 593

v “Setting the event coordination property” on page 600

You can control when complete message collections are propagated to other nodes

for processing, using messages sent to the Control terminal. The exact behavior

depends on the settings that you have chosen for the Event coordination property on

the Collector node. If you want to use control messages to propagate completed

messages collections you must set the Event coordination property to one of the

following:

v All complete collections

v First complete collection

In these cases, the complete message collections are held on a queue until a control

message is received. If you set Event coordination to All complete collections, all

the message collections held on the queue are propagated to the Out terminal. If

you set Event coordination to First complete collection, only the first message

collection on the queue is propagated to the Out terminal. If there are no complete

message collections on the queue, the next message collection to complete is

immediately propagated to the Out terminal.

Incomplete message collections that have exceeded the value for Collection expiry

are immediately propagated to the Expire terminal regardless of the setting of

Event coordination.

If you want to propagate any complete message collections after a set amount of

time for further processing, connect a TimeoutNotification node to the Control

terminal of the Collector node. You can use the TimeoutNotification node to send a

control message to propagate the message collections to ensure that messages are

processing within a reasonable time, or to schedule processing tasks.

For more information about driving a message flow using the TimeoutNotification

node, see “Automatically generating messages to drive a flow” on page 608.

Alternatively, you can propagate complete message collections using a message

from another application or message flow by connecting an input node to the

Control terminal of the Collector node.

You can send any message to the Control terminal of the Collector node. The

message received on the Control terminal is not examined by the broker and is

discarded on receipt.

602 Message Flows

Configuring timeout flows

Use the TimeoutControl and TimeoutNotification nodes in message flows to

process timeout requests or to generate timeout notifications at specified intervals.

The following scenarios show how these nodes can be used in a message flow:

v “Sending a message after a timed interval” on page 605

v “Sending a message multiple times after a specified start time” on page 606

v “Automatically generating messages to drive a flow” on page 608

Sending timeout request messages

To set a controlled timeout, send a message with a set of elements with well

known names to a TimeoutControl node. These elements control the properties of

the timeout to be created or deleted.

Elements and format

The following example shows the elements and format of a timeout request

message, showing the well known names and permissible values.

<TimeoutRequest>

 <Action>SET | CANCEL</Action>

 <Identifier>String (any alphanumeric string)</Identifier>

 <StartDate>String (TODAY | yyyy-mm-dd)</StartDate>

 <StartTime>String (NOW | hh:mm:ss)</StartTime>

 <Interval>Integer (seconds)</Interval>

 <Count>Integer (greater than 0 or -1)</Count>

 <IgnoreMissed>TRUE | FALSE</IgnoreMissed>

 <AllowOverwrite>TRUE | FALSE</AllowOverwrite>

</TimeoutRequest>

Message fields

The following table describes the fields in the message. The column headed M

indicates whether the property is mandatory, and the column headed C indicates

whether the property is configurable.

 Property M C Default Description

Action Yes No None Set this element to either SET or CANCEL. An error is generated if you

omit this element or set it to a different value. If you set it to CANCEL,

the only other element that is required is the Identifier, which must

match the Identifier of the TimeoutRequest that is to be canceled.

Identifier Yes No None Enter an alphanumeric string. An error is generated if you omit this

element.

StartDate No No TODAY Set this element to TODAY or to a date specified in yyyy-mm-dd

format. The default value is TODAY.

Developing message flows 603

Property M C Default Description

StartTime No No NOW Set this element to NOW or to a time in the future specified in

hh:mm:ss format. The default value is NOW. StartTime is assumed to

be the broker’s local time.

The start time can be calculated by adding an interval to the current

time. If a delay occurs between the node that calculates the start time

and the TimeoutControl node, the start time in the message will have

passed by the time it reaches the TimeoutControl node. If the start time

is more than approximately five minutes in the past, a warning is

issued and the TimeoutControl node rejects the timeout request. If the

start time is less than five minutes in the past, the node processes the

request as if it were immediate. Therefore, ensure that the start time in

the timeout request message is now or a time in the future.

Interval No Yes 0 Set this element to an integer that specifies the number of seconds

between propagations of the message. The default value is 0.

Count No Yes 1 Set this element to an integer value that is either greater than 0 or is -1

(which specifies a timeout request that never expires). The default

value is 1.

IgnoreMissed Yes No TRUE Set this element to TRUE or FALSE to control whether timeouts that

occur while either the broker or the timeout notification flow is

stopped, are processed the next time that the broker or timeout

notification flow is started. The default value is TRUE, which means

that missed timeouts are ignored by the TimeoutNotification node

when the broker or message flow is started. If this value is set to

FALSE, the missed timeouts are all processed immediately by the

TimeoutNotification node when the flow is started.

You must set the Request Persistence property of the TimeoutControl

node to Yes or Automatic (with the originating request message being

persistent) for the stored timeouts to persist beyond the restart of the

broker or the timeout notification flow.

AllowOverwrite N N TRUE Set this element to TRUE or FALSE, to specify whether subsequent

timeout requests with a matching Identifier can overwrite this timeout

request. The default value is TRUE.

How the TimeoutControl node uses these values

Set the Request Location on the TimeoutControl node to

InputRoot.XML.TimeoutRequest to read these properties. If you want to obtain

properties from a different part of your message, specify the appropriate

correlation name for the parent element for the properties. The correlation name

for the parent element can be in the LocalEnvironment.

For details of how the TimeoutControl uses these values, see “TimeoutControl

node” on page 1191

Working with the predefined schema definition of an XML

timeout request message

A predefined schema definition of an XML timeout request message is provided in

the workbench.

Take the following steps to review the definition or to define it within a message

set.

1. Create or select a message set project that contains the message set.

604 Message Flows

|
|
|
|
|
|
|
|
|

2. Create a new message definition file (File → New → Message Definition File

From...).

3. Select IBM supplied message and click Next.

4. Expand the tree for Message Brokers IBM supplied Message Definitions.

5. Select Message Broker Timeout Request and click Finish.

Example XML timeout request message

The format used here is XML, but you can use any format that is supported by an

installed parser.

<TimeoutRequest>

 <Action>SET</Action>

 <Identifier>TenTimes</Identifier>

 <StartDate>TODAY</StartDate>

 <StartTime>NOW</StartTime>

 <Interval>10</Interval>

 <Count>10</Count>

 <IgnoreMissed>TRUE</IgnoreMissed>

 <AllowOverwrite>TRUE</AllowOverwrite>

</TimeoutRequest>

For another example of a timeout request message, and for details of how to use

the timeout nodes to add timeouts to message flows, see the timeout processing

sample:

v Timeout Processing sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Sending a message after a timed interval

This topic describes how to use TimeoutControl and TimeoutNotification nodes to

send a message into a message flow after a timed interval.

Aim

Use TimeoutControl and TimeoutNotification nodes to send a message into a

message flow 60 seconds after the message is received.

Description of the flow

Message with
timeout request

TimeoutControl

Unique identifier = X

Action = SET
Start Time = Current time + 60 seconds
Count = 1

60 seconds after
message received

Unique identifier = X

TimeoutNotification Copy of the
input message

Unchanged
input message

Developing message flows 605

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.timeout.doc/doc/overview.htm

The diagram shows the path of a message that contains a timeout request through

a TimeoutControl node. A TimeoutNotification node with an identifier matching

the TimeoutControl node then processes the timeout request. The diagram also

shows the message that the TimeoutNotification node produces after processing

the timeout request.

The message comes into the TimeoutControl node with the following values set in

the timeout request section of the message:

 Action set to SET

 Start Time set to current time + 60

 Count set to 1

The TimeoutControl node validates the timeout request; default values are

assumed for properties that are not explicitly defined. The original message is then

sent on to the next node in the message flow. If the request is valid, the

TimeoutNotification node with the same Unique identifier as the TimeoutControl

node propagates a copy of the message to the message flow 60 seconds after the

message was received.

If a delay occurs between the node that calculates the start time and the

TimeoutControl node, the start time in the message will have passed by the time it

reaches the TimeoutControl node. If the start time is more than approximately five

minutes in the past, a warning is issued and the TimeoutControl node rejects the

timeout request. If the start time is less than five minutes in the past, the node

processes the request as if it were immediate. Therefore, ensure that the start time

in the timeout request message is a time in the future.

Refer to the following sample for further details on constructing this type of

message flow.

v Timeout Processing sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Sending a message multiple times after a specified start time

This topic describes how to use TimeoutControl and TimeoutNotification nodes to

send a message into a message flow multiple times after a specified start time.

Aim

Use TimeoutControl and TimeoutNotification nodes to send a message into a

message flow at 17:00 hours and then send the message again every 5 minutes

until the message has been sent 10 times.

606 Message Flows

|
|
|
|
|
|
|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.timeout.doc/doc/overview.htm

Description of the flow

Message with
timeout request

Unchanged
input message

TimeoutControl

Unique identifier = X

Action = SET
Start Time = 17:00
Interval = 300
Count = 10

Message output
every 5 minutes

until 10 messages
have been sent

At 17:00

At 17:05

At 17:45

Unique identifier = X

TimeoutNotification

Copy of the
input message

Copy of the
input message

Copy of the
input message

The diagram shows the path of a message that contains a timeout request through

a TimeoutControl node. A TimeoutNotification node with an identifier matching

the TimeoutControl node then processes the timeout request. The diagram also

shows the message that he TimeoutNotification node produces after processing the

timeout request.

The message comes into the TimeoutControl node with the following values set in

the timeout request section of the message:

 Action set to SET

 Start Time set to 17:00

 Interval set to 300

 Count set to 10

The TimeoutControl node validates the timeout request; default values are

assumed for properties that are not explicitly defined. The original message is then

sent on to the next node in the message flow. If the request is valid, the

TimeoutNotification node with the same Unique identifier as the TimeoutControl

node propagates a copy of the message to the message flow at 17:00. The message

is sent again after an interval of 300 seconds, at 17:05. and every 300 seconds until

the message has been sent 10 times, as the Count value in the timeout request

specifies.

Refer to the following sample for further details on constructing this type of

message flow.

Developing message flows 607

v Timeout Processing sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Automatically generating messages to drive a flow

This topic describes using the TimeoutNotification node to automatically send a

message into a message flow.

Aim

Use the TimeoutNotification node to automatically send a message into a message

flow every 10 minutes.

Description of the flow

Operation mode = Automatic
Timeout Interval = 600

Message output
every 10 minutes

(600 seconds)

When the
broker starts

600 seconds after
the last message

TimeoutNotification

Output message

Output message

Output message

The diagram shows a TimeoutNotification node automatically generating messages

and propagating them every 10 minutes. To get the TimeoutNotification node to

automatically generate messages, set the Operation Mode property of the node to

automatic and specify a value for the Timeout Interval property. In this example

the TimeoutNotification node has the following properties:

 Operation Mode set to automatic

 Timeout Interval set to 600

When the broker has started, the TimeoutNotification node sends a message every

10 minutes (600 seconds). This message contains only a properties folder and a

LocalEnvironment folder. A Compute node can then process this message to create

a more meaningful message.

In the above example, the relevant property is IgnoreMissed, and for an automatic

timeout this is implicitly set to TRUE. This means that if one of the period events

is missed the event will not be resent, but instead the broker will trigger the event

on the next scheduled timeout. If you want to be notified when events are missed,

set a controlled timeout instead. For details of the properties you can set for a

controlled timeout, see “Sending timeout request messages” on page 603.

608 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.timeout.doc/doc/overview.htm

Refer to the following sample for further details on constructing this type of

message flow.

v Timeout Processing sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Performance considerations for timeout flows

When you design timeout flows, the decisions that you make can affect the

performance of your brokers and applications.

You can use the timeout nodes TimeoutControl and TimeoutNotification in your

message flows to control the way in which your message flows operate:

v Set the Operation Mode property of the TimeoutNotification node to Automatic.

This setting causes a flow to be invoked at the interval that you specify in the

Timeout Value property. If the downstream processing is intensive, and the flow

is still busy when the next timeout occurs, the flow is not started for that

timeout instance. The flow is notified to start again only if it is free when a

particular timeout occurs.

The value of the Additional Instances property of the message flow is ignored

downstream of a TimeoutNotification node, and you cannot use this property to

change the behavior of the flow.

v Use two associated flows to perform user-defined timeout processing. Set a

timeout with a TimeoutControl node, and notify the flow using a

TimeoutNotification node (which behaves like an input node to start a new

message flow thread). If the downstream processing from the

TimeoutNotification node is significant, requests that are set up in the

TimeoutControl node can build up. You can specify that the timeout messages

are generated only when the flow that starts with the TimeoutNotification node

becomes free again.

You cannot increase the Additional Instances property of the message flow if it

starts with a TimeoutNotification node, therefore you cannot apply more threads

to increase the capacity of the flow.

Although you can use a TimeoutNotification node to cause nodes in a message

flow to poll for the next item of work, this approach forces a delay between each

transaction, and typically does not provide an efficient solution. If you want to

periodically check a resource for the next piece of work, and process it

immediately, consider one or more of the following alternative solutions:

v Use a built-in input node.

v Write your own input node by using the user-defined node API (in Java or C).

v Consider purchasing an IBM or vendor-provided adapter which polls the

subsystem you want, and triggers the flow.

A message flow that uses these options can process more work overall than it can

if you implement a timeout solution, and incurs lower CPU cost, although your

initial development costs might be slightly higher.

Configuring flows to handle WebSphere MQ message groups

WebSphere MQ allows multiple messages to be treated as a group, or as segments

of one larger message. WebSphere Message Broker provides support for

WebSphere MQ message grouping and partial support for message segmenting.

Developing message flows 609

|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|

|

|
|

|
|
|

|

|
|
|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.timeout.doc/doc/overview.htm

You can use the MQInput and MQOutput nodes to receive and send messages that

are part of a WebSphere MQ message group. You can use the MQOutput node to

send messages that are segments of a larger message.

For guidance about configuring the MQInput and MQOutput nodes to receive and

send messages that are part of a WebSphere MQ message group, see:

v “Receiving messages in a WebSphere MQ message group”

v “Sending messages in a WebSphere MQ message group” on page 611

v “Sending message segments in a WebSphere MQ message” on page 612

For more information about WebSphere MQ message groups, see the Application

Programming Guide section of the WebSphere MQ Version 6 information center

online.

Receiving messages in a WebSphere MQ message group

You can configure the MQInput node to receive messages that are in a WebSphere

MQ message group.

The following properties on the MQInput node control the processing of messages

in a WebSphere MQ message group:

v Logical order

v Order mode

v All messages available

v Commit by message group

To ensure that your message flow receives group messages in the order that has

been assigned by the sending application, select the Logical order check box. If you

do not select this check box, messages that are sent as part of a group are not

received in any predeteremined order. This property maps to the

MQGMO_LOGICAL_ORDER option of the MQGMO of the MQI. More

information about the options to which this property maps is available in the

Application Programming Reference section of the WebSphere MQ Version 6

information center online.

If you specify a value of By Queue Order on the Order mode property, the

message flow processes the messages in the group in the order that is defined by

the queue attributes; this order is guaranteed to be preserved when the messages

are processed. This behavior is identical to the behavior that is exhibited if the

Additional instances property is set to zero. The message flow processes the

messages on a single thread of execution, and a message is processed to

completion before the next message is retrieved from the queue. If you do not

specify this value, it is possible that multiple threads within a single message flow

are processing multiple messages, and the final message in a group, which

prompts the commit or roll back action, is not guaranteed to be processed to

completion after all other messages in the group.

To ensure that only a single instance of the message flow processes the group

messages in the order that has been assigned by the sending application, select

Logical order and specify a value of By Queue Order on the Order mode property.

If you select All messages available, message retrieval and processing is performed

only when all messages in a single group are available. This means that messages

in a group are not received until and unless all the messages in the group are

present on the input queue. It is good practice to select this check box when your

610 Message Flows

|
|
|

|
|

|

|

|

|
|
|

|

|
|

|
|

|

|

|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

message flow needs to process group messages. If you do not select this check box,

the message flow receives the messages as they arrive on the input queue; if a

message in the group fails to arrive on the input queue, the message flow waits for

it and is unable to process any further messages until this message arrives. This

property maps to the MQGMO_ALL_MESSAGES_AVAILABLE option of the

MQGMO of the MQI. More information about the options to which this property

maps is available in the Application Programming Reference section of the WebSphere

MQ Version 6 information center online.

If you select Commit by message group, message processing is committed only

after the final message of a group has been received and processed. If you leave

this check box cleared, a commit is performed after each message has been

propagated completely through the message flow. This property is relevant only if

you have selected Logical order. It is good practise to select this check box in

conjunction with the All messages available check box as this ensures that the

complete message group is retrieved and processed in the same unit of work

without risk of the message flow waiting indefinitely for messages in the group to

arrive on the input queue.

In order to ensure that the message flow which processes group messages does not

wait for unavailable messages, it is good practice to:

v Avoid having multiple message flows reading from the same input queue when

group messages are being retrieved.

v Avoid deploying additional instances of a flow that retrieves group messages.

v Avoid using expired messages in message groups.

v In cases where expired messages are to be used, ensure that all messages have

the same expiry time or that the first message in the group is set to expire before

the rest of the group. if the first message in a group cannot be retrieved, the

group can never be started in logical order.

If a message flow waits for a group message that does not arrive within the wait

interval, a BIP2675 warning message is issued. From that point on, the message

flow always attempts to retrieve the next group message and does not process any

other input messages until it is received.

Therefore, if the expected group message does not arrive, or has expired, the

message flow must be stopped manually, and any incomplete message group

cleared from the input queue.

A message flow cannot receive all of the messages in a group at once.

If you specify a value of Yes or No on the Transaction mode property, all the

segments in a message are received in the message flow as a single message. As a

result, the message flow might receive very large messages which might lead to

storage problems in the broker. If you specify a value of Automatic on this

property, message segments are received as individual messages.

Sending messages in a WebSphere MQ message group

The MQOutput node can send multiple messages that are intended to form a

WebSphere MQ message group.

The message flow must set the following MQMD fields:

v GroupId

v MsgSeqNumber

Developing message flows 611

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|

|

|

|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|
|

|

|
|

|

|

|

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

v MsgFlags

You can use the following example ESQL in a Compute node. It shows how to set

these fields:

DECLARE MSGNUM INT 0;

 DECLARE MSGTOTAL INT 5;

 WHILE MSGNUM < MSGTOTAL DO

 SET MSGNUM = MSGNUM + 1;

 CALL CopyMessageHeaders();

 -- Manually set the groupId since we cant ask the queue manager to generate one.

 -- the UUIDASBLOB function could be used here to generate one, but this must be done

 -- outside the loop to keep the same groupId throughout!

 SET OutputRoot.MQMD.GroupId = X’0001’;

 SET OutputRoot.MQMD.MsgSeqNumber = MSGNUM;

 SET OutputRoot.MQMD.MsgFlags = MQMF_MSG_IN_GROUP;

 IF (MSGNUM = MSGTOTAL) THEN

 SET OutputRoot.MQMD.MsgFlags = MQMF_LAST_MSG_IN_GROUP;

 END IF;

 SET OutputRoot.XML.TestCase = MSGNUM;

 PROPAGATE;

 END WHILE;

 RETURN FALSE;

If the message flow is sending multiple messages from one input message, it can

create a GroupId value, increment the MsgSeqNumber value, and set the MsgFlags

field. The example ESQL shows how you can do this. However, if the message

flow is sending multiple messages from more than one input message, it needs to

store the GroupId and MsgSeqNumber values between flow instances; this can be

achieved by using shared variables.

For more information about message grouping, see the Application Programming

Guide section of the WebSphere MQ Version 6 information center online. For more

information about the WebSphere MQ fields that are significant in message

grouping, see the Application Programming Reference section of the WebSphere MQ

Version 6 information center online.

Sending message segments in a WebSphere MQ message

The MQOutput node can also send multiple message segments that are intended

to form a WebSphere MQ message.

You can either select Segmentation allowed on the node, or you can set the

required fields in the MQMD in the message flow. These fields are:

v GroupId

v MsgFlags

v Offset

Use the example ESQL code in “Sending messages in a WebSphere MQ message

group” on page 611 and change the code to set these fields.

For more information about message grouping and segmentation, see the

Application Programming Guide section of the WebSphere MQ Version 6 information

center online. For more information about the WebSphere MQ fields that are

significant in message grouping and segmentation, see the Application Programming

Reference section of the WebSphere MQ Version 6 information center online.

612 Message Flows

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|
|

|
|

|

|

|

|
|

|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

Part 2. Working with Web services

Working with Web services 615

WebSphere Message Broker and Web services . . 615

What is a Web service? 616

What is SOAP? 617

The structure of a SOAP message 617

SOAP nodes 621

WebSphere Message Broker SOAP nodes . . . 622

SOAP applications 623

Using the SOAP parser 624

What is WSDL? 629

WSDL validation 630

Using WSDL to configure message flows . . . 632

What is SOAP MTOM? 633

Using SOAP MTOM with the SOAPReply,

SOAPRequest, and SOAPAsyncRequest nodes . 634

WS-Addressing 635

How to use WS-Addressing 637

WS-Addressing with the SOAPInput node . . 638

WS-Addressing with the SOAPReply node . . 639

WS-Addressing with the SOAPRequest node 639

WS-Addressing with the SOAPAsyncRequest

and SOAPAsyncResponse nodes 640

WS-Addressing information in the

LocalEnvironment 642

WS-Security 645

WS-Security mechanisms 647

Policy sets 648

Message flow security and security profiles . . 658

WS-Security capabilities 659

WebSphere Service Registry and Repository . . . 666

Configuration parameters for the WebSphere

Service Registry and Repository nodes 667

Displaying the configuration parameters for the

WebSphere Service Registry and Repository

nodes 668

Changing the configuration parameters for the

WebSphere Service Registry and Repository

nodes 669

Accessing a secure WebSphere Service Registry

and Repository 670

Caching artefacts from the WebSphere Service

Registry and Repository 672

The LocalEnvironment 677

External standards 681

SOAP 1.1 and 1.2 681

SOAP with Attachments 682

SOAP MTOM 682

WSDL Version 1.1 683

WS-I Simple SOAP Binding Profile Version 1.0 683

WS-I Basic Profile Version 1.1 683

WSDL 1.1 Binding Extension for SOAP 1.2 . . 684

XML-Binary Optimised Packaging (XOP) . . . 684

SOAP Binding for MTOM 1.0 685

Web Services Security: SOAP Message Security 685

XML Encryption Syntax and Processing . . . 685

XML-Signature Syntax and Processing 686

WebSphere Message Broker compliance with

Web services standards 686

Message flows for Web services 689

SOAP domain message flows 689

XML domain message flows 696

Web services scenarios 700

© Copyright IBM Corp. 2000, 2008 613

||
|
||

|
||
|
||

||

 | |
 | |
 | |
 | |

614 Message Flows

Working with Web services

Start here to find out how WebSphere Message Broker supports Web services.

A Web service is a software system designed to support interoperable

machine-to-machine interaction over a network. It has an interface described in a

machine-processable format (specifically, Web Service Definition Language, or

WSDL).

Web services fulfill a specific task or a set of tasks. A Web service is described

using a standard, formal XML notion, called its service description, that provides

all of the details necessary to interact with the service, including message formats

(that detail the operations), transport protocols, and location.

The nature of the interface hides the implementation details of the service so that it

can be used independently of the hardware or software platform on which it is

implemented and independently of the programming language in which it is

written.

This allows and encourages Web service based applications to be loosely coupled,

component oriented, cross-technology implementations. Web services can be used

alone or in conjunction with other Web services to carry out a complex aggregation

or a business transaction.

The following topics describe how to work with Web services:

v “WebSphere Message Broker and Web services”

v “What is SOAP?” on page 617

v “What is WSDL?” on page 629

v “What is SOAP MTOM?” on page 633

v “WS-Addressing” on page 635

v “WS-Security” on page 645

v “WebSphere Service Registry and Repository” on page 666

v “External standards” on page 681

v “Message flows for Web services” on page 689

WebSphere Message Broker and Web services

A WebSphere Message Broker application can participate in a Web services

environment as a service requester, as a service provider, or both.

The SOAP domain supports these formats:

v Common Web services message formats SOAP 1.1, SOAP 1.2, SOAP with

Attachments (SwA), and MTOM.

v Consistent SOAP logical tree format, which is independent of the exact message

format.

v WS-Addressing and WS-Security standards.

The following nodes are provided for use in the SOAP domain:

v “SOAPInput node” on page 1104

© Copyright IBM Corp. 2000, 2008 615

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

v “SOAPReply node” on page 1114

v “SOAPRequest node” on page 1116

v “SOAPAsyncRequest node” on page 1082

v “SOAPAsyncResponse node” on page 1092

v “SOAPEnvelope node” on page 1096

v “SOAPExtract node” on page 1099

Use the SOAP domain where possible. Alternatively, regular transport nodes can

be used with the XMLNSC domain or MRM/XML domain. Using these might be

appropriate in the following situations:

v Message flows that will never require Web Services Addressing (WS-Addressing)

or WS-Security support.

v Message flows that require Web services support over a different transport, for

example, MQ or JMS.

Web services support conforms to the following open standards:

v SOAP 1.1 and 1.2

v SOAP Messages with Attachments

v MTOM

v HTTP 1.1

v WSDL 1.1

v WS-Addressing (new SOAP domain only)

v WS-Security (new SOAP domain only)

WSDL is also validated against the WS-I Basic Profile Version 1.1. Conformance to

the guidelines in this specification improves interoperability with other

applications.

For more information about how a WebSphere Message Broker application can

participate in a Web services environment, see the WebSphere Message Broker Web

page on developerWorks.

What is a Web service?

A Web service is defined by the World Wide Web Consortium (W3C) as a software

system designed to support interoperable machine-to-machine interaction over a

network.

A Web service has an interface described in a machine-processable format,

specifically Web Services Description Language (WSDL). Other systems interact

with the Web service in a manner prescribed by its description using

SOAP-messages, typically conveyed using HTTP with an XML serialization in

conjunction with other Web-related standards.

A Web service fulfills a specific task or a set of tasks, and is described by a service

description in a standard XML notation called WSDL. The service description

provides all of the details necessary to interact with the service, including message

formats (that detail the operations), transport protocols, and location.

The WSDL interface hides the implementation details of the service so that it can

be used independently of the hardware or software platform on which it is

implemented, and independently of the programming language in which it is

written.

616 Message Flows

http://www.ibm.com/developerworks/websphere/zones/businessintegration/wmb.html
http://www.ibm.com/developerworks/websphere/zones/businessintegration/wmb.html

Applications that are based on Web services are loosely coupled, component

oriented, cross-technology implementations. Web services can be used alone, or in

conjunction with other Web services to carry out a complex aggregation or a

business transaction.

What is SOAP?

SOAP is an XML message format used in Web service interactions. SOAP messages

are typically sent over HTTP, but other transport protocols can be used. The use of

SOAP in a specific Web service is described by a WSDL definition.

There are two versions of SOAP in common use: SOAP 1.1 and SOAP 1.2. Both are

supported in WebSphere Message Broker. SOAP is defined in the following

documents issued by World Wide Web Consortium (W3C):

v Simple Object Access Protocol (SOAP) 1.1 (W3C note).

v SOAP Version 1.2 Part 0: Primer (W3C recommendation).

v SOAP Version 1.2 Part 1: Messaging Framework (W3C recommendation).

v SOAP Version 1.2 Part 2: Adjuncts (W3C recommendation).

Support for SOAP in WebSphere Message Broker includes:

v SOAP parser and domain. See “SOAP parser and domain” on page 78.

v SOAP nodes to send and receive messages in SOAP format. See “SOAP nodes”

on page 621.

v IBM supplied message definitions for SOAP 1.1 and SOAP 1.2. These message

definitions support validation, ESQL content assist, and the creation of message

maps for use with SOAP messages, in the SOAP and other XML domains. See

IBM supplied messages that you can import.

The structure of a SOAP message

A SOAP message is encoded as an XML document, consisting of an <Envelope>

element, which contains an optional <Header> element, and a mandatory <Body>

element. The <Fault> element, contained within <Body>, is used for reporting

errors.

The SOAP envelope

<Envelope> is the root element in every SOAP message, and contains two

child elements, an optional <Header> element, and a mandatory <Body>

element.

The SOAP header

<Header> is an optional sub-element of the SOAP envelope, and is used to

pass application-related information that is to be processed by SOAP nodes

along the message path. See “The SOAP header” on page 618.

The SOAP body

<Body> is a mandatory sub-element of the SOAP envelope, which contains

information intended for the ultimate recipient of the message. See “The

SOAP body” on page 620.

The SOAP fault

<Fault> is a sub-element of the SOAP body, which is used for reporting

errors. See “The SOAP fault” on page 620.

 XML elements within <Header> and <Body> are defined by the applications that

make use of them, although the SOAP specification imposes some constraints on

Working with Web services 617

|
|
|

|

|

|

|

|

|

|
|

|
|
|
|

http://www.w3.org/TR/soap11/
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/

their structure. The following diagram shows the structure of a SOAP message.

 The following code is an example of a SOAP message that contains header blocks

(the <m:reservation> and <n:passenger> elements) and a body (containing the

<p:itinterary> element).

<?xml version=’1.0’ Encoding=’UTF-8’ ?>

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

 <env:Header>

 <m:reservation xmlns:m="http://travelcompany.example.org/reservation"

 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"

 env:mustUnderstand="true">

 <m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</m:reference>

 <m:dateAndTime>2007-11-29T13:20:00.000-05:00</m:dateAndTime>

 </m:reservation>

 <n:passenger xmlns:n="http://mycompany.example.com/employees"

 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"

 env:mustUnderstand="true">

 <n:name>Fred Bloggs</n:name>

 </n:passenger>

 </env:Header>

 <env:Body>

 <p:itinerary xmlns:p="http://travelcompany.example.org/reservation/travel">

 <p:departure>

 <p:departing>New York</p:departing>

 <p:arriving>Los Angeles</p:arriving>

 <p:departureDate>2007-12-14</p:departureDate>

 <p:departureTime>late afternoon</p:departureTime>

 <p:seatPreference>aisle</p:seatPreference>

 </p:departure>

 <p:return>

 <p:departing>Los Angeles</p:departing>

 <p:arriving>New York</p:arriving>

 <p:departureDate>2007-12-20</p:departureDate>

 <p:departureTime>mid-morning</p:departureTime>

 <p:seatPreference></p:seatPreference>

 </p:return>

 </p:itinerary>

 </env:Body>

</env:Envelope>

The SOAP header

The SOAP header (the <Header> element) is an optional sub-element of the SOAP

envelope, and is used to pass application-related information that is processed by

SOAP nodes along the message flow.

The immediate child elements of the header are called header blocks. A header block

is an application-defined XML element, and represents a logical grouping of data

which can be targeted at SOAP nodes that might be encountered in the path of a

message from a sender to an ultimate receiver.

SOAP envelope

SOAP header

SOAP body

Header block

Body subelement

Header block

618 Message Flows

SOAP header blocks can be processed by SOAP intermediary nodes, and by the

ultimate SOAP receiver node. However, in a real application, not every node

processes every header block. Each node is typically designed to process particular

header blocks, and each header block is processed by particular nodes.

The SOAP header enables you to add features to a SOAP message in a

decentralized manner without prior agreement between the communicating parties.

SOAP defines some attributes that can be used to indicate what can deal with a

feature and whether it is optional or mandatory. Such control information includes,

for example, passing directives or contextual information related to the processing

of the message. This control information enables a SOAP message to be extended

in an application-specific manner.

Although the header blocks are application-defined, SOAP-defined attributes on

the header blocks indicate how the header blocks must be processed by the SOAP

nodes. SOAP-defined attributes include:

encodingStyle

Indicates the rules used to encode the parts of a SOAP message. SOAP

defines a narrower set of rules for encoding data than the flexible encoding

that XML enables.

actor (SOAP 1.1) or role (SOAP 1.2)

In SOAP 1.2, the role attribute specifies whether a particular node will

operate on a message. If the role specified for the node matches the role

attribute of the header block, the node processes the header. If the roles do

not match, the node does not process the header block. In SOAP 1.1, the

actor attribute performs the same function.

 Roles can be defined by the application, and are designated by a URI. For

example, http://example.com/Log might designate the role of a node

which performs logging. Header blocks that are processed by this node

specify env:role="http://example.com/Log" (where the namespace prefix

env is associated with the SOAP namespace name of http://www.w3.org/
2003/05/soap-envelope).

The SOAP 1.2 specification defines three standard roles in addition to those

which are defined by the application:

http://www.w3.org/2003/05/soap-envelope/none

None of the SOAP nodes on the message path should process the

header block directly. Header blocks with this role can be used to

carry data that is required for processing of other SOAP header

blocks.

http://www.w3.org/2003/05/soap-envelope/next

All SOAP nodes on the message path are expected to examine the

header block (provided that the header has not been removed by a

node earlier in the message path).

http://www.w3.org/2003/05/soap-envelope/ultimateReceiver

Only the ultimate receiver node is expected to examine the header

block.

mustUnderstand

This attribute is used to ensure that SOAP nodes do not ignore header

blocks which are important to the overall purpose of the application. If a

SOAP node determines, by using the role or actor attribute, that it should

process a header block, then the action taken depends on the value of the

mustUnderstand attribute.

Working with Web services 619

v 1 (SOAP 1.1) or true (SOAP 1.2): The node must either process the

header block in a manner consistent with its specification, or not at all

(and throw a fault).

v 0 (SOAP 1.1) or false (SOAP 1.2): The node is not obliged to process the

header block.

In effect, the mustUnderstand attribute indicates whether processing of the

header block is mandatory or optional.

relay (SOAP 1.2 only)

When a SOAP intermediary node processes a header block, the SOAP

intermediary node removes the header block from the SOAP message. By

default, the SOAP intermediary node also removes all header blocks that it

ignored (because the mustUnderstand attribute had a value of false).

However, when the relay attribute is specified with a value of true, the

SOAP intermediary node retains the unprocessed header block in the

message.

The SOAP body

The SOAP body (the <Body> element) is a mandatory sub-element of the SOAP

envelope, which contains information intended for the ultimate recipient of the

message.

The body element and its associated child elements are used to exchange

information between the initial SOAP sender and the ultimate SOAP receiver.

SOAP defines one child element for the body: the <Fault> element, which is used

for reporting errors. Other elements within the body are defined by the Web

service that uses them.

The SOAP fault

The SOAP fault (the <Fault> element) is a sub-element of the SOAP body, which is

used for reporting errors.

If present, the SOAP fault element must appear as a body entry and must not

appear more than once within a body element. The sub-elements of the SOAP fault

element are different in SOAP 1.1 and SOAP 1.2.

SOAP 1.1

In SOAP 1.1, the SOAP fault contains the following sub-elements:

<faultcode>

The<faultcode> element is a mandatory element within the <Fault>

element. It provides information about the fault in a form that can be

processed by software. SOAP defines a small set of SOAP fault codes

covering basic SOAP faults, and this set can be extended by applications.

<faultstring>

The <faultstring> element is a mandatory element within the <Fault>

element. It provides information about the fault in a form intended for a

human reader.

<faultactor>

The <faultactor> element contains the URI of the SOAP node that

generated the fault. A SOAP node that is not the ultimate SOAP receiver

must include the <faultactor> element when it creates a fault; an ultimate

SOAP receiver is not obliged to include this element, but might do so.

620 Message Flows

<detail>

The <detail> element carries application-specific error information related

to the <Body> element. It must be present if the contents of the <Body>

element were not successfully processed. The <detail> element must not

be used to carry information about error information belonging to header

entries. Detailed error information belonging to header entries must be

carried within header entries.

SOAP 1.2

In SOAP 1.2, the SOAP fault contains the following sub-elements:

<Code> The <Code> element is a mandatory element within the <Fault> element. It

provides information about the fault in a form that can be processed by

software. It contains a <Value> element and an optional <Subcode> element.

<Reason>

The <Reason> element is a mandatory element within the <Fault> element.

It provides information about the fault in a form intended for a human

reader. The <Reason> element contains one or more <Text> elements, each

of which contains information about the fault in a different language.

<Node> The <Node> element contains the URI of the SOAP node that generated the

fault. A SOAP node that is not the ultimate SOAP receiver must include

the <Node> element when it creates a fault; an ultimate SOAP receiver is

not obliged to include this element, but might do so.

<Role> The <Role> element contains a URI that identifies the role in which the

node was operating at the point the fault occurred.

<Detail>

The <Detail> element is an optional element, which contains

application-specific error information related to the SOAP fault codes

describing the fault. The presence of the <Detail> element has no

significance as to which parts of the faulty SOAP message were processed.

SOAP nodes

A SOAP node is the processing logic which operates on a SOAP message.

A SOAP node can:

v Transmit a SOAP message

v Receive a SOAP message

v Process a SOAP message

v Relay a SOAP message

A SOAP node can be a:

SOAP sender

A SOAP node that transmits a SOAP message.

SOAP receiver

A SOAP node that accepts a SOAP message.

Initial SOAP sender

The SOAP sender that originates a SOAP message at the starting point of a

SOAP message path.

SOAP intermediary

A SOAP intermediary is both a SOAP receiver and a SOAP sender and is

Working with Web services 621

targetable from within a SOAP message. It processes the SOAP header

blocks targeted at it and acts to forward a SOAP message toward an

ultimate SOAP receiver.

Ultimate SOAP receiver

The SOAP receiver that is a final destination of a SOAP message. It is

responsible for processing the contents of the SOAP body and any SOAP

header blocks targeted at it. In some circumstances, a SOAP message might

not reach an ultimate SOAP receiver, for example because of a problem at

a SOAP intermediary.

Note: A SOAP node is not the same as a WebSphere Message Broker SOAP node.

Typically references to ″SOAP nodes″ in the WebSphere Message Broker

Information Center are referring to WebSphere Message Broker SOAP nodes;

see “WebSphere Message Broker SOAP nodes.”

WebSphere Message Broker SOAP nodes

The SOAP nodes act as points in the flow where Web service processing is

configured and applied. Properties on the SOAP nodes control the processing

carried out and can be configured by supplying a WSDL definition, or by

manually configuring properties, or both.

SOAP nodes

v The SOAPInput and SOAPReply nodes are analogous to the HTTPInput and

HTTPReply nodes and are used in a message flow which implements a Web

service. These SOAP nodes are used to construct a message flow that

implements a Web service provider. The SOAPInput node listens for incoming

Web service requests, and the SOAPReply sends responses back to the client. See

“SOAPInput node” on page 1104 and “SOAPReply node” on page 1114.

v The SOAPRequest node is analogous to the HTTPRequest node and is used in a

message flow to call a Web service provider synchronously. Calling a Web

service synchronously means the node sends a Web service request and waits,

blocking the message flow, for the associated Web service response to be

received before the message flow continues. See “SOAPRequest node” on page

1116.

v The SOAPAsyncRequest and SOAPAsyncResponse nodes are used to construct a

message flow (or pair of flows) which calls a Web service asynchronously.

Calling a Web service asynchronously means the SOAPAsyncRequest node sends

a Web service request, but the request does not block the message flow by

waiting for the associated Web service response to be received because the Web

service response is received at the SOAPAsyncResponse node which is in a

separate flow. The Node Correlator identifies the logical pairing of the responses

against the original requests. Multiple requests can, therefore, be handled in

parallel. See “SOAPAsyncRequest node” on page 1082 and

“SOAPAsyncResponse node” on page 1092.

v The SOAPExtract and SOAPEnvelope nodes enable you to work on the payload

of the SOAP body. The SOAPExtract node can interoperate with the SOAP

domain. The SOAP nodes do not require the SOAPEnvelope node, because they

can directly handle non-SOAP messages (and look at the LocalEnvironment) but

the SOAPEnvelope node is still required for the HTTP nodes. See “SOAPExtract

node” on page 1099 and “SOAPEnvelope node” on page 1096.

Note: WebSphere Message Broker SOAP nodes are not the same as the SOAP

nodes; see “SOAP nodes” on page 621. Typically references to ″SOAP nodes″

622 Message Flows

in the WebSphere Message Broker Information Center are referring to

WebSphere Message Broker SOAP nodes.

SOAP applications

SOAP is an XML based language defined by the World Wide Web Consortium

(W3C) for sending data between applications. SOAP is transport and platform

neutral.

SOAP message

A SOAP message comprises an envelope containing:

v An optional header (containing one or more header blocks).

v A mandatory body.

The content of the header and body is typically defined by WSDL.

SOAP style

SOAP defines two types of style:

RPC The SOAP body corresponds to a method call.

document

The SOAP body is typically a coarser-grained XML document and is

defined explicitly by XML Schema.

SOAP encodings

SOAP defines two types of encoding:

SOAP encoding

With SOAP encoding the content is defined using an encoding scheme

which implies a specific mapping to language-specific types.

literal With literal encoding the SOAP content is defined explicitly by some

schema (generally XML Schema).

SOAP style and encoding combinations

Three of the four possible SOAP style and encoding combinations are supported

by the WSDL importer and the WSDL generator:

v RPC and SOAP encoded (supported for the WSDL importer only).

v RPC and literal.

v Document and literal.

SOAP versions

Two versions of SOAP are available:

v SOAP 1.1

v SOAP 1.2

SOAP 1.1 has some interoperability issues, mainly concerned with the use of SOAP

encoding, which are addressed by a separate standard: the WS-I Basic Profile.

Working with Web services 623

Further information

For more information about WSDL 1.1 refer to the World Wide Web Consortium

(W3C), and in particular the SOAP 1.1 and SOAP 1.2 documents at:

v http://www.w3.org

v http://www.w3.org/TR/soap

For more information about the WS-I Basic Profile refer to the WS-I, and in

particular the WS-I Basic Profile document:

v http://www.ws-i.org/

v http://www.ws-i.org/deliverables

Using the SOAP parser

This topic lists the steps you need to set up a sample message flow using the

SOAP parser with WebSphere Message Broker and how you test the flow.

The following set of topics takes you through the process of setting up:

1. A main message flow that includes various SOAP nodes, together with:

v A Filter node

v A WebSphere MQ MQOutput node

v Various Mapping nodes

See “Building the main message flow”

2. How you test the message flow using the integrated test client; see “Testing the

message flow using the integrated test client” on page 628.

3. How you deploy the message flow and test the flow using HTTP; see “Testing

the message flow using HTTP” on page 629.

Building the main message flow

This is the first one of a set of instructions on setting up your system to use the

SOAP parser with WebSphere Message Broker and explains how you set up a

message flow to use this feature.

This task topic describes the construction of a sample main message flow when

using the SOAP parser:

 1. Switch to the Broker Application Development perspective.

 2. Create a message flow and message set projects using the Start from WSDL

and/or XSD files wizard. See “Creating an application based on WSDL or

XSD files” on page 132 for details on how to do this.

You need one port for the input to and response from the message flow

named, for example, OrderService and one port defining a web service that is

called from the message flow named for example, ShippingService.

 3. To import the database files you need, select the project name you are using

and press the right mouse button.

a. Select New->Database Definition Files to start the Database Definition

wizard. See “Adding database definitions to the Message Broker Toolkit”

on page 494 for details on how to do this.
 4. Select the WSDL file you require, called OrderService, under Deployable

WSDL from the Active Working Set.

a. Drag the mouse pointer to the message flow editor.

b. Release the left mouse button. The Configure New Web Service Usage

wizard starts.

624 Message Flows

http://www.w3.org
http://www.w3.org/TR/soap
http://www.ws-i.org/
http://www.ws-i.org/deliverables

c. See “Creating an application using the Configure New Web Service Usage

wizard” on page 135 for further information. Ensure that you select:

v Expose message flow as web service on page one of the wizard.

v SOAP nodes on page two of the wizard.

When you select Finish a skeleton message flow is generated, consisting of

a:

v SOAPInput node that is pre-configured for the web service, connected to

a

v SOAPExtract node to remove the SOAP envelope from the incoming

message

v SOAPReply node
 5. Select the Construction folder on the message flow palette to display the

contents.

 6. Select a Trace node and move the mouse to the right of the SOAPExtract

node.

a. Click the left mouse button to add the node to the message flow. The

name is selected automatically.

b. Press the Enter key to accept the default name.

c. Wire the submitPORequest terminal of the SOAPExtract node to the In

terminal of the Trace node.
 7. Select the Trace node to display the properties.

a. Use the drop down menu to set Destination to File

b. Set the File path you require.

c. Enter the Pattern you require.
 8. Expand the Routing folder on the palette and select Filter.

 9. Add the Filter node to the right of the Trace node

a. Type in the name for the node you require and press the Enter key.

b. Wire the out terminal of the Trace node to the in terminal of the Filter

node.
10. Select the Filter node to display the properties.

a. Enter the Data source name you require.

b. Change the name of Filter expression to the name you selected for the

filter node.

c. Remove the check from the Throw exception on database error check box.
11. Select the Filter node and double click the left mouse button to open the ESQL

editor. Create or change the ESQL for the node; see “Creating ESQL for a

node” on page 271 and“Modifying ESQL for a node” on page 273.

12. Expand the Transformation folder on the palette and select a Mapping node.

13. Add the Mapping node to the right of the Filter node

a. Type in the name for the node you require and press the Enter key.

b. Wire the false terminal of the Filter node to the in terminal of the

Mapping node.
14. Select the Mapping node to display the properties.

a. Change the name of Mapping routine to the name you selected for the

mapping node.
15. Select the Mapping node and double click the left mouse button to open the

mapping editor.

a. Select the map source and map target you require.

Working with Web services 625

b. Select OK

c. Select OK on the tip that displays to open the mapping editor.

See “Creating a message map file from a Mapping node” on page 477 for

further information.

16. Select Properties in both the source and target pane.

a. Press the right mouse button.

b. Select Map by Name from the menu.

c. Map the source properties to the target properties using drag and drop

mapping. The Map by Name dialog appears.

d. Select OK to perform the mapping.
17. Expand the WebSphere MQ folder on the palette and select an MQOutput

node.

18. Add the MQOutput node to the right of the Mapping node.

a. Type in the name for the node you require and press the Enter key.

b. Wire the out terminal of the Mapping node to the in terminal of the

MQOutput node.
19. Select the MQOutput node to display the properties.

a. Enter the Queue name you require.

b. If necessary, select the Advanced tab to change any of the fields on the

next panel.
20. Expand the Transformation folder on the palette and select a Mapping node.

21. Add the second Mapping node underneath the first Mapping node.

a. Type in the name for the node you require and press the Enter key.

b. Wire the false terminal of the Filter node to the in terminal of this

Mapping node.
22. Add the Mapping node to the right of the Filter node

a. Type in the name for the node you require and press the Enter key.

b. Wire the false terminal of the Filter node to the in terminal of the

Mapping node.

c. Wire the out terminal of the Mapping node to the in terminal of the

SOAPReply node.
23. Select the Mapping node to display the properties.

a. Change the name of Mapping routine to the name you selected for the

mapping node.
24. Select the second Mapping node and double click the left mouse button to

open the mapping editor. The reply message is a SOAP message. As the input

message has been processed by a SOAPExtract node it does not contain a

SOAP envelope.

a. Select submitPORequest as the source message.

b. Select SOAP_Domain_Msg as the target message.

c. Select OK

d. Select OK on the tip that displays to open the mapping editor.

See “Creating a message map file from a Mapping node” on page 477 for

further information.

25. Select Properties in both the source and target pane.

a. Press the right mouse button.

b. Select Map by Name from the menu.

626 Message Flows

c. Map the source properties to the target properties using drag and drop

mapping. The Map by Name dialog appears.

d. Select OK to perform the mapping.
26. Expand the SOAP_Domain_Msg, then Body and message items in the target

pane.

27. Select the tns:submitPORequest item in the source pane.

28. Select the Wildcard Message item in the target pane.

a. Press the right mouse button.

b. Select Create new Submap from the menu.

c. Expand the Wildcard item.

d. Scroll down to and select the submitPOResponse item.

e. Press OK to create the submap.
29. Use drag and drop mapping to select the items you require in the Source

pane.

30. Select the first item you require in the Target pane.

a. Press the right mouse button.

b. Select Enter Expression from the menu.

c. Enter the value you require in the expression editor and press the Enter

key to complete the mapping. You must enclose any expression that is a

string of characters in single quotation marks.

Repeat the above steps for all the items you require in the Target pane and

save the submap and map by using Ctrl+S.

31. Set up another flow that uses a Mapping node to build a ship request

message, a SOAPRequest node to send the request to the ShippingService

Web service and another Mapping node to create the response message back

to the original requester.

a. Repeat the instructions in the preceding steps that tell you how to set up a

Mapping node and a sub map. Connect the True terminal of the Filter

node to the In terminal of the new Mapping node.

b. Select the ShippingService.wsdl file under the Deployable WSDL folder

in the MessageSet project. you are using.

c. While holding down the left mouse button, move the mouse pointer to the

right of the new mapping node and release the left mouse button; the New

Web Service Usage wizard starts.

d. Change the Web service usage to Invoke web service from message flow

and select SOAP nodes on the next panel.

e. Click Finish to create a SOAPRequest node. For more details on using this

wizard, see “Creating an application using the Configure New Web Service

Usage wizard” on page 135.

Connect the Out terminal of the new mapping node to the In terminal of

the SOAPRequest node.

f. Repeat the instructions in the preceding steps again that tell you how to set

up a Mapping node and a sub map. Connect the:

v shipPartResponse terminal of the SOAPRequest node to the In terminal

of the second new Mapping node.

v The Out terminal of the new mapping node to the In terminal of the

SOAPReply node
32. Save the entire message flow.

Working with Web services 627

Testing the message flow using the integrated test client

This is the second of a set of instructions on setting up your system to use the

SOAP parser with WebSphere Message Broker and illustrates the testing of the

message flow.

Prior to carrying out this task you must have imported a message flow into the

workbench. For example, to import a zip file:

1. Select File->Import

2. Expand the Other folder, select Project Interchange and click Next

3. Click the Browse button next to the From zip file text box.

4. Navigate to the directory you are using, select the zip file you require, and click

the Open button.

5. Select the check box next to the displayed project and click the Finish button to

perform the import.

This task topic describes the testing of the message flow you have already

constructed. In this scenario you use the integrated test client.

1. Select the SOAPInput node, press the right mouse button and select Test from

the menu.

2. Enter the data you require into the test message.

3. Save the values you entered in a pool for later reuse.

a. Select the Envelope data element.

b. Press the right mouse button

c. Select Add value to Pool

d. Enter a name for the value in the text box and click OK to save the current

values.
4. Select the Configuration tab in the lower left corner of the test client.

5. Select Message Flows in the left column and click Add in the right hand

column.

6. Select the message flow you require in the Resources pane and click OK.

7. To deploy the message flow you have just selected when you test the new

message flow:

a. Select Deployment in the left hand column.

b. Select the Only rebuild and deploy broker archive when changes occur

radio button in the right hand column.

c. Select MQ Settings in the left hand column. Review the settings and ensure

the Stop testing when message reaches first output monitor check box is

not selected.

d. Select the Events tab to return to the main tab and click the Send Message

button to initiate a test.
8. You see extra screens the first time the message flow is deployed. Use the New

server button if no server has been previously defined. These instructions show

the case where a server has already been defined:

a. Expand the Deployment locations.

b. Select the desired execution group.

c. Click Finish to deploy and process the flow.

A progress indicator displays and when the test is complete you see an event

indicating a response was received as well as the data in the response message.

628 Message Flows

Testing the message flow using HTTP

This is the third of a set of instructions on setting up your system to use the SOAP

parser with WebSphere Message Broker and illustrates the testing of the message

flow using HTTP.

Before you carry out this task you must deploy the message flow to the runtime

environment; see “Deploying the message flows” on page 694 for further details on

this procedure.

This task topic describes the testing of the message flow you have already

constructed. In this scenario you use a tool that uses HTTP protocol rather than

WebSphere MQ. You can use any tool that has the facilities described in the

following procedure.

1. Start the tool and select http://localhost:nnnn/ where nnnn is the address of

the port you are using.

2. As the SOAPInput node expects a SOAPAction entry in the HTTP headers you

must add one.

a. press the Add New Header button

b. Select the Value part of the header. Enter the value you require.

c. Select New Header in the Name pane.

d. Change the name from New Header to SOAPAction and press the Enter key.
3. Select Load File and go to the directory containing the XML file you want to

use.

4. Select the file and press the Open button.

5. Set the URL to the host, port and selection for the deployed flow. The

SOAPInput nodes listen on a different port from the HTTP nodes and the

listener is built into the execution group itself rather than using a different

process.

If you define additional execution groups each one has a different port

assigned.

6. Press the Send button to test the flow. The response appears in the right hand

pane.

What is WSDL?

WSDL is an XML notation for describing a Web service. A WSDL definition tells a

client how to compose a Web services request and describes the interface that is

provided by the Web service provider.

WebSphere Message Broker supports WSDL 1.1 as defined in the following

document issued by the World Wide Web Consortium (W3C): Web Services

Description Language (WSDL) 1.1. WebSphere Message Broker support for WSDL

also adheres to the Web Services Interoperability Organization (WS-I) Basic profile

1.1, see Basic Profile 1.1.

A WSDL definition is divided into separate sections that specify the logical

interface and the physical details of a Web service. The physical details include

both endpoint information such as HTTP port number, and binding information

which specifies how the SOAP payload is represented and which transport is used.

Support for WSDL in WebSphere Message Broker includes:

v Import of WSDL to create message definitions in a message set, see Importing

from WSDL.

Working with Web services 629

http://www.w3.org/TR/wsdl/
http://www.w3.org/TR/wsdl/
http://www.ws-i.org/Profiles/BasicProfile-1.1.html

v Generation of WSDL from a message set, see WSDL generation.

v WSDL editor with text and graphical design views.

v Use of WSDL to configure nodes in the SOAP domain, for example you can

drag-and-drop WSDL onto a node. For more details on how to do this, see

“Using WSDL to configure message flows” on page 632

v Use to WSDL to create a skeleton message flow by dragging-and-dropping

WSDL onto the message flow editor canvas. For more details on how to do this,

see “Using WSDL to configure message flows” on page 632.

When you import or generate WSDL, the WSDL is validated against the WS-I Basic

Profile. Validation errors must be fixed before the message set can be deployed.

Validation warnings do not prevent deployment, but can indicate potential

interoperability problems. The validated WSDL becomes an integral part of the

message set. The WSDL editor supports a graphical design view that allows you to

navigate from the WSDL to its associated message definitions. The message set

then contains all the message definitions required by message flows working with

the Web service described by the WSDL. At development time, the message

definitions support ESQL content assist and the creation of mappings. At runtime,

the deployed message set supports schema validation in the SOAP, XMLNSC and

MRM domains. In the SOAP domain, runtime checks are also made against the

WSDL itself, and WSDL information is included in the SOAP logical tree.

WSDL validation

The WS-I Validator can be used to check your WSDL definitions against the Basic

Profile.

For more information about the WS-I Basic Profile refer to the WS-I, and in

particular the WS-I Basic Profile document:

v Web Services Interoperability Organization (WS-I)

v WS-I deliverables index

You can use the WS-I Validator to check your WSDL definitions against the Basic

Profile; see “WS-I Basic Profile Version 1.1” on page 683.

You can run the validator in either of the following ways:

v Manually against a specific .wsdl resource in the workbench.

This option enables you to investigate and fix any WS-I compliance problems;

any validation issues are displayed as task list errors and warnings.

v Automatically, when WSDL is imported or generated.

WSDL can be imported using the WSDL Quick Start wizard, the WSDL Importer

wizard, or the mqsicreatemsgdefsfromwsdl command.

WSDL can be generated from a message set using the WSDL Generator wizard.

You can control the behavior of the validator using Preferences > Web services >

Profile Compliance and Validation. . The significant settings are:

v WS-I AP compliance level (WS-I Attachments Profile 1.0)

v WS-I SSBP compliance level (WS-I Simple SOAP Binding Profile 1.0)

You can select one of the following values:

Suggest

Run the validator with errors treated as unrecoverable, but warnings only

notified. This is the default setting.

630 Message Flows

http://www.ws-i.org
http://www.ws-i.org/deliverables

Require

Run the validator with errors and warnings treated as unrecoverable.

Ignore Do no run the validator.

Note that the AP selection applies automatically to the SSBP field, so Ignore is not

explicitly selectable unless the AP selection is set to Ignore.

The following terms refer to the three broad categories of WSDL definition:

v document-literal means the combination style="document" and use="literal"

v rpc-litera[means the combination style="rpc" and use="literal"

v rpc-encoded means the combination style="rpc" and use="encoded"

Common validation problems, using the preceding terminology, are listed below:

Your WSDL is rpc-encoded

WSDL with use="encoded" is not WS-I compliant and can lead to

operational problems because products of different vendors can make

different assumptions about the expected SOAP payload.

 WS-I: (BP2406) The use attribute of a soapbind:body, soapbind:fault,

soapbind:header, and soapbind:headerfault does not have the value of

″literal″.

Your WSDL is document-literal, but one or more WSDL part definitions refer to

XML Schema types.

In document-literal WSDL, the SOAP body payload is the XML Schema

element that is referred to by the appropriate WSDL part.

 If a type is specified instead of an element, the SOAP payload is

potentially ambiguous (the payload name is not defined) and

interoperability problems are likely.

WS-I: (BP2012) A document-literal binding contains soapbind:body

elements that refer to message part elements that do not have the element

attribute.

Your WSDL is rpc-literal or rpc-encoded, but one or more WSDL part definitions

refer to XML Schema elements.

In rpc-style WSDL, the SOAP body payload is the WSDL operation name,

and its children are the WSDL parts that are specified for that operation.

 If an element is specified instead of a type, the SOAP message payload is

potentially ambiguous (the payload name might be the WSDL part name

or the XML Schema element name), and interoperability problems are

likely.

WS-I: (BP2013) An rpc-literal binding contains soapbind:body elements that

refer to message part elements that do not have the type attribute.

Your WSDL includes SOAP header, headerfault or fault definitions that refer to

XML Schema types.

In rpc-style WSDL, the SOAP body is correctly defined through XML

Schema types as described above.

 SOAP headers and faults, however, do not correspond to an rpc function

call in the same way as the body.

Working with Web services 631

In particular, there is no concept of ’parameters’ to a header or fault, and a

header or fault must always be defined in terms of XML Schema elements

to avoid potential ambiguity. Effectively, header and fault definitions in

WSDL are always document-literal.

WS-I: (BP2113) The soapbind:header, soapbind:headerfault, or

soapbind:fault elements refer to wsd:part elements that are not defined

using only the ″element″ attribute.

Your WSDL is rpc-literal or rpc-encoded, but no namespace was specified for an

operation.

In rpc-style WSDL, the SOAP message payload is the WSDL operation

name, qualified by a namespace that is specified as part of the WSDL

binding.

 If no namespace is specified then the SOAP message payload is potentially

ambiguous (the payload name might be in no namespace, or might default

to use a different namespace, such as the target namespace of the WSDL

definition) and interoperability problems are likely.

WS-I: (BP2020) An rpc-literal binding contains soapbind:body elements that

either do not have a namespace attribute, or have a namespace attribute

value that is not an absolute URI.

Note that web service interoperability is improved by:

v Using document-style WSDL whenever possible.

v Using literal encoding, if rpc-style WSDL is necessary.

v Ensuring that the WSDL operation definitions are qualified by a valid

namespace attribute, if rpc-encoded WSDL must be used.

Using WSDL to configure message flows

How you can use WSDL to configure message flows.

Message flows working with Web services typically use the SOAP nodes. For

details about the SOAP nodes, see “WebSphere Message Broker and Web services”

on page 615.

The SOAP nodes are configured using WSDL that was previously imported or

generated in a message set, and appears under Deployable WSDL in the

workbench. You can drag the WSDL onto a SOAP node, or specify it by using the

WSDL file name property on the node. You must always select a specific WSDL

binding.

If you supply a service definition, then endpoint properties are set automatically,

but you can also set or override these properties manually.

WSDL definitions can optionally be split into multiple files. The typical

arrangement is that a top-level service definition file imports a binding file, the

binding file imports an interface file, and this interface file imports or includes

schema definition files.

A WSDL portType (the logical WSDL interface) is not sufficient on its own to

configure a SOAP node; a specific binding is required so that the SOAP payload is

well-defined at runtime.

632 Message Flows

A binding defines a use, which may be document (the default) or rpc. If the use is

document then the SOAP payload is described by an XML Schema element in the

WSDL. If the use is rpc then the SOAP payload is the WSDL operation name in a

specified namespace.

Often you will want to create your own message flow and then configure the

nodes as just described. However, you can create a new skeleton message flow by

dragging a WSDL definition onto a blank Message Flow Editor canvas, and

selecting a specific WSDL binding. You can also choose the type of flow (service

provider or consumer) and the operations to be handled by the flow.

The key nodes and properties in the generated message flow are configured, but

you need to complete the configuration and add any other nodes you require

before deploying the flow. For details about configuring a new Web service using

the wizard, see Configure New Web Service Usage wizard.

Configuring the SOAP nodes

The following nodes are configured explicitly by WSDL:

v “SOAPInput node” on page 1104

v “SOAPRequest node” on page 1116

v “SOAPAsyncRequest node” on page 1082

The following nodes are configured implicitly by WSDL, because they inherit the

WSDL configuration of the node with which they are paired:

v “SOAPReply node” on page 1114

v “SOAPAsyncResponse node” on page 1092

A SOAPReply node is always used in conjunction with a SOAPInput node. For

details of Web service scenarios, see “Web services scenarios” on page 700.

A SOAPAsyncResponse node is always used in conjunction with a

SOAPAsyncRequest node, associated by the Unique Identifier property. For SOAP

node usage patterns, see “Web services scenarios” on page 700.

What is SOAP MTOM?

SOAP Message Transmission Optimization Mechanism (MTOM) is the use of

MIME to optimize the bitstream transmission of SOAP messages that contain

significantly large base64Binary elements.

The MTOM message format allows bitstream compression of binary data. Data

which would otherwise have to be encoded in the SOAP message is instead

transmitted as raw binary data in a separate MIME part. A large chunk of binary

data takes up less space than its encoded representation, so MTOM can reduce

transmission time, although it does incur a certain amount of processing overhead.

Candidate elements to be transmitted in this way are defined as base64Binary in

the WSDL (XML Schema).

An MTOM message is identified by a Content-Type with a type of

application/xop+xml.

The SOAP domain handles inbound MTOM messages automatically, any MTOM

parts being automatically reincorporated into the SOAP Body.

Working with Web services 633

|

|
|
|

|
|
|
|
|
|
|

|
|

|
|

The use of outbound MTOM messages can be configured on the SOAPReply,

SOAPRequest, and SOAPAsyncRequest nodes. For details, see “Using SOAP

MTOM with the SOAPReply, SOAPRequest, and SOAPAsyncRequest nodes.”

For details of the external specification published by the World Wide Web

Consortium (W3C), see “SOAP MTOM” on page 682.

Using SOAP MTOM with the SOAPReply, SOAPRequest, and

SOAPAsyncRequest nodes

The use of outbound MTOM messages can be configured on the SOAPReply,

SOAPRequest, and SOAPAsyncRequest nodes.

The nodes have a property called Allow MTOM which defines whether MTOM

can be used.

An MTOM output message is written if all of the following are true:

v The Allow MTOM option is checked on the WS Extensions tab

v Validation is enabled. Be aware that the Validate property on the SOAPRequest

and SOAPAsyncRequest nodes controls validation of the anticipated response

message and not validation of the outgoing request. MTOM output is therefore

suppressed unless you set Validate to Content and value on a preceding input

node or transformation node.

v There are no children below SOAP.Attachment in the logical tree. If children are

present, SOAP with Attachments (SwA) is used.

v There are elements in the output message that are identified as base64Binary in

the associated XML Schema and whose length does not fall below a default

threshold size of 1000 bytes.

A LocalEnvironment setting called MTOMThreshold provides you with the capability

to override the MTOM element size threshold. The MTOM element size threshold

is set to a default value of 1 000 bytes.

The Allow MTOM node option and the MTOMThreshold can both be overridden in

the LocalEnvironment.

The overrides that apply at a SOAPReply node are:

v LocalEnvironment.Destination.SOAP.Reply.AllowMTOM which can have a value of

true or false.

v LocalEnvironment.Destination.SOAP.Reply.MTOMThreshold which is an integer

value in bytes.

The equivalent overrides for a SOAPRequest or SOAPAsyncRequest node are:

v LocalEnvironment.Destination.SOAP.Request.AllowMTOM which can have a value

of true or false.

v LocalEnvironment.Destination.SOAP.Request.MTOMThreshold which is an integer

value in bytes.

634 Message Flows

|
|
|

|
|

|

|

|
|

|
|

|

|

|
|
|
|
|

|
|

|
|
|

|
|
|

|
|

|

|
|

|
|

|

|
|

|
|

WS-Addressing

Web Services Addressing (WS-Addressing) is a Worldwide Web Consortium (W3C)

specification that aids interoperability between Web services by defining a standard

way to address Web services and provide addressing information in messages.

Start here to find out how WebSphere Message Broker supports WS-addressing.

The WS-Addressing specification introduces two primary concepts: endpoint

references, and message addressing properties. This topic contains an overview of

each concept. For further details, select the following links to access the

WS-Addressing specifications:

v W3C WS-Addressing specifications

v W3C submission WS-Addressing specification

Endpoint references (EPRs)

EPRs provide a standard mechanism to encapsulate information about specific

endpoints. EPRs can be propagated to other parties and then used to target the

Web service endpoint that they represent. The following table summarizes the

information model for EPRs.

 Table 14. Information model for endpoint references

Abstract Property name Property type Multiplicity Description

[address] xs:anyURI 1..1 The absolute URI that specifies the address of

the endpoint.

[reference parameters]* xs:any 0..unbounded Namespace qualified element information

items that are required to interact with the

endpoint.

[metadata] xs:any 0..unbounded Description of the behavior, policies and

capabilities of the endpoint.

The following prefix and corresponding namespace is used in the previous table.

 Table 15. Prefix and corresponding namespace

Prefix Namespace

xs http://www.w3.org/2001/XMLSchema

The following XML fragment illustrates an endpoint reference. This element

references the endpoint at the URI http://example.com/fabrikam/acct, has

metadata specifying the interface to which the endpoint reference refers, and has

application-defined reference parameters of the http://example.com/fabrikam

namespace.

<wsa:EndpointReference xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"

 xmlns:fabrikam="http://example.com/fabrikam"

 xmlns:wsdli="http://www.w3.org/2005/08/wsdl-instance"

 wsdli:wsdlLocation="http://example.com/fabrikam

 http://example.com/fabrikam/fabrikam.wsdl">

 <wsa:Address>http://example.com/fabrikam/acct</wsa:Address>

 <wsa:Metadata>

 <wsaw:InterfaceName>fabrikam:Inventory</wsaw:InterfaceName>

 </wsa:Metadata>

 <wsa:ReferenceParameters>

Working with Web services 635

http://www.w3.org/2002/ws/addr/
http://www.w3.org/Submission/ws-addressing/

<fabrikam:CustomerKey>123456789</fabrikam:CustomerKey>

 <fabrikam:ShoppingCart>ABCDEFG</fabrikam:ShoppingCart>

 </wsa:ReferenceParameters>

</wsa:EndpointReference>

Message addressing properties (MAPs)

MAPs are a set of well defined WS-Addressing properties that can be represented

as elements in SOAP headers and provide a standard way of conveying

information, such as the endpoint to which message replies should be directed, or

information about the relationship that the message has with other messages. The

MAPs that are defined by the WS-Addressing specification are summarized in the

following table.

 Table 16. Message addressing properties defined by the WS-Addressing specification

Abstract WS-Addressing

MAP name MAP content type Multiplicity Description

[action] xs:anyURI 1..1 An absolute URI that uniquely identifies the

semantics of the message. This proprety

corresponds to the [address] property of the

endpoint reference to which the message is

addressed. This value is required.

[destination] xs:anyURI 1..1 The absolute URI that specifies the address of

the intended receiver of this message. This

value is optional because, if not present, it

defaults to the anonymous URI that is defined

in the specification, indicating that the

address is defined by the underpinning

protocol.

[reference parameters]* xs:any 0..unbounded Correspond to the [reference parameters]

property of the endpoint reference to which

the message is addressed. This value is

optional.

[source endpoint] EndpointReference 0..1 A reference to the endpoint from which the

message originated. This value is optional.

[reply endpoint] EndpointReference 0..1 An endpoint reference for the intended

receiver of replies to this message. This value

is optional.

[fault endpoint] EndpointReference 0..1 An endpoint reference for the intended

receiver of faults relating to this message. This

value is optional.

[relationship]* xs:anyURI plus

optional attribute

of type xs:anyURI

0..unbounded A pair of values that indicate how this

message relates to another message. The

content of this element conveys the [message

id] of the related message. An optional

attribute conveys the relationship type. This

value is optional.

[message id] xs:anyURI An absolute URI that uniquely identifies the

message. This value is optional.

The abstract names in the previous tables are used to refer to the MAPs

throughout this documentation.

The following example of a SOAP message contains WS-Addressing MAPs:

636 Message Flows

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:fabrikam="http://example.com/fabrikam">

 <S:Header>

 ...

 <wsa:To>http://example.com/fabrikam/acct</wsa:To>

 <wsa:ReplyTo>

 <wsa:Address> http://example.com/fabrikam/acct</wsa:address>

 </wsa:ReplyTo>

 <wsa:Action>...</wsa:Action>

 <fabrikam:CustomerKey wsa:IsReferenceParameter=’true’>123456789

 </fabrikam:CustomerKey>

 <fabrikam:ShoppingCart wsa:IsReferenceParameter=’true’>ABCDEFG

 </fabrikam:ShoppingCart>

 ...

 </S:Header>

 <S:Body>

 ...

 </S:Body>

</S:Envelope>

How to use WS-Addressing

An overview of how you use WS-Addressing with WebSphere Message Broker.

Sending a message to an endpoint reference (EPR)

When sending a message to an endpoint reference, the following processes take

place:

v The [destination] message addressing property (MAP) is filled in from the

[address] property in the EPR.

v [reference parameters] are copied to top level SOAP headers from the

[reference parameters] property of the EPR.

v The [action] property is required, but is not populated from the EPR.

In this context, action is an absolute Internationalized Resource Identifier (IRI)

that uniquely identifies the semantics implied by this message and it must be

the same as the HTTP SOAPAction if a non-empty SOAPAction is specified.

v The [message id] property must be specified if this message is part of a

request-response Message Exchange Pattern (MEP); the message id is generated

by default.

When replying with a non-fault message, the following processes take place:

v The EPR to reply to is selected from the [reply endpoint] MAP.

– If this property contains the special address none, no reply is sent.

– If this property contains the special address anonymous, the reply is sent on

the return channel of the transport on which the request was received. This is

the default value in the absence of any other supplied EPR.

– Otherwise, the reply is sent to the [address] property in the Reply EPR,
v The [message id] property of the inbound message request is placed into the

[relationship] property of the response, along with the predefined relationship

of http://www.w3.org/2005/08/addressing/reply - the Reply Universal Resource

Identifier (URI) - which indicates that this message is a reply.

v A new [message id] property is specified for the reply, and this is generated by

default.

Working with Web services 637

WS-Addressing with the SOAPInput node

This topic describes the options when using WS-Addressing with the SOAPInput

node.

The SOAPInput node has a property for processing WS-Addressing information

present in the incoming message called Use WS-Addressing.

If you select this property, the WS-Addressing information is processed and the

process itself is called engaging WS-Addressing. The default is that WS-Addressing

is not engaged.

You can also specify this property in the WSDL and this is configurable from the

WSDL, automatically by the tooling, when the WSDL is dropped onto the node.

The behavior of the node when WS-Addressing is engaged or not is as follows:

Addressing not engaged

No WS-Addressing processing is performed. If a message is received that

contains any WS-Addressing headers they are ignored, and no

WS-Addressing processing of any kind is performed, unless they are

marked as MustUnderstand.

 The inbound WS Addressing headers in this case are visible in the message

as it leaves the SOAPInput node under the Header folder of the SOAP

parser in the message tree. In the case where there are WS-Addressing

headers in the incoming message and they meet both of the following

criteria:

v Marked as MustUnderstand

v Targeted at the role the SOAPInput node is operating in

then a fault is returned to the client.

Engaging WS-Addressing is how you instruct the node to ’understand’ the

WS-Addressing headers. In this case the WS-Addressing headers remain in

the SOAP Header section of the SOAP Parser and no other SOAP node

acts upon them. In all cases, they are treated as a SOAP header with no

special meaning assigned to them.

Addressing engaged:

WS-Addressing processing is performed as stated in the WS-Addressing

specification. This processing means that messages containing either

submission addressing headers or final addressing headers are accepted.

 A fault is returned if both submission and final headers are present and

either of the following conditions is met:

v Neither is marked with a role

v They are both marked with same role and the SOAPInput node is acting

in that role.

Assuming the WS-Addressing headers are valid and the Place

WS-Addressing Headers into LocalEnvironment checkbox is selected on

the SOAPInput node, all headers (including detectable inbound reference

parameters) are removed from the inbound message tree and are placed

into the LocalEnvironment tree under the SOAP.Input.WSA folder. Moving

the WS-Addressing headers to the LocalEnvironment indicates that they

have been processed by the broker. They are removed from the message

tree because they have been processed on input otherwise they would be

invalid if the message tree was sent out without further changes. They are

stored in the LocalEnvironment to allow you to inspect them.

638 Message Flows

|
|
|
|
|
|
|
|
|
|

Note that only reference parameters from the final specification are

detectable because they have an attribute called IsReferenceParameter that

allows them to be detected. As submission reference parameter headers do

not have this attribute they are not detectable, and therefore are not moved

into the LocalEnvironment tree from the message tree.

You can change WS-Addressing reply headers before the SOAPReply node

is reached. For more information about changing WS-Addressing

information in the LocalEnvironment, see “WS-Addressing information in

the LocalEnvironment” on page 642.

WS-Addressing with the SOAPReply node

This topic describes the options when using WS-Addressing with the SOAPReply

node.

The SOAPReply node uses WS-Addressing if WS-Addressing is engaged on the

SOAPInput node that is referenced by the reply identifier of the message entering

the reply node.

The SOAPReply node uses addressing information in the

Destination.SOAP.Reply.WSA folder of the LocalEnvironment to determine where

to send the reply and with what MAPs.

If the Destination.SOAP.Reply.WSA does not exist, or is completely empty, when

inspected by the SOAPReply node, the node uses the default addressing headers

that were part of the incoming message. This means that you do not have to

propagate the LocalEnvironment in the default case, and addressing still works as

expected.

In the case where there are folders beneath the Reply.WSA folder, these are used to

update the output message. This allows you to change, add, or remove parts of the

default reply information generated by the input node because any changes you

made to the tree are reflected in the outgoing message by the SOAPReply node.

For details about WS-Addressing information in the LocalEnvironment, see

“WS-Addressing information in the LocalEnvironment” on page 642.

If WS-Addressing is not engaged, this node does not perform any WS-Addressing

processing.

WS-Addressing with the SOAPRequest node

This topic describes the options when using WS-Addressing with the

SOAPRequest node.

The SOAPRequest node has a property for processing WS-Addressing information

present in the incoming message called Use WS-Addressing.

If you select this property, the WS-Addressing information is processed and the

process itself is called engaging WS-Addressing. The default is that WS-Addressing

is not engaged.

You can also specify this property in the WSDL and this is configurable from the

WSDL, automatically by the tooling, when the WSDL is dragged onto the node.

The behavior of the node when WS-Addressing is engaged or not is as follows:

Addressing not engaged

The node does not add any WS-Addressing headers to the outgoing

Working with Web services 639

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

message and does not process any WS-Addressing headers that might be

present in the response message received by the node.

Addressing engaged:

The node first looks at the Destination.SOAP.Request.WSA folder in the

LocalEnvironment. If this folder is empty, the node automatically generates

all required WS-Addressing MAPs in the outgoing message, using the

following defaults:

v Action, from the WSDL configuration file. If this is not explicitly

specified, this defaults to the value defined in the WSDL Binding

specification.

v To, from the Web Service URL node property.

v ReplyTo, using the special Anonymous address (assuming that the

Operation being used is not a one-way message exchange program, in

which case a ReplyTo using the special None address is specified).

v MessageID A unique UUID is used.

If the Destination.SOAP.Request.WSA folder in the LocalEnvironment is not

empty, any user supplied MAPs override the default ones listed previously

on a property by property basis.

If the Destination.SOAP.Request.WSA folder in the Local Environment is

not empty, any user supplied MAPs override the default ones listed

previously on a property by property basis.

After the response to the request is received and if the Place

WS-Addressing Headers into LocalEnvironment checkbox is selected on

the SOAPRequest node, the SOAPRequest node removes all

WS-Addressing headers from the response message and places them in the

SOAP.Response.WSA folder. This folder allows you to query the headers in a

similar manner to the way the SOAPInput node deals with the Input

WS-Addressing headers.

WS-Addressing with the SOAPAsyncRequest and

SOAPAsyncResponse nodes

This topic describes the options when using WS-Addressing with the

SOAPAsyncRequest and SOAPAsyncResponse nodes.

The SOAPAsyncRequest and SOAPAsyncResponse nodes require WS-Addressing

in order to work. Therefore the remote web service must understand

WS-Addressing in order to correctly process the WS-Addressing headers that are

sent from the SOAPAsyncRequest node, and to allow the response to be sent back

to the corresponding SOAPAsyncResponse node, which is specified in the address

property of the ReplyTo message addressing property (MAP).

SOAPAsyncRequest node

The SOAPAsyncRequest node has a property called Use WS-Addressing which is

read-only and defaults to true; this action is to inform you that WS-Addressing is

mandatory for this node. This property has the effect of permanently engaging

WS-Addressing for this node and cannot be changed by the node, or by the WSDL

used to configure this node.

640 Message Flows

|

|

|
|

|
|
|
|
|
|

|

|
|
|
|
|

The node first looks at the Destination.SOAP.Request.WSA folder in the

LocalEnvironment. If this folder is empty, the node automatically generates all

required WS-Addressing MAPs in the outgoing message, using the following

defaults:

v Action, from the WSDL configuration file. If this is not explicitly specified, this

defaults to the value defined by the WSDL Binding specification.

v To, from the Web Service URL node property.

v ReplyTo, the address of the corresponding SOAPAsyncRequest node.

v MessageID A unique UUID is used.

If the Destination.SOAP.Request.WSA folder in the LocalEnvironment is not empty,

any user supplied MAPs override the default ones listed previously on a property

by property basis.

However, because of the nature of the SOAP asynchronous node pair, you cannot

specify the address property of the ReplyTo message exchange program (MEP),

and this is ignored if specified.

When the main MAPs are generated, the node looks in several places to obtain

various pieces of context information to send in a <wmb:context> element under

the ReferenceParameters section of the ReplyTo endpoint reference. If these

locations exist and are not empty, the additional information below is added to the

<wmb:context>:

v Destination.SOAP.Request.UserContext

This is added under a subfolder called UserContext.

v Destination.SOAP.Reply.ReplyIdentifier

This is added under a subfolder called ReplyID.

The UserContext allows you to specify an arbitrary amount of data that will be

sent along with the message from the SOAPAsyncRequest to the

SOAPAsyncResponse node. This allows you to pass state from one node to the

other. Be careful to ensure the amount of data you send is small as this data is

placed in the message.

The ReplyIdentifer allows you to automatically correlate a SOAPInput node in

the flow containing the SOAPAsyncRequest node with a SOAPReply node in the

flow containing the SOAPAsyncResponse node.

SOAPAsyncResponse node

After the response to the request is received, the SOAPAsyncResponse node

removes all WS-Addressing headers from the response message and places them in

the SOAP.Response.WSA folder. This allows you to query the headers.

If the response message contains a UserContext that was specified by the

SOAPAsyncRequest node, this is placed in the SOAP.Response.UserContext folder

in the LocalEnvironment.

If the response message contains a ReplyIdentifier that was specified by the

SOAPAsyncRequest node, this is placed in the SOAP.Reply.ReplyIdentifier folder

in the LocalEnvironment.

Working with Web services 641

|
|
|
|

|
|

|

|

|

|
|
|

|
|
|

|
|
|
|
|

|

|

|

|

|
|
|
|
|

|
|
|

|

|
|
|

|
|
|

|
|
|

WS-Addressing information in the LocalEnvironment

WS-Addressing header information can be placed in the LocalEnvironment tree

where it is visible to a message flow. WS-Addressing header information is only

processed by the SOAP nodes.

Inbound messages

Inbound information is placed in the LocalEnvironment by the SOAP node only if

addressing is engaged on the node and you select the Place WS-Addressing

Headers into LocalEnvironment option on either the SOAPInput,

SOAPAsyncResponse, or SOAPRequest nodes.

The following table describes the node specific WS-Addressing information in the

LocalEnvironment tree.

 Node Populates LocalEnvironment property

SOAPInput LocalEnvironment.SOAP.Input.WSA.type

SOAPAsyncResponse LocalEnvironment.SOAP.Response.WSA.type

SOAPRequest LocalEnvironment.SOAP.Response.WSA.type

Where type is the structure of the subsection of the LocalEnvironment

WS-Addressing XML schema. For details about how type maps to the

WS-Addressing properties defined by the WS-Addressing specification, see

LocalEnvironment property type below.

The LocalEnvironment information for inbound messages is for your information

only. If you engage addressing on the node, and select the Place WS-Addressing

Headers into LocalEnvironment option on the node, WS-Addressing information is

available for you to look at and use in your flow. The WS-Addressing properties

are placed in to the LocalEnvironment after processing by the node. Note that the

WS-Addressing folder and all its children are owned by an XMLNSC parser. This

allows you to copy elements directly into any other tree owned by an XMLNSC

parser. However you should be aware that if you copy this folder (or any of its

children) to a tree not owned by an XMLNSC parser then information in the tree

will be discarded unless you create an XMLNSC parser in the target tree first. This

can happen if you, for example, copy from the InputLocalEnvironment tree to the

OutputLocalEnvironment tree.

Outbound messages

You can place outbound WS-Addressing header information in the

LocalEnvironment, however this is only necessary to override the defaults

automatically generated by the node. Outbound addressing headers are only

created if WS-Addressing is enabled on the node.

The following table describes the node specific WS-Addressing information in the

LocalEnvironment tree that can be used to override the defaults for outbound

messages.

 Node Populates LocalEnvironment property

SOAPReply LocalEnvironment.Destination.SOAP.Reply.WSA.type

SOAPRequest LocalEnvironment.Destination.SOAP.Request.WSA.type

SOAPAsyncRequest LocalEnvironment.Destination.SOAP.Request.WSA.type

642 Message Flows

|

|
|
|

|

|
|
|
|

|
|

|||

||

||

||
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|||

||

||

||

Where type is the structure of the subsection of the LocalEnvironment

WS-Addressing XML schema. For details about how the type maps to the

WS-Addressing properties defined by the WS-Addressing specification, see

LocalEnvironment property type below.

You can modify LocalEnvironment information for outbound messages. The

SOAPReply, SOAPRequest, and SOAPAsyncRequest nodes generate default

LocalEnvironment settings that you can override. There is one exception to this

table; any attempt to override the WS-Addressing ReplyTo address on the

SOAPAsyncRequest node will be ignored.

LocalEnvironment property type

The LocalEnvironment property type in the above tables corresponds to the

WS-Addressing part of the LocalEnvironment XML schema. The following table

shows the corresponding message addressing properties (MAPs) of the

WS-Addressing LocalEnvironment schema for all nodes.

 Element Corresponds to abstract WS-Addressing MAP name

To [destination endpoint]

From [source endpoint]

ReplyTo [reply endpoint]

FaultTo [fault endpoint]

Action [action]

MessageId [message id]

RelatesTo [relationship]

ReferenceParameters [reference parameters]

Version Not a MAP, but used to identify the version of WS-Addressing.

There are two main versions of WS-Addressing called Submission

and Final. The default used by all nodes is Final. Therefore, for

outbound messages you only need to set this element if you want

the version to be Submission. For incoming messages this element

is automatically populated with the version of the WS-Addressing

headers the inbound message used.

For more details about the message addressing properties defined by the

WS-Addressing specification, see Table 16 on page 636 in “WS-Addressing” on

page 635.

In the case of outbound WS-Addressing, an additional LocalEnvironment property

can be set.

 Element Description

AddMustUnderstandAttribute This places the SOAPmustUnderstand attribute on each

WS-Addressing header before the message is sent.

Example use of WS-Addressing information in the

LocalEnvironment

This example shows the setting of reference parameters in the LocalEnvironment

along with the corresponding messages as they appear on the wire.

Working with Web services 643

|

|
|
|
|

|
|
|
|
|

|

|
|
|
|

|||

||

||

||

||

||

||

||

||

||
|
|
|
|
|
|
|

|
|
|

|
|

|||

||
|
|

|
|
|
|

In this example the Web service exposes a simple ping operation.

ESQL to add reference parameters

The following ESQL example shows how to specify addressing headers in the

LocalEnvironment.

DECLARE Example_ns NAMESPACE ’http://ibm.namespace’;

SET OutputLocalEnvironment.Destination.SOAP.Request.WSA.ReplyTo.ReferenceParameters.Parameter1 = ’Message Broker’;

SET OutputLocalEnvironment.Destination.SOAP.Request.WSA.ReplyTo.ReferenceParameters.Example_ns:Parameter2.

 (SOAP.NamespaceDecl)xmlns:Example_ns = ’http://ibm.namespace’;

SET OutputLocalEnvironment.Destination.SOAP.Request.WSA.ReplyTo.ReferenceParameters.Example_ns:Parameter2 = ’Ping’;

SET OutputLocalEnvironment.Destination.SOAP.Request.WSA.FaultTo.ReferenceParameters.Parameter1 = ’Ping’;

SET OutputLocalEnvironment.Destination.SOAP.Request.WSA.FaultTo.ReferenceParameters.Example_ns:Parameter2.

 (SOAP.NamespaceDecl)xmlns:Example_ns = ’http://ibm.namespace’;

SET OutputLocalEnvironment.Destination.SOAP.Request.WSA.FaultTo.ReferenceParameters.gns:Parameter2 = ’FAULT’;

Request message

Below is an example of an outgoing SOAP envelope in a message from a

SOAPRequest node with ReplyTo and FaultTo reference parameters generated after

using the above ESQL. It also shows the other message addressing properties

(MAPs) that are not set in the LocalEnvironment, but are generated automatically

by the node as a result of engaging WS-Addressing.

<NS1:Envelope xmlns:NS1="http://www.w3.org/2003/05/soap-envelope" xmlns:wsa="http://www.w3.org/2005/08/addressing">

 <NS1:Header>

 <wsa:To>http://localhost:7801/Service</wsa:To>

 <wsa:ReplyTo>

 <wsa:Address>http://www.w3.org/2005/08/addressing/anonymous</wsa:Address>

 <wsa:ReferenceParameters>

 <Example_ns:Parameter2 xmlns:Example_ns="http://ibm.namespace">Ping</Example_ns:Parameter2>

 <Parameter1>Message Broker</Parameter1>

 </wsa:ReferenceParameters>

 </wsa:ReplyTo>

 <wsa:FaultTo>

 <wsa:Address>http://www.w3.org/2005/08/addressing/anonymous</wsa:Address>

 <wsa:ReferenceParameters>

 <Example_ns:Parameter2 xmlns:Example_ns="http://ibm.namespace">FAULT</Example_ns:Parameter2>

 <Parameter1>Ping</Parameter1>

 </wsa:ReferenceParameters>

 </wsa:FaultTo>

 <wsa:MessageID>urn:uuid:020C911C16EB130A8F1204119836321</wsa:MessageID>

 <wsa:Action>http://ibm.com/Service/Ping</wsa:Action>

 </NS1:Header>

 <NS1:Body>

 <NS2:Ping xmlns:NS2="http://ibm.com"></NS2:Ping>

 </NS1:Body>

</NS1:Envelope>

In the above example, reference parameters are set for the ReplyTo and FaultTo

endpoint references (EPRs). If this message is sent to a SOAPInput node with

WS-Addressing engaged, these ReferenceParameters are placed in the

LocalEnvironment of the flow containing the SOAPInput node for use by the flow

if the Place WS-Addressing Headers into LocalEnvironment option is selected.

Note that this option only changes what is placed in the LocalEnvironment, it does

not change the contents of the response message in any way.

644 Message Flows

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

Response message

The following SOAP envelope is a response to the outgoing message above as sent

by a SOAPReply node. This shows the MAP processing that happens automatically

by the SOAPReply node. In this example, the FaultTo reference parameters are not

present as the reply is not a SOAP fault. This response also shows where the

reference parameters that belonged to the ReplyTo EPR appear in the response

message.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:wsa="http://www.w3.org/2005/08/

 addressing">

 <soapenv:Header>

 <wsa:To>http://www.w3.org/2005/08/addressing/anonymous</wsa:To>

 <Example_ns:Parameter2 wsa:IsReferenceParameter="true" xmlns:Example_ns="http://ibm.namespace">Ping</Example_ns:

 Parameter2>

 <Parameter1 wsa:IsReferenceParameter="true">Message Broker</Parameter1>

 <wsa:ReplyTo>

 <wsa:Address>http://www.w3.org/2005/08/addressing/anonymous</wsa:Address>

 </wsa:ReplyTo>

 <wsa:Action>http://ibm.com/Service/PingResponse</wsa:Action>

 <wsa:RelatesTo RelationshipType="http://www.w3.org/2005/08/addressing/reply">urn:uuid:020C911C16EB130A8F1204119836321

 </wsa:RelatesTo>

 </soapenv:Header>

 <soapenv:Body>

 <NS1:PingResponse xmlns:NS1="http://ibm.com">

 <NS1:PingResult>Ping</NS1:PingResult>

 </NS1:PingResponse>

 </soapenv:Body>

</soapenv:Envelope>

WS-Security

Web Services Security (WS-Security) describes enhancements to SOAP messaging

to provide quality of protection through message integrity, message confidentiality,

and single message authentication. WS-Security mechanisms can be used to

accommodate a wide variety of security models and encryption technologies.

WS-Security is a message-level standard that is based on securing SOAP messages

through XML digital signature, confidentiality through XML encryption, and

credential propagation through security tokens. The Web services security

specification defines the core facilities for protecting the integrity and

confidentiality of a message and provides mechanisms for associating

security-related claims with the message.

WS-Security provides a general-purpose mechanism for associating security tokens

with messages. No specific type of security token is required by WS-Security. It is

designed to be extensible, for example, to support multiple security token formats.

WS-Security also describes how to encode binary security tokens and attach them

to SOAP messages. Specifically, the WS-Security profile specifications describe how

to encode Username Tokens and X.509 Tokens. With WS-Security, the domain of

these mechanisms can be extended by carrying authentication information in Web

services requests. WS-Security also includes extensibility mechanisms that can be

used to further describe the credentials that are included with a message.

WS-Security is a building block that can be used in conjunction with other Web

service protocols to address a wide variety of application security requirements.

There are numerous advantages to using WS-Security.

Working with Web services 645

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

v Different parts of a message can be secured in a variety of ways. For example,

you can use integrity on the security token (user ID and password) and

confidentiality on the SOAP message body.

v Intermediaries can be used and end-to-end message-level security can be

provided through any number of intermediaries.

v WS-Security works across multiple transports and is independent of the

underlying transport protocol.

v Authentication of both individual users and multiple party identities is possible.

Traditional Web security mechanisms, such as HTTPS, might be insufficient to

manage the security requirements of all Web service scenarios. For example, when

an application sends a SOAP message using HTTPS, the message is secured only

for the HTTPS connection, meaning during the transport of the message between

the service requester (the client) and the service. However, the application might

require that the message data be secured beyond the HTTPS connection, or even

beyond the transport layer. By securing Web services at the message level,

message-level security is capable of meeting these expanded requirements.

Message-level security, or securing Web services at the message level, addresses the

same security requirements as for traditional Web security. These security

requirements include: identity, authentication, authorization, integrity,

confidentiality, nonrepudiation, basic message exchange, and so forth. Both

traditional Web and message-level security share many of the same mechanisms

for handling security, including digital certificates, encryption, and digital

signatures.

With message-level security, the SOAP message itself either contains the

information needed to secure the message or it contains information about where

to get that information to handle security needs. The SOAP message also contains

information relevant to the protocols and procedures for processing the specified

message-level security. However, message-level security is not tied to any

particular transport mechanism. Because the security information is part of the

message, it is independent of a transport protocol, such as HTTPS.

The client adds to the SOAP message header security information that applies to

that particular message. When the message is received, the Web service endpoint,

using the security information in the header, verifies the secured message and

validates it against the policy. For example, the service endpoint might verify the

message signature and check that the message has not been tampered with. It is

possible to add signature and encryption information to the SOAP message

headers, as well as other information such as security tokens for identity (for

example, an X.509 certificate) that are bound to the SOAP message content.

Without message-level security, the SOAP message is sent in clear text, and

personal information such as a user ID or an account number is not protected.

Without applying message-level security, there is only a SOAP body under the

SOAP envelope in the SOAP message. By applying features from the WS-Security

specification, the SOAP security header is inserted under the SOAP envelope in the

SOAP message when the SOAP body is signed and encrypted.

To keep the integrity or confidentiality of the message, digital signatures and

encryption are typically applied.

v Confidentiality specifies the confidentiality constraints that are applied to

generated messages. This includes specifying which message parts within the

646 Message Flows

generated message must be encrypted, and the message parts to attach

encrypted Nonce and time stamp elements to.

v Integrity is provided by applying a digital signature to a SOAP message.

Confidentiality is applied by SOAP message encryption.

You can add an authentication mechanism by inserting various types of security

tokens, such as the Username token (element). When the Username token is

received by the Web service server, the user name and password are extracted and

verified. Only when the user name and password combination is valid, will the

message be accepted and processed at the server. Using the Username token is just

one of the ways of implementing authentication. This mechanism is also known as

basic authentication.

The OASIS Web Services Security Specification provides a set of mechanisms to

help developers of Web Services secure SOAP message exchanges. For details of

the OASIS Web Services Security Specification, see OASIS Standard for

WS-Security Specification.

WS-Security mechanisms

The WS-Security specification provides three mechanisms for securing Web

services at the message level. The three mechanisms are authentication, integrity,

and confidentiality.

Authentication

This mechanism uses a security token to validate the user and determine whether

a client is valid in a particular context. A client can be an end user, machine, or

application. Without authentication, an attacker can use spoofing techniques to

send a modified SOAP message to the service provider.

In authentication, a security token is inserted in the request message. Depending

on the type of security token that is being used, the security token may also be

inserted in the response message. These types of security tokens are supported for

authentication:

v Username tokens

v X.509 tokens

Username tokens are used to simply validate user names and passwords. When a

Web service server receives a username token, the user name and password are

extracted and passed to a user registry for verification. If the user name and

password combination is valid, the result is returned to the server and the message

is accepted and processed. When used in authentication, username tokens are

typically passed only in the request message, not the response message.

X.509 tokens are validated using a certificate path.

Both types of tokens must be protected. For this reason, if you send them over an

untrusted network, take one of the following actions:

v Use HTTPS.

v Configure the policy set to protect the appropriate elements in the SOAP header.

Working with Web services 647

http://www.oasis-open.org/specs/index.php#wssv1.1
http://www.oasis-open.org/specs/index.php#wssv1.1

Integrity

This mechanism uses message signing to ensure that information is not changed,

altered, or lost in an accidental way. When integrity is implemented, an XML

digital signature is generated on the contents of a SOAP message. If the message

data changes illegally, the signature is not validated. Without integrity, an attacker

can use tampering techniques to intercept a SOAP message between the Web

service client and server and then modify it.

Confidentiality

This mechanism uses message encryption to ensure that no party or process can

access or disclose the information in the message. When a SOAP message is

encrypted, only a service that knows the appropriate key can decrypt and read the

message.

Policy sets

Policy sets and bindings define and configure your WS-Security requirements,

supported by WebSphere Message Broker, for the SOAPInput, SOAPReply,

SOAPRequest, SOAPAsyncRequest, and SOAPAsyncResponse nodes.

A policy set is a container for the WS-Security policy type.

A policy set binding is associated with a policy set and contains information that is

specific to the environment and platform, such as information about keys.

Use policy sets and bindings to define the following items for both request and

response SOAP messages:

v Authentication for both UserNameToken and X.509 certificates

v Asymetric encryption (confidentiality)

v Asymetric signature (integrity)

Either the whole SOAP message body, or specific parts of the SOAP message

header and body can be encrypted and signed.

You administer policy sets and bindings from the toolkit, which can add, delete,

display and edit policy sets and bindings. Any changes to policy sets or bindings

in the toolkit are saved directly to the associated broker. You must stop and then

restart the message flow for the new configuration information to take effect.

You can also export and import policy sets and bindings from a broker.

v “Exporting a policy set and policy binding” on page 657

v “Importing a policy set and policy set binding” on page 658

Policy sets and their associated bindings must be saved and restored together.

Policy sets are associated with a message flow, a node or both in the Broker

Archive editor. For convenience, you can specify settings for provider and consumer

at the message flow level. The provider setting applies to all SOAPInput and

SOAPReply nodes in the message flow. The consumer setting applies to all

SOAPRequest, SOAPAsyncRequest, and SOAPAsyncResponse nodes. Individual

policy set and binding assignments can be applied at the node level in the Broker

Archive editor, and these take precedence over the flow-level provider and

consumer settings. The default setting is none, meaning that no policy set and

bindings are to be used.

648 Message Flows

Several nodes in the same message flow can refer to the same policy set and

bindings. It is the responsibility of the administrator to ensure that the required

policy sets are available to the broker at runtime. An error is reported if the broker

cannot find the associated policy set or bindings.

The rest of this topic describes some of the terms that you will meet when

configuring policy sets and bindings.

Default policy set and bindings

When a broker is created, a default policy set and bindings are created called

WSS10Default. This default contains a limited security policy which specifies that a

User Name Token is present in request messages (inbound) to SOAPInput nodes in

the associated message flow. The default policy set binding refers to the default

policy set. Neither are editable.

Consumer and provider nodes

Nodes are either consumers or providers.

Consumer nodes

 SOAPRequest

 SOAPAsyncRequest

 SOAPAsyncResponse

Provider nodes

 SOAPInput

 SOAPReply

Request and response

Request and response is a message exchange pattern (MEP). It describes a client

that sends a SOAP Request message to a Web services server, which in turn sends

a Response SOAP message back to the client. The Request message is always the

SOAP message from the client to the server, and the Response message is always

the SOAP message reply from server to the client. The following table describes

this pattern in relation to the WebSphere Message Broker SOAP nodes:

 Node Broker viewpoint Request Response

SOAPInput SOAP message

inbound

Inbound message Not applicable

SOAPReply SOAP message

outbound

Not applicable Outbound message

SOAPRequest SOAP message

outbound followed

by a SOAP message

inbound

Outbound message Inbound message

SOAPAsyncRequest SOAP message

outbound

Outbound message Not applicable

SOAPAsyncResponse SOAP message

inbound

Not applicable Inbound message

Working with Web services 649

Initiator and recipient

Initiator and recipient are roles defined in the exchange of SOAP messages.

Initiator

The role that sends the initial message in a message exchange.

Recipient

The targeted role to process the initial message in a message exchange.

The following table describes these roles in relation to the Message Broker SOAP

nodes:

 Node Broker viewpoint Initiator Recipient

SOAPInput SOAP message

inbound

External client

sending SOAP

message to the

broker.

SOAPInput node

SOAPReply SOAP message

outbound

External client that

sent the original

SOAP message to the

broker.

SOAPReply node

SOAPRequest

(outbound)

SOAP message

outbound followed

by a SOAP message

inbound

SOAPRequest node External provider

receiving the SOAP

message

SOAPRequest

(inbound)

SOAP message

outbound followed

by a SOAP message

inbound

SOAPRequest node External provider

receiving the SOAP

message

SOAPAsyncRequest SOAP message

outbound

SOAPAsyncRequest

node

External provider

receiving the SOAP

message

SOAPAsyncResponse SOAP message

inbound

SOAPAsyncRequest

node

External provider

receiving the SOAP

message

Asynchronous SOAP nodes

This diagram shows the broker acting as an initiator. It uses the asynchronous

SOAP nodes to make a request to an external provider (the recipient). Inbound and

outbound messages are signed and encrypted.

650 Message Flows

Server

Recipient

Recipient
Encryption

Token

Recipient
Signature

Token

Recipient
Encryption

Token

Recipient
Signature

Token

Public

Public

Private

Private

Encryption

Encryption

Signature

Signature

Public

Public

Private

Private

Initiator
Signature

Token

Initiator
Encryption

Token

Initiator
Signature

Token

Initiator
Encryption

Token

Initiator

M
es

sa
g

e
B

ro
ke

r

SOAPAsyncRequest

SOAPAsyncRequest

SOAPAsyncResponse

SOAPAsyncResponse

In the request:

v The broker uses the recipient’s public encryption token to encrypt the message,

and its own private signature token to sign the message.

v The recipient uses its own private encryption token to decrypt the message, and

the broker’s public signature token to verify the signature.

In the response:

v The recipient uses the broker’s public encryption token to encrypt the message,

and its own private signature token to sign the message.

v The broker uses its own private encryption token to decrypt the message, and

the initiator’s public signature token to verify the signature.

SOAPInput and SOAPReply nodes

In this diagram, the broker acts as recipient. A SOAPInput node receives a message

from a client (initiator). A SOAPReply node replies. Inbound and outbound

messages are signed and encrypted.

Working with Web services 651

Client

Initiator

Recipient
Encryption

Token

Recipient
Signature

Token

Recipient
Encryption

Token

Recipient
Signature

Token

Public

Public

Private

Private

Encryption

Encryption

Signature

Signature

Public

Public

Private

Private

Initiator
Signature

Token

Initiator
Encryption

Token

Initiator
Signature

Token

Initiator
Encryption

Token

Recipient

M
essag

e B
ro

ker

SOAPInput

SOAPReply

SOAPInput

SOAPReply

In the request:

v The initiator uses the broker’s public encryption token to encrypt the message,

and its own private signature token to sign it.

v The broker uses its own private encryption token to decrypt the message, and

the initiator’s public signature token to verify the signature.

In the response:

v The broker uses the initiator’s public encryption token to encrypt the message,

and its own private signature token to sign the message.

v The initiator uses its own private encryption token to decrypt the message, and

the broker’s public signature token to verify the signature.

SOAPRequest node

This diagram shows the broker acting as an initiator. It uses the SOAPRequest

node to make a synchronous request to an external provider (the recipient).

Inbound and outbound messages are signed and encrypted. Use of tokens is

similar to the example of the asynchronous SOAP nodes, shown earlier.

652 Message Flows

Server

Recipient

Recipient
Encryption

Token

Recipient
Signature

Token

Recipient
Encryption

Token

Recipient
Signature

Token

Public

Public

Private

Private

Encryption

Encryption

Signature

Signature

Public

Public

Private

Private

Initiator
Signature

Token

Initiator
Encryption

Token

Initiator
Signature

Token

Initiator
Encryption

Token

Initiator

M
es

sa
g

e
B

ro
ke

r

SOAPRequest

SOAPRequest

In the request:

v The broker uses the recipient’s public encryption token to encrypt the message,

and its own private signature token to sign the message.

v The recipient uses its own private encryption token to decrypt the message, and

the broker’s public signature token to verify the signature.

In the response:

v The recipient uses the broker’s public encryption token to encrypt the message,

and its own private signature token to sign the message.

v The broker uses its own private encryption token to decrypt the message, and

the initiator’s public signature token to verify the signature.

Viewing and setting keystore and truststore runtime properties

Configure the message broker to refer to a keystore, a truststore, or both, before

deploying any message flows that require policy set or bindings for signature,

encryption or X.509 Authentication.

Keystores and truststores are both keystores. They differ only in the way they are

used.

 Put all private keys and public key certificates (PKC) in the keystore.

 Put all trusted root certificate authority (CA) certificates in the truststore. These

certificates are used to establish the trust of any inbound public key certificates.

The only supported type of store is Java keystore (JKS).

Working with Web services 653

Each instance of a broker can be configured to refer to one keystore and one

truststore.

The following properties of the broker registry component must be defined

correctly for policy sets and bindings:

brokerKeystoreFile

The directory and file location of the keystore.

brokerTruststoreFile

The directory and file location of the truststore.

Listing existing broker registry entries:

To display all broker registry values, run the command:

mqsireportproperties broker_name -o BrokerRegistry -a

This returns entries like these:

BrokerRegistry=’’

 uuid=’BrokerRegistry’

 brokerKeystoreType=’JKS’

 brokerKeystoreFile=’’

 brokerKeystorePass=’brokerKeystore::password’

 brokerTruststoreType=’JKS’

 brokerTruststoreFile=’’

 brokerTruststorePass=’brokerTruststore::password’

 httpConnectorPortRange=’’

 httpsConnectorPortRange=’’

Updating the broker reference to a keystore:

To update the broker reference to a keystore, use the following command:

mqsichangeproperties broker_name -o BrokerRegistry

 –n brokerKeystoreFile

 -v c:\keystore\server.keystore

Where c:\keystore\server.keystore is the keystore to be referenced.

Updating the broker reference to a truststore:

To update the broker reference to a truststore, use the following command:

mqsichangeproperties broker_name -o BrokerRegistry

 –n brokerTruststoreFile

 -v c:\truststore\server.truststore

Where c:\truststore\server.truststore is the truststore to be referenced.

Updating the broker with the keystore password:

Keystores and truststores normally require passwords for access. Use the

mqsisetdbparms command to add these passwords to the broker runtime

component.

mqsisetdbparms broker_name

 -n brokerKeystore::password

 -u temp -p pa55word

The user ID, which can be any value, is not required to access the keystore.

Updating the broker with the truststore password:

654 Message Flows

To update the broker with the truststore password, use the following command:

mqsisetdbparms broker_name

 -n brokerTruststore::password

 -u temp -p pa55word

The user ID, which can be any value, is not required to access the keystore.

Updating the broker with a private key password:

Private keys in the keystore might have their own individual passwords. These can

be configured based on the alias name that is specified for the key in the Policy

sets and bindings editor. If a key password based on the alias is not found, the

keystore password is used. The following command updates the broker with the

private key password for the key whose alias is encKey.

mqsisetdbparms broker_name

 -n brokerTruststore::keypass::encKey

 -u temp -p pa55word

The user ID, which can be any value, is not required to access the keystore.

Implementing WS-Security

What you need to do to configure authentication, XML encryption and XML

signature for your system.

You use the Policy Sets and Policy Set Bindings editor in the workbench to

configure the following aspects of WS-Security:

 “Authentication”

 “Confidentiality” on page 656

 “Integrity” on page 656

 “Expiration” on page 656

 Authentication using an external security provider. Define WS-Security tokens

for use by the broker security manager; see “Message flow security and security

profiles” on page 658.

Authentication:

Both username and X.509 tokens are supported.

Configuring authentication with username tokens

1. In the workbench, switch to the Broker Administration perspective.

2. Create UserName and X.509 authentication tokens; see Policy Sets and

Policy Set Bindings editor: Authentication tokens panel.

3. Further configure any X.509 authentication tokens defined in the

associated policy set; seePolicy Sets and Policy Set Bindings editor:

Authentication and Protection Tokens panel.

4. Configure a security profile; see “Message flow security and security

profiles” on page 658.

5. Associate the policy set with a message flow or node; see “Associating

policy sets and bindings with message flows and nodes” on page 657.

Configuring authentication with X.509 tokens

1. If you are using the broker truststore, configure the keystore and

truststore; see “Viewing and setting keystore and truststore runtime

properties” on page 653.

2. In the workbench, switch to the Broker Administration perspective.

Working with Web services 655

3. Create UserName and X.509 authentication tokens; see Policy Sets and

Policy Set Bindings editor: Authentication tokens panel.

4. Configure the certificate mode for either broker truststore or an external

security provider; see Policy Sets and Policy Set Bindings editor:

Authentication and Protection Tokens panel.

5. If you are using an external security provider, configure a security

profile; see “Message flow security and security profiles” on page 658.

6. Associate the policy set with a message flow or node; see “Associating

policy sets and bindings with message flows and nodes” on page 657

Confidentiality:

Confidentiality is provided by XML encryption, and requires X.509 tokens. To

configure XML encryption:

1. Configure the keystore and truststore; see “Viewing and setting keystore and

truststore runtime properties” on page 653.

2. In the workbench, switch to the Broker Administration perspective.

3. Enable XML encryption, create encryption tokens, and select the encryption

algorithms that you will use; see Policy Sets and Policy Set Bindings editor:

Message Level Protection panel.

4. Define which parts of a message are to be encrypted; see Policy Sets and Policy

Set Bindings editor: Message Part Protection panel.

5. Further configure message part encryption; see Policy Sets and Policy Set

Bindings editor: Message Part Policies panel.

6. Further configure the keystore and truststore; see Policy Sets and Policy Set

Bindings editor: Key Information panel.

7. Associate the policy set with a message flow or node; see “Associating policy

sets and bindings with message flows and nodes” on page 657.

Integrity:

Integrity is provided by XML signature, and requires X.509 tokens. To configure

XML signature:

1. Configure the keystore and truststore; see “Viewing and setting keystore and

truststore runtime properties” on page 653.

2. In the workbench, switch to the Broker Administration perspective.

3. Enable XML signature and create signature tokens ; see Policy Sets and Policy

Set Bindings editor: Message Level Protection panel.

4. Define which parts of a message are to be signed ; see Policy Sets and Policy

Set Bindings editor: Message Part Protection panel.

5. Further configure message part signature ; see Policy Sets and Policy Set

Bindings editor: Message Part Policies panel.

6. Further configure the keystore and truststore ; see Policy Sets and Policy Set

Bindings editor: Key Information panel.

7. Associate the policy set with a message flow or node; see “Associating policy

sets and bindings with message flows and nodes” on page 657.

Expiration:

To configure message expiration, ; see Policy Sets and Policy Set Bindings editor:

Message Expiration panel.

656 Message Flows

Associating policy sets and bindings with message flows and

nodes

Use the Broker Archive editor to associate policy sets and bindings with message

flows and nodes, so that they are available to the broker at runtime.

Before you start

Use the Policy Sets and Policy Set Bindings editor to create and configure policy

sets and bindings.

Associations can be made between policy sets and message flow, or specific nodes.

Associations made with a flow apply to all nodes described in the Policy Set and

Bindings file. Associations at the flow level are defined as being either for

consumer or provider nodes.

An association at the node level overrides any association made at the flow level.

You do not enter information about consumer or provider for an association at

node level.

1. In the workbench, switch to the Broker Administration perspective.

2. Open the bar file in the Broker Archive editor.

3. Click the Configure tab.

4. Click the message flow or node that you want to associate with a policy set

and binding.

5. If you are configuring a message flow, enter values in the following fields, as

appropriate:

 Provider Policy Set Bindings

 Provider Policy Set

 Consumer Policy Set Bindings

 Consumer Policy Set

6. If you are configuring a node, enter values in the following fields:

 Policy Set

 Policy Set Bindings

For new associations to take effect, the bar file must be redeployed and the

message flows stopped and restarted.

Exporting a policy set and policy binding

Use the mqsireportproperties command to export a policy set and associated

binding to a file.

This topic shows how to export policy set myPolicySet from broker myBroker to a

file called myPolicySet.xml. The associated binding is myPolicySetBinding, which you

export to myPolicySetBinding.xml.

1. Export the policy set to a file:

mqsireportproperties myBroker -c PolicySets -o myPolicySet -n ws-security -p myPolicySet.xml

2. Export the policy set binding to a file:

mqsireportproperties myBroker -c PolicySetBindings -o myPolicySetBinding

 -n ws-security -p myPolicySetBinding.xml

Make a note of the policy set that is associated to the binding; you will need this

information when you import the policy set and binding. This command displays

the policy set associated with a binding:

Working with Web services 657

mqsireportproperties myBroker -c PolicySetBindings -o myPolicySetBinding -n associatedPolicySet

This displays:

PolicySetBindings myPolicySetBinding associatedPolicySet=’myPolicySet’

BIP8071I: Successful command completion.

Importing a policy set and policy set binding

Use the mqsichangeproperties command to import a policy set and associated

binding.

This topic shows how to import policy set myPolicySet to broker myBroker from a

file called myPolicySet.xml. The associated binding is myPolicySetBinding, which you

import from myPolicySetBinding.xml.

1. Create a configurable service for the policy set, if one does not already exist.

mqsicreateconfigurableservice myBroker -c PolicySets -o myPolicySet

BIP8071I: Successful command completion.

2. Create a configurable service for the policy set binding, if one does not already

exist.

mqsicreateconfigurableservice myBroker -c PolicySetBindings -o myPolicySetBinding

BIP8071I: Successful command completion.

3. Import the policy set.

mqsichangeproperties myBroker -c PolicySets -o myPolicySet -n ws-security -p myPolicySet.xml

4. Import the policy set binding.

mqsichangeproperties myBroker -c PolicySetBindings -o myPolicySetBinding

 -n ws-security -p myPolicySetBinding.xml

5. Change the value of the associatedPolicySet attribute. Set it to the name of the

policy set with which this policy set binding was originally associated.

mqsichangeproperties myBroker -c PolicySetBindings -o myPolicySetBinding

 -n associatedPolicySet -v myPolicySet

Message flow security and security profiles

This topic describes message flow security and security profiles.

WebSphere Message Broker provides a Security Manager for implementing

message flow security so that end-to-end processing of a message through a

message flow is secured based on an identity carried in that message instance.

The Security Manager enables access to message flows to be controlled per

message and includes the ability to:

v Extract the identity from an inbound message.

v Authenticate an inbound message using an external security provider.

v Map the identity to an alternative identity using an external security provider.

v Check that the alternative identity or the original identity is authorized to access

the message flow using an external security provider.

v Propagate the inbound or alternative identity.

For details of the supported external providers and the operation of the Security

Manager, see Message flow security.

When the message flow is a Web service implemented using “SOAP nodes” on

page 621 and the identity is to be taken from the “WS-Security” on page 645 SOAP

headers, the SOAP nodes are the Policy Enforcement Point (PEP) and the external

provider defined by the Security profiles is the Policy Decision Point (PDP).

658 Message Flows

The following configuration is required to implement message flow security based

on an identity carried in WS_Security tokens.

v “Policy sets” on page 648 define the type of tokens used for the identity.

– For working with a Username and Password identity, configure the policy

and binding for Username token “Authentication” on page 655.

– For working with a X.509 Certificate identity, configure the policy and

binding for X.509 certificate token “Authentication” on page 655.

 In the Policy Set Binding, set the X.509 certificate Authentication Token

certificates mode to Trust Any. You set it this way (and not to Trust Store)

so that the certificate is passed to the security provider defined by the

Security Profile. Setting it to Trust Store will cause the certificate to be

validated in the local Broker Trust Store. For more details, see Policy Sets

and Policy Set Bindings editor: Authentication and Protection Tokens

panel.
v The message flow security operation and external provider are defined by the

Security profiles

For WS-Security Signing and Encryption the local broker, the truststore must be

configured. For details, see “Viewing and setting keystore and truststore runtime

properties” on page 653.

Additionally the broker truststore can be used as a local PDP for X.509 Certificate

Authentication, as an alternative to message flow security and an external PDP. For

details, see Policy Sets and Policy Set Bindings editor: Authentication and

Protection Tokens panel.

WS-Security capabilities

This topic explains Web service security capabilities supported by the broker.

Web service security mechanisms are defined by OASIS standards. See OASIS

Standard for WS-Security Specification

For information about the Username Token Profile and X.509 Certificate Token

Profile standards, see:

v OASIS Web Services Security Username Token Profile

v OASIS Web Services Security X.509 Certificate Token Profile

For details of broker capabilities using the username token profile, see “Username

token capabilities”

For details of using the X.509 certificate token profile, see “X.509 certificate token

capabilities” on page 661

Username token capabilities

This topic describes WS-Security username token capabilities of the broker.

For details of using WS-Security username token, see the following capabilities:

v “Username token capabilities for encryption, decryption, signing, and verifying”

on page 660

v “Username token capabilities for authentication and authorization” on page 660

v “Username token capabilities for identity mapping” on page 660

v “Username token capabilities for extraction and propagation” on page 661

Working with Web services 659

http://www.oasis-open.org/specs/index.php#wssv1.1
http://www.oasis-open.org/specs/index.php#wssv1.1
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-pr-UsernameTokenProfile-01.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-pr-x509TokenProfile-01.pdf

Username token capabilities for encryption, decryption, signing, and verifying:

This topic describes broker Web services capability for encryption, decryption,

signing, and verifying using username tokens.

 The username token is not applicable, or supported, for the following in any

configuration or direction:

v Encryption

v Decryption

v Signing

v Verifying

Username token capabilities for authentication and authorization:

This topic describes broker Web services capability for authentication,

authorization, or both using a username token.

 The username token “Authentication” on page 647 and Authorization is supported

only in the following configuration:

Capability

v Authenticate

v Authorize

Policy Enforcement Point (PEP) and direction

v In (provider)

 “SOAPInput node” on page 1104

Configured with a security policy and binding which defines that a username

token is present for authentication; see “Authentication” on page 655. You can

use the default policy and binding WSS10Default; see “Default policy set and

bindings” on page 649.

Configured with a security profile defining the Policy Decision Point (PDP); see

the PDP section that follows.

Trust Store or PDP

v LDAP

Configured using an LDAP security profile specifying authentication,

authorization, or both; see Creating a security profile for LDAP.

v TFIM

Configured using an TFIM security profile specifying authentication,

authorization or both; see Creating a security profile for TFIM.

Username token capabilities for identity mapping:

This topic describes broker Web services capability for identity mapping using a

username token.

 Identity mapping from a username identity token to a mapped username identity

token is supported only in the following configurations:

Capability

v Identity mapping

660 Message Flows

Policy Enforcement Point (PEP) and direction

v In (provider)

 “SOAPInput node” on page 1104

Configured with a security policy and binding which defines that a username

taken is present. You can use the default policy and binding WSS10Default; see

“Default policy set and bindings” on page 649.

Configured with a security profile defining the external Policy Decision Point

(PDP); see the PDP section that follows.

Trust store or PDP

v TFIM

Configured using a TFIM security profile specifying identity mapping; see

Creating a security profile for TFIM.

Username token capabilities for extraction and propagation:

This topic describes broker capability for extraction, propagation, or both using a

username token in Web services.

 The extraction of username into the Properties folder source Identity fields, is

supported in the following configurations:

Capability

v Extraction

Policy Enforcement Point (PEP) and direction

v In (provider)

 “SOAPInput node” on page 1104

Configured with a security policy and binding which defines that a username

taken is present. You can use the default policy and binding WSS10Default; see

“Default policy set and bindings” on page 649.

Configured with a security profile that defines propagation; see Creating a

security profile

The propagation of a username token into the SOAP WS-Security header, from the

token present in either the mapped or the source identity fields in the properties

folder, is supported in the following configuration. See Identity.

Capability

v Propagate

Policy Enforcement Point (PEP) and direction

v Out (consumer)

 “SOAPRequest node” on page 1116

 “SOAPAsyncRequest node” on page 1082

Configured with a security profile that defines propagation; for example, Default

Propagation. See Security profiles

X.509 certificate token capabilities

This topic describes the broker capabilities for the WS-Services Security X.509

certificate token profile standards.

Working with Web services 661

For details of using the X.509 certificates, see the following capabilities:

v “X.509 certificate token capabilities for encryption”

v “X.509 certificate token capabilities for decryption”

v “X.509 certificate token capabilities for signing” on page 663

v “X.509 certificate token capabilities for verifying” on page 663

v “X.509 certificate token capabilities for authentication” on page 664

v “X.509 certificate token capabilities for authorization” on page 664

v “X.509 certificate token capabilities for identity mapping” on page 665

v “X.509 certificate token capabilities for extraction and propagation” on page 665

X.509 certificate token capabilities for encryption:

This topic describes broker Web services capability for encryption using an X.509

certificate token.

 X.509 certificate token encryption for providing message “Confidentiality” on page

648 on outgoing SOAP messages from the broker is supported in the following

configurations:

Capability

v Encrypt (Using partner public key)

Policy Enforcement Point (PEP) and direction

v Out (consumer)

 “SOAPRequest node” on page 1116

 “SOAPAsyncRequest node” on page 1082
v Out (provider)

 “SOAPReply node” on page 1114

Configured with a policy set and binding defining the message “Confidentiality”

on page 656.

Trust Store or Policy Decision Point (PDP)

v Broker Truststore. For more details see “Viewing and setting keystore and

truststore runtime properties” on page 653

Encryption is not supported with external PDPs such as TFIM or LDAP.

X.509 certificate token capabilities for decryption:

This topic describes broker Web services capability for decryption using an X.509

certificate token.

 X.509 certificate token decryption for incoming SOAP message “Confidentiality” on

page 648 is supported in the following configurations:

Capability

v Decrypt (Using broker private key)

Policy Enforcement Point (PEP) and direction.

v In (provider)

 “SOAPInput node” on page 1104

662 Message Flows

v In (consumer)

 “SOAPRequest node” on page 1116

 “SOAPAsyncResponse node” on page 1092

Configured with a policy set and binding defining the message “Confidentiality”

on page 656.

Trust Store or Policy Decision Point (PDP).

v Broker Truststore. For details see “Viewing and setting keystore and truststore

runtime properties” on page 653

Decryption is not supported with external PDPs such as TFIM or LDAP.

X.509 certificate token capabilities for signing:

This topic describes broker Web services capability for signing using an X.509

certificate token.

 X.509 certificate token signing for outgoing SOAP message “Integrity” on page 648

is supported in the following configurations:

Capability

v Sign (using broker private key)

Policy Enforcement Point (PEP) and direction

v Out (consumer)

 “SOAPRequest node” on page 1116

 “SOAPAsyncRequest node” on page 1082
v Out (provider)

 “SOAPReply node” on page 1114

Configured with a policy set and binding defining the message “Integrity” on

page 656

Trust Store or Policy Decision Point (PDP)

v Broker Truststore. For details see “Viewing and setting keystore and truststore

runtime properties” on page 653

Signing is not supported with an external PDP such as TFIM or LDAP.

X.509 certificate token capabilities for verifying:

This topic describes broker Web services capability for verifying a signing using an

X.509 certificate token profile.

 X.509 certificate token verification of the “Integrity” on page 648 of a signed

incoming SOAP message is supported in the following configurations:

Capability

v Verify signature (using partner public key)

Policy Enforcement Point (PEP) and direction

v In (provider)

 “SOAPInput node” on page 1104

Working with Web services 663

v In (consumer)

 “SOAPRequest node” on page 1116

 “SOAPAsyncResponse node” on page 1092

Configured with a policy set and binding defining the message “Integrity” on

page 656

Trust Store or Policy Decision Point (PDP)

v Broker Trust store. For details, see “Viewing and setting keystore and truststore

runtime properties” on page 653

Signature verification is not supported with an external PDP such as TFIM or

LDAP.

X.509 certificate token capabilities for authentication:

This topic describes broker Web services capability for authentication using an

X.509 certificate token.

 The X.509 certificate token “Authentication” on page 647 of an incoming SOAP

message is supported in the following configurations:

Capability

v Authenticate

Policy Enforcement Point (PEP) and direction

v In (provider)

 “SOAPInput node” on page 1104

Configured with a policy set and binding defining the certificate

“Authentication” on page 655.

Optionally configured with a security profile defining an external Policy

Decision Point (PDP); see the PDP section that follows.

Trust Store or PDP

v Broker Trust store. For details, see “Viewing and setting keystore and truststore

runtime properties” on page 653

v TFIM

Configured using a TFIM security profile specifying authentication. For details,

see Creating a security profile for TFIM.

Certificate authentication with an external LDAP PDP is not supported.

X.509 certificate token capabilities for authorization:

This topic describes broker Web services capability for authorization using an X.509

certificate token.

 The X.509 certificate token profile Authorization for access to a SOAP message

flow is supported in the following configurations:

Capability

v Authorize

Policy Enforcement Point (PEP) and direction

664 Message Flows

v In (provider)

 “SOAPInput node” on page 1104

Configured with a policy set and binding defining the certificate

“Authentication” on page 655.

Configured with a security profile defining an external Policy Decision Point

(PDP); see the PDP section that follows.

Trust Store or PDP

v TFIM

Configured using a TFIM security profile specifying authorization. For details,

see Creating a security profile for TFIM

Certificate authorization with an external LDAP PDP is not supported.

X.509 certificate token capabilities for identity mapping:

This topic describes broker Web services capability for identity mapping using an

X.509 certificate token.

 The broker supports Identity mapping from an X.509 certificate token in an

incoming SOAP message header to username tokens in the following

configurations:

Capability

v Identity mapping

Policy Enforcement Point (PEP) and direction

v In (provider)

 “SOAPInput node” on page 1104

Configured with a policy set and binding defining the certificate

“Authentication” on page 655.

Configured with a security profile defining an external Policy Decision Point

(PDP); see the PDP section that follows.

Trust Store or PDP

v TFIM

Configured using a TFIM security profile specifying identity mapping. For

details, see Creating a security profile for TFIM.

Identity mapping is not supported with LDAP, or at outbound nodes.

Username tokens only can be propagated.

X.509 certificate token capabilities for extraction and propagation:

This topic describes broker Web services capability for extraction and propagation

X.509 certificate token.

 The broker does not support propagation of an X.509 certificate.

The X.509 certificate token extraction is supported in the following configurations:

Capability

v Extraction

Working with Web services 665

Policy Enforcement Point (PEP) and direction

v In (provider)

 “SOAPInput node” on page 1104

Configured with a policy set and binding defining the X.509 certificate is

present; see “Implementing WS-Security” on page 655.

Configured with a security profile defining propagation; see the Security

profiles.

WebSphere Service Registry and Repository

The WebSphere Service Registry and Repository (WSRR) is a central repository of

documents describing services, service interfaces (for example, SOAP over HTTP),

and associated policies that control access mechanisms (for example, WS-Policy

documents associated with either of the previous two).

The WebSphere Service Registry and Repository allows a message flow to

dynamically retrieve artefacts from the WebSphere Service Registry and Repository

at run time, and to use and expose those artefacts within the message flow.

Therefore deferring the decision about which artefacts you want to use until run

time, rather than making the decision at deployment time.

Generic XML documents, WSDL, SCDL, and all other formats that are supported

by the WebSphere Service Registry and Repository, can be stored in the WebSphere

Service Registry and Repository. However, some queries that you might submit to

the WebSphere Service Registry and Repository might only apply to certain

document types, for example, a query for a port type can only be applied to WSDL

documents.

Use the WebSphere Service Registry and Repository nodes (the EndpointLookup

and RegistryLookup nodes) to create message flows that use the WebSphere

Service Registry and Repository, and to retrieve artefacts dynamically from the

WebSphere Service Registry and Repository according to the search criteria

provided either on the node, or dynamically within the LocalEnvironment. Thus

allowing the succeeding nodes to use the information retrieved from the

WebSphere Service Registry and Repository.

Important: WebSphere Message Broker V6.1.0.2 only supports WebSphere Service

Registry and Repository V6.1. Previous versions of the product are not

supported.

The topics in this section provide further information about working with the

WebSphere Service Registry and Repository:

v “Configuration parameters for the WebSphere Service Registry and Repository

nodes” on page 667

v “Displaying the configuration parameters for the WebSphere Service Registry

and Repository nodes” on page 668

v “Changing the configuration parameters for the WebSphere Service Registry and

Repository nodes” on page 669

v “Accessing a secure WebSphere Service Registry and Repository” on page 670

v “Caching artefacts from the WebSphere Service Registry and Repository” on

page 672

– “Configuring the cache loading options” on page 673

– “Setting up Cache Notification” on page 675

666 Message Flows

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

v “The LocalEnvironment” on page 677

– “Dynamically defining the search criteria” on page 677

– “EndpointLookup node” on page 881

– “EndpointLookup node output” on page 678

– “RegistryLookup node” on page 1048

– “RegistryLookup node output” on page 680

Configuration parameters for the WebSphere Service Registry

and Repository nodes

These parameters affect the brokers configuration when interfacing with

WebSphere Service Registry and Repository (WSRR).

The following table describes the parameters for Base Configuration that are

configured by using the mqsichangeproperties command.

 Configuration Setting Name Default value Description

endpointAddress http://host.name:9080

/WSRRCoreSDO/services/
WSRRCoreSDOPort

Location or endpoint of the WSRR

server. Where host.name is variable.

The following table describes the parameters for Cache that are configured by

using the mqsichangeproperties command.

 Configuration Setting

Name Default value Description

needCache True Enable WebSphere Message Broker WSRR cache.

timeout 10000000 The timeout value for the cache. The cache expiry time in

milliseconds. (The default value of 10000000 milliseconds is

approximately 166 minutes).

The following table describes the parameters for Cache Notification that are

configured by using the mqsichangeproperties command.

 Configuration Setting Name Default value Description

enableCacheNotification False Enable WebSphere Message Broker

WSRR Cache Notification.

predefinedCacheQueries ″ (two single quotation marks) List of semicolon-separated queries

with which to initialize the

WebSphere Message Broker WSRR

cache. This query is defined by the

WSRR query language.

refreshQueriesAfterNotification True When a notification is received from

WSRR, if

refreshQueriesAfterNotification is set

to True the cache is updated with the

new version of the object

immediately; if False, the cache will

be updated on the next request.

connectionFactoryName jms/SRConnectionFactory The name of the WSRR WebSphere

Application Server JMS provider JMS

connection factory for Cache

Notification.

Working with Web services 667

Configuration Setting Name Default value Description

initialContextFactory com.ibm.websphere.naming.

WsnInitialContextFactory

The name of the WSRR WebSphere

Application Server JMS provider JMS

context factory for Cache

Notification.

locationJNDIBinding iiop://host.name:2809/ The URL to the WebSphere

Application Server JMS provider

JNDI bindings. Where host.name is

variable.

subscriptionTopic jms/SuccessTopic The topic name used to receive

WebSphere Application Server JMS

provider Cache Notification.

The following table describes the parameters for Security that are configured by

using the mqsisetdbparms command.

 Configuration Setting

Name Default value Description

Userid None The user name used to access the secure WebSphere Application

Server.

Password None The password to used access the secure WebSphere Application

Server.

brokerKeystorePass None The SSL configuration for the key password.

brokerTruststorePass None The SSL configuration for the trust password.

The following table describes the parameters for Security that are configured by

using the mqsichangeproperties command.

 Configuration Setting

Name Default value Description

brokerKeystoreFile None The SSL configuration for the file path to the ClientKeyFile.

brokerTruststoreFile None The SSL configuration for the file path to the ClientTrustFile.

Displaying the configuration parameters for the WebSphere

Service Registry and Repository nodes

Use the mqsireportproperties command to display all of the configuration

parameters of the default WebSphere Service Registry and Repository (WSRR)

profile, DefaultWSRR.

The DefaultWSRR is a Service Registries configurable service that is supplied for

each broker, see Configurable services properties.

To display the configuration parameters of the default WebSphere Service Registry

and Repository profile DefaultWSRR, complete the following steps:

1. Ensure that the broker is running. If it is not, use the mqsistart command to

start it.

2. Enter the following command (where WBRK_BROKER is the name of your

broker):

mqsireportproperties WBRK_BROKER -c ServiceRegistries -o DefaultWSRR -r

668 Message Flows

|

|

|

|

|

|

|
|

|
|

where:

-c specifies the configurable service (in this case, ServiceRegistries)

-o specifies the name of the object (in this case, DefaultWSRR)

-r specifies that all property values of the object are displayed, including

 the child values if appropriate.

The command produces a response similar to this:

ReportableEntityName=’’

ServiceRegistries

 DefaultWSRR=’’

 connectionFactoryName = ’jms/SRConnectionFactory’

 enableCacheNotification = ’false’

 endpointAddress = ’http://localhost:9080/WSRRCoreSDO/services/WSRRCoreSDOPort’

 initialContextFactory = ’com.ibm.websphere.naming.WsnInitialContextFactory’

 locationJNDIBinding = ’iiop://localhost:2809/’

 needCache = ’true’

 predefinedCacheQueries = ’’

 refreshQueriesAfterNotification = ’true’

 subscriptionTopic = ’jms/SuccessTopic’

 timeout = ’10000000’

Changing the configuration parameters for the WebSphere

Service Registry and Repository nodes

Use the mqsichangeproperties command to change the configuration parameters of

the default WebSphere Service Registry and Repository (WSRR) profile

DefaultWSRR.

For details about configuration parameters that affect WebSphere Service Registry

and Repository use, see “Configuration parameters for the WebSphere Service

Registry and Repository nodes” on page 667.

To update the default WebSphere Service Registry and Repository profile

DefaultWSRR with a new endpointAddress value, and, if required, a new cache

timeout value, complete the following steps:

1. Ensure that the broker is running. If it is not, use the mqsistart command to

start it.

2. Enter the following command to change the endpointAddress value and point

to your WebSphere Service Registry and Repository server:

mqsichangeproperties WBRK_BROKER -c ServiceRegistries -o DefaultWSRR

-n endpointAddress

-v http://localhost:9080/WSRRCoreSDO/services/WSRRCoreSDOPort

where:

-c specifies the configurable service (in this case, ServiceRegistries)

-o specifies the name of the object (in this case, DefaultWSRR)

-n specifies the names of the properties to be changed

(in this case, endpointAddress)

-v specifies the values of properties defined by the -n parameter

(in this case,

http://localhost:9080/WSRRCoreSDO/services/WSRRCoreSDOPort)

3. (Optional) Enter the following command to change the timeout value:

mqsichangeproperties WBRK_BROKER -c ServiceRegistries -o DefaultWSRR

-n timeout -v 10000000

Working with Web services 669

where:

-c specifies the configurable service (in this case, ServiceRegistries)

-o specifies the name of the object (in this case, DefaultWSRR)

-n specifies the names of the properties to be changed

(in this case, timeout)

-v specifies the values of properties defined by the -n parameter

(in this case, 10000000)

4. Restart the broker, by using the mqsistop command to stop the broker, followed

by the mqsistart command to start it.

Accessing a secure WebSphere Service Registry and

Repository

To access a secure WebSphere Service Registry and Repository, you must set the

configuration parameters by using the mqsichangeproperties command.

You must connect over HTTPS, not HTTP.

For more information about the configuration parameters, see “Configuration

parameters for the WebSphere Service Registry and Repository nodes” on page

667.

To access a secure WebSphere Service Registry and Repository, enter the following

sequence of commands:

 1. Ensure that the broker is running. If it is not, use the mqsistart command to

start it.

 2. Display the configuration parameters of the BrokerRegistry by using the

following command:

mqsireportproperties WBRK_BROKER -o BrokerRegistry -r

where:

-o specifies the name of the object (in this case, BrokerRegistry)

-r specifies that all property values of the object are displayed, including

 the child values if appropriate.

 3. Change the endpointAddress configuration parameters for the DefaultWSRR

of the ServiceRegistries configurable service by using the following command:

mqsichangeproperties WBRK_BROKER -c ServiceRegistries -o DefaultWSRR

-n endpointAddress

-v https://localhost:9443/WSRRCoreSDO/services/WSRRCoreSDOPort

where:

-c specifies the configurable service (in this case, ServiceRegistries)

-o specifies the name of the object (in this case, DefaultWSRR)

-n specifies the names of the properties to be changed

(in this case, endpointAddress)

-v specifies the values of properties defined by the -n parameter

(in this case,

https://localhost:9443/WSRRCoreSDO/services/WSRRCoreSDOPort)

 4. Change the brokerKeystoreFile configuration parameters for the

BrokerRegistry by using the following command:

mqsichangeproperties WBRK_BROKER -o BrokerRegistry

-n brokerKeystoreFile -v C:\WSRR\SSL\DummyClientKeyFile.jks

670 Message Flows

|
|

|
|

|
|

|
|

where:

-o specifies the name of the object (in this case, BrokerRegistry)

-n specifies the names of the properties to be changed

(in this case, brokerKeystoreFile)

-v specifies the values of properties defined by the -n parameter

(in this case, C:\WSRR\SSL\DummyClientKeyFile.jks)

 5. Change the brokerTruststoreFile configuration parameters for the

BrokerRegistry by using the following command:

mqsichangeproperties WBRK_BROKER -o BrokerRegistry

-n brokerTruststoreFile -v C:\WSRR\SSL\DummyClientTrustFile.jks

where:

-o specifies the name of the object (in this case, BrokerRegistry)

-n specifies the names of the properties to be changed

(in this case, brokerTruststoreFile)

-v specifies the values of properties defined by the -n parameter

(in this case, C:\WSRR\SSL\DummyClientTrustFile.jks)

 6. Stop the broker by using the mqsistop command.

 7. Set the WebSphere Application Server user name and password by using the

following command:

mqsisetdbparms WBRK_BROKER -n DefaultWSRR::WSRR -u wasuser -p waspass

where:

-n specifies the name of the data source (in this case, DefaultWSRR::WSRR)

-u specifies the user ID to be associated with this data source

(in this case, wasuser)

-p specifies the password to be associated with this data source

(in this case, waspass)

 8. Set the brokerKeystore user name and password by using the following

command:

mqsisetdbparms WBRK_BROKER -n brokerKeystore::password -u dummy -p WebAS

where:

-n specifies the name of the data source

(in this case, brokerKeystore::password)

-u specifies the user ID to be associated with this data source

(in this case, dummy)

-p specifies the password to be associated with this data source

(in this case, WebAS)

 9. Set the brokerTrustStore user name and password by using the following

command:

mqsisetdbparms WBRK_BROKER -n brokerTruststore::password -u dummy

-p WebAS

where:

-n specifies the name of the data source

(in this case, brokerTruststore::password)

-u specifies the user ID to be associated with this data source

Working with Web services 671

|
|

|
|

|
|

(in this case, dummy)

-p specifies the password to be associated with this data source

(in this case, WebAS)

10. Restart the broker by using the mqsistop command to stop the broker,

followed by the mqsistart command to start it.

Caching artefacts from the WebSphere Service Registry and

Repository

An internal cache is used to store query strings, and their associated documents,

that are retrieved from the WebSphere Service Registry and Repository.

A query does not have to be submitted to the WebSphere Service Registry and

Repository for every message that passes through one of the WebSphere Service

Registry and Repository nodes because the documents or artefacts can be cached

and retrieved locally, therefore improving performance and message throughput.

The WebSphere Service Registry and Repository cache is configured individually

for each broker. You can configure the loading strategy for the WebSphere Service

Registry and Repository cache by using the pre-defined Service Registries

configurable service; see Configurable services properties. Use the

mqsichangeproperties command to update these values.

Configuring the cache is optional and does not have to be enabled for the

WebSphere Service Registry and Repository nodes (the EndpointLookup and

RegistryLookup nodes) to function.

Caching data

You can cache the data that you retrieve from the WebSphere Service Registry and

Repository in the following ways:

v No Cache. Every time a message goes through a WebSphere Service Registry

and Repository node the broker goes to the WebSphere Service Registry and

Repository to retrieve the documents that are stored within the WebSphere

Service Registry and Repository. The WebSphere Service Registry and Repository

nodes can retrieve and store the documents within the LocalEnvironment for the

message tree.

v Cache Timeout. This option is enabled as the default. Configure this option

using the needCache and timeout parameters. If needCache is set to true, the

broker retrieves the documents from the WebSphere Service Registry and

Repository the first time the message flows through a WebSphere Service

Registry and Repository node and stores the documents in an internal cache.

The next time the message goes through the flow, the documents are retrieved

from the cache, not the WebSphere Service Registry and Repository. This option

improves performance.

If the Cache Timeout interval is exceeded, the broker marks its internal cache

data as not valid and refreshes the documents from the WebSphere Service

Registry and Repository the next time a message passes through the WebSphere

Service Registry and Repository node. If the Cache Timeout interval is exceeded

for a given artefact it forces the WebSphere Service Registry and Repository

node to submit the query directly to the WebSphere Service Registry and

Repository, allowing the current artefact to be retrieved, inserted into the cache,

and then propagated within the message tree of the LocalEnvironment.

v Cache Notification. Instead of using the timeout value to invalidate artefacts

after a given period of time, the broker can be configured to use Cache

672 Message Flows

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

Notification. Cache Notification allows the cache to subscribe to events occurring

within the WebSphere Service Registry and Repository, for example, when a

document or artefact is updated or deleted. When these events are received by

the cache, the cache can immediately invalidate, update, or both invalidate and

update, the documents and artefacts within the cache, therefore allowing the

cache to always contain an up-to-date copy of the artefact or document.

Configure this option using the enableCacheNotification parameter if you want

to be notified every time the WebSphere Service Registry and Repository is

updated. Set enableCacheNotification to true to tell the broker to subscribe to

the publish/subscribe topic.

Cache loading strategy

The cache loading strategy determines how and when content from the WebSphere

Service Registry and Repository is retrieved and subsequently stored in the cache.

The cache loading strategy is set by using the predefinedCacheQueries broker

property.

Three options for loading can be specified:

v No Load. The cache is not used. All queries are sent to the WebSphere Service

Registry and Repository for processing and none of the results obtained are

cached. This behavior is the default behavior when needCache is set to false.

v Lazy Load. The cache stores documents from the WebSphere Service Registry

and Repository when it is queried for the first time by a client. Thereafter the

documents are stored in the cache and returned from the cache when

subsequent queries for the same documents occur. The documents are retained

in the cache until the documents are no longer valid. This behavior is the default

behavior when needCache is set to true.

v Preload. The cache stores documents from the WebSphere Service Registry and

Repository before it is queried by a client. The predefinedCacheQueries broker

property controls the documents that are preinstalled by specifying the

classification, or the set of classifications, to which the documents belong. The

documents are retained in the cache until the documents are no longer valid.

To configure the cache loading options, see “Configuring the cache loading

options.”

Configuring the cache loading options:

Set the cache loading options for the cache loading strategy for the WebSphere

Service Registry and Repository.

 The cache loading strategy is set by using the predefinedCacheQueries broker

property. The cache loading options are:

v No Load

v Lazy Load

v Preload

To configure the cache loading option that you require complete the steps for the

option that you require:

v To specify No Load:

1. Ensure that the broker is running. If it is not, use the mqsistart command to

start it.

2. Set the needCache configuration parameters for the DefaultWSRR of the

Service Registries configurable service by using the following command:

Working with Web services 673

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|

|
|

|
|

|

|

|

|
|

|

|
|

|
|

mqsichangeproperties WBRK_BROKER -c ServiceRegistries

-o DefaultWSRR -n needCache -v false

where:

-c specifies the configurable service (in this case, ServiceRegistries)

-o specifies the name of the object (in this case, DefaultWSRR)

-n specifies the names of the properties to be changed

(in this case, needCache)

-v specifies the values of properties defined by the -n parameter

(in this case, false)

3. Restart the broker by using the mqsistop command to stop the broker,

followed by the mqsistart command to start it.
v To specify Lazy Load:

1. Ensure that the broker is running. If it is not, use the mqsistart command to

start it.

2. Ensure that needCache is set to true (the default) in the broker properties. To

display the configuration parameters, see “Displaying the configuration

parameters for the WebSphere Service Registry and Repository nodes” on

page 668.

If needCache is not set to true, set the needCache configuration parameters

for the DefaultWSRR of the Service Registries configurable service by using

the following command:

mqsichangeproperties WBRK_BROKER -c ServiceRegistries

-o DefaultWSRR -n needCache -v true

where:

-c specifies the configurable service (in this case, ServiceRegistries)

-o specifies the name of the object (in this case, DefaultWSRR)

-n specifies the names of the properties to be changed

(in this case, needCache)

-v specifies the values of properties defined by the -n parameter

(in this case, true)

3. Set the predefinedCacheQueries configuration parameters for the

DefaultWSRR of the Service Registries configurable service to be blank by

using the following command:

mqsichangeproperties WBRK_BROKER -c ServiceRegistries

-o DefaultWSRR -n predefinedCacheQueries -v ""

where:

-c specifies the configurable service (in this case, ServiceRegistries)

-o specifies the name of the object (in this case, DefaultWSRR)

-n specifies the names of the properties to be changed

(in this case, predefinedCacheQueries)

-v specifies the values of properties defined by the -n parameter

(in this case, "" [two quotation marks])

4. Restart the broker by using the mqsistop command to stop the broker,

followed by the mqsistart command to start it.
v To specify Preload:

1. Ensure that the broker is running. If it is not, use the mqsistart command to

start it.

674 Message Flows

|
|

|

|
|
|
|
|
|

|
|

|

|
|

|
|
|
|

|
|
|

|
|

|

|
|
|
|
|
|

|
|
|

|
|

|

|
|
|
|
|
|

|
|

|

|
|

2. Ensure that needCache is set to true (the default) in the broker properties. To

display the configuration parameters, see “Displaying the configuration

parameters for the WebSphere Service Registry and Repository nodes” on

page 668.

If needCache is not set to true, set the needCache configuration parameters

for the DefaultWSRR of the Service Registries configurable service by using

the following command:

mqsichangeproperties WBRK_BROKER -c ServiceRegistries

-o DefaultWSRR -n needCache -v true

where:

-c specifies the configurable service (in this case, ServiceRegistries)

-o specifies the name of the object (in this case, DefaultWSRR)

-n specifies the names of the properties to be changed

(in this case, needCache)

-v specifies the values of properties defined by the -n parameter

(in this case, true)

3. To specify the WebSphere Service Registry and Repository entities that are

preinstalled, choose the predefinedCacheQueries value that is needed to load

the required entities.

mqsichangeproperties WBRK_BROKER -c ServiceRegistries -o DefaultWSRR

-n predefinedCacheQueries -v <WSRR details>

where:

-c specifies the configurable service (in this case, ServiceRegistries)

-o specifies the name of the object (in this case, DefaultWSRR)

-n specifies the names of the properties to be changed

(in this case, predefinedCacheQueries)

-v specifies the values of properties defined by the -n parameter

(in this case, <WSRR details>)

For example:

mqsichangeproperties WBRK_BROKER -c ServiceRegistries -o DefaultWSRR

-n predefinedCacheQueries

-v "/WSRR/WSDLService/ports[binding/portType [@name=’DemoCustomer’

and @namespace=’http://demo.sr.eis.ibm.com’]]"

4. Restart the broker by using the mqsistop command to stop the broker,

followed by the mqsistart command to start it.

Setting up Cache Notification

WebSphere Service Registry and Repository publishes notification events by using

WebSphere Application Server.

Cache Notification allows the cache to subscribe to events occurring within

WebSphere Service Registry and Repository, for example, when a document or

artefact is updated or deleted. When these events are received by the cache, the

cache can immediately invalidate, update, or both invalidate and update, the

documents and artefacts within the cache, therefore allowing the cache to always

contain an up-to-date copy of the artefact or document.

Configure this option using the enableCacheNotification parameter if you want to

be notified every time the WebSphere Service Registry and Repository is updated.

Set enableCacheNotification to true to tell the broker to subscribe to the

publish/subscribe topic.

Working with Web services 675

|
|
|
|

|
|
|

|
|

|

|
|
|
|
|
|

|
|
|

|
|

|

|
|
|
|
|
|

|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

To enable Cache Notification complete the following steps to change the relevant

broker properties, and to add a user ID and password if you are connecting to a

secure WebSphere Application Server:

1. Ensure that the broker is running. If it is not, use the mqsistart command to

start it.

2. Issue the mqsichangeproperties command to change the

enableCacheNotification property to true. For example:

mqsichangeproperties WBRK_BROKER -c ServiceRegistries -o DefaultWSRR

-n enableCacheNotification -v true

where:

-c specifies the configurable service (in this case, ServiceRegistries)

-o specifies the name of the object (in this case, DefaultWSRR)

-n specifies the names of the properties to be changed

(in this case, enableCacheNotification)

-v specifies the values of properties defined by the -n parameter

(in this case, true)

3. Issue the mqsichangeproperties command to change the locationJNDIBinding

property to the value that you require. For example:

mqsichangeproperties WBRK_BROKER -c ServiceRegistries -o DefaultWSRR

-n locationJNDIBinding -v iiop://localhost.hursley.ibm.com:2809/

where:

-c specifies the configurable service (in this case, ServiceRegistries)

-o specifies the name of the object (in this case, DefaultWSRR)

-n specifies the names of the properties to be changed

(in this case, locationJNDIBinding)

-v specifies the values of properties defined by the -n parameter

(in this case, iiop://localhost.hursley.ibm.com:2809/)

4. (Optional) If you are connecting to a secure WebSphere Application Server you

must use a user ID and password. To set the user ID and password follow

these steps:

a. Stop the broker by using the mqsistop command.

b. Issue the mqsisetdbparms command to set up your user ID and password.

For example:

mqsisetdbparms WBRK_BROKER -n jms::DefaultWSRR@jms/SRConnectionFactory

-u <userid> -p <password>

where:

-n specifies the name of the data source

(in this case, jms::DefaultWSRR@jms/SRConnectionFactory)

-u specifies the user ID to be associated with this data source

(in this case, <userid>)

-p specifies the password to be associated with this data source

(in this case, <password>)

c. Restart the broker by using the mqsistop command to stop the broker,

followed by the mqsistart command to start it.

676 Message Flows

The LocalEnvironment

The LocalEnvironment is used for passing messages into the WebSphere Service

Registry and Repository nodes and it is also updated by the WebSphere Service

Registry and Repository nodes. The WebSphere Service Registry and Repository

nodes do not change the body of the message, but the LocalEnvironment is

updated to reflect the search results.

The LocalEnvironment is used within the WebSphere Service Registry and

Repository nodes for overriding the properties and search criteria that is defined

on the nodes themselves. You can, therefore, dynamically update or change the

search criteria that is used by the WebSphere Service Registry and Repository

nodes to query the WebSphere Service Registry and Repository.

The LocalEnvironment is also updated when the message tree is propagated from

of one of the output terminals of the WebSphere Service Registry and Repository

nodes where the required artefacts or endpoint references (depending upon the

node being used) are placed within the LocalEnvironment of the message tree.

The following topics tell you more about using the LocalEnvironment with the

WebSphere Service Registry and Repository:

v “Dynamically defining the search criteria”

v “EndpointLookup node” on page 881

v “EndpointLookup node output” on page 678

v “RegistryLookup node” on page 1048

v “RegistryLookup node output” on page 680

Dynamically defining the search criteria

You can use the RegistryLookup and EndpointLookup nodes to accept queries

specified within the LocalEnvironment. The LocalEnvironment overrides the search

criteria properties set on the preceding WebSphere Service Registry and Repository

node.

Use the EndpointLookup node to define a query dynamically within the message.

Both the EndpointLookup and the RegistryLookup nodes can accept a query

specified within the LocalEnvironment. All of the values within the

LocalEnvironment are treated as strings.

Unlike the User Properties defined on the EndpointLookup and RegistryLookup

nodes, XPath and ESQL expressions are not supported when overriding the

properties from the LocalEnvironment.

If you use the LocalEnvironment to override the properties set in the preceding

node, you can define the properties at runtime, or while a message is being

processed, rather than defining them at development time. If you set the properties

using the LocalEnvironment the properties and search criteria defined on the node

are overridden. You must set at least one of the properties on the preceding node

for either the Name, Namespace, or Version property, otherwise the flow cannot be

deployed.

You can define the following properties in the LocalEnvironment:

LocalEnvironment.ServiceRegistryLookupProperties.Name

LocalEnvironment.ServiceRegistryLookupProperties.Namespace

LocalEnvironment.ServiceRegistryLookupProperties.Version

Working with Web services 677

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

LocalEnvironment.ServiceRegistryLookupProperties.Template

LocalEnvironment.ServiceRegistryLookupProperties.MatchPolicy

LocalEnvironment.ServiceRegistryLookupProperties.UserProperties.

 <Property Name>

LocalEnvironment.ServiceRegistryLookupProperties.Classification.

 <Classification name>

The following code is an alternative representation of the properties of the

LocalEnvironment:

LocalEnvironment

 ServiceRegistryLookupProperties = (

 Name = ’xyz’

 Namespace = ’xyz’

 Version = ’xyz’

 Template = ’xyz’ [Only valid for the RegistryLookup node,

 this property will be ignored by the

 EndpointLookup node]

 MatchPolicy = "One" or "All"

 UserProperties = (

 <Property Name>= ’xyz’ [repeat as many time as required]

 Classification = ’xyz’ [repeat as many time as required]

))

The following code is an example of how to use the User Properties and

Classification properties:

LocalEnvironment

 ServiceRegistryLookupProperties = (

 Name = ’DemoCustomer’

 Namespace = ’http://mb.sr.eis.ibm.com’

 Version = ’1.0’

 UserProperties = (

 WSRRencoding= ’DEFAULT’

 Classification =

 ’http://localhost:9081/DemoCustomerWeb/services/DemoCustomer2’

))

Repeating values of the User Properties property are appended to the current User

Properties value defined in the RegistryLookup or EndpointLookup node unless

the value is NULL, in which case the User Properties value is removed. For the

Classification property, repeating values are always appended; you cannot remove

a value that is set in the WebSphere Service Registry and Repository node

properties.

The LocalEnvironment tree structure is independent of the node you are using.

However, LocalEnvironment.ServiceRegistryLookupProperties.Template is

supported on the RegistryLookup node only.

EndpointLookup node output

Use an EndpointLookup node to set the endpoint address when the destination is

either a SOAPRequest, SOAPAsyncRequest, or HTTPRequest node. When you use

the EndpointLookup node, the endpoint reference and the associated metadata

matching the required search criteria is stored within the LocalEnvironment.

The actual message is not changed by the EndpointLookup node, although the

LocalEnvironment is updated to reflect the search results.

EndpointLookup node output if the Match Policy property is set to One

If the Match Policy property of the node is set to One then the node also inserts

the endpoint reference into

678 Message Flows

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

LocalEnvironment.Destination.SOAP.Request.Transport.HTTP.WebServiceURL and

LocalEnvironment.Destination.HTTP.RequestURL. These settings override the Web

service URL property of the SOAPRequest, SOAPAsyncRequest, and HTTPRequest

nodes allowing a dynamic call to a Web service provider. The LocalEnvironment

tree is populated with output that is compatible with the SOAPRequest,

SOAPAsyncRequest, or HTTPRequest nodes at the same time. Therefore, no

configuration is required on the EndpointLookup node to propagate to a

SOAPRequest, SOAPAsyncRequest, or HTTPRequest node.

The LocalEnvironment.Destination.SOAP and LocalEnvironment.Destination.HTTP

properties are used to override the properties of the SOAPRequest,

SOAPAsyncRequest, and HTTPRequest nodes, which allows the EndpointLookup

node, when Match Policy is set to One, to be followed immediately by a

SOAPRequest, SOAPAsyncRequest, or HTTPRequest node. The properties of this

request node are set at runtime. See “Populating Destination in the

LocalEnvironment tree” on page 311.

The following example shows typical output from the EndpointLookup node when

the Match Policy is set to One.

<LocalEnvironment>

 <Destination>

 <SOAP>

 <Request>

 <Transport>

 <HTTP>

 <WebServiceURL>http://localhost:9081/DemoCustomerWeb/

 services/DemoCustomer</WebServiceURL>

 </HTTP>

 </Transport>

 </Request>

 </SOAP>

 <HTTP>

 <RequestURL>http://localhost:9081/DemoCustomerWeb/

 services/DemoCustomer

 </RequestURL>

 </HTTP>

 </Destination>

 <ServiceRegistry>

 <ITService>

 <Endpoint>

 <Address>http://localhost:9081/DemoCustomerWeb/

 services/DemoCustomer</Address>

 <PortType>

 <name>DemoCustomer</name>

 <namespace>http://demo.sr.eis.ibm.com</namespace>

 <version>1.0</version>

 </PortType>

 <Property>

 <name>policy</name>

 <value>RM</value>

 </Property>

 <Property>

 <name>country</name>

 <value>China</value>

 </Property>

 <Classification>http://eis.ibm.com/ServiceRegistry/

 GenericObjecttypes#Routing</Classification>

 </Endpoint>

 </ITService>

 </ServiceRegistry></LocalEnvironment>

EndpointLookup node output if the Match Policy property is set to All

Working with Web services 679

|
|

The following example shows typical output from the EndpointLookup node when

the Match Policy is set to All. (Other entries might exist in the LocalEnvironment

depending on previous processing within the flow.)

<LocalEnvironment>

 <ServiceRegistry>

 <ITService>

 <Endpoint>

 <Address>http://localhost:9081/DemoCustomerWeb/

 services/DemoCustomer</Address>

 <PortType>

 <name>DemoCustomer</name>

 <namespace>http://demo.sr.eis.ibm.com</namespace>

 <version>1.0</version>

 </PortType>

 <Property>

 <name>policy</name>

 <value>RM</value>

 </Property>

 <Property>

 <name>country</name>

 <value>China</value>

 </Property>

 <Classification>http://eis.ibm.com/ServiceRegistry/

 GenericObjecttypes#Routing</Classification>

 </Endpoint>

 </ITService>

 <ITService>

 <Endpoint>

 <Address>http://localhost:9081/DemoCustomerWeb/

 services/DemoCustomer2</Address>

 <PortType>

 <name>DemoCustomer2</name></PortType></Endpoint></ITService>

 </ServiceRegistry></LocalEnvironment>

RegistryLookup node output

Use the RegistryLookup node to retrieve any type of entity stored within the

WebSphere Service Registry and Repository. When you use this node, the entire

entity matching the required search criteria is stored within the LocalEnvironment.

The actual message is not changed by the RegistryLookup node, although, the

LocalEnvironment is updated to reflect the search results.

When the Match Policy property value is set to One you get one arbitrary result,

which might not be the most up-to-date result. You must, therefore, set the Match

Policy property value to All.

The following example shows typical output from the RegistryLookup node when

the Match Policy property value is set to All.

<LocalEnvironment>

 <ServiceRegistry>

 <Entity>

 <type><sdo:PolicyDocument>

 <bsrURI>db281cdb-e3d3-431b.bc68.1880de18688d</bsrURI>

 <name>RMAssertionPolicy</name>

 <namespace>http://mb.sr.eis.ibm.com</namespace>

 <version>1.0.0</version>

 <owner>UNAUTHENTICATED</owner>

 <lastModified>1186669896155</lastModified>

 <creationTimestamp>1182369015417</creationTimestamp>

 <lastModifiedBy>UNAUTHENTICATED</lastModifiedBy>

 <content><wsp:Policy wsr:Id="RMAssertion"

 TargetNamespace="http://mb.sr.eis.ibm.com"></content>

 <location>RMAssertion.xml</location>

680 Message Flows

<classificationURIs>http://www.ibm.com/xmlsn/prod/serviceregistry/6/0/

 governance/DefaultLifecycle#InitialState1</classificationURIs>

 <userDefinedProperties>

 <name>grade</name>

 <value>Gold<value>

 </value></value></userDefinedProperties>

 <userDefinedProperties>

 <name>WSRRencoding</name>

 <value>DEFAULT<value>

 </value></value></userDefinedProperties>

 </sdo:PolicyDocument></type></Entity>

 <Entity>

 <type><sdo:PolicyDocument2>

 <bsrURI>db281cdb-e3d3-431b.bc68.1880de18688e</bsrURI>

 <name>RMAssertionPolicy2</name></sdo:PolicyDocument2></type></Entity></

 ServiceRegistry></LocalEnvironment>

External standards

WebSphere Message Broker support for Web services conforms to a number of

industry standards and specifications.

This section contains the topics that describe the WebSphere Message Broker

support for web services.

v “SOAP 1.1 and 1.2”

v “SOAP with Attachments” on page 682

v “SOAP MTOM” on page 682

v “WSDL Version 1.1” on page 683

v “WS-I Simple SOAP Binding Profile Version 1.0” on page 683

v “WS-I Basic Profile Version 1.1” on page 683

v “WSDL 1.1 Binding Extension for SOAP 1.2” on page 684

v “XML-Binary Optimised Packaging (XOP)” on page 684

v “SOAP Binding for MTOM 1.0” on page 685

v “Web Services Security: SOAP Message Security” on page 685

v “XML Encryption Syntax and Processing” on page 685

v “XML-Signature Syntax and Processing” on page 686

v “WebSphere Message Broker compliance with Web services standards” on page

686

SOAP 1.1 and 1.2

SOAP is a lightweight, XML-based, protocol for exchange of information in a

decentralized, distributed environment.

The protocol consists of three parts:

v An envelope that defines a framework for describing what is in a message and

how to process it.

v A set of encoding rules for expressing instances of application-defined data

types.

v A convention for representing remote procedure calls and responses.

SOAP can be used with other protocols, such as HTTP.

The specifications for SOAP are published by the World Wide Web Consortium

(W3C).

Working with Web services 681

|

v World Wide Web Consortium (W3C)

The specification for SOAP 1.1 is described in:

v Simple Object Access Protocol 1.1

This specification has not been endorsed by the W3C, but forms the basis for the

SOAP 1.2 specification. The specification for SOAP 1.1 expands the SOAP acronym

to Simple Object Access Protocol.

SOAP 1.2 is a W3C recommendation and is published in two parts:

v Part 1: Messaging Framework.

v Part 2: Adjuncts.

The specification also includes a primer that is intended to provide a tutorial on

the features of the SOAP Version 1.2 specification, including usage scenarios. The

specification for SOAP 1.2 does not expand the acronym. The primer is published

at:

v SOAP 1.2 Primer

SOAP with Attachments

SOAP with Attachments (SwA) allows you to use SOAP 1.1 or SOAP 1.2 messages

wrapped by MIME.

The SOAP with Attachments (SwA) specification is published as a formal

submission by the World Wide Web Consortium (W3C):

v World Wide Web Consortium (W3C)

SwA uses the following specifications, described at:

v http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211

v http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html

SOAP MTOM

SOAP Message Transmission Optimization Mechanism (MTOM) is one of a related

pair of specifications that define conceptually how to optimize the transmission

and format of a SOAP message.

MTOM defines:

v How to optimize the transmission of base64binary data in SOAP messages in

abstract terms

v How to implement optimized MIME multipart serialization of SOAP messages

in a binding independent way using XOP

The implementation of MTOM relies on the related XML-binary Optimized

Packaging (XOP) specification. Because these two specifications are so closely

linked, they are normally referred to as MTOM/XOP.

The specification is published by the World Wide Web Consortium (W3C) as a

W3C Recommendation at SOAP Message Transmission Optimization Mechanism.

For further information refer to the following links:

v World Wide web Consortium (W3C)

v SOAP Message Transmission Optimization Mechanism

682 Message Flows

|

|
|

|
|

|

|

|

|

http://www.w3.org/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0.html
http://www.w3.org/
http://www.w3.org/TR/soap12-mtom/

WSDL Version 1.1

Web Services Description Language (WSDL) is an XML format for describing

network services as a set of endpoints operating on messages containing either

document-oriented or procedure-oriented information.

The operations and messages are described abstractly, and then bound to a

concrete network protocol and message format to define an endpoint. Related

concrete end points are combined into abstract endpoints (services).

WSDL is extensible to allow the description of endpoints and their messages

regardless of what message formats or network protocols are used to communicate.

The WSDL 1.1 specification only defines bindings that describe how to use WSDL

in conjunction with:

v SOAP 1.1

v HTTP GET

v HTTP POST

v MIME

The specification for WSDL 1.1 is published by the World Wide Web Consortium

(W3C) as a W3C Note at WSDL Version 1.1.

v World Wide Web Consortium (W3C)

v WSDL Version 1.1

WS-I Simple SOAP Binding Profile Version 1.0

WS-I Simple SOAP Binding Profile Version 1.0 (SSBP 1.0) is a set of

non-proprietary Web services specifications, along with clarifications and

amendments to those specifications which promote interoperability.

The SSBP 1.0 is derived from the WS-I Basic Profile 1.0 requirements that relate to

the serialization of the envelope and its representation in the message.

WS-I Basic Profile 1.0 is split into two separately published profiles. These profiles

are:

v WS-I Basic Profile Version 1.1

v WS-I Simple SOAP Binding Profile Version 1.0

Together these two profiles supersede the WS-I Basic Profile Version 1.0.

The specification for SSBP 1.0 is published by the Web Services Interoperability

Organization (WS-I):

v Web Services Interoperability Organization (WS-I)

The specification for SSBP 1.0 can be found at:

v WS-I Simple SOAP Binding Profile Version 1.0

WS-I Basic Profile Version 1.1

WS-I Basic Profile Version 1.1 (WS-I BP 1.1) is a set of non-proprietary Web

services specifications, along with clarifications and amendments to those

specifications, which together promote interoperability between different

implementations of Web services.

Working with Web services 683

http://www.w3.org/
http://www.w3.org/TR/wsdl
http://www.ws-i.org/
http://www.ws-i.org/Profiles/SimpleSoapBindingProfile-1.0.html

The WS-I BP 1.1 is derived from Basic Profile Version 1.0 by incorporating its

published errata and separating out the requirements that relate to the serialization

of envelopes and their representation in messages. These requirements are now

part of the Simple SOAP Binding Profile Version 1.0.

To summarize, the WS-I Basic Profile Version 1.0 is split into two separately

published profiles. These profiles are:

v WS-I Basic Profile Version 1.1

v WS-I Simple SOAP Binding Profile Version 1.0

Together these two profiles supersede the WS-I Basic Profile Version 1.0.

The reason for this separation is to enable the Basic Profile 1.1 to be composed

with any profile that specifies envelope serialization, including the Simple SOAP

Binding Profile 1.0.

The specification for WS-I BP 1.1 is published by the Web Services Interoperability

Organization (WS-I):

v Web Services Interoperability Organization (WS-I)

The specification for WS-I BP 1.1 can be found at:

v WS-I Basic Profile Version 1.1

WSDL 1.1 Binding Extension for SOAP 1.2

WSDL 1.1 Binding Extension for SOAP 1.2 is a specification that defines the

binding extensions that are required to indicate that Web service messages are

bound to the SOAP 1.2 protocol.

The aim of this specification is to provide functionality that is comparable with the

binding for SOAP 1.1.

This specification is published as a formal submission request by the World Wide

Web Consortium (W3C):

v World Wide Web Consortium (W3C)

The WSDL 1.1 Binding Extension for SOAP 1.2 specification is described at:

v http://www.w3.org/Submission/wsdl11soap12/

XML-Binary Optimised Packaging (XOP)

XML-binary Optimized Packaging (XOP) is one of a related pair of specifications

that define how to efficiently serialize XML Infosets that have certain types of

content.

XOP defines how to efficiently serialize XML Infosets that have certain types of

content by:

v Packaging the XML in some format. This is called the XOP package. The

specification mentions MIME Multipart/Related but does not limit it to this

format.

v Re-encoding all or part of base64binary content to reduce its size.

v Placing the base64binary content elsewhere in the package and replacing the

encoded content with XML that references it.

684 Message Flows

http://www.ws-i.org/
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.w3.org/
http://www.w3.org/Submission/wsdl11soap12/

XOP is used as an implementation of the MTOM specification, which defines the

optimization of SOAP messages. Because these two specifications are so closely

linked, they are normally referred to as MTOM/XOP.

The specification is published by the World Wide Web Consortium (W3C) as a

W3C Recommendation XML-binary Optimized Packaging (XOP):

v World Wide Web Consortium (W3C)

v XML-binary Optimized Packaging (XOP)

SOAP Binding for MTOM 1.0

SOAP 1.1 Binding for MTOM 1.0 is a specification that describes how to use the

SOAP Message Transmission Optimization Mechanism (MTOM) and XML-binary

Optimized Packaging (XOP) specifications with SOAP 1.1.

This specification defines the minimum changes required to enable MTOM and

XOP to be used interoperably with SOAP 1.1 and to reuse the SOAP 1.2

MTOM/XOP implementation.

The SOAP 1.1 Binding for MTOM 1.0 specification is published as a formal

submission by the World Wide Web Consortium (W3C):

v World Wide Web Consortium (W3C)

The SOAP 1.1 Binding for MTOM 1.0 specification is described at:

v http://www.w3.org/Submission/soap11mtom10/

Web Services Security: SOAP Message Security

Web Services Security (WSS): SOAP Message Security is a set of enhancements to

SOAP messaging that provides message integrity and confidentiality. WSS: SOAP

Message Security is extensible, and can accommodate a variety of security models

and encryption technologies.

WSS: SOAP Message Security provides three main mechanisms that can be used

independently or together:

v The ability to send security tokens as part of a message, and for associating the

security tokens with message content

v The ability to protect the contents of a message from unauthorized and

undetected modification (message integrity)

v The ability to protect the contents of a message from unauthorized disclosure

(message confidentiality).

WSS: SOAP Message Security can be used in conjunction with other Web service

extensions and application-specific protocols to satisfy a variety of security

requirements.

The specification is published by the Organization for the Advancement of

Structures Standards (OASIS). The specification is called Web Services Security:

SOAP Message Security 1.0 (WS-Security 2004).

v Organization for the Advancement of Structured Information Standards (OASIS)

v Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)

XML Encryption Syntax and Processing

XML Encryption Syntax and Processing specifies a process for encrypting data and

representing the result in XML. The data can be arbitrary data (including an XML

Working with Web services 685

http://www.w3.org/
http://www.w3.org/TR/xop10/
http://www.w3.org/
http://www.w3.org/Submission/soap11mtom10/
http://www.oasis-open.org/home/index.php
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

document), an XML element, or XML element content. The result of encrypting

data is an XML Encryption element that contains or references the cipher data.

XML Encryption Syntax and Processing is a recommendation of the World Wide

Web Consortium (W3C):

v World Wide Web Consortium (W3C)

The XML Encryption Syntax and Processing recommendation is published at:

v XML Encryption Syntax and Processing

XML-Signature Syntax and Processing

XML-Signature Syntax and Processing specifies the processing rules and syntax for

XML digital signatures.

XML digital signatures provide integrity, message authentication, and signer

authentication services for data of any type, whether located within the XML that

includes the signature or elsewhere.

The recommendation for XML-Signature Syntax and Processing is published by the

World Wide Web Consortium (W3C):

v World Wide Web Consortium (W3C)

The XML-Signature Syntax and Processing recommendation is published at:

v XML-Signature Syntax and Processing

WebSphere Message Broker compliance with Web services

standards

WebSphere Message Broker complies with the supported Web services standards

and specifications, in that you can generate and deploy Web services that are

compliant.

However, WebSphere Message Broker does not enforce this compliancy. For

example, in the case of support for the WS-I Basic Profile 1.1 specification, you can

apply additional qualities of service to your Web service that might break the

interoperability outlined in this Profile.

The topics in this section describe how WebSphere Message Broker complies with

Web services standards.

v “How WebSphere Message Broker complies with Web Service Security

specifications”

How WebSphere Message Broker complies with Web Service

Security specifications

WebSphere Message Broker conditionally complies with Web Services Security:

SOAP Message Security and related specifications by supporting the following

aspects.

Compliance with Web Services Security: SOAP Message Security

Security header

The <wsse:Security> header provides a mechanism, in the form of a SOAP

actor or role, for attaching security-related information that is targeted at a

specific recipient. The recipient can be the ultimate recipient of the message

or an intermediary. The following attributes are supported in WebSphere

Message Broker:

686 Message Flows

http://www.w3.org/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/
http://www.w3.org/TR/xmldsig-core/

v S11:actor (for an intermediary)

v S11:mustUnderstand

v S12:role (for an intermediary)

v S12:mustUnderstand

Security tokens

The following security tokens are supported in the security header:

v User name and password

v Binary security token (X.509 certificate)

Token references

A security token conveys a set of claims. Sometimes these claims reside

elsewhere and need to be accessed by the receiving application. The

<wsse:SecurityTokenReference> element provides an extensible mechanism

for referencing security tokens. The following mechanisms are supported:

v Direct reference

v Key identifier

v Key name

v Embedded reference

Signature algorithms

This specification builds on XML Signature and therefore has the same

algorithm requirements as those specified in the XML Signature

specification. WebSphere Message Broker supports the signature algorithms

as shown in the following table:

 Algorithm type Algorithm URI

Digest SHA1 http://www.w3.org/2000/09/
xmldsig#sha1

Signature DSA with SHA1 (validation only) http://www.w3.org/2000/09/
xmldsig#dsa-sha1

Signature RSA with SHA1 http://www.w3.org/2000/09/
xmldsig#rsa-sha1

Canonicalization Exclusive XML canonicalization

(without comments)

http://www.w3.org/2001/10/xml-
exc-c14n#

Signature signed parts

WebSphere Message Broker allows the following SOAP elements to be

signed:

v The SOAP message body

v The identity token (a type of security token) that is used as an asserted

identity

Encryption algorithms

The data encryption algorithms that are supported are shown in the

following table:

 Algorithm URI

Triple Data Encryption Standard algorithm

(Triple DES)

http://www.w3.org/2001/04/
xmlenc#tripledes-cbc

Advanced Encryption Standard (AES)

algorithm with a key length of 128 bits

http://www.w3.org/2001/04/xmlenc#aes128-
cbc

Working with Web services 687

Algorithm URI

Advanced Encryption Standard (AES)

algorithm with a key length of 192 bits

http://www.w3.org/2001/04/xmlenc#aes192-
cbc

Advanced Encryption Standard (AES)

algorithm with a key length of 256 bits

http://www.w3.org/2001/04/xmlenc#aes256-
cbc

The key encryption algorithm that is supported is shown in the following

table:

 Algorithm URI

Key transport (public key cryptography)

RSA Version 1.5

http://www.w3.org/2001/04/xmlenc#rsa-1_5

Encryption message parts

WebSphere Message Broker allow the following SOAP elements to be

encrypted:

v The SOAP body

Timestamp

The <wsu:Timestamp> element provides a mechanism for expressing the

creation and expiration times of the security semantics in a message.

WebSphere Message Broker tolerates the use of timestamps within the Web

services security header on inbound SOAP messages.

Error handling

WebSphere Message Broker generates SOAP fault messages using the

standard list of response codes listed in the specification.

Compliance with Web Services Security: UsernameToken Profile 1.0

The following aspects of this specification are supported:

Password types

Text

Token references

Direct reference

Compliance with Web Services Security: X.509 Certificate Token Profile

1.0

The following aspects of this specification are supported:

Token types

v X.509 Version 3: Single certificate.

v X.509 Version 3: X509PKIPathv1 without certificate revocation lists

(CRL).

v X.509 Version 3: PKCS7 with or without CRLs. The IBM software

development kit (SDK) supports both. The Sun Java Development Kit

(JDK) supports PKCS7 without CRL only.

For more information refer to:http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-x509-token-profile-1.0.pdf

Token references

v Key identifier - subject key identifier

688 Message Flows

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

v Direct reference

v Custom reference - issuer name and serial number

Aspects that are not supported

The following items are not supported in WebSphere Message Broker:

v Validation of Timestamps for freshness.

v Nonces.

v Web services security for SOAP attachments.

v Security Assertion Markup Language (SAML) token profile,

WS-SecurityKerberos token profile, and XrML token profile.

v Web Services Interoperability (WS-I) Basic Security Profile.

v XML enveloping digital signature.

v XML enveloping digital encryption.

v The following transport algorithms for digital signatures:

– XSLT: http://www.w3.org/TR/1999/REC-xslt-19991116.

– SOAP Message Normalization. For more information, refer to

http://www.w3.org/TR/2003/NOTE-soap12-n11n-20031008.
v The Diffie-Hellman key agreement algorithm for encryption. For more

information, refer to http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
Overview.html#sec-DHKeyValue.

v The following canonicalization algorithm for encryption, which is optional in the

XML encryption specification:

– Canonical XML with or without comments

– Exclusive XML canonicalization with or without comments
v The digest password type in the Username Token Version 1.0 Profile

specification.

Message flows for Web services

Message flows that need to work with Web services can use either the SOAP

domain or one of the XML domains.

The following topics describe both types of flow.

v “SOAP domain message flows”

v “XML domain message flows” on page 696

The following topic describes fundamental scenarios. Any use of WS-Addressing or

WS-Security requires use of the SOAP domain, but otherwise these scenarios apply

to both types of message flow.

v “Web services scenarios” on page 700

SOAP domain message flows

SOAP domain message flows use SOAP nodes, WSDL, and a common logical tree

format which is independent of the exact format of the Web service message.

The following nodes are provided for use in the SOAP domain:

v “SOAPInput node” on page 1104

v “SOAPReply node” on page 1114

v “SOAPRequest node” on page 1116

Working with Web services 689

|

|
|

|

|

|

|
|
|

|

|

|
|

|

|

|

|

http://www.w3.org/TR/2003/NOTE-soap12-n11n-20031008
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-DHKeyValue
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-DHKeyValue

v “SOAPAsyncRequest node” on page 1082

v “SOAPAsyncResponse node” on page 1092

The following nodes can also be used to simplify SOAP payload processing within

a message flow; these nodes are not specific to the SOAP domain.

v “SOAPEnvelope node” on page 1096

v “SOAPExtract node” on page 1099

The SOAP nodes are used together in the following basic patterns:

v As a Web service provider, for example:

v As a Web service consumer, for example:

Or:

v As a Web service facade, for example, by combining the provider and consumer

scenarios:

You can use the SOAPExtract and SOAPEnvelope nodes in conjunction with these

patterns to respectively extract the SOAP payload and rebuild a SOAP envelope.

The main SOAP domain nodes are configured by WSDL, and a prerequisite for a

SOAP domain message flow is a message set containing deployable WSDL. To

create a message set containing deployable WSDL, either import existing WSDL or

generate WSDL from an existing message set. For more information about creating

a new message definition from WSDL, see Importing from WSDL. For more

information about generating WSDL from an existing message set, see WSDL

generation.

Alternatively you can create a new message set and skeleton message flow in one

step using the procedure described in “Creating an application based on WSDL or

XSD files” on page 132.

690 Message Flows

|

|

|
|

|

|

|

|
|

|

|
|

|
|
|

|

|
|
|

|

|
|

|
|
|
|
|
|
|

|
|
|

The WSDL then appears in the workbench under Deployable WSDL below the

message set, although if you have selected Hide Categories on the message set, the

category heading itself is not shown.

Deployable WSDL can then be used to configure SOAP nodes. You can do this by

dragging the WSDL resource onto the node or by selecting the required WSDL

resource from the node properties.

Alternatively a new skeleton message flow can be created by dragging and

dropping the WSDL on to a blank message flow editor canvas.

The WSDL is deployed with your completed message flow, enabling the broker to

raise exceptions if a Web service message does not correspond to the specified

WSDL description.

The SOAP domain uses a common logical tree format which is independent of the

exact format of the Web service message. For details of the SOAP tree format, see

“SOAP tree overview” on page 80. Useful WSDL information is included in the

logical tree under SOAP.Context.

Example usage of WS-Addressing

This topic lists the steps you need to set up a sample message flow using

WS-Addressing with WebSphere Message Broker and how you test the flow.

The following set of topics takes you through the process of setting up:

1. A main message flow that includes various SOAP nodes, together with a:

v Filter node and

v Mapping node

See “Building the main message flow”

2. A logging message flow, so that you can send a reply to an address other than

the originating client; see “Building the logger message flow” on page 693.

3. How you deploy the message flows; see “Deploying the message flows” on

page 694.

4. How you test the message flows, using a tool that uses HTTP. This illustrates

that the contents of the SOAP message determine where the replies are routed;

see “Testing the message flows” on page 695.

Building the main message flow:

You can construct a sample main message flow to use with WS-Addressing.

 These steps are the first in a set of instructions on setting up your system to use

WS-Addressing with WebSphere Message Broker; they explain how to set up a

message flow to use this feature. This task topic describes the construction of a

sample main message flow when using WS-Addressing

 1. Switch to the Broker Application Development perspective.

 2. Create message flow and message set projects using the Start from WSDL

and/or XSD files wizard. See “Creating an application based on WSDL or

XSD files” on page 132 for instructions.

 3. Select the WSDL file that you need under Deployable WSDL from the Active

Working Set:

a. Drag the mouse pointer to the message flow editor.

Working with Web services 691

|
|
|

|
|
|

|
|

|
|
|

|
|
|
|

|
|
|

|

|

|

|

|

|
|

|
|

|
|
|

|

|

|
|
|
|

|

|
|
|

|
|

|

b. Release the left mouse button. The Configure New Web Service Usage

wizard starts.

c. See “Creating an application using the Configure New Web Service Usage

wizard” on page 135 for further information. Ensure that you select:

v Expose message flow as web service on page one of the wizard.

v SOAP nodes on page two of the wizard.

When you select Finish a skeleton message flow is generated, consisting of

a:

v SOAPInput node that is pre-configured for the web service

v SOAPExtract node to remove the SOAP envelope from the incoming

message

v SOAPReply node
 4. Select the Construction folder on the message flow palette to display the

contents.

 5. Select a Trace node and move the mouse to the right of the SOAPExtract

node.

a. Click the left mouse button to add the node to the message flow. The

name is selected automatically.

b. Press Enter to accept the default name.

c. Wire the submitPORequest terminal of the SOAPExtract node to the In

terminal of the Trace node.
 6. Select the Trace node to display the properties.

a. Use the menu to set Destination to File

b. Set the File path that you require.

c. Enter the Pattern ythat ou require.
 7. Expand the Routing folder on the palette and select Filter.

 8. Add the Filter node to the right of the Trace node

a. Type the name for the node that you require and press Enter.

b. Wire the Out terminal of the Trace node to the In terminal of the Filter

node.
 9. Select the Filter node to display the properties.

a. Enter the Data source name that you require.

b. Change the name of Filter expression to the name you selected for the

Filter node.

c. Clear the Throw exception on database error check box.
10. Double-click the Filter node to open the ESQL editor. Create or change the

ESQL for the node; for more information, see “Creating ESQL for a node” on

page 271 and“Modifying ESQL for a node” on page 273.

11. Expand the Transformation folder on the palette and select a Mapping node.

12. Add the Mapping node to the right of the Filter node

a. Type the name for the node that you require and press Enter.

b. Wire the True terminal of the Filter node to the In terminal of the Mapping

node.

c. Wire the Out terminal of the Mapping node to the In terminal of the Reply

node.
13. Select the Mapping node to display the properties.

a. Change the name of Mapping routine to the name that you selected for

the Mapping node.

692 Message Flows

|
|

|
|

|

|

|
|
|
|
|
|

|
|

|
|

|
|

|

|
|

|

|

|

|

|

|

|

|
|

|

|

|
|

|

|
|
|

|

|

|

|
|

|
|

|

|
|

14. Double-click the Mapping node to open the mapping editor.

a. Select submitPORequest as the map source.

b. Select SOAP_Domain_msg as the map target.

c. Click OK

d. Click OK on the tip that displays to open the mapping editor.

See “Creating a message map file from a Mapping node” on page 477 for

further information.

15. Select Properties in both the source and target pane, right-click, and click

Map by Name.

a. Map the source properties to the target properties using drag-and-drop

mapping. The Map by Name dialog box appears.

b. Select OK to perform the mapping.
16. Expand SOAP_Domain_Msg, then Body and message items in the target

pane.

17. Right-click Wildcard Message in the target pane, and click Create new

Submap.

a. Expand Wildcard.

b. Scroll down and click submitPOResponse.

c. Click OK to create the submap.
18. Use drag-and-drop mapping to select the items that you need in the Source

pane.

19. Select the first item that you need in the Target pane, right-click, and Enter

Expression.

a. Enter the value that you require in the expression editor and press Enter

to complete the mapping.

Repeat the above steps for all the items that you require in the Target pane,

and save the submap and map by pressing Ctrl+S.

20. Expand the Construction folder on the message flow editor and select a

Throw node.

21. Add the Throw node above the Mapping node

a. Type the name for the node that you require and press Enter.

b. Wire the False and Unknown terminals of the Filter node to the In

terminal of the Throw node.
22. Select the Throw node and in the Node Properties pane enter the text that you

require in Message text.

23. Select the SOAPInput node to display the Node Properties.

a. Select the WS Extensions tab.

b. Select Use WS-Addressing .
24. Save the message flow.

Building the logger message flow:

This is the second one of a set of instructions on setting up your system to use

WS-Addressing with WebSphere Message Broker and illustrates the use of a reply

being sent to an address other than the originating client.

 This topic describes the construction of a sample logger message flow when using

WS-Addressing This flow echoes back the input while creating a trace entry in a

file to indicate that the flow has been invoked.

Working with Web services 693

|

|

|

|

|

|
|

|
|

|
|

|

|
|

|
|

|

|

|

|
|

|
|

|
|

|
|

|
|

|

|

|
|

|
|

|

|

|

|

|

|
|
|

|
|
|

1. Switch to the Broker Application Development perspective.

 2. Select the message flow name that you used in “Building the main message

flow” on page 691

 3. Press the right mouse button and select New->MessageFlow from the pop up

menu.

a. Enter the name you require for this message flow, for example, Logger.

b. Press Finish to create the flow.
 4. Select the HTTP folder on the message flow palette to display the contents.

 5. Select an HTTPInput node and move the mouse to the left side of the canvas.

a. Click the left mouse button to add the node to the message flow and enter

the name Logger.

b. Press the Enter key to finish.
 6. Select the HTTPReply node from the palette and move the mouse to the right

of the HTTPInput node, leaving room for a node in between.

a. Click the left mouse button to add the node to the message flow and enter

the name you require, for example,Logger.

b. Press the Enter key to finish.
 7. Select the Construction folder on the message flow palette to display the

contents.

 8. Select a Trace node and move the mouse to the right of the HTTPINput node.

a. Click the left mouse button to add the node to the message flow and enter

the name you require, for example Trace.

b. Press the Enter key.

c. Wire the out terminal of the HTTPInput node to the In terminal of the

Trace node.

d. Wire the out terminal of the Trace node to the In terminal of the

HTTPReply node.
 9. Select the HTTPInput node to display the properties. In the Basic tab:

a. Enter the Data source name you require.

b. Change the name of the input node Logger as the Path suffix for URL.
10. Select the Input Message Parsing tab.

a. Select XMLNSC in the Message domain drop down.
11. Select the Trace node to display the properties.

a. Use the drop down menu to set Destination to File

b. Set the File path you require.

c. Enter the Pattern you require.
12. Save the message flow.

Deploying the message flows:

This is the third of a set of instructions on setting up your system to use

WS-Addressing with WebSphere Message Broker and illustrates the deployment of

the message flows.

 This task topic describes the deployment of the message flows you have already

constructed

1. Switch to the Broker Administration perspective.

2. Select the LocalProject project under Broker Archives in the navigator pane.

a. Press the right mouse button.

694 Message Flows

|

|
|

|
|

|

|

|

|

|
|

|

|
|

|
|

|

|
|

|

|
|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|
|

|

|

|

b. Select New->message Broker Archive.

c. Use the drop down menu to change the Project to LocalProject.

d. Enter the name you selected for the main message flow described in

“Building the main message flow” on page 691 in Name.

e. Press the Finish button to open the Broker Archive Editor.
3. In the Broker Archive Editor:

a. In the Filter working set list box select the working set with the name you

used for the main message flow.

b. In Message Flows select the message flow names you used for the main

message flow and logger message flow.

c. In Message Sets select the message set name you used for the main

message set.

d. Press the Build broker archive button and confirm that the build operation

was successful.

e. Save the updated broker archive.
4. To deploy the message flows to the default execution groups:

a. Select the name of the broker archive file with the name of the message

flow you used for the main message flow.

b. Press the right mouse button.

c. Select Deploy File from the menu.
5. Select the default execution group and press OK to start the deployment.

a. Ensure that you receive a successful response message and press OK to

dismiss the information dialog.
6. Use the event log to confirm that the deploy operation was successful:

a. Double click the Event Log entry on the Domains tab to open the Event log

editor.

b. Confirm that the deployment was successful.

Testing the message flows:

This is the fourth of a set of instructions on setting up your system to use

WS-Addressing with WebSphere Message Broker and illustrates the testing of the

message flows.

 This task topic describes the testing of the message flows you have already

constructed. In this scenario you use a tool that uses HTTP protocol rather than

WebSphere MQ. You can use any tool that has the facilities described in the

following procedure.

1. Start the tool and select http://localhost:nnnn/ where nnnn is the address of

the port you are using.

2. Set the URL to the host, port and selection for the deployed flow. The

SOAPInput nodes listen on a different port from the HTTP nodes and the

listener is built into the execution group itself rather than using a different

process.

3. As the SOAPInput node expects a SOAPAction entry in the HTTP headers you

must add one.

a. press the Add New Header button

b. Enter the Value part of the header. The value must match the SOAPAction

attribute of the SOAP:operation element in your code.

c. Select New Header in the Name pane.

Working with Web services 695

|

|

|
|

|

|

|
|

|
|

|
|

|
|

|

|

|
|

|

|

|

|
|

|

|
|

|

|

|
|
|

|
|
|
|

|
|

|
|
|
|

|
|

|

|
|

|

d. Change the name from New Header to SOAPAction and press the Enter key.
4. Select Load File and go to the directory containing the XML file you want to

use.

5. Select the file and press the Open button. Note the following:

v If the message does not include any WS-Addressing entries, the ReplyTo and

FaultTo locations default to anonymous. This means the results are returned

on the original client connection.

v If the message includes a WS-Addressing header (ReplyTo) with a value of

anonymous, the reply is returned to the original client using the original

TCP/IP connection.

v If the message includes a WS-Addressing header with a value of FaultTo

explicitly included the reply is returned to that address rather than taking

the default of using the same location specified in the ReplyTo header.
6. Press the Send button to test the flow. The result appears in the right hand

pane.

XML domain message flows

If you are not using the SOAP domain then your message flow needs to take

account of the actual bitstream format of the Web service messages you are

working with. A different logical tree format is used by each domain.

If the messages are SOAP then you can use either the XMLNSC domain or the

MRM XML domain. Both domains offer validation. The XMLNSC domain is more

efficient, whilst the MRM XML domain can be useful if you have specific message

transformation requirements, for example, if your message flow also uses binary

data formats.

If the messages use MIME (for example, SOAP with Attachments or MTOM) you

can use the MIME domain. In this case your message flow will probably also need

to identify at least the MIME part corresponding to the SOAP payload and then

explicitly parse this using the XMLNSC or MRM domain as above.

In the SOAP domain, WSDL is used to automatically configure your nodes with

the appropriate endpoint information. If you are not using the SOAP domain, then

you must select and configure the transport nodes manually. Typical WSDL

bindings would be:

v SOAP/HTTP, in which case implement a flow using HTTP nodes. Use the

HTTPInput and HTTPReply nodes if a flow implements a Web service, or use

the HTTPRequest node if a flow invokes a Web service.

v SOAP/JMS, where you implement a flow using JMS or MQ nodes.

You can configure message flows that receive input messages from clients using

one transport, and interact with a Web service or legacy application using another.

You can propagate a message to more than one location. For example, the Web

service response to be returned to a client by an HTTPReply node might first be

sent to an auditing application using an MQOutput node, after making any

required adjustments to the message headers.

Nodes are used together in the following basic patterns, using HTTP nodes as

example transports:

v As a Web service provider, for example

696 Message Flows

|

|
|

|

|
|
|

|
|
|

|
|
|

|
|

|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|

|
|

|
|
|
|

|
|

|

v As a Web service consumer, for example:

v As a Web service facade, for example:

If required, the SOAPExtract and SOAPEnvelope nodes can be used in conjunction

with these patterns to respectively extract the SOAP payload and rebuild a SOAP

Envelope.

If you want your message flow to validate messages, then an appropriate message

set must be deployed with the flow. An appropriate message set is created either

by importing existing WSDL or by generating WSDL from an existing message set.

For details about importing existing WSDL, see Importing from WSDL. For details

about generating WSDL from an existing message set, see WSDL generation.

You can also create a new message set and flow based on existing WSDL or XSD

files. For details, see “Creating an application based on WSDL or XSD files” on

page 132

The generated message set will contain message definitions for the relevant SOAP

Envelope version and for the XML payload data defined by the WSDL. In the

XMLNSC or MRM XML domains, messages can be validated against the message

set. For details, see “Validating messages” on page 164.

Working with HTTP flows

Read this information if you are using HTTP message flows to interact with Web

services. You might find it useful to read this in conjunction with the subsequent

“Web services scenarios” on page 700 section.

HTTPS

For help with using HTTPS see Implementing SSL authentication.

Setting the HTTP Status Code for a reply

The default HTTP Status Code is 200, which indicates success. If you want

a different status code to be returned, take one of the following actions:

v Set your status code in the field Destination.HTTP.ReplyStatusCode in

the LocalEnvironment tree (correlation name OutputLocalEnvironment).

This field overrides any status code that is set in an

Working with Web services 697

|

|

|
|

|

|
|

|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|

|
|
|

|
|

|
|
|

|
|
|

HTTPResponseHeader header. This action is the preferred option,

because it provides the greatest flexibility.

v Set your status code in the field X-Original-HTTP-Status-Code in the

HTTPReplyHeader header.

v Set your status code in the field X-Original-HTTP-Status-Code in the

HTTPResponseHeader header. This option is typically useful if you

include an HTTPRequest node before the HTTPReply node in your flow,

because the HTTPResponseHeader header is created for you. In this

scenario, an HTTPResponseHeader header has been created in the

logical tree, representing the HTTP headers in the response from another

Web service. If you have selected the Generate default HTTP headers

from reply or response property in the HTTPReply node, values for the

response header are set as default values when the reply message is

created.

Using LocalEnvironment.Destination.HTTP.RequestIdentifier

When the HTTPInput node receives an input request message, it sets the

LocalEnvironment field Destination.HTTP.RequestIdentifier to a unique

value that identifies the Web service client that sent the request. You can

refer to this value, and you can save it to another location if appropriate.

 For example, if you design a pair of message flows that interact with an

existing WebSphere MQ application (as described in “Broker calls existing

Web service” on page 701), you can save the identifier value in the request

flow, and restore it in the reply flow, to ensure that the correct client

receives the reply. If you use this technique, you must not change the data

and you must retain the data as a BLOB.

The HTTPReply node extracts the identifier value from the

LocalEnvironment tree and sets up the reply so that it is sent to the specific

client. However, if you are using an HTTPReply node in a flow that does

not have an HTTPInput node, and this field has been deleted or set

incorrectly, message BIP3143S is issued.

If you design a message flow that includes both an HTTPInput and an

HTTPReply node, the identifier value is set into the LocalEnvironment by

the HTTPInput node, but the HTTPReply node does not use it. Therefore,

if your message flow includes both nodes and a Compute node in the

same flow, you do not have to include the LocalEnvironment tree when

you specify which components of the message tree are copied from input

message to output message by the Compute node (the Compute mode

property).

Setting the HTTPRequest node URL dynamically

You can set the property Default Web service URL on the HTTPRequest

node to determine the destination URL for a Web service request. You can

configure a Compute node before the HTTPRequest node within the

message flow to override the value set in the property. Code ESQL that

stores a URL string in LocalEnvironment.Destination.HTTP.RequestURL;

the HTTPRequest node retrieves and uses the URL string in place of the

node property value.

 Although you can also set the request URL in the special header

X-Original-HTTP-URL in the HTTPRequestHeader header section of the

request message (which overrides all other settings) in a Compute node,

use the LocalEnvironment tree content for this purpose for greater

flexibility.

698 Message Flows

|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

Setting Generate default HTTP headers from reply or response for the

HTTPReply node

If you select Generate default HTTP headers from reply or response in the

HTTPReply node properties, the node includes a minimum set of headers

in the response that is sent to the Web service client.

 To set any headers explicitly, create them in an HTTPReplyHeader header.

For example, a Compute node propagates a message in the XMLNS

domain and modifies the Content-Type as follows:

CALL CopyMessageHeaders();

SET OutputRoot.HTTPReplyHeader."Content-Type" = ’text/xml’;

SET OutputRoot.XMLNS = InputRoot.XMLNS;

Do not use the ContentType property to set the Content-Type unless you

are working in the MIME domain. The ContentType property is specifically

intended to set the value of Content-Type used in MIME.

The full set of HTTP headers used in the request is built by selecting the

headers using the algorithm defined in the following steps:

1. Select any headers in an HTTPReplyHeader header.

2. If no Content-Type header is yet defined, create one using any

non-empty value in the ContentType property.

3. Select any headers in an HTTPResponseHeader header (an

HTTPResponseHeader header is propagated on return from an

HTTPRequest node).

4. If no Content-Type header is yet defined, create one with the default

value text/xml; charset=utf-8.

5. Create or overwrite the Content-Length header.

Attention: The HTTPReply node always rewrites the Content-Length

header, even if you have cleared Generate default HTTP

headers from reply or response. This action ensures that the

content is correct.

If an HTTPReplyHeader header section existed in the message received by

the HTTPReply node, and the Output terminal of the HTTPReply node is

connected, the HTTPReplyHeader header section is updated with any

changed or added values.

Setting Generate default HTTP headers from input for the HTTPRequest node

If you select Generate default HTTP headers from input in the

HTTPRequest node properties, the node includes a minimum set of

headers in the request that is sent to the server.

 To explicitly set headers , create them in an HTTPRequestHeader header.

For example, a Compute node propagating a message in the XMLNS

domain can modify the Content-Type as follows:

CALL CopyMessageHeaders();

SET OutputRoot.HTTPRequestHeader."Content-Type" = ’text/xml’;

SET OutputRoot.XMLNS = InputRoot.XMLNS;

Do not use the ContentType property to set the Content-Type unless you

are working in the MIME domain. The ContentType property is specifically

intended to set the value of Content-Type used in MIME.

The full set of HTTP headers used in the request is built by selecting the

headers using the algorithm defined in the following steps:

Working with Web services 699

|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|

|

|
|

|
|
|

|
|

|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|

1. Set the Host header, based on either the request URL or the incoming

HTTPRequestHeader header section of the message.

2. Select any headers in an HTTPRequestHeader header.

3. If no Content-Type header is yet defined, create one using any

non-empty value in the ContentType property.

4. Select any headers in an HTTPInputHeader header (an

HTTPInputHeader header is created automatically by an HTTPInput

node).

5. If no Content-Type header is yet defined, create one with the default

value text/xml; charset=utf-8

6. If no SOAPAction header is yet defined, create one with the default

value ’’.

7. Create or overwrite the Content-Length header.

Attention: The HTTPRequest node always rewrites the Content-Length

header, even if you have cleared Generate default HTTP

headers from input or request. This action ensures that the

content is correct.

If an HTTPRequestHeader header exists in the received message, the

HTTPRequestHeader header is updated with any changed or added

values.

Collecting HTTPListener trace if you have problems with HTTP

If you have problems with HTTP, you can trace the HTTPListener:

1. Use the mqsichangetrace command to start trace with the following

options:

mqsichangetrace component -t -b

where component is the broker name.

2. Retrieve the HTTPListener trace log using the mqsireadlog command

with the HTTPListener qualifier for the -b parameter.

3. Format the trace log using the mqsiformatlog command so that you

can view its contents.

Web services scenarios

This topic describes some common Web services scenarios. It is organized

according to the role played by the broker.

A key consideration is whether a WSDL description for the Web service already

exists.

In the first two scenarios below, the WSDL description exists and is imported and

used by the message flow.

In the remaining two scenarios, the WSDL description is generated in an existing

message set. Again, the WSDL is used by the message flow and may also be

exported for use by an external client.

These are generic scenarios and can be implemented using the SOAP domain, or

by using an appropriate non-SOAP domain (XMLNSC, MRM, MIME) and basic

transport nodes. If you need to use WS-Addressing or WS-Security for a particular

implementation, you must use the SOAP domain.

700 Message Flows

|
|

|

|
|

|
|
|

|
|

|
|

|

|
|
|
|

|
|
|

|
|

|
|

|

|

|
|

|
|

|

|
|

|
|

|
|

|
|
|

|
|
|
|

You want the broker to invoke an existing Web service:

See “Broker calls existing Web service”

You want the broker to expose an application as a previously defined Web

service:

See “Broker implements existing Web service interface” on page 709

You want the broker to expose an application as a new Web service:

See “Broker implements new Web service interface” on page 705

You want the broker to expose a Web service to a non-Web service client:

See “Broker implements non-Web-service interface to new Web service” on

page 713

Broker calls existing Web service

In this scenario, the broker invokes an existing Web service implementation. The

WSDL for the Web service already exists, and is imported to create a message set.

A message flow based on this message set sends a Web service request and

receives the response, for example using a SOAPRequest node.

WSDL
Web

Service

Message Set

deploy

import

Message Broker

Key to symbols:

Message setFileExecutable Message flow

run time interaction.
For example,

message exchange

design time action.
For example,

import or deploy

design time action
involving an external
toolkit. For example,

generating a
Web service client.

association

Possible uses

v You want to call a Web service to do some processing as part of your message

flow.

Working with Web services 701

|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

|

|

|

|

|
|

v You have an existing Web service and you want to provide a different interface

to it. This could be an alternative Web services interface or a WebSphere MQ

interface.

v You have an existing Web service and you want to change its implementation in

some way without changing its interface; that is, the broker acts as an

intermediary to the Web service. For instance a message flow could be used to

enable auditing, or to transparently propagate the Web service response to

another application.

Design steps

1. Import WSDL to create a message set containing definitions for the SOAP

messages described by the WSDL.

2. Create a message flow to invoke the Web service. If the SOAP domain is used,

the message flow uses a SOAPRequest node, SOAPAsyncRequest node or a

SOAPAsyncResponse node. The nodes are configured using the WSDL

imported in Step 1. If required, a skeleton flow can be created from scratch by

dropping the WSDL onto a blank message flow editor canvas. If the SOAP

domain is not used, the message flow must be constructed using transport

nodes, and an XML or MIME domain. For example, if the WSDL binding

specifies HTTP transport, and the request message is SOAP, then an

HTTPRequest node can be used with the XMLNSC domain. You can then

configure the node manually with the endpoint information for the Web

service.

3. Build a broker archive file for deployment. The broker archive file contains

your message flow and the message set containing the imported WSDL. The

SOAP domain always requires the WSDL to be deployed, because messages are

verified against it at runtime; also WSDL information is included in the logical

tree. The message set includes XML Schema definitions that can be used for

message validation in the SOAP, XMLNSC or MRM domains.

Runtime

Your message flow creates an appropriately formatted Web service request, invokes

the Web service, and parses the Web service response. If the SOAP domain is used,

your message flow uses the SOAP logical tree model. If the SOAP domain is not

used, your message flow uses the logical tree for your selected domain, for

example you use the MIME domain if your Web service messages use SOAP with

Attachments.

Example 1

Web service intermediary

In this example a client application uses a Web service called Account,

which is made available by another organization. The client is widely

distributed in your company. The client uses an operation called

getBalance, but the Account service is being modified to change the

definition of the getBalance operation. You can construct message flows to

provide an interface to the Account service, instead of modifying the client.

The message flows can call the Account service to do the work, and the

new Web service delegates to the original Web service. The client can now

continue to use the Account service, using the new message flows.

 Examples of typical message flow patterns are shown below. In each case,

the intermediate request node calls the Account service:

1. Using SOAPInput, SOAPRequest and SOAPReply nodes:

702 Message Flows

|
|
|

|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|

|

2. Using SOAPInput, SOAPAsyncRequest, SOAPAsyncResponse and

SOAPReply nodes:

3. Using HTTPInput, HTTPRequest, and HTTPReply nodes:

In the message flows in the example, Compute1 modifies the original

getBalance message as required by the modified Account service, whilst

Compute2 restores the response message to the original format. If you

have imported or generated WSDL then you have a message model for the

getBalance operation. If you have a message model defined for the

getBalance operation, you can use Mapping nodes instead of Compute

nodes.

HTTP details

If you use HTTP transport nodes, as shown in the example, you can

configure the HTTPRequest node to generate HTTP headers from the

headers that are received by the HTTPInput node. This enables cookies

and other application-specific headers to be passed through the message

flow. The HTTPReply node can be used task to extract headers from the

Web service response, to return to the originating client. To do this, select

Generate default HTTP headers from on both the HTTPRequest and

HTTPReply nodes. In general you do not need the original request

message to generate the reply to the client, and can select Replace input

message with Web service response on the HTTPRequest node. If you do

want to preserve any data from the input request, you can store this in the

LocalEnvironment in Compute1, and retrieve it in Compute2 for inclusion

in the reply.

Working with Web services 703

|

|

|
|
|

|

|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

Example 2

Using a Web service

In this example, a WebSphere MQ message flow implements a process for

the Human Resource department of your company. As part of this

processing, the message flow calls a Web service to retrieve employee ID

numbers. Employee ID numbers are maintained in the company’s

employee directory, which is accessed through a Web service. Examples of

typical message flow patterns are shown below. In each case the

intermediate request node retrieves the employee ID:

 1. Using MQInput, SOAPRequest and MQOutput nodes:

2. Using MQInput, SOAPAsyncRequest, SOAPAsyncResponse and

MQOutput nodes:

3. Using MQInput, HTTPRequest and MQOutput nodes:

In the message flows in the example, Compute1 prepares the Web service

request message and Compute2 processes the response. For example, by

incorporating the employee ID in another message. If you have a message

model defined, you can use Mapping nodes instead of Compute nodes in

these examples.

HTTP details

If you use HTTP transport nodes, as shown in the example, you typically

clear the Replace input message with Web service response in the

704 Message Flows

|

|
|
|
|
|
|
|
|

|
|

|

|
|
|

|

|
|

|

|
|
|
|
|

|

|
|

HTTPRequest node properties. The response from the corporate directory

server is placed in a temporary location in the message tree. The

temporary location is specified in the Response message location in tree

property in the same node. In Compute2, you can code ESQL to retrieve

the result, and update the final message.

Compute1MQInput MQOutputHTTPRequest

HTTP Connection

Corporate Directory Server

Compute2

Using the SOAP domain for these scenarios is preferred. For more information

about choosing a domain for Web services, see “WebSphere Message Broker and

Web services” on page 615.

Broker implements new Web service interface

In this scenario, the broker implements a new Web service interface. The WSDL for

the Web service is generated from a message set and made available to clients. A

message flow based on this WSDL and message set receives a request and then

builds a response message using data obtained from an existing non-Web-service

application.

Existing
non-Web-service

interface

Existing
non-Web-service

application

Message set

deploy

generate

import

WSDL

Web service
client Broker

Key to symbols:

Working with Web services 705

|
|
|
|
|

|

|

|
|
|

|
|
|
|
|
|

|

|

Message setFileExecutable Message flow

run time interaction.
For example,

message exchange

design time action.
For example,

import or deploy

design time action
involving an external
toolkit. For example,

generating a
Web service client.

association

This scenario is sometimes referred to as a Web service facade. The design of the

Web service interface typically involves some regrouping, restriction, or

enhancement of the existing interface, and is not constrained by an existing WSDL

definition.

Possible uses

v The broker provides a Web services interface to an existing application,

optionally providing other mix-in capabilities such as auditing the requests

made.

v Over time the implementation can be changed without affecting the interface

presented to the Web services client.

Design steps

1. Create a message set for the business messages, possibly by importing an

existing interface definition such as a C header file or COBOL copybook.

2. Generate a WSDL definition from the message set.

3. Use a SOAP toolkit such as Rational® Application Developer to create a suitable

Web services client based on the WSDL.

4. Develop a message flow to implement the Web service.

Runtime

Your message flow receives a Web service request, converts it into a form expected

by the existing application and invokes the existing application. The response from

the existing application is converted into a valid Web service response.

Example 1

In this example, an existing message flow is modified to provide a Web service. If

the existing message flow models its data in a message set, then a WSDL definition

can be generated from that message set and made available to clients.

Most message flows that currently use WebSphere MQ for input or output can be

adapted to support Web services as a replacement or additional protocol.

The following are typical message flow patterns. In each case the input and reply

nodes replace or complement the original MQInput and MQOutput nodes. The

main part of the flow is understood to do some useful processing.

1. Using SOAPInput and SOAPReply nodes:

706 Message Flows

|

|
|
|
|

|

|
|
|

|
|

|

|
|

|

|
|

|

|

|
|
|

|

|
|
|

|
|

|
|
|

|

2. Using HTTPInput and HTTPReply nodes:

If you use the SOAP domain, then the logical tree shape will be different from the

original domain and you will need to take account of this in the message flow. If

you use the HTTP nodes with the original domain, then the logical tree shape does

not change. For information about choosing the domain, see “WebSphere Message

Broker and Web services” on page 615.

HTTP details

If you use the HTTP nodes, you can configure the HTTPReply node to

generate a set of default HTTP headers for the reply message sent to the

client. Generating a set of default HTTP headers reduces the modifications

that you must make to convert the message flow from one that processes

WebSphere MQ messages to a flow that processes HTTP messages.

Example 2

In this example, a message flow is created to provide asynchronous access to a

WebSphere MQ application.

The following are typical message flow patterns. In each case the flow receives the

Web service request and build the response using data returned from the

application over MQ.

1. Using two message flows with SOAPInput, SOAPReply nodes:

Working with Web services 707

|

|

|
|

|

|
|
|
|
|

|
|
|
|
|
|

|

|
|

|
|
|

|

2. Using two message flows with HTTPInput and HTTPReply nodes:

In each case, the first message flow receives inbound requests from a Web service

client. The Compute1 node transforms the request and an MQOutput node sends

the modified request to the existing application.

In the second message flow, an MQInput node receives the response from the

application. The Compute2 node then transforms the message and propagates it to

a reply node that responds to the original Web service client.

The Compute1 node must also save some correlation information to be retrieved

by the Compute2 node, ensuring that the replies from the WebSphere MQ

application are returned to the client that sent the original request.

HTTP details

 Using HTTPInput and MQOutput nodes as the outbound message and

MQInput and HTTPReply nodes as the response message:

708 Message Flows

|

|

|
|

|

|
|
|

|
|
|

|
|
|

|

|
|

Compute1 MQOutputHTTPInput

HTTPReply

Existing WebSphere MQ
Application

Compute2 MQInput

One way to preserve the correlation information is for the Compute1 node

to encode the HTTP request identifier in the outbound message.

(Alternatively, the request identifier can be stored in a database). The

HTTPInput node provides the request identifier as a field in the

LocalEnvironment tree called Destination.HTTP.RequestIdentifier and the

Compute1 node can read and store this value.

The Compute2 node reads the HTTP request identifier from the message,

and sets LocalEnvironment.Destination.HTTP.RequestIdentifier using this

value. The HTTPReply node uses the request identifier to ensure that the

message reaches the correct HTTP client.

The implementation of this scenario requires correct handling of the

MQMD. Any messages coming in across WebSphere MQ must have the

MQMD removed before being sent into an HTTPReply or HTTPRequest

node (unless including an MQMD in the HTTP stream is desired).

In the ESQL module for the Compute1 node, include a code statement like

the following statement:

SET OutputRoot.XMLNS.A.MessageID =

 CAST(InputLocalEnvironment.Destination.HTTP.RequestIdentifier AS CHARACTER);

In the ESQL module for the Compute2 node, include a code statement like

the following statement:

SET OutputLocalEnvironment.Destination.HTTP.RequestIdentifier =

 CAST(InputRoot.XMLNS.A.MessageID AS BLOB);

Broker implements existing Web service interface

In this scenario, the broker implements an existing Web service interface. The

WSDL for the Web service already exists, and is imported to create a message set.

A message flow based on this message set receives a request and then builds a

response message using data obtained from an existing non-Web-service

application.

Working with Web services 709

|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|

Message Set

deploy

importimport

WSDL

(Existing)
Web Service

Client Message Broker

Existing
non-web-service

Interface

Existing
non-web-service

Application

Key to symbols:

Message setFileExecutable Message flow

run time interaction.
For example,

message exchange

design time action.
For example,

import or deploy

design time action
involving an external
toolkit. For example,

generating a
Web service client.

association

Possible uses

v The broker provides a Web service implementation with a different quality of

service from existing implementations.

v The broker provides a migration strategy for the existing implementation.

Design steps

1. Import WSDL to create a message set containing definitions for the SOAP

messages described by the WSDL.

2. Adapt the message set for the required existing interface, possibly by importing

an existing interface definition such as a C header file or COBOL copybook.

3. Develop a message flow to implement the Web service.

Runtime

Your message flow receives a Web service request, converts it into a form expected

by the existing application and invokes the existing application. The response from

the existing application is converted into a valid Web service response.

710 Message Flows

|

|

|

|

|
|

|

|

|
|

|
|

|

|

|
|
|

Example 1

In this example, an existing HTTP Web service client provides information on a

given subject (stock prices or exchange rates, for example). You want to replace this

service with an inhouse database lookup solution, but want to make no changes to

the clients because these are widely deployed.

Typical message flow patterns are shown below. In each case the intermediate

request node retrieves the information from the database:

1. Using SOAPInput and SOAPReply nodes:

2. Using HTTPInput and HTTPReply nodes:

In the flows above, the input node receives the Web service request. Compute1

then retrieves the required information from the database and generates the

required Web service response using this data. The response is returned to the

client by the reply node. In the examples you can use Mapping nodes instead of

Compute nodes.

Example 2

In this example, an existing application is exposed as a Web service, but there is a

constraint on the interface with the Web service, because a widely distributed

client already uses a similar service that is defined by an existing WSDL definition.

The broker offers the same interface to the client, this might be because the original

service offers a different quality of service or is to be discontinued.

Typical message flow patterns are shown below. In each case the message flows

receive the Web service request and build the response using data returned from

the application over WebSphere MQ.

1. Using SOAPInput, SOAPReply and MQGet nodes:

Working with Web services 711

|

|
|
|
|

|
|

|
|

|

|
|

|

|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|

|

2. Using HTTPInput, HTTPReply and MQGet nodes:

3. Using two message flows with SOAPInput, SOAPReply nodes:

4. Using two message flows with HTTPInput and HTTPReply nodes:

The steps to develop the message flow are:

1. Create a message model for the existing application interface, for example, by

importing a C header file for the application.

2. Import an existing WSDL definition for the client.

3. Create a flow using the message set to implement the Web service interface and

mediate with the existing application.

Message flows 1 and 2 show a synchronous call to the application using

MQOutput and MQGet nodes. You can set a timeout in the MQGet node, to allow

for failure of the remote application. The request-reply translation is handled in a

single transaction enabling simple rollback and recovery. However, each incoming

request has to be fully processed and responded to before moving onto the next

request. This might impact performance, if the application cannot respond quickly.

712 Message Flows

|
|

|

|
|

|

|
|

|

|

|
|

|

|
|

|
|
|
|
|
|

The message flows shown in examples 3 and 4, show an asynchronous equivalent.

In each case the first flow stops after sending the message to the application, and

becomes available to handle further requests. However, this scenario requires a

correlation context to be saved in the request flow, and restored in the reply flow.

You can store the correlation context on a queue, and then use an MQGet node in

the reply flow to retrieve it. This flow design enables the requests to be dispatched

to the application promptly, and replies to be returned in the order that they are

received. In the examples you can use Mapping nodes instead of Compute nodes.

Using the SOAP domain for these scenarios is preferred. For more information

about choosing a domain for Web services, see “WebSphere Message Broker and

Web services” on page 615.

For more information about the asynchronous request-reply scenario, see “A

request-response scenario using an MQGet node” on page 189.

The asynchronous request-reply scenario is also detailed in the following sample

which can be adapted for Web service usage:

v Coordinated Request Reply sample

Another Web services scenario is described in the sample:

v HTTP Nodes sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Broker implements non-Web-service interface to new Web

service

In this Web service scenario, the broker provides compatibility with earlier versions

for existing non-Web-service clients to invoke a new Web services implementation

provided by a SOAP toolkit.

Message set

deploy

import

generate

generate
WSDL

Web service
Broker

Existing
non-Web-service

interface

Existing
non-Web-service

client

Key to symbols:

Working with Web services 713

|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|

|

|

|
|

|
|
|
|
|

|

|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.coordinated_request_reply.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.wshost.doc/doc/overview.htm

Message setFileExecutable Message flow

run time interaction.
For example,

message exchange

design time action.
For example,

import or deploy

design time action
involving an external
toolkit. For example,

generating a
Web service client.

association

Possible uses

You want to migrate an application to a Web service implementation, for example

an EJB implementation hosted by an application server to offer better scalability.

However, a significant number of your users have existing clients that cannot be

immediately replaced. Existing clients can use the broker to use the new Web

service implementation.

Design steps

1. Create a message set for the business messages, for example, by importing an

existing interface definition such as a C header file or COBOL copybook.

2. Generate a WSDL definition from the message set.

3. Use a SOAP toolkit or application server to create a suitable Web services

implementation based on the WSDL.

4. Develop a message flow to mediate between the original existing client and the

new Web service.

Runtime

Your message flow receives a request from the existing client, converts it into a

Web services request and invokes the Web service. The response from the Web

service is converted into a form understood by the existing client.

714 Message Flows

|

|

|
|

|
|
|

|

|
|

|

|
|

|
|

|

|
|
|

Part 3. Working with files

Working with files 717

How the broker processes files 717

Recognizing file records as messages to be

parsed 719

How the file nodes and additional instances share

access to files 719

Using LocalEnvironment variables with file nodes 721

File name patterns 724

mqsiarchive subdirectory 726

Reading a file 727

Reading a file on your local file system 727

Reading a file on a remote FTP directory . . . 729

Reading a file, effects of different values in the

FileInput node’s Record detection property . . 731

Writing a file 735

Writing a file to your local file system 735

Writing a file to a remote FTP server 737

Writing a file, effects of different values in the

FileOutput node’s Record definition property . 739

© Copyright IBM Corp. 2000, 2008 715

716 Message Flows

Working with files

One of the most common methods of data storage is files. Processes using file

transfer form the backbone of many business IT systems. You can create message

flows to process data in files, accepting data in files as input message data, and

producing output message data for file-based destinations. The following file nodes

are provided:

v FileInput node. Use this node to receive messages from files in the broker

server’s file system. The node generates output message data that can be used

by any of the output nodes meaning that messages can be generated for clients

using any of the supported transport protocols to connect to the broker. For

more information, see “FileInput node” on page 886.

v FileOutput node. Use this node to write messages to a file in the broker’s file

system. It can create new files and replace existing files. For more information,

see “FileOutput node” on page 899.

Using this function, you can also process large files without using excessive storage

and simplify the processing of files which have large numbers of repeating entries.

If you want to work with files, read these topics:

v “How the broker processes files”

v “How the file nodes and additional instances share access to files” on page 719

v “Using LocalEnvironment variables with file nodes” on page 721

v “File name patterns” on page 724

v “mqsiarchive subdirectory” on page 726

v “Reading a file” on page 727

v “Writing a file” on page 735

How the broker processes files

This topic describes how the broker processes files with the file nodes, FileInput

and FileOutput.

WebSphere Message Broker can read messages from files and write messages to

files in the local file system, or on a network file system that appears local to the

broker. Two nodes provide this capability:

v FileInput node

v FileOutput node

A file, or record within a file is analogous to a message in a queue. The directory

which contains the file is analogous to a message queue.

How the broker reads a file

The FileInput node processes messages which are read from files. It scans a

specified directory for files that match a certain specification. This directory is in

the file system that is attached to the broker. Optionally, files from a remote FTP

server can be moved to the local directory whenever the directory is to be scanned.

You specify the file to be searched for with an explicit file name or a file name

pattern which includes wildcard characters. When the broker finds a file which

matches this specification, it reads the file and propagates a message, or messages,

© Copyright IBM Corp. 2000, 2008 717

using the contents of the file. If the file is locked, it is ignored at this directory

scan. When the broker has finished reading the file, the file is removed from the

input directory.

The broker may start file processing as soon as the file appears in its input

directory. If the file is still being written by another program, the broker might

read corrupted data. This can be avoided either by arranging that the file is locked

until it is finished, or by creating the file elsewhere and moving it into the input

directory when ready.

You can specify, using the FileInput node, how the records are derived from the

file. The contents of a file can be interpreted as:

v A single record (’whole file’)

v Separate records, each of a fixed length (’fixed length records’)

v Separate records each delimited by a specified delimiter (’delimited records’)

v Separate records that are recognized by a parser that you specify (’parser record

sequence’)

After the file has been successfully processed, it is either:

v Deleted from the file system, or

v Moved to an archive subdirectory of the specified (local) directory

The message, or messages, propagated from the file can be used as input to any

flow and output node. You can create a message flow that receives messages from

files and generates messages for clients that use any of the supported transports to

connect to the broker.

Whenever a message is propagated from a file, the FileInput node stores certain

information about the file in the LocalEnvironment.File message tree. This includes

the offset of the record of the message in the file being processed and the record

number in that file. In addition, when wildcards are used in a file name pattern,

the characters matched in the file name are placed in the WildcardMatch element

of the LocalEnvironment tree.

How the broker writes a file

The FileOutput node writes messages to files in the broker’s file system. When a

message is received on the node’s In terminal, it creates and writes a file as a series

of one or more records. One record is written to a file for every message received.

The name of the file is specified either by a file name pattern in the node or an

explicit file name which is either specified in the node or derived from the

message.

You can specify how the records are accumulated into files. These can comprise:

v A single record (’whole file’). The file that is created consists of one record.

v Concatenated records (’unmodified records’). The records are neither padded to

any required length, nor separated by any delimiter.

v Uniform length (’fixed-length records’). Records that are shorter than the

specified length are padded to the required length.

v Separate records (’delimited records’). Records are either terminated or separated

by a specified delimiter.

718 Message Flows

The flow informs the FileOutput node that there are no more records to write by

sending a message to its Finish File terminal. At this point, the file is moved to the

specified output directory. Optionally, this file may be moved to a directory on a

remote FTP server identified by properties of the node. If the node is producing a

single record from the file (’whole file’), the file is moved immediately to the

output directory without requiring a message to be propagated to the Finish File

terminal. In this case, any message sent to the node’s Finish File terminal has no

effect on any file, though the message will still be propagated to a flow attached to

the node’s End of Data terminal.

Recognizing file records as messages to be parsed

This topic describes how you can use the FileInput node to segment your input file

into messages that are to be parsed. It also describes the special considerations that

you must be aware of when using the MRM and XMLNSC parsers.

Use the FileInput node to segment your input file into messages that are to be

parsed by one of the following parsers:

v MRM Custom Wire Format

v MRM Tagged Delimited String Format

v XMLNSC

Use the FileInput node’s Message domain property to specify which parser you

need to use; MRM or XMLNSC. Specify Parsed Record Sequence in the Record

detection property so that the node splits the file into messages to be parsed by

either the MRM or XMLNSC parser.

If you select the MRM parser, ensure that the message model has a defined

message boundary and does not rely on the end of the bitstream to stop the parse.

If the final element has a maxOccurs value of -1, the parser continues to read bytes

until the end of the bitstream or until it encounters bytes that cause a parsing

exception. In either case, the parser is unable to identify the end of one message

and the start of the next. If you use Data Element Separation = Use Data Pattern,

ensure that the pattern recognizes a specified number of bytes. Be aware, therefore,

that a pattern of * identifies all available characters and so would read an entire

input file.

If you use delimited separations with message group indicators and terminators,

ensure that the combination of group indicator and terminator does not match a

record delimiter. For example, a message might start with a left brace ({) and end

with a right brace (}). If there is a delimiter of }{ within the message, this matches

the boundary between multiple messages; as a result, a message boundary might

be identified as a delimiter within the current message. This might cause bytes in a

subsequent message to be included in the current message causing parser

exceptions or unexpected content in the parse tree.

If you select the XMLNSC parser, be aware that the end of the root tag marks the

end of the message. Any XML comments, XML processing instructions and white

space which appear after the end of the XML message are discarded. The start of

the next XML message is marked either by the next XML root tag or the next XML

prolog.

How the file nodes and additional instances share access to files

This topic describes how multiple instances read from and write to files.

Working with files 719

When a message flow uses the FileInput or FileOutput node, there might be

additional instances associated with the flow. You need to understand how

multiple instances read from and write to the files processed by these nodes. The

same considerations apply to other message flows in the same execution group if

they use file nodes that refer to files in the same directory.

The broker locks the files being read by the FileInput node or being written by the

FileOutput node. This prevents other execution groups from reading or changing

the files while they are being processed. The broker relinquishes the lock when a

FileInput node finishes processing its input file. The broker relinquishes the lock

when a FileOutput node finishes the file and moves it from the transit directory to

the output directory.

Reading a file

When the FileInput node reads a file, only one instance (of one message flow) is

allocated to reading it. Each record in the file is serially processed by this instance.

Other instances of the message flow, or other message flows, can simultaneously

process other files the names of which match the pattern specified in the node’s

File name or pattern property. Message flows in the same execution group

cooperate to avoid files being processed or accessed multiple times. There is no

such cooperation between message flows in different execution groups.

While a file is processed, the facilities of the file system are used to lock the file.

This helps to prevent other programs, including other execution groups, from

reading, writing, or deleting the file while it being processed by the file nodes.

While a FileInput node is reading a file, the file remains in the local directory until

it has been fully processed (or until an unrecoverable error occurs). A subdirectory

is then used to accommodate the file once it has been processed if it is retained.

Writing a file

Files created and written by a FileOutput node are placed in the output directory

when they are finished. While records are being added to a file, it is kept in the

transit (mqsitransit) subdirectory. Each record is written by a single message flow

instance and there is no constraint on which instance this can be. All message flow

instances that are configured to write records to a specific file can append records

to that file. Because instances can run in any order, records that they write might

be interleaved. If you need to ensure the sequence of records in the output file,

arrange that only one FileOutput node instance uses the file. Achieve this by

configuring the flow containing the node to use the node’s additional instances

pool with zero instances and by ensuring that other flows do not write to the same

file.

While a file is processed, the facilities of the file system are used to lock the file.

This helps to prevent other programs, including other execution groups, from

reading, writing, or deleting the file while it being processed by the file nodes. This

lock is retained for a short period after a FileOutput node writes to the file without

finishing it, leaving it in the transit directory. If flows that are in the same

execution group use the same output file and run sufficiently quickly, the broker

does not need to relinquish the lock before the file is finished. However, if the

flows have longer intervals between execution, the broker relinquishes the lock and

another process or execution group can acquire a lock on the file. If you need to

prevent this behavior, do not share output directories across execution groups.

720 Message Flows

Instances within a single execution group cooperate to ensure that no file system

errors occur. When an instance cannot write a record because another instance is

currently writing to the file, it waits for a short period and then tries again to write

to the file. This might result in message flow exceptions especially when the record

being written is large and the file system is slow. Flow retry processing normally

allows the record to be regenerated but this can result in an unpredictable order of

output records in the file.

Because instances in different execution groups cannot cooperate, the only

mechanism available to prevent errors is the file system lock obtained by the

FileOutput node. It is good practice to prevent other programs from accessing files

in transit subdirectories while flows that might be writing to those files are active.

If you need to allow other programs to access a file in the transit directory, for

example to correct problems with file processing in a flow, ensure that you stop all

of the relevant flows beforehand.

Using the same directory as an input directory and an output

directory

You can use a single directory as the input directory of one flow and the output

directory of another. In this situation, the archive subdirectories are shared between

the flows but the transit and backout subdirectories are not shared. if the message

flows are in the same execution group, the message flows cooperate. If the message

flows are in separate execution groups, contention might occur which might cause

processing exceptions. However, it is not possible for a file to be read by a

FileInput node until a FileOutput node has finished with the file, and has then

moved it out of the transit directory.

Using LocalEnvironment variables with file nodes

This topic describes the LocalEnvironment variables available to you when you use

file nodes to process files.

You can use various fields in the LocalEnvironment to dynamically interrogate and

alter file node properties. These fields are available in the following message tree

structures:

v LocalEnvironment.File

v LocalEnvironment.WrittenDestination.File

v LocalEnvironment.Wildcard.WildcardMatch

LocalEnvironment.File fields

When you use the FileInput node, it stores information that you can access in the

LocalEnvironment.File message tree. The fields in this structure are described in

the following table:

 Table 17.

Element Name Element Data Type Description

Directory CHARACTER Absolute directory path of

the input directory in the

form used by the file system

of the broker. For example,

on Windows systems, this

starts with the drive letter

prefix (such as C:).

Working with files 721

Table 17. (continued)

Element Name Element Data Type Description

Name CHARACTER File name and extension.

LastModified TIMESTAMP Date and time the file was

last modified.

TimeStamp CHARACTER Date and time the input

node started processing the

file in the coordinated

universal time (UTC) zone,

as a character string. This

data is the string used to

create archive and backout

file names if a timestamp is

included.

The following elements contain data about the current record:

Offset INTEGER Start of the record within the

file. The first record starts at

offset 0. When part of the

End of Data message tree,

this is the length of the input

file.

Record INTEGER Number of the record within

the file. The first record is

record number 1. When part

of the End of Data message

tree, this is the number of

records.

Delimiter CHARACTER The characters used to

separate this record from the

preceding record, if

Delimited is specified in

Record detection. The first

record has a null delimiter.

When part of the End of

Data message tree, this is the

delimiter that follows the last

record, if any.

IsEmpty BOOLEAN Whether the record

propagated by the message

flow is empty. It is set to

TRUE if the current record is

empty. When part of the End

of Data message tree, this is

always set to TRUE.

This structure is propagated with each message written to the Out terminal of the

FileInput node and with the empty message written to the End of data terminal.

LocalEnvironment.WrittenDestination.File fields

When you use the FileOutput node, it stores information that you can access in the

LocalEnvironment.WrittenDestination.File message tree. The fields in this structure

are described in the following table:

722 Message Flows

Table 18.

Element Name Element Data Type Description

Directory CHARACTER Absolute directory path of

the output directory in the

form used by the file system

of the broker. For example,

on Windows systems, this

starts with the drive letter

prefix (such as C:).

Name CHARACTER File name of the output file.

Action CHARACTER Possible values are:

v Replace if an output file of

the same name is replaced.

v Create if a new output file

is created.

v Append if this is associated

with a record that is

appended to an output

file.

v Finish if a Finish File

message is received and

no file is found to finish

(for example, if Record is

Whole File is specified and

a message is sent to the

Finish File terminal).

v Transmit if the file was

transferred by FTP and the

file was not retained.

Timestamp CHARACTER The date and time, in

character string form, when

the node started to process

this file. This is the value

which prefixes the names of

files that are archived if you

specify Time Stamp, Archive

and Replace Existing File in

the Output file action

property on the Basic tab.

LocalEnvironment.Wildcard.WildcardMatch field

On the FileInput node, you can specify a file name pattern that contains wildcard

characters. The FileInput node copies the characters in the file name matched by

wildcards, together with any intermediate characters, to

LocalEnvironment.Wildcard.WildcardMatch.

 Table 19.

Element Name Element Data Type Description

WildcardMatch CHARACTER The character string in the

file name matched by

wildcards in the file name

pattern.

For example, if the file name pattern on the FileInput node is specified as file*.txt

Working with files 723

and the file that is read has a name of file02.txt, then the value of WildcardMatch

becomes 02. If the file name pattern on the FileInput node is specified as

file??type.*, and the file that is read has a name of file02type.xml, then the value of

WildCardMatch becomes 02type.xml.

On the FileOutput node, you can use a wildcard character in the file name pattern.

If you include the single wildcard character, ’*’, in the file name pattern, the node

uses the value that is stored in LocalEnvironment.Wildcard.WildcardMatch. This is

useful if you have a message flow where the FileInput and FileOutput nodes are

working with the same file; you can preserve the name of the input file on the

FileOutput node. You can also use standard methods for manipulating the value of

the WildcardMatch element to whatever you want; you do not have to use a

FileInput node.

File name patterns

You can specify a file name pattern, using wildcard characters, to identify a file to

be read by the FileInput node. You can also specify a file name pattern, using a

single wildcard character, to name the file to be created by the FileOutput node.

Using file name patterns with the FileInput node

The FileInput node reads files from a specified directory and propagates messages

based on the contents of these files. Only files with names that match a pattern

(the input pattern), as specified in the FileInput node’s File name or pattern

property, are read. This is either a file name or a character sequence (a pattern) that

matches a file name. A pattern is a sequence containing at least one of the

following wildcard characters:

 Wildcard character Description Example

* Any sequence of zero or

more characters

*.xml matches all file names

with an xml extension

? Any single character f??????.csv matches all file

names consisting of the letter

f followed by six characters

and then the sequence .csv.

The default pattern is * which matches all file names.

You cannot specify file names that contain the following characters: the asterisk

(’*’), the question mark (’?’), file name separator characters (’/’ and’ \’).

You might want to process files that all have a certain extension, for example xml.

If so, set a value of *.xml in the FileInput node’s File name or pattern property and

the node will process all files in the directory that have this extension.

If you deploy the flow to a Windows server, file names match the pattern

irrespective of case. However, if you deploy the flow to a Linux, UNIX, or z/OS

server, file names must match the pattern character string and case.

Pattern matching

The FileInput node sets the LocalEnvironment.Wildcard.WildcardMatch element to

the string matched by wildcards in the file name. Here are some examples of

pattern matching with the value in this element where the value in the File name

or pattern property is File????.from*.xml:

724 Message Flows

v If the FileInput node finds a file with the file name File1234.fromHQ.xml, there

is a match. The value in the LocalEnvironment.Wildcard.WildcardMatch element

is set to 1234.fromHQ and the node processes the file.

v If the file name is File123.fromHQ.xml, there is no match because there are

insufficient characters between the File and .from elements of the file name. The

FileInput node ignores this file.

v If the file name is File2345.from.xml, there is a match. The value in the

LocalEnvironment.Wildcard.WildcardMatch element is set to 2345.from and the

node processes the file. In this example, the * in the character string in the File

name or pattern property matches a string of zero characters. If you required the

character string between the from and .xml elements of the file name to always

have at least one character, you would specify the File name or pattern property

with a value of File????.from?*.xml.

Using file name patterns with the FileOutput node

The FileOutput node writes messages to files that it creates or replaces in the

broker’s file system. Only files with names that match a pattern, as specified in the

FileInput node’s File name or pattern property, are written. This is either a file

name or a character sequence (a pattern) that matches a file name. Only patterns

containing a single wildcard character (the asterisk, ’*’) are allowed in this

property. The file name to be used is determined as follows:

v If the File name or pattern property contains no wildcard, then the value of this

property is the name of the file created. This must be a valid file name on the

file system which hosts the broker to which the message flow is deployed.

v If the File name or pattern property contains a single wildcard, then the value of

the element LocalEnvironment.Wildcard.WildcardMatch in the current message

replaces the wildcard character, and the resulting value is the name of the file

created. This must be a valid file name on the file system which hosts the broker

to which the message flow is deployed. If the WildcardMatch value is not found,

the wildcard character is replaced by the empty string.

You cannot specify file names that contain the following characters: the asterisk

(’*’), the question mark (’?’), file name separator characters (’/’ and’ \’).The name

of the file can be overridden by values in the current message.

If the File name or pattern property is empty, the name must be overridden by the

current message. Wildcard substitution occurs only if this property is not

overridden in this way.

File names are passed to the file system to which the broker has access and have to

respect the conventions of these file systems. For example, file names on Windows

systems are not case-sensitive, while, on UNIX systems, file names which differ by

case are considered distinct.

FTP considerations

You can use the FileInput node to transfer files from a remote FTP server and

process them. Only files with names that match the file name pattern specified in

the node are read. If your broker is on a platform that respects case sensitivity,

such as UNIX, you might specify a pattern that includes a combination of upper

and lower case characters. If you then use this pattern to process files that are in a

directory on a remote FTP server, and this is running on a platform which does not

respect case sensitivity, such as Windows, file name matching might fail and no

files are processed; this is because the file names on the remote server are not in

Working with files 725

mixed case. If your broker is on a platform which does not respect case sensitivity,

any pattern that you specify might be matched by more than one file on a remote

FTP server which is running on a platform on which case sensitivity is significant.

Each of these files is then processed sequentially.

You can use the FileOutput node to write files to a remote FTP server. Only files

with names that match the pattern specified in the node are written If your broker

is on a platform that respects case sensitivity, such as UNIX, you might specify a

pattern that includes a combination of upper and lower case characters . If you

then use this pattern to write files to a directory on a remote FTP server, and this is

running on a platform which does not respect case sensitivity, such as Windows,

the file name written will not be as specified in your pattern; it will be in upper

case.

If a name of a file on a remote FTP server contains a character, or characters, which

are invalid on the platform on which the broker where you specified the file name

pattern is running, the file is not transferred from the FTP server for processing by

the FileInput node.

mqsiarchive subdirectory

This topic describes the mqsiarchive subdirectory and the circumstances in which

files are placed there.

The input directory of the FileInput node has a subdirectory called mqsiarchive.

The output directory of the FileOutput node also has a subdirectory called

mqsiarchive.

FileInput node’s mqsiarchive subdirectory

Files that are processed successfully by the FileInput node are moved to the

mqsiarchive subdirectory if the FileInput node’s Action on successful processing

property is set to Move to Archive Subdirectory or Add Timestamp and Move to

Archive Subdirectory.

Select the Replace duplicate archive files check box to ensure that should a file of

the same name exist already in the mqsiarchive subdirectory as one that is about to

be moved to the mqsiarchive subdirectory, the file that exists already is replaced. If

you do not set this option, and a file with the same name already exists in the

archive subdirectory, the node stops processing files. Every time that the node

returns from its polling wait period, it issues a pair of messages, BIP3331 and a

more specific one describing the problem. To avoid flooding the broker event log,

duplicate messages are suppressed for an increasing period of time, until

eventually they are issued about once every hour. In this circumstance, the system

administrator must stop the flow, correct the problem, and then restart the flow.

Clear the Replace duplicate archive files check box only if you are sure either that

the input files have unique names, or that some other process will remove a file

from the archive directory before the FileInput node processes another of the same

name. If you cannot ensure this, either specify Add Timestamp and Move to

Archive Subdirectory in the Action on successful processing property so that

archived files have unique names, or select the Replace duplicate archive files

check box

726 Message Flows

FileOutput node’s mqsiarchive subdirectory

Files that are processed successfully by the FileOutput node are moved to the

mqsiarchive subdirectory if the FileOutput node’s Output file action property is set

to Archive and Replace Existing File or Time Stamp, Archive and Replace Existing

File.

If you select the Replace duplicate archive files check box, that means that should a

file of the same name exist already in the mqsiarchive subdirectory as one that is

about to be moved to the mqsiarchive subdirectory, the file that exists already is

replaced. If you do not set this option, and a file with the same name already

exists in the archive subdirectory, the node experiences an exception when it tries

to move the successfully processed file; the file that the node is trying to move to

the mqsiarchive subdirectory remains in the transit subdirectory.

Reading a file

This section introduces examples of using a FileInput node to read files. The first

example shows you how to read a file on your local file system. The second

example shows you how to read a file in a directory on a remote FTP server. The

third topic in this section shows a number of examples of how combinations of

different values in the Record detection, Delimiter, and Delimiter type properties

propagate messages with different structures. This third topic is a series of

variations of the examples in the first two topics.

This section contains the following topics:

v “Reading a file on your local file system”

v “Reading a file on a remote FTP directory” on page 729

v “Reading a file, effects of different values in the FileInput node’s Record

detection property” on page 731

Reading a file on your local file system

This topic gives you an example of how to use a FileInput node to read a file on

your local file system and then propagate messages that are based on the contents

of that file. It shows how one combination of values in the Record detection,

Delimiter, and Delimiter type properties can be used to extract messages from a

file.

This example describes the FileInput node of a message flow and assumes that the

rest of the flow has already been developed. It is also assumed that a Windows

system is being used. To complete this example task, you must first have added a

FileInput node to a message flow. You also need to ensure that you have the

following resources available:

v An input file. To follow this example scenario, create an input file called

test_input1.xml with the following content:

<Message>test1</Message>

<Message>testtwo</Message>

<Message>testthree</Message>

Each line ends with a line terminator; on a Windows system, this comprises

carriage return and line feed characters (X’0D0A’). Put this file into directory

C:\FileInput\TestDir.

v A message set. This example uses a message set called xml1 which uses the

XMLNSC parser. Message set xml1 models messages of the following form:

Working with files 727

<Message>...</Message>

Once you have these resources available, perform the following steps:

1. Set the required node properties on the FileInput node. The following table

summarizes the FileInput node properties that you should set, which tab they

appear on and the value that you should set in order to follow this example:

 Table 20.

Tab Property Value

Basic Input directory C:\FileInput\TestDir

File name or pattern test_input1.xml

Action on successful

processing

Move to Archive

Subdirectory

Replace duplicate archive

files

Selected

Input Message Parsing Message domain XMLNSC

Message set xml1

Polling Polling interval 3

Retry Action on failing file Add Time Stamp and Move

to Backout Subdirectory

Records and Elements Record detection Delimited

Delimiter DOS or UNIX Line End

Delimiter type Postfix

FTP FTP Not selected

2. Deploy the message flow to the broker.

The following actions occur when you perform these steps:

1. The file is processed. In accordance with the values set in the properties on the

Records and Elements tab, the FileInput node detects records that end with a

DOS or UNIX line end and creates a message for each one that it finds. It

propagates three messages to the flow attached to the Out terminal:

v Message 1:

<Message>test1</Message>

v Message 2:

<Message>testtwo</Message>

v Message 3:

<Message>testthree</Message>

2. If there is a flow attached to the End of Data terminal, the End of Data message

is propagated after the last record in the file has been processed.

3. On completion of processing, the file test_input1.xml is moved to the

mqsiarchive subdirectory, C:\FileInput\TestDir\mqsiarchive\test_input1.xml. If

a file called test_input1.xml already exists in the mqsiarchive subdirectory, it is

overwritten.

4. If the message flow fails, retry processing is attempted according to the values

set in the properties of the FileInput node. In this example task, a time stamp is

added to the file name and the file is moved to the mqsibackout directory. Here

is an example of the path to such a file: C:\FileInput\TestDir\mqsibackout\
20070928_150234_171021_test_input1.xml.

728 Message Flows

To see the effects of specifying other combinations of values in the Record

detection, Delimiter, and Delimiter type properties of the FileInput node, see

“Reading a file, effects of different values in the FileInput node’s Record detection

property” on page 731.

The following samples also provide examples of how to use this node:

v Batch Processing sample

v WildcardMatch sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Reading a file on a remote FTP directory

This topic gives you an example of how to use a FileInput node to read a file in a

directory on a remote FTP server and then propagate messages that are based on

the contents of that file.

This example is an extension of the example described in “Reading a file on your

local file system” on page 727 and it describes the FileInput node of an example

message flow. It assumes that the rest of the flow has already been developed and

that a Windows system is being used. To complete this example task, you must

first have added a FileInput node to a message flow. You also need to ensure that

you have the following resources available:

v An FTP server. Ensure that an FTP server exists which has the following

settings:

Server ftpserver.hursley.abc.com

Port 21

Working directory

/ftpfileinput

Userid

myuserid

Password

mypassword

These values are for the purposes only of this example. If you use other values,

record them so that you can set the appropriate values below. This example uses

the values above.

v A security identity. Use the mqsisetdbparms command to define a security

identity called, in this example, myidentity for the user and password details

above. For example, use the following command for a broker called MyBroker:

 mqsisetdbparms MyBroker -n ftp::myidentity -u myuserid -p mypassword

Notice the ftp:: prefix which is required so that file nodes can find the security

identity definition.

v An input file. To follow this example scenario, create an input file called

test_input1.xml with the following content:

<Message>test1</Message>

<Message>testtwo</Message>

<Message>testthree</Message>

Working with files 729

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.BatchProcessing.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.WildcardMatch.doc/doc/overview.htm

Each line ends with a line terminator suitable for system upon which the FTP

server resides. Do not put this file in the input directory but, instead, put it on

the FTP server directory /ftpfileinput.

v A message set. This example uses a message set called xml1 which uses the

XMLNSC parser. Message set xml1 models messages of the following form:

<Message>...</Message>

Once you have these resources available, perform the following steps:

1. Set the required node properties on the FileInput node. The following table

summarizes the FileInput node properties that you should set, which tab they

appear on, whether they are mandatory and the value that you should set in

order to follow this example:

 Table 21.

Tab Property Value

Basic Input directory C:\FileInput\TestDir

File name or pattern test_input1.xml

Action on successful

processing

Move to Archive

Subdirectory

Replace duplicate archive

files

Selected

Input Message Parsing Message domain XMLNSC

Message set xml1

Polling Polling interval 3

Retry Action on failing file Add Time Stamp and Move

to Backout Subdirectory

Records and Elements Record detection Delimited

Delimiter DOS or UNIX Line End

Delimiter type Postfix

FTP FTP Selected

FTP server and port ftpserver.hursley.abc.com

Security identity myidentity

Server directory /ftpfileinput

Transfer mode ASCII

Scan delay 45

If you used other values for your FTP server resource, use those values. These

settings are identical to those used in the example in “Reading a file on your

local file system” on page 727 except that the FTP property has been selected

and there are now properties on the FTP tab. If you clear the FTP check box,

the node behaves as it does in the example in “Reading a file on your local file

system” on page 727; the FTP properties remain set but have no effect.

2. Deploy the message flow to the broker.

The following actions occur when you perform these steps:

1. The file test_input1.xml is transferred from the FTP server directory

(/ftpfileinput) to the local directory (C:\FileInput\TestDir). The file is deleted

from the FTP server directory.

2. In accordance with the values set in the properties on the Records and

elements tab, the FileInput node detects records that end with a DOS or UNIX

730 Message Flows

line end and creates a message for each one that it finds. It propagates three

messages to the flow attached to the Out terminal:

v Message 1:

<Message>test1</Message>

v Message 2:

<Message>testtwo</Message>

v Message 3:

<Message>testthree</Message>

3. Because the FTP check box is selected, the FTP scan delay of 45 seconds

overrides the polling interval of 3 seconds.

4. If there is a node attached to the End of Data terminal, the End of Data

message is propagated after the last record in the file has been processed.

5. On completion of processing, the file test_input1.xml is moved to the

mqsiarchive subdirectory C:\FileInput\TestDir\mqsiarchive\test_input1.xml. If

a file called test_input1.xml already exists in the mqsiarchive subdirectory, it is

overwritten.

6. If the message flow fails, retry processing is attempted according to the values

set in the properties of the FileInput node. In this example task, a time stamp is

added to the file name and the file is moved to the mqsibackout directory. Here

is an example of the path to such a file: C:\FileInput\TestDir\mqsibackout\
20070928_150234_171021_test_input1.xml.

To see the effects of specifying other combinations of values in the Record

detection, Delimiter, and Delimiter type properties of the FileInput node, see

“Reading a file, effects of different values in the FileInput node’s Record detection

property.”

The following samples also provide examples of how to use this node:

v Batch Processing sample

v WildcardMatch sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Reading a file, effects of different values in the FileInput

node’s Record detection property

This topic demonstrates the effect of different settings of the properties on the

FileInput node’s Records and Elements tab.

The examples described in this topic are based on the examples described in

“Reading a file on your local file system” on page 727 and “Reading a file on a

remote FTP directory” on page 729. In each case, the input file to use, the property

settings, and the expected results are described.

Example 1. Records read are separated by a DOS or UNIX line

end

This example is identical to the one described in “Reading a file on your local file

system” on page 727 or “Reading a file on a remote FTP directory” on page 729.

Create an input file called test_input1.xml with the following content:

<Message>test1</Message>

<Message>testtwo</Message>

<Message>testthree</Message>

Working with files 731

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.BatchProcessing.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.WildcardMatch.doc/doc/overview.htm

Each line ends with a line terminator; on a Windows system, this comprises

carriage return and line feed characters (X’0D0A’).

The properties to set are:

 Table 22.

Tab Property Value

Records and Elements Record detection Delimited

Delimiter DOS or UNIX Line End

Delimiter type Postfix

The FileInput node detects records that end with a DOS or UNIX line end and

creates a message for each one that it finds.

The result is the propagation of three messages, as follows:

v Message 1:

<Message>test1</Message>

v Message 2:

<Message>testtwo</Message>

v Message 3:

<Message>testthree</Message>

The DOS or UNIX line end is not part of any propagated message.

Example 2. Records read are separated by a custom delimiter

Create an input file called test_input2.xml with the following content:

<Message>test01</Message>,<Message>test001</Message>,<Message>test0001</Message>

There should be no line terminator at the end of this file data; the XMLNSC parser

ignores the line terminator if it is present.

In addition to the property settings described in “Reading a file on your local file

system” on page 727 or “Reading a file on a remote FTP directory” on page 729,

set these properties:

 Table 23.

Tab Property Value

Basic File name or pattern test_input2.xml

Records and Elements Record detection Delimited

Delimiter Custom Delimiter

Custom delimiter 2C

Delimiter type Infix

The hexadecimal X’2C’ represents a comma in ASCII. On other systems, a different

hexadecimal code might need to be used.

The FileInput node detects the comma character and separates records with it.

Because the value of the Delimiter type property is Infix, there need not be a

comma at the end of the file.

732 Message Flows

The result is the propagation of three messages, as follows:

v Message 1:

<Message>test01</Message>

v Message 2:

<Message>test001</Message>

v Message 3:

<Message>test0001</Message>

The comma character is not part of any propagated message. There are no commas

in the bodies of the message in this example; if there were commas in the message

bodies, the records would be split at those points resulting in incorrectly formed

messages being propagated to the rest of the flow.

Example 3. Records read are separated by a fixed number of

bytes

Create an input file called test_input3.xml with the following content:

<Message>123456789</Message><Message>abcdefghi</Message><Message>rstuvwxyz</Message>

There should be no line terminator at the end of this file.

In addition to the property settings described in “Reading a file on your local file

system” on page 727 or “Reading a file on a remote FTP directory” on page 729,

set these properties:

 Table 24.

Tab Property Value

Basic File name or pattern test_input3.xml

Records and Elements Record detection Fixed Length

Length 28

The FileInput node segments the input file into records each 28 bytes in length.

The result is the propagation of three messages, as follows:

v Message 1:

<Message>123456789</Message>

v Message 2:

<Message>abcdefghi</Message>

v Message 3:

<Message>rstuvwxyz</Message>

Each message is 28 bytes long. If the file were to contain trailing bytes, for example

a carriage return-line feed pair, these would result in the propagation of a further

message containing these bytes; this may or may not be recognized by the message

domain, message set and message type assigned to parse the message.

Example 4. Records read are whole files

Create an input file called test_input4.xml with the following content:

<Message>Text string of a length decided by you, even including line terminators, as long as

it only contains this tag at the end.</Message>

Working with files 733

There should be no line terminator at the end of this file; if there is one, it has no

effect.

In addition to the property settings described in “Reading a file on your local file

system” on page 727 or “Reading a file on a remote FTP directory” on page 729,

set these properties:

 Table 25.

Tab Property Value

Basic File name or pattern test_input4.xml

Records and Elements Record detection Whole File

The FileInput node does not split the file; it supplies all of the file’s content to be

parsed by the message domain, message set and message type as specified on the

node. In this example, you are using the XMLNSC parser and message set xml1

and the message should be recognized.

The result is the propagation of one message, as follows:

v Message 1:

<Message>Text string of a length decided by you, even including line terminators, as long as

it only contains this tag at the end.</Message>

Trailing bytes (for example, line terminators) are included in this.

Example 5. Records read are recognized as separate messages

by the parser specified in the Message domain property

Create an input file called test_input5.xml with the following content:

<Message>Text string of a length decided by you</Message><Message>and another</Message>

<Message>and another on a new line</Message>

Line terminators at the end of this file, or at the end of lines, are acceptable.

In addition to the property settings described in “Reading a file on your local file

system” on page 727 or “Reading a file on a remote FTP directory” on page 729,

set these properties:

 Table 26.

Tab Property Value

Basic File name or pattern test_input5.xml

Records and Elements Record detection Parsed Record Sequence

The FileInput node defers to the parser to determine the record boundaries. In this

example, message set xml1 in domain XMLNSC should recognize the complete

<Message> XML format. XMLNSC absorbs trailing white space (for example, line

terminators).

The result is the propagation of three messages, as follows:

v Message 1:

<Message>Text string of a length decided by you</Message>

v Message 2:

<Message>and another</Message>

734 Message Flows

v Message 3:

<Message>and another on a new line</Message>

Trailing white space (for example, line terminators) are included in these.

Writing a file

This section introduces examples of using a FileOutput node to write files. The

first example shows you how to write a file to a directory in your local file system.

The second example shows you how to write a file to a directory on a remote FTP

server. The third topic in this section shows a number of examples of how

combinations of different values in the Record definition, Delimiter, and Delimiter

type properties, acting on the same input messages, result in the creation of files

with different structures. This third topic is a series of variations of the examples in

the first two topics.

This section contains the following topics:

v “Writing a file to your local file system”

v “Writing a file to a remote FTP server” on page 737

v “Writing a file, effects of different values in the FileOutput node’s Record

definition property” on page 739

Writing a file to your local file system

This topic gives you an example of how to use a FileOutput node to write a file to

a specified directory on your local file system. It shows you how one combination

of values in the Record definition, Delimiter, and Delimiter type properties result

in the creation of a file from multiple messages.

This example describes the FileOutput node of a message flow and assumes that

the rest of the flow has been developed. It is also assumed that a Windows system

is being used. To complete this example task, you must first have added a

FileOutput node to a message flow. You also need to ensure that the following

messages are produced by the flow preceding the FileOutput node:

v Three input messages. These are to be sent, in this order, to the In terminal of

the FileOutput node:

– Message 1:

<Message>test1</Message>

– Message 2:

<Message>testtwo</Message>

– Message 3:

<Message>testthree</Message>

These can be produced, for example, by the XMLNSC domain with a message

set which recognizes XML with the following form:

<Message>...</Message>

v A final message. This is to be sent to the Finish File terminal of the FileOutput

node after the first three messages have been sent:

<thiscanbe>anything</thiscanbe>

Once you have these resources available, perform the following steps:

1. Set the required node properties on the FileOutput node. The following table

summarizes the FileOutput node properties that you should set, which tab they

appear on, and the value that you should set in order to follow this example:

Working with files 735

Table 27.

Tab Property Value

Basic Directory C:\FileOutput\TestDir

File name or pattern test_output1.xml

Output file action Time Stamp, Archive and

Replace Existing File (or

Create if File does not Exist)

Replace duplicate archive

files

Selected

Records and Elements Record definition Record is Delimited Data

Delimiter Broker System Line End

Delimiter type Postfix

FTP FTP Cleared

2. Deploy the message flow to the broker.

3. Send the first three messages to the In terminal of the FileOutput node.

4. Send the final message to the Finish File terminal of the FileOutput node.

The following actions occur when you perform these steps:

1. The file is processed. In accordance with the values set in the properties of the

FileOutput node, the node generates one record per message with a local file

system line terminator after each one. The file contains the following data, each

line terminated by a carriage return (X’0D’) and line feed (X’0A’) pair of

characters (on a Windows system):

<Message>test1</Message>

<Message>testtwo</Message>

<Message>testthree</Message>

2. Records are accumulated in a file in the C:\FileOutput\TestDir\mqsitransit

directory. This file is named test_output1.xml. When the final message is sent to

the Finish File terminal, the file is moved to the output directory,

C:\FileOutput\TestDir directory.

3. If a file of the same name already exists in the output directory, the existing file

is renamed and moved to the mqsiarchive directory. For example, this might

result in the file:

C:\FileOutput\TestDir\mqsiarchive\20070924_155346_312030_test_output1.xml

being created. If a file of this name already exists in this archive directory, it is

overwritten in accordance with the Replace duplicate archive files property

selected on the FileOutput node.

Now see “Writing a file, effects of different values in the FileOutput node’s Record

definition property” on page 739 to see the results of running this task with

different values set in the Record definition, Delimiter, and Delimiter type

properties of the FileOutput node.

The following samples also provide examples of how to use this node:

v File Output sample

v Batch Processing sample

v WildcardMatch sample

736 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.fileoutput.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.BatchProcessing.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.WildcardMatch.doc/doc/overview.htm

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Writing a file to a remote FTP server

This topic gives you an example of how to use a FileOutput node to write a file to

a directory on a remote FTP server. It shows you how one combination of values

in the Record definition, Delimiter, and Delimiter type properties result in the

creation of a file from multiple messages.

This example is an extension of the example described in “Writing a file to your

local file system” on page 735 and it describes the FileOutput node of a message

flow. It assumes that the rest of the flow has already been developed and that a

Windows system is being used. To complete this example task, you must first have

added a FileOutput node to a message flow. You also need to ensure that you have

the following resources available:

v An FTP server. Ensure that an FTP server exists and which, in order that you

may follow this example scenario, has the following settings:

Server ftpserver.hursley.abc.com

Port 21

Working directory

/ftpfileoutput

Userid

myuserid

Password

mypassword

These values are for the purposes only of this example. If you use other values,

record them so that you can set the appropriate values below. This example uses

the values above.

v A security identity. Use the mqsisetdbparms command to define a security

identity called, in this example, myidentity for the user and password details

above. For example, use the following command for a broker called MyBroker:

 mqsisetdbparms MyBroker -n ftp::myidentity -u myuserid -p mypassword

Notice the ftp:: prefix which is required so that file nodes can find the security

identity definition.

v Arrange for the following messages which to be produced by the flow preceding

the FileOutput node:

– Three input messages. These are to be sent, in this order, to the In terminal of

the FileOutput node:

- Message 1:

<Message>test1</Message>

- Message 2:

<Message>testtwo</Message>

- Message 3:

<Message>testthree</Message>

These can be produced, for example, by the XMLNSC domain with a message

set which recognizes XML with the following form:

<Message>...</Message>

Working with files 737

– A final message. This is to be sent to the Finish File terminal of the

FileOutput node after the first three messages have been sent:

<thiscanbe>anything</thiscanbe>

Once you have these resources available, perform the following steps:

1. Set the required node properties on the FileOutput node. The following table

summarizes the FileOutput node properties that you should set, which tab they

appear on, and the value that you should set in order to follow this example:

 Table 28.

Tab Property Value

Basic Directory C:\FileOutput\TestDir

File name or pattern test_output1.xml

Output file action Time Stamp, Archive and

Replace Existing File (or

Create if File does not Exist)

Replace duplicate archive

files

Selected

Records and Elements Record definition Record is Delimited Data

Delimiter Broker System Line End

Delimiter type Postfix

FTP FTP Selected

FTP server and port ftpserver.hursley.abc.com

Security identity myidentity

Server directory /ftpfileoutput

Transfer mode ASCII

Retain local file after transfer Selected

If you used other values for your FTP server resource, use those values. These

settings are identical to those used in the example in “Writing a file to your

local file system” on page 735 except that the FTP property has been selected

and there are now properties on the FTP tab. If you clear the FTP check box,

the node behaves as it does in the example in “Writing a file to your local file

system” on page 735; the FTP properties remain set but have no effect.

2. Deploy the message flow to the broker.

3. Send the first three messages to the In terminal of the FileOutput node.

4. Send the final message to the Finish File terminal of the FileOutput node.

The following actions occur when you perform these steps:

1. The file is processed. In accordance with the values set in the properties of the

FileOutput node, the node generates one record per message with a local file

system line terminator after each one. The file contains the following data, each

line terminated by a carriage return (X’0D’) and line feed (X’0A’) pair of

characters (on a Windows system):

<Message>test1</Message>

<Message>testtwo</Message>

<Message>testthree</Message>

.

2. Records are accumulated in a file in the C:\FileOutput\TestDir\mqsitransit

directory. This file is named test_output1.xml. When the final message is sent to

738 Message Flows

the Finish File terminal, and because the FTP check box is selected, the file is

moved to the remote FTP server directory, resulting in the file/ftpfileoutput/
test_output1.xml.

3. If a file of the same name already exists in the remote FTP server directory, the

existing file is overwritten.

If the remote FTP server is not running on a Windows system and the Transfer

mode property is set to ASCII, the character encoding and line terminator

characters can be modified after transfer. For example, on a z/OS FTP server,

the ASCII text is normally converted to EBCDIC and the line terminator

character pairs replaced by EBCDIC new line character (X’15’). Other FTP

servers might treat ASCII transfers differently.

4. Because the Retain local file after transfer check box is selected, the local file is

not deleted but is moved from the mqsitransit subdirectory to the output

directory, C:\FileOutput\TestDir. If a file of the same name already exists in the

output directory, the existing file is renamed and moved to the mqsiarchive

directory. For example, this might result in the file:

C:\FileOutput\TestDir\mqsiarchive\20070924_155346_312030_test_output1.xml

being created. However, if a file of this name already exists in this archive

directory, it is overwritten in accordance with the value of the Replace

duplicate archive files property set on the FileOutput node.

Now see “Writing a file, effects of different values in the FileOutput node’s Record

definition property” to see the results of running this task with different values set

in the Record definition, Delimiter, and Delimiter type properties of the FileOutput

node.

The following samples also provide examples of how to use this node:

v File Output sample

v Batch Processing sample

v WildcardMatch sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Writing a file, effects of different values in the FileOutput

node’s Record definition property

This topic demonstrates the effect of different settings of the properties on the

FileOutput node’s Records and Elements tab.

The examples described in this topic are based on the examples described in

“Writing a file to your local file system” on page 735 and “Writing a file to a

remote FTP server” on page 737. In all examples, it is assumed that the same

messages are sent to the FileOutput node; three to the In terminal and one to the

Finish File terminal:

v Three input messages. These are to be sent, in this order, to the In terminal of

the FileOutput node:

– Message 1:

<Message>test1</Message>

– Message 2:

<Message>testtwo</Message>

Working with files 739

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.fileoutput.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.BatchProcessing.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.WildcardMatch.doc/doc/overview.htm

– Message 3:

<Message>testthree</Message>

These can be produced, for example, by the XMLNSC domain with a message

set which recognizes XML with the following form:

<Message>...</Message>

v A final message. This is to be sent to the Finish File terminal of the FileOutput

node after the first three messages have been sent. It does not matter what this

message contains

The following examples describe the contents of the file or files produced; the

disposition of the files created is as in the “Writing a file to your local file system”

on page 735 and “Writing a file to a remote FTP server” on page 737 topics.

Example 1. Records written are separated by a DOS or UNIX line

end

This example is identical to the one described in “Writing a file to your local file

system” on page 735 or “Writing a file to a remote FTP server” on page 737.

Specify the node’s properties as described in “Writing a file to your local file

system” on page 735 or “Writing a file to a remote FTP server” on page 737.

This results in one file being written. The file contains three records each

terminated by a local system line terminator; on a Windows system, this is a

carriage return line feed pair (X’0D0A’).

<Message>test1</Message>

<Message>testtwo</Message>

<Message>testthree</Message>

Example 2. Records written are separated by a custom delimiter

In addition to the property settings described in “Writing a file to your local file

system” on page 735 or “Writing a file to a remote FTP server” on page 737, set

these properties on the Records and Elements tab as follows:

 Table 29.

Property Value

Record definition Record is Delimited Data

Delimiter Custom Delimiter

Custom delimiter 0D0A

Delimiter type Postfix

The hexadecimal X’0D0A’ represents a carriage return character followed by a line

feed character. On a Windows system, this results in a file identical to the one

created in Example 1. On other systems, the result may differ to the result in

Example 1; Example 1 uses local system line end characters, whereas Example 2

always puts the X’0D0A’ sequence at the end of each line.

Example 3. Records written are padded to a fixed length

In addition to the property settings described in “Writing a file to your local file

system” on page 735 or “Writing a file to a remote FTP server” on page 737, set

these properties on the Records and Elements tab as follows:

740 Message Flows

Table 30.

Property Value

Record definition Record is Fixed Length Data

Length (bytes) 30

Padding bytes (hexadecimal) 2A

The hexadecimal character X’2A’ represents an asterisk character in ASCII.

The length of each incoming message is 24 bytes, 26 bytes, and 28 bytes

respectively. The required fixed length of each record is 30 bytes. Each record is,

therefore, padded by an extra 6 bytes, 4 bytes, or 2 bytes, with the hexadecimal

character X’2A’ which represents an asterisk character in ASCII.

One file is written. It contains a single line:

<Message>test1</Message>******<Message>testtwo</Message>****<Message>testthree</Message>**

Example 4. Records written are not separated by delimiters or

padding

In addition to the property settings described in “Writing a file to your local file

system” on page 735 or “Writing a file to a remote FTP server” on page 737, set

this property on the Records and Elements tab as follows:

 Table 31.

Property Value

Record definition Record is Unmodified Data

The records are concatenated with no padding or delimiters.

One file is written with the following content:

<Message>test1</Message><Message>testtwo</Message><Message>testthree</Message>

There are no trailing bytes or line terminators.

Example 5. Records are written as whole files

In addition to the property settings described in “Writing a file to your local file

system” on page 735 or “Writing a file to a remote FTP server” on page 737, set

this property on the Records and Elements tab as follows:

 Table 32.

Property Value

Record definition Record is Whole File

This results in three files being created, each containing one record:

v File 1:

<Message>test1</Message>

v File 2:

<Message>testtwo</Message>

v File 3:

<Message>testthree</Message>

Working with files 741

Each of these files is created with the same name, one by one, in the mqsitransit

directory. If you are following the example in “Writing a file to a remote FTP

server” on page 737, each file is transferred to the remote FTP server. However,

because each file overwrites the previous one, only the third file remains when the

task is complete.

After optional transfer, if a copy is retained, each file is moved to the output

directory, C:\FileOutput\TestDir. In accordance with the properties on the

FileOutput node as described in “Writing a file to your local file system” on page

735 or “Writing a file to a remote FTP server” on page 737, the second file moved

displaces the first file form the output directory and moved to the mqsiarchive

subdirectory; this displaced file is also renamed. When the third file is moved to

the output directory, it displaces the second file, causing it to be moved to the

mqsiarchive subdirectory and renamed. The final result is files similar to these:

C:\FileOutput\TestDir\mqsiarchive\20071101_165346_312030_test_output1.xml

C:\FileOutput\TestDir\mqsiarchive\20071101_165347_312030_test_output1.xml

C:\FileOutput\TestDir\test_output1.xml

being File 1, File 2, and File 3 respectively. If FTP processing were enabled, File 3

would also be in the remote FTP server directory and called test_output1.xml.

742 Message Flows

Part 4. Deploying

Deploying 745

Deployment overview 746

Deployment methods 746

Types of deployment 748

Message flow application deployment 749

Broker configuration deployment 753

Publish/subscribe topology deployment . . . 753

Publish/subscribe topics hierarchy deployment 754

Cancel deployment 755

Deploying a message flow application 757

Creating a server project 757

Creating a broker archive 758

Adding files to a broker archive 759

Refreshing the contents of a broker archive . . 763

Deploying a broker archive file 763

Deploying a message flow application that

usesWebSphere Adapters 766

Deploying a broker configuration 767

Using the Message Broker Toolkit 767

Using the mqsideploy command 767

Using the Configuration Manager Proxy . . . 768

Deploying a publish/subscribe topology 768

Using the Message Broker Toolkit 769

Using the mqsideploy command 769

Using the Configuration Manager Proxy . . . 770

Deploying a publish/subscribe topics hierarchy 770

Using the Message Broker Toolkit 771

Using the mqsideploy command 771

Using the Configuration Manager Proxy API 771

Checking the results of deployment 772

Using the Message Broker Toolkit 772

Using the mqsideploy command 772

Using the Configuration Manager Proxy API 773

Canceling a deployment that is in progress . . . 774

Using the Message Broker Toolkit 774

Using the mqsideploy command 775

Using the Configuration Manager Proxy API 775

Renaming objects that are deployed to execution

groups 776

Removing a deployed object from an execution

group 776

Using the Message Broker Toolkit 776

Using the mqsideploy command 777

Using the Configuration Manager Proxy API 777

© Copyright IBM Corp. 2000, 2008 743

744 Message Flows

Deploying

Deploy the resources you create in the workbench to one or more brokers in your

broker domain.

The mode in which your broker is working, can affect the number of execution

groups and message flows that you can deploy, and the types of node that you can

use. See Restrictions that apply in each operation mode.

You can deploy resources, such as message flows, to execution groups on brokers.

Read the overview section for information about the different ways in which you

can deploy resources, and about the different types of deployment:

v “Deployment overview” on page 746

– “Deployment methods” on page 746

– “Types of deployment” on page 748

– “Message flow application deployment” on page 749

- “Broker archive” on page 751

- “Configurable properties of a broker archive” on page 752

- “Version and keyword information for deployable objects” on page 752
– “Broker configuration deployment” on page 753

– “Publish/subscribe topology deployment” on page 753

– “Publish/subscribe topics hierarchy deployment” on page 754

– “Cancel deployment” on page 755

The following topics describe the basic tasks associated with deployment:

v “Deploying a message flow application” on page 757

– “Creating a server project” on page 757

– “Creating a broker archive” on page 758

– “Adding files to a broker archive” on page 759

- “Editing a broker archive file manually” on page 760

- “Editing configurable properties” on page 761

- “Adding multiple instances of a message flow to a broker archive” on page

761

- “Configuring a message flow at deployment time using UDPs” on page 762
– “Refreshing the contents of a broker archive” on page 763

– “Deploying a broker archive file” on page 763

Learn how to perform other types of deployment:

v “Deploying a broker configuration” on page 767

v “Deploying a publish/subscribe topology” on page 768

v “Deploying a publish/subscribe topics hierarchy” on page 770

Further topics describe other deployment tasks:

v “Checking the results of deployment” on page 772

v “Canceling a deployment that is in progress” on page 774

v “Renaming objects that are deployed to execution groups” on page 776

© Copyright IBM Corp. 2000, 2008 745

|
|
|

v “Removing a deployed object from an execution group” on page 776

Deployment overview

Deployment is the process of transferring data to an execution group on a broker

so that it can take effect in the broker domain.

When you create application resources such as message flows in the workbench,

you must distribute them to the brokers on which you want them to run.

Associated with the resources that you create is the configuration associated with

those brokers in your broker domain.

You can initiate a deployment in one of three ways; from the workbench, using the

mqsideploy command, or using functions described by the Configuration Manager

Proxy. Depending on your work patterns, you might make use of all three methods

at different times. These three options are described in “Deployment methods.”

You can also perform different types of deployment, depending on whether you

are working with new resources, or updating existing ones. Most types of

deployment can typically be configured to perform in one of two ways:

v Complete deployment; in which all resources are deployed (or redeployed) to

the whole domain

v Delta or incremental deployment; made either only to update information or to

deploy to selected brokers within the domain, depending on the type of

deployment

See “Types of deployment” on page 748 for further information about full and

delta deployment.

When you have read these overview topics, find detailed instructions for the tasks

that you want to complete in the subsequent topics.

Read the IBM Redbooks publication WebSphere Message Broker Basics for further

information about deployment.

Deployment methods

Choose the appropriate method of deployment according to that way in which you

are working.

The goals of a deployment are the same, regardless of how you initiate it. The

method that you choose might have an effect on how the operation is performed:

v If you use the workbench or the Configuration Manager Proxy (CMP), the

request is asynchronous. Control returns immediately either to the workbench or

to your Java program. You must request the result of the operation at a later

time, and take appropriate action.
v If you are using the workbench, switch to the Broker Administration perspective

and check the Event Log.

A deployment request always completes, either because the broker has sent a

response or the timeout has expired. If you have reason to believe that the

deployment might not be successful, for example if you become aware that a

problem with the network or the broker might prevent its completion, you can

cancel the deploy request. Use this only in exceptional circumstances; cancelation

might cause the state of the execution groups to become unpredictable.

746 Message Flows

http://www.redbooks.ibm.com/abstracts/sg247137.html

v If you are using the Configuration Manager Proxy (CMP), you can request

responses to the deployment later in your program.

When the request is received by the broker, it communicates with the execution

groups that are affected by the contents of the deployment request. The broker

waits for a certain amount of time, during which it expects the execution groups

to complete the work. If the execution groups do not indicate that they have

finished before the time has expired, the broker sends back a negative response

with message BIP2066.

The workbench also known as the Message Broker Toolkit

 In the of the Broker Administration perspectiveworkbench, the Domain

Navigator view displays all the objects associated with a specific domain.

For example, if you expand the Topology view, all the brokers in the

domain are displayed; if you expand a Broker view, all the execution

groups within that broker are displayed. From the Domain Navigator view

you can deploy a topology to all the brokers in the domain or you can

deploy all the execution groups to a particular broker. You can also drag a

broker archive (bar) file from the Broker Development view onto an

execution group within the Domain Navigator view to deploy the contents

of the broker archive.

You might typically use the workbench if you are working in a

development environment or if you are new to WebSphere Message Broker.

The mqsideploy command

You can deploy from the command line using the mqsideploy command.

On the command line, you typically specify the connection details as well

as parameters specific to the type of deployment. Each topic describes and

provides details of the types of deployment.

 If you use the mqsideploy command, the deployment is started and the

command waits for a response. It returns control to you (or the script that

issued the command) when a response is received by the broker, or when

the wait time defined by the -w parameter has expired, whichever occurs

first. If the time expires before a response is received, the command

completes with a warning message that informs you what has happened.

The warning does not mean that the command has failed, only that a

response was not received during the time for which it waited. You can

change the wait interval by specifying a different value for the wait

parameter on the command.
You might typically use the mqsideploy command in a script when you are

more familiar with WebSphere Message Broker.

WebSphere Message Broker provides two files to help you when writing

your own scripts that invoke the mqsideploy command:

v Initialization file mqsicfgutil.ini. This file is a plain text file in the

mqsideploy command’s working directory that contains configurable

variables that are required to connect to the Configuration Manager. For

example:

hostname = localhost

queueManager = QMNAME

port = 1414

securityExit = test.myExit

Information that you do not explicitly specify any of this information as

parameters on the mqsideploy command (as shown in the examples in

subsequent topics), the information is taken from the mqsicfgutil.ini file.

Deploying 747

Alternatively, use the -n parameter on the command to specify an

XML-format .configmgr file that describes the connection parameters to

the Configuration Manager.

v

Windows

Batch file mqsideploy.bat. On Windows platforms, use

mqsideploy.bat if you want to use the same parameters as those used

before Version 6.0. The parameters of the mqsideploy command changed

in WebSphere Message Broker Version 6.0.

The Configuration Manager Proxy API

 You can control deployment from anyJava program by using functions

described by the Configuration Manager Proxy (CMP) API. You can also

interrogate the responses from the broker and take appropriate action.

The Java applications can also use the CMP to control other objects in the

domain, such as brokers, execution groups, publish/subscribe topologies,

topics, subscriptions, and the Configuration Manager and its event log.

This means that you can use the CMP to create and manipulate an entire

domain programmatically.

Types of deployment

Describes the different types of deployment.

Follow the links to later topics in this section that describe each type of

deployment and the situation in which each type should, and should not, be used.

v To deploy message flows, message sets and other deployable objects to an

execution group, see Message flow application deployment.

This type deployment uses a broker archive file. You can set the configurable

properties for objects in the message flow.

v To deploy configuration details, see Broker configuration deployment.

v In publish/subscribe scenarios, you can deploy topics and topologies:

– Topics hierarchy deployment

– Topology configuration deployment
v You can also cancel a deployment.

This table lists examsples of appropriate ways of deploying in a number of

common scenarios.

 Scenario Suggested deployment

Adding a broker to the domain (when not

using publish/subscribe)

None required.

Connecting publish/subscribe brokers using

connections or a collective

Delta topology deployment.

Modifying the publish/subscribe topic

hierarchy

Delta deployment of the topics hierarchy.

(The changed elements in the topic hierarchy

are deployed to all brokers in the domain.)

Modifying the publish/subscribe topic

hierarchy, after adding a new broker to the

domain

Complete topics deployment. (The entire

topic hierarchy is deployed to all brokers in

the domain. The new broker also receives

the complete topic hierarchy.)

748 Message Flows

Scenario Suggested deployment

Tidying up a broker’s resources after

removing it from the topology

If the broker is part of a publish/subscribe

network, or if you are using the workbench,

initiate a delta publish/subscribe topology

deployment. Otherwise, no deployment is

required.

Creating an execution group Message flow application deployment using

an incremental bar file deployment.

Deleting an execution group None required.

If a broker is not responding to a deploy

request

Ensure that the broker is running. If the

broker is not running, cancel the broker

deployment. You should cancel a broker

deployment only if you are sure that the

broker will never respond to the deploy

request.

Message flow application deployment

Package all of the resources in your message flow into a broker archive (bar) file,

which you can then deploy.

You cannot deploy a message flow application directly to an execution group.

Instead, you package all of the relevant resources into a broker archive (bar) file,

which you then deploy; see “Broker archive” on page 751. When you add files to

the broker archive, they are automatically compiled as part of the process; see

“Adding files to a broker archive” on page 759. JAR files that are required by

JavaCompute nodes in message flows are added automatically from your Java

project; see “JavaCompute node” on page 943.

The broker archive is a compressed file, which is sent to the Configuration

Manager, where its contents are extracted and distributed to execution groups. If

an execution group has not been initialized on the broker (that is, if the broker has

only just been created), the execution group is created as part of the deployment.

The mode in which your broker is working, can affect the number of execution

groups and message flows that you can deploy, and the types of node that you can

use. See Restrictions that apply in each operation mode.

This diagram shows the flow of events when you deploy a message flow

application:

Deploying 749

|
|
|

You can deploy a bar file in two ways:

v “Incremental bar file deployment” on page 751. Deployed files are added to the

execution group. Files which already exist in the execution group are replaced

with the new version.

v “Complete bar file deployment” on page 751. Files that are already deployed to

the execution group are removed before the complete contents of the bar file are

deployed. Therefore, nothing is left in the execution group from any previous

deployment.

execution
group

broker

message flow
project

message
flows, esql,
mappings

compiled
message flows

(.cmf)

can depend
on

can depend
on

broker archive
file (.bar)

configuration
manager

other files
(.xml, .xsl, .jar)

compiled
message dictionary

(.dictionary)

deploy

message set
containing message

definitions

compile compile

package

message set
project

750 Message Flows

Incremental bar file deployment

Incrementally deploying a bar file tells the Configuration Manager to extract the

contents of the bar file and to send those contents to an execution group. The

following conditions are applied when a file is deployed to the bar file:

v If a file in the bar file has the same name as an object that is already deployed to

the execution group, the version that is already deployed is replaced with the

version in the bar file.

v If a file in the bar file is of zero length, and a file of that name has already been

deployed to the execution group, the deployed file is removed from the

execution group.

When to use

v To incrementally deploy message flows, message sets, or other

deployable objects to an execution group.

When not to use

v To completely clear the contents of the execution group before the bar

file is deployed. Instead use a complete bar file deployment.

Complete bar file deployment

Completely deploying a bar file tells the Configuration Manager to extract the

deployable content of the bar file and to send the contents to an execution group,

first removing any existing deployed contents of the execution group.

When to use

v To deploy message flows, message sets, or other deployable objects to an

execution group.

When not to use

v To merge the existing contents of the execution group with the contents

of the bar file. Instead use an incremental bar file deployment.

Broker archive

The unit of deployment to the broker is the broker archive or bar file.

The bar file is a compressed file that can contain a number of different files:

-

v A .cmf file for each message flow. This file is a compiled version of the message

flow. You can have any number of these files within your bar file.

v A .dictionary file for each message set dictionary. You can have any number of

these files within your bar file.

v A broker.xml file. This file is called the broker deployment descriptor. You can have

only one of these files within your bar file. This file, in XML format, resides in

the META-INF folder of the compressed file and can be modified using a text

editor or shell script.

v Any number of XML files (.xml) and style sheets (.xsl files) for use with the

“XSLTransform node” on page 1216.

v Any number of JAR files for use with the “JavaCompute node” on page 943.

v Any other files that you need that are contained in the compressed file-archive

bar file. For example, you might want to include Java source files for future

reference.

To deploy XML, XSL, and JAR files inside a broker archive, the connected

Configuration Manager and target broker must be Version 6.0 or later.

Deploying 751

Configurable properties of a broker archive

System objects that are defined in message flows can have configurable properties

that you can update within the broker archive (bar) file before deployment.

Configurable properties allow an administrator to update target-dependent

properties, such as queue names, queue manager names, and database connections.

By changing configurable properties, you can customize a bar file for a new

domain, for example a test system, without needing to edit and rebuild the

message flows, message mappings, or ESQL transformation programs. Any

properties that you define are contained within the deployment descriptor,

META-INF/broker.xml. The deployment descriptor is parsed when the bar file is

deployed.

Edit the configurable properties using either the Broker Archive editor or the

mqsiapplybaroverride command from a command prompt.

Although the two methods indicated above are preferable, you can also edit the

XML-format deployment descriptor manually using an external text editor or shell

script.

Version and keyword information for deployable objects

This topic contains information about how to view the version and keyword

information of deployable objects.

v “Displaying object version in the Broker Archive editor”

v “Displaying version, deploy time, and keywords of deployed objects”

This topic also contains information on populating the Comment and Path

columns; see “Populating the Comment and Path columns” on page 753.

Displaying object version in the Broker Archive editor

A column in the Broker Archive editor called Version displays the version tag for

all objects that have a defined version. These are:

v .dictionary files

v .cmf files

v Embedded JAR files with a version defined in a META-INF/keywords.txt file

You cannot edit the Version column.

You can use the mqsireadbar command to list the keywords that are defined for

each deployable file within a deployable archive file.

Displaying version, deploy time, and keywords of deployed objects

The Properties View displays, for any deployed object:

v Version

v Deploy Time

v All defined keywords

For example, if you deploy a message flow with these literal strings:

v $MQSI_VERSION=v1.0 MQSI$

v $MQSI Author=fred MQSI$

v $MQSI Subflow 1 Version=v1.3.2 MQSI$

752 Message Flows

the Properties View displays:

 Deployment Time Date and time of deployment

Modification Time Date and time of modification

Version v1.0

Author fred

Subflow 1 Version v1.3.2

You are given a reason if the keyword information is not available. For example, if

keyword resolution has not been enabled at deploy time, the Properties View

displays the message Deployed with keyword search disabled. Also, if you deploy

to a Configuration Manager that is an earlier version than Version 6.0, the

properties view displays Keywords not available on this Configuration Manager.

Populating the Comment and Path columns

If you add source files, the Path column is populated automatically.

To add a comment, double click on the Comment column and type the text that

you require.

Broker configuration deployment

A broker configuration deployment informs a broker of various configuration

settings, including a list of execution groups, and multicast and inter-broker

settings.

When to use

v If you have modified runtime properties in the Message Brokers Toolkit

or in a Configuration Manager Proxy application.

When not to use

v If you have used the mqsichangeproperties command to change

publish/subscribe settings directly on the broker component. In this

case, a broker configuration deployment overwrites the changes that you

have made to the settings.

v If you are adding execution groups. In this case, the first time that you

deploy a broker archive (bar) file, the execution group is automatically

initialized.

Publish/subscribe topology deployment

Topology deployment is required only when using publish/subscribe. It informs

each broker in the domain of the brokers with which it can share publications and

subscriptions.

You can deploy a topology configuration in two ways:

v Complete topology deployment, in which all brokers are told of their

neighboring publish/subscribe brokers.

v Delta topology deployment, in which only changes to the publish/subscribe

topology are deployed. Such changes are deployed only to those brokers whose

neighbor lists have changed since the last successful topology deployment.

Deploying 753

Whatever type of deployment you perform, the Configuration Manager attempts to

subscribe to the broker’s status messages if it is the first deployment to the broker.

However only a complete topology deployment initiates a further subscription.

Complete topology deployment

You can deploy a complete topology. Deploying a complete topology has the

following effects:

v Each broker in the domain is informed of the set of brokers with which it can

share publish/subscribe information.

v The Configuration Manager is forced to subscribe again to the broker’s status

topics, such as start and stop messages.

When to use

v If the Configuration Manager is not correctly reporting whether it is in a

stopped or started state.

v If you have moved a Configuration Manager from one queue manager

to another.

v If a broker’s publish/subscribe function has become inconsistent. An

example of inconsistency would be if one broker is able to share

publications with a second broker, but not the other way round.

When not to use

v If you are adding brokers to the domain and you are not using

publish/subscribe. That is, if you are not connecting brokers together so

that they can share publications and subscriptions.

v If you are adding execution groups to a broker.

v If you have changed the publish/subscribe network. In this case, deploy

a delta topology, if possible, so that you deploy only to those brokers

affected by the changes you have made.

v If you have removed a broker from the domain.

Delta topology deployment

Deploying a delta topology sends updated publish/subscribe network information

to any broker with a publish/subscribe configuration that the Configuration

Manager determines not to be current.

When to use

v If you have modified a publish/subscribe network.

v If you are using the workbench to remove a broker from the domain.

The Configuration Manager automatically requests the broker

component to stop message flows that are running and to tidy up any

resources in use. If this operation fails, you can again request the broker

to tidy up. Deploying a delta topology is the most convenient way to

deploy only to those brokers affected by the topology changes.

When not to use

v If you are adding brokers to the domain and you are not using

publish/subscribe. That is, if you are not connecting brokers together so

that they can share publications and subscriptions.

v If you are adding or removing execution groups.

Publish/subscribe topics hierarchy deployment

If you are using publish/subscribe, deploy the topics hierarchy in these situations:

754 Message Flows

v If you have modified the hierarchy of topics. The deployment communicates the

new hierarchy to each broker.

v If you have added a broker to the domain and you want it to use the existing

topics hierarchy. The deployment communicates the hierarchy to the new broker.

You can deploy a publish/subscribe topics hierarchy in two ways:

v Complete deployment, in which the complete topics hierarchy is sent to all the

brokers in a domain.

v Delta deployment, in which changes to the topics hierarchy (made since the last

topics deployment) are sent to all the brokers in a domain.

Complete topics deployment

A complete topics deployment sends the publish/subscribe topics hierarchy to all

the brokers in a domain.

When to use

v If you have made changes to the topics hierarchy and one of the brokers

has an inconsistent view of the expected topics hierarchy.

v If you have added a new broker to the domain that uses the topics

hierarchy.

When not to use

v If you have changed the topics hierarchy. In this case, a delta topics

deployment is typically sufficient.

Delta topics deployment

A delta topics deployment sends the publish/subscribe topics hierarchy changes to

all the brokers in a domain.

When to use

v If you have made changes to the topics hierarchy.

When not to use

v If the topics hierarchy has not changed.

Cancel deployment

The Configuration Manager allows only one deployment to be in progress to each

broker at any one time. If for some reason a broker does not respond to a

deployment request, subsequent requests cannot reach the broker, because, to the

Configuration Manager, a deployment is still in progress.

Canceling deployment tells the Configuration Manager to assume that a broker

will never respond to an outstanding deployment. In most cases, the action does

not remove any deployment messages that have been sent to the broker, nor does it

alter the running configuration of the broker. (Thus, for any brokers that have

successfully deployed a configuration, the deployed information remains on the

broker.)

If a broker subsequently does provide a response to an outstanding deployment

that has been canceled, the response is ignored by the Configuration Manager, and

an inconsistency subsequently exists between what is running on the broker and

the information that is provided by the Configuration Manager.

Because of this risk of inconsistency, cancel a deployment only as a last resort, and

only if you are sure that a broker will never be able to process a previous

Deploying 755

deployment request. However, before canceling deployment, you can manually

remove outstanding deployment messages to ensure that they are not processed.

When canceling deployment across the domain, the locks for all outstanding

deployments in the domain are removed. When canceling deployment for a

specific broker, the lock for that broker only is removed.

Canceling deployment is the equivalent of the ’force deploy’ action in previous

versions, except that cancel does not redeploy domain information.

You can cancel a deployment in two ways:

v Cancel deployment to a domain

v Cancel deployment to a broker

Cancel deployment to a domain

Canceling the deployment to a domain tells the Configuration Manager to assume

that all brokers in the domain that have outstanding deployments will not

respond. If a broker later responds to an outstanding deployment that has been

canceled, the response is ignored and there is an inconsistency between what is

running on the broker and the information that is provided by the Configuration

Manager.

When to use

Cancel a domain deployment only if both of these conditions are met:

v You receive error message BIP1510 when you attempt a deployment.

v None of the brokers that have outstanding deployments are responding.

v The connected Configuration Manager is at Version 6.0 or later. If the

version is earlier, canceling deployment to a specific broker has no effect.

When not to use

v If a broker is simply taking a long time to respond to a deployment

request. The broker might have been temporarily stopped, for example.

v If other users might be deploying to the domain at the same time.

v If only one broker is not responding, or a small number of brokers are

not responding. In this case, cancel the broker deployment instead.

Cancel deployment to a broker

Canceling the deployment to a single broker tells the Configuration Manager to

assume that a specific broker in the domain that has an outstanding deployment

will not respond. If a broker later responds to an outstanding deployment that has

been canceled, the response is ignored and there is an inconsistency between what

is running on the broker and the information that is provided by the Configuration

Manager.

When applied to an individual broker, canceling deployment causes the

Configuration Manager to attempt to remove from the broker, deployment

messages that have not yet been processed. This succeeds only if the broker and

the Configuration Manager share the same queue manager, and if the message has

not already been processed by the broker.

When to use

Cancel a domain deployment only if both of these conditions met:

v You receive error message BIP1510 when you attempt a deployment .

v The broker is not responding.

When not to use

756 Message Flows

v If the broker is simply taking a long time to respond to a deployment

request. The broker might have been temporarily stopped, for example.

v If the version of the connected Configuration Manager is earlier than

Version 6.0. In this case, canceling deployment to a specific broker has

no effect; you must cancel the entire domain deployment instead.

Deploying a message flow application

Deploy message flow applications to execution groups by adding required

resources, optionally with their source files, to a broker archive (bar) file. The bar

file is then deployed by sending it to the appropriate Configuration Manager,

where it is unpacked and the individual files are distributed to execution groups

on individual brokers.

Before you start:

Before you can deploy a message flow application, you must have created and

started a Configuration Manager. You must also start a WebSphere MQ listener for

the associated queue manager.

Within the workbench, you must create a domain, add a broker to that domain,

and create an execution group within the broker. The broker that you add to the

domain is a reference, therefore you must also create and start the physical broker

on the target system, and start a WebSphere MQ listener on its queue manager. See

the links to related tasks at the end of this topic for help with these actions.

The mode in which your broker is working, can affect the number of execution

groups and message flows that you can deploy, and the types of node that you can

use. See Restrictions that apply in each operation mode.

The related tasks in this section describe the process:

1. “Creating a server project”

2. “Creating a broker archive” on page 758

3. “Adding files to a broker archive” on page 759

4. “Refreshing the contents of a broker archive” on page 763

5. “Deploying a broker archive file” on page 763

6. “Checking the results of deployment” on page 772

If your message flows include user-defined nodes, you must also distribute the

compiled C or Java code for each node to every broker that uses those message

flows. For more details, see Developing user-defined extensions.

Creating a server project

Before you can deploy a message flow application, you must create a server project

for it.

Before you start:

Save your message flow and message set projects.

Follow these steps to create a server project using the Message Broker Toolkit.

1. Switch to the Broker Administration perspective.

2. Click File → New → Other.

Deploying 757

|
|
|

3. Select Show all wizards. In the list of wizards, expand Server and click Server

Project.

4. Click Next.

5. If you are prompted, click OK to enable ″Base J2EE Support″.

6. Enter the name of your new server project.

7. Click Finish.

The folder that is created appears twice in the Navigator view (if Show empty

projects in Navigators has been selected in the Broker Administration Preferences

page):

v In the Domain Connections folder

v In the Broker Archives folder

Next:

1. Create a broker archive.

2. Add files to the broker archive.

Creating a broker archive

Create a separate broker archive (bar) file for each configuration that you want to

deploy.

You can create a bar file in two ways:

v Using the Message Broker Toolkit

v Using the mqsicreatebar command

Using the Message Broker Toolkit

Before you start:

Either create a server project, or ensure that one already exixts.

Follow these steps to create a bar file using the workbench:

1. Switch to the Broker Administration perspective.

2. Click File → New → Message Broker Archive.

3. Enter the name of your server project or select one from the displayed list. The

list is filtered to only show projects in the active working set.

4. Enter a name for the bar file that you are creating.

5. Click Finish.

A file with a .bar extension is created and is displayed in the Broker

Administration Navigator view, under the Broker Archives folder. The Content

editor for the bar file opens.

Next:

Continue by adding files to your broker archive and then deploying it.

Using the mqsicreatebar command

Follow these steps to create a bar file using the mqsicreatebar command:

1. Open a command window that is configured for your environment.

758 Message Flows

|
|

2. Enter the command, typed on a single line:

mqsicreatebar -b barName -cleanBuild -p projectNames -o filePath

A file with a .bar extension is created.

Specify the-b (bar file name) and -o (path for included files) parameters. The -p

(project names) parameter is optional. The mqsicreatebar topic gives more

details.

Use the -cleanBuild parameter to refresh all the projects in the broker archive

and invoke a clean build if amendments have been made to broker-archive

resources using external tools.

Next:

Continue by adding files to your broker archive and then deploying it.

Adding files to a broker archive

To deploy files to a\n execution group, you first include them in a broker archive

(bar). The bar file is deployed by sending it to the Configuration Manager and,

from there, its contents are sent to the execution group on a broker.

Before you start:

Create a broker archive (bar) file for each execution group that you want to deploy.

You can add message flows and message sets to a bar file only at the project level.

However, after you have added the project to the bar file, you can click Remove to

remove individual message flows or message definitions. Likewise, if you check

Include source files, the source files for all Message flows, message sets or other

items in the project are included; you can manually remove the resources that you

do not want.

To deploy XML, XSL, and JAR files inside a broker archive, the connected

Configuration Manager and target broker must be Version 6.0 or later.

Subflows are not displayed in the Build dialog as separate items and are added

automatically, so you have to add only the parent flow to include the subflows.

You can manually add XML, XSL, and JAR files by following these steps. However,

JAR files that are required by JavaCompute nodes within message flows are added

automatically from your Java project when you add the message flow. Similarly,

XML and XSL files are automatically added if they are required by the flow.

You cannot read deployed files back from broker execution groups. Therefore, keep

a copy of the deployed bar file, or of the individual files within it.

Follow these steps to add files to a broker archive (bar) file using the Message

Broker Toolkit:

1. Switch to either the Broker Administration perspective or the Broker

Administration perspective.

2. Double-click your bar file in the Broker Administration Navigator view to open

it. The contents of the bar file are shown in the Content editor. (If the bar file is

new, this view is empty.)

3. Select the required broker archive resources.

4. Click Build.

Deploying 759

5. Select the message flows, message sets, and other files that you want to

include. (Duplicates within a bar file are automatically removed.)

6. Optional: If you want to include your source files, select Include source files.

7. Optional: If you want to compile ESQL so that it is compatible with Version 2.1

brokers, check Build ESQL for brokers version 2.1.

8. Optional: if you are adding a flow to a bar for a second time, and have used

the Configure tab to change flow parameters, select Override configurable

property values to control behavior.

If the box is selected, existing configuration settings are reset when a flow is

added again.

If the box is cleared, existing settings are left in place when a flow is replaced.

9. Click Build broker archive.

A list of the files that are now in your bar file is displayed on the Manage page.

You can choose not to display your source files by clearing the Show source files

box at the bottom of theManage page.

Next:

The next step is to deploy your broker archive (bar) file, but you might first want

to edit configurable properties. You can also edit the contents of your bar file

manually.

If you want to have multiple instances of a flow with different values for the

configurable properties see “Adding multiple instances of a message flow to a

broker archive” on page 761.

Editing a broker archive file manually

This task explains how to manually edit a broker archive (bar) file that already

exists.

Before you start:

If you have not already created a bar file, create it now, before continuing.

Follow these steps to edit a bar file manually using the Message Broker Toolkit:

1. Export the bar file.

a. From the workbench, click File → Export. The Export window appears.

b. Select the export destination, such as a compressed file with .zip extension,

and click Next.

c. Select the resources that you want to export and click Next.

d. Complete the destination information and click Finish. The file appears at

the destination you specified as a compressed file.
2. Extract files from the bar file.

3. Edit the properties that you want to change in an editor of your choice.

4. Save the file.

5. Import the bar file back into the workbench to deploy it.

a. From the workbench, click File → Import. The Import window appears.

b. Select compressed file from the list.

c. Click Next.

d. Specify the name and location of your bar file.

760 Message Flows

|
|
|

|
|

|

e. Select the server project that you want to contain the bar file.

f. Click Finish.

Next:

Continue by deploying your broker archive (bar) file.

Editing configurable properties

You can edit the configurable properties of your broker archive (bar) file

deployment descriptor.

Before you start:

If you have not already created a bar file, create it now.

You can edit configurable properties in two ways:

v Using the Message Broker Toolkit

v Using the mqsiapplybaroverride command

Using the Message Broker Toolkit:

Follow these steps to edit properties using the Message Broker Toolkit:

1. Switch to the Broker Administration perspective.

2. Select the Configure tab at the bottom of the Content editor pane. The

properties that you can configure are listed.

3. Click the property for which you want to edit the value. The values that can be

edited are displayed.

4. Replace the current value with the new value.

5. Save your bar file.

Next:

Continue by deploying your broker archive (bar) file.

Using the mqsiapplybaroverride command:

Follow these steps to edit properties using the mqsiapplybaroverride command:

1. Open a command window that is configured for your environment.

2. Create a text file (with a .properties file extension).

3. Enter the command, typed on a single line, specifying the location of your bar

deployment descriptor (typically broker.xml) and the file that contains the

properties to be changed: See mqsiapplybaroverride for examples on how to

use the command. A file with a .bar extension is created.

Next:

Continue by deploying your broker archive (bar) file.

Adding multiple instances of a message flow to a broker archive

You can edit the name of your files in the broker archive (bar) file so that you can

deploy multiple instances of a message flow with different values for the

configurable properties.

Before you start:

Deploying 761

|

|

|
|
|
|

Add the file to the broker archive. See “Adding files to a broker archive” on page

759.

To deploy multiple instances of the flow with different values for the configurable

properties:

1. Rename the message flow file (.cmf) in the broker archive editor.

2. Add the message flow to the bar file again. It is added to the bar file with the

original name.

3. Click the Configure tab. You can now edit the configurable properties for both

message flows.

Tip: The names assigned in the bar file are also used on the command line; for

example, if you run mqsilist (list resources) command on your execution

group or if you run mqsichangetrace command for a message flow.

Next:

Deploy the bar file. Both message flows are deployed to the execution group and

use the values for the configurable properties that you set in the bar file.

Configuring a message flow at deployment time using UDPs

User-defined properties (UDPs) give you the opportunity to configure message

flows at deployment time, without modifying program code. You can give the

UDP an initial value when you declare it in your program, or when you use the

Message Flow editor to create or modify a message flow.

For an overview of user-defined properties, see “User-defined properties” on page

111.

See the “DECLARE statement” on page 1525 for an example of how to code a UDP

statement.

In ESQL, you can define UDPs at the module or schema level.

After a UDP has been defined by the Message Flow editor, you can modify its

value before you deploy it.

To configure UDPs:

1. Switch to the Broker Administration perspective.

2. Double-click the bar file in the Navigator view. The contents of the bar file are

shown in the Content editor.

3. Click the Configure tab at the bottom of the Content editor. This pane shows

the names of your message flows, which you can expand to show the

individual nodes that are contained in the flow.

4. Click a message flow name. The UDPs that are defined in that message flow

are displayed with their values.

5. If the value of the UDP is unsuitable for your current environment or task,

change it to the value that you want. The value of the UDP is set at the flow

level and is the same for all eligible nodes that are contained in the flow. If a

subflow includes a UDP that has the same name as a UDP in the main flow,

the value of the UDP in the subflow is not changed.

Now you are ready to deploy the message flow. See “Deploying a broker archive

file” on page 763.

762 Message Flows

|
|

|
|

Refreshing the contents of a broker archive

Refresh the contents of a broker archive by removing resources from it and, having

made required changes, add them back again. Alternatively, use the Refresh option

in the Broker Archive editor.

Before you start:

You should already have created a broker archive and have added resources to it.

You are likely to have subsequently made changes to those resources that you

want reflected in the archive before you deploy it.

Follow these steps to refresh the contents of a broker achive:

1. Switch to the Broker Administration perspective.

Broker archive (bar) files that need to be refreshed are shown with an

’out-of-synch’ icon (

) in the Navigator view. (The bar file is considered to be

inconsistent when any of its deployable workspace files has a time stamp that

is later than that of the bar file.)

2. Double-click your bar file in the Navigator view to open it.

The contents of the bar file are shown in the Content editor. Icons indicate

resources that are consistent

, and those that need to be refreshed

.

3. To refresh all the resources in the broker archive, click Refresh (

).

A dialog box opens, showing progress. When the operation is complete, click

Details to see information about what was refreshed, what was not, and why.

If the refresh process was successful, you see the same information that is

placed in the user log by each of the resource compilers.

Alternatively, you can refresh the achive contents by right-clicking a bar file in

the Navigator view and selecting Refresh Archive Contents. The broker

archive is rebuilt in the background.

You can view, and clear

, the user and service logs by clicking the

appropriate tabs in the Broker Archive editor.

4. (Optional) To view the properties of an individual resource in the Content

editor, right-click the resource and click Show in Properties.

The Deployable properties view opens (if it is not already in the perspective)

and shows details of the resource that you have selected. The view has two

fields:

v Workspace Resource, with references to the linked workspace resources

.msgflow, (.mset, .xml, and .xslt files, for example).

v Last Compile Status, which shows the user log entry for the last compilation.

You can copy text, but you cannot modify it.

Next:

Continue to deploy your bar file.

Deploying a broker archive file

You can deploy your broker archive (bar) file in one of three ways.

Before you start:

You must have created a bar file; see “Creating a broker archive” on page 758.

Deploying 763

You can deploy a broker archive in three ways:

v Using the Message Broker Toolkit

v Using the mqsideploy command

v Using the Configuration Manager Proxy API

v “Redeploying a broker archive file” on page 766using these three methods

The mode in which your broker is working, can affect the number of execution

groups and message flows that you can deploy, and the types of node that you can

use. See Restrictions that apply in each operation mode.

If the execution group to which you want to deploy is restricted by an ACL, you

must have appropriate access rights to complete this task.

Using the Message Broker Toolkit

Follow these steps to deploy a bar file using the workbench:

1. Switch to the Broker Administration perspective.

2. Optional. Typically, an incremental bar file deployment is performed. To

perform a complete bar file deployment, right-click the target execution group

in the Domains view and select Remove Deployed Children. Wait for the

operation to complete before continuing.

You do not have to remove deployed children if you only want to refresh one

or more of the children with the contents of the bar file. For an explanation of

the difference between a complete and an incremental bar file deployment, see

“Message flow application deployment” on page 749.

3. Click the bar file, shown in the Navigator view, to highlight it.

4. Drag the file onto your target execution group shown in the Domains view.

a. Right-click the bar file and click Deploy file. A dialog box shows all of the

domains, as well as execution groups within those domains to which the

workbench is connected. A dialog box shows the execution groups (within

their domains) to which you can deploy the bar file.

b. Select an execution group and click OK to deploy the bar file. (If you select

a broker topology that is not connected to a domain, an attempt is made to

connect it. If you click Cancel, the broker topology remains unconnected to

a domain.)
Whichever method you use, you can select (and deploy to) only one execution

group at a time.

5. If the bar file has not been saved since it was last edited, you are asked

whether you want to save it before deploying. If you click Cancel, the bar file

is not saved and deployment does not take place.

The bar file is transferred to the Configuration Manager, which deploys the file

contents (message flows and message sets, for example) to the execution group. In

the Domains view, the assigned message flows and message sets are added to the

appropriate execution group.

Next:

Continue by checking the results of the deployment; see “Checking the results of

deployment” on page 772.

764 Message Flows

|

Using the mqsideploy command

Follow these steps to deploy a bar file using the mqsideploy command command.

1. Open a command window that is configured for your environment.

2. Using the following examples, enter the appropriate command:

On distributed platforms:

mqsideploy -i ipAddress -p port -q qmgr -b broker -e exngp -a barfile

This command performs an incremental deployment. Add the –m

parameter to perform a complete bar file deployment.

The -i (IP address), -p (port), and -q (queue manager) parameters

represent the connection details of the queue manager computer.

You must also specify the -b (broker name), -e (execution group name),

and -a (bar file name) parameters.

On z/OS

/f MQ01CMGR,dp b=broker e=exngp a=barfile

This command performs an incremental deployment. Add the m=yes

parameter to perform a complete bar file deployment.

In this example, MQ01CMGR is the name of the Configuration

Manager component. You must also specify the names of the broker,

execution group, and bar file (the b=, e=, and a= parameters).

Next:

Continue by checking the results of the deployment; see “Checking the results of

deployment” on page 772.

Using the Configuration Manager Proxy

Use the deploy method of the ExecutionGroupProxy class. By default, the deploy

method performs an incremental deployment. To perform a complete deployment,

use a variant of the method that includes the Boolean isIncremental parameter.

Setting this to false indicates a complete deployment. Setting it to true indicates an

incremental deployment.

For example:

import com.ibm.broker.config.proxy.*;

import java.io.IOException;

public class DeployBar {

 public static void main(String[] args) {

 ConfigManagerConnectionParameters cmcp = new MQConfigManagerConnectionParameters

 ("localhost", 1414, "QM1");

 try {

 ConfigManagerProxy cmp = ConfigManagerProxy.getInstance(cmcp);

 TopologyProxy t = cmp.getTopology();

 BrokerProxy b = t.getBrokerByName("BROKER1");

 ExecutionGroupProxy e = b.getExecutionGroupByName("default");

 e.deploy("deploy.bar");

 }

 catch (ConfigManagerProxyException cmpe) {

 cmpe.printStackTrace();

 }

 catch (IOException ioe) {

Deploying 765

ioe.printStackTrace();

 }

 }

}

Next:

Continue by checking the results of the deployment; see “Checking the results of

deployment” on page 772.

Redeploying a broker archive file

If you make changes to a bar file, and want to propagate those changes to one or

more brokers, you can redeploy the updated bar file to one or more execution

groups, using any of the deploy methods described previously. You do not have to

stop the message flows that you deployed previously; all resources in the

execution group or groups that are in the redeployed bar file are replaced and any

new resources are applied.

If your updates to the bar file include the deletion of resources, a redeploy does

not result in their deletion from the broker. For example, assume your bar file

contains message flows F1, F2, and F3. You update the file by removing F2 and

adding message flow F4. If you redeploy the bar file, all four flows are available in

the execution group when the redeployment has completed. F1 and F3 are replaced

by the content of the redeployed bar file.

If you want to clear resources from the execution group that you previously

deployed before you redeploy, perhaps because you are deleting resources, use

either the mqsideploy command command with the option -m -complete or the

appropriate CMP deploy method for the execution group. If you prefer to use the

Message Broker Toolkit, select the execution group or groups, click Remove

deployed children, and then deploy.

If your message flows are not transactional, stop those message flows before you

redeploy to be sure that all the applications complete cleanly and are in a known

and consistent state. You can stop individual message flows, execution groups, or

brokers.

If your message flows are transactional, the processing logic that handles

commitment or rollback ensures that resource integrity and consistency are

maintained.

Next:

Continue by checking the results of the redeployment; see “Checking the results of

deployment” on page 772.

Deploying a message flow application that usesWebSphere

Adapters

Deploy the resources that are generated when you run the Adapter Connection

wizard by adding them to a broker archive (bar) file.

Before you start:

v Read “WebSphere Adapters nodes” on page 7.

v Perform the steps in Preparing the environment for WebSphere Adapters nodes

766 Message Flows

v Perform the steps in “Connecting to an EIS using the Adapter Connection

wizard” on page 256.

To deploy the message flow successfully, you must deploy the WebSphere

Adapters component, either on its own or in the same bar file as yourmessage

flow. If the WebSphere Adapters component is not available, deployment of the

message flow fails. The following list details the file extensions of the resources

that you deploy :

v .msgflow (the message flow)

v .inadapter (the inbound WebSphere Adapters component)

v .outadapter (the outbound WebSphere Adapters component)

v .xsdzip (the message set)

The mode in which your broker is working, can affect the number of execution

groups and message flows that you can deploy, and the types of node that you can

use. See Restrictions that apply in each operation mode.

1. For details of the steps that you need to perform before you can deploy a

message flow application, see “Deploying a message flow application” on page

757.

2. Add the message flow to the bar file. (For a description of how to add files to a

bar file, see “Adding files to a broker archive” on page 759.) When you add a

message flow that contains one or more WebSphere Adapters nodes to a bar

file, a dialog box opens so that you can identify the following resources:

v One or more WebSphere Adapters components to be used by the WebSphere

Adapters nodes

v One or more message sets that contain an XSD for the business objects that

are used by the WebSphere Adapters nodes
3. When you have added the message flow, WebSphere Adapters components,

and message set, deploy the bar file.

Deploying a broker configuration

You can deploy a broker configuration in three ways:

v Using the Message Broker Toolkit

v Using the mqsideploy command

v Using the Configuration Manager Proxy API

Using the Message Broker Toolkit

If you modify multicast or interbroker settings in the Broker Administration

perspective, a broker configuration deployment starts automatically when you

apply the changes. This process is run in the background.

Using the mqsideploy command

Follow these steps to deploy a broker configuration using the mqsideploy

command:

1. Open a command window that is configured for your environment.

2. Using the examples below, enter the appropriate command, specifying the

broker to which you want to deploy:

Deploying 767

On distributed platforms:

mqsideploy -i ipAddress -p port -q qmgr -b broker

where -i (IP address), -p (port), and -q (queue manager) represent the

connection details of the queue manager workstation.

On z/OS:

/f MQ01CMGR,dp b=broker

where MQ01CMGR is the name of the Configuration Manager

component.
If you specify the broker to which you want to deploy (-b or b=), without

indicating a bar file (-a), the broker configuration is deployed, rather than a

message flow application.

Next:

Continue by checking the results of the deployment.

Using the Configuration Manager Proxy

Use the deploy method of the BrokerProxy class.

For example:

import com.ibm.broker.config.proxy.*;

public class DeployBrokerConfig {

 public static void main(String[] args) {

 ConfigManagerConnectionParameters cmcp =

 new MQConfigManagerConnectionParameters

 ("localhost", 1414, "QM1");

 try {

 ConfigManagerProxy cmp = ConfigManagerProxy.getInstance(cmcp);

 TopologyProxy t = cmp.getTopology();

 BrokerProxy b = t.getBrokerByName("BROKER1");

 if (b != null) {

 b.deploy();

 }

 }

 catch (ConfigManagerProxyException e) {

 e.printStackTrace();

 }

 }

}

Next:

Continue by checking the results of the deployment.

Deploying a publish/subscribe topology

Before you start:

Make sure that you have configured your broker domain.

The publish/subscribe topology deployment overview explains when you might

want to deploy a topology and the difference between a complete and delta

deployment.

768 Message Flows

You can deploy topology information in three ways:

v Using the Message Broker Toolkit

v Using the mqsideploy command

v Using the Configuration Manager Proxy API

You can configure the workbench preferences so that topology information is

automatically deployed after a change.

After you have deployed a publish/subscribe topology, you might see an extra

execution group process called $SYS_mqsi in a process listing or in the output

from the mqsilist command. When you deploy a publish/subscribe topology for

the first time, a new execution group process is started on your broker to handle

the publish/subscribe messages. This execution group is only used internally: it

does not appear in the workbench and you cannot deploy message flows to it.

After you have deployed one or more of your own flows to another execution

group, $SYS_mqsi is removed when the broker is subsequently restarted.

Using the Message Broker Toolkit

Follow these steps to deploy a topology configuration using the workbench:

1. Switch to the Broker Administration perspective.

2. In the Domains view, expand the Domains from where you want to perform

the deploy.

3. Right-click Broker Topology hierarchy.

4. Click Deploy Topology Configuration.

5. Click Delta to deploy only the changed items or click Complete to deploy the

entire configuration.

Alternatively, you can make a change to the Topology document in the Broker

Administration perspective, save the changes, and then select Delta. This

behavior can be modified in the workbench preferences dialog.

The topology is deployed and the Configuration Manager distributes it to the

brokers in the domain.

Next:

Continue by checking the results of the deployment.

Using the mqsideploy command

Follow these steps to deploy a topology configuration using the mqsideploy

command:

1. Open a command window that is configured for your environment.

2. Using the example below, enter the appropriate command, typed on a single

line:

z/OS

On z/OS:

/f MQ01CMGR,dp l=yes

This command performs a delta deployment. Add the m=yes parameter to

deploy the entire configuration. MQ01CMGR is the name of the Configuration

Manager component.

On other platforms:

Deploying 769

mqsideploy –i ipAddress –p port –q qmgr –l

This command performs a delta deployment. Add the –m parameter to deploy

the entire configuration. The -i (IP address), -p (port), and -q (queue manager)

parameters represent the connection details of the queue manager workstation.

Next:

Continue by checking the results of the deployment.

Using the Configuration Manager Proxy

Use the deploy method of the TopologyProxy class. By default, the deploy method

performs a delta deployment. To deploy the complete hierarchy, use a variant of

the method that includes the Boolean isDelta parameter; setting this parameter to

false indicates a complete deployment. (Setting it to true indicates a delta

deployment.)

For example:

import com.ibm.broker.config.proxy.*;

public class DeployTopology {

 public static void main(String[] args) {

 ConfigManagerConnectionParameters cmcp =

 new MQConfigManagerConnectionParameters

 ("localhost", 1414, "QM1");

 try {

 ConfigManagerProxy cmp =

 ConfigManagerProxy.getInstance(cmcp);

 TopologyProxy t = cmp.getTopology();

 t.deploy(false);

 }

 catch (ConfigManagerProxyException e) {

 e.printStackTrace();

 }

 }

}

Next:

Continue by checking the results of the deployment.

Deploying a publish/subscribe topics hierarchy

Before you start:

Make sure that you have configured your broker domain.

The topic deployment overview explains when you might want to deploy a topic

hierarchy and the difference between a complete and a delta deployment.

You can deploy a topics hierarchy in three ways:

v Using the Message Broker Toolkit

v Using the mqsideploy command

v Using the Configuration Manager Proxy API

You can configure the workbench preferences so that a topics hierarchy is

automatically deployed after you have made a change.

770 Message Flows

Using the Message Broker Toolkit

Follow these steps to deploy a topics hierarchy using the workbench:

1. Switch to the Broker Administration perspective.

2. In the Domains view, expand the Domains from where you want to perform

the deploy.

3. Right-click Topics hierarchy.

4. Click Deploy Topics Configuration.

5. Click Delta to deploy only the changed items, or click Complete to deploy the

entire configuration.

The topics hierarchy is deployed, and the Configuration Manager distributes the

topics to brokers in the domain.

Next:

Continue by checking the results of the deployment.

Using the mqsideploy command

Follow these steps to deploy a topics hierarchy using the mqsideploy command:

1. Open a command window that is configured for your environment.

2. Using the examples below, enter the appropriate command, typed on a single

line:

z/OS

On z/OS:

/f MQ01CMGR,dp t=yes

This command performs a delta deployment. Add the m=yes parameter to

deploy the entire configuration.

On other platforms:

mqsideploy -i ipAddress -p port -q qmgr -t

This command performs a delta deployment. Add the –m parameter to deploy

the entire configuration. The -i (IP address), -p (port), and -q (queue manager)

parameters represent the connection details of the queue manager workstation.

Next:

Continue by checking the results of the deployment.

Using the Configuration Manager Proxy API

Use the deploy method of the TopicRootProxy class. By default, the deploy method

performs a delta deployment. To deploy the complete hierarchy, use a variant of

the method that includes the Boolean isDelta parameter; setting this parameter to

false indicates a complete deployment. (Setting it to true indicates a delta

deployment.)

For example:

import com.ibm.broker.config.proxy.*;

public class DeployTopics {

 public static void main(String[] args) {

 ConfigManagerConnectionParameters cmcp =

Deploying 771

new MQConfigManagerConnectionParameters

 ("localhost", 1414, "QM1");

 try {

 ConfigManagerProxy cmp =

 ConfigManagerProxy.getInstance(cmcp);

 TopicRootProxy t = cmp.getTopicRoot();

 t.deploy(false);

 }

 catch (ConfigManagerProxyException e) {

 e.printStackTrace();

 }

 }

}

Next:

Continue by checking the results of the deployment.

Checking the results of deployment

After you have made a deployment, check that the operation has completed

successfully. You can check the results of a deployment in three ways:

v Using the Message Broker Toolkit

v Using the mqsideploy command

v Using the Configuration Manager Proxy API

Also, check the system log on the target system where the broker was deployed to

make sure that the broker has not reported any errors.

Using the Message Broker Toolkit

Follow these steps to check a deployment using the workbench:

1. Switch to the Broker Administration perspective.

2. Expand the Domains view.

3. Double-click the Event Log.

When the deployment is initiated, an information message is displayed, confirming

that the request was received by the Configuration Manager:

v BIP0892I

If the deployment completes successfully, you might also see one or more of these

additional messages:

v BIP4040I

v BIP4045I

v BIP2056I

Using the mqsideploy command

The command returns numerical values from the Configuration Manager and all

brokers affected by the deployment to indicate the outcome of the deployment. If it

completes successfully, it returns 0. Refer to the mqsideploy topic for details of

other values that you might see.

772 Message Flows

Using the Configuration Manager Proxy API

If you are using a Configuration Manager Proxy application, you can find out the

result of a publish/subscribe topology deployment operation, for example, by

using code similar to this:

TopologyProxy t = cmp.getTopology();

boolean isDelta = true;

long timeToWaitMs = 10000;

DeployResult dr = topology.deploy(isDelta, timeToWaitMs);

System.out.println("Overall result = "+dr.getCompletionCode());

// Display overall log messages

Enumeration logEntries = dr.getLogEntries();

while (logEntries.hasMoreElements()) {

 LogEntry le = (LogEntry)logEntries.nextElement();

 System.out.println("General message: " + le.getDetail());

}

// Display broker specific information

Enumeration e = dr.getDeployedBrokers();

while (e.hasMoreElements()) {

 // Discover the broker

 BrokerProxy b = (BrokerProxy)e.nextElement();

 // Completion code for broker

 System.out.println("Result for broker "+b+" = " +

 dr.getCompletionCodeForBroker(b));

 // Log entries for broker

 Enumeration e2 = dr.getLotEntriesForBroker(b);

 while (e2.hasMoreElements()) {

 LogEntry le = (LogEntry)e2.nextElement();

 System.out.println("Log message for broker " + b +

 le.getDetail()));

 }

}

The deploy method blocks any other processes until all affected brokers have

responded to the deployment request.

When the method returns, the DeployResult object represents the outcome of the

deployment at the time when the method returned; the object is not updated by

the Configuration Manager Proxy.

If the deployment message could not be sent to the Configuration Manager, a

ConfigManagerProxyLoggedException exception is thrown at the time of

deployment. If the Configuration Manager receives the deployment message, log

messages for the overall deployment are displayed, followed by completion codes

specific to each broker affected by the deployment. The completion code is one of

the following static instances from the

com.ibm.broker.config.proxy.CompletionCodeType class:

 Completion

code

DescriptConfigManagerProxy.sendUpdatesion

pending The deploy is held in a batch and will not be sent until you issue ().

submitted The deploy message was sent to the Configuration Manager but no

response was received before the timeout occurred.

Deploying 773

Completion

code

DescriptConfigManagerProxy.sendUpdatesion

initiated i

successSoFar The Configuration Manager issued the deployment request and some,

but not all, brokers responded with a success message before the

timeout period expired. No brokers responded negatively.

success The Configuration Manager issued the deployment request and all

relevant brokers responded successfully before the timeout period

++++++++++++++++++++.

failure The Configuration Manager issued the deployment request and at least

one broker responded negatively. You can use getLogEntriesForBroker for

more information on why the deployment failed.

notRequired A deployment request was submitted to the Configuration Manager

involved with the supplied broker, but the request was not sent to the

broker because its configuration is already up to date.

Canceling a deployment that is in progress

Before you start:

Canceling a deployment should be used only as a last resort, and you should be

sure that a broker, or several brokers in a domain, will never be able to process a

previous deployment request. For this reason, make sure that you understand the

implications of this action, described in the Cancel deployment overview topic.

You can cancel all outstanding deployments in the domain, or just those sent to a

particular broker:

v When canceling deployment across the domain, you must have full access on

the Configuration Manager.

v When canceling deployment to a specific broker, you must have full access on

that broker.

To ensure that previous deployment messages are not processed when an affected

broker is restarted, first remove any deployment messages:

1. Stop the broker.

2. Check the broker’s SYSTEM.BROKER.ADMIN.QUEUE and

SYSTEM.BROKER.EXECUTIONGROUP.QUEUE and manually remove any

deployment messages.

3. Proceed to cancel the deployment.

You can cancel a deployment in three ways:

v Using the Message Broker Toolkit

v Using the mqsideploy command

v Using the Configuration Manager Proxy API

Using the Message Broker Toolkit

Follow these steps to cancel the deployment to a particular broker or all

outstanding deployments in a domain, using the workbench:

1. Switch to the Broker Administration perspective.

774 Message Flows

2. In the Domains view, right-click either a particular broker or a connected

domain.

3. Click Cancel Deployment.

Deployments to the broker or domain are canceled.

Next:

Continue by checking the results. A BIP0892I information message is displayed to

show that the request was received by the Configuration Manager.

Using the mqsideploy command

Follow these steps to cancel a deployment using the mqsideploy command:

1. Open a command window that is configured for your environment.

2. Using the examples below, enter the appropriate command, typed on a single

line:

z/OS

On z/OS:

/f MQ01CMGR,dp t=yes b=B1

This command cancels deployment to the broker called B1. Omit the b

argument to cancel all outstanding deployments in the domain. MQ01CMGR is

the name of the Configuration Manager component.

On other platforms:

mqsideploy -i ipAddress -p port -q qmgr –c –b B1

This command cancels deployment to the broker called B1. Omit the -b

parameter to cancel all outstanding deployments in the domain. The -i (IP

address), -p (port), and -q (queue manager) parameters represent the

connection details of the queue manager workstation.

Next:

Continue by checking the results. A BIP0892I information message is displayed to

show that the request was received by the Configuration Manager.

Using the Configuration Manager Proxy API

To cancel all outstanding deployments in a domain

Use the cancelDeployment method of the ConfigManagerProxy class. For

example:

public class CancelAllDeploys {

 public static void main(String[] args) {

 ConfigManagerConnectionParameters cmcp =

 new MQConfigManagerConnectionParameters

 ("localhost", 1414, "QM1");

 try {

 ConfigManagerProxy cmp =

 ConfigManagerProxy.getInstance(cmcp);

 cmp.cancelDeployment();

 }

 catch (ConfigManagerProxyException e) {

 e.printStackTrace();

 }

 }

}

Deploying 775

To cancel deployment to a specific broker in a domain

Use the cancelDeployment method of the BrokerProxy class. For example,

to cancel deployment to a broker called B1:

import com.ibm.broker.config.proxy.*;

public class CancelDeploy {

 public static void main(String[] args) {

 ConfigManagerConnectionParameters cmcp =

 new MQConfigManagerConnectionParameters

 ("localhost", 1414, "QM1");

 try {

 ConfigManagerProxy cmp =

 ConfigManagerProxy.getInstance(cmcp);

 TopologyProxy t = cmp.getTopology();

 BrokerProxy b = t.getBrokerByName("B1");

 b.cancelDeployment();

 }

 catch (ConfigManagerProxyException e) {

 e.printStackTrace();

 }

 }

}

Next:

Continue by checking the results. A BIP0892I information message is displayed to

show that the request was received by the Configuration Manager.

Renaming objects that are deployed to execution groups

You cannot rename an object while it is still deployed to an execution group.

Instead, first remove the deployed object from the execution group. Then, having

renamed it and refreshed it in the broker archive (bar) file, deploy the bar file

again.

Removing a deployed object from an execution group

Before you start:

To remove a deployed message flow, first stop the message flow.

You can remove deployed objects from an execution group in three ways:

v Using the Message Broker Toolkit

v Using the mqsideploy command

v Using the Configuration Manager Proxy API

Using the Message Broker Toolkit

Follow these steps to remove an object from an execution group using the

workbench.

1. Switch to the Broker Administration perspective.

2. From the Domains view, right-click the object that you want to remove.

3. Click Remove from the pop-up menu, and OK to confirm.

776 Message Flows

An automatic deployment is performed for the updated broker and a BIP08921

information message is produced, which confirms that the request was received by

the Configuration Manager.

Using the mqsideploy command

Follow these steps to remove an object from an execution group using the

mqsideploy command:

1. Open a command window that is configured for your environment.

2. Using the examples below, enter the appropriate command, typed on a single

line:

On z/OS:

/f MQ01CMGR,dp t=yes b=broker e=execgroup

 d=file1.cmf:file2.cmf:file3.dictionary:file4.xml

where MQ01CMGR is the name of the Configuration Manager

component.

On distributed platforms:

mqsideploy -i ipAddress -p port -q qmgr –b broker –e execgp

 –d file1.cmf:file2.cmf:file3.dictionary:file4.xml

where -i IP address, -p port, and -q qmgr specify the connection details

of the Configuration Manager workstation.
The -d parameter (d= on z/OS) is a colon-separated list of files that are to be

removed from the named execution group. When you invoke the command, the

deployed objects (file1.cmf, file2.cmf, file3.dictionary, file4.xml) are removed

from the specified execution group and broker.

Optionally, specify the m= (z/OS) or -m (distributed) option to clear the

contents of the execution group. This option tells the execution group to

completely clear any existing data before the new bar file is deployed.

The command reports when responses are received from the Configuration

Manager and any brokers that are affected by the deployment. If the command

completes successfully, it returns 0.

Using the Configuration Manager Proxy API

To remove deployed objects from an execution group, get a handle to the relevant

ExecutionGroupProxy object, and then invoke the deleteDeployedObjectsByName()

method. For example:

import com.ibm.broker.config.proxy.*;

public class DeleteDeployedObjects {

 public static void main(String[] args) {

 ConfigManagerConnectionParameters cmcp =

 new MQConfigManagerConnectionParameters

 ("localhost", 1414, "QM1");

 try {

 ConfigManagerProxy cmp =

 ConfigManagerProxy.getInstance(cmcp);

 TopologyProxy t = cmp.getTopology();

 BrokerProxy b = t.getBrokerByName("broker1");

 ExecutionGroupProxy e =

 b.getExecutionGroupByName("default");

 e.deleteDeployedObjectsByName(

 new String[] { "file1.cmf",

Deploying 777

"file2.cmf",

 "file3.dictionary",

 "file4.xml" }, 0);

 }

 catch (ConfigManagerProxyException e) {

 e.printStackTrace();

 }

 }

}

Next:

If you have deleted one or more message flows, you can now delete the resource

files that are associated with and used by those message flows; for example, JAR

files.

778 Message Flows

Part 5. Debugging

Testing and debugging message flow

applications 781

Flow debugger overview 781

ESQL nodes and debugging 782

Java nodes and debugging 782

Mapping nodes and debugging 782

Debugging a message flow 783

Starting the debugger 784

Working with breakpoints in the debugger . . 790

Stepping through flow instances in the

debugger 794

Debugging data 799

Managing flows and flow instances during

debugging 803

Debugging message flows that contain

WebSphere Adapters nodes 805

Testing message flows using the Test Client . . . 806

Test Client overview 807

Testing a message flow 808

Using the Test Client in trace and debug mode 812

© Copyright IBM Corp. 2000, 2008 779

780 Message Flows

Testing and debugging message flow applications

Use the flow debugger to test and error-check your message flows.

This section includes the following topics:

v “Flow debugger overview”

Read this section to learn about the function provided by the flow debugger, and

why you might want to use it.

To use the flow debugger effectively, see “Message flows overview” on page 4 to

gain a basic understanding of message flows and their representation in the

workbench.

v “Debugging a message flow” on page 783

This section describes the tasks that you can follow to start the flow debugger

and to set options to test and debug the steps taken by the message flow.

The IBM Redbooks publication WebSphere Message Broker Basics also provides

information about using the debugger for your message flows.

When you debug message flows, choose a broker that is set up for test and not for

production, because debugging might degrade the performance of all message

flows that are deployed to the broker. Other flows in the same execution group,

and those in other execution groups defined to the same broker might be affected

by potential resource contention.

The following restrictions apply when you debug a message flow:

v You must use the same version of the broker and the Message Broker Toolkit; for

example, you cannot use the Message Broker Toolkit Version 6.1 to debug a

message flow that you have deployed to a broker at an earlier version.

v Do not debug message flows over the Internet; the security function has not

been enabled.

Flow debugger overview

Use the flow debugger in the workbench to test your message flows.

Switch to the Debug perspective to use the flow debugger. Use the actions of the

visual interface to catch the flow at any point, and examine or alter the message

state, before stepping to the next point.

You can set breakpoints in a flow and then step through the flow. While you are

stepping through, you can examine and change the message and the variables used

by ESQL code, Java code, and mappings. You can debug a wide variety of error

conditions in flows, including:

v Incorrectly-wired activities (for example, outputs that are connected to the

wrong inputs)

v Incorrect conditional branching in transition conditions

v Unintended infinite loops in flow

From a single workbench, you can attach the debugger to one or more execution

groups, and debug multiple flows in different execution groups (and therefore

© Copyright IBM Corp. 2000, 2008 781

|
|

http://www.redbooks.ibm.com/abstracts/sg247137.html

multiple messages) at the same time. However, an execution group can be

debugged by only one user at a time. Therefore, if you attach your debugger to an

execution group, another user cannot attach a debugger to that same execution

group until you have ended your debug session.

For more information about the nodes that you can debug, see the following

topics:

v ESQL nodes

v Java nodes

v Mapping nodes

Follow the guidance given in “Debugging a message flow” on page 783 to debug

your message flows.

For an introduction to the Debug perspective and the views it presents, see Debug

perspective.

ESQL nodes and debugging

You can include one or more nodes in a message flow that contain ESQL code

modules to modify the behavior of that node.

When you have deployed the message flow, you can use the flow debugger to set

a breakpoint just before the node. When the flow pauses at the breakpoint, you can

step into the code, and step through it (step over) line by line to examine the logic

and check the actions taken and their results. You can set additional breakpoints in

the ESQL code. You can also examine and change the ESQL variables.

These tasks are described in detail in “Debugging ESQL” on page 800.

You can code ESQL for the following nodes:

v Compute node

v Filter node

v Database node

Java nodes and debugging

You can include one or more nodes in a message flow that contain Java code to

modify the behavior of that node.

When you have deployed the message flow, you can use the flow debugger to set

a breakpoint just before the node. When the flow pauses at the breakpoint, you can

step into the code, and step through it (step over) line by line to examine the logic

and check the actions taken and their results. You can set additional breakpoints in

the Java code. You can also examine and change the Java variables.

These tasks are described in detail in “Debugging Java” on page 801.

You can code Java for the following nodes:

v JavaCompute node

v User-defined node

Mapping nodes and debugging

You can include one or more nodes in a message flow that contain mappings to

modify the behavior of that node.

782 Message Flows

|
|
|
|

When you have deployed the message flow, you can use the flow debugger to set

a breakpoint just before the node. When the flow pauses at the breakpoint, you can

step into the mappings, and step through them (step over) to examine the logic and

check the actions taken and their results. You can set breakpoints on any of the

mapping commands. You can view mapping variables, and you can view and alter

your own user-defined variables.

These tasks are described in detail in “Debugging mappings” on page 802.

You access and maintain mappings for the following nodes:

v Mapping node

v DataInsert node

v DataUpdate node

v DataDelete node

v Extract node

v Warehouse node

Debugging a message flow

This topic lists the tasks involved in debugging a message flow. If you are new to

debugging, see “Flow debugger overview” on page 781 for a conceptual overview.

1. Deploying the message flow:

v Deploy your message flow to an execution group in a broker and make sure

that the broker is running. For further information, see “Deploying” on page

745.
2. Starting the flow debugger:

a. “Setting flow debug preferences” on page 784

b. Attaching to the flow engine

c. “Putting a test message” on page 786

d. “Getting a test message” on page 789
3. Working with breakpoints:

a. Adding breakpoints

b. Restricting breakpoints to specific flow instances

c. Disabling breakpoints

d. Enabling breakpoints

e. Removing breakpoints
4. Stepping through flow instances:

a. Resuming flow instance execution

b. Running to completion

c. Stepping over nodes

d. Stepping into subflows

e. Stepping out of subflows

f. Stepping into source code

g. Stepping over source code

h. Stepping out of source code
5. Debugging data:

a. “Debugging messages” on page 799

b. “Debugging ESQL” on page 800

c. “Debugging Java” on page 801

Testing and debugging message flow applications 783

d. “Debugging mappings” on page 802
6. Managing flows and flow instances:

a. Querying a broker for deployed flows

b. Redeploying a flow

c. Terminating a flow instance

d. Detaching from the flow engine

Starting the debugger

Before you start:

To complete this task, you must have completed the following tasks:

v “Developing message flows” on page 3

v Deploying the message flow

v Ensuring that the broker where your flow is deployed is running

When you ready to debug a message flow, complete the following tasks to start the

debugger:

1. Optional: Setting flow debug preferences

2. Attaching to the flow engine

3. Optional: Putting a test message

4. Optional: Getting a test message

Setting flow debug preferences

The following steps show you how to set your own preferences for the flow

debugging environment in the workbench:

1. Click Run → Debug to display the Create, Manage, and Run configurations

panel.

2. In the Create, Manage, and Run configurations panel, select Message Broker

Debug ->New Configuration.

3. Assign new port in Java Debug Port and click Select Execution Group to attach

the port to an Execution Group from the displayed list.

4. Click Debug to launch the debugger or Close to close the wizard and your

changes are applied.

Now that you have completed this task, you can continue with the next step,

Attaching to the flow engine .

Attaching to the flow engine for debugging

Before you can debug your message flow, you must attach the flow debugger to

the flow engine (execution group) where your flow is deployed, and start a debug

session.

Before you start

To complete this task, you must have completed the following tasks:

v “Developing message flows” on page 3.

v Deploying the message flow.

v Ensure that the broker where your flow is deployed is running.

784 Message Flows

You can attach the flow debugger to multiple flow engines that are running on the

same or on different host computers, and debug their flows simultaneously.

To attach to the flow engine:

 1. Restart the broker when the command has completed.

 2. Switch to the Broker Administration perspective. Note the name of your

message flow as it is displayed in the Domains pane.

 3. Set a Java Debug Port number.

To configure the broker JVM with a debug port number to this value, either

click Select Execution Group, right-click the selected execution group, and

click Preferences, or issue the following command (all on one line):

mqsichangeproperties <broker name> -e <execution group name> -o ComIbmJVMManager

-n jvmDebugPort -v <port number>

 4. When this command has completed, restart the broker.

 5. Open the message flow that you want to debug in the Message Flow editor by

double-clicking its name in the Broker Administration Navigator pane.

 6. Add a breakpoint to a connection that leads out of the input node of the

message flow to ensure that the message flow does not run to completion

before you can begin to debug it.

The breakpoint appears as

. For information about adding a breakpoint,

see “Working with breakpoints in the debugger” on page 790.

 7. Switch to the Debug perspective.

 8. Click the down-arrow on the Debug icon

on the toolbar, and click Debug

to invoke the Debug (Create, manage, and run configurations) wizard.

You are creating a debug launch configuration. If you have already created

one, you can relaunch it by clicking directly on the Debug icon

itself.

This action generates an error if any of the following conditions are true:

v You have not created a debug launch configuration.

v The broker and execution group to which you previously attached are no

longer running.

v The broker and execution group have been restarted and therefore have a

new Process ID (see below).
 9. In the list of configurations, select Message Broker Debug and click New. A

set of tabbed panels appears in the window, beginning with Connect.

You cannot click Debug until you complete the fields on the Connect panel.

You can then choose to complete the fields on the other panels, or click

Debugstraight away.The panels in the wizard are:

v Java debug setting: use this panel to debug a message flow. The Java port is

the port number that is specified for the broker JVM. If you do not specify a

port, Java debugging is disabled.

v Deployment Location: click the Select Execution Group button to display a

list of Execution groups.

v Source: use this panel to tell the debugger where to look for your source

files for flow, mapping, ESQL, or Java, during debugging. The lookup path

can be an Eclipse project name, an external folder, or a compressed (zipped)

file. You can specify multiple locations, but the debugger always looks first

in the message flow project that you specified on the Connect panel. If you

do not correctly configure the location of the source files, message flow,

ESQL and Java files might not be displayed during debugging. If the source

Testing and debugging message flow applications 785

|
|
|

lookup path is not specified for a mapping node, then you might encounter

unexpected behavior when you use the debugger to step through the

message map.

v Common: this panel is not directly used by the flow debugger; however if

you set options on it they do take effect. See the Workbench User Guide for

details.
10. Click Debug. In the Debug view, the names of the selected host computer and

flow engine are displayed.

11. When the next message comes into your flow and arrives at the breakpoint,

the flow pauses, the breakpoint icon changes to

, and you can start

debugging.

12. In the Debug view, double-click the message flow that you want to debug.

The message flow opens in the Message Flow editor. You can now add more

breakpoints, start stepping over the flow, and so on.

From a single workbench, you can attach the debugger to one or more execution

groups, and debug multiple flows in different execution groups (and therefore

multiple messages) at the same time. However, an execution group can be

debugged by only one user at a time. Therefore, if you attach your debugger to an

execution group, another user cannot attach a debugger to that same execution

group until you have ended your debug session.

The flow debugger can debug runtime brokers from previous versions. Select the

version of the broker that you want to debug by checking the corresponding

option on the Engine Selection panel in the Debug wizard, as described previously.

When you have completed this task, you can continue with one of the following

tasks:

v Optional: “Putting a test message” and “Getting a test message” on page 789.

These tasks involve putting messages to, and taking messages from,

WebSphere MQ queues and are therefore useful only if your message flow

includes MQInput and MQOutput nodes.

v “Working with breakpoints in the debugger” on page 790.

Putting a test message

Put a message to a queue to test a message flow that you are debugging.

Before you start

To complete this task, you must have completed the following tasks:

v “Developing message flows” on page 3

v Deploying the message flow

v Attaching to the flow engine

If your message flow includes MQInput and MQOutput nodes, you might want to

trigger the flow by putting a test message onto the input queue for your first

MQInput node. Follow the instructions to put a test message by configuring and

using an enqueue file in the workbench. This method is a repeatable alternative to

using command line interfaces or WebSphere MQ Explorer

v “Configuring and using an enqueue file” on page 787

v “Optional: Adding data to your message” on page 787

v “Optional: Using a file of sample data” on page 788

786 Message Flows

|
|
|

|
|
|
|
|
|

v “Optional: Creating a file of sample data for the message” on page 788

v “Optional: Importing an existing file of sample data for the message” on page

788

If the message is processed by the message flow and is put to an output queue,

you can retrieve it from that queue. See “Getting a test message” on page 789 for

details.

Configuring and using an enqueue file:

To configure an enqueue file so that you can use it to send a test message:

 1. Switch to the Broker Administration perspective.

 2. On the workbench toolbar, click the arrow on the Put a message onto a queue

icon

.

 3. On the drop-down menu, click Put Message... to invoke the New Enqueue

Message File wizard.

 4. Select the message flow project containing the message flow that you are

debugging.

 5. In the File name field, enter a name for the file to create (the extension

.enqueue is added automatically).

 6. Click Finish. The enqueue file is created, and a view opens showing its

details.

 7. Enter the names for the queue manager and the queue for the input node for

this flow. Queue manager names are case-sensitive; check that you enter the

name correctly.

If you are putting a message on an input queue that is on a remote computer,

ensure that the queue manager of the associated broker has a

server-connection channel called SYSTEM.BKR.CONFIG.

 8. If you are putting a message on a remote queue, enter values to identify the

host and port of the computer that is hosting the queue.

 9. Optional: Click the MQMD tab to customize the fields of the MQMD header.

Read descriptions of these fields in Application Programming Reference section of

the WebSphere MQ Version 6 information center online; the constants are

listed in the Constants section.

10. Click File → Save to save the enqueue file.

11. Optional: To put the message to the queue immediately from this window,

click the Write to queue button.

12. Click the arrow on the Put a message onto a queue icon

to see your

enqueue file listed on the drop-down menu.

13. Click this file on the menu, (or if it is number 1 on the menu, just click the

icon itself) to put a message to the queue. If you have set appropriate

breakpoints, the flow debugger pauses the flow at the next one.

To find your enqueue file at a later time, switch to the Broker Application

Development perspective and expand the navigation tree for your message flow

project. Double-click your enqueue file to open it in a view.

Optional: Adding data to your message:

If you want just a small amount of test data in your test message, type the data

into a window to quickly add some test data:

Testing and debugging message flow applications 787

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

1. Open your enqueue file and select the Browse tab.

2. Type your test data directly into the “Message data” window.

3. Put the test message by selecting the General tab and clicking the Write to

queue button.

Optional: Using a file of sample data:

If you want your test message to contain a larger quantity of sample data (for

example some structured XML), first create or import a file containing that data,

then get the enqueue file to use it. Follow the optional steps to use either of these

methods of creating and adding data.

To get the enqueue file to use a file that contains sample data:

1. Create or import the message data file, as described below.

2. Open your enqueue file; at File name click the Browse button.

3. In the “Add a message” window, select your file and click OK.

4. Click File → Save when you have finished.

5. To see the data in your file, select the Browse tab at the bottom of the enqueue

view. If you want to change the data, either type some text into the “Message

data” window, or edit the file by double-clicking it in the Broker Development

view.

Tip: If you decide to experiment with using an XML data file instead of text,

do not forget to edit the properties for the input node of your message

flow and set the Message Domain to XML. When your message appears

in the Flow Debugger in the Variables view, the XML is parsed and

expandable in the tree.

Optional: Creating a file of sample data for the message:

To create a new file of sample data:

1. Switch to the Broker Application Development perspective.

2. Click File → New → Other....

3. Click Simple, then File.

4. In the New File window, select the project in which you want to keep the file,

then at File name enter a name and extension for your file. If your file contains

XML, make sure that the extension is .XML.

5. Click Finish. The file is created and appears in the Broker Development view.

A view opens with an appropriate editor (text or XML) for the file.

6. Edit the file and enter the text or XML data that you want in it.

7. Click File → Save when you have finished.

You can now select the file as described in the “Optional: Using a file of sample

data” section. You can also double-click the file to open it in an appropriate editor.

Optional: Importing an existing file of sample data for the message:

If you already have a file on your computer containing sample data that you want

to use in a test message, use these steps to import the data into the workbench. If

the file contains XML, make sure that it has the extension .XML.

1. Switch to the Broker Application Development perspective.

2. Click File → Import.

788 Message Flows

3. In the list of wizards, select File system then click Next.

4. At Directory, click the Browse button and navigate to the folder containing

your file then click OK. A list of the files in the folder appears.

5. In the list of files, select the check box next to the file that you want to import.

6. At Folder, click the Browse button and select the project in which you want to

keep the file.

7. Click Finish.

After you have imported the file as described here, a copy of your file is stored in

the workbench data space along with all other workbench files for your

configuration. Your original file is not used directly again.

The file appears in the Broker Development view in your chosen project, and you

can select it as described in the “Optional: Using a file of sample data” on page

788 section on this page. You can also double-click it to open it in an appropriate

editor.

Getting a test message

Before you start

To complete this task, you must have completed the following tasks:

v “Developing message flows” on page 3

v Deploying the message flow

v Attaching to the flow engine

v “Putting a test message” on page 786

While you are debugging your message flow, you might want to read a message

from the queue on your MQOutput node. This topic tells you how to get a test

message by configuring and using a dequeue file in the workbench. This is an easy

and repeatable alternative to using command line interfaces or WebSphere MQ

Explorer (with WebSphere MQ Version 6) or WebSphere MQ Services (with

WebSphere MQ Version 5) to get a message.

1. Switch to the Debug perspective.

2. On the workbench toolbar, click the arrow on the Get a message from a Queue

icon

.

3. On the drop-down menu, click Get Message... to invoke the Dequeue Message

window.

4. Enter the names for the queue manager and (output node) queue that you

want.

5. Click Read From Queue to read a message from the queue.

6. After closing the window, the next time that you click the arrow on the Get a

message from a Queue icon

, you see the dequeue configuration that you

created above listed on the drop-down menu. Click this file on the menu (or if

it is number 1 on the menu, just click the icon itself) to get a message from the

queue.

7. Optional: While the Dequeue Message window is open, you can save a read

message into a file in your message flow project to keep it for later. Click the

Save As... button, and in the Save Message As window, select the flow project

and enter a name for the file, including a .extension if you want one.

Testing and debugging message flow applications 789

Tip: If you saved any messages into files and want to see these saved messages,

switch to the Broker Application Development perspective and expand the

navigation tree for your flow project. Double-click a saved message file to

open it in a view.

When you have successfully put and retrieved test messages, you can use other

functions provided by the debugger to debug your flow more comprehensively;

continue with “Working with breakpoints in the debugger.”

Working with breakpoints in the debugger

Before you start:

To complete this task, you must have completed the following tasks:

v Attaching to the flow engine

When you have started a debugger session by attaching to the flow engine, you

can set breakpoints to control how the message flow is managed:

v Adding breakpoints

v Optional: Restricting breakpoints to specific flow instances

v Optional: Disabling breakpoints

v Optional: Enabling breakpoints

v Optional: Removing breakpoints

When you have set one or more breakpoints in the message flow, continue your

debug session with the following tasks:

v Stepping through flow instances

v “Debugging data” on page 799

Adding breakpoints in the flow debugger

How to set breakpoints for the flow debugger.

Before you start:

To complete this task, you must have completed the following tasks:

v Attaching to the flow engine

You can add breakpoints to the connections of a message flow that is open in the

Message Flow editor. Every breakpoint is automatically enabled. Each breakpoint

that you add to a flow is also automatically added to all other instances of the

flow and you do not need to restart any of the instances.

When you add a breakpoint to a connection, the connection is flagged with the

enabled breakpoint symbol

.

You must set a breakpoint after the collector node, or any other multithreaded

node, manually. When you use the Debug perspective on the node, you see that

the thread has been ended.

To add breakpoints to the connections of a message flow:

1. Switch to the Debug perspective.

790 Message Flows

|
|
|

2. Add breakpoints to the appropriate connections. Use any of the following

methods:

 Option Description

Add breakpoints individually to selected

connections:

1. In the Message Flow editor, right-click

the connection where you want to set the

breakpoint.

2. Click Add Breakpoint on the pop-up

menu.

Add breakpoints simultaneously to all

connections entering a selected node:

1. In the Message Flow editor, right-click

the node before which you want to set

breakpoints.

2. Click Add Breakpoints Before Node on

the pop-up menu.

Add breakpoints simultaneously to all

connections leaving a selected node:

1. In the Message Flow editor, right-click

the node after which you want to set

breakpoints.

2. Click Add Breakpoints After Node on

the pop-up menu.

Now that you have added at least one breakpoint to the message flow, you can

step through the flow instance and work with data:

v “Stepping through flow instances in the debugger” on page 794

v “Debugging data” on page 799

Restricting breakpoints in the debugger to specific flow

instances

Before you start

To complete this task, you must have completed the following tasks:

v Adding breakpoints

When you add a breakpoint to a message flow in the Message Flow editor, the

breakpoint automatically applies to all instances of the flow. However, you can

choose to restrict a breakpoint to one or more instances of a flow. This enables you

to work more easily with just those instances that you are currently interested in,

rather than with all instances.

To restrict a breakpoint to one or more flow instances:

1. Switch to the Debug perspective.

2. In the Breakpoints view, right-click the breakpoint that you want to restrict,

then click Properties to open the Flow Breakpoints Properties window.

3. In the Restrict to Selected Flow Instance(s) list box, select the check boxes of

those instances to which you want to restrict the breakpoint.

You must have at least one instance active; if not, the Restrict to Selected Flow

Instance(s) list box is empty.

If any instance is currently paused on the breakpoint, all check boxes in the

Restrict to Selected Flow Instance(s) list box are grayed out and you cannot

select them.

4. Click OK.

Testing and debugging message flow applications 791

Now you can add additional breakpoints (if needed), step through the flow

instance, and work with data:

v “Stepping through flow instances in the debugger” on page 794

v “Debugging data” on page 799

Disabling breakpoints in the debugger

Before you start

To complete this task, you must have completed the task Adding breakpoints.

You can disable any breakpoints that are currently enabled. The following symbol

identifies enabled breakpoints:

To disable breakpoints:

1. Switch to the Debug perspective.

2. In the Breakpoints view, select one or more enabled breakpoints that you want

to disable.

3. Right-click the selected breakpoints and click Disable. The breakpoints are

disabled in all instances of the message flow where they are set.

4. Optional: to disable a single breakpoint, right-click the breakpoint and then

click Properties. Clear the Enabled check box and click OK. The breakpoint is

disabled in all instances of the message flow where it is set.

When you disable a breakpoint, the breakpoint icon changes to the following

symbol:

If you disable all the breakpoints in the message flow, you cannot perform any

other debugging tasks until you add a new breakpoint, or enable an existing

breakpoint.

If you have finished with your debugging session, continue with “Debug:

detaching from the flow engine” on page 805.

Enabling breakpoints in the debugger

Before you start

To complete this task, you must have completed the following tasks:

v Adding breakpoints

v Disabling breakpoints

You can enable any breakpoints that you have disabled. The following symbol

identifies disabled breakpoints:

To enable breakpoints:

1. Switch to the Debug perspective.

792 Message Flows

2. In the Breakpoints view, select one or more disabled breakpoints that you want

to enable.

3. Right-click the selected breakpoints and click Enable. The breakpoints are

enabled in all instances of the message flow where they are set.

4. Optional: to enable a single breakpoint, right-click the breakpoint and click

Properties. Select Enabled and click OK. The breakpoint is enabled in all

instances of the message flow where it is set.

When you enable a breakpoint, the breakpoint icon changes to the following

symbol:

When you have enabled breakpoints, continue with your debug session:

v Stepping through flow instances

v “Debugging data” on page 799

Removing breakpoints in the debugger

Before you start

To complete this task, you must have completed the following tasks:

v Adding breakpoints

You can remove breakpoints either where they are shown on the connections of a

message flow that is open in the Message Flow editor, or where they are listed in

the Breakpoints view. The following symbol shows the breakpoint:

If you remove a breakpoint from a message flow, it is automatically removed from

all other instances of the message flow where it is set.

To remove breakpoints:

1. Switch to the Debug perspective.

2. Remove the breakpoints. Use one of the following methods, depending on how

many breakpoints you want to remove:

 Option Description

Remove individual breakpoints from

connections in the Message Flow editor:

1. In the Message Flow editor, right-click

the breakpoint that you want to remove,

then click Remove Breakpoint.

Remove selected breakpoints

simultaneously in the Breakpoints view:

1. Click the Flow Breakpoints tab to show

the Breakpoints view.

2. Select one or more breakpoints that you

want to remove.

3. Click the Remove Selected Breakpoints

icon

on the toolbar, or right-click

the selected breakpoints and then click

Remove.

Testing and debugging message flow applications 793

Option Description

Remove all breakpoints simultaneously in

the Breakpoints view:

1. Click the Breakpoints tab to show the

Breakpoints view.

2. Click the Remove All Breakpoints icon

on the toolbar, or right-click any

breakpoint and then click

Remove

All.

If you remove all the breakpoints that you have added to your message flow, you

cannot perform any other debugging tasks until you add a new breakpoint.

If you have finished with your debugging session, continue with “Debug:

detaching from the flow engine” on page 805.

Stepping through flow instances in the debugger

Before you start

To complete this task, you must have completed the following tasks:

v Adding breakpoints

When you have added one or more breakpoints to a deployed message flow, the

debugger stops the message flow processing at the first breakpoint encountered.

You can then continue with one or more of the following tasks, where appropriate,

to continue or stop the message flow processing:

v Resuming flow instance execution

v Running to completion

v Stepping over nodes

v Stepping into subflows

v Stepping out of subflows

v Stepping into source code

v Stepping over source code

v Stepping out of source code

When you have finished stepping through and debugging your message flow, you

can remove the breakpoints, or end the debug session:

v Removing breakpoints

v Detaching from the flow engine

Debug: resuming flow instance execution

Before you start

To complete this task, you must have completed the following tasks:

v Adding breakpoints

When message flow processing has paused at a breakpoint, you can resume the

flow execution:

1. Switch to the Debug perspective.

794 Message Flows

2. In the Debug view, click the Resume Flow Execution icon

on the toolbar,

or right-click the flow stack frame, then click

Resume.

When you resume the execution of a flow instance, message flow processing

continues until the next breakpoint that is set in the logical processing of the

current message . If there is no further breakpoint at which the flow instance can

pause, the flow instance runs to completion and is removed from the Debug view.

If you have now completed debugging this message flow, you can remove the

breakpoints, or end the debug session:

v Removing breakpoints

v Detaching from the flow engine

Debug: running to completion

Before you start

To complete this task, you must have completed the following tasks:

v Adding breakpoints

When message flow processing has paused at a breakpoint, you can restart

processing so that the message flow runs to completion:

1. Switch to the Debug perspective.

2. In the Debug view, click the Run to completion icon

on the toolbar, or

right-click the flow stack frame, then click

Run to completion.

When you run the message flow to completion, the flow instance ignores all

breakpoints and continues to its end. The flow instance is automatically removed

from the Debug view.

Tip: If you want the flow to continue processing, but you want to stop at the next

breakpoint instead of running the flow to completion, see Resuming flow

instance execution.

If you have now completed debugging this message flow, you can remove the

breakpoints, or end the debug session:

v Removing breakpoints

v Detaching from the flow engine

Debug: stepping over nodes

Before you start

To complete this task, you must have completed the following task:

v Adding breakpoints

When message flow processing has paused at a breakpoint, you can step over the

node that is next in sequence:

1. Switch to the Debug perspective.

Testing and debugging message flow applications 795

2. In the Debug view, click the Step Over Node icon

on the toolbar, or

right-click the flow stack frame, then click

Step Over Node.

When you step over a node, message flow processing continues until the next

breakpoint that is set in the logical processing of the current message. If no further

breakpoints are set, the flow instance runs to completion and is removed from the

Debug view.

If you have now completed debugging this message flow, you can remove the

breakpoints, or end the debug session:

v Removing breakpoints

v Detaching from the flow engine

Debug: stepping into subflows

Before you start

To complete this task, you must have completed the following task:

v Adding breakpoints

When message flow processing has paused at a breakpoint, you can step into the

subflow that follows:

1. Switch to the Debug perspective.

2. In the Debug view, click the Step Into Subflow icon

on the toolbar, or

right-click the flow stack frame, then click

Step Into Subflow. The

subflow opens in the Message Flow editor and displaces the parent message

flow.

When you step into a subflow, message flow processing continues until the next

breakpoint that is set in the logical processing of the current message. If no further

breakpoints are set in the subflow or in the parent flow, the flow instance runs to

completion and is removed from the Debug view.

If you have now completed debugging this message flow, you can remove the

breakpoints, or end the debug session:

v Removing breakpoints

v Detaching from the flow engine

Debug: stepping out of subflows

Before you start

To complete this task, you must have completed the following tasks:

v Adding breakpoints

v Stepping into subflows

When message flow processing has paused at a breakpoint within a subflow, you

can step out of the subflow:

1. Switch to the Debug perspective.

796 Message Flows

2. In the Debug view, click the Step Out of Subflow icon

on the toolbar, or

right-click the subflow stack frame, then click

Step Out of Subflow.

The debugger pauses the flow at the next breakpoint in the subflow, if one is

defined. If no further breakpoints are defined in the subflow, the parent flow opens

in the Message Flow editor and displaces the subflow. The parent flow is paused at

the connection from the output terminal of the subflow.

If you have now completed debugging this message flow, you can remove the

breakpoints, or end the debug session:

v Removing breakpoints

v Detaching from the flow engine

Debug: stepping into source code

When message flow processing has paused at a breakpoint on entry to a node that

contains ESQL code, Java code, or mappings, you can step into the code.

Before you start

To complete this task, you must have completed the following tasks:

v Adding breakpoints

To step into:

v A map, add a breakpoint to a map using the Map Script panel.

v ESQL code, add a breakpoint in the ESQL code.

v Java code, add a breakpoint in the Java code.

In a message flow there are three types of node that can contain source code:

v Nodes that contain ESQL code: Compute node, Filter node, or Database node.

v Nodes that contain Java code: user-defined node containing Java code, or

JavaCompute node.

v Nodes used to access and maintain mappings: a Mapping node, DataInsert

node, DataUpdate node, DataDelete node, Extract node, or Warehouse node.

Note: Mapping routines are implemented in ESQL; you can choose either to

step through the ESQL code, or step through the mappings.
1. Switch to the Debug perspective.

2. In the Debug view, click the Step into Source Code icon

on the toolbar, or

right-click the flow stack frame, then click

Step Into.

After stepping into the code, you can step through the source code, line by line, in

an environment that is optimized for source code debugging. This task is described

in Stepping over source code.

You can also step out of the code, as described in Stepping out of source code; the

message flow continues to run to the next breakpoint, or to completion if no

further breakpoints are set.

Testing and debugging message flow applications 797

|

|

|

|

Debug: stepping over source code

Before you start

To complete this task, you must have completed the following tasks:

v Adding breakpoints

v Stepping into source code

When message flow processing has paused at a breakpoint within ESQL code, Java

code, or mappings, you can step over the code.

In a message flow there are three types of node that can contain source code:

v Nodes that contain ESQL code: Compute node, Filter node, or Database node.

v Nodes that contain Java code: user-defined node containing Java code, or

JavaCompute node.

v Nodes used to access and maintain mappings: a Mapping node, DataInsert

node, DataUpdate node, DataDelete node, Extract node, or Warehouse node.

Note: Mapping routines are implemented in ESQL; if you step into the code,

you can choose either to step through the ESQL code, or to step through

the mappings.
1. Switch to the Debug perspective.

2. In the Debug view, click the Step Over icon

on the toolbar, or right-click

the flow stack frame, then click

Step Over.

When you step over code, a single line of source code runs and the flow pauses at

the next line of code.

What you can do depends on what type of code is contained within the node:

v “Debugging ESQL” on page 800

v “Debugging Java” on page 801

v “Debugging mappings” on page 802

If the debugger is paused before the last line of code when you step over, the last

line of code runs and the debugger automatically pauses at the next breakpoint

that is set in the logical processing of the current message. If there is no further

breakpoint at which the flow instance can pause, the flow instance runs to

completion and is removed from the Debug view.

If you do not want to continue stepping through the code, you can step out of the

code, as described in Stepping out of source code.

If you have now finished stepping through and debugging this message flow, you

can remove the breakpoints, or end the debug session:

v Removing breakpoints

v Detaching from the flow engine

Debug: stepping out of source code

Before you start

To complete this task, you must have completed the following tasks:

798 Message Flows

v Adding breakpoints

v Stepping into source code

When message flow processing has paused at a breakpoint within ESQL code, Java

code, or mappings, you can step out of the code.

In a message flow there are three types of node that can contain source code:

v Nodes that contain ESQL code: Compute node, Filter node, or Database node.

v Nodes that contain Java code: user-defined node containing Java code, or

JavaCompute node.

v Nodes used to access and maintain mappings: a Mapping node, DataInsert

node, DataUpdate node, DataDelete node, Extract node, or Warehouse node.

Mapping routines are implemented in ESQL; if you step into the code, you can

choose either to step through the ESQL code, or to step through the mappings.
1. Switch to the Debug perspective.

2. In the Debug view, click the Step Return icon

on the toolbar, or

right-click the flow stack frame, then click

Step Return.

The source code runs to completion from the current breakpoint and message flow

processing continues until the next breakpoint that is set in the logical processing

of the current message. If there is no further breakpoint at which the flow instance

can pause, the flow instance runs to completion and is removed from the Debug

view.

If you have now completed debugging this message flow, you can remove the

breakpoints, or end the debug session:

v Removing breakpoints

v Detaching from the flow engine

Debugging data

When you have added one or more breakpoints to a deployed message flow, the

debugger stops the message flow processing at each breakpoint. Depending on the

context of the breakpoint, you can do one of the following tasks:

v “Debugging messages”

v “Debugging ESQL” on page 800

v “Debugging Java” on page 801

v “Debugging mappings” on page 802

When you have finished debugging this message flow, you can remove the

breakpoints, or end the debug session:

v Removing breakpoints

v Detaching from the flow engine

Debugging messages

Before you start

To complete this task, you must have completed the following tasks:

v Adding breakpoints

Testing and debugging message flow applications 799

When message flow processing has paused at a breakpoint in your message flow,

you can examine and modify the message content.

1. Switch to the Debug perspective.

2. View the messages in the Variables view.

Tip: The Breakpoints view and the Variables view share the same pane. Click

the tab at the bottom to select the view that you want.

3. To alter a message, right-click it and select an option from the menu. You

cannot alter the content of exceptions within a message.

When you have viewed message contents, and made any changes that you

wanted, message flow processing continues until the next breakpoint that is set in

the logical processing of the current message . If there is no further breakpoint at

which the flow instance can pause, the flow instance runs to completion and is

removed from the Debug view.

If you have now completed debugging this message flow, you can remove the

breakpoints, or end the debug session:

v Removing breakpoints

v Detaching from the flow engine

Debugging ESQL

Viewing and altering ESQL variables in the Flow Debugger.

Before you start

To complete this task, you must have completed the following tasks:

v Adding breakpoints

v Stepping into source code

When message flow processing has paused at a breakpoint in source code within a

node that contains ESQL code (a Compute, Filter, or Database node), you can

browse ESQL variables in the Variables view in the Debug Perspective, and change

their associated data values. You can also set breakpoints on lines in the ESQL

code. See the following sections for further details:

v “Working with ESQL variables”

v “Using breakpoints on ESQL code lines” on page 801

When you finished working with the ESQL code and variables, message flow

processing continues until the next breakpoint that is set in the logical processing

of the current message . If there is no further breakpoint at which the flow instance

can pause, the flow instance runs to completion and is removed from the Debug

view.

If you have now completed debugging this message flow, you can remove the

breakpoints, or end the debug session:

v Removing breakpoints

v Detaching from the flow engine

Working with ESQL variables:

1. Switch to the Debug perspective.

2. Open the Variables view. Variables are shown in a tree, using the symbol

.

800 Message Flows

3. To work with a variable, right-click it and select an option from the pop-up

menu.

For example, if you have declared the following ESQL variables:

DECLARE myInt INT 0;

DECLARE myFloat FLOAT 0.0e-1;

DECLARE myDecimal DECIMAL 0.1;

DECLARE myInterval INTERVAL DAY TO MONTH;

you can update these values in the debugger. However, you cannot update the

message trees, or REFERENCE variables.

Using breakpoints on ESQL code lines:

1. Switch to the Debug perspective.

2. Open the ESQL editor.

3. Right-click a line where a breakpoint can be set. You cannot set a breakpoint on

a comment line or a blank line.

4. Select from the menu to create, delete, or restrict the breakpoint, in a similar

way to normal debugger breakpoints, as described in Working with

breakpoints.

Debugging Java

This topic tells you the steps you need to take to enable Java debugging and how

you view and alter Java variables in the Flow Debugger.

Before you start

To complete this task, you must have completed the following tasks:

v Adding breakpoints

v Stepping into source code

To enable Java debugging:

1. Start the broker

2. Launch the broker Command Console and type the command:

mqsichangeproperties <brokername> -e <executiongroupname> -o ComIbmJVMManager

 -n jvmDebugPort <portnumber>

For example:

mqsichangeproperties TEST -e default -o ComIbmJVMManager -n jvmDebugPort 3920

3. Restart the broker.

4. Add a breakpoint in the map where the Java method is called.

5. Add a breakpoint in the Java code itself, if you want to step directly into the

Java code during the debugging process.

6. Connect the broker domain in the Broker Administration Perspective and

deploy the BAR file, which includes the JAR file.

7. Launch the debug configuration and set the Java Debug Port to the one you set

in the jvmDebugPort variable of the mqsichangeproperties command.

8. In the source tab, specify the source file location.

9. Click Debug to start the debug process and to run the application.

Testing and debugging message flow applications 801

|

|

|

|
|

|

|

|

|

|
|

|
|

|
|

|

|

When message flow processing has paused at a breakpoint in source code within a

node that contains Java code (a user-defined node or a JavaCompute node), you

can browse Java variables in the Variables view in the Debug Perspective, and

change their associated data values.

To work with Java variables:

1. Switch to the Debug perspective.

2. Open the Variables view. Variables are shown in a tree, using the symbol

.

3. To work with a variable, right-click it and select an option from the menu.

When you finished working with the Java code and variables, message flow

processing continues until the next breakpoint that is set in the logical processing

of the current message. If there is no further breakpoint at which the flow instance

can pause, the flow instance runs to completion and is removed from the Debug

view.

If you have now completed debugging this message flow, you can remove the

breakpoints, or end the debug session:

v Removing breakpoints

v Detaching from the flow engine

Debugging mappings

Before you start

To complete this task, you must have completed the following tasks:

v Adding breakpoints

v Stepping into source code

When message flow processing has paused at a breakpoint in source code within a

node that contains mapping (a Mapping, DataInsert, DataUpdate, DataDelete,

Extract, or Warehouse node), you can view the mapping routines and modify

user-defined variables. You can also set breakpoints on lines in the mappings.

Mapping routines are implemented in ESQL; if you step into the code, you can

choose either to step through the ESQL code, or to step through the mappings.

1. Switch to the Debug perspective.

2. In the Debug view, click Step into Source Code

on the toolbar, or

right-click the flow stack frame and click

Step Into. The Message Mapping

editor opens with the mapping routine highlighted in both the Mapping editor

and the Outline view.

3. To use breakpoints on mapping lines:

a. In the Message Mapping Editor, select the line for the mapping command

that you want to use, right-click the space beside it and select from the

menu to add or disable a breakpoint. Alternatively, double-click the same

space to add or remove a breakpoint. You cannot set a breakpoint on a

comment line or a blank line.

b. Select from the menu to create, delete, or restrict the breakpoint, in a similar

way to normal debugger breakpoints, as described in Working with

breakpoints.

802 Message Flows

4. Check the mapping routines by performing the various stepping actions (step

into, step over, and step return). While you are doing this, in the Debug view,

the stack frame shows the list of mapping commands and the current

command. The Variables view shows your user-defined mapping variables,

along with the input message (that is, the Debug Message). You can alter the

user-defined variables.

When you have finished working with the mappings and user-defined variables,

message flow processing continues until the next breakpoint that is set in the

logical processing of the current message. If no further breakpoints are set at which

the flow instance can pause, the flow instance runs to completion and is removed

from the Debug view.

If you have now finished debugging this message flow, you can remove the

breakpoints, or end the debug session:

v Removing breakpoints

v Detaching from the flow engine

Managing flows and flow instances during debugging

When you have started a session for message flow debugging, you might want to

complete one or more of the following associated tasks:

v Querying a broker for deployed flows

v Redeploying a flow

v Terminating a flow instance

v Detaching from the flow engine (to end your debug session)

Debug: querying a broker for deployed flows

Before you start

To complete this task, you must have completed the following tasks:

v Attaching to the flow engine

During an active debug session, you can query a flow engine on a broker to find

out what flows are currently deployed on it. The displayed list of message flows

that are available in that flow engine is updated. The updated list might include

message flows that were not previously deployed, or that were not accessible

because the flow was already being accessed by another developer.

To query a flow engine for deployed flows:

1. Switch to the Debug perspective.

2. In the Debug view, select the flow engine

that you want to query.

3. Click the Refresh Selected Flow Engine to Get More Flow Types icon

on

the toolbar, or right-click the flow engine, then click

Refresh.

The Debug view is refreshed with the names of the flows that are currently

deployed and available on the flow engine. You can continue your debug session

and debug one of the listed message flows, or end your debug session:

v Working with breakpoints

v Detaching from the flow engine

Testing and debugging message flow applications 803

Debug: redeploying a flow

Before you start

To complete this task, you must have completed the following tasks:

v Attaching to the flow engine

During your debug session, you might find a problem in a message flow, or see a

behavior that you want to change. You can change the flow to resolve the situation

and redeploy the flow to the broker:

1. Switch to the Debug perspective.

2. Detach the debugger from the flow engine by clicking the Detach from the

Selected Flow Engines icon

on the toolbar.

3. Switch to the Broker Application Development perspective.

4. Edit the flow in the Message Flow editor and save your changes.

5. Switch to the Broker Administration perspective.

6. Double-click the bar file (Broker Archive) that contains your flow, to edit it.

Remove the flow, then add it again, and save your changes. See “Adding files

to a broker archive” on page 759 for more details.

7. Deploy your bar file by dragging it from the Broker Administration Navigator

view and dropping it onto the execution group in the Domains view. Check the

event log for messages to make sure that the deploy was successful.

8. Switch to the Debug perspective.

9. Click the down-arrow on the Debug icon

on the toolbar, and select Debug

to invoke the Debug (Create, manage, and run configurations) wizard, and

attach the flow engine again, following the instructions in Attaching to the flow

engine.

The modified message flow has been deployed to the broker, and the debug

session is ready for you to debug the new flow logic:

v Working with breakpoints

v Stepping through flow instances

Debug: terminating a flow instance

Before you start

To complete this task, you must have completed the following tasks:

v Attaching to the flow engine

While you are debugging, you might need to terminate a flow instance. For

example, you might want to correct an error in your flow or source code. To do

this, you must redeploy the flow correctly (see Redeploying a flow). However, you

cannot redeploy the flow until you have terminated the flow instance:

1. Switch to the Debug perspective.

2. In the Debug view, click the Run to completion icon

on the toolbar, or

right-click the flow stack frame, then click

Run to Completion. The flow

instance ignores all breakpoints while running to the end. The flow instance is

automatically removed from the Debug view.

804 Message Flows

After terminating a flow instance, you can start to debug another message flow, or

end your debug session:

v Attaching to the flow engine

v Detaching from the flow engine

Debug: detaching from the flow engine

Before you start

To complete this task, you must have completed the following tasks:

v Attaching to the flow engine

When you have finished debugging a flow, detach the flow debugger from the

flow engine. Other developers are then able to attach to the flow engine. Detaching

the flow debugger also enhances the performance of your workbench environment.

To detach from the flow engine:

1. Switch to the Debug perspective.

2. In the Debug view, select the name of the flow engine from which you want to

detach.

3. Click the Detach from the Selected Flow Engines icon

on the toolbar (or

right-click the flow engine, then click

Detach).

When this task completes, your debug session has been ended. Any all existing

flow instances have automatically run to completion and the flow debugger is

detached from the flow engine. You can start a new debug session at any time:

v Attaching to the flow engine

v Working with breakpoints

Debugging message flows that contain WebSphere Adapters

nodes

You can use various methods to monitor message flows that include WebSphere

Adapters nodes.

Before you use any of the methods listed below, ensure that the appropriate jar

files and shared libraries are available to the WebSphere Adapters nodes. For more

information, see Preparing the environment for WebSphere Adapters nodes.

Also, check for the latest information about WebSphere Adapters at WebSphere

Adapters technotes.

v User and service trace: You can use user and service trace to trace a message

flow that contains WebSphere Adapters nodes. For more information, see Using

trace.

v Flow debugger: Use the flow debugger to debug a message flow that contains

WebSphere Adapters nodes. For more information, see “Debugging a message

flow” on page 783.

v Adapter event table: The WebSphere Adapters nodes use an event table to

communicate the outcome of operations asynchronously to a calling application.

For more information, see “Creating a custom event project in PeopleTools” on

page 254.

Testing and debugging message flow applications 805

http://www.ibm.com/support/search.wss?tc=SSMKUK&rs=695&dc=DB520+DB560&rank=8
http://www.ibm.com/support/search.wss?tc=SSMKUK&rs=695&dc=DB520+DB560&rank=8

Handling exceptions that are raised by a WebSphere Adapters request node

The WebSphere Adapters request nodes raise exceptions that indicate the following

Enterprise Information System (EIS) failures.

 Message

number Exception type Explanation

BIP3511 RecordNotFound The requested record could not be found in the

EIS.

BIP3512 DuplicateRecord An attempt was made to create a record that

already exists in the EIS.

BIP3513 MultipleMatchingRecords A retrieve request matched more than one

record. To retrieve multiple records, perform a

retrieveall operation.

BIP3515 MatchesExceededLimit A retrieveall exception returned more entries

than the maximum allowed number.

BIP3516 MissingData The message tree that was sent to the adapter

request node does not have all the required

fields set.

If an exception occurs that does not fit into the categories in the table, the node

raises a general BIP3450 message that describes the problem.

You can use these exceptions to perform special processing when you do not want

the exceptions to be treated as errors. For example:

v If a create operation fails because the record already exists, you could modify

the request to an update.

v If a retrieve operation fails because the request matches more than one record,

you could try a retrieveall operation instead.

v If a retrieve operation fails because the record could not be found, an empty

record could be returned.

To handle these exceptions, you could connect a message routing node, Compute

node, or JavaCompute node to the Failure terminal of the WebSphere Adapters

request node, and route the exception to other processing nodes based on the

exception message number.

Testing message flows using the Test Client

You can test your message flows using the Test Client in a safe environment before

they are used on a production system.

You can use the Test Client to send test messages to message flows that use

WebSphere MQ, JMS, SOAP or HTTP input nodes. The Test Client monitors the

output nodes in the message flow, and can provide information about the path that

a test message takes through a message flow. The Test Client can also provide

information about errors that are generated by the message flow.

You can perform the following tasks using the Test Client:

v “Testing a message flow” on page 808

v “Configuring the test settings” on page 809

v “Creating and editing a test message” on page 810

v “Using the Test Client in trace and debug mode” on page 812

806 Message Flows

Test Client overview

Use the Test Client to test message flows in a safe environment before they are

used on a production system.

You can use the Test Client to put test messages to message flows that use the

following nodes:

v WebSphere MQ

v JMS

v HTTP

v SOAP

You can change the content of the test messages that are put to the message flow

in the Test Client to help determine if your message flows are working as

expected. If the input node in the message flow that you select expects an XML

message from an associated message set, the message structure is provided, and it

can be edited to produce the appropriate test message. Alternatively, you can

create a new test message, or import an existing message from the file system. You

can also configure an appropriate header for the test message, if the message

format is WebSphere MQ or JMS.

The Test Client monitors output nodes in the message flow so that you can see

which nodes output messages are received on. You can also view the content of the

output message, or view the content of any error messages that are received when

the test message is passed through the message flow. When a message is received

on an output node, or when an error is produced when the test message passes

through the message flow, a test event is recorded in the Test Client.

The default behavior of the Test Client is to stop the test when the first output

message is received. You can configure the Test Client to wait for multiple output

messages to be received. In this case, you can stop the test manually. Stopping the

test disconnects the monitors that are running, but does not stop the message flow.

A synchronous test, such as when the message flow is invoked from an HTTPInput

node, is stopped automatically when a reply message is received. An asynchronous

test, such as when the message flow is invoked from an MQInput node, can be

stopped manually depending on the monitor setting in the configuration panel. All

test events are stopped when the Test Client is closed, and any test monitors are

removed.

If you change your message flow, you can use the same test configuration to test

the changes. The default behavior of the Test Client is to deploy the message flow

that you want to test automatically to an execution group, whenever a change is

made to the message flow. You can therefore make a change to a message flow,

and quickly test the result using the Test Client, without the need to manually

deploy your message flows. The first time that you put a test message to the input

node on a message flow, you configure the execution group to deploy the message

flow by using the Deployment location wizard. You can configure the deployment

options to override the default behavior of the Test Client to deploy the message

flow manually, or to deploy the message flow every time that you pass a test

message to the message flow.

You can run the Test Client using the trace and debug mode to view more

information about the path that the message takes through the message flow. A test

event is produced when the message passes from one node to the next node in the

message flow. The structure of the message is recorded as it leaves each node in

Testing and debugging message flow applications 807

the message flow. The flow debugger is launched in the trace and debug mode so

that the test message stops at any breakpoints configured in the message flow.

The details of the test configuration and the test events can be saved as an .mbtest

file. You can use this file to repeat the test or to review the results later.

Testing a message flow

You can test your message flows using the Test Client.

Before you can test your message flow, you must have a broker domain configured

and running. If you do not have an existing broker domain, you can create one

using the Default Configuration wizard; see Using the Default Configuration

wizard. If the broker domain is not already configured in the Message Broker

Toolkit, you can use the Deployment Location wizard to connect to the broker

domain.

To test a message flow, complete the following tasks:

1. “Opening the Test Client editor”

2. “Configuring the test settings” on page 809

3. “Creating and editing a test message” on page 810

4. “Selecting the deployment location for the message flow” on page 811.

The test message is put to the selected input node, the Test Client monitors the

output nodes in the message flow, and events are generated as the message passes

through the message flow. You might need to stop the test manually, depending on

the nodes in the message flow, and the settings that you have configured in the

Test Client.

To test the message flow again, right-click Invoke Message Flow in the Message

Flow Test Events pane and click Invoke to start a new test; or click Duplicate or

Re-run to re-run the test using the same message.

Opening the Test Client editor

Open the Test Client editor and select a message flow to test.

Before you start:

Ensure that your message flow contains no errors before you open it with the Test

Client.

Open the Test Client editor, and ensure that the message flow that you want to test

is selected, using one of the following methods:

1. From a message flow file:

a. Select the message flow in the Broker Development pane of the Broker

Application Development perspective.

b. Right-click the selected message flow and click Test Message Flow.

The Test Client editor is opened with settings from the message flow.

2. From an input node:

a. Open the message flow that you want to test.

b. Right-click an input node in the message flow and click Test.

The Test Client editor is opened with settings from the message flow, and the

input node is selected.

808 Message Flows

You can now configure a test message to put to the message flow, or configure the

Test Client settings.

You can save the Test Client configuration in a .mbtest file:

1. Click File → Save. The Save Execution Trace window is displayed.

2. In Save Execution Trace, enter a name for the file, and select a project to save

the file into.

3. Click Finish to save the file.

Configuring the test settings

You can configure the settings in the Test Client to control how your tests are run.

Before you can configure the settings in the Test Client, you must have completed

the following tasks:

v “Creating a message flow” on page 218

v “Opening the Test Client editor” on page 808

Use the following topics to help you to configure the settings on the Test Client:

v “Testing a message flow that has WebSphere MQ nodes”

v “Testing a message flow that has JMS nodes” on page 810

v Test Client Configuration tab

You can modify settings that relate to all your test configurations using the Test

Client preferences; see Test Client preferences.

Testing a message flow that has WebSphere MQ nodes:

You can configure settings in the Test Client for testing message flows that have

WebSphere MQ nodes.

 To test a message flow that uses WebSphere MQ nodes:

1. Right-click on your message flow and click Test Message Flow. The Test Client

opens with the settings from the selected message flow.

2. In the Test Client, click the Configuration tab to display the Test Client

configuration settings.

3. Click MQ Settings and select the appropriate options for your test.

4. Click MQ Message Header ″Default Header″ to view the settings for the

message header that is used for the test message. You can edit the options for

the default header, or alternatively, you can create a new header to edit:

a. Click MQ Message Headers.

b. Click Add and enter a unique name for the header.

c. Edit the header settings.

d. Click the Events tab, and select the appropriate header for your message

from the Header list.
5. You can use the Test Client to create WebSphere MQ queues that are used in

nodes in your message flow. To configure the Test Client to create the queues:

a. Click Window → Preferences.

b. Expand Broker Development and click Message Broker Test Client.

c. Ensure Create queues of input and output nodes of message flows when

host name is localhost is selected and click OK.

Testing and debugging message flow applications 809

6. Create a test message to test your message flow, see “Creating and editing a

test message.”

7. When you have created your test message, you must select the execution group

to deploy the message flow to, see “Selecting the deployment location for the

message flow” on page 811.

Testing a message flow that has JMS nodes:

You can configure settings in the Test Client for testing message flows that have

JMS nodes.

 To test a message flow that uses JMS nodes:

1. Right-click on your message flow and click Test Message Flow. The Test Client

opens with the settings from the selected message flow.

2. In the Test Client, click the Configuration tab to display the Test Client

configuration settings.

3. Click JMS Settings and select the appropriate options for your test. You can

add references to the client JAR files used to create the JMS connection. To add

a reference to these JAR files into your test configurations:

a. Click Configure preference settings. The Test Client preferences are

displayed.

b. Click Add and locate the JAR files in your file system.

c. Click OK to add the reference to the JAR files.

d. Ensure that Use preference settings is selected in the Configuration tab.
4. Click JMS Message Headers to create a JMS header:

a. Click Add and enter a unique name for the header.

b. Edit the header settings.

c. Click the Events tab, and select the appropriate header for your message

from the Header list.
5. Create a test message to test your message flow, see “Creating and editing a

test message.”

6. When you have created your test message, you must select the execution group

to deploy the message flow to, see “Selecting the deployment location for the

message flow” on page 811.

Creating and editing a test message

To use the Test Client, you must create or edit a test message to send to your

message flow.

Complete these tasks before you edit your test message:

1. “Opening the Test Client editor” on page 808

2. “Configuring the test settings” on page 809

A number of editors are available in the Test Client for creating a test message. The

most appropriate editor to use depends upon the type of test message you want to

send to your message flow. If the input node that you want to send the message to

for the test expects an XML message, and the message flow is associated with a

message definition, the XML Structure editor is available. If you want to send an

XML message, but do not have a message definition defined, then you can use the

XML Source editor. If you want to create a test message that is not in XML format,

then you can use the Source editor. Alternatively you can import an existing test

810 Message Flows

message into one of the source editors, or take the generated source from the XML

Structure editor and paste it into one of the source editors.

Select from the following options to create and edit a test message:

1. Using the XML Structure editor:

a. In the Events tab of the Test Client, select XML Structure from the Viewer

list.

b. Edit the entries in the Value column for each field to change the content of

the test message.

c. Right-click the fields in the XML Structure editor to see additional options

for defining the content of the test message. These options include adding

message parts and elements, for example if your message has repeating

fields.

d. You can save your file with the updated test message by clicking File →

Save.

e. To view and copy the generated test message, click Show Generated

Source.
2. Using the XML Source editor:

a. In the Events tab of the Test Client, select Source from the Viewer list.

b. Click XML Source to display the XML Source editor.

c. Enter the XML for your test message in this editor, or alternatively copy

content into the editor from another source by right-clicking in the editor

and selecting Paste.

d. You can save your file with the updated test message by clicking File →

Save.
3. Using the Source editor:

a. In the Events tab of the Test Client, select Source from the Viewer list.

b. Click Source to display the Source editor.

c. Enter the text content for your test message in this editor, or alternatively

copy content into the editor from another source by right-clicking in the

editor and selecting Paste.

d. You can save your file with the updated test message by clicking File →

Save.
4. Importing an existing test message into a source editor:

a. In the Events tab of the Test Client, select Source from the Viewer list.

b. Select either the XML Source or Source editor.

c. Click Import Source. You can then locate your existing test message from

your file system.

d. Click Open to import the selected file into the Test Client.

e. You can save your file with the updated test message by clicking File →

Save.

Ensure that you have selected the correct input node to send the test message to in

your message flow. Click Send Message to send your test message to the selected

input node. If this is the first time you have sent a message using this Test Client

file, the Deployment Location wizard opens. See “Selecting the deployment

location for the message flow.”

Selecting the deployment location for the message flow

Specify the execution group to deploy a message flow to when you use the Test

Client using the Deployment Location wizard.

Testing and debugging message flow applications 811

Before you can test your message flow, you must have configured a broker domain

with a broker. The components in the broker domain must all be running. If you

do not have an existing broker domain, you can create one using the Default

Configuration wizard; see Using the Default Configuration wizard. If the broker

domain is not already configured in the Message Broker Toolkit, you can use the

Deployment Location wizard to connect to the broker domain by selecting New

Domain Connection.

When you first send a test message to a message flow using the Test Client, the

Deployment Location wizard is opened. You can use the wizard to select an

execution group to deploy the message flow to.

1. In the Test Client, click Send Message to open the Deployment Location

wizard.

2. If your domain is not connected, click Connect. Select the execution group that

you want to deploy your message flow to from the list in the wizard. You can

also create a new execution group from the Deployment Location wizard by

clicking New Exec Group.

3. Select the Mode to run the test in. Select Run to monitor the output nodes only.

Select Trace to receive information about each node that the message passes

through in the message flow.

4. Click Next.

5. Modify the test settings as required.

6. Click Finish to save the settings and deploy the message flow.

You can change the deployment location settings from the Configuration tab.

1. Click Configuration in the Test Client.

2. Click Deployment to display the deployment settings.

3. Click Change to open the Deployment Location wizard.

Using the Test Client in trace and debug mode

You can run the Test Client in trace and debug mode to trace the path of a test

message through a message flow.

Before you can test your message flow, you must have configured a broker domain

with a broker. The components in the broker domain must all be running. You

must also have created an execution group to deploy your message flows to.

Use the trace and debug mode to:

v Launch the flow debugger and stop the test message at breakpoints in the

message flow.

v Trace the message nodes and terminals the test message passes through.

v View how the content of the test message changes as it passes through the

message flow.

v View a message node where an exception occurs, and the associated exception

message and trace details.

To use the Test Client in trace and debug mode:

1. You must set the Java Debug Port. Use the following instructions to set the Java

Debug Port for your execution group:

a. Enter the following command on the command line, replacing Broker with

the name of your broker, ExecGroup with the name of your execution group,

and PortNum with an unused port number:

812 Message Flows

|
|

mqsichangeproperties Broker -e ExecGroup -o ComIbmJVMManager -n jvmDebugPort -v PortNum

b. Restart your broker using the mqsistop and mqsistart commands.
2. In the Test Client click Send Message to open the Deployment Location

wizard.

3. If your domain is not connected, click Connect. Select the execution group that

you want to deploy your message flow to, from the list in the wizard.

4. Select Trace and debug. If you want the test message to stop at a breakpoint

after the input node, select Stop at the beginning of the flow during debug.

5. Click Next.

6. Modify the test settings if required.

7. Click Finish to save the settings and deploy the message flow.

You can modify the deployment location settings from run mode to trace and

debug mode using the Deployment Location wizard. To reopen the wizard and

change the settings:

1. Click Configuration in the Test Client.

2. Click Deployment to display the deployment settings.

3. Click Change to open the Deployment Location wizard.

Testing and debugging message flow applications 813

814 Message Flows

Part 6. Reference

Message flows 819

Message flow preferences 819

Description properties for a message flow 819

Guidance for defining keywords 820

Built-in nodes 822

AggregateControl node 824

AggregateReply node 826

AggregateRequest node 829

Check node 830

Collector node 833

Compute node 838

Database node 846

DatabaseRetrieve node 850

DatabaseRoute node 859

DataDelete node 866

DataInsert node 869

DataUpdate node 872

EmailOutput node 875

EndpointLookup node 881

Extract node 884

FileInput node 886

FileOutput node 899

Filter node 910

FlowOrder node 914

HTTPHeader node 916

HTTPInput node 920

HTTPReply node 927

HTTPRequest node 929

Input node 942

JavaCompute node 943

JMSHeader node 946

JMSInput node 949

JMSMQTransform node 960

JMSOutput node 961

JMSReply node 972

Label node 976

Mapping node 978

MQeInput node 982

MQeOutput node 990

MQGet node 993

MQHeader node 1004

MQInput node 1007

MQJMSTransform node 1020

MQOptimizedFlow node 1021

MQOutput node 1023

MQReply node 1029

Output node 1033

Passthrough node 1034

PeopleSoftInput node 1036

PeopleSoftRequest node 1039

Publication node 1042

Real-timeInput node 1044

Real-timeOptimizedFlow node 1046

RegistryLookup node 1048

ResetContentDescriptor node 1050

Route node 1056

RouteToLabel node 1059

SAPInput node 1061

SAPRequest node 1064

SCADAInput node 1067

SCADAOutput node 1074

SiebelInput node 1076

SiebelRequest node 1079

SOAPAsyncRequest node 1082

SOAPAsyncResponse node 1092

SOAPEnvelope node 1096

SOAPExtract node 1099

SOAPInput node 1104

SOAPReply node 1114

SOAPRequest node 1116

TCPIPClientInput node 1126

TCPIPClientOutput node 1137

TCPIPClientReceive node 1146

TCPIPServerInput node 1158

TCPIPServerOutput node 1169

TCPIPServerReceive node 1177

Throw node 1189

TimeoutControl node 1191

TimeoutNotification node 1194

Trace node 1198

TryCatch node 1202

TwineballInput node 1204

TwineballRequest node 1207

Validate node 1210

Warehouse node 1213

XSLTransform node 1216

User-defined nodes 1225

WebSphere Adapters properties 1225

WebSphere Adapter for SAP properties . . . 1226

WebSphere Adapter for Siebel properties . . . 1287

WebSphere Adapter for PeopleSoft properties 1309

Supported code pages 1329

Chinese code page GB18030 1357

WebSphere MQ connections 1357

Listing database connections that the broker holds 1358

Quiescing a database 1358

Support for UNICODE and DBCS data in

databases 1358

Data integrity within message flows 1359

Validation properties 1359

Validation tab properties 1360

Parser Options tab properties 1362

Parsing on demand 1363

Exception list structure 1364

Database exception trace output 1366

Conversion exception trace output 1368

Parser exception trace output 1370

User exception trace output 1370

Configurable message flow properties 1372

Message flow porting considerations 1374

Monitoring profile 1375

Monitoring profile schema 1379

© Copyright IBM Corp. 2000, 2008 815

||

||

||

 | |
 | |
 | |
 | |
 | |
 | |

Message flow accounting and statistics data . . . 1381

Message flow accounting and statistics details 1381

Message flow accounting and statistics output

formats 1382

Example message flow accounting and

statistics data 1394

Coordinated message flows 1398

Database connections for coordinated message

flows 1398

Database support for coordinated message

flows 1399

Element definitions for message parsers 1399

Data types of fields and elements 1400

The MQCFH parser 1403

The MQCIH parser 1403

The MQDLH parser 1404

The MQIIH parser 1405

The MQMD parser 1405

The MQMDE parser 1406

The MQRFH parser 1407

The MQRFH2 and MQRFH2C parsers 1407

The MQRMH parser 1408

The MQSAPH parser 1408

The MQWIH parser 1409

The SMQ_BMH parser 1409

Message mappings 1410

Message Mapping editor 1410

Mapping node 1420

Migrating message mappings from Version 5.0 1428

Restrictions on migrating message mappings 1429

XML constructs 1433

Example XML message 1433

The XML declaration 1434

The XML message body 1435

XML document type declaration 1440

Data sources on z/OS 1448

ESQL reference 1451

Syntax diagrams: available types 1452

ESQL data types in message flows 1452

ESQL BOOLEAN data type 1452

ESQL datetime data types 1452

ESQL NULL data type 1457

ESQL numeric data types 1458

ESQL REFERENCE data type 1460

ESQL ROW data type 1460

ESQL string data types 1461

ESQL-to-Java data-type mapping table . . . 1462

ESQL-to-XPath mapping table 1463

XPath property editors 1464

ESQL variables 1465

ESQL field references 1465

Namespace 1467

Index 1468

Type 1468

Field references summary 1469

Target field references 1470

The effect of setting a field to NULL 1471

ESQL operators 1472

ESQL simple comparison operators 1472

ESQL complex comparison operators 1473

ESQL logical operators 1476

ESQL numeric operators 1477

ESQL string operator 1478

Rules for ESQL operator precedence 1478

ESQL statements 1478

ATTACH statement 1480

BEGIN ... END statement 1482

BROKER SCHEMA statement 1484

CALL statement 1487

CASE statement 1490

CREATE statement 1492

CREATE FUNCTION statement 1500

CREATE MODULE statement 1509

CREATE PROCEDURE statement 1511

DECLARE statement 1525

DECLARE HANDLER statement 1530

DELETE FROM statement 1531

DELETE statement 1534

DETACH statement 1534

EVAL statement 1535

FOR statement 1536

IF statement 1537

INSERT statement 1538

ITERATE statement 1541

LEAVE statement 1542

LOG statement 1543

LOOP statement 1544

MOVE statement 1545

PASSTHRU statement 1547

PROPAGATE statement 1550

REPEAT statement 1553

RESIGNAL statement 1554

RETURN statement 1554

SET statement 1557

THROW statement 1559

UPDATE statement 1560

WHILE statement 1563

ESQL functions: reference material, organized by

function type 1564

Calling ESQL functions 1567

ESQL database state functions 1567

ESQL datetime functions 1572

ESQL numeric functions 1577

ESQL string manipulation functions 1592

ESQL field functions 1602

ESQL list functions 1613

Complex ESQL functions 1616

Miscellaneous ESQL functions 1658

ESQL constants 1662

Broker properties that are accessible from ESQL

and Java 1663

Special characters, case sensitivity, and comments

in ESQL 1666

ESQL reserved keywords 1668

ESQL non-reserved keywords 1668

Example message 1671

Message mappings 1673

Message Mapping editor 1673

Message Mapping editor Source pane 1674

Message Mapping editor Target pane 1677

816 Message Flows

 | |

Message Mapping editor Edit pane 1679

Message Mapping editor Spreadsheet pane 1680

Mapping node 1683

Mapping node syntax 1683

Mapping node functions 1685

Mapping node casts 1690

Headers and Mapping node 1691

Migrating message mappings from Version 5.0 1691

Restrictions on migrating message mappings . . 1692

Flow application debugger 1697

Flow debugger shortcuts 1697

Debug view 1697

Breakpoints view 1698

Flow Breakpoint Properties dialog 1698

Variables view 1698

Flow debugger icons and symbols 1698

Debug perspective 1698

Debug view 1699

Message Flow editor 1699

Breakpoints view 1700

Variables view 1700

Java Debugger 1700

Part 6. Reference 817

||

818 Message Flows

Message flows

Message flow reference information is available for:

v “Message flow preferences”

v “Description properties for a message flow”

v “Built-in nodes” on page 822

v “User-defined nodes” on page 1225

v “Supported code pages” on page 1329

v “WebSphere MQ connections” on page 1357

v User database connections

v “Support for UNICODE and DBCS data in databases” on page 1358

v “Data integrity within message flows” on page 1359

v “Validation properties” on page 1359

v “Exception list structure” on page 1364

v “Configurable message flow properties” on page 1372

v “Message flow porting considerations” on page 1374

v FtpServer configurable service properties

v “Monitoring profile” on page 1375

v “Message flow accounting and statistics data” on page 1381

v “Coordinated message flows” on page 1398

v “Element definitions for message parsers” on page 1399

v “Developing message mappings” on page 472

v “XML constructs” on page 1433

v “Data sources on z/OS” on page 1448

Message flow preferences

You can set Message flow preferences from Window → Preferences then click

Message Flow in the left pane.

 Property Type Meaning

Default version

tag

String Provide the default version information you would like to be set in the message

flow Version property when you create a new message flow.

Description properties for a message flow

 Property Type Meaning

Version String You can enter a version for the message flow in this field. This allows the

version of the message flow to be displayed using the Eclipse properties view.

A default for this field can be set in the messages flow preferences.

Short

Description

String You can enter a short description of the message flow in this field.

© Copyright IBM Corp. 2000, 2008 819

|

Property Type Meaning

Long

Description

String You can add information to enhance the understanding of the message flow’s

function in this field.

It is a string field and any standard alphanumeric characters can be used.

You can also use this field to define a keyword and its value that will display for

the deployed message flow in the properties view of Eclipse. An example is:

$MQSI Author=Fred MQSI$

When the properties of the deployed message flow are displayed, this will add a

row to the display showing “Author” as the property name and “Fred” as its

value.

For information on keywords see “Guidance for defining keywords.”

To view and edit the properties of a message flow click Flow → Properties.

Guidance for defining keywords

This topic contains the rules to follow when defining keywords. Keywords and

their values are displayed in the properties view of a deployed object.

A number of objects in WebSphere Message Broker can have additional

information added to the object. This information can display information about an

object after the object has been deployed. The default information that is displayed

is the time the object was deployed and the last time the object was modified.

You can define custom keywords, and their values that the Configuration Manager

will interpret as additional information to be displayed, in the properties view. For

example, you can define keywords for “Author” and “Subflow 1 Version”:

$MQSI Author=John Smith MQSI$

$MQSI Subflow 1 Version=v1.3.2 MQSI$

The information the Configuration Manager shows is:

 Object name

Deployment Time 28-Aug-2004 15:04

Modification Time 28-Aug-2004 14:27

Version v1.0

Author John Smith

Subflow 1 Version v1.3.2

In this display the version information has also been defined using the Version

property of the object. If the version information had not been defined using the

property, it would be omitted from this display.

The syntax for defining a keyword and its associated value is:

$MQSI KeywordName = KeywordValue MQSI$

Where:

820 Message Flows

$MQSI

$MQSI opens the definition. It can be followed by an optional underscore

or white space character that is ignored.

KeywordName

The name of the keyword for which you are setting the value. It can be

made up of any sequence of alphanumeric characters apart from the equals

(=) sign. It can contain white space characters, but any leading or trailing

white space characters are omitted.

= The equals (=) sign is the delimiter between the keyword and the value

that you are setting it to.

KeywordValue

The value to which the keyword is set. It can be made up of any sequence

of alphanumeric characters. It can contain white space characters, but any

leading or trailing white space characters are omitted.

MQSI$

MQSI$ closes the keyword definition.

Examples

 Example definitions Interpreted keyword and value Comments

$MQSIAuthor=JohnMQSI$ or

$MQSI Author=John MQSI$ or

$MQSI Author = John MQSI$

Keyword = ″Author″

Value = ″John″

Each of these is a basic example of

what can be set and shows that the

leading and trailing white space

characters for the name and value

parameters are ignored.

$MQSI_Author = John MQSI$ Keyword = ″Author″

Value = ″John″

The first character after $MQSI can

be an underscore character. The

underscore character is omitted in the

interpreted keyword. If a second

underscore character appears, this

forms part of the keyword name.

$MQSI Flow designer = John Smith

MQSI$

Keyword = ″Flow designer″

Value = ″John Smith″

White space characters are accepted

for each parameter value.

$MQSI bar = MQSI$ Keyword = ″bar″

Value = ″″

The keyword value can be set to an

empty (″″) string.

$MQSI_mqsitag=$MQSI$MQSI$ Keyword = ″mqsitag″

Value = ″$″

This is a poorly formatted definition.

After defining the keyword name, the

parser is looking to find the

delimiters that form the boundary of

the value to be set. In this case, the

only character prior to the MQSI$

that closes the definition is a ’$’, and

that is set as the keyword value.

$MQSI=barMQSI$ This pattern is ignored because the

keyword name cannot be an empty

string.

$MQSItagbarMQSI$ This pattern is ignored because there

is not a separator (=) between the

keyword name and the keyword

value.

Do not use the following keywords as described below:

Message flows 821

VERSION

When you use the Message Broker Toolkit to edit message flows and

dictionaries, it is possible to set the Version property in the Properties

pane, which you can then view in the Broker Archive file editor. If you set

this property, a keyword called VERSION is added to the resulting cmf or

dictionary file. For this reason, do not add $MQSI_VERSION=...MQSI$ to

these files.

BAR The BAR keyword is associated with each object automatically when it is

deployed and it contains the full path name of the broker archive file that

deployed the object.

The values of both keywords are defined programmatically in the class

com.ibm.broker.config.proxy.DeployedObject.

Restrictions within keywords

Do not use the following characters within keywords because they cause

unpredictable behavior:

^$.|\<>?+*=&[]

You can use these characters in the values that are associated with keywords; for

example:

v $MQSI RCSVER=$id$ MQSI$ is acceptable

v $MQSI $name=Fred MQSI$ is not acceptable

Built-in nodes

WebSphere Message Broker supplies built-in nodes that you can use to define your

message flows.

The mode that your broker is working in can affect the types of node that you can

use; see Restrictions that apply in each operation mode.

For information about each of these built-in nodes, use the following links. The

nodes are listed in the categories under which they are grouped in the node

palette, see “Message flow node palette” on page 47.

WebSphere MQ

v “MQInput node” on page 1007

v “MQOutput node” on page 1023

v “MQReply node” on page 1029

v “MQGet node” on page 993

v “MQOptimizedFlow node” on page 1021

v “MQeInput node” on page 982

v “MQeOutput node” on page 990

JMS

v “JMSInput node” on page 949

v “JMSOutput node” on page 961

v “JMSReply node” on page 972

v “JMSMQTransform node” on page 960

v “MQJMSTransform node” on page 1020

HTTP

v “HTTPInput node” on page 920

822 Message Flows

v “HTTPReply node” on page 927

v “HTTPRequest node” on page 929

Web Services

v “SOAPInput node” on page 1104

v “SOAPReply node” on page 1114

v “SOAPRequest node” on page 1116

v “SOAPAsyncRequest node” on page 1082

v “SOAPAsyncResponse node” on page 1092

v “SOAPEnvelope node” on page 1096

v “SOAPExtract node” on page 1099

v “RegistryLookup node” on page 1048

v “EndpointLookup node” on page 881

WebSphere Adapters

v “PeopleSoftInput node” on page 1036

v “PeopleSoftRequest node” on page 1039

v “SAPInput node” on page 1061

v “SAPRequest node” on page 1064

v “SiebelInput node” on page 1076

v “SiebelRequest node” on page 1079

v “TwineballInput node” on page 1204

v “TwineballRequest node” on page 1207

Routing

v “Filter node” on page 910

v “Label node” on page 976

v “Publication node” on page 1042

v “RouteToLabel node” on page 1059

v “Route node” on page 1056

v “AggregateControl node” on page 824

v “AggregateReply node” on page 826

v “AggregateRequest node” on page 829

v “Collector node” on page 833

Transformation

v “Mapping node” on page 978

v “XSLTransform node” on page 1216

v “Compute node” on page 838

v “JavaCompute node” on page 943

Construction

v “Input node” on page 942

v “Output node” on page 1033

v “Throw node” on page 1189

v “Trace node” on page 1198

v “TryCatch node” on page 1202

v “FlowOrder node” on page 914

v “Passthrough node” on page 1034

v “ResetContentDescriptor node” on page 1050

Database

v “Database node” on page 846

v “DataDelete node” on page 866

v “DataInsert node” on page 869

v “DataUpdate node” on page 872

Message flows 823

v “Warehouse node” on page 1213

v “DatabaseRetrieve node” on page 850

v “DatabaseRoute node” on page 859

v “Extract node” on page 884

File

v “FileInput node” on page 886

v “FileOutput node” on page 899

TCP/IP

v “TCPIPClientInput node” on page 1126

v “TCPIPClientOutput node” on page 1137

v “TCPIPClientReceive node” on page 1146

v “TCPIPServerInput node” on page 1158

v “TCPIPServerOutput node” on page 1169

v “TCPIPServerReceive node” on page 1177

Email

v “EmailOutput node” on page 875

Validation

v “Validate node” on page 1210

v “Check node” on page 830

Timer

v “TimeoutControl node” on page 1191

v “TimeoutNotification node” on page 1194

Additional protocols

v “SCADAInput node” on page 1067

v “SCADAOutput node” on page 1074

v “Real-timeInput node” on page 1044

v “Real-timeOptimizedFlow node” on page 1046

AggregateControl node

Use the AggregateControl node to mark the beginning of a fan-out of requests that

are part of an aggregation.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 825

v “Terminals and properties” on page 825

Purpose

Aggregation is an extension of the request/reply application model. It combines

the generation and fan-out of a number of related requests with the fan-in of the

corresponding replies, and compiles those replies into a single aggregated reply

message.

The aggregation function is provided by the following three nodes:

v The AggregateControl node marks the beginning of a fan-out of requests that are

part of an aggregation. It sends a control message that is used by the

AggregateReply node to match the different requests that have been made. The

information that is propagated from the Control terminal includes the broker

824 Message Flows

|
|
|
|
|
|
|

identifier, the aggregate name property, and the timeout property. You must not

change the aggregation information that is added to the message Environment

by the AggregateControl node.

v The AggregateRequest node records the fact that the request messages have been

sent. It also collects information that helps the AggregateReply node to construct

the aggregated reply message. You must preserve the information that is added

to the message Environment by the AggregateControl node, otherwise the

aggregation fails.

v The AggregateReply node marks the end of an aggregation fan-in. It collects

replies and combines them into a single aggregated reply message.

This node creates the LocalEnvironment.ComIbmAggregateControlNode folder.

This folder and the fields within it are for internal use by WebSphere Message

Broker and you should not rely on their existence or values when developing your

message flows.

The AggregateControl node is contained in the Routing drawer of the palette, and

is represented in the workbench by the following icon:

Using this node in a message flow

Look at the following samples to see how to use this node:

v Aggregation sample

v Airline Reservations sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Terminals and properties

When you have put an instance of the AggregateControl node into a message flow,

you can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The AggregateControl node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Out The output terminal to which the original message is routed when processing

completes successfully.

Control The output terminal to which a control message is routed. The control message is sent

to a corresponding AggregateReply node.

The Control terminal is deprecated in Version 6.0; to use connections from the Control

terminal, see “Using control messages in aggregation flows” on page 585.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

Message flows 825

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.aggregation.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The AggregateControl node Description properties are described in the following

table:

 Property M C Default Description

Node name No No The node type

(AggregateControl)

The name of the node.

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the

message flow.

The AggregateControl node Basic properties are described in the following table:

 Property M C Default Description

Aggregate Name Yes Yes A name that used to associate the fan-out message flow with the

fan-in message flow. This value must be contextually unique

within a broker.

Timeout (sec) Yes No 0 The amount of time, in seconds, that it waits for replies to arrive at

the fan-in.

The default value is zero; if you accept this default value, the

timeout is disabled for fan-outs from this node (that is, it waits for

replies indefinitely). If not all responses are received, the message

flow continues to wait, and does not complete. Set a value greater

than zero to ensure that the message flow can complete, even if

not all responses are received. For further information about

timeouts, see “AggregateReply node.”

z/OS

On z/OS, if the Timeout property is not set to zero, set

the queue manager parameter EXPRYINT to 5.

AggregateReply node

Use the AggregateReply node to mark the end of an aggregation fan-in. This node

collects replies and combines them into a single compound message.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 827

v “Terminals and properties” on page 827

Purpose

Aggregation is an extension of the request/reply application model. It combines

the generation and fan-out of a number of related requests with the fan-in of the

corresponding replies, and compiles those replies into a single aggregated reply

message.

The aggregation function is provided by the following three nodes:

v The AggregateControl node marks the beginning of a fan-out of requests that are

part of an aggregation. It sends a control message that is used by the

AggregateReply node to match the different requests that have been made. The

826 Message Flows

information that is propagated from the Control terminal includes the broker

identifier, the aggregate name property, and the timeout property. The

aggregation information that is added to the message Environment by the

AggregateControl node must not be changed.

v The AggregateRequest node records the fact that the request messages have been

sent. It also collects information that helps the AggregateReply node to construct

the aggregated reply message. The information that is added to the message

Environment by the AggregateRequest must be preserved, otherwise the

aggregation fails.

v The AggregateReply node marks the end of an aggregation fan-in. It collects

replies and combines them into a single aggregated reply message.

The AggregateReply node is contained in the Routing drawer of the palette, and is

represented in the workbench by the following icon:

When incoming messages are stored by the AggregateReply node before all

responses for the aggregation are received, the persistence of the message

determines whether the message survives a restart.

If, during an aggregation, one or more of the response messages are not received

by the AggregateReply node, the normal timeout or unknown message processing

deals with the responses that have been received already.

The MQMD.Expiry value of each AggregateReply message is set to -1 in the

compound output message. This value is set because the MQMD.Expiry value has

no meaning once the reply message is no longer on the WebSphere MQ Transport

and has been stored by the broker during the aggregation process.

Using this node in a message flow

Look at the following samples to see how to use this node:

v Aggregation sample

v Airline Reservations sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Terminals and properties

When you have put an instance of the AggregateReply node into a message flow,

you can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The AggregateReply node terminals are described in the following table.

Message flows 827

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.aggregation.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm

Terminal Description

Control The input terminal that accepts control messages that are sent by a corresponding

AggregateControl node.

The Control terminal is deprecated in Version 6.0; to use connections to the Control terminal, see

“Using control messages in aggregation flows” on page 585.

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected during processing.

Unknown The output terminal to which messages are routed when they cannot be identified as valid reply

messages.

Out The output terminal to which the compound message is routed when processing completes

successfully.

Timeout The output terminal to which the incomplete compound message is routed when the timeout

interval that is specified in the corresponding AggregateControl node has expired.

Catch The output terminal to which the message is routed if an exception is thrown downstream and

then caught by this node.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Description properties of the AggregateReply node are described in the

following table.

 Property M C Default Description

Node name No No The node type

(AggregateReply)

The name of the node.

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message flow.

The AggregateReply node Basic properties are described in the following table.

 Property M C Default Description

Aggregate Name Yes Yes A name that is used to associate the fan-in message flow with the

fan-out message flow. This value must be contextually unique

within a broker.

Unknown Message

Timeout

No No 0 The amount of time, in seconds, for which messages that cannot be

identified as replies are held before they are propagated to the

Unknown terminal.

The default value is zero; if you accept this default value, the

timeout is disabled and unknown messages are propagated to the

Unknown terminal upon receipt.

z/OS

On z/OS, if the Unknown Message Timeout property is

not set to zero, set the queue manager parameter EXPRYINT to 5.

828 Message Flows

Property M C Default Description

Transaction Mode Yes No Selected This property defines the transactional characteristics of this

message:

v If you select the check box (the default), the subsequent message

flow is under transaction control. This setting remains true for

messages that derive from the output message and are output by

an MQOutput node, unless the MQOutput node explicitly

overrides the transaction status. No other node can change the

transactional characteristics of the output message.

v If you clear the check box, the subsequent message flow is not

under transaction control. This setting remains true for messages

that derive from the output message and are output by an

MQOutput node, unless the MQOutput node has specified that

the message should be put under syncpoint.

AggregateRequest node

Use the AggregateRequest node to record the fact that request messages have been

sent. This node also collects information that helps the AggregateReply node to

construct the compound response message.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 830

v “Terminals and properties” on page 830

Purpose

Aggregation is an extension of the request/reply application model. It combines

the generation and fan-out of a number of related requests with the fan-in of the

corresponding replies, and compiles those replies into a single aggregated reply

message.

The aggregation function is provided by the following three nodes:

v The AggregateControl node marks the beginning of a fan-out of requests that are

part of an aggregation. It sends a control message that is used by the

AggregateReply node to match the different requests that have been made. The

information that is propagated from the Control terminal includes the broker

identifier, the aggregate name property, and the timeout property. The

aggregation information that is added to the message Environment by the

AggregateControl node must not be changed.

v The AggregateRequest node records the fact that the request messages have been

sent. It also collects information that helps the AggregateReply node to construct

the aggregated reply message. The information that is added to the message

Environment by the AggregateRequest node must be preserved, otherwise the

aggregation fails.

v The AggregateReply node marks the end of an aggregation fan-in. It collects

replies and combines them into a single aggregated reply message.

The AggregateRequest node is contained in the Routing drawer of the palette, and

is represented in the workbench by the following icon:

Message flows 829

Using this node in a message flow

Look at the following samples to see how to use this node:

v Aggregation sample

v Airline Reservations sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Terminals and properties

When you have put an instance of the AggregateRequest node into a message flow,

you can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The AggregateRequest node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts messages sent as part of an aggregate request.

Out The output terminal to which the input message is routed when processing completes successfully.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The AggregateRequest node Description properties are described in the following

table.

 Property M C Default Description

Node name No No The node type

(AggregateRequest)

The name of the node

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the

message flow.

The AggregateRequest node Basic property is described in the following table.

 Property M C Default Description

Folder Name Yes No The name that is used as a folder in the AggregateReply node’s compound

message to store the reply to this request. You must enter a value for this

property, but the value does not need to be unique.

Check node

Use the Check node to compare the template of a message that is arriving on its

input terminal with a message template that you supply when you configure the

Check node.

830 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.aggregation.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm

Attention: The Check node is deprecated in WebSphere Message Broker Version

6.0 and subsequent versions. Although message flows that contain a Check node

remain valid, redesign your message flows where possible to replace Check nodes

with Validate nodes.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow”

v “Terminals and properties”

Purpose

The message domain, message set, and message type of the message are

collectively called the message template. The domain defines the parser that is used

for the message. The set is the message set to which the message belongs. The type

is the structure of the message itself. You can check the incoming message against

one or more of these properties. The message property is checked only if you select

its corresponding Check property, which means that a message property that

contains a null string can be compared.

If the message properties match the specification, the message is propagated to the

Match terminal of the node. If the message properties do not match the

specification, the message is propagated to the Failure terminal. If the Failure

terminal is not connected to some failure handling processing, an exception is

generated.

The Check node is contained in the Validation drawer of the palette, and is

represented in the workbench by the following icon:

Using this node in a message flow

Use the Check node to ensure that the message is routed appropriately through the

message flow. For example, you can configure the node to direct a message that

requests stock purchases through a different route from that required for a message

that requests stock sales.

Another example of this node’s use is for the receipt of electronic messages from

staff at your head office. These messages are used for multiple purposes; for

example, to request technical support or stationery, or to advise you about new

customer leads. These messages can be processed automatically because your staff

complete a standard form. If you want these messages to be processed separately

from other messages received, use the Check node to ensure that only staff

messages with a specific message type are processed by this message flow.

Terminals and properties

When you have put an instance of the Check node into a message flow, node into

a message flow, you can configure it. For more information, see “Configuring a

message flow node” on page 235. The properties of the node are displayed in the

Properties view. All mandatory properties for which you must enter a value (those

that do not have a default value defined) are marked with an asterisk.

The Check node terminals are described in the following table.

Message flows 831

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if the incoming message does not match the

specified properties.

Match The output terminal to which the message is routed if the incoming message matches the specified

properties.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Check node Description properties are described in the following table.

 Property M C Default Description

Node name No No Check The name of the node

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message flow.

The Check node Basic properties are described in the following table.

 Property M C Default Description

Domain No No The name of the domain.

Check

domain

Yes No Cleared This property checks that a message belongs to a particular domain. To

check the parser that is to be used for the incoming message, select this

check box and select one of the values from the Domain list.

Set No No The message set to which the incoming message belongs.

If you are using the MRM, IDOC, or XMLNSC parser, check that the

incoming message belongs to a particular message set by selecting Check

set and entering the name of the message set in Set.

Leave Set clear for other parsers.

If you set this property, then subsequently update the project

dependencies to remove this message set reference, a warning is issued.

Either update the Message set property, or restore the reference to this

message set project.

Check set Yes No Cleared If you select this check box, the incoming message is checked against the

Set property.

Type No No The message name.

If you are using the MRM parser, check that the incoming message is a

particular message type by selecting Check type and entering the name of

the message in Type.

Leave Type clear for other parsers.

Check type Yes No Cleared If you select this check box, the incoming message is checked against the

Type property.

832 Message Flows

|
|
|
|

Collector node

Use the Collector node to create message collections based on rules that you

configure in the node.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 834

v “Terminals and properties” on page 835

Purpose

Use the Collector node to create a message collection from one or more sources

based on configurable criteria. For example, you might need to extract, combine

and transform information from three different sources. The messages from these

different sources might arrive at the input terminals at different times and in an

unknown order. A collection is defined by configuring an event handler for each

input terminal. Each event handler controls the acceptance of a message into a

collection according to the following properties:

v Number of messages

v Collect messages for a set period of time

v Match the contents of a correlation path

v Match the contents against a correlation pattern

The correlation properties allow collections to be made according to the content of

the messages. The content is specified using an XPath expression. The Collector

node ensures that each collection contains an identical correlation string across all

its inputs. For more information about XPath 1.0 query syntax, see XPath.

A message collection comes into existence when the first message arrives at any of

the dynamic input terminals on the Collector node. Message collections are stored

on a WebSphere MQ queue.

When the conditions set by the event handlers for a message collection have been

met, the message collection is complete and ready to be propagated. For example,

if you set the event handlers on the Collector node to wait for 2 messages from

each input terminal, the message collection is complete when 2 messages have

been received by every terminal. When the next message arrives on an input

terminal it is added to a new message collection. You can select from a number of

options to determine how the propagation of the message collections are

coordinated. You can enable the message collection to be automatically propagated

for processing, or alternatively for the message collections to be propagated when

a control messages is received.

You can also set an expiry timeout for message collections that fail to be completed

in a satisfactory time, using a property on the Collector node. The timeout starts

when the first message is added to a message collection. If the timeout expires

without the message collection becoming complete, the incomplete message

collection is propagated to the Expire terminal. Set a value for the collection expiry

to ensure that incomplete message collections do not remain stored on a queue

indefinitely. Add appropriate processing to your message flow to handle

incomplete message collections.

The Collector node is contained in the Routing drawer of the message flow node

palette, and is represented in the workbench by the following icon:

Message flows 833

http://www.w3.org/TR/xpath

Using this node in a message flow

Look at the Collector Node sample to see an example of how to use this node. You

can view samples only when you use the information center that is integrated with

the Message Broker Toolkit.

Use the Collector node to group together messages from different input sources for

further processing. A message collection can be processed by the following nodes

only:

v Compute

v JavaCompute

Errors might be generated if you try to process a message collection with a node

that does not support message collections.

The Collector node has one static input terminal: Control, and four static output

terminals: Out, Expire, Failure and Catch. These static terminals are always

present on the node. In addition to the static input and output terminals, you can

add dynamic input terminals for each input source that you want to use with the

Collector node.

You can add and configure as many input terminals as required to the Collector

node. You can configure the properties of each input terminal separately to control

how the messages received on each input terminal are added to the appropriate

message collection.

You can use the Control terminal to trigger the output of completed message

collections from the Collector node. Configure the Event coordination property to

set the behavior of the Collector node when messages are received on the Control

terminal.

When a message collection is successfully completed, it is ready to be propagated

to the Out terminal. If a value greater than zero is set on the Collection expiry

property, then any incomplete message collections are propagated to the Expire

terminal.

A new transaction is created when a message collection is complete, and is

propagated to the next node. Any exceptions that are caught from downstream

nodes cause the message collection to be propagated to the Catch terminal on the

Collector node, together with the exception list. If the Catch terminal is not

connected to any other nodes, then the transaction is caused to rollback. Messages

in the message collection are backed out onto the Collector node’s queue. The

exception list is written to the system log. This step is repeated until the message

collection is successfully processed. In order to avoid a situation where an

exception in the flow causes the message collection to fail to be propagated

successfully, ensure you connect the Catch terminal to a flow to handle any

exceptions. Also ensure you set an expiry timeout to propagate incomplete

message collections.

Configuring the Collector node

1. On the Advanced tab:

834 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.collector.doc/doc/overview.htm

a. Enter a value for Persistence Mode. This value is used to specify whether

messages are stored on the Collector node’s queues persistently.

If you use additional instances of a message flow or multiple inputs to the

Collector node, you can use the Correlation path and Correlation pattern properties to

ensure that related messages are added to the same message collection. If you use

additional instances, or multiple inputs to the Collector node the order of messages

in the message collection can be unpredictable. The order of messages is also

unpredictable if you use WebSphere MQ cluster queues as inputs to the Collector

node.

Terminals and properties

When you have put an instance of the Collector node into a message flow, you can

configure it; see “Configuring a message flow node” on page 235. The properties of

the node are displayed in the Properties view. All mandatory properties for which

you must enter a value (those that do not have a default value defined) are

marked with an asterisk.

The Collector node terminals are described in the following table.

 Terminal Description

Control The static input terminal that accepts control messages. Any message received by the

Control terminal is treated as a control message.

Out The output terminal to which the complete message collection is routed if the

received messages satisfy the configured conditions for the message collection.

Expire The output terminal to which the incomplete message collection is routed if the

received messages do not satisfy the configured conditions within the time specified

on the Collection expiry property. If you have not set a value for the Collection expiry

property this terminal is not used.

Failure The output terminal to which the message collection is routed if a failure is detected

during processing.

Catch The output terminal to which the message collection is routed if an exception is

thrown downstream and caught by this node.

The Collector node can have further dynamic input terminals.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Collector node Description properties are described in the following table:

 Property M C Default Description

Node name No No The node

type,

Collector

The name of the node.

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the

message flow.

Message flows 835

The Collector node has two types of Basic properties. You can set properties for

each dynamic input terminal that you add to the Collector node in the Collection

Definition table in the Basic properties. The properties in the Collection Definition

table define the event handlers for the messages arriving on the individual input

terminals. The properties that you can set for each of the dynamic input terminals

are described in the following table:

 Property M C Default Description

Terminal Yes No The terminal

name

This is not a property of the node, but a label to show

the name of the dynamic input terminal.

Enter values for the event handler properties for each

dynamic input terminal that you have added to the

Collector node in the Collection Definition table.

Quantity Yes No 1 This property specifies the number of messages that

the input terminal accepts to add to a message

collection.

The default value is 1; if you accept this default value,

only one message is added to a collection. If a second

message is received on the terminal, a new collection

instance is created for it. If you select 0 (zero) or do

not specify a value, there is no limit to the number of

messages accepted. In this case, the value that is set on

the Timeout property must be greater than zero.

Timeout Yes No This property specifies the maximum time in seconds

for which the input terminal accepts messages. If you

select 0 (zero) or do not specify a value for, the

timeout is disabled and there is no limit on the time to

wait for messages. In this case, the value that is set on

the Quantity property must be greater than zero.

Correlation path No No Messages are only accepted into a message collection if

they have the same correlation string. If the message

has a different correlation string, it is offered to the

next collection in the queue. If none of the collections

accept the message, then a new collection is created

with correlation string set to the value of the

correlation string in the message. Messages are

grouped by the value from the correlation path. The

correlation path is defined using XPath. You can define

your own correlation path using XPath, or select from

the following predefined paths:

v $Root/Properties/WildcardMatch

v $Root/MQMD/CorrelID

v $LocalEnvironment/FileInput/Name

v $Root/JMSTransport/Transport_Folders/
Header_Values/JMSCorrelationID

If you define a value for Correlation path, you can

optionally configure a Correlation pattern.

836 Message Flows

Property M C Default Description

Correlation pattern No No This property specifies a pattern to match the contents

of a correlation path value against. You must set the

Correlation path property before you set the value for

the Correlation pattern property. If you set the

correlation pattern, you must use one * character,

optionally surrounded by other text. For example,

*.dat.

If the correlation pattern is blank, the entire text from

the correlation path must be matched by the incoming

message.

The remaining Basic properties for the Collector node are shown in the following

table:

 Property M C Default Description

Collection name No No This property specifies the name of the message

collection.

v If you set this property to contain the wildcard *, the

wildcard is replaced by the correlation string from

the relevant event handler.

v If you leave this property blank or use * and the

correlation string is empty, then the collection name

is set to an empty string.

Collection expiry No Yes 0 The amount of time, in seconds, that the Collector

node waits for messages to arrive. After this time an

incomplete message collection is expired and

propagated to the Expire output terminal.

The default value is zero; if you accept this value, the

collection expiry is disabled and the Collector node

waits for messages indefinitely. Set a value greater

than zero to ensure that the message collection is

processed, even if not all messages are received. A

warning is issued if this property is not set.

Message flows 837

Property M C Default Description

Event coordination Yes No Disabled This property specifies how messages received on the

Control terminal for event coordination processing are

handled in the Collector node.

v If you accept the default value (Disabled), messages

to the Control terminal are ignored and collections

are propagated when they are complete.

v If you select All complete collections, complete

message collections are held on a WebSphere MQ

queue. When a message is received on the control

terminal, all complete message collections on the

WebSphere MQ queue are propagated to the Out

terminal.

v If you select First complete collection, complete

message collections are held on a WebSphere MQ

queue. When a message is received on the control

terminal, the first complete message collection on

the WebSphere MQ queue is propagated to the Out

terminal. The collections are propagated in the same

order that they become complete. If the WebSphere

MQ queue is empty when the message is received

on the Control terminal, the next complete message

collection is immediately propagated to the Out

terminal.

Compute node

Use the Compute node to construct one or more new output messages.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 839

v “Configuring the Compute node” on page 839

v “Defining database interaction” on page 839

v “Specifying ESQL” on page 840

v “Setting the mode” on page 841

v “Validating messages” on page 844

v “Terminals and properties” on page 844

Purpose

The output messages that you create in the Compute node might be created by

modifying the information that is provided in the input message, or by using only

new information which can be taken from a database or from other sources.

Elements of the input message (for example, headers, header fields, and body

data), its associated environment, and its exception list can be used to create the

new output message.

Specify how the new messages are created by coding ESQL in the message flow

ESQL resource file. For more information, see “Specifying ESQL” on page 840.

Use the Compute node to:

v Build a new message using a set of assignment statements

v Copy messages between parsers

v Convert messages from one code set to another

v Transform messages from one format to another

838 Message Flows

The Compute node is contained in the Transformation drawer of the palette, and

is represented in the workbench by the following icon:

Using this node in a message flow

Look at the following samples to see how to use this node:

v Airline Reservations sample

v Aggregation sample

v JMS Nodes sample

v Large Messaging sample

v Message Routing sample

v Scribble sample

v Timeout Processing sample

v Video Rental sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Consider a message flow in which you want to give each order that you receive a

unique identifier for audit purposes. The Compute node does not modify its input

message; it creates a new, modified copy of the message as an output message. You

can use the Compute node to insert a unique identifier for your order into the

output message, which can be used by subsequent nodes in the message flow.

Configuring the Compute node

When you have put an instance of the Compute node into a message flow, you can

configure it; see “Configuring a message flow node” on page 235. The properties of

the node are displayed in the Properties view.

All mandatory properties for which you must enter a value (those that do not have

a default value defined) are marked with an asterisk.

Configure the Compute node by:

1. “Defining database interaction”

2. “Specifying ESQL” on page 840

3. “Setting the mode” on page 841

4. “Validating messages” on page 844

Defining database interaction:

To access a database from this node:

v On the Basic tab, specify in Data Source the name by which the appropriate

database is known on the system on which this message flow is to execute. The

broker connects to this database with user ID and password information that

you have specified on the mqsicreatebroker, mqsichangebroker, or

mqsisetdbparms command.

z/OS

On z/OS systems, the broker uses the broker started task ID, or the

user ID and password that were specified on the mqsisetdbparms command

JCL, BIPSDBP in the customization data set <hlq>.SBIPPROC.

v Select the Transaction setting from the drop-down menu. The values are:

Message flows 839

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.aggregation.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.jmsnode.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.largemessaging.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.routing.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.scribble.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.timeout.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.doc/doc/overview.htm

– Automatic (the default). The message flow, of which the Compute node is a

part, is committed if it is successful. That is, the actions that you define in the

ESQL module are performed on the message and it continues through the

message flow. If the message flow fails, it is rolled back. If you choose

Automatic, the ability to commit or roll back the action of the Compute node

on the database depends on the success or failure of the entire message flow.

– Commit. To commit the action of the Compute node on the database,

irrespective of the success or failure of the message flow as a whole, select

Commit. The database update is committed even if the message flow itself

fails.

The value that you choose is implemented for the one or more database tables

that you have added; you cannot select a different value for each table.

v To treat database warning messages as errors and have the node propagate the

output message to the Failure terminal, select Treat warnings as errors. The

check box is cleared initially.

When you select the check box, the node handles all positive return codes from

the database as errors and generates exceptions in the same way as it does for

the negative, or more serious, errors.

If you do not select the check box, the node treats warnings as normal return

codes, and does not raise any exceptions. The most significant warning raised is

not found, which can be handled as a normal return code safely in most

circumstances.

v To force the broker to generate an exception when a database error is detected,

select Throw exception on database error. The check box is selected initially.

If you clear the check box, you must include ESQL to check for any database

error that might be returned after each database call that you make (you can use

SQLCODE and SQLSTATE to do this). If an error occurs, you must handle the

error in the message flow to ensure the integrity of the broker and the database;

the error is ignored if you do not handle it through your own processing

because you have chosen not to invoke the default error handling by the broker.

For example, you can include the ESQL THROW statement to throw an

exception in this node, or you can use the Throw node to generate your own

exception at a later point in the message flow.

Specifying ESQL:

Code ESQL statements to customize the behavior of the Compute node. For

example, you can customize the node to create a new output message or messages,

using input message or database content (unchanged or modified), or new data.

For example, you might want to modify a value in the input message by adding a

value from a database, and storing the result in a field in the output message.

Code the ESQL statements that you want in an ESQL file that is associated with

the message flow in which you have included this instance of the Compute node.

The ESQL file, which by default has the name <message_flow_name>.esql,

contains ESQL for every node in the message flow that requires it. Each portion of

code that is related to a specific node is known as a module.

If an ESQL file does not already exist for this message flow, double-click the

Compute node, or right-click the node and click Open ESQL. This action creates

and opens a new ESQL file in the ESQL editor view. If you prefer, you can open

the appropriate ESQL file in the Broker Development view and select this node in

the Outline view.

840 Message Flows

If the file exists already, click Browse beside the ESQL Module property to display

the Module Selection dialog box, which lists the available Compute node modules

defined in the ESQL files that are accessible by this message flow (ESQL files can

be defined in other, dependent, projects). Select the appropriate module and click

OK. If no suitable modules are available, the list is empty.

If the module that you have specified does not exist, it is created for you and the

editor displays it. If the file and the module exist already, the editor highlights the

correct module.

If a module skeleton is created for this node in a new or existing ESQL file, it

consists of the following ESQL. The default module name is shown in this

example:

CREATE COMPUTE MODULE <flow_name>_Compute

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 -- CALL CopyMessageHeaders();

 -- CALL CopyEntireMessage();

 RETURN TRUE;

 END;

 CREATE PROCEDURE CopyMessageHeaders() BEGIN

 DECLARE I INTEGER 1;

 DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

 WHILE I < J DO

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I = I + 1;

 END WHILE;

 END;

 CREATE PROCEDURE CopyEntireMessage() BEGIN

 SET OutputRoot = InputRoot;

 END;

END MODULE;

If you create your own ESQL module, you must create this skeleton exactly as

shown except for the procedure calls and definitions (described below). You can

change the default name, but ensure that the name you specify matches the name

of the corresponding node property ESQL Module. If you want the module name

to include one or more spaces, enclose the name in double quotes in the ESQL

Module property.

Add your own ESQL to customize this node after the BEGIN statement that

follows CREATE FUNCTION, and before RETURN TRUE. You can use the two

calls included in the skeleton, to procedures CopyEntireMessage and

CopyMessageHeaders.

These procedures, defined following function Main, provide common functions

that you might want when you manipulate messages. The calls in the skeleton are

commented out; remove the comment markers if you want to use the procedure. If

you do not want to use a procedure, remove both the call and the procedure

definition from the module.

Setting the mode:

The Compute Mode property controls which components are used by default in

the output message. Select the property to specify whether the Message,

Message flows 841

LocalEnvironment (previously specified as DestinationList), and Exception List

components that are either generated within the node or contained within the

incoming message are used.

This default value is used when the transformed message is routed to the Out

terminal when processing in the node is completed. The default value is also used

whenever a PROPAGATE statement does not specify the composition of its output

message.

Those components that are not included in your selection are passed on

unchanged; even if you modify those components, the updates are local to this

node.

Conversely, those components that are included in the selection are not passed on

and the updates that are made in the node persist.

The seven possible values that the Compute Mode property can take are listed in

the following table.

 Mode Description

Message (the default) The message is generated or passed through by the

Compute node as modified within the node.

LocalEnvironment The LocalEnvironment tree structure is generated or

passed through by the Compute node as modified within

the node.

LocalEnvironment And Message The LocalEnvironment tree structure and message are

generated or passed through by the Compute node as

modified by the node.

Exception The Exception List is generated or passed through by the

Compute node as modified by the node.

Exception And Message The Exception List and message are generated or passed

through by the Compute node as modified by the node.

Exception and

LocalEnvironment

The Exception List and LocalEnvironment tree structure

are generated or passed through by the Compute node

as modified by the node.

All The message, Exception List, and LocalEnvironment are

generated or passed through by the Compute node as

modified by the node.

The value of the Compute Mode property specifies which new message trees are

propagated from the Compute node. Therefore, for those message trees that are

selected, the input messages are discarded unless they are explicitly copied into the

new equivalent output message tree.

If All is selected, the Compute node is expecting to generate all three new message

trees for the Root, LocalEnvironment, and ExceptionList by populating the

OutputRoot, OutputLocalEnvironment, and OutputExceptionList. The input

message trees are not passed to the output unless they are copied explicitly from

the Input to the Output.

Therefore, if the Compute Mode property is set to All, you must code the

following ESQL to allow the input trees to be propagated to the output terminal:

842 Message Flows

SET OutputRoot = InputRoot;

 SET OutputLocalEnvironment = InputLocalEnvironment;

 SET OutputExceptionList = InputExceptionList;

If the ESQL was CopyEntireMessage(), the LocalEnvironment and ExceptionList are

not copied across and are not propagated to the output terminal; they are lost at

that node in the message flow.

To produce a new or changed output message, and propagate the same

LocalEnvironment and ExceptionList, set the Compute Mode property to Message

so that the LocalEnvironment and ExceptionList that are passed to the Compute or

Mapping node, are passed on from the Compute node.

The Compute Mode applies only to propagation from the node. You can create all

three output trees in a Compute or Mapping node and these can be manipulated

and exist within the node. However, the Compute Mode determines whether such

output trees are used on propagation from the node.

On propagation from the node, the following trees are propagated from the

Compute or Mapping node for the following settings.

 Compute Mode Trees propagated

All OutputRoot, OutputLocalEnvironment,

OutputExceptionList

Message OutputRoot, InputLocalEnvironment, InputExceptionList

LocalEnvironment InputRoot, OutputLocalEnvironment, InputExceptionList

LocalEnvironment and Message OutputRoot, OutputLocalEnvironment,

InputExceptionList

Exception InputRoot, InputLocalEnvironment, OutputExceptionList

Exception and Message OutputRoot, InputLocalEnvironment,

OutputExceptionList

Exception and

LocalEnvironment

InputRoot, OutputLocalEnvironment,

OutputExceptionList

Where an output tree is named, ESQL creates this message tree before propagation.

If your ESQL does not create the tree, no tree is propagated for that correlation

name, and the input tree is not used in its place because the Compute Mode

property did not indicate this option. Therefore, dependent on Compute Mode

property settings and your ESQL, you might delete a tree that was input to the

node, because you did not transfer it to the output tree, or propagate a changed

tree as you intended.

The converse is also true. If your ESQL interrogates the input trees and does not

need to propagate these trees, the Compute Mode property value might mean that

the message tree propagates when you do not intend it to do so. For example, you

might not want to propagate the LocalEnvironment and ExceptionList from a

Compute node, but because you selected Message, the input versions of the trees

are propagated. Even if the ESQL explicitly deletes the OutputLocalEnvironment

and OutputExceptionList, these changes are local to that node because the

Compute Mode property setting causes the input trees to be propagated.

The Environment component of the message tree is not affected by the Compute

Mode property setting. Its contents, if any, are passed on from this node in the

output message.

Message flows 843

Set this property to reflect the output message format that you require. If you

select an option (or accept the default value) that does not include a particular part

of the message, that part of the message is not included in any output message

that is constructed.

The Compute node has both an input and output message, so you can use ESQL to

refer to fields in either message. You can also work with both

InputLocalEnvironment and OutputLocalEnvironment, and InputExceptionList and

OutputExceptionList, as well as the input and output message bodies.

Validating messages:

Set the validation properties to define how the message that is produced by the

Compute node is to be validated. These properties do not cause the input message

to be validated. It is expected that, if such validation is required, the validation has

already been performed by the input node or a preceding validation node.

For more details, see “Validating messages” on page 164 and “Validation

properties” on page 1359.

Terminals and properties

The Compute node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is routed if an unhandled exception

occurs during the computation.

Out The output terminal to which the transformed message is routed when processing in

the node is completed. The transformed message might also be routed to this terminal

by a PROPAGATE statement.

Out1 The first alternative output terminal to which the transformed message might be

routed by a PROPAGATE statement.

Out2 The second alternative output terminal to which the transformed message might be

routed by a PROPAGATE statement.

Out3 The third alternative output terminal to which the transformed message might be

routed by a PROPAGATE statement.

Out4 The fourth alternative output terminal to which the transformed message might be

routed by a PROPAGATE statement.

For the syntax of the PROPAGATE statement, see “PROPAGATE statement” on

page 1550.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Compute node Description properties are described in the following table.

844 Message Flows

Property M C Default Description

Node name No No The node

type

The name of the node.

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the

message flow.

The Compute node Basic properties are described in the following table.

 Property M C Default Description

Data Source No Yes The ODBC data source name for the database within

which reside any tables to which you refer in the

ESQL file that is associated with this message flow

(identified in the ESQL Module property). You can

specify only one data source for the node.

If the ESQL that is associated with this node includes a

PASSTHRU statement or SELECT function and a

database reference, you must specify a value for the

Data Source property.

Transaction Yes No Automatic The transaction mode for the node. Valid options are

Automatic and Commit. The property is valid only if

you have selected a database table for input.

ESQL Module Yes No Compute The name of the module within the ESQL file that

contains the statements to execute against the database

and input and output messages.

Compute Mode Yes No Message Choose from:

v Message

v LocalEnvironment

v LocalEnvironment And Message

v Exception

v Exception And Message

v Exception And LocalEnvironment

v All

For more information about setting the mode options,

see “Setting the mode” on page 841.

Treat warnings as

errors

Yes No Cleared If you select the check box, database SQL warnings are

treated as errors.

Throw exception on

database error

Yes No Selected If you select this check box, database errors cause the

broker to throw an exception.

The Parser Options properties for the Compute node are described in the following

table.

 Property M C Default Description

Use XMLNSC Compact

Parser for XMLNS

Domain

No No Cleared Setting this property causes the outgoing MQRFH2 to

specify the XMLNS instead of XMLNSC parser,

allowing an external application to remain unchanged.

If outgoing messages do not contain MQRFH2 headers

this property has no effect.

Message flows 845

|
|
|
|

|
|
|
|
|

The Validation properties of the Compute node are described in the following

table.

For a full description of these properties, see “Validation properties” on page 1359.

 Property M C Default Description

Validate No Yes None This property controls whether validation takes place.

Valid values are None, Content and Value, Content,

and Inherit.

Failure Action No No Exception This property controls what happens if a validation

failure occurs. You can set this property only if Validate

is set to Content or Content and Value. Valid values are

User Trace, Local Error Log, Exception, and Exception

List.

Database node

Use the Database node to interact with a database in the specified ODBC data

source.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow”

v “Terminals and properties” on page 847

Purpose

You define the nature of the interaction by coding ESQL statements that specify the

data from the input message, and perhaps transform it in some way (for example,

to perform a calculation), and assign the result to a database table.

You can set a property to control whether the update to the database is committed

immediately, or deferred until the message flow completes, at which time the

update is committed or rolled back, according to the overall completion status of

the message flow.

You can use specialized forms of this node to:

v Update values within a database table (the DataUpdate node)

v Insert rows into a database table (the DataInsert node)

v Delete rows from a database table (the DataDelete node)

v Store the message, or parts of the message, in a warehouse (the Warehouse

node)

The Database node is contained in the Database drawer of the palette, and is

represented in the workbench by the following icon:

Using this node in a message flow

Look at the following samples to see how to use this node:

v Airline Reservations sample

v Error Handler sample

846 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.doc/doc/overview.htm

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Consider a situation in which you receive an order for 20 monitors. If you have

sufficient numbers of monitors in your warehouse, you want to reduce the stock

level on your stock database. You can use the Database node to check that you

have enough monitors available, and reduce the value of the quantity field in your

database.

Terminals and properties

When you have put an instance of the Database node into a message flow, you can

configure it; see “Configuring a message flow node” on page 235. The properties of

the node are displayed in the Properties view. All mandatory properties for which

you must enter a value (those that do not have a default value defined) are

marked with an asterisk.

The terminals of the Database node are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is propagated if a failure is detected during the

computation. If you have selected Treat warnings as errors, the node propagates the message to this

terminal even if the processing completes successfully.

Out The output terminal to which the transformed message is routed when processing in the node is

completed. The transformed message might also be routed to this terminal by a PROPAGATE

statement.

Out1 The first alternative output terminal to which the transformed message might be routed by a

PROPAGATE statement.

Out2 The second alternative output terminal to which the transformed message might be routed by a

PROPAGATE statement.

Out3 The third alternative output terminal to which the transformed message might be routed by a

PROPAGATE statement.

Out4 The fourth alternative output terminal to which the transformed message might be routed by a

PROPAGATE statement.

Note: For the syntax of the PROPAGATE statement, see “PROPAGATE statement”

on page 1550.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Description properties of the Database node are described in the following

table.

 Property M C Default Description

Node name No No The node

type,

Database

The name of the node.

Message flows 847

Property M C Default Description

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message flow.

The Database node Basic properties are described in the following table.

 Property M C Default Description

Data Source No Yes The ODBC data source name of the database that contains the tables to

which you refer in the ESQL that is associated with this node

(identified by the Statement property).

This name identifies the appropriate database as it is known on the

system on which this message flow is to run. The broker connects to

this database with user ID and password information that you have

specified on the mqsicreatebroker, mqsichangebroker, or

mqsisetdbparms command.

z/OS

On z/OS systems, the broker uses the broker’s started task

ID, or the user ID and password that are specified on the

mqsisetdbparms command JCL, BIPSDBP in the customization data set

<hlq>.SBIPPROC.

If the ESQL that is associated with this node includes a PASSTHRU

statement or SELECT function and a database reference, you must

specify a value for the Data Source property.

848 Message Flows

|
|
|

Property M C Default Description

Statement Yes No Database The name of the module in the ESQL file that contains the statements

to use against the database. If you want the module name to include

one or more spaces, enclose the name in double quotation marks.

The ESQL file, which by default has the name

<message_flow_name>.esql, contains ESQL for every node in the

message flow that requires it. Each portion of code that is related to a

specific node is known as a module. When you code ESQL statements

that interact with tables, those tables are assumed to exist within this

database. If they do not exist, a database error is generated by the

broker at run time.

Code ESQL statements to customize the behavior of the Database node

in an ESQL file that is associated with the message flow in which you

have included this instance of the Database node. If an ESQL file does

not exist already for this message flow, double-click the Database node,

or right-click the node and click Open ESQL to create and open a new

ESQL file in the ESQL editor view.

If an ESQL file exists already, click Browse beside the Statement

property to display the Module Selection dialog box, which lists the

available Database node modules that are defined in the ESQL files that

are accessible by this message flow (ESQL files can be defined in other,

dependent, projects). Select the appropriate module and click OK. If no

suitable modules are available, the list is empty.

If the module that you have specified does not exist, it is created for

you and the editor displays it. If the file and the module exist already,

the editor highlights the correct module. If a module skeleton is created

for this node in a new or existing ESQL file, it consists of the following

ESQL. The default module name is shown in this example:

CREATE DATABASE MODULE <flow_name>_Database

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 RETURN TRUE;

 END;

END MODULE;

If you create your own ESQL module, create exactly this skeleton. You

can update the default name, but ensure that the name that you specify

matches the name of the corresponding node property Statement.

To customize this node, add your own ESQL after the BEGIN statement

and before RETURN TRUE. You can use all the ESQL statements

including SET, WHILE, DECLARE, and IF in this module, but (unlike

the Compute node) the Database node propagates, unchanged, the

message that it receives at its input terminal to its output terminal.

Therefore, like the Filter node, you have only one message to refer to in

a Database node.

Message flows 849

Property M C Default Description

Transaction Yes No Automatic The transaction mode for the node. The values are:

v Automatic (the default). The message flow, of which the Database

node is a part, is committed if it is successful; that is, the actions that

you define in the ESQL module are performed and the message

continues through the message flow. If the message flow fails, it is

rolled back. If you select Automatic, the ability to commit or roll

back the action of the Database node on the database depends on the

success or failure of the entire message flow.

v Commit. To commit any uncommitted actions that are performed in

this message flow on the database that is connected to this node,

irrespective of the success or failure of the message flow as a whole,

select Commit. The changes to the database are committed even if

the message flow itself fails.

Treat Warnings

as Errors

Yes No Cleared For database warning messages to be treated as errors, and for the

node to propagate the output message to the Failure terminal, select

Treat Warnings as Errors. The check box is cleared initially.

When you select the check box, the node handles all positive return

codes from the database as errors and generates exceptions in the same

way as it does for the negative, or more serious, errors. If you do not

select the check box, the node treats warnings as normal return codes,

and does not raise any exceptions. The most significant warning raised

is not found, which can be handled safely as a typical return code in

most circumstances.

Throw

Exception on

Database Error

Yes No Selected For the broker to generate an exception when a database error is

detected, select Throw Exception on Database Error. The check box is

selected initially.

If you clear the check box, include ESQL to check for any database

error that might be returned after each database call that you make

(you can use SQLCODE and SQLSTATE to do this). If an error has

occurred, you must handle the error in the message flow to ensure the

integrity of the broker and the database; the error is ignored if you do

not handle it through your own processing because you have chosen

not to use the default error handling by the broker. For example, you

can include the ESQL THROW statement to throw an exception in this

node, or you can use the Throw node to generate your own exception

at a later point.

DatabaseRetrieve node

Use the DatabaseRetrieve node to ensure that information in a message is up to

date.

This topic contains the following sections:

v “Purpose” on page 851

v “Using this node in a message flow” on page 851

v “Making the JDBC provider service available to the DatabaseRetrieve node” on

page 853

v “Using the Database Explorer view to query data sources” on page 853

v “Configuring the DatabaseRetrieve node” on page 854

v “Example” on page 854

v “Validating messages” on page 855

v “Terminals and properties” on page 856

850 Message Flows

Purpose

Use the DatabaseRetrieve node to modify a message using information from a

database. For example, you can add information to a message using a key that is

contained in a message; the key can be an account number.

The DatabaseRetrieve node is contained in the Database drawer of the message

flow node palette, and is represented in the workbench by the following icon:

Using this node in a message flow

Look at the Simplified Database Routing sample to see how to use this node. You

can view samples only when you use the information center that is integrated with

the Message Broker Toolkit.

Input parameter values that are acquired from message elements in the incoming

message are supported for insertion into prepared statements that are used by this

node. These values are acquired from name, value, and name-value elements in the

incoming parsed input message. Elements are acquired initially in the form of a

com.ibm.broker.plugin.MbElement object, therefore the range of supported Java

object types that values can take is governed by this object’s interface. When values

are in the form of Java primitive types or Objects they are converted to their

equivalent JDBC data type, as shown in the following table.

 Java JDBC

Integer INTEGER

Long BIGINT

Double DOUBLE

BigDecimal NUMERIC

Boolean BIT

byte[] VARBINARY or LONGVARBINARY

BitSet VARBINARY or LONGVARBINARY

String VARCHAR or LONGVARCHAR

MbTime java.sql.Time

MbTimestamp java.sql.Timestamp

MbDate java.sql.Date

Values are used from an element only if the element is of a known type, and its

value state is valid, otherwise an exception is issued. Output column values that

are acquired in the result set from SQL queries that are carried out by this node are

converted first into matching Java types, then into internal message element value

types, as shown in the following table.

 JDBC Java ESQL Type

SMALLINT Integer INTEGER

INTEGER Integer INTEGER

BIGINT Long DECIMAL

DOUBLE Double FLOAT

Message flows 851

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.simplifieddbrouting.doc/doc/overview.htm

JDBC Java ESQL Type

REAL Double FLOAT

FLOAT Double FLOAT

NUMERIC BigDecimal DECIMAL

DECIMAL BigDecimal DECIMAL

BIT Boolean BOOLEAN

BOOLEAN Boolean BOOLEAN

BINARY byte[] BLOB

VARBINARY byte[] BLOB

LONGVARBINARY byte[] BLOB

CHAR String CHARACTER

VARCHAR String CHARACTER

LONGVARCHAR String CHARACTER

TINYINT byte[1] BLOB

TIME java.util.Date TIME

TIMESTAMP java.util.Date TIMESTAMP

DATE java.util.Date DATE

You can route a message to the same location, whether or not a query is successful

against a given database, by wiring both of the non-failure output terminals to the

same output location.

If an error is found in the XPath expression of a pattern, it is reported during

validation in the workbench. The reported error message might include the

incorrect expression string and its associated unique dynamic or static terminal

name, or the string might be marked as broker within the table.

The DatabaseRetrieve node looks up values from a database and stores them as

elements in the outgoing message assembly trees. The type of information that is

obtained from the database in the form of output column values, which is acquired

and passed back in the result set from SQL queries, is converted first into a

matching Java type, then into an internal message element value type when it is

finally stored in a location in am outgoing message assembly tree. If a message

element already exists in the outgoing message tree, the new value overwrites the

old value. If the target element does not exist, it is created, and the value is stored.

The node needs query information that is used to form an SQL select query, which

can access multiple tables in a database using multiple test conditions. Sometimes,

not all the information that you want to retrieve in a result set is in a single

database table. To get the column values that you want, you might need to retrieve

them from two or more tables. This node supports the use of SELECT statements

that facilitate getting columns from one or more tables in a single result set. The

normal join syntax that is supported is also referred to as inner join.

Inner join information that is collected to form a query includes a list of table

qualified column values to retrieve and a list of test conditions, which form the

WHERE clause of the SELECT statement. Table qualified column values can form

the left hand operand in a test condition. Choose a comparison operator to apply

to this operand and, optionally, specify a right hand operand to complete the test

condition. The operator could be a NULL comparison test, in which no right hand

operand is needed. The value of the right hand operand can be a database type

852 Message Flows

(such as Integer, Boolean, or Long), another table qualified column, or a value that

is acquired from an element in the incoming message, as expressed through an

XPath 1.0 general expression.

The application of the expression must result in a single element, double, Boolean,

or string being returned, otherwise an exception occurs. If the query returns

multiple rows, the first row is chosen and the rest are ignored, unless the Multiple

rows option is selected. In this case, all rows are processed, and values in those

rows are used to update the outgoing message assembly trees.

It can be useful to combine a DatabaseRetrieve node with other message flow

nodes. For example, you can use an XSLTransform node to manipulate data before

or after the DatabaseRetrieve node is invoked.

The DatabaseRetrieve node has one input terminal (In) and three output terminals

(Out, KeyNotFound, and Failure). If the message is modified successfully, it is

routed to the Out terminal. If the message is not modified successfully or a failure

is detected during processing, the message is routed to the Failure terminal. If no

rows are returned in the result set following execution of a given SQL select query,

the original message is routed to the KeyNotFound terminal.

Making the JDBC provider service available to the

DatabaseRetrieve node

The DatabaseRetrieve node constructs its JDBC connections using connection

details that are stored in the broker’s registry as a configurable service.

JDBCProvider configurable services are supplied for all supported databases. Use

the mqsichangeproperties command to modify the settings of the supplied service

for your chosen database, or create a new service using the

mqsicreateconfigurableservice command. See Setting up a JDBC provider for type 4

connections for further information and assistance on working with JDBCProvider

services. You must set up a different JDBCProvider service for each database to

which you want to connect.

When you have defined the service, set the Data source name property of this

node to the name of the JDBCProvider service; the attributes of the service are

used to establish connections for the DatabaseRetrieve node.

You must stop and restart the broker for your changes to take effect, unless you

intend to create a new execution group on the broker to which you will deploy the

message flow that contains this node.

Using the Database Explorer view to query data sources

Use the Database Explorer view to discover the names of tables within a target

database, as well as the names of any columns in those tables. You must import

database definitions for your databases into the workbench before you can view

them in the Database Explorer view; see “Adding database definitions to the

Message Broker Toolkit” on page 494.

1. Switch to the Broker Application Development perspective.

2. In the Database Explorer view, expand Connections. The database connections

are listed.

3. Expand a database connection to list the databases, then expand the

appropriate database.

4. Expand Schemas to list the schemas, then expand the appropriate schema.

Message flows 853

5. Expand Tables to list all the tables.

6. Click a table to show its properties in the Properties view.

7. In the Properties view, click the Columns tab to view the column names.

Configuring the DatabaseRetrieve node

When you have put an instance of the DatabaseRetrieve node into a message flow,

you can configure it. For more information, see “Configuring a message flow

node” on page 235. The properties of the node are displayed in the Properties

view.

All mandatory properties for which you must enter a value (those that do not have

a default value defined) are marked with an asterisk.

Example

The following example adds new elements (surname and wage) to the incoming

message structure. This example uses a database table called Employee.

 EmployeeNumber FamilyName FirstName Salary

00001 Smith John 20000

00002 Jones Harry 26000

00003 Doe Jane 31000

To make a copy of the incoming message, select Copy message. When this

property is selected, the node always creates an outgoing message assembly that is

based on the incoming message assembly, and these trees in the new outgoing

message assembly are modified and propagated to the node’s Out terminal. This

behavior enables modification of the outgoing message tree itself ($OutputRoot), in

addition to the other logical trees in the message assembly:

$OutputLocalEnvironment, $OutputDestinationList, $OutputExceptionList and

$Environment. If the logical trees only in the message assembly are to be modified

by this node, for performance reasons do not select Copy message. When this

property is not selected, the node always works against the original incoming

message assembly, and it expects that no updates are attempted against the

message tree. If an XPath expression in the Data Element Table tries to update this

message tree through a reference to $OutputRoot, an

MbReadOnlyMessageException occurs. The incoming message is:

<EmployeeRecord>

 <EmployeeNumber>00001</EmployeeNumber>

</EmployeeRecord>

The Query elements table looks like this:

Table name Column name Operator

Value

Type Value

Employee FamilyName

Employee Salary

Employee EmployeeNumber = Element $OutputRoot/XMLNSC/
EmpRecord/EmpNumber

and the Data Element Table looks like this:

 Column name Message element

854 Message Flows

Employee.FamilyName $OutputRoot/XMLNSC/EmployeeRecord/Surname

Employee.Salary $OutputRoot/XMLNSC/EmployeeRecord/Wage

The DatabaseRetrieve node connects to the Employee database table and extracts

the value to compare from each incoming message. The XPath expression that is

used to navigate to the message body is $InputBody/EmployeeRecord/
EmployeeNumber. The SQL query is:

SELECT Employee.FamilyName, Employee.Salary

FROM Employee

WHERE EmployeeNumber=?

ORDER BY Employee.FamilyName ASC, Employee.Salary ASC

where ? is the value that is retrieved from the incoming message, which is located

through the Value property in the third row of the Query elements table, which

has a Value Type of Element.

v If the value at this location is 00001, information for John Smith is retrieved. The

first data element row says get the value of the FamilyName column that is

returned from the query, and insert it into a new element named ″Surname″

under EmployeeRecord. The second data element row says get the value of the

Salary column that is returned from the query, and insert it into a new element

named ″Wage″ under EmployeeRecord. The resulting outgoing message is:

<EmployeeRecord>

 <EmployeeNumber>00001</EmployeeNumber>

 <Surname>Smith</Surname>

 <Wage>20000</Wage>

</EmployeeRecord>

v If the value at this location is 00002, information for Harry Jones is retrieved.

The resulting outgoing message is:

<EmployeeRecord>

 <EmployeeNumber>00002</EmployeeNumber>

 <Surname>Jones</Surname>

 <Wage>26000</Wage>

</EmployeeRecord>

If you select the Multiple rows property, and details of both of the employees are

returned from a query in the form of two rows in the result set, the resulting

outgoing message is:

<EmployeeRecord>

 <EmployeeNumber>00001</EmployeeNumber>

 <Surname>Smith</Surname>

 <Wage>20000</Wage>

 <EmployeeNumber>00002</EmployeeNumber>

 <Surname>Jones</Surname>

 <Wage>26000</Wage>

</EmployeeRecord>

Validating messages

Set the Validation properties to define how the message that is produced by the

DatabaseRetrieve node is to be validated. These properties do not cause the input

message to be validated. It is expected that, if such validation is required, the

validation has already been performed by the input node or a preceding validation

node.

For more details, see “Validating messages” on page 164 and “Validation

properties” on page 1359.

Message flows 855

Terminals and properties

The DatabaseRetrieve node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Out The output terminal to which the outgoing message is routed when it has been

modified successfully.

KeyNotFound The output terminal to which the original message is routed, unchanged, when the

result set is empty.

Failure The output terminal to which the message is routed if a failure is detected during

processing.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The DatabaseRetrieve node Description properties are described in the following

table.

 Property M C Default Description

Node name No No DatabaseRetrieve The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the

message flow.

The DatabaseRetrieve node Basic properties are described in the following table.

 Property M C Default Description

Data source name Yes Yes DB2 The alias that is used to locate JDBCProvider service

definition that is stored in the broker registry. The alias

is used to locate and build the JDBC connection URL

that is used to connect to a DBMS. The connection URL

is driver specific, but it includes the database name to

which to connect.

If connection to the database is by a login account and

password, the node also uses this property as a lookup

key, through which these values can be acquired from

an expected matching broker registry DSN entry.

If the DBMS is password protected, define the -n

parameter on the mqsisetdbparms command for the

JDBC unique security key before you deploy the

message flow that contains this DatabaseRetrieve node.

Copy message No Yes Cleared This property indicates if a copy of the original

incoming message is required because the message tree

is to be updated, possibly in addition to logical trees

within the message assembly. By default, this check box

is cleared. For performance reasons, select this property

only if the input message will be augmented.

856 Message Flows

Property M C Default Description

Multiple rows No Yes Cleared This property indicates if all rows are processed when a

query returns multiple rows. If you select Multiple

rows, all rows are processed, and values in those rows

are used to update the outgoing message assembly

trees. If you do not select this property, the first row is

chosen and the rest are ignored.

Query elements Yes No A table of query elements that are used to compose a

single SQL select statement. The table consists of five

columns and one or more rows. The columns are Table

name, Column name, Operator, Value Type, and Value.

These five properties describe a query element,

indicating a table qualified column value to be retrieved

from a database. In this case, the element forms part of

the SELECT and ORDER BY clauses in the generated

query. Otherwise, the query element acts as a test

condition that forms a predicate within the WHERE

clause in the generated query.

Table name Yes No The name of a database table that forms part of the

SQL select statement, including the schema name; for

example, myschema.mytable.

Column name Yes No The name of the column in the database table to be

retrieved in the results set, as qualified by the value of

the Table name property. This SELECT clause can refer

to this name as a column value to return from a query

or to be referenced in a test condition within the

WHERE clause.

Operator Yes No A comparison operator to apply to a left hand operand

(the table column that is specified in the row’s first two

columns) and optionally a right hand operand value. If

you specify an Ascending ’ASC’ or Descending ’DESC’

operator value for this property, this row signifies the

declaration of a table qualified column that forms part

of the SELECT and ORDER BY clauses in the generated

query and optionally can be referenced in future rows

as a right hand operand value.

Value Type Yes No A value that is either set to None, or that indicates the

type of value that is expressed in the last column of this

row. If this property is not set to None, it refers to a

row that describes a test condition in the WHERE

clause of the SQL select statement.

Message flows 857

Property M C Default Description

Value Yes No A value that is either set to None, or that specifies one

of a given set of property types as expressed by the

Value Type property. For example, if the Value Type

property is set to Element, the Value property collects

an XPath 1.0 general expression. The value that is

returned from the expression when it is applied to the

node’s incoming message is used as the right hand

operand value to be compared through this predicate.

The compared value of the right hand operand must

match the type that is retrieved for the table column

that is compared against as the left hand operand.

Complex expressions are possible, where zero or more

values can be acquired from the incoming message, and

manipulated to formed a single value for comparison.

For example, the sum of multiple field values in the

incoming message can be calculated by a general

expression that is presented for a value type of

Element.

The DatabaseRetrieve node Data Element Table properties are described in the

following table.

 Property M C Default Description

Data elements Yes No A list of data elements. A data element is described by

the Column name and Message element properties.

Column name Yes No The name of the database column from which to obtain

the element value. The list of names is updated

dynamically based on the column entries that are

entered in the Query elements table.

Message element Yes No An XPath 1.0 read-write path expression that describes

the path location of a message element. The message

element is where the database value is stored. The

XPath expression must evaluate to a single element in

the message.

The DatabaseRetrieve node Validation properties are described in the following

table.

For a full description of these properties, see “Validation properties” on page 1359.

 Property M C Default Description

Validate No Yes None This property controls whether validation takes place.

Valid values are None, Content and Value, Content, and

Inherit.

 Failure action No No Exception This property controls what happens if a validation

failure occurs. You can set this property only if Validate

is set to Content or Content and Value. Valid values are

User Trace, Local Error Log, Exception, and Exception

List.

858 Message Flows

DatabaseRoute node

Use the DatabaseRoute node to route messages using information from a database

in conjunction with XPath expressions.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow”

v “Making the JDBC provider service available to the DatabaseRoute node” on

page 862

v “Using the Database Explorer view to query data sources” on page 863

v “Configuring the DatabaseRoute node” on page 863

v “Example” on page 863

v “Terminals” on page 864

v “Properties” on page 864

Purpose

The DatabaseRoute node uses a collection of named column values from a selected

database row and synchronously applies one or more XPath expressions to these

acquired values to make routing decisions.

For more information about XPath 1.0 query syntax, see XPath.

The DatabaseRoute node is contained in the Database drawer of the message flow

node palette, and is represented in the workbench by the following icon:

Using this node in a message flow

Look at the Simplified Database Routing sample to see how to use this node. You

can view samples only when you use the information center that is integrated with

the Message Broker Toolkit.

Input parameter values that are acquired from message elements in the incoming

message are supported for insertion into prepared statements that are used by this

node. These values are acquired from name, value, and name-value elements in the

incoming parsed input message. Elements are acquired initially in the form of a

com.ibm.broker.plugin.MbElement object, therefore the range of supported Java

object types that values can take is governed by this object’s interface. When values

are in the form of Java primitive types or Objects they are converted into their

equivalent JDBC data type, as shown in the following table.

 Java JDBC

Integer INTEGER

Long BIGINT

Double DOUBLE

BigDecimal NUMERIC

Boolean BIT

byte[] VARBINARY or LONGVARBINARY

BitSet VARBINARY or LONGVARBINARY

Message flows 859

http://www.w3.org/TR/xpath
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.simplifieddbrouting.doc/doc/overview.htm

Java JDBC

String VARCHAR or LONGVARCHAR

MbTime java.sql.Time

MbTimestamp java.sql.Timestamp

MbDate java.sql.Date

Values are used from an element only if the element is of a known type, and its

value state is valid, otherwise an exception is issued. Output column values that

are acquired in the result set from SQL queries that are carried out by this node are

converted first into matching Java types, then into internal message element value

types, as shown in the following table.

 JDBC Java ESQL Type

SMALLINT Integer INTEGER

INTEGER Integer INTEGER

BIGINT Long DECIMAL

DOUBLE Double FLOAT

REAL Double FLOAT

FLOAT Double FLOAT

NUMERIC BigDecimal DECIMAL

DECIMAL BigDecimal DECIMAL

BIT Boolean BOOLEAN

BOOLEAN Boolean BOOLEAN

BINARY byte[] BLOB

VARBINARY byte[] BLOB

LONGVARBINARY byte[] BLOB

CHAR String CHARACTER

VARCHAR String CHARACTER

LONGVARCHAR String CHARACTER

TINYINT byte[1] BLOB

TIME java.util.Date TIME

TIMESTAMP java.util.Date TIMESTAMP

DATE java.util.Date DATE

You can route a message to the same location, whether or not a query is successful

against a given database, by wiring both of the non-failure output terminals to the

same output location.

If an error is found in the XPath expression of a pattern, it is reported during

validation in the workbench. The reported error message might include the

incorrect expression string and its associated unique dynamic or static terminal

name, or the string might be marked as broken within the table.

The node needs query information that is used to form an SQL select query, which

can access multiple tables in a database using multiple test conditions. Sometimes,

not all the information that you want to retrieve in a result set is in a single

database table. To get the column values that you want, you might need to retrieve

them from two or more tables. This node supports the use of SELECT statements

860 Message Flows

that facilitate getting columns from one or more tables in a single result set. The

normal join syntax that is supported is also referred to as inner join.

Inner join information that is collected to form a query includes a list of table

qualified column values to retrieve and a list of test conditions, which form the

WHERE clause of the SELECT statement. Table qualified column values can form

the left operand in a test condition. Choose a comparison operator to apply to this

operand and, optionally, specify a right operand to complete the test condition.

The operator could be a NULL comparison test, in which no right operand is

needed. The value of the right operand can be a database type (such as Integer,

Boolean, or Long), another table qualified column, or a value that is acquired from

an element in the incoming message, as expressed through an XPath 1.0 general

expression.

When you deploy a DatabaseRoute node in a message flow, you can select a value

that is associated with the Data Source Name property. The list of values contains

references to existing IBM predefined JDBC provider entries that are defined when

a broker is first created. These entries are incomplete, so you must modify them to

access the data source definition with which you want to work. If an existing

default IBM predefined JDBC provider is already referenced and in use by another

JDBC database node that requires different settings, use the

mqsicreateconfigurableservice command to specify a new JDBC provider entry. You

can also use the mqsideleteconfigurableservice command to delete any unwanted

JDBC provider entries.

The DatabaseRoute node has one input terminal and a minimum of four output

terminals: Match, keyNotFound, Default, and Failure. The keyNotFound, Default,

and Failure output terminals are static, so they are always present on the node.

The dynamic Match terminal is created automatically each time a new

DatabaseRoute node is selected and used in the Message Flow editor. This

behavior means that you do not always need to create this node’s first dynamic

output terminal, which is the minimum number of terminals needed for this node

to operate. You can rename this dynamic terminal if ″Match″ is not an appropriate

name.

A message is copied to the Default terminal if none of the filter expressions are

true. If an exception occurs during filtering, the message is propagated to the

Failure terminal. If the database query that is applied to the node’s data source

produces an empty result set (that is, no database rows are matched), a message is

copied to the keyNotFound terminal. The DatabaseRoute node can define one or

more dynamic output terminals. For all terminals, the associated filter expression is

applied to the input message and, if the result is true, a copy of the message is

routed to the given terminal.

Each filter expression in the Filter table can be applied to:

v The input message

v The collection of named column values that are selected from a matched

database row

v Both the input message and the returned column values

v Neither

because expressions can be any valid general XPath 1.0 expression.

As with the Route node, expressions are applied in the order that they are given in

the filter table. If the result is true, a copy of the message is routed to its associated

Message flows 861

dynamic output terminal. If you set the Distribution Mode property to First, the

application of all filter expressions might not occur.

The filter expression can fail if you compare a returned column value to a string

literal. How a column entry is stored (for example, a fixed-length character field)

determines what is returned for a given column from the database. Whitespace

padding occurs for fixed-length character fields that are retrieved from a database,

where the value that is stored is less than the specified column character storage

length. In this case, padding occurs to the right of the character string that is

returned, forming part of the string. You should remember this when comparing

such a column value to a string literal, because an equality comparison expression

might fail if the literal does not contain the exact same string, including padding

characters.

For example, in a table called Employee, a database column called LastName that

is defined as char(10) with the value ’Smith’, is returned as ’Smith ’, therefore the

filter expression must be:

$Employee_LastName = ’Smith ’

which resolves to true. The expression:

$Employee_LastName = ’Smith’

resolves to false.

Alternatively, the XPath expression can use the following function:

Function: string normalize-space(string?)

The normalize-space function returns the argument string with whitespace

normalized by stripping leading and trailing whitespace and replacing sequences

of whitespace characters with a single space. Therefore the expression would be:

normalize-space($Employee_LastName) = ’Smith’

Making the JDBC provider service available to the

DatabaseRoute node

The DatabaseRoute node constructs its JDBC connections using connection details

that are stored in the broker’s registry as a configurable service. JDBCProvider

configurable services are supplied for all supported databases. Use the

mqsichangeproperties command to modify the settings of the supplied service for

your chosen database, or create a new service using the

mqsicreateconfigurableservice command. See Setting up a JDBC provider for type 4

connections for further information and assistance on working with JDBCProvider

services. You must set up a different JDBCProvider service for each database to

which you want to connect.

When you have defined the service, set the Data Source Name property of this

node to the name of the JDBCProvider service; the attributes of the service are

used to establish connections for the DatabaseRoute node.

You must stop and restart the broker for your changes to take effect, unless you

intend to create a new execution group on the broker to which you will deploy the

message flow that contains this node.

862 Message Flows

Using the Database Explorer view to query data sources

Use the Database Explorer view to discover the names of tables within a target

database, as well as the names of any columns in those tables. You must import

database definitions for your databases into the workbench before you can view

them in the Database Explorer view; see “Adding database definitions to the

Message Broker Toolkit” on page 494

1. Switch to the Broker Application Development perspective.

2. In the Database Explorer view, expand Connections. The database connections

are listed.

3. Expand a database connection to list the databases, then expand the

appropriate database.

4. Expand Schemas to list the schemas, then expand the appropriate schema.

5. Expand Tables to list all the tables.

6. Click a table to show its properties in the Properties view.

7. In the Properties view, click the Columns tab to view the column names.

Configuring the DatabaseRoute node

When you have put an instance of the DatabaseRoute node into a message flow,

you can configure it. For more information, see “Configuring a message flow

node” on page 235. The properties of the node are displayed in the Properties

view.

All mandatory properties for which you must enter a value (those that do not have

a default value defined) are marked with an asterisk.

Example

Consider the following example, which uses a database table called Employee.

 EmployeeNumber FamilyName FirstName Salary

00001 Smith John 20000

00002 Jones Harry 26000

00003 Doe Jane 31000

The following DatabaseRoute node properties are set as specified:

 Table Name Column Name Operator Value Type Value

Employee FamilyName ASC None None

Employee Salary ASC None None

Employee EmployeeNumber = Element $Body/
EmployeeRecord/
EmployeeNumber

The DatabaseRoute node connects to the Employee database table and extracts the

value to compare from each incoming message. The XPath expression that is used

to navigate to the message body is $Body/EmployeeRecord/EmployeeNumber. The

SQL query is:

SELECT Employee.FamilyName, Employee.Salary

FROM Employee

WHERE EmployeeNumber=?

ORDER BY Employee.FamilyName ASC, Employee.Salary ASC

Message flows 863

where ? is the value that is retrieved from the incoming message. This value is

located through the Value property in the third row of the query elements table,

which has a value type of Element.

v If the value at this location is 00001, information for John Smith is retrieved. The

first XPath expression, which is associated with the out_expr1 dynamic terminal,

is not met, so it does not meet its condition, and no message is propagated to

the Out terminal. The second XPath expression is met, so a copy of the input

message is routed to the out_expr2 dynamic terminal.

v If the value at this location is 00002, information for Harry Jones is retrieved.

The first XPath expression, which is associated with the out_expr1 dynamic

terminal, is met, so a copy of the input message is routed to the out_expr1

terminal. The second XPath expression is not processed because the Distribution

Mode property is set to First.

Terminals

The DatabaseRoute node terminals are described in the following table.

 Terminal Description

In The static input terminal that accepts a message for processing by the node.

Match A dynamic output terminal to which the original message can be routed when

processing completes successfully. You can create additional dynamic terminals; see

“Dynamic terminals.”

Default The static output terminal to which the message is routed if no filter expression

resolves to true.

keyNotFound The static output terminal to which the message is copied if no database rows are

matched.

Failure The static output terminal to which the message is routed if a failure is detected

during processing.

Dynamic terminals

The DatabaseRoute node can have further dynamic output terminals. Not all

dynamic output terminals that are created on a DatabaseRoute node need to be

mapped to an expression in the filter table. For unmapped dynamic output

terminals, messages are never propagated to them. Several expressions can map to

the same single dynamic output terminal. For more information about using

dynamic terminals, see “Using dynamic terminals” on page 237.

Properties

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The DatabaseRoute node Description properties are described in the following

table.

 Property M C Default Description

Node name No No The node type,

DatabaseRoute

The name of the node.

864 Message Flows

Property M C Default Description

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the

message flow.

The DatabaseRoute node Basic properties are described in the following table.

 Property M C Default Description

Data Source Name Yes Yes DB2 The alias that is used to locate JDBCProvider service

definition that is stored in the broker registry. The alias

is used to locate and build the JDBC connection URL

for connection to a DBMS. The connection URL is

driver specific, but it includes the database name to

which to connect.

If connection to the database is by a login account and

password, the node also uses this property as a lookup

key, through which these values can be acquired from

an expected matching broker registry DSN entry.

If the DBMS is password protected, define the -n

parameter on the mqsisetdbparms command for the

JDBC unique security key before you deploy the

message flow that contains this DatabaseRoute node.

Query Elements Yes No A table of query elements that are used to compose a

single SQL select statement. The table consists of five

columns and one or more rows. The columns are Table

Name, Column Name, Operator, Value Type, and

Value. These five properties describe a query element,

indicating a table qualified column value to be

retrieved from a database. In this case, the element

forms part of the SELECT and ORDER BY clauses in

the generated query. Otherwise, the query element acts

as a test condition that forms a predicate within the

WHERE clause in the generated query.

Table Name Yes No The name of a database table that forms part of the

SQL select statement, including the schema name; for

example, myschema.mytable.

Column Name Yes No The name of the column in the database table to be

retrieved in the results set, as qualified by the value of

the Table Name property. This SELECT clause can

refer to this name as a column value to return from a

query, or to be referenced in a test condition in the

WHERE clause.

Operator Yes No A comparison operator to apply to a left operand (the

table column that is specified in the row’s first two

columns) and optionally a right operand value. If you

specify an Ascending ’ASC’ or Descending ’DESC’

operator value for this property, this row signifies the

declaration of a table qualified column that forms part

of the SELECT and ORDER BY clauses in the

generated query and optionally can be referenced in

future rows as a right operand value.

Message flows 865

Property M C Default Description

Value Type Yes No A value that is either set to None, or that indicates the

type of value that is expressed in the last column of

this row. If this property is not set to None, it refers to

a row that describes a test condition in the WHERE

clause of the SQL select statement.

Value Yes No A value that is either set to None, or that specifies one

of a given set of property types as expressed by the

Value Type property. For example, if the Value Type

property is set to Element, the Value property collects

an XPath 1.0 general expression. The value that is

returned from the expression when it is applied to the

node’s incoming message is used as the right operand

value to be compared through this predicate. The

compared value of the right operand must match the

type that is retrieved for the table column that is

compared against as the left operand. Complex

expressions are possible, where zero or more values

can be acquired from the incoming message, and

manipulated to form a single value for comparison.

For example, the sum of multiple field values in the

incoming message can be calculated by a general

expression that is presented for a value type of

Element.

Distribution mode No Yes All This property specifies the routing behavior of this

node when an inbound message matches multiple

expressions. If the Distribution Mode property is set to

First, the message is propagated to the first matching

output terminal. If the Distribution Mode property is

set to All, the message is propagated to all matching

output terminals. If there is no matching output

terminal, the message is propagated to the Default

terminal.

The DatabaseRoute node Filter Expression Table properties are described in the

following table.

 Property M C Default Description

Filter table Yes No A table of filters (XPath 1.0 general expressions) and

associated terminal names that define any extra filtering

that is performed by this node. The table consists of

two columns and one or more rows. You must have at

least one row in this table so that the node can perform

routing logic. As with the Route node, expressions are

evaluated in the order in which they appear in the

table. To improve performance, put the XPath

expressions that are satisfied most frequently at the top

of the filter table.

DataDelete node

Use the DataDelete node to interact with a database in the specified ODBC data

source.

This topic contains the following sections:

v “Purpose” on page 867

866 Message Flows

v “Using this node in a message flow”

v “Terminals and properties”

Purpose

The DataDelete node is a specialized form of the Database node, and the

interaction is restricted to deleting one or more rows from a table within the

database. You specify what is deleted by defining mapping statements that use the

data from the input message to identify the action required.

You can set a property to control whether the update to the database is committed

immediately, or deferred until the message flow completes, at which time the

update is committed or rolled back, according to the overall completion status of

the message flow.

The DataDelete node is contained in the Database drawer of the palette, and is

represented in the workbench by the following icon:

Using this node in a message flow

Consider a situation in which you are running a limited promotion. The goods are

available only for the period of the promotion, and each customer can have only

one item. When stocks of the sale goods run out, you want to remove their details

from the stock database. When a message containing an order for the last item

comes in, the DataDelete node is triggered to remove all the details for that item

from the database.

Terminals and properties

When you have put an instance of the DataDelete node into a message flow, you

can configure it. For more information, see “Configuring a message flow node” on

page 235. The properties of the node are displayed in the Properties view. (If you

double-click the DataDelete node, you open the New Message Map dialog box.)

All mandatory properties for which you must enter a value (those that do not have

a default value defined) are marked with an asterisk.

The terminals of the DataDelete node are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is propagated if a failure is detected during the

computation. If you have selected Treat warnings as errors, the node propagates the message to this

terminal even if the processing completes successfully.

Out The output terminal that outputs the message following the execution of the database statement.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

Message flows 867

The DataDelete node Description properties are described in the following table.

 Property M C Default Description

Node name No No DataDelete The name of the node.

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message flow.

The DataDelete node Basic properties are described in the following table.

 Property M C Default Description

Data source No Yes The ODBC data source name of the database that contains the tables to

which you refer in the mappings that are associated with this node

(identified by the Statement property). This name identifies the

appropriate database on the system on which this message flow is to run.

The broker connects to this database with user ID and password

information that you have specified on the mqsicreatebroker,

mqsichangebroker, or mqsisetdbparms command.

z/OS

On z/OS systems, the broker uses the broker started task ID,

or the user ID and password that are specified on the mqsisetdbparms

command JCL, BIPSDBP in the customization data set <hlq>.SBIPPROC.

Statement Yes No DataDelete The name of the mapping routine that contains the statements that are to

be executed against the database or the message tree. The routine is

unique to this type of node. By default, the name that is assigned to the

mapping routine is identical to the name of the mappings file in which

the routine is defined. The default name for the file is the name of the

message flow concatenated with the name of the node when you include

it in the message flow (for example, MFlow1_DataDelete.msgmap for the

first DataDelete node in message flow MFlow1). You cannot specify a

value that includes spaces.

If you click Browse next to this entry field, a dialog box is displayed that

lists all of the available mapping routines that can be accessed by this

node. Select the routine that you want and click OK; the routine name is

set in Statement.

To work with the mapping routine that is associated with this node,

double-click the node, or right-click the node and click Open Mappings.

If the mapping routine does not exist, it is created for you with the

default name in the default file. If the file exists already, you can also

open file flow_name_node_name.msgmap in the Broker Development view.

A mapping routine is specific to the type of node with which it is

associated; you cannot use a mapping routine that you have developed

for a DataDelete node with any other node that uses mappings (for

example, a DataInsert node). If you create a mapping routine, you cannot

call it from any other mapping routine, although you can call it from an

ESQL routine.

For more information about working with mapping files, and defining

their content, see “Developing message mappings” on page 472.

868 Message Flows

Property M C Default Description

Transaction Yes No Automatic The transaction mode for the node. The values are:

v Automatic (the default). The message flow, of which the DataDelete

node is a part, is committed if it is successful; that is, the actions that

you define in the mappings are performed and the message continues

through the message flow. If the message flow fails, it is rolled back.

Therefore, if you select Automatic, the ability to commit or roll back

the action of the DataDelete node on the database depends on the

success or failure of the entire message flow.

v Commit. To commit any uncommitted actions performed in this

message flow on the database connected to this node, irrespective of

the success or failure of the message flow as a whole, select Commit.

The changes to the database are committed even if the message flow

itself fails.

Treat

warnings as

errors

Yes No Cleared For database warning messages to be treated as errors, and the node to

propagate the output message to the failure terminal, select Treat

warnings as errors. The check box is cleared by default.

When you select the check box, the node handles all positive return

codes from the database as errors and generates exceptions in the same

way as it does for the negative, or more serious, errors.

If you do not select the check box, the node treats warnings as typical

return codes, and does not raise any exceptions. The most significant

warning raised is not found, which can be handled as a typical return

code safely in most circumstances.

Throw

exception on

database

error

Yes No Selected For the broker to generate an exception when a database error is

detected, select Throw exception on database error. The check box is

selected by default.

If you clear the check box, you must handle the error in the message

flow to ensure the integrity of the broker and the database: the error is

ignored if you do not handle it through your own processing because

you have chosen not to invoke the default error handling by the broker.

For example, you can connect the Failure terminal to an error processing

subroutine.

DataInsert node

Use the DataInsert node to interact with a database in the specified ODBC data

source.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 870

v “Terminals and properties” on page 870

Purpose

The DataInsert node is a specialized form of the Database node, and the interaction

is restricted to inserting one or more rows into a table within the database. You

specify what is inserted by defining mapping statements that use the data from the

input message to define the action required.

You can set a property to control whether the update to the database is committed

immediately, or deferred until the message flow completes, at which time the

update is committed, or rolled back according to the overall completion status of

the message flow.

Message flows 869

The DataInsert node is contained in the Database drawer of the palette, and is

represented in the workbench by the following icon:

Using this node in a message flow

Consider a situation in which your company has developed a new product. The

details about the product have been sent from your engineering department, and

you need to extract details from the message and add them as a new row in your

stock database.

Terminals and properties

When you have put an instance of the DataInsert node into a message flow, you

can configure it. For more information, see “Configuring a message flow node” on

page 235. The properties of the node are displayed in the Properties view. (If you

double-click the DataInsert node, you open the New Message Map dialog box.) All

mandatory properties for which you must enter a value (those that do not have a

default value defined) are marked with an asterisk.

The terminals of the DataInsert node are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is propagated if a failure is detected during the

computation. If you have selected Treat warnings as errors, the node propagates the message to this

terminal even if the processing completes successfully.

Out The output terminal that outputs the message following the execution of the database statement.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The DataInsert node Description properties are described in the following table.

 Property M C Default Description

Node name No No DataInsert The name of the node.

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message flow.

The DataInsert node Basic properties are described in the following table.

870 Message Flows

Property M C Default Description

Data

source

No Yes The ODBC data source name of the database that contains the tables to

which you refer in the mappings that are associated with this node

(identified by the Statement property). This name identifies the appropriate

database on the system on which this message flow is to run. The broker

connects to this database with user ID and password information that you

have specified on the mqsicreatebroker, mqsichangebroker, or

mqsisetdbparms command.

z/OS

On z/OS systems, the broker uses the broker started task ID, or

the user ID and password that are specified on the mqsisetdbparms

command JCL, BIPSDBP in the customization data set <hlq>.SBIPPROC.

Statement Yes No DataInsert The name of the mapping routine that contains the statements that are to

be executed against the database or the message tree. The routine is unique

to this type of node. By default, the name that is assigned to the mapping

routine is identical to the name of the mappings file in which the routine is

defined. The default name for the file is the name of the message flow

concatenated with the name of the node when you include it in the

message flow (for example, MFlow1_DataInsert.msgmap for the first

DataInsert node in message flow MFlow1). You cannot specify a value that

includes spaces.

If you click Browse next to this entry field, a dialog box is displayed that

lists all of the available mapping routines that can be accessed by this node.

Select the routine that you want and click OK; the routine name is set in

Statement.

To work with the mapping routine that is associated with this node,

double-click the node, or right-click the node and select Open Mappings. If

the mapping routine does not exist, it is created for you with the default

name in the default file. If the file exists already, you can also open file

flow_name_node_name.msgmap in the Broker Development view.

A mapping routine is specific to the type of node with which it is

associated; you cannot use a mapping routine that you have developed for

a DataInsert node with any other node that uses mappings (for example, a

DataDelete node). If you create a mapping routine, you cannot call it from

any other mapping routine, although you can call it from an ESQL routine.

For more information about working with mapping files, and defining their

content, see “Developing message mappings” on page 472.

Transaction Yes No Automatic The transaction mode for the node. The values are:

v Automatic (the default). The message flow, of which the DataInsert node

is a part, is committed if it is successful. That is, the actions that you

define in the mappings are taken and the message continues through the

message flow. If the message flow fails, it is rolled back. Therefore if you

select Automatic, the ability to commit or roll back the action of the

DataInsert node on the database depends on the success or failure of the

entire message flow.

v Commit. To commit any uncommitted actions that are taken in this

message flow on the database that is connected to this node, irrespective

of the success or failure of the message flow as a whole, select Commit.

The changes to the database are committed even if the message flow

itself fails.

Message flows 871

Property M C Default Description

Treat

warnings

as errors

Yes No Cleared For database warning messages to be treated as errors, and the node to

propagate the output message to the failure terminal, select Treat warnings

as errors. The check box is cleared by default.

When you select the check box, the node handles all positive return codes

from the database as errors and generates exceptions in the same way as it

does for the negative, or more serious, errors.

If you do not select the check box, the node treats warnings as typical

return codes, and does not raise any exceptions. The most significant

warning raised is not found, which can be handled as a typical return code

safely in most circumstances.

Throw

exception

on

database

error

Yes No Selected For the broker to generate an exception when a database error is detected,

select Throw exception on database error. The check box is selected by

default.

If you clear the check box, you must handle the error in the message flow

to ensure the integrity of the broker and the database; the error is ignored if

you do not handle it through your own processing because you have

chosen not to invoke the default error handling by the broker. For example,

you can connect the failure terminal to an error processing subroutine.

DataUpdate node

Use the DataUpdate node to interact with a database in the specified ODBC data

source.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow”

v “Terminals and properties” on page 873

Purpose

The DataUpdate node is a specialized form of the Database node, and the

interaction is restricted to updating one or more rows in a table within the

database. You define what is updated by defining mapping statements that use the

data from the input message to identify the action required.

You can set a property to control whether the update to the database is committed

immediately, or deferred until the message flow completes, at which time the

update is committed or rolled back according to the overall completion status of

the message flow.

The DataUpdate node is contained in the Database drawer of the palette, and is

represented in the workbench by the following icon:

Using this node in a message flow

Consider a scenario in which you have added the details of a new product, a

keyboard, to your stock database. Now you have received a message from the

Goods In department that indicates that 500 keyboards have been delivered to

872 Message Flows

your premises. You can use the DataUpdate node to change the quantity of

keyboards in your database from zero to 500.

Terminals and properties

When you have put an instance of the DataUpdate node into a message flow, you

can configure it. For more information, see “Configuring a message flow node” on

page 235. The properties of the node are displayed in the Properties view. (If you

double-click the DataUpdate node, you open the New Message Map dialog box.)

All mandatory properties for which you must enter a value (those that do not have

a default value defined) are marked with an asterisk.

The terminals of the DataUpdate node are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is propagated if a failure is detected during the

computation. If you have selected Treat warnings as errors, the node propagates the message to this

terminal even if the processing completes successfully.

Out The output terminal that outputs the message following the execution of the database statement.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The DataUpdate node Description properties are described in the following table.

 Property M C Default Description

Node name No No DataUpdate The name of the node.

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message flow.

The DataUpdate node Basic properties are described in the following table.

 Property M C Default Description

Data

source

No Yes The ODBC data source name of the database that contains the tables to which

you refer in the mappings that are associated with this node (identified by

the Statement property). This name identifies the appropriate database on the

system on which this message flow is to run. The broker connects to this

database with user ID and password information that you have specified on

the mqsicreatebroker, mqsichangebroker, or mqsisetdbparms command.

z/OS

On z/OS systems, the broker uses the broker started task ID, or

the user ID and password that are specified on the mqsisetdbparms

command JCL, BIPSDBP in the customization data set <hlq>.SBIPPROC.

Message flows 873

Property M C Default Description

Statement Yes No DataUpdate The name of the mapping routine that contains the statements that are to be

executed against the database or the message tree. The routine is unique to

this type of node. By default, the name that is assigned to the mapping

routine is identical to the name of the mappings file in which the routine is

defined. The default name for the file is the name of the message flow

concatenated with the name of the node when you include it in the message

flow (for example, MFlow1_DataUpdate.msgmap for the first DataUpdate

node in message flow MFlow1). You cannot specify a value that includes

spaces.

If you click Browse next to this entry field, a dialog box is displayed that lists

all available mapping routines that can be accessed by this node. Select the

routine that you want and click OK; the routine name is set in Statement.

To work with the mapping routine that is associated with this node,

double-click the node, or right-click the node and click Open Mappings. If

the mapping routine does not exist, it is created for you with the default

name in the default file. If the file exists already, you can also open file

flow_name_node_name.msgmap in the Broker Development view.

A mapping routine is specific to the type of node with which it is associated;

you cannot use a mapping routine that you have developed for a

DataUpdate node with any other node that uses mappings (for example, a

DataInsert node). If you create a mapping routine, you cannot call it from

any other mapping routine, although you can call it from an ESQL routine.

For more information about working with mapping files, and defining their

content, see “Developing message mappings” on page 472.

Transaction Yes No Automatic The transaction mode for the node. The values are:

v Automatic (the default). The message flow, of which the DataUpdate node

is a part, is committed if it is successful. That is, the actions that you define

in the mappings are performed and the message continues through the

message flow. If the message flow fails, it is rolled back. Therefore, if you

choose Automatic, the ability to commit or roll back the action of the

DataUpdate node on the database depends on the success or failure of the

entire message flow.

v Commit. To commit any uncommitted actions that are performed in this

message flow on the database that is connected to this node, irrespective of

the success or failure of the message flow as a whole, select Commit. The

changes to the database are committed even if the message flow itself fails.

Treat

warnings

as errors

Yes No Cleared For database warning messages to be treated as errors, and the node to

propagate the output message to the Failure terminal, select Treat warnings

as errors. The check box is cleared by default.

When you select the check box, the node handles all positive return codes

from the database as errors, and generates exceptions in the same way as it

does for the negative, or more serious, errors.

If you do not select the check box, the node treats warnings as normal return

codes, and does not raise any exceptions. The most significant warning raised

is not found, which can be handled safely as a normal return code in most

circumstances.

874 Message Flows

Property M C Default Description

Throw

exception

on

database

error

Yes No Selected For the broker to generate an exception when a database error is detected,

select Throw exception on database error. The check box is selected by

default.

If you clear the check box, you must handle the error in the message flow to

ensure the integrity of the broker and the database: the error is ignored if you

do not handle it through your own processing, because you have chosen not

to invoke the default error handling by the broker. For example, you can

connect the Failure terminal to an error processing subroutine.

EmailOutput node

Use the EmailOutput node to send e-mail messages to one or more recipients.

This topic contains the following sections:

v “Purpose”

v “Configuring the EmailOutput node”

v “Terminals and properties” on page 878

Purpose

The EmailOutput node delivers an e-mail message from a message flow to an

SMTP serve that you specify.

You can configure the EmailOutput node using the node properties in the Message

Broker Toolkit, or dynamically from the LocalEnvironment and e-mail output

header (EmailOutputHeader) that are associated with the message.

The EmailOutput node is contained in the Email drawer of the message flow node

palette, and is represented in the workbench by the following icon:

Look at the E-mail sample to see how to use this node. You can view samples only

when you use the information center that is integrated with the Message Broker

Toolkit.

Configuring the EmailOutput node

When you have put an instance of the EmailOutput node into a message flow, you

can configure it. For more information, see “Configuring a message flow node” on

page 235. The properties of the node are displayed in the Properties view.

All mandatory properties for which you must enter a value (those that do not have

a default value defined) are marked with an asterisk.

The four levels of configuration of the EmailOutput node are described below.

v Option 1: Configure the EmailOutput node using the node properties in the

Message Broker Toolkit to send an e-mail with a statically-defined subject and

text to a statically-defined list of recipients. The same e-mail is sent to the same

recipients and it has no attachments. This method is useful when you want to

test the EmailOutput node, or when notification alone is sufficient.

Message flows 875

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.email.doc/doc/overview.htm

v Option 2: This option is the same as Option 1 but with the inclusion of an

attachment. This option causes the e-mail message to be constructed as a MIME

message. The subject, text, and list of recipients remains static, but the content of

the attachment is sought dynamically from the message that is passed to the

EmailOutput node at run time. The location of the attachment in the message is

defined statically.

v Option 3: This option allows for those properties in Options 1 and 2 to be

optional, and to be overridden at run time by values that are specified in the

LocalEnvironment, the e-mail output header (EmailOutputHeader), or the body

of the message. This option allows a dynamic e-mail message to be produced

where the SMTP server, list of recipients, subject, text, and multiple attachments

are all determined at run time. This option requires previous nodes in the

message flow to construct these overrides. Where a text value is not specified in

the node properties for the main body of the e-mail, the body of the message

that is passed to the EmailOutput node is used.

v Option 4: This option passes a MIME message to the EmailOutput node. The

EmailOutput node uses the MIME parser to write the MIME message to a bit

stream. This message is then sent to the list of recipients in the SMTP header.

LocalEnvironment overrides are not taken into consideration when a MIME

message is passed.

E-mail output header

The e-mail output header (EmailOutputHeader) is a child of root. Any values that

you specify in this header override any properties that you set on the node. Use

the SMTP output header specify any of the e-mail attributes, such as its recipients.

 Location Description

Root.EmailOutputHeader.To A comma separated list of e-mail addresses.

Root.EmailOutputHeader.Cc A comma separated list of e-mail addresses.

Root.EmailOutputHeader.Bcc A comma separated list of e-mail addresses.

Root.EmailOutputHeader.From A comma separated list of e-mail addresses.

Root.EmailOutputHeader.Reply-To A comma separated list of e-mail addresses.

Root.EmailOutputHeader.Subject The subject of the e-mail.

LocalEnvironment

Use the LocalEnvironment to specify overrides to the SMTP server connection

information and attachments.

 LocalEnvironment Description

Destination.Email.SMTPServer The Server:Port of the SMTP server. Port is optional; if

you do not specify it, the default value is 25.

876 Message Flows

LocalEnvironment Description

Destination.Email.SecurityIdentity The security identity for authentication with the SMTP

server, which can be the name of the userid and

password pair that is defined using the

mqsisetdbparms command, or it can reference an

external resource that has a securityIdentity attribute

that references a userid and password that are defined

using the mqsisetdbparms command. In both cases, the

value is appended after the string “smtp::”. For

example, if you use the mqsisetdbparms command to

create a userid and password of

smtp::myUseridPassword, the securityIdentity that is

specified on the node, or indirectly in an external

resource, is myUseridPassword.

Destination.Email.BodyContentType Identifies that the body of the e-mail message contains

HTML rather than plain text. You can set this property

to text/plain, text/html, or text/xml; text/plain is the

default value.

Destination.Email.MultiPartContentType The type of multipart, including related, mixed, and

alternative. You can set any value here.

Destination.Email.Attachment.Content Either the actual attachment (BLOB/text), or an XPath

or ESQL expression that references an element; for

example, an element in the message tree or

LocalEnvironment. The value of the referenced element

is taken as the content of the attachment.

v If the element is a BLOB, it is an attachment.

v If the element is text, check to see if it can be

resolved to another element in the message tree or

LocalEnvironment. If it can be resolved, use that

element. If it cannot be resolved, add this element as

the attachment.

Destination.Email.Attachment.ContentType The type of attachment (also known as Internet Media

Type), including text/plain, text/html, and text/xml.

You can set any value here.

Destination.Email.Attachment.ContentName The name of the attachment.

Destination.Email.Attachment.ContentEncoding The encoding of the attachment: 7bit, base64, or

quoted-printable.

v 7bit is the default value that is used for ASCII text.

v Base64 is used for non ASCII, whether non English

or binary data. This format can be difficult to read.

v Quoted-printable is an alternative to Base64, and is

appropriate when the majority of the data is ASCII

with some non-ASCII parts. This format is more

readable; it provides a more compact encoding

because the ASCII parts are not encoded.

Broker properties

You can also configure the SMTP server, port number, and security identity as a

broker external resource property. To do this, use an alias that is specified in the

SMTPServer property on the EmailOutput node. The security identity references a

user ID and password pair that is defined on the broker using the mqsisetdbparms

command. Use the mqsicreateconfigurableservice command to create an SMTP

broker external resource for the alias that is specified on the node. Then use the

Message flows 877

mqsichangeproperties command to create an SMTPServer property with the value

in the form of server:port. The port value is optional; if you do not specify it, the

default value is 25. You can also use the mqsichangeproperties command to create

an SMTPSecurityIdentity property with a value that is the name of a security

identity that can be resolved at run time to a user ID and password for

authentication with the SMTP server. For example:

mqsicreateconfigurableservice MY_BROKER –c SMTP –o SMTP_MyAlias

followed by:

 mqsichangeproperties MY_BROKER –c SMTP –o SMTP_MyAlias –n serverName –v smtp.hursley.ibm.com:25

These commands override the SMTP server and port values that are specified on

any nodes that also specify an alias of SMTP_MyAlias. If the LocalEnvironment

contains any overrides, they take preference over the broker external resource

properties. See also the following example:

mqsichangeproperties MY_BROKER –c SMTP –o SMTP_MyAlias –n securityIdentity –v mySecurityIdentity

You must also use the mqsisetdbparms command to define the security identity at

the broker run time

Connecting the terminals:

Connect the In terminal to the node from which outbound messages bound are

routed.

Connect the Out or Failure terminal of this node to another node in this message

flow to process the message further, process errors, or send the message to an

additional destination.

If you connect one of these output terminals to another node in the message flow,

the LocalEnvironment that is associated with the message is enhanced with the

following information for each destination to which the message has been put by

this node:

 Location Description

WrittenDestination.Email.smtpServer The Server:Port of the SMTP server.

WrittenDestination.Email.messageId The ID of the e-mail sent message.

These values are written in WrittenDestination within the LocalEnvironment tree

structure.

If you do not connect either terminal, the LocalEnvironment tree is unchanged.

Terminals and properties

The EmailOutput node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected when the

message is put to the output queue.

Out The output terminal to which the message is routed if it has been successfully put to

the output queue, and if further processing is required within this message flow.

878 Message Flows

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The EmailOutput node Description properties are described in the following table.

 Property M C Default Description

Node name No No The node

type,

EmailOutput

The name of the node.

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the

message flow.

Use the EmailOutput node Basic properties are described in the following table.

 Property M C Default Description

server No Yes This property defines the SMTP server and port to

which e-mails are sent from this node, and is in the

format server:port; for example: my.smtp.server:25. The

port value is optional, but if you do not specify a port

value, the default value is 25.

You can specify an alias value for this property. If the

alias exists at run time, the specified values are used. If

the alias does not exist at run time, the broker assumes

the value to be a valid SMTP host.

The EmailOutput node Email properties are described in the following table.

 Property M C Default Description

ToAddresses No No The main recipient or recipients of the e-mail. This

property can include a single e-mail address or a

comma-separated list of e-mail addresses.

CcAddresses No No The carbon copy recipient or recipients of the e-mail.

This property can include a single e-mail address or a

comma-separated list of e-mail addresses.

BccAddresses No No The blind carbon copy recipient or recipients of the

e-mail. This property can include a single e-mail

address or a comma-separated list of e-mail addresses.

FromAddress No No The e-mail address of the sender of the e-mail.

Reply-ToAddress No No The e-mail address to which recipients of the e-mail

reply.

Subject No No The subject of the e-mail.

MessageText No No The main text of the e-mail. If you do not specify a

value for the MessageText property, the text of the

e-mail is the body of the message tree that is passed to

the EmailOutput node.

Message flows 879

Property M C Default Description

BodyContentType No No text/plain You can use this property to force the content type for

the body of the e-mail message. Valid values are:

v None

v text/plain

v text/html

v text/xml

The EmailOutput node Security properties are described in the following table.

 Property M C Default Description

securityIdentity No Yes A security identifier to retrieve a user ID and password

that are configured at the broker run time.

The EmailOutput node Attachment properties are described in the following table.

 Property M C Default Description

AttachmentContent No No An XPath or ESQL expression that references an element;

for example, an element in the message tree, or

LocalEnvironment. The content of the attachment is the

value of the element that is referenced.

AttachmentContentName No No The name of the attachment that is seen by the recipient

of the e-mail. This property is optional. If you do not

specify a name, a default name is assigned.

AttachmentContentType No No text/plain The type of the attachment. This property is optional,

even if you have specified an attachment. Valid values

are:

v text/plain is simple text.

v text/html is HTML.

v text/xml is XML.

v application/octet-stream is the default type for

non-text and HTML (binary data).

AttachmentContentEncoding No No 7bit The encoding of the attachment. This property is

optional. If you do not specify a value, a default

encoding is assigned. Valid values are:

v 7bit is the default value for ASCII text.

v base64 is used for non-ASCII data, whether it is

non-English or binary data.

v quoted-printable is a more readable-alternative to

base64. Use quoted-printable when the majority of the

data is ASCII text with some non-ASCII parts. This

option provides a more compact encoding because the

ASCII parts are not encoded.

MultipartContentType No No Mixed The type of multipart. Valid values are:

v Mixed: each MIME body part is independent of the

others.

v Alternative: Each MIME body part is an alternative to

the others.

v Related: All MIME body parts should be considered in

the aggregate only.

The Validation properties of the EmailOutput node are described in the following

table.

880 Message Flows

Refer to “Validation properties” on page 1359 for a full description of these

properties.

 Property M C Default Description

Validate Yes Yes Inherit This property controls whether validation takes place.

Valid values are None, Content and Value, Content,

and Inherit.

Failure Action Yes No Exception This property controls what happens if validation fails.

You can set this property only if you set Validate to

Content or Content and Value. Valid values are User

Trace, Local Error Log, Exception, and Exception List.

EndpointLookup node

Use the EndpointLookup node to access service metadata that resides in the

WebSphere Service Registry and Repository.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 882

v “Terminals and properties” on page 883

Important: WebSphere Message Broker V6.1.0.2 only supports WebSphere Service

Registry and Repository V6.1. Previous versions of the product are not

supported.

Purpose

This node is generic in that it retrieves service endpoint information related to a

WebSphere Service Registry and Repository service, for example, WSDL. The

EndpointLookup node is independent from any other domain context, and support

is currently limited to querying endpoints for Web services.

The EndpointLookup node provides a query interface that enables you to select

single or all endpoints, and set up environment parameters to enable Web service

invocation nodes to submit requests to the selected services.

You can use two nodes to access service metadata that resides in the WebSphere

Service Registry and Repository, the EndpointLookup node and the

RegistryLookup node. These nodes are designed to be included in message

processing flows that mediate between service consumers and service providers in

an SOA installation. These nodes are for generic WebSphere Service Registry and

Repository access.

The EndpointLookup node supports the SOAPRequest, SOAPAsyncRequest, and

HTTPRequest nodes. The EndpointLookup node also generates SOAPRequest,

SOAPAsyncRequest, or HTTPRequest node formats.

The EndpointLookup node is contained in the Web services drawer of the message

flow node palette, and is represented in the workbench by the following icon:

Message flows 881

|
|
|

EndpointLookup node processing

The EndpointLookup node processes messages in the following sequence.

1. The EndpointLookup node receives a message.

2. The EndpointLookup node retrieves the IT service endpoint information from

the WebSphere Service Registry and Repository using the specified query

string.

The EndpointLookup node can be used to define a query dynamically within

the message. Both the EndpointLookup and the RegistryLookup nodes can

accept a query specified within the LocalEnvironment. Accepting a query

specified within the LocalEnvironment overrides any property values set on the

node, and all values are strings. XPath and ESQL are not supported when

specifying the customer properties using the LocalEnvironment. When you use

the LocalEnvironment to set the properties, you can define the properties at

runtime, or message processing time, rather than defining them at development

time. You must use the format

LocalEnvironment.ServiceRegistryLookupProperties.Name where Name is the

property you want to define. It is still mandatory to set values on the

properties of the nodes because the nodes cannot deploy without doing so.

3. If one or more matches are found:

v If Match Policy is set to One and a single endpoint is matched, the

EndpointLookup node sets valid endpoints in the domain so that the existing

WebSphere Message Broker built-in nodes, the SOAPRequest,

SOAPAsyncRequest, and HTTPRequest nodes, can be used to invoke the

service. The EndpointLookup node returns the first result it receives, and sets

the endpoint address. However, the first result might not be the most current

version.

v If Match Policy is set to All, the EndpointLookup node adds all matching

endpoints information to the message instance, leaving all other message

content unchanged. These results are then sent to a JavaCompute node which

selects the current version and sets the endpoint address. You must

propagate the LocalEnvironment tree with the message. You can use this

option to select the most current version of a particular Web service.

Metadata information is propagated to the Out terminal, where it is available

for further processing either by ESQL or by a JavaCompute node.

4. If no matches are found, the EndpointLookup node propagates the input

message to the NoMatch terminal.

Example usage. The node that precedes an EndpointLookup node receives a

message and propagates the message to the EndpointLookup node. The

EndpointLookup node uses the information defined within its properties to query

the WebSphere Service Registry and Repository. Either one or more results are

returned depending on whether you set the Match Policy property value to One or

All. The information received is placed into the LocalEnvironment tree and

propagated on the Out terminal. If no results are returned a message is propagated

on the NoMatch terminal.

Using this node in a message flow

The EndpointLookup node can be used in any message flow that needs to access

service metadata that resides in the WebSphere Service Registry and Repository.

Look at the following sample to see how to use this node:

v WSRR Connectivity sample

882 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.wsrr.doc/doc/overview.htm

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Terminals and properties

When you have put an instance of the EndpointLookup node into a message flow,

you can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The EndpointLookup node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if an error occurs.

Out The output terminal to which matching endpoint information is sent.

NoMatch The terminal to which the message is sent if no matching entity is found based on the specified values.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The EndpointLookup node Description properties are described in the following

table:

 Property M C Default Description

Node name No No The node

type

The name of the node.

Short

description

No No None A brief description of the node.

Long

description

No No None Text that describes the purpose of the node in the message

flow.

The EndpointLookup node Basic properties are described in the following table:

 Property M C Default Description

PortType

Name

No Yes None Name tuple that uniquely identifies a WebSphere Service Registry and

Repository defined WSDL service portType. At least one of the properties

is required. If you leave all three property values blank, you will get an

error message when you try to save.

PortType

Namespace

No Yes None

PortType

Version

No Yes None

User Properties No No None Enables a query to specify user-defined properties for the port.

Add User Properties by clicking Add. Enter values for Property Name,

Property Type, and Property Value.

Message flows 883

Property M C Default Description

Classification No No None The Web Ontology Language (OWL) classification system property. Each

classifier is a class in OWL, and has a Uniform Resource Identifier (URI).

Using classifications in the registry can help to make objects easier to find

and can also add meaning to custom objects that are unique to a

particular system.

Add a Classification by clicking Add and typing the complete fully

qualified OWL URI for the OWL classification.

Match Policy Yes No One The policies to be returned. Select One to match one policy, or All to

match all policies to the search criteria. If you request a single Web service

by setting Match Policy to One, the EndpointLookup node sets the

endpoints so that service information is correctly placed in the domain

context ensuring that existing WebSphere Message Broker built-in nodes

correctly invoke the service.

Extract node

Use the Extract node to extract the contents of the input message that you want to

be processed by later nodes in the message flow.

Attention: The Extract node is deprecated in WebSphere Message Broker Version

6.0 and later releases. Although message flows that contain an Extract node remain

valid, redesign your message flows where possible to replace Extract nodes with

Mapping nodes.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow”

v “Terminals and properties” on page 885

Purpose

Using the Extract node, you can create a new output message that contains only a

subset of the contents of the input message. The output message comprises only

those elements of the input message that you specify for inclusion when

configuring the Extract node, by defining mapping statements.

The Extract node is contained in the Database drawer of the palette, and is

represented in the workbench by the following icon:

Using this node in a message flow

You might find this node useful if you require only a subset of the message after

initial processing of the whole message. For example, you might want to store the

whole message for audit purposes (in the Warehouse node), but propagate only a

small part of the message (order information, perhaps) for further processing.

For example, you receive orders from new clients and you want to collect their

names and addresses for future promotions. Use the Extract node to get this

884 Message Flows

|
|
|
|
|

|
|

information from each order, and send it as a new message to head office. These

messages are processed at head office so that the customer details can be included

in the next marketing campaign.

Terminals and properties

When you have put an instance of the Extract node into a message flow, you can

configure it. For more information, see “Configuring a message flow node” on

page 235. The properties of the node are displayed in the Properties view. (If you

double-click the Extract node, you open the New Message Map dialog box.) All

mandatory properties for which you must enter a value (those that do not have a

default value defined) are marked with an asterisk.

The Extract node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is routed if a failure is detected during extraction.

Out The output terminal to which the transformed message is routed if the input message is processed

successfully.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined), the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Extract node Description properties are described in the following table.

 Property M C Default Description

Node name No No Extract The name of the node.

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message flow.

The Extract node Basic properties are described in the following table.

Message flows 885

Property M C Default Description

Mapping

module

Yes No Extract The name of the mapping routine that contains the statements to run against

the message tree.

By default, the name that is assigned to the mapping routine is identical to

the name of the mappings file in which the routine is defined. The default

name for the file is the name of the message flow concatenated with the

name of the node when you include it in the message flow (for example,

MFlow1_Extract.msgmap for the first Extract node in message flow

MFlow1). You cannot specify a value that includes spaces.

To work with the mapping routine that is associated with this node,

right-click the node and click Open Mappings. If the mapping routine does

not exist, it is created for you with the default name in the default file. If the

file exists already, you can also open file flow_name_node_name.msgmap in

the Broker Development view.

A mapping routine is specific to the type of node with which it is associated;

you cannot use a mapping routine that you have developed for an Extract

node with any other node that uses mappings (for example, a DataInsert

node). If you create a mapping routine, you cannot call it from any other

mapping routine, although you can call it from an ESQL routine.

For more information about working with mapping files, and defining their

content, see “Developing message mappings” on page 472.

FileInput node

Use the FileInput node to process messages that are read from files.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 888

v “Configuring the FileInput node” on page 889

v “Terminals and properties” on page 894

Purpose

One or more messages can be read from a single file, and each message is

propagated as a separate flow transaction. The part of a file that generates one

message flow transaction is called a record. A file can be a single record, or a series

of records. Properties on the node specify how the FileInput node determines the

records in a file.

The FileInput node is contained in the File drawer of the palette, and is

represented in the workbench by the following icon:

File processing

The FileInput node reads files from a specified directory called the input directory

and propagates messages based on the contents of these files. Only files with

names that match a specified pattern (the input pattern) are read.

The FileInput node removes each file from the input directory as it is processed.

886 Message Flows

Optionally, the FileInput node can transfer files from a remote FTP server to

process them. If the remote file is successfully transferred, it is deleted from the

FTP server and the transferred copy is processed as though it had been placed in

the input directory. Only files that match the input pattern are transferred.

The FileInput node uses subdirectories of the input directory to hold files during

and after processing. All of these subdirectories begin with the prefix mqsi. Among

these subdirectories are the archive directory, mqsiarchive, and the backout

directory, mqsibackout.

If the message flow processes the file successfully, the message flow transaction

commits, and the file is deleted or moved to the archive directory. If processing is

unsuccessful, the message flow transaction backs out, and the file is deleted,

moved to the backout directory, or moved to the archive directory. You can

determine which of these actions is to be taken by specifying properties on the

node.

Record processing

As a default, a file is treated as one record and is processed as a single message.

By using properties on the node, you can specify whether the input file is to be

split into records, each of which is separately processed. You can specify records

as:

v Fixed length. The records are all a specified number of bytes in length, starting

with the first byte of the file.

v Delimited. A particular sequence of bytes is specified as a record delimiter. An

example of such a sequence is an end-of-line sequence.

v Parsed sequence. A specified message domain parser reads bytes from the start

of the file until a complete message is recognized, which is then processed. The

same parser reads subsequent bytes for the next message and continues to do so

until all of the file is processed.

After the last record of the file is processed successfully, if the End of Data

terminal is attached, a further End of Data message is propagated to the End of

Data terminal. The End of Data message consists of an empty BLOB message and a

LocalEnvironment.File structure, and allows explicit end-of-flow processing to be

performed in another part of the flow.

Message structure

The FileInput node handles messages in the following message domains:

v MRM

v XMLNSC

v DataObject

v XMLNS

v JMSMap

v JMSStream

v MIME

v BLOB

v XML

v IDOC

Message flows 887

When the FileInput node propagates a message, it stores the information in the

LocalEnvironment.File message tree. If the input file is empty, the message is

empty (assuming it passes any validation). The following table lists the

LocalEnvironment.File message tree structure.

 Table 33.

Element Name Element Data Type Description

Directory CHARACTER Absolute directory path of the input

directory in the form used by the file

system of the broker. For example, on

Windows systems, this starts with the

drive letter prefix (such as C:).

Name CHARACTER File name and extension.

LastModified TIMESTAMP Date and time the file was last

modified.

TimeStamp CHARACTER Date and time the input node started

processing the file in the coordinated

universal time (UTC) zone, as a

character string. This data is the

string used to create archive and

backout file names if a timestamp is

included.

The following elements contain data about the current record:

Offset INTEGER Start of the record within the file. The

first record starts at offset 0. When it

is part of the End of Data message

tree, this is the length of the input

file.

Record INTEGER Number of the record within the file.

The first record is record number 1.

When it is part of the End of Data

message tree, this is the number of

records.

Delimiter CHARACTER The characters used to separate this

record from the preceding record, if

Delimited is specified in Record

detection. The first record has a null

delimiter. When it is part of the End

of Data message tree, this value is the

delimiter that follows the last record,

if any.

IsEmpty BOOLEAN Whether the record that is

propagated by the message flow is

empty. It is set to TRUE if the current

record is empty. When it is part of

the End of Data message tree, this

property is always set to TRUE.

Using this node in a message flow

The FileInput node can be used in any message flow that must accept messages in

files. Look at the following samples to see how to use this node:

v Batch Processing sample

v WildcardMatch sample

888 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.BatchProcessing.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.WildcardMatch.doc/doc/overview.htm

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Configuring the FileInput node

When you have put an instance of the FileInput node into a message flow, you can

configure it; see “Configuring a message flow node” on page 235. The properties of

the node are displayed in the Properties view. All mandatory properties for which

you must enter a value (those that do not have a default value defined) are

marked with an asterisk.

Configure the FileInput node:

 1. Optional: On the Description tab, enter a Short description, a Long

description, or both. You can also rename the node on this tab.

 2. On the Basic tab, enter the directories and files to be processed by the

FileInput node, together with what to do with any duplicate files encountered.

v In Input directory, specify the directory from which the FileInput node

obtains files. You may specify the directory as an absolute or relative

directory path. If the directory path is relative, it is based on the directory

specified in the environment variable

MQSI_FILENODES_ROOT_DIRECTORY. An example on Windows would

be C:\fileinput. An example on UNIX would be /var/fileinput.

v In File name or pattern, specify a file name pattern. This is either a file

name or a character sequence (a pattern) that matches a file name. A pattern

is a sequence containing at least one of the following wildcard characters:

 Wildcard character Description Example

* Any sequence of zero or more

characters

*.xml matches all file names with an

xml extension

? Any single character f??????.csv matches all file names

consisting of the letter f followed by

six characters and then the sequence

.csv.

Only those files the names of which match the pattern will be processed

from the input directory.

v Select Action on successful processing to specify the action the FileInput

node takes after successfully processing the file. The action can be to move

the file to the archive subdirectory, to augment the file name with a time

stamp and move the file to the archive subdirectory, or to delete the file.

– If you select Move to Archive Subdirectory, the file is moved to the

archive subdirectory of the input directory. The subdirectory name is

mqsiarchive. For example, if the monitored directory is /var/fileinput,

the archive subdirectory’s absolute path is /var/fileinput/mqsiarchive. If

this directory does not exist, the broker creates it when it first tries to

move a file there.

– If you select Add Timestamp and Move to Archive Subdirectory, the

current date and time is added to the file name, and the file is then

moved to mqsiarchive.

– If you select Delete, the file is deleted after successful processing.

The FileInput node writes a message to the user trace, if user tracing is in

operation, whenever it processes a file.

v Select Replace duplicate archive files if you want to replace a file in the

archive subdirectory with a successfully processed file of the same name. If

Message flows 889

you do not set this option, and a file with the same name already exists in

the archive subdirectory, the node will throw an exception when it tries to

move the successfully processed file.
 3. On the Input Message Parsing tab, set values for the properties that the node

uses to determine how to parse the incoming message.

v In Message domain, select the name of the parser that you are using from

the supplied list. The default is BLOB. You can choose from the following

options:

– MRM

– XMLNSC

– DataObject

– XMLNS

– JMSMap

– JMSStream

– MIME

– BLOB

– XML

– IDOC

You can also specify a user-defined parser, if appropriate.

v If you are using the MRM or IDOC parser, or the XMLNSC parser in

validating mode, select the Message set that you want to use. This list is

populated with available message sets when you select MRM, XMLNSC, or

IDOC as the domain.

v If you are using the MRM parser, select the correct message type from the

list in Message type. This list is populated with available message types

when you select the MRM parser.

v If you are using the MRM or IDOC parser, select the correct message format

from the list in Message format. This list is populated with available

message formats when you select the MRM or IDOC parser.

v Specify the message coded character set ID in Message coded character set

ID.

v Select the message encoding from the list in Message encoding or specify a

numeric encoding value. For more information about encoding, see

“Converting data with message flows” on page 128.
 4. On the Parser Options sub-tab:

v Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed. To cause the message to be parsed immediately, see

“Parsing on demand” on page 1363.

v If you are using the XMLNSC parser, set values for the properties that

determine how the XMLNSC parser operates. For more information, see

“Manipulating messages in the XMLNSC domain” on page 364.
 5. On the Polling tab, enter the FileInput node’s Polling interval. This property

controls the frequency with which the FileInput node accesses the file system

looking for files to process.

After the initial scan of the directory when the flow is started, whenever the

directory is found to contain no files that match the input pattern, the

FileInput node waits for a period of time defined by this property. This avoids

the need for the FileInput node to be continually accessing the file system,

and, thereby, consuming large amounts of system resource.

890 Message Flows

|

The smaller the value set in this property, the more quickly the FileInput node

discovers files that appear in the input directory. This is at a cost of greater

use of system resources. A larger value reduces the use of system resource but

at the cost of the FileInput node discovering files to process less quickly.

Do not use this property as a means to regulate work, or to schedule

processing. If you want the FileInput node to monitor the input directory for

selected periods only, you should start and stop the message flow at

appropriate times.

If you select FTP processing and set the Scan delay property on the FTP tab,

the value that you set overrides the value set for the polling interval.

 6. Use the Retry tab to define how retry processing is performed when a flow

fails. You can set the following:

v Retry mechanism determines the action that occurs should the flow fail.

Choose from the following:

– Select Failure for the node to report a failure without any retry attempts.

– Select Short retry for the node to retry before reporting a failure if the

condition persists. The number of times that it retries is specified in

Retry threshold.

– Select Short retry and long retry for the node to retry, first using the

value in Retry threshold as the number of attempts it should make. If the

condition persists after the Retry threshold has been reached, the node

then uses the Long retry interval between attempts.
v Specify the Retry threshold. The number of times the node retries the flow

transaction should the Retry mechanism property be set to either Short

retry or Short retry and long retry.

v Specify the Short retry interval. The length of time, in seconds, to wait

between short retry attempts.

v Specify the Long retry interval. The length of time to wait between long

retry attempts until a message is successful, the message flow is stopped, or

the message flow is redeployed. The broker property

MinLongRetryInterval defines the minimum value that the Long retry

interval can take. If the value is lower than the minimum then the broker

value is used.

v Specify the Action on failing file. This specifies what the node is to do with

the input file after all attempts to process its contents fail. Choose from the

following:

– Move to Backout Subdirectory. The file is moved to the backout

subdirectory in the input directory. The name of this subdirectory is

mqsibackout. If the input directory is /var/fileinput, the absolute path of

the backout subdirectory would be /var/fileinput/mqsibackout. If this

subdirectory does not exist, the broker creates it when it first tries to

move a file there. If the file fails to be moved to this subdirectory,

perhaps because a file of the same name already exists there, the node

adds the current date and time to the file name and makes a second

attempt to move the file. If this second attempt fails, the node stops

processing, messages BIP3331 and BIP3325 are issued and these direct

you to resolve the problem with the subdirectory or file before

attempting to restart the message flow.

– Delete. The file is deleted after processing fails.

– Add Time Stamp and Move to Backout Subdirectory. The current date

and time are added to the file name, and then the file is moved to the

backout subdirectory.

Message flows 891

7. Use the Records and Elements tab to specify how each file is interpreted as

records:

v Use the Record detection property to determine how the file is split into

records, each of which generates a single message. Choose from the

following options:

– Whole File specifies that the whole file is a single record.

– Fixed Length specifies that each record is a fixed number of bytes in

length. Each record should contain the number of bytes specified in the

Length property, except possibly a shorter final record in the file.

– Select Delimited if the records that you are processing are separated, or

terminated, by a DOS or UNIX line end or by a sequence of user-defined

delimiter bytes. Specify the delimiter and delimiter type in the Delimiter

and Delimiter type properties.

– Select Parsed Record Sequence if the file contains a sequence of one or

more records that are serially recognized by the parser specified in

Message domain. The node propagates each recognized record as a

separate message. If you select this Record detection option, the parser

specified in Message domain must be either XMLNSC or MRM (either

CWF or TDS physical format).
v If you specified Fixed Length in Record detection, use Length to specify the

required length of the output record. This value must be between 1 byte

and 100 MB. The default is 80 bytes.

If you specify Whole File, Fixed Length, or Delimited in Record detection, a

limit of 100 MB applies to the length of the records. If you specify Parsed

Record Sequence in Record detection, the FileInput node does not

determine or limit the length of a record. Nodes that are downstream in the

message flow might try to determine the record length or process a very

long record. If you intend to process large records in this way, ensure that

your broker has sufficient memory. You might need to apply flow

techniques described in the Large Messaging sample to best use the

available memory.

v If you specified Delimited in Record detection, use Delimiter to specify the

delimiter to be used. Choose from:

– DOS or UNIX Line End, which, on UNIX systems, specifies the line feed

character (<LF>, X’0A’), and, on Windows systems, specifies a carriage

return character followed by a line feed character (<CR><LF>, X’0D0A’).

The node treats both of these strings as delimiters, irrespective of the

system on which the broker is running. If they both appear in the same

file, the node recognizes both as delimiters. The node does not recognize

X’15’ which, on z/OS systems, is the ’newline’ byte; specify a value of

Custom Delimiter in this property and a value of 15 in the Custom

delimiter property if your input file is coded using EBCDIC new lines,

such as EBCDIC files from a z/OS system.

– Custom Delimiter, which permits a sequence of bytes to be specified in

Custom delimiter
v In Custom delimiter, specify the delimiter byte or bytes to be used when

Custom delimiter is set in the Delimiter property. Specify this value as an

even-numbered string of hexadecimal digits. The default is X’0A’ and the

maximum length of the string is 16 bytes (represented by 32 hexadecimal

digits).

v If you specified Delimited in Record detection, use Delimiter type to specify

the type of delimiter. Permitted values are:

892 Message Flows

– Infix. If you select this value, each delimiter separates records. If the file

ends with a delimiter the (zero length) file content following the final

delimiter is still propagated although it contains no data.

– Postfix. If you specify this value, each delimiter terminates records. If the

file ends with a delimiter, no empty record is propagated after the

delimiter. If the file does not end with a delimiter, the file is processed as

if a delimiter follows the final bytes of the bytes of the file. Postfix is the

default value.
v The FileInput node considers each occurrence of the delimiter in the input

file as either separating (infix) or terminating (postfix) each record. If the

file begins with a delimiter, the node treats the (zero length) file contents

preceding that delimiter as a record and propagates an empty record to the

flow. The delimiter is never included in the propagated message.
 8. Use the Validation tab to provide validation based on the message set for

predefined messages. For more information about validation, see “Validating

messages” on page 164. For information about how to complete this tab, see

“Validation tab properties” on page 1360.

 9. On the FTP tab, select the FTP check box if you want the node to read files

from an FTP server using the File Transfer Protocol properties:

v In FTP server and port, supply the Internet address and port number of an

FTP server to be used. Use the following syntax:

– <IP address or URL> or

– <IP address or URL>:<port number>

If you specify the Internet address in IPv6 format, ensure that you enclose it

in square brackets, for example:

– [12a::13bd:24cd] or

– [12a::13bd:24cd]:123 where 123 is the port number

If you do not specify a port number, a port number of 21 is assumed.

However, if an FtpServer configurable service is defined, then you can place

the name of the configurable service in this field. See FtpServer configurable

service properties for information on how an FtpServer configurable service

definition and the properties on this tab interact.

v In Security identity, specify the name of a security identity that has been

defined using the mqsisetdbparms command. The user identifier and

password that are to be used to log on to the FTP server are obtained from

this definition, the name of which should have the prefix ftp::. The value

in this property is overridden by the value in the FtpServer configurable

service property securityIdentity, if it is set.

v In Server directory, specify the directory in the FTP server from which to

transfer files. The default is . which means the default directory after logon.

If you specify this as a relative path, this directory is based on the default

directory after FTP logon. Ensure that the syntax of the of the path

conforms to the file system standards in the FTP server. The value in this

property is overridden by the value in the FtpServer configurable service

property remoteDirectory, if it is set.

v In Transfer mode, specify how files are transferred. Select Binary if the file

contents are not to be transformed. Select ASCII if the file is to be

transmitted as ASCII. The value in this property is overridden by the value

in the FtpServer configurable service property transferMode, if it is set.

v In Scan delay, specify the delay, in seconds, between directory scans. The

default is 60 seconds. The value set in this property overrides the value set

for the polling interval on the Polling tab when the FTP check box is

Message flows 893

selected. The value in this property is overridden by the value in the

FtpServer configurable service property scanDelay, if it is set.
10. On the Transactions tab, set the transaction mode. Although all file operations

are non-transactional, the transaction mode on this input node determines

whether the rest of the nodes in the flow are to be executed under sync point

or not. Select Yes if you want the flow updates to be treated transactionally, if

possible, No if you do not. The default for this property is Yes.

11. Optional: On the Instances tab, set values for the properties that control the

additional instances (threads) that are available for a node. For more details,

see “Configurable message flow properties” on page 1372.

Terminals and properties

The FileInput node terminals are described in the following table.

 Terminal Description

Failure The output terminal to which a message is routed if an error occurs before a message

is propagated to the Out terminal. Messages propagated to this terminal are not

validated, even if you have specified, using the Validate property, that validation

should take place.

Out The output terminal to which the message is routed if it has been successfully

extracted from the input file. If no errors occur within the input node, a message

received from an external resource is always sent to the Out terminal first.

End of Data The output terminal to which the End of Data message is routed after all the

messages in a file have been processed. The End of Data message flow transaction is

initiated only if this terminal is attached.

Catch The output terminal to which the message is routed if an exception is thrown

downstream and caught by this node. Exceptions are caught only if this terminal is

attached.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The FileInput node Description properties are described in the following table:

 Property M C Default Description

Node name No No FileInput The name of the node.

Short description No No None A brief description of the node.

Long description No No None Text that describes the purpose of the node in the

message flow.

The FileInput node Basic properties are described in the following table:

 Property M C Default Description

Input directory Yes Yes None The path of the directory from which input files are

processed. The directory is in the file system to which

the broker has access.

894 Message Flows

Property M C Default Description

File name or pattern Yes Yes * A file name or string containing optional wildcard

characters (* or ?) identifying the file or files to process

from the input directory.

Action on successful

processing

Yes No Delete The action the node takes on the file after successfully

processing the contents. Valid options are:

v Move to Archive Subdirectory

v Add Time Stamp and Move to Archive Subdirectory

v Delete

Replace duplicate

archive files

Yes No Cleared This property controls whether the node replaces

existing archive files with the same name as the input

file. It applies only when Action on successful

processing is not Delete.

The FileInput node Input Message Parsing properties are described in the

following table.

 Property M C Default Description

Message Domain No No The domain that is used to parse the incoming

message.

Message Set No No The name or identifier of the message set in which the

incoming message is defined.

If you set this property, then subsequently update the

project dependencies to remove this message set

reference, a warning is issued. Either update the

Message Set property, or restore the reference to this

message set project.

Message Type No No The name of the incoming message.

Message Format No No The name of the physical format of the incoming

message.

Message coded

character set ID

Yes No Broker

System

Default

The ID of the coded character set used to interpret

bytes of the file being read.

Message encoding Yes No Broker

System

Default

The encoding scheme for numbers and large characters

used to interpret bytes of the file being read. Valid

values are Broker System Determined or a numeric

encoding value. For more information about encoding,

see “Converting data with message flows” on page 128.

The FileInput node Parser Options properties are described in the following table.

 Property M C Default Description

Parse timing No No On Demand This property controls when an input message is

parsed. Valid values are:

v On Demand

v Immediate

v Complete

For a full description of this property, see “Parsing on

demand” on page 1363.

Message flows 895

|
|
|
|
|

Property M C Default Description

Build tree using XML

schema data types

No No Cleared This property controls whether the syntax elements in

the message tree have data types taken from the XML

Schema.

Use XMLNSC compact

parser for XMLNS

domain

No No Cleared This property controls whether the XMLNSC Compact

Parser is used for messages in the XMLNS Domain. If

you set this property, the message data appears under

XMLNSC in nodes that are connected to the output

terminal when the input MQRFH2 header or Input

Message Parsing property, Message Domain, is

XMLNS.

Retain mixed content No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

mixed text in an input message. If you select the check

box, elements are created for mixed text. If you clear

the check box, mixed text is ignored and no elements

are created.

Retain comments No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

comments in an input message. If you select the check

box, elements are created for comments. If you clear

the check box, comments are ignored and no elements

are created.

Retain processing

instructions

No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

processing instructions in an input message. If you

select the check box, elements are created for

processing instructions. If you clear the check box,

processing instructions are ignored and no elements are

created.

Opaque elements No No Blank This property is used to specify a list of elements in the

input message that are to be opaquely parsed by the

XMLNSC parser. Opaque parsing is performed only if

validation is not enabled (that is, if Validate is None);

entries that are specified in Opaque Elements are

ignored if validation is enabled.

The FileInput node Polling property is described in the following table:

 Property M C Default Description

Polling interval

(seconds)

Yes Yes 5 The polling interval in seconds.

The FileInput node Retry properties are described in the following table:

 Property M C Default Description

Retry mechanism Yes No Failure How the node handles a flow failure. Valid options

are:

v Failure

v Short retry

v Short and long retry

Retry threshold Yes Yes 0 The number of times to retry the flow transaction

when Retry mechanism is Short retry.

896 Message Flows

Property M C Default Description

Short retry interval No Yes 0 The interval, in seconds, between each retry if Retry

threshold is not zero.

Long retry interval No Yes 300 The interval between retries, if Retry mechanism is

Short and long retry and the retry threshold has been

exhausted.

Action on failing file Yes Yes Move to

Backout

Subdirectory

The action the node takes with the input file after all

attempts to process its contents fail. Valid options are:

v Move to Backout Subdirectory

v Delete

v Add Time Stamp and Move to Backout Subdirectory

The FileInput node Records and Elements properties are described in the following

table:

 Property M C Default Description

Record detection Yes No Whole File The mechanism used to identify records in the input

file. Valid options are:

v Whole File

v Fixed Length

v Delimited

v Parsed Record Sequence

Length Yes No 80 The length of each record, in bytes, when Fixed Length

record detection is selected.

Delimiter Yes No DOS or

UNIX Line

End

The type of delimiter bytes that separate, or terminate,

each record when Delimited record detection is

selected. Valid options are:

v DOS or UNIX Line End

v Custom Delimiter

Custom delimiter No No The delimiter bytes, expressed in hexadecimal, when

Delimited record detection and Custom Delimiter are

selected. This property is mandatory only if the

Delimiter property is set to Custom Delimiter.

Delimiter type Yes No Postfix The position of the delimiter when Delimited record

detection and Custom Delimiter are selected. Valid

options are:

v Postfix

v Infix

This property is ignored unless the Delimiter property

is set to Custom Delimiter.

The FileInput node Validation properties are described in the following table.

For a full description of these properties, see “Validation properties” on page 1359.

Message flows 897

Property M C Default Description

Validate No Yes None This property controls whether validation takes place.

Valid values are

v None

v Content and Value

v Content

Failure action No No Exception This property controls what happens if validation fails.

Valid values are:

v User Trace

v Local Error Log

v Exception

v Exception List

The FileInput node FTP properties are described in the following table:

 Property M C Default Description

FTP No Yes Cleared This property defines whether the node uses the File

Transfer Protocol (FTP) properties listed on the FTP

tab and reads files from an FTP server.

FTP server and port No Yes None Either the IP address or name (and, optionally, the port

number) of a remote FTP server; for example,

ftp.server.com:21, or the name of a configurable

service of type ’FtpServer’. If a configurable service

name is specified, the following FTP properties can be

overridden by the configurable service.

Security identity No Yes The name of the user identification used to access the

FTP server. This property is overridden by the

securityIdentity property, if set, in the FtpServer

configurable service.

Server directory No Yes ″.″ The directory on the FTP server from which to transfer

files. If you specify this property as a relative path, it is

relative to the home directory after logon. This

property is overridden by the remoteDirectory

property, if set, in the FtpServer configurable service.

Transfer mode No No Binary The FTP transfer mode for transfer of file data. Valid

options are:

v Binary

v ASCII

This property is overridden by the transferMode

property, if set, in the FtpServer configurable service.

Scan delay No Yes 60 The delay, in seconds, between remote directory scans.

This property overrides the value set for Polling

interval when the FTP check box is selected. This

property is overridden by the scanDelay property, if

set, in the FtpServer configurable service.

The FileInput node Transactions properties are described in the following table:

898 Message Flows

Property M C Default Description

Transaction mode No Yes Yes The transaction mode on this input node determines

whether the rest of the nodes in the flow are executed

under sync point. Valid options are:

v Yes

v No

The FileInput node Instances properties are described in the following table. For a

full description of these properties, see “Configurable message flow properties” on

page 1372.

 Property M C Default Description

Additional instances

pool

No Yes Use Pool

Associated

with

Message

Flow

The pool from which additional instances are obtained.

v If you select Use Pool Associated with Message Flow,

additional instances are obtained from the message

flow pool.

v If you select Use Pool Associated with Node,

additional instances are allocated from the node’s

additional instances based on the number specified

in the Additional instances property.

Additional instances No Yes 0 The number of additional instances that the node can

start if the Additional instances pool property is set to

Use Pool Associated with Node.

FileOutput node

Use the FileOutput node to write messages to files.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 902

v “Configuring the FileOutput node” on page 902

v “Terminals and properties” on page 906

Purpose

One or more messages from message flow transactions can be written to a file in

the broker’s file system. Each message, as it is written to a file, is converted to a

sequence of bytes called a record. Records are accumulated until a process called

finish processing is triggered. Finish processing happens when there are no more

records left to process. At this point, the accumulated file is placed in the specified

output directory or a remote FTP server directory. Properties on the node specify

how records are accumulated into files and where the files are placed when they

are finished.

The FileOutput node is contained in the File drawer of the palette and is

represented in the workbench by the following icon:

Message flows 899

Record processing

The FileOutput node writes files as a sequence of one or more records. Each record

is generated from a single message received on the In terminal of the node.

As a default, each file comprises a single record and finish processing occurs

immediately after the record is written. In other cases, properties of the FileOutput

node specify that the file comprises multiple records and how these records are

accumulated in a file. Records can be accumulated in a file in the following ways:

v Simply concatenated. The record from each message is appended, unmodified, to

the file.

v Padded. Each record is adjusted to be a specific length and padded with a

padding byte, if necessary, before being appended to the file.

v Delimited. A delimiter is used to separate or terminate the records as they are

appended to the file.

For each message received, whether on the In terminal or the Finish File terminal,

the output directory and the name of the file to be written (or finished) may be

modified by the use of elements of the message. You can specify these elements,

which, by default, identify elements in the LocalEnvironment, on the Request

properties tab of the node.

File (finish) processing

The FileOutput node writes accumulated messages to files placed in a specified

directory, the output directory, either:

v After each record when the file is to contain a single record. This is achieved by

specifying Record is Whole File in the Record definition property on the Records

and Elements tab, or

v When the Finish File terminal receives a message.

The name of the directory and the name of the file are determined by the node

properties that you specify and by elements of the message being processed.

The FileOutput node uses subdirectories of the output directory to create files

during processing and to move files after processing. All of these begin with the

prefix mqsi. Among these are subdirectories called mqsitransit, the transit

directory, and mqsiarchive, the archive directory. Records are not accumulated

directly into a file in the output directory but are accumulated in a file in the

transit directory. Files are moved from the transit directory to the output directory

when finish processing occurs. If a file to be moved to the output directory has the

same name as a file already in the output directory, the file in the output directory

can be deleted, moved to the archive directory, mqsiarchive, or renamed before

being moved to the mqsiarchive directory.

You can specify that the FileOutput node transfer files to a remote FTP server as

part of finish processing. If the file is successfully transferred, it may be deleted

from the local file system, or, optionally, retained for the rest of finish processing to

occur as usual.

When multiple records are written, finish processing does not occur after the

writing of each record; it occurs only when a message is received on the Finish File

terminal of the node. Any message received on the Finish File terminal causes

900 Message Flows

finish processing to commence. This takes the file from the transit directory and

either moves it to the specified output directory or transfers it to a remote FTP

directory.

It is not an error for finish processing to be initiated and for no file to be present in

the transit directory.

If you specify Record is Whole File in the Record definition property on the

Records and Elements tab, finish processing does not occur when a message is

received on the Finish File processing; finish processing will already have occurred.

Message propagation

For every message received on the In terminal and successfully processed by the

node, a copy is propagated to the Out terminal if this is attached. This allows

further processing of the message.

For every message received on the Finish File terminal and successfully processed

by the node, a copy is propagated to the End of Data terminal if this is attached.

This allows further processing after the finish of a file.

When the FileOutput node propagates a message, either to the Out terminal or to

the End of Data terminal, it stores information in the

LocalEnvironment.WrittenDestination.File message tree. This table describes the

LocalEnvironment.WrittenDestination.File elements:

 Table 34.

Element Name Element Data Type Description

Directory CHARACTER Absolute directory path of

the output directory in the

form used by the file system

of the broker. For example,

on Windows systems, this

starts with the drive letter

prefix (such as C:).

Name CHARACTER File name of the output file.

Action CHARACTER Possible values are:

v Replace if an output file of

the same name is replaced.

v Create if a new output file

is created.

v Append if this is associated

with a record that is

appended to an output

file.

v Finish if a Finish File

message is received and

no file is found to finish

(for example, if Record is

Whole File is specified and

a message is sent to the

Finish File terminal).

v Transmit if the file was

transferred by FTP and the

file was not retained.

Message flows 901

Table 34. (continued)

Element Name Element Data Type Description

Timestamp CHARACTER The date and time, in

character string form, when

the node started to process

this file. This is the value

which prefixes the names of

files that are archived if you

specify Time Stamp, Archive

and Replace Existing File in

the Output file action

property on the Basic tab.

Multiple instances

It is possible that several message flows need to write to the same file. This can

happen where there are more than zero additional instances, or where there are

multiple flows containing FileOutput nodes. The FileOutput node only permits a

single instance, within an execution group and between execution groups, to write

to a file at a time. While a record is being written (or while finish processing is

being performed), all other instances in the execution group have to wait. The

order in which instances gain access is not defined.

For finish processing, the first instance to gain access performs the processing, and

other instances will fail to find the file. This is not an error in the flows, and the

Action element of the LocalEnvironment.WrittenDestination.File message tree is set

to Finish for all instances that fail to discover the file in the transit directory.

Using this node in a message flow

The FileOutput node can be used in any message flow that needs to output

messages in files. Look at the following samples to see how to use this node:

v File Output sample

v Batch Processing sample

v WildcardMatch sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Configuring the FileOutput node

When you have put an instance of the FileOutput node into a message flow, you

can configure it. The properties of the node are displayed in the Properties view.

All mandatory properties for which you must enter a value (those that do not have

a default value defined) are marked with an asterisk in that view.

To configure the FileOutput node:

1. Optional: On the Description tab, enter a short description, a long description,

or both. You can also rename the node on this tab.

2. On the Basic tab, enter the details of the files created by the FileOutput node.

a. In Directory, specify the output directory in which the FileOutput node is to

place its files. Specify the directory as an absolute or relative directory path.

If the directory path is relative, it is based on the directory specified in the

environment variable MQSI_FILENODES_ROOT_DIRECTORY. Examples

902 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.fileoutput.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.BatchProcessing.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.WildcardMatch.doc/doc/overview.htm

are, on Windows, C:\fileoutput, and, on UNIX, /var/fileoutput. If you want

to write files in the directory which is itself identified by

MQSI_FILENODES_ROOT_DIRECTORY, ensure that you specify a value of

. in this property.

The output directory path to be used may be overridden by values in the

current message. See the information relating to the Request tab for details

about how to do this.

b. In File name or pattern, specify a file name pattern. This defines the name

of the file which is to be created by the FileOutput node. It is either a

specific file name or a character sequence, a pattern, that matches a file

name. Only patterns with a single wildcard character (the asterisk, ’*’) are

allowed in this property field. The file name to be used is determined as

follows:

v If the file name contains no wildcard, then the value of this property is

the name of the file created. This must be a valid file name on the file

system which hosts the broker to which the message flow is deployed.

v If the file name contains a single wildcard, then the value of the element

LocalEnvironment.Wildcard.WildcardMatch in the current message

replaces the wildcard character, and the resulting value is the name of the

file created. This must be a valid file name on the file system which hosts

the broker to which the message flow is deployed. If the WildcardMatch

value is not found, the wildcard character is replaced by the empty

string.

The name of the file can be overridden by values in the current message.

See the information relating to the Request tab for details about how to do

this. If the File name or pattern property is empty, the name must be

overridden by the current message. Note that wildcard substitution occurs

only if this property is not overridden in this way.

File names are passed to the file system to which the broker has access and

have to respect the conventions of these file systems. For example, file

names on Windows systems are not case-sensitive, while, on UNIX systems,

file names which differ by case are considered distinct.

c. In Output file action, specify how the file is to be processed when it is

finished. Choose from:

v Replace Existing File, the default, to specify that if a file of the same

name already exists in the output directory, the new file replaces it.

v Create File, to specify that a new file is created, and that if a file of the

same name already exists in the output directory, the new file remains in

the transit directory and an exception is thrown.

v Archive and Replace Existing File, to specify that if any file of the same

name already exists in the output directory, it is moved to the archive

directory before the new file is placed in the output directory.

v Time Stamp, Archive and Replace Existing File, to specify that if a file of

the same name already exists in the output directory, its name is

augmented with a time stamp (a character-based version of the date and

time) before being moved to the archive directory.
d. Select the Replace duplicate archive files check box to specify that, in cases

where Archive and Replace Existing File or Time Stamp, Archive and

Replace Existing File is specified in Output file action, files moved to the

archive directory replace files that exist there already with the same name.

By default, this check box is not selected. If this check box is not selected, it

Message flows 903

means that a if a file in the archive directory has the same name as a file

that is to be moved there, an exception is raised, and the new file remains

in the transit directory.
3. On the Request tab, specify the location of the data to be written, and any

control information overriding the Basic tab’s Directory and File name or

pattern properties. You can specify the properties on this tab as XPath or ESQL

expressions. Content-assist is available in the properties pane and also in the

XPath Expression Builder which you can invoke by using the Edit... button to

the right of each property.

a. In Data location, specify the input data location. This is the location in the

input message tree that contains the record to be written to the output file.

The default value is $Body, meaning the entire message body

($InputRoot.Body).

When you are specifying this property and the data in the message tree that

it identifies is owned by a model-driven parser, such as the MRM parser or

XMLNSC parser, be aware of the following considerations:

v If you are using MRM CWF format, ensure that the identified message

tree exists as a message definition. If this is defined as a global element

only, exceptions BIP5180 and BIP5167 are generated.

v If you are using MRM TDS format, the serialization of the identified

message is successful if the element is defined as a global element or

message. However, if the identified field is not found as a global element

or message, note that:

– If this is a leaf field in the message tree, the field is written as

self-defining. No validation occurs even if validation is enabled.

– If this is a complex element, an internal exception is generated,

BIP5522, indicating that the logical type cannot be converted to a

string.
v If you are using MRM XML, the events are similar as for the MRM TDS

format except that, if the field is a complex element, it is written as

self-defining.

v If you use the XMLNSC parser, no validation occurs even if validation is

enabled.
b. In Request directory property location, specify the location of the value to

override the Directory property on the Basic tab. If you do not specify a

location, the default value is $LocalEnvironment/Destination/File/
Directory. If you specify a location but the element is empty or missing, the

Directory property is used. The element is defined as follows:

 Element data type Element attributes

CHARACTER Absolute or relative directory path. Use the

path separator character (’/’ or ’\’)

according to the file system on which the

broker is executing. Trailing path separator

characters are ignored. Relative directory

paths are based on the value of the

MQSI_FILENODES_ROOT_DIRECTORY

environment variable.

c. In Request file name property location, specify the location of the value to

override the File name or pattern property on the Basic tab. If you do not

specify a location, the default value is $LocalEnvironment/Destination/File/
Name. If you specify a location but the element is empty or missing, the

File name or pattern property is used. The element is defined as follows:

904 Message Flows

Element data type Element attributes

CHARACTER Explicit file name. No wildcard substitution

occurs for this value.

4. Use the Records and Elements tab to specify how the FileOutput node writes

the record derived from the message.

v In Record definition, choose from:

– Record is Whole File to specify that the file is to contain a single record.

The file is finished immediately after the record is written; the FileOutput

node does not wait for a message on the Finish File terminal. This is the

default.

– Record is Unmodified Data to specify that records are accumulated in a

file with neither padding or delimiters applied. The file is finished only

when a message is received on the Finish File terminal.

– Record is Fixed Length Data to specify that records are padded to a given

length if necessary and accumulated in a file by concatenation. You specify

this length in the Length property. If the record is longer than the value

specified in Length, the node generates an exception. Use the Padding

byte property to specify the byte to be used for padding the message to

the required length. The file is finished only when a message is received

on the Finish File terminal.

– Record is Delimited Data to specify that records are separated by a

delimiter and accumulated by concatenation. The delimiter is specified by

the Delimiter, Custom delimiter, and Delimiter type properties. The file is

finished only when a message is received on the Finish File terminal.
v In Length, specify the length (in bytes) of records when Record is Fixed

Length Data is specified in Record definition. Records longer than this value

cause an exception to be thrown. This must be a value between 1 byte and

100 MB. The default is 80 bytes.

v When Record is Fixed Length Data is specified in Record definition, use

Padding byte to specify the byte to be used when padding records to the

specified length if they are shorter than this length. Specify this as 2

hexadecimal digits. The default value is X’20’.

v In Delimiter, specify the delimiter to be used if you specify Record is

Delimited Data in Record definition. Choose from:

– Broker System Line End to specify that a line end sequence of bytes is

used as the delimiter as appropriate for the file system on which the

broker is to run. This is the default. For example, on Windows systems,

this is a ’carriage-return, line-feed’ pair (X’0D0A’); on UNIX systems, this

is a single ’line-feed’ byte (X’0A’); on z/OS systems, it is a ’newline’ byte

(X’15’).

– Custom Delimiter to specify that the explicit delimiter sequence defined in

the Custom delimiter property is to be used to delimit records.
v In Custom delimiter, specify the delimiter sequence of bytes to be used to be

used to delimit records when Custom Delimiter is specified in the Delimiter

property. Specify this as an even-numbered string of hexadecimal digits. The

default is X’0A’ and the maximum length of the string is 16 bytes.

v If you specified Record is Delimited Data in Record definition, use Delimiter

type to specify how the delimiter is to separate records. Choose from:

– Postfix to specify that the delimiter is added after each record that is

written. This is the default.

Message flows 905

– Infix to specify that the delimiter is only inserted between any two

adjacent records.
5. On the Validation tab, specify the parser validation properties of the node. For

more information about validation, see “Validating messages” on page 164. For

information on how to fill in this tab, see “Validation tab properties” on page

1360.

6. On the FTP tab, select the FTP check box if you want the node to transfer files

to an FTP server using the File Transfer Protocol properties:

v In FTP server and port, supply the internet address and port number of an

FTP server to be used. Use the following syntax:

– <IP address or URL> or

– <IP address or URL>:<port number>

If you specify the internet address in IPv6 format, ensure that you enclose it

in square brackets, for example:

– [12a::13bd:24cd] or

– [12a::13bd:24cd]:123 where 123 is the port number

If you do not specify a port number, a port number of 21 is assumed.

However, if an FtpServer configurable service is defined, then you can place

the name of the configurable service in this field. See FtpServer configurable

service properties for information on how an FtpServer configurable service

definition and the properties on this tab interact.

v In Security identity, specify the name of a security identity that has been

defined using the mqsisetdbparms command. The user identifier and

password that are to be used to logon to the FTP server are obtained from

this definition the name of which should have the prefix ftp::. The value in

this property is overridden by the value in the FtpServer configurable service

property securityIdentity, if it is set.

v In Server directory, specify the directory in the FTP server to which to

transfer files. The default is . which means the default directory after login.

If you specify this as a relative path, this directory is based on the default

directory after FTP login. Ensure that the syntax of the of the path conforms

to the file system standards in the FTP server. The value in this property is

overridden by the value in the FtpServer configurable service property

remoteDirectory, if it is set.

v In Transfer mode, specify how files are transferred. Select Binary if the file

contents are not to be transformed. Select ASCII if the file is to be

transmitted as ASCII. The value in this property is overridden by the value

in the FtpServer configurable service property transferMode, if it is set.

v Select the Retain local file after transfer check box if you want to retain a

local copy of this after the file transfer process has completed. If this check

box is selected, the local copies are processed after transfer as are other

output files, as specified on the Basic tab. If it is not selected, successfully

transferred files are not retained locally.

Terminals and properties

The FileOutput node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Finish File The input terminal that accepts a message that triggers the finishing of a file.

906 Message Flows

Terminal Description

Out The message received on the In terminal is propagated to this terminal if the record is

written successfully. The message is unchanged except for status information in the

Local Environment.

End of Data The message received on the Finish File terminal is propagated to this terminal if the

file is finished successfully.

Failure The output terminal to which the message is routed if a failure is detected when the

message is propagated.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The FileOutput node Description properties are described in the following table:

 Property M C Default Description

Node name No No FileOutput The name of the node.

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the

message flow.

The FileOutput node Basic properties are described in the following table:

 Property M C Default Description

Directory No Yes None The directory where the node places its files.

File name or pattern No Yes None The specific file name or a pattern containing a single

wildcard which defines the name of the file to be

created.

Output file action Yes No Replace

Existing File

Specifies the action to be taken when the output file is

finished. Valid options are:

v Replace Existing File

v Create File

v Archive and Replace Existing File

v Time Stamp, Archive and Replace Existing File

Replace duplicate

archive files

Yes No Cleared Specifies whether files in the archive directory can be

replaced by files of the same name being moved there.

The FileOutput node Request properties are described in the following table:

 Property M C Default Description

Data location Yes No $Body The location in

the input message

tree containing

the record written

to the output file.

Message flows 907

Property M C Default Description

Request directory

property location

Yes Yes $LocalEnvironment/Destination/File/Directory The message

element location

containing the

name of the

output directory.

Request file name

property location

Yes Yes $LocalEnvironment/Destination/File/Name The message

element location

containing the

name of the

output file.

The FileOutput node Records and Elements properties are described in the

following table:

 Property M C Default Description

Record definition Yes No Record is

Whole File

This property controls how the records are placed in

the output file. Valid options are:

v Record is Whole File

v Record is Unmodified Data

v Record is Fixed Length Data

v Record is Delimited Data

Length Yes No 80 The required length of the output record. This

property applies only when Record is Fixed Length

Data is specified in Record definition.

Padding byte Yes No X’20’ The 2-digit hexadecimal byte to be used to pad short

messages when Record is Fixed Length Data is

specified in Record definition.

Delimiter Yes No Broker

System Line

End

The delimiter to be used when Record is Delimited

Data is specified in Record definition. Valid options

are:

v Broker System Line End

v Custom Delimiter

Custom delimiter No No None The delimiter byte sequence to be used when Record is

Delimited Data is specified in the Record definition

property and Custom Delimiter is specified in the

Delimiter property.

Delimiter type Yes No Postfix This property specifies the way in which the delimiters

are to be inserted between records when Record is

Delimited Data is specified in Record definition. Valid

options are:

v Postfix

v Infix

The FileOutput node Validation properties are described in the following table.

For a full description of these properties, see “Validation properties” on page 1359.

908 Message Flows

Property M C Default Description

Validate No Yes Inherit This property controls whether validation takes place.

Valid values are:

v None

v Content and Value

v Content

v Inherit

Failure action No No Exception This property controls what happens if validation fails.

You can set this property only if you set Validate to

Content or Content and Value. Valid values are:

v User Trace

v Local Error Log

v Exception

v Exception List

The FileOutput node FTP properties are described in the following table:

 Property M C Default Description

FTP No No Cleared This property defines whether the node uses the File

Transfer Protocol (FTP) properties listed on the FTP

tab and transfers files to an FTP server.

FTP server and port No Yes None Either the IP address or name (and, optionally, the port

number) of a remote FTP server, for example

ftp.server.com:21, or the name of a configurable

service of type ’FtpServer’. If a configurable service

name is specified, any or all of the following FTP

properties can be overridden by the configurable

service.

Security identity No Yes None The name of the user identification used to access the

FTP server. This property is overridden by the

securityIdentity property, if set, in the FtpServer

configurable service.

Server directory No Yes ″.″ The directory on the FTP server to which to transfer

files. If you specify this as a relative path, this relative

to the home directory after login. This property is

overridden by the remoteDirectory property, if set, in

the FtpServer configurable service.

Transfer mode No Yes Binary The FTP transfer mode for transfer of file data. Valid

options are:

v Binary

v ASCII

This property is overridden by the transferMode

property, if set, in the FtpServer configurable service.

Retain local file after

transfer

No No Cleared If this check box is selected, a local copy of a file that

has been transferred to a remote FTP server is retained

and placed in the output directory in accordance with

the disposition of files as specified on the Basic tab. If

this check box is not selected, no local copies of files

that have been transferred to a remote FTP server are

retained.

Message flows 909

Filter node

Use the Filter node to route a message according to message content.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow”

v “Terminals and properties” on page 911

Purpose

Create a filter expression in ESQL to define the route that the message is to take.

You can include elements of the input message or message properties in the filter

expression, and you can use data that is held in an external database to complete

the expression. The output terminal to which the message is routed depends on

whether the expression evaluates to true, false, or unknown.

Connect the terminals that cover all situations that could result from the filter; if

the node propagates the message to a terminal that is not connected, the message

is discarded even if it is transactional.

The Filter node accepts ESQL statements in the same way as the Compute and

Database nodes. The last statement that is executed must be a RETURN <expression>

statement, whose expression evaluates to a Boolean value. This Boolean value

determines the terminal to which the message is routed. In many cases, the routing

algorithm is a simple comparison of message field values. The comparison is

described by the expression and the RETURN statement is the only statement. If

you code RETURN without an expression (RETURN;) or with a NULL expression,

the node propagates the message to the Unknown terminal.

If your message flow requires more complex routing options, use the RouteToLabel

and Label nodes.

The Filter node is contained in the Routing drawer of the palette, and is

represented in the workbench by the following icon:

Using this node in a message flow

Look at the following samples for examples of how to use this node:

v Airline Reservations sample

v Scribble sample

v Error Handler sample

v Large Messaging sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Consider a situation in which you have produced an online test with ten multiple

choice questions. Each message coming in has a candidate name and address

followed by a series of answers. Each answer is checked, and if it is correct, the

field SCORE is incremented by one. When all the answers have been checked, the

field SCORE is tested to see if it is greater than five. If it is, the Filter node

910 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.scribble.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.largemessaging.doc/doc/overview.htm

propagates the message to the flow that handles successful candidate input;

otherwise, the message is filtered into the rejection process, and a rejection message

is created.

Terminals and properties

When you have put an instance of the Filter node into a message flow, you can

configure it; see “Configuring a message flow node” on page 235. The properties of

the node are displayed in the Properties view. All mandatory properties for which

you must enter a value (those that do not have a default value defined) are

marked with an asterisk.

The Filter node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node

Failure The output terminal to which the message is routed if a failure is detected during the computation

Unknown The output terminal to which the message is routed if the specified filter expression evaluates to

unknown or null

False The output terminal to which the message is routed if the specified filter expression evaluates to false

True The output terminal to which the message is routed if the specified filter expression evaluates to true

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default value is defined); the column headed C indicates whether

the property is configurable (you can change the value when you add the message

flow to the bar file to deploy it).

The Filter node Description properties are described in the following table.

 Property M C Default Description

Node name No No The node

type

The name of the node.

Short

Description

No No A brief description of the node

Long

Description

No No Text that describes the purpose of the node in the message flow

The Filter node Basic properties are described in the following table.

Message flows 911

Property M C Default Description

Data

Source

No Yes The ODBC data source name of the database that contains the tables to which

you refer in the ESQL that is associated with this node (identified by the

Filter Expression property). This name identifies the appropriate database on

the system on which this message flow is to execute. The broker connects to

this database with user ID and password information that you have specified

on the mqsicreatebroker, mqsichangebroker, or mqsisetdbparms command.

z/OS

On z/OS systems, the broker uses the broker started task ID, or

the user ID and password that are specified on the mqsisetdbparms

command JCL, BIPSDBP, in the customization data set <hlq>.SBIPPROC.

If the ESQL that is associated with this node includes a PASSTHRU statement

or SELECT function and a database reference, you must specify a value for

the Data Source property.

Transaction Yes No Automatic The transaction mode for the node. The values are:

v Automatic (the default). The message flow, of which the Filter node is a

part, is committed if it is successful. That is, the actions that you define in

the ESQL module are performed and the message continues through the

message flow. If the message flow fails, it is rolled back. Therefore, if you

choose Automatic, the ability to commit or rollback the action of the Filter

node on the database depends on the success or failure of the entire

message flow.

v Commit. To commit any uncommitted actions that are performed in this

message flow on the database that is connected to this node, irrespective of

the success or failure of the message flow as a whole, select Commit. The

changes to the database are committed even if the message flow itself fails.

912 Message Flows

|
|
|

Property M C Default Description

Filter

Expression

Yes No Filter The name of the module within the ESQL resource (file) that contains the

statements to execute against the message that is received in the node The

ESQL file, which by default has the name <message_flow_name>.esql,

contains ESQL for every node in the message flow that requires it. Each

portion of code that is related to a specific node is known as a module. If you

want the module name to include one or more spaces, enclose it in double

quotes in the Filter Expression property.

Code ESQL statements to customize the behavior of the Filter node in an

ESQL file that is associated with the message flow in which you have

included this instance of the Filter node.

If an ESQL file does not already exist for this message flow, double-click the

Filter node, or right-click the node and click Open ESQL to create and open a

new ESQL file in the ESQL editor view.

If the file exists already, click Browse beside the Filter Expression property to

display the Module Selection dialog box, which lists the available Filter node

modules defined in the ESQL files that can be accessed by this message flow

(ESQL files can be defined in other, dependent, projects). Select the

appropriate module and click OK; if no suitable modules are available, the

list is empty.

If the module that you specify does not exist, that module is created for you,

and the editor displays it. If the file and the module exist already, the editor

highlights the correct module.

If a module skeleton is created for this node in a new or existing ESQL file, it

consists of the following ESQL. The default module name is shown in this

example:

CREATE FILTER MODULE <flow_name>_Filter

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 RETURN TRUE;

 END;

END MODULE;

If you create your own ESQL module, you must create this skeleton exactly.

You can update the default name, but ensure that the name that you specify

matches the name of the corresponding node property Filter Expression.

To customize this node, add your own ESQL after the BEGIN statement, and

before the RETURN statement. If the expression on the RETURN statement is

not TRUE or FALSE, its value is resolved to determine the terminal to which

the message is propagated. If the expression resolves to NULL, or you code

RETURN;, or you omit the RETURN statement, the node propagates the

message to the Unknown terminal.

You can use all the ESQL statements including SET, WHILE, DECLARE, and

IF in this module, but (unlike the Compute node) the Filter node propagates

the message that it receives at its input terminal to its output terminal

unchanged. Therefore, in the Filter node, like the Database node, you have

only one message to which to refer.

The ESQL correlation names that you use in a Filter node are different from

those used for a Compute node. For more information about correlation

names refer to the related links.

You cannot modify any part of any message, so the assignment statement (the

SET statement, not the SET clause of the INSERT statement) can assign values

only to temporary variables. The scope of actions that you can take with an

assignment statement is therefore limited.

Message flows 913

Property M C Default Description

Treat

warnings

as errors

Yes No Cleared For database warning messages to be treated as errors, and to propagate the

output message from the node to the Failure terminal, select Treat warnings

as errors. The check box is cleared initially.

When you select the check box, the node handles all positive return codes

from the database as errors and generates exceptions in the same way as it

does for the negative, or more serious, errors.

If you do not select the check box, the node treats warnings as normal return

codes and does not raise any exceptions. The most significant warning raised

is not found, which can be handled safely as a normal return code in most

circumstances.

Throw

exception

on

database

error

Yes No Selected For the broker to generate an exception when a database error is detected,

select Throw exception on database error. The check box is selected initially.

If you clear the check box, you must include ESQL to check for any database

error that might be returned after each database call that you make (you can

use SQLCODE and SQLSTATE to do this). If an error has occurred, you must

handle the error in the message flow to ensure the integrity of the broker and

the database; the error is ignored if you do not handle it through your own

processing because you have chosen not to invoke the default error handling

by the broker. For example, you can include the ESQL THROW statement to

throw an exception in this node, or you can use the Throw node to generate

your own exception at a later point.

FlowOrder node

Use the FlowOrder node to control the order in which a message is processed by a

message flow.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 915

v “Connecting the terminals” on page 915

v “Terminals and properties” on page 915

Purpose

The FlowOrder node propagates the input message to the first output terminal,

and the sequence of nodes that is connected to this terminal processes the message.

When that message processing is complete, control returns to the FlowOrder node.

If the message processing completes successfully, the FlowOrder node propagates

the input message to the second output terminal, and the sequence of nodes that is

connected to this terminal processes the message.

The message that is propagated through the second output terminal is the input

message; it is not modified in any way, even if the sequence of nodes that is

connected to the first terminal has modified the message.

You can include this node in a message flow at any point where the order of

execution of subsequent nodes is important.

If you connect multiple nodes to the first output terminal, the second output

terminal, or both, the order in which the multiple connections on each terminal are

processed is random and unpredictable. However, the message is propagated to all

914 Message Flows

target nodes that are connected to the first output terminal, which must all

complete successfully, before the message is propagated to any node that is

connected to the second output terminal.

Your message flow performance can benefit from including the FlowOrder node in

a situation where one sequence of processing that is required for a message is

significantly shorter than another sequence of processing. If you connect the

shorter sequence to the first terminal, any failure is identified quickly and prevents

execution of the second longer sequence of processing.

The FlowOrder node is contained in the Construction drawer of the palette, and is

represented in the workbench by the following icon:

Using this node in a message flow

For an example of using this node, assume that your company receives orders

from customers using the Internet. When the order is received, it is processed by

nodes that are connected to the first terminal of a FlowOrder node to debit the

stock level in your database and raise an invoice. A check is made to see whether

the customer has indicated that his details can be sent to other suppliers. If the

customer has indicated that he does not want this information to be divulged, this

check fails and no further processing occurs. If the customer is happy for you to

share his details with other companies (that is, the test is successful), the input

message is propagated to the second terminal so that the customer’s details can be

added to the mailing list.

Connecting the terminals

The FlowOrder node has no configurable properties that impact its operation. You

determine how it operates by connecting the first and second output terminals to

subsequent nodes in your message flow.

1. Connect the First terminal to the first node in the sequence of nodes that

provide the first phase of processing this message. This sequence can contain

one or more nodes that perform any valid processing. The sequence of nodes

can optionally conclude with an output node.

2. Connect the Second terminal to the first node in the sequence of nodes that

provide the second phase of processing this message. This sequence can contain

one or more nodes that perform any valid processing. The sequence of nodes

can optionally conclude with an output node.

The message that is propagated through the Second terminal is identical to that

propagated through the First terminal. Any changes that you have introduced

as a result of the first phase of processing are ignored by this node.

If the first phase of processing fails, the FlowOrder node does not regain

control and does not propagate the message through the Second terminal.

Terminals and properties

When you have put an instance of the FlowOrder node into a message flow, you

can configure it. For more information, see “Configuring a message flow node” on

page 235. The properties of the node are displayed in the Properties view.

The FlowOrder node terminals are described in the following table.

Message flows 915

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected during the

computation.

First The output terminal to which the input message is routed in the first instance.

Second The output terminal to which the input message is routed in the second instance. The

message is routed to this terminal only if routing to First is successful.

The following table describes the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The FlowOrder node Description properties are described in the following table.

 Property M C Default Description

Node name No No FlowOrder The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the

message flow.

HTTPHeader node

Use the HTTPHeader node to add, modify or delete HTTP headers such as

HTTPInput, HTTPResponse, HTTPRequest and HTTPReply.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 917

v “Terminals and properties” on page 917

Purpose

The HTTPHeader node provides a toolkit interface to manipulate HTTP headers

without any need for coding; it does not modify the message body. You can add or

remove a whole header, or selected header properties. You can set the properties to

a fixed value, or to a value specified by an XPath expression that accesses a value

in one of the message trees. XPath is used to provide a valid location from which a

value for a property can be copied. For example, the location can be the body of

the message, the local environment tree or exception list.

HTTPInput and HTTPResponse headers can only be deleted or carried forward

from the incoming message: their header properties cannot be modified or added

to.

The HTTPHeader node is contained in the HTTP drawer of the palette, and is

represented in the workbench by the following icon:

916 Message Flows

|

|
|

|
|
|
|

|

|
|
|
|
|
|
|

|
|
|

|
|

|

Using this node in a message flow

Look at the following sample for more details about how to use the node:

v HTTPHeader node sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Terminals and properties

When you have put an instance of the node into a message flow, you can configure

it; see “Configuring a message flow node” on page 235. This node has no

mandatory properties.

HTTPHeader node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is routed if a failure is detected

during extraction.

Out The output terminal to which the transformed message is routed if the input message

is processed successfully.

The following tables describes the node properties. The column headed M

indicates whether the property is mandatory (marked with an asterisk if you must

enter a value when no default is defined); the column headed C indicates whether

the property is configurable (you can change the value when you add the message

flow to the bar file to deploy it).

The HTTPHeader node Description properties are described in the following table.

 Property M C Default Description

Node name No No HTTPHeader The name of the node.

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message flow.

HTTPInput Header properties are described in the following table.

 Property M C Default Description

HTTPInput Header

Options

No Yes Carry

forward

header

Options to control the HTTPInputHeader as a whole.

Select Carry forward the header to carry forward

values from incoming message if present.

Select Delete header to delete the header if present.

HTTPResponse Header properties are described in the following table.

Message flows 917

|

|

|

|
|

|

|
|
|

|

|||

||

||
|

||
|
|

|
|
|
|
|

|

||||||

|||||

|
|
||||

|
|
||||

|

|

||||||

|
|
|||
|
|

|

|
|

|
|

|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.thn.httpheadernode.doc/doc/overview.htm

Property M C Default Description

HTTPResponse Header

Options

No Yes Carry

forward

header

Options to control the HTTPResponseHeader as a

whole.

Select Carry forward the header to carry forward

values from incoming message if present.

Select Delete header to delete the header if present.

HTTPRequest Header properties are described in the following table.

 Property M C Default Description

HTTPRequest Header

Options

No Yes Carry

forward

header

Configure the HTTPRequest header. These options are

available.

Carry forward header

Select this option to carry forward values

from an incoming message.

Add header

Select this option to add new properties to

the header, or to modify or delete existing

properties.

Modify header

Select this option to add properties, or

modify and delete existing properties.

Delete header

Select this option to remove the

HTTPRequest header and all associated

properties from the incoming message.

Clear incoming values No Yes Cleared This option, which is enabled only if you choose

Modify header, removes all property names and

associated values from the incoming message if

present.

918 Message Flows

||||||

|
|
|||
|
|

|
|

|
|

|
|

|

||||||

|
|
|||
|
|

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|||||
|
|
|

Property M C Default Description

HTTPRequest Header No Yes No default

value

This field is enabled only if you chose Add header or

Modify header for the HTTPRequest Header

Options. The screen has no predefined properties;

you use it to create custom properties and values. Use

the property table to add new properties, or modify

or delete existing properties, for the header. There is

no limit to the number of properties. Each property

must have a name, and a type qualifier. The type

qualifier can be Value, XPath, or Delete.

Value Enter a new valid value for the selected

property. A null value or empty string is also

considered as a valid value.

XPath Specify a valid XPath expression. WebSphere

Message Broker supports XPath definitions

that start with an XPath variable such as

$Root or $LocalEnvironment. Only the first

occurrence is returned if there are multiple

values for the given XPath expression.

(Examples of valid XPath expressions are:

$LocalEnvironment/Host, and

$Root/HTTPRequest/Content-Type).

Delete Specify the property to be deleted from the

incoming message. The value associated with

the selected property is also deleted.

HTTPReply Header properties are described in the following table.

 Property M C Default Description

HTTPReply Header

Options

No Yes Carry

forward

header

Configure the HTTPReply header. These options are

available.

Carry forward header

Select this option to carry forward values

from an incoming message.

Add header

Select this option to add new properties to

the header, or to modify or delete existing

properties.

Modify header

Select this option to add properties, or

modify and delete existing properties.

Delete header

Select this option to remove the HTTPReply

header and all associated properties from the

incoming message.

Clear incoming values No Yes Cleared This option, which is is enabled only if you choose

Modify header, removes all property names and

associated values from the incoming message if

present.

Message flows 919

|||||

||||
|
|
|
|
|
|
|
|
|
|

||
|
|

||
|
|
|
|
|
|
|
|

||
|
|
|

|

||||||

|
|
|||
|
|

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|||||
|
|
|

Property M C Default Description

HTTPReply Header No Yes No default

value

This field is enabled only if you chose Add header or

Modify header for HTTPRequest Header Options.

The screen has no predefined properties; you use it to

create custom properties and values. Use the property

table to add new properties, or modify or delete

existing properties, for the header. There is no limit to

the number of properties. Each property must have a

name, and a type qualifier. The type qualifier can be

Value, XPath, or Delete.

Value Enter a new valid value for the selected

property. A null value or empty string is also

considered as a valid value.

XPath Specify a valid XPath expression. WebSphere

Message Broker supports XPath definitions

that start with an XPath variable such as

$Root or $LocalEnvironment. Only the first

occurrence is returned if there are multiple

values for the given XPath expression.

(Examples of valid XPath expressions are:

$LocalEnvironment/Host, and

$Root/HTTPRequest/Content-Type).

Delete Specify the property to be deleted from the

incoming message. The value associated with

the selected property is also deleted.

HTTPInput node

Use the HTTPInput node to receive an HTTP message from an HTTP client for

processing by a message flow.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 922

v “Connecting the terminals” on page 923

v “Terminals and properties” on page 923

Purpose

If you use the HTTPInput node with the HTTPReply and HTTPRequest nodes, the

broker can act as an intermediary for Web services, and Web service requests can

be transformed and routed in the same way as other message formats that are

supported by WebSphere Message Broker. Web service requests can be received

either in standard HTTP (1.0 or 1.1) format, or in HTTP over SSL (HTTPS) format.

Set the Use HTTPS property to choose whether to handle HTTP or HTTPS

requests.

If your message flows are processing SOAP messages, use the SOAP nodes in

preference to the HTTPInput node to take advantage of enhanced features,

including WS-Addressing and WS-Security.

If you include an HTTPInput node in a message flow, you must either include an

HTTPReply node in the same flow, or pass the message to another flow that

includes an HTTPReply node (for example, through an MQOutput node to a

920 Message Flows

|||||

||||
|
|
|
|
|
|
|
|
|
|

||
|
|

||
|
|
|
|
|
|
|
|

||
|
|
|

|

second flow that starts with an MQInput node). In the latter case, the request from,

and reply to, the client are coordinated by the request identifier stored in the

LocalEnvironment.

The HTTPInput node handles messages in the following message domains:

v MRM

v XMLNSC

v XMLNS

v MIME

v BLOB

v XML (this domain is deprecated; use XMLNSC)

When the HTTPInput node receives a message from a Web service client, it starts

the appropriate parsers to interpret the headers and the body of the message, and

to create the message tree that is used internally by the message flow. The node

creates a unique identifier for the input message and stores it as a binary array of

24 bytes in the LocalEnvironment tree at

LocalEnvironment.Destination.HTTP.RequestIdentifer. This value is used by the

HTTPReply node and must not be modified in any way.

HTTP messages are always non-persistent, and have no associated order.

HTTP messages are non-transactional. However, if the message flow interacts with

a database or another external resource, such as a WebSphere MQ queue, these

interactions are performed in a transaction. The HTTPInput node provides commit

or rollback, depending on how the message flow has ended, and how it is

configured for error handling (how failure terminals are connected, for example). If

the message flow is rolled back by this node, a fault message is generated and

returned to the client. The format of the fault is defined by the Fault format

property

If an exception occurs downstream in this message flow, and it is not caught but is

returned to this node, the node constructs an error reply to the client. This error is

derived from the exception and the format of the error is defined by the Fault

format property.

If you include an output node in a message flow that starts with an HTTPInput

node, it can be any of the supported output nodes (including user-defined output

nodes). You can create a message flow that receives messages from Web service

clients, and generates messages for clients that use all of the supported transports

to connect to the broker. You can configure the message flow to request the broker

to provide any conversion that is necessary.

If you create a message flow to use as a subflow, you cannot use a standard input

node; you must use an instance of the Input node as the first node to create an In

terminal for the subflow.

If your message flow does not receive Web service requests, use any of the other

input nodes.

The HTTPInput node is contained in the HTTP drawer of the palette, and is

represented in the workbench by the following icon:

Message flows 921

Using the HTTPInput and HTTPReply nodes to act as a Web

server

A broker can support multiple HTTPInput nodes. In the HTTPInput node you

must specify the requests to which the node listens. If the broker is listening on

address http://localhost:7080, for a request http://localhost:7080/Joe/Mary, the

HTTP listener removes the HTTP address leaving the request (Joe/Mary). The

listener then matches the request with the information that is specified in the URL

selector of the HTTPInput node; this match is done from the most specific to the

most generic data. For example, if the following values were specified in

HTTPInput nodes:

/Joe /Joe/Mary /Joe/* /*

this format gets the message if no other node matches the request. So for the

request: http://localhost:777/Joe/Mary, it matches Joe/*. If the request does not

match any URL selector, and you do not have an input node with /* specified, the

HTTPInput node returns a response to the originator. For example:

<html>

<head>

 <title>WebSphere MQ Integrator error report

 </title>

</head>

 <body>

 <h1>HTTP Status 404 - Resource Not Found</h1>

 URI /soap does not map to any message flow in broker VCP1BRK

 <p>

 <h3>WebSphere MQ Integrator 500</h3>

 </body>

</html>

You can use a URL of /* to catch any requests that failed to match the URLs in the

HTTPInput nodes, enabling you to send a reply message and take other actions as

appropriate.

The broker must be configured to use a port (the default is 7080). The HTTP

listener is started in the administration task and listens on this port. When a

request comes in, the listener sends the request to the HTTPInput node through a

WebSphere MQ message.

The broker starts this listener when a message flow that includes HTTP nodes or

Web Services support is started.

The HTTP listener listens on Internet Protocol Version 6 (IPv6) and Internet

Protocol Version 4 (IPv4) addresses where supported by the operating system. To

enable IPv6 listening on Windows and HPUX platforms, set the environment

variable _JAVA_OPTIONS to -Djava.net.preferIPv4Stack=false.

You can use the mqsichangetrace command to collect trace information for the

HTTP listener. To process the log, use the mqsireadlog command with qualifier set

to httplistener.

Using this node in a message flow

You can use the HTTPInput node in any message flow that accepts HTTP or

HTTPS messages. The most common example is a message flow that implements a

Web service.

922 Message Flows

|
|

|
|
|
|

For more information about Web services, see “Working with Web services” on

page 615.

The HTTPInput node supports HTTP POST and HTTP GET. For more information

about enabling HTTP GET, see “HTTPRequest node” on page 929.

Connecting the terminals

The HTTPInput node routes each message that it retrieves successfully to the Out

terminal. If message validation fails, the message is routed to the Failure terminal;

you can connect nodes to this terminal to handle this condition. If you have not

connected the Failure terminal, the message is discarded, the Maximum client wait

time expires, and the TCP/IP listener returns an error to the client. No other

situations exist in which the message is routed to the Failure terminal.

If the message is caught by this node after an exception has been thrown further

on in the message flow, the message is routed to the Catch terminal. If you have

not connected the Catch terminal, the message is discarded, the Maximum client

wait time expires, and the TCP/IP listener returns an error to the client.

Terminals and properties

When you have put an instance of the HTTPInput node into a message flow, you

can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The HTTPInput node terminals are described in the following table:

 Terminal Description

Failure The output terminal to which the message is routed if an error occurs.

Out The output terminal to which the message is routed if it is successfully retrieved.

Catch The output terminal to which the message is routed if an exception is thrown downstream and caught

by this node.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The HTTPInput node Description properties are described in the following table.

 Property M C Default Description

Node name No No The node type,

HTTPInput

The name of the node.

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message

flow.

The HTTPInput node Basic properties are described in the following table.

Message flows 923

Property M C Default Description

Path suffix

for URL

Yes Yes This property identifies the location from where Web service requests are

retrieved. Do not use the full URL. If the URL that you want is

http://<hostname>[:<port>]/[<path>], specify either /<path> or /<path

fragment>/* where * is a wild card that you can use to mean match any.

Use HTTPS No Yes Cleared This property identifies whether the node is to accept secure HTTP. If the

node is to accept secure HTTP, select the check box.

The HTTPInput node Input Message Parsing properties are described in the

following table.

 Property M C Default Description

Message

domain

No No BLOB The domain that is used to parse the incoming message. If you leave this field

blank, the default value is BLOB. Select the name of the parser that you are

using from the list:

v MRM

v XMLNSC

v XMLNS

v MIME

v BLOB

v XML (this domain is deprecated; use XMLNSC)

You can also specify a user-defined parser, if appropriate.

Message

set

No No The name or identifier of the message set in which the incoming message is

defined. All available message sets are in the list.

If you are using the MRM parser or the XMLNSC parser in validating mode,

select the Message set that you want to use. This list is populated with

available message sets when you select MRM or XMLNSC as the domain.

If you set this property, then subsequently update the project dependencies to

remove this message set reference, a warning is issued. Either update the

Message set property, or restore the reference to this message set project.

Message

type

No No The name of the incoming message.

If you are using the MRM parser, select the type of message from the list in

Message type. This list is populated with messages that are defined in the

Message set that you have selected.

Message

format

No No The name of the physical format of the incoming message.

If you are using the MRM parser, select the format of the message from the list

in Message format. This list includes all the physical formats that you have

defined for this Message set.

The properties of the Parser Options for the HTTPInput node are described in the

following table.

 Property M C Default Description

Parse

timing

No No On

Demand

This property controls when an input message is parsed. Valid values are On

Demand, Immediate, and Complete.

By default, this property is set to On Demand, which causes parsing of the

message to be delayed. To cause the message to be parsed immediately, see

“Parsing on demand” on page 1363.

924 Message Flows

|

|
|
|

Property M C Default Description

Build tree

using XML

schema

data types

No No Cleared This property controls whether the XMLNSC parser creates syntax elements

in the message tree with data types taken from the XML Schema. You can

select this property only if you set the Validate property on the Validation

tab to Content or Content and Value.

Use

XMLNSC

compact

parser for

XMLNS

domain

No No Cleared This property controls whether the XMLNSC Compact Parser is used for

messages in the XMLNS Domain. If you set this property, the message data

appears under XMLNSC in nodes that are connected to the output terminal

when the input MQRFH2 header or Input Message Parsing properties

Message domain is XMLNS.

Retain

mixed

content

No No Cleared This property controls whether the XMLNSC parser creates elements in the

message tree when it encounters mixed text in an input message. If you

select the check box, elements are created for mixed text. If you clear the

check box, mixed text is ignored and no elements are created.

Retain

comments

No No Cleared This property controls whether the XMLNSC parser creates elements in the

message tree when it encounters comments in an input message. If you select

the check box, elements are created for comments. If you clear the check box,

comments are ignored and no elements are created.

Retain

processing

instructions

No No Cleared This property controls whether the XMLNSC parser creates elements in the

message tree when it encounters processing instructions in an input message.

If you select the check box, elements are created for processing instructions. If

you clear the check box, processing instructions are ignored and no elements

are created.

Opaque

elements

No No Blank This property is used to specify a list of elements in the input message that

are to be opaquely parsed by the XMLNSC parser. Opaque parsing is

performed only if validation is not enabled (that is, if Validate is None);

entries that are specified in Opaque Elements are ignored if validation is

enabled.

The HTTPInput node Error handling properties are described in the following

table:

 Property M C Default Description

Maximum

client wait

time (sec)

Yes No 180 The length of time, in seconds, for which the TCP/IP listener that received the

input message from the Web service client waits for a response from the

HTTPReply node in the message flow. If a response is received within this

time, the listener propagates the response to the client. If a response is not

received in this time, the listener sends a SOAP Fault message to the client

indicating that its timeout has expired. The valid range is zero (which means

an indefinite wait) to (231)-1.

Fault

format

No Yes SOAP

1.1

The format of any HTTP errors that are returned to the client. Valid values are

SOAP 1.1, SOAP 1.2, and HTML.

The Validation properties of the HTTPInput node are described in the following

table:

If a message is propagated to the Failure terminal of the node, it is not validated.

For more details, see “Validating messages” on page 164 and “Validation

properties” on page 1359.

Message flows 925

Property M C Default Description

Validate No Yes None This property controls whether validation takes place. Valid values are None,

Content and Value, and Content.

Failure

action

No No Exception This property controls what happens if validation fails. You can set this property

only if you set Validate to Content or Content and Value. Valid values are User

Trace, Local Error Log, Exception, and Exception List.

The Security properties of the HTTPInput node are described in the following

table.

Set values for the properties that control the extraction of an identity from a

message when a security profile is associated with the node. For more information

about these properties, see Identity, Configuring identity extraction, Message flow

security, and Setting up message flow security.

 Property M C Default Description

Identity

token

type

No No None This property specifies the type of identity token present in the incoming message.

Valid values are: Transport Default, Username, Username + Password, and X.509

Certificate. If this property is not specified, the identity is retrieved from the

transport headers and the type is set to Username + Password.

Identity

token

location

No No None This property specifies where, in the message, the identity can be found. The

location is specified as an ESQL field reference or XPath. If this property is not

specified, the identity is retrieved from the Authorization Transport headers.

Identity

password

location

No No None This property specifies where, in the message, the password can be found. The

location is specified as an ESQL field reference or XPath. If you do not specify a

value for this property, the password is retrieved from the Authorization Transport

headers. You can set this property only if the Identity type is set to Username +

Password.

Identity

IssuedBy

location

No No None This property specifies a string or path expression that describes the issuer of the

identity. The location is specified as an ESQL field reference or XPath. This

property is used in an identity mapper. If you do not specify a value for this

property, the default value is the name of the User Agent, or, if this name is not

set, the string HTTP.

Treat

security

exceptions

as normal

exceptions

No No False This specifies whether to treat security exceptions (such as Access Denied) as

normal exceptions, and propagate them down the failure terminal (if wired). This

is turned off by default, which ensures that security exceptions cause the message

to be backed out even if the failure terminal is wired.

The HTTPInput node Advanced properties are described in the following table.

 Property M C Default Description

Set

destination

list

No No Selected This property specifies whether to add the method binding name to the route

to label destination list. If you select this check box, the method binding

name is added so that you can use a RouteToLabel node in the message flow

after the HTTPInput node.

Label prefix No No None The prefix to add to the method name when routing to label. Add a label

prefix to avoid a clash of corresponding label nodes when you include

multiple WebSphere Message Broker input nodes in the same message flow.

By default, there is no label prefix, therefore the method name and label

name are identical.

926 Message Flows

|

||||||

|
|
|

||||
|
|
|

|||||
|
|
|
|
|

HTTPReply node

Use the HTTPReply node to return a response from the message flow to an HTTP

client. This node generates the response to an HTTP client from which the input

message was received by the HTTPInput node, and waits for confirmation that it

has been sent.

This topic contains the following sections:

v “Purpose”

v “Connecting the output terminals to another node”

v “Terminals and properties”

Purpose

The HTTPReply node can be used in any message flow that needs to accept HTTP

or HTTPS messages. The most common example of this is a message flow that

implements a Web service.

For more information about Web services, see “Working with Web services” on

page 615.

If you include an HTTPReply node in a message flow, you must either include an

HTTPInput node in the same flow, or the message must be received from another

flow that is running in the same broker, and that started with an HTTPInput node.

The response is associated with the reply by a request identifier that is stored in

LocalEnvironment by the HTTPInput node.

This node constructs a reply message for the Web service client from the entire

input message tree, and returns it to the requestor.

The HTTPReply node is contained in the HTTP drawer of the palette, and is

represented in the workbench by the following icon:

Connecting the output terminals to another node

Connect the Out or Failure terminal of this node to another node in this message

flow if you want to process the message further, process errors, or send the

message to an additional destination.

Terminals and properties

When you have put an instance of the HTTPReply node into a message flow, you

can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The HTTPReply node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Message flows 927

Terminal Description

Failure The output terminal to which the message is routed if a failure is detected when the message is

propagated.

Out The output terminal to which the message is routed if it has been propagated successfully, and if further

processing is required within this message flow.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The HTTPReply node Description properties are described in the following table.

 Property M C Default Description

Node

name

No No HTTPReply The name of the node.

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message flow.

The HTTPReply node Basic properties are described in the following table.

 Property M C Default Description

Ignore

transport

failures

Yes No Selected Select Ignore transport failures if you want transport-related failures to be

ignored (for example, if the client is disconnected). If you clear the check

box, and a transport-related error occurs, the input message is propagated

to the Failure terminal. If you clear the check box, you must supply a value

for Reply send timeout (sec).

Reply send

timeout (sec)

Yes No 120 Set the Reply send timeout (sec) value if you are not ignoring transport

failures. This property specifies the length of time, in seconds, that the

node waits for an acknowledgment that the client has received the reply. If

the acknowledgment is received within this time, the input message is

propagated through the Out terminal to the rest of the message flow, if it is

connected. If an acknowledgment is not received within this time, the input

message is propagated through the Failure terminal, if it is connected. If

the Failure terminal is not connected, and an acknowledgment is not

received in time, an exception is generated.

The valid range is zero (which means an indefinite wait) to (231)-1. This

property is valid only if Ignore transport failures is cleared.

Generate

default

HTTP

headers from

reply or

response

Yes No Selected Select Generate default HTTP headers from reply or response if you want

the default Web service headers to be created using values from the

HTTPReplyHeader or the HTTPResponseHeader. If the appropriate header

is not present in the input message, default values are used.

The node always includes, in the HTTPReplyHeader, a Content-Length

header, which is set to the correct calculated value, even if this was not

included in the original request.

The Validation properties of the HTTPReply node are described in the following

table.

928 Message Flows

If a message is propagated to the Failure terminal of the node, it is not validated.

For a full description of these properties, see “Validation properties” on page 1359.

 Property M C Default Description

Validate No Yes Inherit This property controls whether validation takes place. Valid values are

None, Content and Value, Content, and Inherit.

Failure

action

No No Exception This property controls what happens if validation fails. You can set this

property only if you set Validate to Content or Content and Value. Valid

values are User Trace, Local Error Log, Exception, and Exception List.

HTTPRequest node

Use the HTTPRequest node to interact with a Web service, using all or part of the

input message as the request that is sent to that service.

This topic contains the following sections:

v “Purpose”

v “Using the HTTPRequest node to issue a request to a Web service” on page 930

v “Using the HTTPRequest node in a message flow” on page 930

v “Configuring the HTTPRequest node” on page 932

v “Terminals and properties” on page 937

v “LocalEnvironment overrides” on page 941

Purpose

You can also configure the node to create a new output message from the contents

of the input message, augmented by the contents of the Web service response,

before you propagate the message to subsequent nodes in the message flow.

Depending on the configuration, this node constructs an HTTP or an HTTP over

SSL (HTTPS) request from the specified contents of the input message, and sends

this request to the Web service. The node receives the response from the Web

service, and parses the response for inclusion in the output tree. The node

generates HTTP headers if these are required by your configuration.

You can use this node in a message flow that does or does not contain an

HTTPInput or HTTPReply node.

The HTTPRequest node handles messages in the following message domains:

v MRM

v XMLNSC

v XMLNS

v MIME

v BLOB

v XML (this domain is deprecated; use XMLNSC)

The HTTPRequest node is contained in the HTTP drawer of the palette, and is

represented in the workbench by the following icon:

Message flows 929

|

Using the HTTPRequest node to issue a request to a Web

service

An HTTP request has two parts:

1. The URL of a service.

2. A stream of data that the remote server processes, then sends back a response,

which is often a SOAP or other Web service message in XML.

The URL is of the format http://<address>[:port]/<function>; for example,

http://localhost:7080/request. This URL can be specified statically in the

HTTPRequest node parameters as a field in the message itself, or as a field in the

LocalEnvironment. The data to be sent to the Web service can be the whole, or a

portion of, the message tree, as specified in the HTTPRequest node properties.

The data must be in CCSID 1208 format for most requests. The reply can replace

the input message, or be inserted into the message tree; the location is specified in

the HTTPRequest node parameters. The domain for the reply is XMLNS. If the

request is successful, the HTTPResponse is inserted into the front of the message

tree, the reply placed in the specified location in the tree, and the request

propagated to the Out terminal. If the HTTPRequest node is not able to issue the

request, an ExceptionList is inserted into the message tree and the tree is

propagated to the Failure terminal.

If the request is sent successfully by the HTTPRequest node, but the Web service is

not successful, the HTTPResponse is inserted into the message tree, and

propagated to the Error terminal. The error message location parameter on the

HTTPRequest node specifies where in the tree the response is placed, for example

OutputRoot.XMLNS.error. You might need to use a Compute node to cast this

response to an appropriate code page to be able to display the data, for example:

Set OutputRoot.XMLNS.error850 = CAST(InputRoot.XMLNS.error.BLOB as CHAR CCSID 850);

Standards for HTTP requests (RFC 2616) are available online. For more information

about HTTP return codes, see HTTP Response codes.

You can specify a timeout interval, so that if the request takes longer than the

specified duration, the request is propagated to the Error terminal with an

appropriate message. For each request that the HTTPRequest node processes, it

opens a connection, and then closes it when the response is returned. If the

timeout interval is specified, the socket is closed after the interval. This closure

ensures that a request gets only the correct response, and any response data for a

request that has timed out is discarded.

You can use the HTTP proxy to route a request via an intermediate site. You can

run tools as a proxy to see the request and the response, and therefore debug your

flows. The HTTP destination is as seen by the proxy; if you specify the HTTP

destination of localhost, and the HTTP proxy is running on a different computer,

the request is routed to the remote proxy computer, not the computer from which

the original request was issued.

Using the HTTPRequest node in a message flow

The HTTPRequest node can be used in any message flow that needs to send an

HTTP request. The most common example of this is a message flow that invokes a

Web service.

930 Message Flows

http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html#sec6

For more information about Web services, see “Working with Web services” on

page 615.

Handling errors

The node interacts directly with an external service using TCP/IP; it can, therefore,

experience the following types of error:

v Errors that are generated by TCP/IP, for example no route to host or

connection refused.

If the node detects these errors, it generates an exception, populates the

exception list with the error information that is received, and routes the input

message unchanged to the Failure terminal.

v Errors that are returned by the Web server. These errors are represented by

HTTP status codes that are outside the range 100 to 299. If the node detects

these errors, it routes the reply to the Error terminal while following the

properties specified on the Error tab.

The reply is produced as a BLOB message because the node cannot determine in

what format the reply will be. If you have not configured this node to handle

redirection, messages with a redirection status code (3xx) are also handled in the

same way.

HTTP Response Codes

The HTTPRequest node treats the 100 series status codes as a ’continue’ response,

discards the current response, and waits for another response from the Web server.

The 200 series status codes are treated as success, and the response is routed to the

Out terminal of the node, while following the settings on the various tabs on the

node for the format of the output message that is generated.

The 300 series status codes are for redirection. If the Follow Redirection property is

selected, the node does not resend the request to the new destination that is

specified in the response received. If the Follow Redirection property is not

selected, the codes are treated as an error, as described in “Using the HTTPRequest

node to issue a request to a Web service” on page 930. For more information about

HTTP return codes, see HTTP Response codes.

The 400 and 500 series status codes are errors, and are treated as described in

“Using the HTTPRequest node to issue a request to a Web service” on page 930.

For more information about HTTP return codes, see HTTP Response codes.

Manipulating headers

If you select Replace input message with web-service response or Replace input

with error, the header for the input message (the header that belongs to the

message when it arrives at the In terminal of the HTTPRequest node) is not

propagated with the message that leaves the HTTPRequest node. However, if one

of the properties that specifies a location in the message tree is specified, the input

message’s headers are propagated.

The HTTPResponse header, which contains the headers that are returned by the

remote Web service, is the first header in the message (after Properties) that is

propagated from the node. This action is taken regardless of the options that are

Message flows 931

http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html#sec6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html#sec6

chosen. Therefore, for the reply from the HTTPRequest node to be put to a

WebSphere MQ queue, manipulate the headers so that an MQMD is the first

header (after Properties).

If you are replacing the input message with a response, you can copy the input

message’s MQMD to the Environment tree before the HTTPRequest node, and then

copy it back into the message tree after the HTTPRequest node. If you are

specifying a location for the response, in order to maintain existing input message

headers, you must move or remove the HTTP Response header so that the MQMD

is the first header.

The following example contains ESQL that removes the HTTPHeader:

SET OutputRoot = InputRoot;

SET OutputRoot.HTTPResponseHeader = NULL;

The following example contains ESQL for moving the HTTPHeader, and therefore

preserving the information that it provides:

SET OutputRoot = InputRoot;

DECLARE HTTPHeaderRef REFERENCE TO OutputRoot.HTTPResponseHeader;

DETACH HTTPHeaderRef;

ATTACH HTTPHeaderRef TO OutputRoot.MQMD AS NEXTSIBLING;

Configuring the HTTPRequest node

When you have put an instance of the HTTPRequest node into a message flow,

you can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view.

All mandatory properties for which you must enter a value (those that do not have

a default value defined) are marked with an asterisk.

Configure the HTTPRequest node:

1. Optional: On the Description tab, enter a Short description, a Long description,

or both. You can also rename the node on this tab.

2. On the Basic tab:

a. The HTTPRequest node determines the URL for the Web service to which it

sends a request. Set one of the following three options; the node checks

these in the order shown (that is, the first always overrides the second, the

second overrides the third):

1) X-Original-HTTP-URL in the HTTPRequest header in the input message

2) LocalEnvironment.Destination.HTTP.RequestURL in the input message

3) The Web service URL property

The first two options provide dynamic methods to set a URL for each input

message as it passes through the message flow. To use either of these

options, include a Compute node in the message flow, before the

HTTPRequest node, to create and initialize the required value.

The third option provides a value that is fixed for every message that is

received in this node. Set this property to contain a default setting that is

used if the other fields have not been created, or contain a null value. If

either field contains a value, the setting of this property is ignored. The Web

service URL property must contain a valid URL or the deployment will fail.

Ensure that the value that you set in X-Original-HTTP-URL or the

LocalEnvironment.Destination.HTTP.RequestURL is also a valid URL; if it is

not, the node uses the default setting from the Web service URL property.

932 Message Flows

If a URL begins http://, the request node makes an HTTP request to the

specified URL. If the URL begins https://, the request node makes an

HTTP over SSL (HTTPS) request to the specified URL, using the parameters

that are specified on the SSL tab for the node.

b. Set the value of the Request timeout (sec) property, which is the length of

time, in seconds, that the node waits for a response from the Web service. If

a response is received within this time, the reply is propagated through the

Out terminal to the rest of the message flow. If a response is not received

within this time, the input message is propagated through the Failure

terminal, if it is connected. If the Failure terminal is not connected, and a

response is not received in this time, an exception is generated.
3. On the HTTP Settings tab:

a. In HTTP(S) proxy location, set the location of the proxy server to which

requests are sent.

b. Select Follow HTTP(S) redirection to specify how the node handles Web

service responses that contain an HTTP status code of 300 to 399:

v If you select the check box, the node follows the redirection that is

provided in the response, and reissues the Web service request to the new

URL (included in the message content).

v If you clear the check box, the node does not follow the redirection

provided. The response message is propagated to the Error terminal.
c. Select one of the options for the HTTP version property. Valid values are:

1.0 or 1.1.

If you select the HTTP version property value1.1, you can also select Enable

HTTP/1.1 keep-alive.

d. Select one of the options for the HTTP method property. Valid values are:

POST, GET, PUT, DELETE, and HEAD.
4. On the SSL tab, if you want to use HTTP over SSL (HTTPS) requests, set the

values for HTTPS requests:

a. Specify the Protocol property that you want to use to make the request.

Both ends of an SSL connection must agree on the protocol to use, so the

chosen protocol must be one that the remote server can accept. The

following options are available:

v SSL. This option is the default. This option tries to connect using the

SSLv3 protocol first, but allows the handshake to fall back to the SSLv2

protocol where the SSLv2 protocol is supported by the underlying JSSE

provider.

v SSLv3. This option tries to connect with the SSLv3 protocol only. Fallback

to SSLv2 is not allowed.

v TLS. This option tries to connect with the TLS protocol only. Fallback to

SSLv3 or SSLv2 is not allowed.
b. Set the Allowed SSL ciphers property. This setting allows you to specify a

single cipher (such as SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA) or a

list of ciphers that are the only ones used by the connection. This set of

ciphers must include one or more that are accepted by the remote server. A

comma is used as a separator between the ciphers. The default value is an

empty string, which enables the node to use any, or all, of the available

ciphers during the SSL connection handshake. This method gives the

greatest scope for making a successful SSL connection.
5. On the Response Message Parsing tab, set values for the properties that

describe the message domain, message set, message type, and message format

that the node uses to determine how to parse the response message returned

Message flows 933

|
|

by the Web service. If an error message is returned by the Web service, the

values of these properties are ignored, and the message is parsed by the BLOB

parser.

a. In Message domain, select the name of the parser that you are using from

the list. If the field is blank, the default value is BLOB. Choose from the

following options:

v MRM

v XMLNSC

v XMLNS

v MIME

v BLOB

v XML (this domain is deprecated; use XMLNSC)

You can also specify a user-defined parser, if appropriate.

b. If you are using the MRM parser or the XMLNSC parser in validating

mode, select the relevant Message set from the list. This list is populated

with available message sets when you select MRM or XMLNSC as the

Message domain.

c. If you are using the MRM parser, select the correct message from the list in

Message type. This list is populated with messages that are defined in the

Message set that you have selected.

d. If you are using the MRM parser, select the format of the message from the

list in Message format. This list includes all the physical formats that you

have defined for this Message set.
6. On the Parser Options sub-tab:

a. Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed. To cause the message to be parsed immediately, see

“Parsing on demand” on page 1363.

b. If you are using the XMLNSC parser, set values for the properties that

determine how the XMLNSC parser operates. For more information, see

“Manipulating messages in the XMLNSC domain” on page 364.
7. On the Error Handling tab, set values for the properties that determine how an

error message returned by the Web service is handled:

a. For the whole Web service error message to be propagated as the output

message, leave Replace input with error selected (the default setting).

For the Web service error message to be included in the output message

with part of the input message content, clear Replace input with error and

set the Error message location property. If you clear this property, the node

copies the input message to the output message and writes the Web service

error message over the output message content at the specified location (the

input message itself is not modified).

b. In the Error message location field, enter the start location (within the

output message tree) at which the parsed elements from the Web service

error message bit stream are stored. This property is required only if you

have cleared Replace input with error.

You can enter any valid ESQL field reference, including expressions within

the reference and new field references (to create a new node in the message

tree for the response). For example, enter:

OutputRoot.XMLNSC.ABC.DEF

or

Environment.WSError

If you select Replace input with error, this property is ignored.

934 Message Flows

|

8. On the Advanced tab, set values for the Advanced properties that describe the

structure and content of the Web service request and response:

a. Specify the content of the request message that is sent to the Web service:

v For the request message to be the whole input message body, leave Use

whole input message as request selected (the default setting).

For the request message to contain a subset of the input message, clear

Use whole input message as request and set the Request message location

in tree property.

v In the Request message location in tree field, enter the start location from

which the content of the input message tree is copied to the request

message. This property is required only if you have cleared Use whole

input message as request. The node creates a new request message and

copies the specified parts of the input message (the input message itself is

not modified).

You can enter any valid ESQL field reference, including expressions

within the reference. For example, enter:

InputRoot.XMLNSC.ABC

If you select Use whole input message as request, this property is

ignored.

When the appropriate message tree content is parsed to create a bit stream,

the message properties (Message domain, Message set, Message type, and

Message format) that are associated with the input message body and

stored in the Properties folder are used.

b. Specify the content of the output message that is propagated to the next

node in the message flow:

v For the whole Web service response message to be propagated as the

output message, leave Replace input message with web-service response

selected (the default setting).

For the Web service response message to be included in the output

message with part of the input message content, clear Replace input

message with web-service response and set the Response message

location in tree property. If you clear this property, the node copies the

input message to the output message and writes the Web service

response message over the output message content at the specified

location (the input message itself is not modified).

v In the Response message location in tree field, enter the start location

(within the output message tree) at which the parsed elements from the

Web service response message bit stream are stored. This property is

required only if you have cleared Replace input message with

web-service response.

You can enter any valid ESQL field reference, including expressions

within the reference, and including new field references (to create a new

node in the message tree for the response). For example, enter:

OutputRoot.XMLNSC.ABC.DEF

or

Environment.WSReply

If you select Replace input message with web-service response, this

property is ignored.

When the response bit stream is parsed to create message tree contents, the

message properties (Message domain, Message set, Message type, and

Message flows 935

Message format) that you have specified in the nodes Response Message

Parsing properties (described later on) are used.

c. For the node to generate an HTTPRequestHeader for the request message,

leave Generate default HTTP headers from input selected (the default

setting).

If you do not want the node to generate an HTTPRequestHeader for the

request message, clear Generate default HTTP headers from input. To

control the contents of the HTTPRequestHeader that is included in the

request message, include a Compute node that adds an

HTTPRequestHeader to the input message before this HTTPRequest node in

the message flow, and clear this check box.

v If you have selected Generate default HTTP headers from input and the

input message includes an HTTPRequestHeader, the HTTPRequest node

extracts Web service headers from the input HTTPRequestHeader and

adds any unique Web service headers, except Host (see the following

table), that are present in an HTTPInputHeader, if one exists in the input

message. (An HTTPInputHeader might be present if the input message

has been received from a Web service by the HTTPInput node.)

The HTTPRequest node also adds the Web service headers shown in the

following table, with default values, if these are not present in the

HTTPRequestHeader or the HTTPInputHeader.

 Header Default value

SOAPAction ″″ (empty string)

Content-Type text/xml; charset=utf-8

Host The host name to which the request is to be sent.

The HTTPRequest node also adds the optional header Content-Length

with the correct calculated value, even if this is not present in the

HTTPRequestHeader or the HTTPInputHeader.

v If you have selected Generate default HTTP headers from input and the

input message does not include an HTTPRequestHeader, the

HTTPRequest node extracts Web service headers, except Host, from the

HTTPInputHeader (if it is present in the input message). The

HTTPRequest node adds the required Web service headers with default

values, if these are not present in the HTTPInputHeader.

v If you have cleared Generate default HTTP headers from input and the

input message includes an HTTPRequestHeader, the node extracts all

Web service headers present in the input HTTPRequestHeader. It does not

check for the presence of an HTTPInputHeader in the input message, and

it does not add the required Web service headers if they are not supplied

by the input HTTPRequestHeader.

v If you have cleared Generate default HTTP headers from input and the

input message does not include an HTTPRequestHeader, no Web service

headers are generated. The HTTPRequest node does not check for the

presence of an HTTPInputHeader in the input message and does not add

any required Web service header. The request message is propagated to

the Web service without an HTTPRequestHeader. This action typically

causes an error to be generated by the Web service, unless the Web

service is configured to handle the message contents.
9. On the Validation tab, set Validation properties if you want the parser to

validate the body of response messages against the Message set. (If a message

is propagated to the Failure terminal of the node, it is not validated.) These

936 Message Flows

properties do not cause the input message to be validated. It is expected that, if

such validation is required, the validation has already been performed by the

input node or a preceding validation node.

For more details see “Validating messages” on page 164 and “Validation

properties” on page 1359.

Connecting the output terminals to another node

Connect the Out, Error, or Failure terminal of this node to another node in this

message flow to process the message further, to process errors, or to send the

message to an additional destination. If you do not connect the Error terminal, the

message is discarded. If you do not connect the Failure terminal, the broker

provides default error processing, see “Handling errors in message flows” on page

203.

Terminals and properties

The HTTPRequest node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected during

processing in the node.

Out The output terminal to which the message is routed if it represents successful

completion of the Web service request, and if further processing is required within

this message flow.

Error The output terminal to which messages that include an HTTP status code that is not

in the range 200 through 299, including redirection codes (3xx) if you have not set

property Follow HTTP redirection.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk on the panel if you

must enter a value when no default is defined); the column headed C indicates

whether the property is configurable (you can change the value when you add the

message flow to the bar file to deploy it).

The HTTPRequest node Description properties are described in the following table.

 Property M C Default Description

Node name No No The node

type, e.g.

HTTPRequest

The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the

message flow.

The HTTPRequest node Basic properties are described in the following table.

Message flows 937

Property M C Default Description

Web service URL Yes Yes The URL for the Web service. You must provide this in

the form http://<hostname>[:<port>]/[<path>] where

v http://<hostname> must be specified.

v <port> has a default of 80. If you specify a value, you

must include the : before the port number.

v <path> has a default of /. If you specify a value, you

must include the / before the path.

Request timeout (sec) Yes No 120 The time in seconds that the node waits for a response

from the Web service. The valid range is 1 to (231)-1. You

cannot enter a value that represents an unlimited wait.

The HTTPRequest node HTTP Settings properties are described in the following

table.

 Property M C Default Description

HTTP(S) proxy

location

No Yes The proxy server to which requests are sent. This value

must be in the form hostname:port.

Follow HTTP(S)

redirection

No No Cleared If you select the check box, redirections are followed. If

you clear this check box, redirections are not followed.

HTTP version No Yes 1.0 The HTTP version to use for requests. Valid values are

1.0 and 1.1.

Enable HTTP/1.1

keep-alive

No Yes Selected (if

HTTP

version is

1.1)

Use HTTP/1.1 Keep-Alive.

HTTP method No No POST The HTTP method. Valid values are POST, GET, PUT,

DELETE, and HEAD. By default, the HTTPRequest node

uses the HTTP POST method when it connects to the

remote Web server. HEAD is often used to determine

whether a service is available, for example, by a network

dispatcher trying to work out which servers are up and

available, and will send back the correct headers

(including content-length) but no body data.

The HTTPRequest node SSL properties are described in the following table.

 Property M C Default Description

Protocol No Yes SSL The SSL protocol to use when making an HTTPS request.

Allowed SSL ciphers No Yes A comma-separated list of ciphers to use when making

an SSL request. The default value of an empty string

means use all available ciphers.

The HTTPRequest node Response Message Parsing properties are described in the

following table.

 Property M C Default Description

Message domain No No BLOB The domain that will be used to parse the response

message that is received from the Web service. If the

field is blank then the default is BLOB.

938 Message Flows

|||||
|
|
|
|
|
|
|

Property M C Default Description

Message set No No The name or identifier of the message set in which the

response message is defined.

If you set this property, then subsequently update the

project dependencies to remove this message set

reference, a warning is issued. Either update the

Message set property, or restore the reference to this

message set project.

Message type No No The name of the response message.

Message format No No The name of the physical format of the response

message.

The HTTPRequest node Parser Options properties are described in the following

table.

 Property M C Default Description

Parse timing No No On Demand This property controls when a response message is

parsed. Valid values are On Demand, Immediate, and

Complete.

For a full description of this property, see “Parsing on

demand” on page 1363.

Build tree using XML

schema data types

No No Cleared This property controls whether the XMLNSC parser

creates syntax elements in the message tree with data

types taken from the XML Schema. You can select this

property only if you set the Validate property on the

Validation tab to Content or Content and Value.

Use XMLNSC compact

parser for XMLNS

domain

No No Cleared This property controls whether the XMLNSC Compact

Parser is used for messages in the XMLNS Domain. If

you set this property, the response message data

appears under XMLNSC in nodes that are connected to

the output terminal when the input MQRFH2 header

or Response Message Parsing properties Domain is

XMLNS.

Retain mixed content No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

mixed text in a response message. If you select the

check box, elements are created for mixed text. If you

clear the check box, mixed text is ignored and no

elements are created.

Retain comments No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

comments in a response message. If you select the

check box, elements are created for comments. If you

clear the check box, comments are ignored and no

elements are created.

Retain processing

instructions

No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

processing instructions in a response message. If you

select the check box, elements are created for

processing instructions. If you clear the check box,

processing instructions are ignored and no elements are

created.

Message flows 939

|
|
|
|
|

Property M C Default Description

Opaque elements No No Blank This property is used to specify a list of elements in the

response message that are to be opaquely parsed by the

XMLNSC parser. Opaque parsing is performed only if

validation is not enabled (that is, if Validate is None);

entries that are specified in Opaque Elements are

ignored if validation is enabled.

The HTTPRequest node Error Handling properties are described in the following

table.

 Property M C Default Description

Replace input with

error

No No Selected If you select this check box, the input message content is

replaced by the error message content. If you clear this

check box, you must specify Error message location.

Error message location Yes No OutputRoot The start location at which the parsed elements from the

Web service error bit stream are stored. This property

takes the form of an ESQL field reference.

The HTTPRequest node Advanced properties are described in the following table.

 Property M C Default Description

Use whole input

message as request

No No Selected If you select this check box, the whole input message

body is to be passed to the Web service. If you clear this

check box, you must select Request message location in

tree.

Request message

location in tree

Yes No InputRoot The start location from which the bit stream is created

for sending to the Web service. This property takes the

form of an ESQL field reference.

Replace input

message with

web-service response

No No Selected If you select this check box, the Web service response

message replaces the copy of the input message as the

content of the output message that is created. If you

clear this check box, you must select Response message

location in tree.

Response message

location in tree

Yes No OutputRoot The start location at which the parsed elements from the

Web service response bit stream are stored. This property

takes the form of an ESQL field reference.

Generate default

HTTP headers from

input

No No Selected If you select this check box, an HTTPRequestHeader is

generated. If you clear this check box, a valid

HTTPRequestHeader must exist in the input message.

The HTTPRequest node Validation properties are described in the following table.

For a full description of these properties see “Validation properties” on page 1359.

 Property M C Default Description

Validate No Yes None This property controls whether validation takes place.

Valid values are None, Content and Value, Content,

and Inherit.

940 Message Flows

Property M C Default Description

Failure action No No Exception This property controls what happens if validation fails.

You can set this property only if you set Validate to

Content or Content and Value. Valid values are User

Trace, Local Error Log, Exception, and Exception List.

LocalEnvironment overrides

You can dynamically override set values in the LocalEnvironment in the same way

as setting values in other elements of a message. The following can be set under

LocalEnvironment.Destination.HTTP.

 Setting Description

RequestURL Overrides the Web service URL property on the node. For example:

SET OutputLocalEnvironment.Destination.HTTP.RequestURL = ’http://ibm.com/abc/’;

Timeout Overrides the Request timeout (sec) property on the node. For example:

SET OutputLocalEnvironment.Destination.HTTP.Timeout = 42;

ProxyURL Overrides the HTTP(S) proxy location property on the node. For example:

SET OutputLocalEnvironment.Destination.HTTP.ProxyURL = ’my.proxy’;

RequestLine.RequestURI Overrides the RequestURI, which is the path after the URL and port. For example:

SET OutputLocalEnvironment.Destination.HTTP.RequestLine.RequestURI =

’/abc/def?x=y&g=h’;

RequestLine.HTTPVersion Overrides the HTTP version property on the node. For example:

SET OutputLocalEnvironment.Destination.HTTP.RequestLine.HTTPVersion =

’HTTP/1.1’;

KeepAlive Overrides the Enable HTTP/1.1 keep-alive property on the node. For example:

SET OutputLocalEnvironment.Destination.HTTP.KeepAlive = TRUE;

RequestLine.Method Overrides the HTTP method property on the node. For example:

SET OutputLocalEnvironment.Destination.HTTP.RequestLine.Method = ’GET’;

SSLProtocol Overrides the SSLProtocol. For example:

SET OutputLocalEnvironment.Destination.HTTP.SSLProtocol = ’TLS’;

Valid values are: SSL, SSLv3, and TLS.

SSLCiphers Overrides the Allowed SSL Ciphers property on the node. For example:

SET OutputLocalEnvironment.Destination.HTTP.SSLCiphers =

’SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA’;

ProxyConnectHeaders Sets the ProxyConnectHeaders. Set this, when using a proxy server, to send extra

HTTP headers when connecting to that server. For example, this allows you to send

proxy authentication information to a proxy server. Multiple headers can be sent but

each must be separated by a carriage return and a line feed (ASCII 0x0D 0x0A) in

accordance with RFC2616. For example:

DECLARE CRLF CHAR CAST(X’0D0A’ AS CHAR CCSID 1208);

SET OutputLocalEnvironment.Destination.HTTP.ProxyConnectHeaders =

’Proxy-Authorization: Basic Zm5lcmJsZTpwYXNzd29yZAo=’ || CRLF ||

’Proxy-Connection: Keep-Alive’ || CRLF;

UseFolderMode Sets the UseFolderMode. Use for bitstream generation; for certain parsers this changes

the output bitstream. For example:

SET OutputLocalEnvironment.Destination.HTTP.UseFolderMode = TRUE;

Message flows 941

|

|
|
|

|||

||

|

||

|

||

|

||

|
|

||

|
|

||

|

||

|

||

|

|

||

|
|

||
|
|
|
|

|
|
|
|

||
|

|
|

Working with WrittenDestination data

After the request has been made, the WrittenDestination folder in the

LocalEnvironment is updated with the URI to which the request was sent. A

WrittenDestination for an HTTPRequest node has the following format:

WrittenDestination = (

 HTTP = (

 RequestURL = ’http://server:port/folder/page’

)

)

Input node

Use the Input node as an In terminal for an embedded message flow (a subflow).

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 943

v “Terminals and properties” on page 943

Purpose

You can use a subflow for a common task that can be represented by a sequence of

message flow nodes. For example, you can create a subflow to increment or

decrement a loop counter, or to provide error processing that is common to a

number of message flows.

You must use an Input node to provide the In terminal to a subflow; you cannot

use a standard input node (a built-in input node such as MQInput, or a

user-defined input node).

When you have started your subflow with an Input node, you can connect it to

any In terminal on any message flow node, including an Output node.

You can include one or more Input nodes in a subflow. Each Input node that you

include provides a terminal through which to introduce messages to the subflow. If

you include more than one Input node, you cannot predict the order in which the

messages are processed through the subflow.

The Input node is contained in the Construction drawer of the palette, and is

represented in the workbench by the following icon:

When you select and include a subflow in a message flow, it is represented by the

following icon:

When you include the subflow in a message flow, this icon shows a terminal for

each Input node that you include in the subflow, and the name of the terminal

(which you can see when you hover over it) matches the name of that instance of

942 Message Flows

|

|
|
|

|
|
|
|
|

|

the Input node. Give your Input nodes meaningful names that you can recognize

easily when you use their corresponding terminal on the subflow node in your

message flow.

Using this node in a message flow

Look at the following sample to see how to use this node:

v Error Handler sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Terminals and properties

When you have put an instance of the Input node into a message flow, you can

configure it; see “Configuring a message flow node” on page 235. The properties of

the node are displayed in the Properties view.

The Input node terminals are described in the following table.

 Terminal Description

Out The input terminal that delivers a message to the subflow.

The following table describes the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Input node Description properties are described in the following table.

 Property M C Default Description

Node name No No The node

type,

Input.

The name of the node.

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message flow.

JavaCompute node

Use the JavaCompute node to work with messages using the Java language.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 944

v “Specifying Java” on page 944

v “Terminals and properties” on page 945

Purpose

Using this node, you can achieve the following tasks:

Message flows 943

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.doc/doc/overview.htm

v Examine an incoming message and, depending on its content, propagate it

unchanged to one of the node’s two output terminals; the node behaves in a

similar way to a Filter node, but uses Java instead of ESQL to decide which

output terminal to use.

v Change part of an incoming message and propagate the changed message to one

of the output terminals using Java.

v Create and build a new output message that is totally independent of the input

message using Java.

The Java code that is used by the node is stored in an Eclipse Java project.

The JavaCompute node is contained in the Transformation drawer of the palette,

and is represented in the workbench by the following icon:

Using this node in a message flow

The JavaCompute node uses the same execution model as Java user-defined nodes

and therefore the restrictions and assumptions associated with Java user-defined

nodes also apply to Java code developed for JavaCompute nodes, see Creating a

message processing or output node in Java. Only one instance of the JavaCompute

node is created regardless of the number of threads running against the flow

(either as a result of additional instances or multiple input nodes). Therefore all of

your user Java code must be threadsafe and reentrant. For more information see

User-defined extensions execution model and Threading considerations for

user-defined extensions.

Double-click the JavaCompute node to open the New JavaCompute Node Class

wizard. The wizard guides you through the creation of a new Java project and a

Java class that contains some skeleton code. This skeleton code is displayed in a

Java editor. For more information about creating Java code for a JavaCompute

node, and for examples of the skeleton code or template that are provided, see

“Creating Java code for a JavaCompute node” on page 450. If it is not the first time

that you have double-clicked the node, the Java code is displayed.

Look at the following sample to see how to use this node.

v JavaCompute Node sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Specifying Java

Code Java statements to customize the behavior of the JavaCompute node. For

example, you can customize the node to create a new output message or messages,

using input message or database content (unchanged or modified), or new data.

For example, you might want to modify a value in the input message by adding a

value from a database, and store the result in a field in the output message.

Code the Java statements that you want in a Java file that is associated with the

JavaCompute node.

944 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.javacomputenode.doc/doc/overview.htm

If a Java file does not already exist for this node, right-click the JavaCompute node

and click Open Java to create and open a new Java file in the Editor view. If the

file exists already, click Browse beside the Java Class property to display the

JavaCompute Node Type Selection window, which lists the Java classes that can be

accessed by this message flow. Select the appropriate Java class and click OK. The

list of matching types show suitable Java classes when at least one character is

entered in the Select field. All Java classes are shown if you enter ’*’ in the Select

field.

Restriction: Do not try to create another instance of a JavaCompute node from

Java code; this is not supported.

Terminals and properties

When you have put an instance of the JavaCompute node into a message flow, you

can configure it; see “Configuring a message flow node” on page 235. To associate

an instance of a JavaCompute node with a Java class, configure the node’s

properties. The properties of the node are displayed in the Properties view. All

mandatory properties for which you must enter a value (those that do not have a

default value defined) are marked with an asterisk.

The JavaCompute node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is routed if a failure is detected during the

computation. (Even if the Validate property is set, messages that are propagated to the Failure terminal

of the node are not validated.)

Out The output terminal to which the transformed message is routed.

Alternate An alternative output terminal to which the transformed message can be routed, instead of to the Out

terminal.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Description properties of the JavaCompute node are described in the following

table.

 Property M C Default Description

Node name No No The node type:

JavaCompute

The name of the node.

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message

flow.

The JavaCompute node has the Basic property that is described in the following

table.

Message flows 945

|
|

Property M C Default Description

Java class Yes No None The name of the Java class that is used in this node. This name must be

displayed in the list of Java classes that are available in the project references

for the message flow project.

The Parser Options properties for the JavaCompute node are described in the

following table.

 Property M C Default Description

Use XMLNSC

Compact Parser

for XMLNS

Domain

No No Cleared Setting this property causes the outgoing MQRFH2 to specify the

XMLNS instead of XMLNSC parser, allowing an external application to

remain unchanged. If outgoing messages do not contain MQRFH2

headers, this property has no effect.

The Validation properties of the JavaCompute node are described in the following

table.

Set the validation properties to define how the message that is produced by the

JavaCompute node is validated. These properties do not cause the input message

to be validated. It is expected that, if such validation is required, the validation has

already been performed by the input node or a preceding validation node. For

more details, see “Validating messages” on page 164 and “Validation properties”

on page 1359.

 Property M C Default Description

Validate No Yes None This property controls whether validation takes place, and what part of the

message is validated. Valid values are None, Content and Value, Content, and

Inherit.

Failure

action

No No Exception This property controls what happens if a validation failure occurs. You can

set this property only if Validate is set to Content or Content and Value. Valid

values are User Trace, Local Error Log, Exception, and Exception List.

JMSHeader node

Use the JMSHeader node to modify contents of the JMS Header_Values and

Application properties so that you can control the node’s output without

programming.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 947

v “Terminals and properties” on page 947

Purpose

Use the node to control the output from a JMSOutput node. A subset of common

values can be changed in the JMS Header, and user-chosen properties can be

added, changed, or deleted for the Application properties.

For JMS Header_Values properties, the node provides a set of fields that you can

modify using predefined values, user-defined values, or XPath expressions. XPath

is used to provide a valid location from which a value for a property can be

copied. For example, the location can be the body of the message, the local

environment tree, or an exception list.

946 Message Flows

|

|
|
|

|
|
|
|

|

|
|
|

|
|
|
|
|

For JMS Application properties, the node provides a way to add, modify, and

delete name-value pairs of application properties.

The JMSHeader node is contained in the JMS drawer of the palette, and is

represented in the workbench by the following icon:

Using this node in a message flow

Look at the following sample for more details about how to use the node:

v JMSHeader node sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Terminals and properties

When you have put an instance of the node into a message flow, you can configure

it; see “Configuring a message flow node” on page 235. This node has no

mandatory properties.

JMSHeader node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is routed if a failure is detected

during extraction.

Out The output terminal to which the transformed message is routed if the input message

is processed successfully.

The following tables describes the node properties. The column headed M

indicates whether the property is mandatory (marked with an asterisk if you must

enter a value when no default is defined); the column headed C indicates whether

the property is configurable (you can change the value when you add the message

flow to the bar file to deploy it).

The JMSHeader node Description properties are described in the following table.

 Property M C Default Description

Node name No No JMSHeader The name of the node.

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message flow.

The JMSHeader node JMS transport header options are described in the following

table.

Message flows 947

|
|

|
|

|

|

|

|

|
|

|

|
|
|

|

|||

||

||
|

||
|
|

|
|
|
|
|

|

||||||

|||||

|
|
||||

|
|
||||

|

|
|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.thn.jmsheadernode.doc/doc/overview.htm

Property M C Default Description

JMS header options No Yes Carry forward header Options to control the JMSTransport header as a

whole.

Select Carry forward header to carry forward any

values that are present in an incoming message.

Select Add header to add a new header using the

specified property values. If a header already exists,

the header is modified using the specified property

values. If Inherit from header is specified as a property

value and the header does not exist, the default value

for the property is used.

Select Modify header to change an existing header

using the specified property values. If a header does

not exist, a new header is added first. If Inherit from

header is specified as a property value and the header

does not exist, the default value for the property is

used.

Select Delete header to delete the header, if it exists.

Note: The Add header and Modify header options

both add a header if it does not exist, and change a

header if it does exist. However, the default values

offered by each option differ, so use the appropriate

option.

The JMSHeader node JMSHeader_Value properties are described in the following

table.

 Property M C Default Description

JMS Delivery Mode No Yes Non

_Persistent

Filter messages by message delivery mode:

v Non_Persistent

v Persistent.

JMS Message

Expiration(ms)

No Yes 0 Ask the JMS provider to keep the output JMS

message for a specified time. Values are in

milliseconds; the default value 0 means that the

message should not expire.

JMS Message Priority No Yes 4 Assign relative importance to the message. A

receiving JMS client application or a JMSOutput

node can use this value. JMS defines a ten-level

priority value, with 0 as the lowest priority and 9

as the highest.

JMS Correlation Identifier No Yes No default

value

A client can use the JMS Correlation Identifier

header field to link one message with another. A

typical use is to link a response message with its

request message.

JMS Reply To No Yes No default

value

The JMS Reply To header field contains a

destination supplied by a client when a message

is sent. It is the destination where a reply

message should be sent to.

The JMSHeader node Application properties are described in the following table.

948 Message Flows

||||||
|||||
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

||||||

||||
|
|

|

|

|
|
||||
|
|
|

|||||
|
|
|
|

||||
|
|
|
|
|

||||
|
|
|
|
|
|

|

Property M C Default Description

Application Properties No Yes No default

value

This screen is enabled only if you chose Add

header or Modify header for JMS Transport

header. The screen has no predefined properties;

you use it to create custom properties and values.

Use the property table to add new properties, or

modify or delete existing properties, for the

header. There is no limit to the number of

properties. Each property must have a name, and

a type qualifier. The type qualifier can be Value,

XPath, or Delete.

Value Enter a new valid value for the selected

property. A null value or empty string is

also considered as a valid value.

XPath Specify a valid XPath expression.

WebSphere Message Broker supports

XPath definitions that start with an

XPath variable such as $Root or

$LocalEnvironment. Only the first

occurrence is returned if there are

multiple values for the given XPath

expression. (Examples of valid XPath

expressions are: $LocalEnvironment/
Host, and $Root/HTTPRequest/Content-
Type).

Delete Specify the property to be deleted from

the incoming message. The value

associated with the selected property is

also deleted.

Clear incoming values No Yes Cleared This option, which is is enabled only if you

choose Modify header, removes all property

names and associated values from the incoming

message if present.

JMSInput node

Use the JMSInput node to receive messages from JMS destinations. JMS

destinations are accessed through a connection to a JMS provider.

This topic contains the following sections:

v “Purpose”

v “Using the JMSInput node in a message flow” on page 950

v “Making the JMS provider client available to the JMS nodes” on page 950

v “Connecting the terminals” on page 951

v “Configuring for coordinated transactions” on page 952

v “Terminals and properties” on page 954

Purpose

The JMSInput node acts as a JMS message consumer and can receive all six

message types that are defined in the Java Message Service Specification, version

1.1. Messages are received by using method calls, which are described in the JMS

specification.

The JMSInput node is contained in the JMS drawer of the palette, and is

represented in the workbench by the following icon:

Message flows 949

||||||

||||
|
|
|
|
|
|
|
|
|
|
|

||
|
|

||
|
|
|
|
|
|
|
|
|
|

||
|
|
|

|||||
|
|
|
|

|

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html

Using the JMSInput node in a message flow

The following sample contains a message flow in which the JMSInput node is

used. This sample is an example of how to use the JMSInput node.

v JMS Nodes sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

The JMSInput node receives and propagates messages with a JMS message tree.

You can set the properties of the JMSInput node to control the way in which the

JMS messages are received.

The JMSInput node handles messages in the following message domains:

v BLOB

v XMLNSC

v XMLNS

v MRM

v JMSMap

v JMSStream

v MIME

v XML (this domain is deprecated; use XMLNSC)

Message flows that handle messages that are received from connections to JMS

providers must always start with a JMSInput node. If you include an output node

in a message flow that starts with a JMSInput node, it can be any of the supported

output nodes (including user-defined output nodes); you do not need to include a

JMSOutput node. However, if you do not include a JMSOutput node, you must

include the JMSMQTransform node to transform the message to the format that is

expected by the output node.

If you are propagating JMS messages and creating a message flow to use as a

subflow, you cannot use a standard input node; you must use an instance of the

JMSInput node as the first node in order to create an In terminal for the subflow.

When using 32-bit execution groups in a default 64-bit host environment, you must

set the MQ JMS Java library paths on the MQSI_LIBPATH32. For example:

export MQSI_LIBPATH32=$MQSI_LIBPATH32:/usr/mqm/lib:/usr/mqm/java/lib

Restriction: When the JMSInput node receives publication topics, it internally

restricts the message flow property Additional Instances to zero to

prevent the receipt of duplicate publications.

Making the JMS provider client available to the JMS nodes

Configurable services are defined for a number of JMSProviders. You can choose

one of the predefined services, or you can create a new service for a new provider,

or for one of the existing providers. The pre-defined services are listed in

Configurable services properties.

v If you want to use the WebSphere MQ JMS Provider, and you have installed

WebSphere MQ in the default location on the broker system, the properties are

already set and you do not have to make any changes.

950 Message Flows

|
|

|

|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.jmsnode.doc/doc/overview.htm

v If you want to use the WebSphere MQ JMS Provider, and you have installed

WebSphere MQ in a different (non-default) location, or if you want to use one of

the other defined services, you must set the jarsURL property to identify the

location of the service jar files on the broker system.

Use the mqsireportproperties command to view the provider properties, and the

mqsichangeproperties command to set or modify the properties.

v If no service is defined for your JMS provider, or if you want to create another

service for an existing JMS provider, use the mqsicreateconfigurableservice

command to identify the new service and to set its properties.

v When you configure the node, select the appropriate service from the list of

predefined services shown for the JMS provider name property, or type in the

name of your new service.

v Some JMS providers provide an alternative interface to the standard JMS

specification for particular JMS API calls. In these cases, IBM supplies a Java

class to interface with that proprietary API. For example, if the JMS nodes use

BEA WebLogic as the JMS provider, and the nodes need to participate in a

globally coordinated message flow, you must modify the configurable services

properties that are associated with that vendor. For more information, see

“Configuring the broker to enable a JMS provider’s proprietary API” on page

182.

v Some JMS providers, such as the BEA WebLogic provider, do not update the

optional JMSXDeliveryCount field in the JMS message header; therefore,

JMSInput node backout processing is not possible. To cope with any failures in

the message flow, connect the Failure terminal of the JMSInput node.

Connecting the terminals

For each message that is received successfully, the JMSInput node routes the

message to the Out terminal. If this action fails, the message is retried. If the retry

threshold is reached, where the threshold is defined by the Backout threshold

property of the node, the message is routed to the Failure terminal. You can

connect nodes to the Failure terminal to handle this condition.

If an exception occurs in the failure path, the path is retried until the number of

attempts is twice the Backout threshold. If that limit is exceeded, the message is

put to the Backout destination.

If you have not connected nodes to the Failure terminal, the message is written to

the Backout destination. If you have not specified a Backout destination, the node

issues a BIP4669 error message and stops processing further input.

If processing is not resumed after you restart the broker or execution group, check

the event log for a cause, such as an incorrect parser being specified in the node

properties. Correct the problem and redeploy the message flow. If the message

itself is not valid, remove the message from the input queue to resume processing.

If the message is caught by the JMSInput node after an exception has been

generated elsewhere in the message flow, the message is routed to the Catch

terminal. If you have not connected nodes to the Catch terminal, the node backs

out messages for re-delivery until the problem is resolved, or the Backout

threshold is reached. If you do not define a Backout destination, the node issues a

BIP4669 error message and stops processing further input.

Message flows 951

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

Configuring for coordinated transactions

When you include a JMSInput node in a message flow, the value that you set for

Transaction mode defines whether messages are received under sync point.

v If you set this property to Global, the message is received under external sync

point coordination; that is, within a WebSphere MQ unit of work. Any messages

that are sent subsequently by an output node in the same instance of the

message flow are put under sync point, unless the output node overrides this

setting explicitly.

v If you set this property to Local, the message is received under the local sync

point control of the JMSInput node. Any messages that are sent subsequently by

an output node in the flow are not put under local sync point, unless an

individual output node specifies that the message must be put under local sync

point.

v If you set this property to None, the message is not received under sync point.

Any messages that are sent subsequently by an output node in the flow are not

put under sync point, unless an individual output node specifies that the

message must be put under sync point.

To receive messages under external sync point, you must take additional

configuration steps, which need be applied only the first time that a JMSOutput or

JMSInput node is deployed to the broker for a particular JMS provider.

v On distributed systems, the external sync point coordinator for the broker is

WebSphere MQ. Before you deploy a message flow in which the Transaction

mode property is set to Global, modify the queue manager .ini file to include

extra definitions for each JMS provider resource manager that participates in

globally-coordinated transactions.

–

Windows

On Windows systems:

1. Start WebSphere MQ Explorer.

2. Right-click the queue manager name in the left pane and click Properties.

3. Click XA resource managers in the left pane.

4. Set the SwitchFile property to the following value:

install_dir/bin/ JMSSwitch.dll

XAOpenString=Initial Context,location JNDI,Optional_parms

ThreadOfControl=THREAD

For more information, see the System Administration Guide section of the

WebSphere MQ Version 6 information center online.

–

Linux

UNIX

On Linux and UNIX systems, add a stanza to the queue

manager .ini file for each JMS provider.

For example:

XAResourceManager:

Name=Jms_Provider_Name

SwitchFile=/install_dir/bin/ JMSSwitch.so

XAOpenString=Initial Context,location JNDI,Optional_parms

ThreadOfControl=THREAD

Where:

Name is an installation defined name that identifies a JMS provider resource

manager.

SwitchFile

is the file system path to the JMSSwitch library that is supplied in the

bin directory of the broker.

952 Message Flows

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

XAOpenString can have the following values:

- Initial Context is the value that is set in the JMSInput node property Initial

context factory.

- location JNDI is the value that is set in the JMSInput node property

Location JNDI bindings. This value must include the leading keyword,

which is one of file://, iiop://, or ldap://.

The following parameters are optional:

- LDAP Principal matches the value that is set for the broker by using the

mqsicreatebroker or mqsichangebroker commands.

- LDAP Credentials matches the value that is set for the broker by using the

mqsicreatebroker or mqsichangebroker commands.

- Recovery Connection Factory Name is the JNDI administered connection

factory that is defined in the bindings file . If a value is not specified, you

must add a default value for recoverXAQCF to the bindings file. In either

case, the Recovery Connection Factory must be defined as an XA Queue

Connection Factory for the JMS provider that is associated with the Initial

context factory.

The optional parameters are comma separated and are positional. Therefore,

any parameters that are missing must be represented by a comma.

1. Update the Java CLASSPATH environment variable for the broker’s queue

manager to include a reference to xarecovery.jar; for example:

install_dir/classes/xarecovery.jar

2. Update the Java PATH environment variable for the broker’s queue

manager to point to the bin directory in which the SwitchFile is located;

for example:

install_dir/bin

Finally, ensure that you have taken the following configuration steps:

– In the message flow, ensure that the co-ordinated property is enabled by

using the Broker Archive editor.

– Ensure that each node that must be part of the XA transaction is set to the

global transaction mode.

– Ensure that the service ID that is used for the broker and the queue manager

is the same user ID.

– Ensure that the JNDI connection factory objects that the JMS nodes use for a

global transaction are configured to be of the type MQXAConnectionFactory,

MQXAQueueConnectionFactory, or MQXATopicConnectionFactory.

For more information, see the System Administration Guide section of the

WebSphere MQ Version 6 information center online.

To use the same queue manager for both the broker and the JMS provider,

ensure that your WebSphere MQ installation is at the minimum required level:

WebSphere MQ Version 6.0 Fix Pack 1 or above is required for XA to use the

same queue manager for both the broker and the provider.

v

z/OS

On z/OS, the external sync point manager is Resource Recovery

Services (RRS). The only JMS provider that is supported on z/OS is WebSphere

MQ JMS. The only transport option that is supported for WebSphere MQ JMS on

z/OS is the bind option.

sync point control for the JMS provider is managed with RRS sync point

coordination of the queue manager of the broker. You do not need to modify the

.ini file.

Message flows 953

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

Terminals and properties

When you have put an instance of the JMSInput node into a message flow, you

can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. All mandatory

properties that do not have a default value defined are marked with an asterisk.

The terminals of the JMSInput node are described in the following table.

 Terminal Description

Failure The output terminal to which the message is routed if an error occurs. Even if the Validation property

is set, messages that are propagated to this terminal are not validated.

Out The output terminal to which the message is routed if it is retrieved successfully.

Catch The output terminal to which the message is routed if an exception is generated downstream and

caught by this node.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Description properties of the JMSInput node are described in the following

table.

 Property M C Default Description

Node name No No The node type,

JMSInput

The name of the node.

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message flow.

The Basic properties of the JMSInput node are described in the following table.

 Property M C Default Description

Source queue No No Selected The name of the queue from which the node receives incoming

messages. If the node is to read from a queue (point-to-point), select

Source queue and enter the name of the source queue, which is the JMS

queue that is listed in the bindings file. This property is mutually

exclusive with Subscription topic.

Subscription

topic

No No Cleared The name of the topic to which the node is subscribed. If the node is to

read from a Subscription topic (publish/subscribe), select Subscription

topic and enter the name of the subscription topic.

v If you select Subscription topic, the node operates in the

publish/subscribe message domain only.

v This property is mutually exclusive with Source queue.

v The Subscription topic name must conform to the standards of the JMS

provider that is being used by the node.

954 Message Flows

Property M C Default Description

Durable

subscription ID

No No The identifier for a durable subscription topic. If the node is to receive

publications from a durable subscription topic, enter a Durable

subscription ID.

v Removing a durable subscription is a separate administration task. For

information about removing a durable subscription see the JMS

provider documentation.

v This property is valid only when a Subscription topic string has been

specified.

The JMS Connection properties of the JMSInput node are described in the

following table.

 Property M C Default Description

JMS provider

name

Yes No WebSphere MQ Select a JMS vendor name from the list, or enter a name of your

choice. When you select a name from the list, the Initial context

factory property is updated automatically with the relevant java

class. If you enter your own JMS provider name, you must also

enter a value for the Initial context factory The name must

match the name of a configurable service that is defined for the

broker to which you deploy the message flow.

Initial context

factory

Yes Yes com.sun.jndi.fscontext.

RefFSContextFactory

The starting point for a JNDI name space.

A JMS application uses the initial context to obtain and look up

the connection factory and queue or topic objects for the JMS

provider. If you select a JMS provider name from the list in JMS

provider name, the Initial context factory property is updated

automatically with the relevant Java class. If you enter your own

JMS provider name, you must also enter a value for the Initial

context factory. The default value is

com.sun.jndi.fscontext.RefFSContextFactory, which defines

the file-based Initial context factory for the WebSphere MQ JMS

provider.

Location JNDI

bindings

Yes Yes The system path or the LDAP location for the bindings file. The

bindings file contains definitions for the JNDI administered

objects that are used by the JMSInput node.

When you enter a value for Location JNDI bindings, ensure that

it complies with the following instructions:

v Construct the bindings file before you deploy a message flow

that contains a JMSInput node.

v Do not include the file name of the bindings file in this field.

v If you have specified an LDAP location that requires

authentication, configure the LDAP principal (userid) and

LDAP credentials (password) separately. These values are

configured at broker level. For information about configuring

these values, see mqsicreatebroker command and

mqsichangebroker command.

v The string value must include the leading keyword, which

must be one of the following options:

– file://

– iiop://

– ldap://

For information about constructing the JNDI administered

objects bindings file, see the JMS provider documentation.

Message flows 955

Property M C Default Description

Connection

factory name

Yes Yes The name of the connection factory that is used by the JMSInput

node to create a connection to the JMS provider. This name must

already exist in the bindings file. The Connection factory name

can be a JMS QueueConnectionFactory or a JMS

TopicConnectionFactory, but it must match the message model

that is used by the node. Alternatively, you can specify the

generic JMS ConnectionFactory, which can be used for both JMS

queue or JMS topic destinations.

Backout

destination

No Yes The JMSInput node sends input messages to this destination

when errors prevent the message flow from processing the

message, and the message must be removed from the input

destination. The backout destination name must exist in the

bindings file.

Backout

threshold

No Yes 0 The value that controls when a re-delivered message is put to

the backout destination. For example, if the value is 3, the JMS

provider attempts to deliver the message to the input destination

three times. After the third attempted delivery, the message is

removed from the input destination and is sent to the Backout

destination.

The Input Message Parsing properties of the JMSInput node are described in the

following table.

 Property M C Default Description

Message

domain

No No The domain that is used to parse the incoming message.

v MRM

v XMLNSC

v XMLNS

v JMSMap

v JMSStream

v MIME

v BLOB

v XML (this domain is deprecated; use XMLNSC)

You can also specify a user-defined parser, if appropriate.

The Message domain that is set on the node takes precedence except when

the Message domain is set to blank on the node property. If Message

domain is left blank, the JMSInput node determines the message domain in

one of two ways:

v By checking for the presence of data in the JMSType header value of the

JMS input message

v Based upon the Java Class of the JMS message

For more information, see Order of precedence for deriving the message

domain.

Message set No No The name or identifier of the message set in which the incoming message is

defined. If you are using the MRM parser or the XMLNSC parser in

validating mode, select the Message set that you want to use. This list is

populated with available message sets when you select MRM or XMLNSC

as the Message domain.

If you set this property, then subsequently update the project dependencies

to remove this message set reference, a warning is issued. Either update the

Message set property, or restore the reference to this message set project.

956 Message Flows

|

|
|
|

Property M C Default Description

Message

type

No No The name of the incoming message. If you are using the MRM parser,

select the message that you want from the list in Message type. This list is

populated with messages that are defined in the Message set that you have

selected.

Message

format

No No The name of the physical format of the incoming message. If you are using

the MRM parser, select the format of the message from the list in Message

format. This list includes all of the physical formats that you have defined

for this Message set.

The properties of the Parser Options for the JMSInput node are described in the

following table.

 Property M C Default Description

Parse

timing

No No On

Demand

This property controls when an input message is parsed. Valid values

are:

v On Demand

v Immediate

v Complete

Parse timing is, by default, set to On Demand, which causes parsing of

the message to be delayed. To cause the message to be parsed

immediately, see “Parsing on demand” on page 1363.

Build tree

using XML

schema

data types

No No Cleared This property controls whether the XMLNSC parser creates syntax

elements in the message tree with data types taken from the XML

Schema.

For more information about how the XMLNSC parser operates, see

“Manipulating messages in the XMLNSC domain” on page 364.

Use

XMLNSC

compact

parser for

XMLNS

domain

No No Cleared This property controls whether the XMLNSC Compact Parser is used for

messages in the XMLNS Domain. If you set this property, the message

data appears under XMLNSC in nodes that are connected to the output

terminal when the input MQRFH2 header or Input Message Parsing

properties Message domain is XMLNS.

Retain

mixed

content

No No Cleared This property controls whether the XMLNSC parser creates elements in

the message tree when it encounters mixed text in an input message. If

you select the check box, elements are created for mixed text. If you

clear the check box, mixed text is ignored and no elements are created.

Retain

comments

No No Cleared This property controls whether the XMLNSC parser creates elements in

the message tree when it encounters comments in an input message. If

you select the check box, elements are created for comments. If you

clear the check box, comments are ignored and no elements are created.

Retain

processing

instructions

No No Cleared This property controls whether the XMLNSC parser creates elements in

the message tree when it encounters processing instructions in an input

message. If you select the check box, elements are created for processing

instructions. If you clear the check box, processing instructions are

ignored and no elements are created.

Opaque

elements

No No Blank This property is used to specify a list of elements in the input message

that are to be opaquely parsed by the XMLNSC parser. Opaque parsing

is performed only if validation is not enabled (that is, if Validate is

None); entries that are specified in Opaque Elements are ignored if

validation is enabled.

Message flows 957

The Message Selectors properties of the JMSInput node are described in the

following table. Set these properties if you need to filter messages.

 Property M C Default Description

Application

property

No Yes The message selector that filters messages according to the application

property value.

If the JMS provider is required to filter messages, based on message

properties that are set by the originating JMS client application, enter a

value for Application property, specifying both the property name and

the selection conditions; for example, OrderValue > 200.

Leave Application property blank if you do not want the input node to

make a selection based on application property. For a description of

how to construct the JMS message selector, see JMS message selector.

Timestamp No Yes The message selector that filters messages according to the

JMSTimestamp.

If the JMS provider is required to filter messages that have been

generated at specific times, enter a value for Timestamp, where the

value is an unqualified Java millisecond time; for example,

105757642321. Qualify the selector with operators, such as BETWEEN or

AND.

Leave Timestamp blank if you do not want the input node to make a

selection based on the JMSTimeStamp.

Delivery mode No Yes All The message selector that filters messages according to the message

delivery mode.

If the JMS provider is required to filter messages based on the

JMSDeliveryMode header value in the JMS messages, select an option

for Delivery mode from the list:

v Select Non Persistent to receive messages that are marked as non

persistent by the originating JMS client application.

v Select Persistent to receive messages that are marked as persistent by

the originating JMS client application.

v Select All to receive both persistent and non persistent messages.

(This value is the default.)

Priority No Yes The message selector that filters messages according to the message

priority.

If the JMS provider is required to filter messages based on the

JMSPriority header value in the JMS message, enter a value for Priority.

Valid values for Priority are from 0 (lowest) to 9 (highest); for example,

enter 5 to receive messages of priority 5. You can also qualify the

selector; for example, > 4 to receive messages with a priority greater

than 4, or BETWEEN 4 AND 8 to receive messages with a priority in the

range 4 to 8.

Leave Priority blank if you do not want the input node to make a

selection based on the JMSPriority.

958 Message Flows

Property M C Default Description

Message ID No Yes The message selector that filters messages according to the message ID.

If the JMS provider is required to filter messages based on the

JMSMessageID header, enter a value for Message ID.

Enter a specific Message ID or enter a conditional selector; for example,

enter > WMBRK123456 to return messages where the Message ID is

greater than WMBRK123456.

Leave Message ID blank if you do not want the input node to make a

selection based on JMSMessageID.

Redelivered No Yes If the JMS provider is required to filter messages based on the

JMSRedelivered header, enter a value for Redelivered:

v Enter FALSE if the input node accepts only messages that have not

been redelivered by the JMS provider.

v Enter TRUE if the input node accepts only messages that have been

redelivered by the JMS provider.

v Leave Redelivered blank if you do not want the input node to make

a selection based on JMSRedelivered.

Correlation ID No Yes The message selector that filters messages according to the correlation

ID.

If the JMS provider is required to filter messages based on the

JMSCorrelationID header, enter a value for Correlation ID.

Enter a specific Correlation ID or enter a conditional string; for

example, WMBRKABCDEFG returns messages with a Correlation ID that

matches this value.

Leave Correlation ID blank if you do not want the input node to make

a selection based on JMSCorrelationID.

The Advanced properties of the JMSInput node are described in the following

table.

 Property M C Default Description

Transaction

mode

Yes No none This property controls whether the incoming message is received under

external sync point, local sync point, or out of sync point.

v Select None if the incoming message is to be treated as non persistent. If

you select this value, the message is received using a non-transacted JMS

session that is created using the Session.AUTO_ACKNOWLEDGE flag.

v Select Local if the JMSInput node must coordinate the commit or roll back

of JMS messages that are received by the node, along with any other

resources such as DB2 or WebSphere MQ that perform work within the

message flow. If you select this value, the node uses a transacted JMS

session.

v Select Global if the JMSInput node must participate in a global message

flow transaction that is managed by the broker’s external sync point

coordinator. The sync point coordinator is the broker’s queue manager on

distributed systems and RRS (Resource Recovery Services) on z/OS. If you

select this value, any messages that are received by the node are globally

coordinated using an XA JMS session.

The Validation properties of the JMSInput node are described in the following

table. For more details, see “Validating messages” on page 164 and “Validation

properties” on page 1359.

Message flows 959

Property M C Default Description

Validate No Yes None This property controls whether validation takes place. Valid values are:

v None

v Content and Value

v Content

If you select Content or Content and Value, select an option from the

Failure action list.

Failure

action

No No Exception This property controls what happens if validation fails. You can set this

property only if you set Validate to Content or Content and Value. Valid

values are:

v User Trace

v Local Error Log

v Exception (The default value)

v Exception List

JMSMQTransform node

Use the JMSMQTransform node to transform a message with a JMS message tree

into a message that has a message tree structure that is compatible with the format

of messages that are produced by the WebSphere MQ JMS provider.

This topic contains the following sections:

v “Purpose”

v “Using the JMSMQTransform node in a message flow”

v “Terminals and properties” on page 961

Purpose

You can use the JMSMQTransform node to send messages to legacy message flows

and to interoperate with WebSphere MQ JMS and WebSphere Message Broker

publish/subscribe.

The JMSMQTransform node handles messages in all supported message domains.

The JMSMQTransform node is contained in the JMS drawer of the palette, and is

represented in the workbench by the following icon:

Using the JMSMQTransform node in a message flow

The following sample contains a message flow in which the JMSMQTransform

node is used. Refer to this sample for an example of how to use the

JMSMQTransform node.

v JMS Nodes sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

960 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.jmsnode.doc/doc/overview.htm

Terminals and properties

When you have put an instance of the JMSMQTransform node into a message flow,

you can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view.

The terminals of the JMSMQTransform node are described in the following table.

 Terminal Description

Failure The output terminal to which the message is routed if an error occurs. Even if the Validation property

is set, messages that are propagated to this terminal are not validated.

Out The output terminal to which the message is routed if it is successfully retrieved from the JMS

destination.

In The input terminal that accepts a message for processing by the node.

The following table describes the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The JMSMQTransform node Description properties are described in the following

table.

 Property M C Default Description

Node name No No The node

type,

JMSMQTransform

The name of the node.

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message

flow.

JMSOutput node

Use the JMSOutput node to send messages to JMS destinations.

This topic contains the following sections:

v “Purpose” on page 962

v “Using the JMSOutput node in a message flow” on page 962

v “Controlling the type of the JMS output message” on page 962

v “Sending a JMS message to a destination list” on page 962

v “Making the JMS provider client available to the JMS nodes” on page 963

v “Using the Message Destination Mode” on page 963

v “Working with the JMS message ID” on page 965

v “Configuring for coordinated transactions” on page 966

v “Connecting the terminals” on page 967

v “Terminals and properties” on page 968

Message flows 961

|

Purpose

The JMSOutput node acts as a JMS message producer, and can publish all six

message types that are defined in the Java Message Service Specification, version

1.1. Messages are published by using method calls, which are described in the JMS

specification.

The JMSOutput node is contained in the JMS drawer of the palette, and is

represented in the workbench by the following icon:

Using the JMSOutput node in a message flow

The following sample contains a message flow in which the JMSOutput node is

used. Look at this sample for an example of how to use the JMSOutput node.

v JMS Nodes sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Message flows that handle messages that are received from connections to JMS

providers must always start with a JMSInput node. If you include the JMSOutput

node in a message flow, you do not need to include a JMSInput node; but if you

do not include a JMSInput node, you must include the MQJMSTransform node to

transform the message to the format that is expected by the JMSOutput node.

If you are propagating JMS messages and creating a message flow to use as a

subflow, use an instance of the JMSOutput node as the last node to create an out

terminal for the subflow.

Controlling the type of the JMS output message

In the JMS message tree, the JMS message type is represented by the PayloadType

field of the Message_MetaData subfolder. To control the type of JMS message that

is created by the JMSOutput node, use ESQL code to set the Payload value, as

shown in the following example:

SET OutputRoot.JMSTransport.Transport_Folders.Message_MetaData.PayloadType=Payload value

For more information about the JMS message tree and payload values, see

Representation of messages across the JMS Transport.

Sending a JMS message to a destination list

To send a JMS message to a destination list, ensure that the following conditions

are met.

v Select Send to destination list in local environment on the Basic properties tab of

the JMSOutput node.

v Set up the list in the LocalEnvironment, as shown in the following example.

CREATE PROCEDURE CreateJMSDestinationList() BEGIN

 SET OutputLocalEnvironment.Destination.JMSDestinationList.DestinationData[1] = ’jndi://TestDestQueue1’;

 SET OutputLocalEnvironment.Destination.JMSDestinationList.DestinationData[2] = ’jndi://TestDestQueue2’;

 SET OutputLocalEnvironment.Destination.JMSDestinationList.DestinationData[3] = ’jndi://TestDestQueue3’;

END;

962 Message Flows

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.jmsnode.doc/doc/overview.htm

v Ensure that the message model (point-to-point or publish/subscribe) matches

the model that is used by the JMSOutput node. In this case, the model is

point-to-point.

v If the destination name in the list is prefixed with the string “jndi://”, it

indicates to the JMSOutput node that the value represents the name of a JNDI

administered object, which needs to be looked up. Alternatively, if the JMS

provider-specific format for a destination is known, it can be used; for example,

queue://qmgrname/queuename for WebSphere MQ. Otherwise, the value is

used to create a temporary destination.

v The items to which the JMS destination list refers represent JMS destinations that

can be either JMS queues or JMS topics. These destination types must be

consistent with the connection factory type that is specified in the JMSOutput

node that will process the destination list. For example, a JMS queue destination

can be processed by a JMS QueueConnectionFactory or a generic JMS

ConnectionFactory. Similarly, a JMS topic destination can be processed using a

JMS TopicConnectionFactory or a generic JMS ConnectionFactory.

Making the JMS provider client available to the JMS nodes

Configurable services are defined for a number of JMSProviders. You can choose

one of the pre-defined services, or you can create a new service for a new provider,

or for one of the existing providers. The pre-defined services are listed in

Configurable services properties.

v If you want to use the WebSphere MQ JMS Provider, and you have installed

WebSphere MQ in the default location on the broker system, the properties are

already set and you do not have to make any changes.

v If you want to use the WebSphere MQ JMS Provider, and you have installed

WebSphere MQ in a different (non-default) location, or if you want to use one of

the other defined services, you must set the jarsURL property to identify the

location of the service jar files on the broker system.

Use the mqsireportproperties command to view the provider properties, and the

mqsichangeproperties command to set or modify the properties.

v If no service is defined for your JMS provider, or if you want to create another

service for an existing JMS provider, use the mqsicreateconfigurableservice

command to identify the new service and set its properties.

v When you configure the node, select the appropriate service from the list of

predefined services shown for the JMS provider name property, or type in the

name of your new service.

v Some JMS providers provide an alternative interface from the standard JMS

specification for particular JMS API calls. In these cases, IBM supplies a Java JAR

file to interface with that proprietary API. For example, if the JMS nodes use

BEA WebLogic as the JMS provider, and the nodes need to participate in a

globally coordinated message flow, you must modify the configurable services

properties that are associated with that vendor. For more information, see

“Configuring the broker to enable a JMS provider’s proprietary API” on page

182.

Using the Message Destination Mode

The JMSOutput node acts as a message producer and supports the following

message scenarios:

v “Sending a datagram message” on page 964

v “Sending a reply message” on page 964

v “Sending a request message” on page 965

Message flows 963

|
|
|
|
|
|
|
|

For more information about how to build JMS destination lists, see “Populating

Destination in the LocalEnvironment tree” on page 311.

Sending a datagram message

A datagram is a self-contained, independent entity of data that carries sufficient

information to be routed from the source to the destination computer, without

reliance on earlier exchanges between the source and destination computer and the

transporting network. The following instructions describe how to send a datagram

message:

1. On the Basic tab, set the message destination depending on the message model

that is being used. Set one of the following properties to a valid JNDI

administered object name:

v Publication Topic

v Destination Queue
2. Leave the Reply To Destination field blank.

The node resolves the name of the JNDI administered object, which is supplied in

either Publication Topic or Destination Queue, and sends the message to that JMS

Destination.

Sending a reply message

The sender of a message might want the recipient to reply to the message. In this

case, the JMSOutput message can treat the outgoing message as a reply, and route

it according to the value that is obtained from the JMSReplyTo property from the

request message. You can modify the value of the JMSReplyTo property in the

MbMessage; for example, using a Compute node or a JavaCompute node. This

action allows dynamic routing of messages from the JMSOutput node. The node

sends the message to the JMS Destination name that is set in the JMSReplyTo field

of the MbMessage Tree.

The JMSReplyTo value in the MbMessage Tree represents the name of the JMS

Destination that is resolved from JNDI. For example:

queue://QM_mn2/myJMSQueue4

In this case, the value is the JMS-provider specific representation of a JMS

Destination for the WebSphere MQ JMS provider.

If you do not want to specify a resolved JMS destination name, the JMSOutput

node can also accept a JNDI administered object name in the JMSReplyTo field.

However, the node must resolve an administered object name through JNDI before

it can route the message to the underlying JMS Destination. In this case, the value

in the JMSReplyTo field must be prefixed with the string: jndi:\\. For example:

jndi:\\jmsQ4

where jmsQ4 is the name of the JNDI-administered object.

Performance might be slightly impacted when you use this method because of the

need to look up the administered object in JNDI.

964 Message Flows

Sending a request message

The JMSOutput node can send a message to a JMS Destination with the

expectation of a response from the message consumer that processes the request.

The following instructions describe how to send a request message:

1. On the Basic tab, set the message destination depending on the message model

that is being used. Set one of the following properties to a valid

JNDI-administered object name:

v Publication Topic

v Destination Queue
2. The JMSReplyTo destination in the outgoing message can be derived from the

JMSReplyTo field of the MbMessage Tree that is passed to the node.

Alternatively, this value can be overridden by a JNDI-administered object name

that is set in the Reply To Destination node property.

To allow the JMSOutput node to set the JMSReplyTo property dynamically in

the outgoing message, leave the Reply To Destination field blank on the Basic

tab, and set the JMSReplyTo value in the MbMessage using a Compute node or

a JavaCompute node.

The node looks first for a value in the JMSReplyTo field of the MbMessage. If the

node finds the value, it passes this value into the JMSReplyTo field of the outgoing

message. However, if the Reply To Destination field of the Basic tab has been

specified, this value overrides anything that is set previously in the JMSReplyTo

property of the outgoing message, after first resolving the name of the

JNDI-administered object.

The node resolves the name of the JNDI-administered object that is supplied in

either Publication Topic or Destination Queue, and sends the message to that JMS

Destination.

Working with the JMS message ID

The JMS message ID is generated by the JMS provider when a message is sent by

the JMSOutput node. You cannot set the message ID in the message flow, but you

can use one of the following methods to obtain the generated ID after the message

has been sent:

v Connect a Compute node to the Out terminal.

Connect a Compute node to the Out terminal of a JMSOutput node and

interrogate the WrittenDestination List. For more information, see “Viewing the

logical message tree in trace output” on page 167.

An entry for a JMSOutput node has the following format:

WrittenDestination = (

 JMS = (

 DestinationData = (

 destinationName = ’queue://jmsQueue1’

 initialContext = ’com.sun.jndi.fscontext.RefFSContextFactory’

 JMSMessageID = ID:414d512054657374514d2020202020206ab98b4520017a02’

 JMSCorrelationID = ’ABCDEFGHIJKLMNOPQRSTUVW’

)

)

)

v Configure a user exit to process an output message callback event. For more

information, see “Exploiting user exits” on page 198.

Message flows 965

|

|
|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|

Configuring for coordinated transactions

When you include a JMSOutput node in a message flow, the value that you set for

Transaction Mode defines whether messages are sent under syncpoint.

v If you set the Transaction Mode to Global, the message is sent under external

syncpoint coordination; that is, within a WebSphere MQ unit of work. Any

messages that are sent subsequently by an output node in the same instance of

the message flow are put under syncpoint, unless the output node overrides this

setting explicitly.

v If you set the Transaction Mode to Local, the message is sent under the local

syncpoint control of the JMSOutput node. Any messages that are sent

subsequently by an output node in the flow are not put under local syncpoint,

unless an individual output node specifies that the message must be put under

local syncpoint.

v If you set the Transaction Mode to None, the message is not sent under

syncpoint. Any messages that are sent subsequently by an output node in the

flow are not put under syncpoint, unless an individual output node specifies

that the message must be put under syncpoint.

When you want to send messages under external syncpoint, you must perform

additional configuration steps, which need to be applied only the first time that a

JMSOutput or JMSInput is deployed to the broker for a particular JMS provider:

v On distributed systems, the external syncpoint coordinator for the broker is

WebSphere MQ. Before you deploy a message flow in which the Transaction

Mode is set to Global, modify the queue manager .ini file to include extra

definitions for each JMS provider resource manager that participates in globally

coordinated transactions:

–

Windows

On Windows systems:

1. Start WebSphere MQ Explorer.

2. Right-click the queue manager name in the left pane and click Properties.

3. Click XA resource managers in the left pane.

4. Set the SwitchFile property to the following value:

install_dir/bin/ JMSSwitch.dll

XAOpenString=Initial Context,location JNDI,Optional_parms

ThreadOfControl=THREAD

For more information, see the WebSphere MQ System Administration Guide

section of the WebSphere MQ Version 6 information center online.

–

Linux

UNIX

On Linux and UNIX systems, add a stanza to the queue

manager’s .ini file for each JMS provider.

For example:

XAResourceManager:

Name=Jms_Provider_Name

SwitchFile=/install_dir/bin/ JMSSwitch.so

XAOpenString=Initial Context,location JNDI,Optional_parms

ThreadOfControl=THREAD

Where:

Name is an installation-defined name that identifies a JMS provider resource

manager.

SwitchFile

is the file system path to the JMSSwitch library that is supplied in the

bin directory of the broker.

966 Message Flows

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

XAOpenString can have the following values:

- Initial Context is the value that is set in the JMSInput node basic property

Initial context factory.

- location JNDI is the value that is set in the JMSInput node basic property

Location of JNDI. This value must include the leading keyword, which is

file://, iiop:// or ldap://

The following parameters are optional:

- LDAP Principal matches the value that is set for the broker by using the

mqsicreatebroker or mqsichangebroker commands.

- LDAP Credentials matches the value that is set for the broker by using the

mqsicreatebroker or mqsichangebroker commands.

- Recovery Connection Factory Name is the JNDI administered connection

factory that is defined in the bindings file. If a value is not specified, a

default value for recoverXAQCF must be added to the bindings file. In either

case, the Recovery Connection Factory must be defined as an XA Queue

Connection Factory for the JMS provider that is associated with the Initial

Context Factory.

The optional parameters are comma-separated and are positional. Therefore,

any parameters that are missing must be represented by a comma.

1. Update the Java CLASSPATH environment variable for the broker’s queue

manager to include a reference to xarecovery.jar; for example:

install_dir/classes/xarecovery.jar

2. Update the Java PATH environment variable for the broker’s queue

manager to point to the bin directory, which is where the switch file is

located; for example:

install_dir/bin

For more information, see the System Administration Guide section of the

WebSphere MQ Version 6 information center online.

To use the same queue manager for both the broker and the JMS provider,

ensure that your WebSphere MQ installation is at the minimum required

level: Version 6.0 Fix Pack 1. WebSphere MQ Version 6.0 Fix Pack 1 or above

is required for XA to use the same queue manager for both the broker and the

provider.

–

z/OS

On z/OS, the external syncpoint manager is Resource Recovery

Services (RRS). The only JMS provider that is supported on z/OS is

WebSphere MQ JMS. The only transport option that is supported for

WebSphere MQ JMS on z/OS is the bind option.

Syncpoint control for the JMS provider is managed with RRS syncpoint

coordination of the queue manager of the broker. You do not need to modify

the .ini file.

If the JMSOutput node uses BEA WebLogic as the JMS provider, and the nodes

need to participate in a globally coordinated message flow, see “Making the JMS

provider client available to the JMS nodes” on page 963 for more information.

Connecting the terminals

Connect the In terminal of the JMSOutput node to the node from which outbound

messages are routed.

Message flows 967

|
|
|

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

Connect the Out terminal of the JMSOutput node to another node in the message

flow to process the message further, to process errors, or to send the message to an

additional destination.

Terminals and properties

When you have put an instance of the JMSOutput node into a message flow, you

can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. All mandatory

properties that do not have a default value defined are marked with an asterisk.

The terminals of the JMSOutput node are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if an error occurs. Even if the Validation property is

set, messages that are propagated to this terminal are not validated.

Out The output terminal to which the message is routed if it is successfully retrieved from the

WebSphere MQ queue.

Catch The output terminal to which the message is routed if an exception is thrown downstream and caught

by this node.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined), the column headed C indicates whether the

property is configurable (you can change the value when you add the message

flow to the bar file to deploy it).

The Description properties of the JMSOutput node are described in the following

table.

 Property M C Default Description

Node name No No The node type,

JMSOutput

The name of the node.

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message flow.

The Basic properties of the JMSOutput node are described in the following table.

 Property M C Default Description

Destination

Queue

No Yes The name of the queue to which the node publishes outgoing

messages. If the JMSOutput node is to be used to send

point-to-point messages, enter the Destination queue name for the

JMS queue name that is listed in the bindings file.

968 Message Flows

Property M C Default Description

Publication

Topic

No Yes The name of the topic from which the node receives published

messages.

v If this property is configured, the node operates only in the

publish/subscribe message domain.

v This property is mutually exclusive with the Destination queue

property.

v The Publication Topic name must conform to the standards of the

JMS provider that is being used by the node.

Reply to

destination

No Yes The name of the JMS destination to which the receiving application

must send a reply message. For a reply message to be returned to

this JMS destination, the JMS destination name must be known to

the domain of the JMS provider that is used by the receiving client.

You can enter a JMS destination, which can be either a subscription

queue or a destination topic.

The default value is blank, in which case the JMS output message

can be regarded as a datagram. If the field is blank, the JMSOutput

node does not expect a reply from the receiving JMS client.

Send to

destination

list in local

environment

No Yes Cleared When you have built a list of JMS destinations in the

LocalEnvironment, select this check box to use the destination list. If

you do not select this check box, the node uses the configured JMS

destination. If you select this check box but you have not built a list

of JMS destination in the LocalEnvironment, the node uses the

configured JMS destination.

Message

type

No Yes Determine

output

message type

from the JMS

Message Tree

Select a value from the list to configure the type of JMS message

that is produced by the JMSOutput node. If you do not set a value

for this property, the node assumes the output type from the

metadata PayLoadType field in the JMS message tree, as indicated

by the default value, Determine output message type from the JMS

Message Tree. Valid values are:

v Determine output message type from the JMS Message Tree

v TextMessage

v BytesMessage

v MapMessage

v StreamMessage

v ObjectMessage

v Base JMS message with no payload

The JMS Connection properties of the JMSOutput node are described in the

following table.

 Property M C Default Description

JMS provider

name

Yes No WebSphere MQ Select a JMS vendor name from the list, or enter a name of

your choice. When you select a name from the list, the Initial

Context Factory property is updated automatically with the

relevant java class. If you enter your own JMS provider

name, you must also enter a value for the Initial Context

Factory. The name must match the name of a configurable

service defined for the broker to which you deploy the

message flow.

Message flows 969

Property M C Default Description

Initial Context

Factory

Yes Yes com.sun.jndi.fscontext.

RefFSContextFactory

This property is the starting point for a JNDI name space. A

JMS application uses the initial context to obtain and look up

the connection factory and queue or topic objects for the JMS

provider.

If you select a JMS provider name from the list in JMS

provider name, the Initial Context Factory property is

updated automatically with the relevant Java class. If you

enter your own JMS provider name, you must also enter a

value for the Initial Context Factory. The default value is

com.sun.jndi.fscontext.RefFSContextFactory, which

defines the file-based initial context factory for the

WebSphere MQ JMS provider.

Location JNDI

Bindings

No Yes The system path or the LDAP location for the bindings file.

The bindings file contains definitions for the

JNDI-administered objects that are used by the JMSOutput

node.

When you enter a value for Location JNDI Bindings, ensure

that it complies with the following instructions:

v Construct the bindings file before you deploy a message

flow that contains a JMSOutput node.

v Do not include the file name of the bindings file in this

field.

v If you have specified an LDAP location that requires

authentication, configure both the LDAP principal (userid)

and LDAP credentials (password) separately. These values

are configured at broker level. For information about

configuring these values, see mqsicreatebroker command

and mqsichangebroker command.

v The string value must include the leading keyword, which

is one of:

– file://

– iiop://

– ldap://

For information about constructing the JNDI-administered

objects bindings file, see the documentation that is supplied

with the JMS provider.

Connection

Factory Name

No Yes The name of the connection factory that is used by the

JMSOutput node to create a connection to the JMS provider.

This name must already exist in the bindings file. The

Connection factory can be a JMS QueueConnectionFactory or

a JMS TopicConnectionFactory, but it must match the

message model that is used by the node. Alternatively, you

can specify the generic JMS ConnectionFactory, which can be

used for both JMS queue or JMS topic destinations.

The Advanced properties of the JMSOutput node are described in the following

table.

 Property M C Default Description

New

Correlation

ID

No Yes If the JMSOutput node is required to generate a new Correlation ID for the

message, select New Correlation ID. If you leave the check box cleared, the

Correlation ID of the output message is taken from the JMSCorrelationID

field in the JMSTransport_Header_Values section of the message tree.

970 Message Flows

Property M C Default Description

Transaction

Mode

Yes No None This property controls whether the incoming message is received under

syncpoint.

v Select None if the outgoing message is to be treated as non persistent. If

you select this value, the message is sent using a non-transacted JMS

session that is created using the Session.AUTO_ACKNOWLEDGE flag.

v Select Local if the input node that received the message must coordinate

the commit or roll-back of JMS messages that have been sent by the

JMSOutput node, along with any other resources, such as DB2 or

WebSphere MQ, that perform work within the message flow. If you select

this value, the node uses a transacted JMS session.

v Select Global if the JMSOutput node must participate in a global message

flow transaction that is managed by the broker’s external syncpoint

coordinator. The syncpoint coordinator is the broker’s queue manager on

distributed systems, and RRS (Resource Recovery Services) on z/OS. If you

select this value, any messages that are received by the node are globally

coordinated using an XA JMS session.

Delivery

Mode

No Yes Non

Persistent

This property controls the persistence mode that a JMS provider uses for a

message. Valid values are:

v Automatic: the mode from the input message is inherited

v Persistent: the message survives if the JMS provider has a system failure

v Non Persistent: the message is lost if the JMS provider has a system failure

Message

Expiration

(ms)

No Yes 0 This property controls the length of time, in milliseconds, for which the JMS

provider keeps the output JMS message. The default value, 0, is used to

indicate that the message must not expire.

Select Inherit from header or enter an integer that represents a number of

milliseconds. If you select Inherit from header, the property inherits the value

of the JMSExpiry field in the JMS message, which is found at the following

location:

OutputRoot.JMSTransport.Transport_Folders.Header_Values.JMSExpiration

Message

Priority

No Yes 4 This property assigns relative importance to the message and it can be used

for message selection by a receiving JMS client application or a JMSOutput

node.

Select a value between 0 (lowest priority) and 9 (highest priority) or select

Inherit from header.

The default value is 4, which indicates medium priority. Priorities in the

range 0 to 4 relate to normal delivery. Priorities in the range 5 to 9 relate to

graduations of expedited delivery. If you select Inherit from header, the

property inherits the value of the JMSPriority field in the JMS message,

which is found at the following location:

OutputRoot.JMSTransport.Transport_Folders.Header_Values.JMSPriority

The Validation properties of the JMSOutput node are described in the following

table. For more information about Validation properties, see “Validating messages”

on page 164 and “Validation properties” on page 1359.

 Property M C Default Description

Validate No Yes Inherit This property controls whether validation takes place. Valid values are

None, Content, Content And Value, and Inherit.

Failure Action No No Exception This property controls what happens if validation fails. You can set

this property only if you set Validate to Content or Content and Value.

Valid values are User Trace, Local Error Log, Exception, and Exception

List.

Message flows 971

|
|
|
|

|

|
|

|
|
|
|
|

|

JMSReply node

Use the JMSReply node to send messages to JMS destinations.

This topic contains the following sections:

v “Purpose”

v “Using the JMSReply node in a message flow”

v “Working with the JMS message ID”

v “Terminals and properties” on page 973

Purpose

The JMSReply node has a similar function to the JMSOutput node, but the

JMSReply node sends JMS messages only to the reply destination that is supplied

in the JMSReplyTo header field of the JMS message tree. Use the JMSReply node

when you want to treat a JMS message that is output from a message flow as a

reply to a JMS input message, and where you have no other routing requirements.

The JMSReply node is contained in the JMS drawer of the palette, and is

represented in the workbench by the following icon:

Using the JMSReply node in a message flow

Consider a situation in which you create a message flow in which a JMSInput

node message obtains point-to-point messages from a JMS destination called

MyJMSInputQueue. The message flow updates a database using the contents of the

message, then replies to a JMS destination called MyJMSReplyQueue, which is set

by the generating application in the JMSReplyTo header of the input message.

In a similar scenario for the publish/subscribe message model, a JMSInput node

subscribes to TopicA, and the JMSReply node publishes on the TopicB destination,

which was retrieved from the JMSReplyTo header of the input message.

Working with the JMS message ID

The JMS message ID is generated by the JMS provider when a message is sent by

the JMSReply node. You cannot set the message ID in the message flow, but you

can use one of the following methods to obtain the generated ID after the message

has been sent:

v Connect a Compute node to the Out terminal.

Connect a Compute node to the Out terminal of a JMSReply node and

interrogate the WrittenDestination List. For more information, see “Viewing the

logical message tree in trace output” on page 167.

An entry for a JMSReply node has the following format:

WrittenDestination = (

 JMS = (

 DestinationData = (

 destinationName = ’queue://jmsQueue1’

 initialContext = ’com.sun.jndi.fscontext.RefFSContextFactory’

 JMSMessageID = ID:414d512054657374514d2020202020206ab98b4520017a02’

 JMSCorrelationID = ’ABCDEFGHIJKLMNOPQRSTUVW’

)

)

)

972 Message Flows

|

|

|
|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|

v Configure a user exit to process an output message callback event. For more

information, see “Exploiting user exits” on page 198.

Terminals and properties

When you have put an instance of the JMSReply node into a message flow, you

can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. All mandatory

properties that do not have a default value defined are marked with an asterisk.

The terminals of the JMSReply node are described in the following table.

 Terminal Description

Failure The output terminal to which the message is routed if an error occurs. Even if the Validation property is

set, messages that are propagated to this terminal are not validated.

Out The output terminal to which the message is routed if it is successfully retrieved from the

WebSphere MQ queue.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined), the column headed C indicates whether the

property is configurable (you can change the value when you add the message

flow to the bar file to deploy it).

The Description properties of the JMSReply node are described in the following

table.

 Property M C Default Description

Node name No No The node

type

The name of the node.

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message

flow.

The Basic properties of the JMSReply node are described in the following table.

 Property M C Default Description

Send to

destination

list in local

environment

No Yes Cleared When you have built a list of JMS destinations in the LocalEnvironment,

select this check box to use the destination list. If you do not select this

check box, the node uses the configured JMS destination. If you select this

check box but you have not built a list of JMS destinations in the

LocalEnvironment, the node uses the configured JMS destination.

The JMS Connection properties of the JMSReply node are described in the

following table.

Message flows 973

|
|

Property M C Default Description

JMS

provider

name

Yes No WebSphere MQ Select a JMS vendor name from the drop-down list, or enter a

name of your choice. When you select a name from the list, the

Initial Context Factory property is updated automatically with the

relevant Java class. If you enter your own JMS provider name,

you must also enter a value for the Initial Context Factory.

The default value is WebSphere MQ.

Initial

Context

Factory

Yes Yes com.sun.jndi.fscontext.

RefFSContextFactory

This property is the starting point for a JNDI name space. A JMS

application uses the initial context to obtain and look up the

connection factory and queue or topic objects for the JMS

provider. If you select a JMS provider name from the list in JMS

provider name, the Initial Context Factory property is updated

automatically with the relevant Java class. If you enter your own

JMS provider name, you must also enter a value for the Initial

Context Factory.

The default value is

com.sun.jndi.fscontext.RefFSContextFactory, which defines the

file-based initial context factory for the WebSphere MQ JMS

provider.

Location

JNDI

Bindings

Yes Yes This property specifies either the file system path or the LDAP

location for the bindings file. The bindings file contains

definitions for the JNDI-administered objects that are used by the

JMSReply node.

When you enter a value for Location JNDI Bindings, ensure that it

complies with the following instructions:

v Construct the bindings file before you deploy a message flow

that contains a JMSReply node.

v Do not include the file name of the bindings file in this field.

v If you have specified an LDAP location that requires

authentication, configure both the LDAP principal (userid) and

LDAP credentials (password) separately. These values are

configured at broker level. For information about configuring

these values, refer to the mqsicreatebroker and

mqsichangebroker commands.

v The string value must include the leading keyword, which is

one of:

– file://

– iiop://

– ldap://

For information about constructing the JNDI-administered objects

bindings file, refer to the documentation that is supplied with the

JMS provider.

Connection

Factory

Name

Yes Yes The name of the connection factory that is used by the JMSReply

node to create a connection to the JMS provider. This name must

already exist in the bindings file.

The Advanced properties of the JMSReply node are described in the following

table.

974 Message Flows

Property M C Default Description

New

Correlation

ID

No Yes Cleared If the JMSReply node is required to generate a new Correlation ID for the

message, select the check box. The check box is cleared by default; if you leave

the check box cleared, the Correlation ID of the output message is taken from

the JMSCorrelationID field in the JMSTransport_Header_Values section of the

message tree.

Transaction

Mode

No No None This property controls whether the incoming message is received under sync

point. To define the transactional characteristics of how the message is handled,

select one of the following values:

v Select None if the outgoing message is to be treated as non-persistent. If you

select this value, the message is sent using a non-transacted JMS session that

is created using the Session.AUTO_ACKNOWLEDGE parameter.

v Select Local if the input node that receives the message should coordinate the

commit or roll-back of JMS messages that have been sent by the JMSReply

node, along with any other resources, such as DB2 or WebSphere MQ, that

perform work within the message flow. If you select this value, the node uses

a transacted JMS session.

v Select Global if the JMSReply node should participate in a global message

flow transaction that is managed by the broker’s external sync point

coordinator. The sync point coordinator is the broker’s queue manager on

distributed systems, and RRS (Resource Recovery Services) on z/OS. If you

select this value, any messages that are received by the node are globally

coordinated using an XA JMS session.

Delivery

Mode

No Yes Automatic This property controls the persistence mode that a JMS provider uses for a

message. Valid values are:

v Automatic: the mode from the input message is inherited

v Persistent: the message survives if the JMS provider has a system failure

v Non-persistent: the message is lost if the JMS provider has a system failure

Message

Expiration

(ms)

Yes Yes 0 This property controls the length of time, in milliseconds, for which the JMS

provider keeps the output JMS message. The default value, 0, is used to indicate

that the message must not expire.

Select Inherit from header or enter an integer that represents a number of

milliseconds. If you select Inherit from header, the property inherits the value of

the JMSExpiry field in the JMS message, which is found at the following

location:

OutputRoot.JMSTransport.Transport_Folders.Header_Values.JMSExpiration

Message

Priority

No Yes 4 This property assigns relative importance to the message and it can be used for

message selection by a receiving JMS client application or a JMSReply node.

Select a value between 0 (lowest priority) and 9 (highest priority) or select

Inherit from header.

The default value is 4, which indicates medium priority. Priorities in the range 0

to 4 relate to normal delivery. Priorities in the range 5 to 9 relate to graduations

of expedited delivery. If you select Inherit from header, the property inherits the

value of the JMSPriority field in the JMS message, which is found at the

following location:

OutputRoot.JMSTransport.Transport_Folders.Header_Values.JMSPriority

Message flows 975

|
|
|
|

|

|
|

|
|
|
|
|

|

Property M C Default Description

Message

type

No Yes TextMessage This property controls the class of the JMS output message. The default value is

TextMessage. Valid values are:

v TextMessage

v BytesMessage

v MapMessage

v StreamMessage

v ObjectMessage

v Base JMS message with no payload

If you do not set this property, the node assumes the output type from the

metadata PayLoadType field in the JMS message tree.

The Validation properties of the JMSReply node are described in the following

table. Refer to “Validation properties” on page 1359 for a full description of these

properties.

 Property M C Default Description

Validate No Yes Inherit This property controls whether validation takes place. Valid values are:

v None

v Content and Value

v Content

v Inherit

If a message is propagated to the Failure terminal of the node, it is not

validated.

Failure

Action

No No Exception This property controls what happens if validation fails. You can set this

property only if you set Validate to Content or Content and Value. Valid

values are:

v User Trace

v Local Error Log

v Exception (default value)

v Exception List

Label node

Use the Label node to process a message that is propagated by a RouteToLabel

node to dynamically determine the route that the message takes through the

message flow.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 977

v “Terminals and properties” on page 977

Purpose

Use the Label node in combination with a RouteToLabel node to route a message

through the message flow based on message content. The RouteToLabel node

interrogates the LocalEnvironment of the message to determine the identifier of the

Label node to which the message must be routed next. You can propagate the

message by coding ESQL in a Compute node, or by coding Java in a JavaCompute

or user-defined node.

976 Message Flows

Precede the RouteToLabel node in the message flow with a Compute node or

JavaCompute node and populate the LocalEnvironment of the message with the

identifiers of one or more Label nodes that introduce the next sequence of

processing for the message.

Design your message flow so that a Label node logically follows a RouteToLabel

node within a message flow, but do not connect it physically to the RouteToLabel

node. The connection is made by the broker, when required, according to the

contents of LocalEnvironment.

The Label node provides a target for a routing decision, and does not process the

message that it handles in any way. Typically, a Label node connects to a subflow

that processes each message in a specific way, and either ends in an output node

or in another RouteToLabel node.

The Label node can also be used in conjunction with a SOAPExtract node or as the

target of a PROPAGATE statement, which is specified in a Compute or Database

node.

The Label node is contained in the Routing drawer of the palette, and is

represented in the workbench by the following icon:

Using this node in a message flow

Look at the following sample to see how to use this node:

v Airline Reservations sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Terminals and properties

When you have put an instance of the Label node into a message flow, you can

configure it; see “Configuring a message flow node” on page 235. The properties of

the node are displayed in the Properties view. All mandatory properties for which

you must enter a value (those that do not have a default value defined) are

marked with an asterisk.

The Label node terminals are described in the following table.

 Terminal Description

Out The output terminal to which the message is routed.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Label node Description properties are described in the following table.

Message flows 977

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm

Property M C Default Description

Node name No No The node

type

The name of the node.

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message

flow.

The Label node Basic properties are described in the following table.

 Property M C Default Description

Label

Name

Yes No An identifier for the node. It is used as a target for a message that is

routed by a RouteToLabel node. Label Name must not be the same as the

name of the instance of the node itself, and it must be unique within the

message flow in which it appears. The name of the instance can be

modified by the workbench if the subflow, of which this Label node is a

part, is embedded into another message flow.

Mapping node

Use the Mapping node to construct one or more new messages and populate them

with various types of information.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 979

v “Terminals and properties” on page 979

Purpose

You can populate the new messages with the following types of information:

v New information

v Modified information from the input message

v Information taken from a database

You can modify elements of the message body data, its associated environment,

and its exception list.

When you first open or create a message map for the node, if you select This map

is called from a message flow node and maps properties and message body, the

headers in the input message are always copied to the output message without

modification. To modify the message headers in a Mapping node, select This map

is called from a message flow node and maps properties, headers, and message

body. When you select this property, the map that is created allows additional

elements, including WebSphere MQ, HTTP, and JMS headers, to be mapped.

These components of the output message can be defined using mappings that are

based on elements of both the input message and data from an external database.

You create the mappings that are associated with this node, in the mapping file

that is associated with this node, by mapping inputs (message or database) to

outputs. You can modify the assignments made by these mappings using supplied

or user-defined functions and procedures; for example, you can convert a string

value to uppercase when you assign it to the message output field.

Use the Mapping node to:

978 Message Flows

v Build a new message

v Copy messages between parsers

v Transform a message from one format to another

The Mapping node is contained in the Transformation drawer of the palette, and

is represented in the workbench by the following icon:

Using this node in a message flow

Look at the following sample to see how to use this node:

v Pager samples

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Terminals and properties

When you have put an instance of the Mapping node into a message flow, you can

configure it; see “Configuring a message flow node” on page 235. The properties of

the node are displayed in the Properties view. All mandatory properties for which

you must enter a value (those that do not have a default value defined) are

marked with an asterisk.

The Mapping node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is propagated if a failure is detected during the

computation. If you have selected Treat Warnings as Errors, the node propagates the message to this

terminal if database warning messages are returned, even though the processing might have completed

successfully.

Out The output terminal that outputs the message following the execution of the mappings.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Mapping node Description properties are described in the following table.

 Property M C Default Description

Node name No No The node

type

The name of the node.

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message

flow.

Message flows 979

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.pager.doc/doc/overview.htm

The Mapping node Basic properties are described in the following table.

 Property M C Default Description

Data

Source

No Yes The ODBC data source name of the database that contains the tables to

which you refer in the mappings that are associated with this node

(identified by the Mapping Module property). This name identifies the

appropriate database on the system on which this message flow is to

execute. The broker connects to this database with user ID and password

information that you have specified on the mqsicreatebroker,

mqsichangebroker, or mqsisetdbparms command.

z/OS

On z/OS systems, the broker uses the broker started task ID, or

the user ID and password that are specified on the mqsisetdbparms

command JCL, BIPSDBP in the customization data set <hlq>.SBIPPROC.

Transaction Yes No Automatic The transaction mode for the node. The values are:

v Automatic (the default). The message flow, of which the Mapping node is

a part, is committed if it is successful; that is, the actions that you define

in the mappings are performed and the message continues through the

message flow. If the message flow fails, it is rolled back. If you choose

Automatic, the ability to commit or rollback the action of the Mapping

node on the database depends on the success or failure of the entire

message flow.

v Commit. To commit any uncommitted actions that are performed in this

message flow on the database that is connected to this node, irrespective

of the success or failure of the message flow as a whole, select Commit.

The changes to the database are committed even if the message flow fails.

Mapping

Routine

Yes No Mapping The name of the mapping routine that contains the statements to execute

against the database or the message tree. By default, the name that is

assigned to the mapping routine is identical to the name of the mapping file

in which the routine is defined. The default name for the file is the name of

the message flow concatenated with the name of the node when you

include it in the message flow (for example, MFlow1_Mapping.msgmap for

the first Mapping node in message flow MFlow1). You cannot specify a

value that includes spaces.

If you click Browse next to this entry field, a dialog box is displayed that

lists all available mapping routines that this node can access. Select the

routine that you want and click OK; the routine name is set in Mapping

Module.

To work with the mapping routine that is associated with this node,

double-click the node, or right-click the node and click Open Mappings. If

the mapping routine does not exist, it is created for you with the default

name in the default file. If the file exists already, you can also open file

<flow_name>_<node_name>.msgmap in the Broker Development view.

A mapping routine is specific to the type of node with which it is

associated; you cannot use a mapping routine that you have developed for

a Mapping node with any other node that uses mappings (for example, a

DataInsert node). If you create a mapping routine, you cannot call it from

any other mapping routine, although you can call it from an ESQL routine.

For more information about working with mapping files, and defining their

content, see “Developing message mappings” on page 472.

980 Message Flows

Property M C Default Description

Mapping

Mode

Yes No Message The mode that is used to process information that is passed through the

Mapping node. Valid values are:

v Message (the default): the message is generated or passed through by the

Mapping node, as modified within the node.

v LocalEnvironment: the LocalEnvironment tree structure is generated or

passed through by the Mapping node, as modified within the node.

v LocalEnvironment And Message: the LocalEnvironment tree structure and

message are generated or passed through by the Mapping node, as

modified by the node.

v Exception: the ExceptionList is generated or passed through by the

Mapping node, as modified by the node.

v Exception And Message: the ExceptionList and message are generated or

passed through by the Mapping node, as modified by the node.

v Exception And LocalEnvironment: the ExceptionList and

LocalEnvironment tree structures are generated or passed through by the

Mapping node, as modified by the node.

v All: the message, ExceptionList, and LocalEnvironment are generated or

passed through by the Mapping node, as modified by the node.

You must set this property to reflect accurately the output message format

that you need. If you select an option (or accept the default value) that does

not include a particular component of the message, that component is not

included in any output message that is constructed.

You can choose any combination of Message, LocalEnvironment, and

Exception components to be generated and modified by the Mapping node.

To construct a map that propagates multiple target messages, set this

property to LocalEnvironment And Message to ensure that the node

executes correctly.

LocalEnvironment was known as DestinationList in some previous versions;

it is retained for compatibility.

The Environment component of the message tree is not affected by the

mode setting. Its contents, if any, are passed on from this node.

Treat

Warnings

as Errors

Yes No Cleared For database warning messages to be treated as errors, and the node to

propagate the output message to the Failure terminal, select Treat Warnings

as Errors. The check box is cleared initially.

When you select the check box, the node handles all positive return codes

from the database as errors and generates exceptions in the same way as it

does for the negative, or more serious, errors. If you do not select the check

box, the node treats warnings as normal return codes, and does not raise

any exceptions. The most significant warning raised is not found, which can

be handled safely as a normal return code in most circumstances.

Throw

Exception

on

Database

Error

Yes No Selected For the broker to generate an exception when a database error is detected,

select Throw Exception on Database Error. The check box is selected

initially. If you clear the check box, you must handle the error in the

message flow to ensure the integrity of the broker and the database. The

error is ignored if you do not handle it through your own processing,

because you have chosen not to invoke the default error handling by the

broker. For example, you could connect the Failure terminal to an error

processing subroutine.

The parser options for the Mapping node are described in the following table.

Message flows 981

Property M C Default Description

Use

XMLNSC

Compact

Parser for

XMLNS

Domain

No No Cleared If you select this check box, the outgoing MQRFH2 specifies the

XMLNS instead of XMLNSC parser, allowing an external application to

remain unchanged. If outgoing messages do not contain MQRFH2

headers, this property has no effect.

The Validation properties of Mapping node are described in the following table.

If a message is propagated to the Failure terminal of the node, it is not validated.

These properties do not cause the input message to be validated. It is expected

that, if such validation is required, the validation has already been performed by

the input node or a preceding validation node. For more details about validating

messages and validation properties, see “Validating messages” on page 164 and

“Validation properties” on page 1359.

 Property M C Default Description

Validate No Yes None This property controls whether validation takes place. Valid values are

None, Content and Value, Content, and Inherit.

Failure

Action

No No Exception This property controls what happens if a validation failure occurs. You

can set this property only if Validate is set to Content or Content and

Value. Valid values are User Trace, Local Error Log, Exception, and

Exception List.

MQeInput node

Use the MQeInput node to receive messages from clients that connect to the broker

using the WebSphere MQ Mobile Transport protocol.

Attention: Using message flows that contain MQeInput and MQeOutput nodes in

Version 6.1 is deprecated. The behavior that is described here is intended only for

when you are deploying from Version 6.1 to a previous version, and to provide a

route for migration. Redesign your flows to remove the MQe nodes and replace

them with MQ nodes that are configured to your own specifications and

coordinated with your MQe gateway configuration. For more details, see Migrating

a message flow that contains WebSphere MQ Everyplace nodes.

This topic contains the following sections:

v “Purpose”

v “Using the MQeInput node in a message flow” on page 984

v “WebSphere MQ Everyplace documentation” on page 984

v “Configuring the MQeInput node” on page 984

v “Terminals and properties” on page 988

Purpose

The MQeInput node receives messages that are put to a message flow from a

specified bridge queue on the broker’s WebSphere MQ Everyplace queue manager.

The node also establishes the processing environment for the messages. You must

create and configure the WebSphere MQ Everyplace queue manager before you

deploy a message flow that contains this node.

Message flows that handle messages that are received across WebSphere MQ

connections must always start with an MQeInput node. You can set the MQeInput

982 Message Flows

node’s properties to control the way in which messages are received; for example,

you can indicate that a message is to be processed under transaction control.

When you deploy message flows that contain WebSphere MQ Everyplace nodes to

a broker, you must deploy them to a single execution group, regardless of the

number of message flows. The WebSphere MQ Everyplace nodes in the message

flows must all specify the same WebSphere MQ Everyplace queue manager name.

If you do not meet this restriction, an error is raised when you deploy.

The MQeInput node handles messages in the following message domains:

v MRM

v XMLNSC

v XMLNS

v JMSMap

v JMSStream

v MIME

v BLOB

v XML (this domain is deprecated; use XMLNSC)

v IDOC (this domain is deprecated; use MRM)

If you include an output node in a message flow that starts with an MQeInput

node, it can be any of the supported output nodes, including user-defined output

nodes; you do not need to include an MQeOutput node. You can create a message

flow that receives messages from WebSphere MQ Everyplace clients and generates

messages for clients that use any of the supported transports to connect to the

broker, because you can configure the message flow to request the broker to

provide any conversion that is necessary.

WebSphere MQ Everyplace Version 1.2.6 is used by WebSphere Message Broker.

This version is compatible with later versions of WebSphere MQ Everyplace.

Clients that use later versions of WebSphere MQ Everyplace (for example, Version

2.0), work correctly when connected to this node, although additional functionality

that is not supported in Version 1.2.6 (for example, JMS support) does not work.

Queue managers are not interchangeable between different versions of WebSphere

MQ Everyplace. Nodes must use a queue manager that was created using Version

1.2.6. Similarly, the client must use its own level of the code when creating a queue

manager.

z/OS

You cannot use MQeInput nodes in message flows that you deploy to

z/OS systems.

If you create a message flow to use as a subflow, you cannot use a standard input

node; you must use an instance of the Input node as the first node to create an In

terminal for the subflow.

If your message flow does not receive messages across WebSphere MQ

connections, you can choose another supported input node.

The MQeInput node is contained in the WebSphere MQ drawer of the palette, and

is represented in the workbench by the following icon:

Message flows 983

Using the MQeInput node in a message flow

For an example of how this node can be used, consider a farmer who checks his

fields to see how well they are irrigated. He is carrying a PDA device with

WebSphere MQ Everyplace installed. He sees an area of field that requires water,

and uses his PDA and a Global Satellite Navigation link to send a message to an

MQeInput node. The data is manipulated using a Compute node, and a message is

published by a Publication node so that a remote SCADA device can pick up the

message and trigger the irrigation sprinklers. The farmer can see the water

delivered to the field, minutes after sending his message.

WebSphere MQ Everyplace documentation

Find further information about WebSphere MQ Everyplace, and the properties of

the node, in the WebSphere MQ Everyplace documentation on the WebSphere MQ

Web page.

Configuring the MQeInput node

When you have put an instance of the MQeInput node into a message flow, you

can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view.

All mandatory properties for which you must enter a value (those that do not have

a default value defined) are marked with an asterisk.

Configure the MQeInput node as follows:

1. Optional: On the Description tab, enter a Short description, a Long description,

or both. You can also rename the node on this tab.

2. On the Default tab, set values for the properties that describe the message

domain, message set, message type, and message format that the node uses to

determine how to parse the incoming message, and the default topic that is

associated with the message.

v If the incoming message has an MQRFH2 header, you do not need to set

values for the Default properties because the values can be derived from the

<mcd> folder in the MQRFH2 header; for example:

<mcd><Msd>MRM</Msd><Set>DHM4UO906S001</Set><Type>receiptmsg1</Type>

<Fmt>XML</Fmt></mcd>

If you set values, and those values differ from those in the MQRFH2 header,

the MQRFH2 header values take precedence.

v In Message domain, select the name of the parser that you are using from

the list. Choose from the following options:

– MRM

– XMLNSC

– XMLNS

– JMSMap

– JMSStream

– MIME

– BLOB

– XML (this domain is deprecated; use XMLNSC)

– IDOC (this domain is deprecated; use MRM)

You can also specify a user-defined parser, if appropriate.

984 Message Flows

|

http://www.ibm.com/software/integration/wmq
http://www.ibm.com/software/integration/wmq

v If you are using the MRM or IDOC parser, or the XMLNSC parser in

validating mode, select the correct message set from the list in Message set.

This list is populated with available message sets when you select MRM,

XMLNSC, or IDOC as the domain.

v If you are using the MRM parser, select the correct message from the list in

Message type. This list is populated with messages that are defined in the

message set that you have selected.

v If you are using the MRM or IDOC parser, select the format of the message

from the list in Message format. This list includes all the physical formats

that you have defined for this message set.

v Enter the message topic in Topic. You can enter any characters as the topic

name. When messages pass through the MQeInput node, they assume

whatever topic name you have entered. (If you are using publish/subscribe,

you can subscribe to a topic and see any messages that passed through the

MQeInput node under that topic name.)
3. On the General tab, set the following properties:

a. Enter the Queue name of the WebSphere MQ Everyplace bridge queue from

which this input node retrieves messages. If the queue does not exist, it is

created for you when the message flow is deployed to the broker.

b. Set the level of Trace that you want for this node. If trace is active, the trace

information is recorded in the file identified by Trace filename (described

later in this section). Choose a level of trace:

v None (the default). No trace output is produced, unless an unrecoverable

error occurs.

v Standard. Minimal trace output is generated to reflect the overall

operations of the node.

v Debug. Trace information is recorded at a level that helps you to debug

WebSphere MQ Everyplace programs.

v Full. All available debug information is recorded to provide a full record

of the node activities.

If you set the trace level to Debug or Full, you will impact the performance

of WebSphere MQ Everyplace, and significant trace files can be generated.

Use these options for short periods only.

c. In Trace filename, specify the name of the file to which the trace

information is written. The directory structure in which the file is specified

must already exist; it cannot be created during operation.

d. Select the Transaction mode to define the transactional characteristics of

how this message is handled:

v If you select Automatic, the incoming message is received under sync

point if it is marked persistent; otherwise it is not. The transactionality of

any derived messages that are sent subsequently by an output node is

determined by the incoming persistence property, unless the output node

has overridden transactionality explicitly.

v If you select Yes, the incoming message is received under sync point. Any

derived messages that are sent subsequently by an output node in the

same instance of the message flow are sent transactionally, unless the

output node has overridden transactionality explicitly.

v If you select No, the incoming message is not received under sync point.

Any derived messages that are sent subsequently by an output node in

the message flow are sent non-transactionally, unless the output node has

specified that the message must be put under sync point.

Message flows 985

e. The Use config file check box is not selected by default; values for all

properties for the MQeInput node are taken from the Properties view.

If you select the check box, the definition of all properties is extracted from

the file that is identified by Config filename (described later in this section)

with the exception of the following properties:

v The Queue name and Config filename General properties

v All Default properties

Use a configuration file only to specify additional properties for the node. If

the properties in the Properties view are sufficient for your needs, do not

select the Use config file check box.

f. If you have selected the Use config file check box, enter the full path and

name of the configuration file for WebSphere MQ Everyplace in Config

filename. This file must be installed on the system that supports every

broker to which this message flow is deployed. If the file does not exist, an

error is detected when you deploy the message flow. The default file name

is MQeConfig.ini.

g. In Queue manager name, specify the name of the WebSphere MQ

Everyplace queue manager. This queue manager is not related to the queue

manager of the broker to which you deploy the message flow that contains

this node.

Only one WebSphere MQ Everyplace queue manager can be supported.

Only one execution group can contain MQeInput or MQeOutput nodes.

This property must therefore be set to the same value in every MQeInput

node that is included in every message flow that you deploy to the same

broker.
4. On the Channel tab, set the maximum number of channels that are supported

by WebSphere MQ Everyplace in Max channels. The default value is zero,

which means that there is no limit.

5. On the Registry tab, set the following properties:

a. Select the type of registry from the Registry type list:

v FileRegistry. Registry and security information is provided in the

Directory specified later in this section.

v PrivateRegistry. You create the queue manager manually within

WebSphere MQ Everyplace, specifying the security parameters that you

need.
b. In Directory, specify the directory in which the registry file is located. This

property is valid only if you have selected a Registry type of FileRegistry.

c. If you have selected a Registry type of PrivateRegistry, complete the

following properties (for further details of these properties, see the

WebSphere MQ Everyplace documentation):

v Specify a PIN for the associated queue manager.

v Specify a Certificate request PIN for authentication requests.

v Provide a Keyring password to be used as a seed for the generation of

crypto keys.

v In Certificate host, specify the name of the certificate server that

WebSphere MQ Everyplace uses for authentication.

v In Certificate port, specify the number of the port for the certificate server

that WebSphere MQ Everyplace uses for authentication.
6. On the Listener tab, set the following properties that define the connection type

for WebSphere MQ Everyplace:

986 Message Flows

a. In Listener type, select the adapter type to use from the list. The default

value is Http; you can also select Length or History. For further details, see

the WebSphere MQ Everyplace documentation.

b. In Hostname, specify the hostname of the server. Set this property to the

special value localhost or to the TCP/IP address 127.0.0.1 (the default

value), both of which resolve correctly to the hostname of the server to

which the message flow is deployed. You can also use any valid hostname

or TCP/IP address in your network, but you must use a different message

flow for each broker to which you deploy it, or configure this property at

deploy time.

c. In Port, specify the port number on which WebSphere MQ Everyplace is

listening. If more than one MQeInput node is included in a message flow

that is deployed to a single broker, each MQeInput node must specify a

different number for this property. You must also ensure that the number

that you specify does not conflict with other listeners on the broker system;

for example, with WebSphere MQ. The default value is 8081.

d. In Time interval (sec), specify the timeout value, in seconds, before idle

channels are timed out. The default value is 300 seconds.

Channels are persistent logical entities that last longer than a single queue

manager request, and can survive network breakages, so it might be

necessary to time out channels that have been inactive for a period of time.

Connecting the terminals:

The MQeInput node routes each message that it retrieves successfully to the Out

terminal; if this fails, the message is retried. If the retry timeout expires (as defined

by the BackoutThreshold attribute of the input queue), the message is routed to the

Failure terminal; you can connect nodes to this terminal to handle this condition. If

you have not connected the Failure terminal, the message is written to the backout

queue.

If the message is caught by this node after an exception has been thrown further

on in the message flow, the message is routed to the Catch terminal. If you have

not connected the Catch terminal, the message loops continually through the node

until the problem is resolved. You must define a backout queue or a dead-letter

queue (DLQ) to prevent the message looping continuously through the node.

Configuring for coordinated transactions:

When you include an MQeInput node in a message flow, the value that you set for

the Transaction mode property defines whether messages are received under sync

point:

v If you set the property to Yes (the default), the message is received under sync

point (that is, within a WebSphere MQ unit of work). Any messages that are

sent subsequently by an output node in the same instance of the message flow

are put under sync point, unless the output node has overridden this explicitly.

v If you set the property to Automatic, the message is received under sync point if

the incoming message is marked persistent. Otherwise, it is not. Any message

that is sent subsequently by an output node is put under sync point, as

determined by the incoming persistence property, unless the output node has

overridden this explicitly.

Message flows 987

v If you set the property to No, the message is not received under sync point. Any

messages that are sent subsequently by an output node in the flow are not put

under sync point, unless an individual output node has specified that the

message must be put under sync point.

The MQeOutput node is the only output node that you can configure to override

this option.

Terminals and properties

The MQeInput node terminals are described in the following table.

 Terminal Description

Failure The output terminal to which the message is routed if an error occurs.

Out The output terminal to which the message is routed if it is successfully retrieved from

the WebSphere MQ Everyplace queue.

Catch The output terminal to which the message is routed if an exception is thrown

downstream and caught by this node.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The MQeInput node Description properties are described in the following table.

 Property M C Default Description

Node name No No MQeInput The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the

message flow.

The MQeInput node Default properties are described in the following table.

 Property M C Default Description

Message domain No No The domain that is used to parse the incoming

message.

Message set No No The name or identifier of the message set in which

the incoming message is defined.

If you set this property, then subsequently update

the project dependencies to remove this message set

reference, a warning is issued. Either update the

Message set property, or restore the reference to this

message set project.

Message type No No The name of the incoming message.

Message format No No The name of the physical format of the incoming

message.

Topic No Yes The default topic for the input message.

The MQeInput node General properties are described in the following table.

988 Message Flows

|
|
|
|
|

Property M C Default Description

Queue name Yes Yes The name of the WebSphere MQ Everyplace bridge

queue from which this node retrieves messages for

processing by this message flow.

Trace Yes No None The level of trace required for this node. Valid values

are None, Standard, Debug, and Full.

Trace filename Yes Yes \MQeTraceFile.trc The name of the file to which trace records are

written.

Transaction mode Yes No Yes This property controls whether the incoming

message is received under sync point. Valid values

are Automatic, Yes, and No.

Use config file Yes No Cleared If you select the check box, a configuration file is

used for this node.

Config filename Yes Yes \MQeconfig.ini The name of the configuration file to be used if the

Use config file check box is selected.

Queue manager

name

Yes Yes ServerQM1 The name of the WebSphere MQ Everyplace queue

manager.

The MQeInput node Channel properties are described in the following table.

 Property M C Default Description

Max channels Yes No 0 The maximum number of channels that are

supported by the WebSphere MQ Everyplace queue

manager.

The MQeInput node Registry properties are described in the following table.

 Property M C Default Description

Registry type Yes Yes FileRegistry The type of registry information to be used. Valid

values are FileRegistry and PrivateRegistry.

Directory Yes Yes \ServerQM1\registry The directory in which the registry file exists (valid

only if FileRegistry is selected).

PIN Yes Yes The PIN that is associated with the WebSphere MQ

Everyplace queue manager (valid only if

PrivateRegistry is selected).

Certificate request

PIN

Yes Yes The PIN that is used to request authentication (valid

only if PrivateRegistry is selected).

Keyring password Yes Yes The password that is used to see crypto keys (valid

only if PrivateRegistry is selected).

Certificate host Yes Yes The name of the certificate server (valid only if

PrivateRegistry is selected).

Certificate port Yes Yes The port of the certificate server (valid only if

PrivateRegistry is selected).

The MQeInput node Listener properties are described in the following table.

 Property M C Default Description

Listener type Yes Yes Http The adapter type for the listener. Valid values are

Http, Length, and History.

Message flows 989

Property M C Default Description

Hostname Yes Yes 127.0.0.1 The hostname of the server.

Port Yes Yes 8081 The port on which WebSphere MQ Everyplace

listens.

Time interval (sec) Yes Yes 300 The WebSphere MQ Everyplace polling interval,

specified in seconds.

MQeOutput node

Use the MQeOutput node to send messages to clients that connect to the broker

using the WebSphere MQ Mobile Transport protocol.

Attention: Using message flows that contain MQeInput and MQeOutput nodes in

Version 6.1 is deprecated. The behavior that is described here is intended only for

when you are deploying from Version 6.1 to a previous version, and to provide a

route for migration. Redesign your flows to remove the MQe nodes and replace

them with MQ nodes that are configured to your own specifications and

coordinated with your MQe gateway configuration. For more details see Migrating

a message flow that contains WebSphere MQ Everyplace nodes.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 991

v “WebSphere MQ Everyplace documentation” on page 991

v “Connecting the terminals” on page 991

v “Terminals and properties” on page 991

Purpose

The MQeOutput node forwards messages to WebSphere MQ Everyplace queue

managers. If you specify a non-local destination queue manager, ensure that there

is either a route to the queue manager, or store-and-forward queue servicing for

the queue manager, if it exists.

You cannot use the MQeOutput node to change the transactional characteristics of

the message flow. The transactional characteristics that are set by the message

flow’s input node determine the transactional behavior of the flow.

z/OS

You cannot use MQeOutput nodes in message flows that you deploy to

z/OS systems.

If you create a message flow to use as a subflow, you cannot use a standard output

node; you must use an instance of the Output node to create an out terminal for

the subflow through which to propagate the message.

If you do not want your message flow to send messages to a WebSphere MQ

Everyplace queue, choose another supported output node.

The MQeOutput node is contained in the WebSphere MQ drawer of the palette,

and is represented in the workbench by the following icon:

990 Message Flows

Using this node in a message flow

For an example of how this node can be used, consider a farmer who checks his

fields to see how well they are irrigated. He is carrying a PDA device with

WebSphere MQ Everyplace installed. He sees that his fields are not being irrigated,

and uses his PDA and a Global Satellite Navigation link to check the water flow

valve, and finds that it is faulty. This information is available because the remote

SCADA device that is responsible for controlling the valve has published a

diagnostic message, which was retrieved by the broker and forwarded to an

MQeOutput node and on to the WebSphere MQ Everyplace client on his PDA.

WebSphere MQ Everyplace documentation

You can find further information about WebSphere MQ Everyplace, and the

properties of the node, in the WebSphere MQ Everyplace documentation on the

WebSphere MQ Web page.

Connecting the terminals

Connect the In terminal to the node from which outbound messages bound are

routed.

Connect the Out or Failure terminal of this node to another node in this message

flow if you want to process the message further, process errors, or send the

message to an additional destination. If you propagate the message, the

LocalEnvironment that is associated with the message is enhanced with the

following information for each destination to which the message has been put by

this node:

v Queue name

v Queue manager name

v Message reply identifier (this is set to the same value as message ID)

v Message ID (from the MQMD)

v Correlation ID (from the MQMD)

These values are written in WrittenDestination within the LocalEnvironment tree

structure.

If you do not connect either terminal, the LocalEnvironment tree is unchanged.

If you use aggregation in your message flows, you must use these terminals.

Terminals and properties

When you have put an instance of the MQeOutput node into a message flow, you

can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The MQeOutput node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected when the message is put

to the output queue.

Message flows 991

http://www.ibm.com/software/integration/wmq

Terminal Description

Out The output terminal to which the message is routed if it has been successfully put to the output

queue, and if further processing is required within this message flow.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The MQeOutput node Description properties are described in the following table.

 Property M C Default Description

Node name No No MQeOutput The name of the node.

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message flow.

The MQeOutput node Basic properties are described in the following table.

 Property M C Default Description

Queue

manager

name

No Yes The name of the WebSphere MQ Everyplace queue manager to which the

output queue, which is specified in Queue name, is defined. Enter a value for

this property if you select Queue Name in Destination mode (on the

Advanced tab). If you select another option for Destination mode, you do not

need to set this property.

Queue

name

No Yes The name of the WebSphere MQ Everyplace output queue to which this node

puts messages. Enter a value for this property if you select Queue Name in

Destination mode (on the Advanced tab). If you select another option for

Destination mode, you do not need to set these properties.

The MQeOutput node Advanced property is described in the following table.

 Property M C Default Description

Destination

mode

Yes No Destination

List

The queues to which the output message is sent:

v Queue Name: the message is sent to the queue that is named in the Queue

name property. The properties Queue manager name and Queue name (on

the Basic tab) are mandatory if you select this option.

v Reply To Queue: the message is sent to the queue that is named in the

ReplyToQ field in the MQMD.

v Destination List (the default): the message is sent to the list of queues that

are named in the LocalEnvironment (also known as DestinationList) that is

associated with the message.

The MQeOutput node Request properties are described in the following table.

992 Message Flows

Property M C Default Description

Request Yes No Cleared Select Request to indicate that each output message is marked in the MQMD

as a request message (MQMD_REQUEST), and the message identifier field is

cleared (set to MQMI_NONE) to ensure that WebSphere MQ generates a new

identifier. Clear the check box to indicate that each output message is not

marked as a request message. You cannot select this check box if you have

selected a Destination mode of Reply To Queue.

Reply-to

queue

manager

No Yes The name of the queue manager to which the output queue, which is specified

in Reply-to queue, is defined. This name is inserted into the MQMD of each

output message as the reply-to queue manager. This new value overrides the

current value in the MQMD.

Reply-to

queue

No Yes The name of the reply-to queue to which to put a reply to this request. This

name is inserted into the MQMD of each output message as the reply-to

queue. This new value overrides the current value in the MQMD.

MQGet node

Use the MQGet node to receive messages from clients that connect to the broker by

using the WebSphere MQ Enterprise Transport, and the MQI and AMI application

programming interfaces.

You can also use the MQGet node to retrieve messages that were previously placed

in a WebSphere MQ message queue that is defined to the broker’s queue manager.

This topic contains the following sections:

v “Purpose”

v “Using the MQGet node in a message flow” on page 994

v “Configuring the MQGet node” on page 994

v “Overriding node properties during message processing” on page 998

v “Configuring for coordinated transactions” on page 998

v “Connecting the terminals” on page 999

v “Terminals and properties” on page 999

The topic uses the following terms:

input message

A message that enters the In terminal of the MQGet node.

queue message

A message that the MQGet node reads from the queue.

Purpose

The MQGet node reads a message from a specified queue, and establishes the

processing environment for the message. If appropriate, you can define the input

queue as a WebSphere MQ clustered queue or shared queue.

You can use an MQGet node anywhere within a message flow, unlike an MQInput

node, which you can use only as the first node in a message flow. The output

message tree from an MQGet node is constructed by combining the input tree with

the result tree from the MQGET call. You can set the properties of the MQGet node

to control the way in which messages are received; for example, you can indicate

that a message is to be processed under transaction control, or you can request

that, when the result tree is being created, data conversion is performed on receipt

of every input message.

Message flows 993

|

The MQGet node handles messages in the following message domains:

v MRM

v XMLNSC

v DataObject

v XMLNS

v JMSMap

v JMSStream

v MIME

v BLOB

v XML (this domain is deprecated; use XMLNSC)

v IDOC (this domain is deprecated; use MRM)

The MQGet node is contained in the WebSphere MQ drawer of the palette, and is

represented in the workbench by the following icon:

Using the MQGet node in a message flow

Look at the following topics to see how to use the MQGet node in a message flow:

v “A request-response scenario using an MQGet node” on page 189

Look at the following sample to see how to browse messages with the MQGet

node:

v Browsing WebSphere MQ Queues sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Configuring the MQGet node

When you have put an instance of the MQGet node into a message flow, you can

configure it; for more information, see “Configuring a message flow node” on page

235. The properties of the node are displayed in the Properties view.

All mandatory properties for which you must enter a value (those that do not have

a default value defined) are marked with an asterisk.

Configure the MQGet node.

1. Optional: On the Description tab, enter a Short description, a Long description,

or both. You can also rename the node on this tab.

2. On the Basic tab, enter in Queue name the name of the queue from which the

message is to be obtained. You must predefine this WebSphere MQ queue to

the queue manager that hosts the broker on which the message flow is

deployed. If this queue is not a valid queue, the node generates an exception,

and the input message is propagated to the Failure terminal.

3. On the Input Message Parsing tab, set values for the properties that describe

the message domain, message set, message type, and message format that the

node uses to determine how to parse the queue message.

v If the queue message has an MQRFH2 header, you do not need to set values

for the Input Message Parsing properties, because the values can be derived

from the <mcd> folder in the MQRFH2 header; for example:

994 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.mqbrowse.doc/doc/overview.htm

<mcd><Msd>MRM</Msd><Set>DHM4UO906S001</Set><Type>receiptmsg1</Type>

<Fmt>XML</Fmt></mcd>

If you set values, and those values differ from those in the MQRFH2 header,

the values in the MQRFH2 header take precedence.

v In Message domain, select the name of the parser that you want from the

list. If the MQRFH2 header does not supply the Message domain value, you

can select a value from the list. If you do not select a value then the default

value is BLOB. You can choose from the following options:

– MRM

– XMLNSC

– DataObject

– XMLNS

– JMSMap

– JMSStream

– MIME

– BLOB

– XML (this domain is deprecated; use XMLNSC)

– IDOC (this domain is deprecated; use MRM)

You can also specify a user-defined parser, if appropriate.

v If you are using the MRM or IDOC parser, or the XMLNSC parser in

validating mode, select the Message set that you want to use.

v If you are using the MRM parser, select the correct message from the list in

Message type. This list is populated with messages that are defined in the

Message set that you have selected.

v If you are using the MRM or IDOC parser, select the format of the message

from the list in Message format. This list includes all of the physical formats

that you have defined for this Message set.
4. On the Parser Options sub-tab:

a. Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed. To cause the message to be parsed immediately, see

“Parsing on demand” on page 1363.

b. Select Use MQRFH2C compact parser for MQRFH2 header if you want the

MQRFH2C parser to be used. By default, this check box is cleared, which

means that the compact parser is not used.

c. If you are using the XMLNSC parser, set values for the properties that

determine how the XMLNSC parser operates. For more information, see

“Manipulating messages in the XMLNSC domain” on page 364.
5. On the Advanced tab, set values for the advanced properties.

v Select a value for Transaction mode from the list to define the transactional

characteristics of how this message is handled:

– If you select Automatic, the queue message is received under sync point if

it is marked as persistent. If the message is not marked as persistent, it is

not received under sync point. The persistence or non-persistence of the

input message determines the transactionality of any derived messages

that are subsequently propagated by an output node, unless the output

node, or any other subsequent node in the message flow, overrides the

transactionality explicitly.

– If you select Yes, the queue message is received under sync point. Any

derived messages that are subsequently propagated by an output node in

the same instance of the message flow are sent transactionally, unless the

output node, or any other subsequent node in the message flow, overrides

the transactionality explicitly.

Message flows 995

|

– If you select No, the queue message is not received under sync point. Any

derived messages that are subsequently propagated by an output node in

the same instance of the message flow are sent non-transactionally, unless

the output node, or any other subsequent node in the message flow, has

specified that the messages must be put under sync point.
v Select a value for Generate mode from the list to define which components of

the output message are generated within the MQGet node, and which

components are taken from the input message.

– If you select None, all of the components of the message from the input

tree are propagated unchanged.

– If you select Message (the default), a new Message component is created

by the node, but the LocalEnvironment, Environment, and ExceptionList

components from the input tree are propagated unchanged.

– If you select LocalEnvironment, a new LocalEnvironment component is

created by the node, but the Message, Environment, and ExceptionList

components from the input tree are propagated unchanged.

– If you select Message and LocalEnvironment, new Message and

LocalEnvironment components are created by the node, but the

Environment and ExceptionList components from the input tree are

propagated unchanged.
v If you have chosen Generate mode to be either Message or Message And

LocalEnvironment, select a value for Copy message from the list to define

which parts of the message are generated within the MQGet node, and

which parts are taken from the input message.

– If you select None (the default), no part of the input message from the

input tree is propagated.

– If you select Copy Headers, the headers from the input message in the

input tree are copied to the output message.

– If you select Copy Entire Message, the entire input message from the

input tree is copied to the output message.
v If you have chosen Generate mode to be either LocalEnvironment or

Message And LocalEnvironment, select a value for Copy Local Environment

from the list to define which parts of the local environment are generated

within the MQGet node, and which parts are taken from the input message.

– If you select Copy Entire LocalEnvironment (the default), at each node in

the message flow, a new copy of the local environment is created in the

tree, and it is populated with the contents of the local environment from

the preceding node. So if a node changes the local environment, the

upstream nodes do not see those changes because they have their own

copies. This behavior might be an issue if you are using a FlowOrder

node, or if you use the propagate command on a Compute node. The

entire local environment that is defined in the input message is copied to

the output message.

– If you select None, each node does not generate its own copy of the local

environment, but it uses the local environment that is passed to it by the

previous node. So if a node changes the local environment, those changes

are seen by the upstream nodes.
v Provide a value for the Wait interval (ms) property to specify how many

milliseconds to wait for a message to be received from the MQGET call. If

you do not provide a value, the default value of 1000 milliseconds is used.

v Provide a value for the Minimum message buffer size (KB) property to

specify the size, in KB, of the initial buffer for the MQGET call. The buffer

996 Message Flows

expands automatically to accept a message of any size, but if it is expected

that messages will all be large, specify a suitable value to reduce the

frequency of the buffer being re-sized. If you do not provide a value, the size

of the buffer is 4 KB.
6. On the Request tab, set values for the properties that determine how the

request parameters are constructed.

v If the MQMD that is to be used for the MQGET call is not the default

location InputRoot.MQMD, specify in Input MQMD location the location of the

MQMD.

v If the location of the parameters for the MQGET call (for example, MQGMO

overrides), is not the default location InputLocalEnvironment.MQ.GET, specify

the location in Input MQ parameters location.

v If you select Get by correlation ID, the CorrelId field of the message to be

retrieved must match the CorrelId field in the Input MQMD location. By

default, this check box is cleared.

v If you select Get by message ID, the MsgId field of the message to be

retrieved must match the MsgId field in the Input MQMD location. By

default, this check box is cleared.

v If you select Use all input MQMD fields, all MQMD fields at the Input

MQMD location are used to retrieve the message. If an MQMD bit stream is

present at the Input MQMD location, all fields in the bit stream are used.

Make sure that the MQMD of the message to be retrieved matches these

fields. By default, this check box is cleared.

v Select Browse only to specify that the message should be retained on the

queue when it is read.
7. On the Result tab, set values for the properties that determine how the results

of the MQGET call are handled.

v In Output data location, enter the start location within the output message

tree at which the parsed elements from the bit string of the queue message

are stored; the default value is OutputRoot. All elements at this location are

deleted, and the default behavior is to replace the input tree message with

the queue message.

You can enter any valid ESQL field reference (this reference can include

expressions), including new field references to create a new node within the

message tree for inserting the response into the message that is propagated

from the input tree. For example, OutputRoot.XMLNS.ABC.DEF and

Environment.GotReply are valid field references. For more detailed

information, see “A request-response scenario using an MQGet node” on

page 189.

When the queue message bit string is parsed to create the contents of the

message tree, the message properties that you have specified as the Input

Message Parsing properties of the node are used.

v Set a value in Result data location to control which subtree of the queue

message is placed in the output message. The default value is ResultRoot,

which means that the whole queue message is placed in the output message.

If, for example, you want only the MQMD from the queue message, use

ResultRoot.MQMD; this subtree is then placed at the location specified by

Output data location.

v Set a value in Output MQ parameters location to control where the CC

(completion code), the RC (reason code), the Browsed indicator, and any

other WebSphere MQ parameters (for example, the MQMD that is used by

the MQGET call) are placed in the output tree. The default value is

OutputLocalEnvironment.MQ.GET.

Message flows 997

v Set a value in Warning data location to control where the queue message is

placed when the MQGET call returns a warning code. The default value is

OutputRoot.

You can enter any valid ESQL field reference (see the description of the

Output data location property). The data that is placed at this location is

always the complete result tree, with the body as a BLOB element. Result

data location is not used for warning data.

v Clear Include message contents in output message assembly to specify that

no result or warning data is required for the output message assembly. This

action gets or browses the message on the queue without reading or parsing

its contents.

If you select Include message contents in output message assembly, it does

not guarantee that the message contents are included in the output tree

because this inclusion depends on other node properties, such as the

Generate mode property.
8. On the Validation tab, set the validation properties if you want the parser to

validate the body of each queue message against the Message set. (If a message

is propagated to the Failure terminal of the node, it is not validated.)

For more details, see “Validating messages” on page 164 and “Validation

properties” on page 1359.

Overriding node properties during message processing

When you include and configure an MQGet node in a message flow, you might

want to override its properties under some conditions. For example, you might

want to read from a queue that is identified in another part of the message, or that

is retrieved from a database record.

To override the values that you set for the MQGet node properties to achieve a

more dynamic way to process messages, include a Compute or JavaCompute node

in your message flow before the MQGet node. Configure this node to create a new

output message, and add fields to the LocalEnvironment tree to define new values

for the properties that you want to change.

For example, add a Compute node into the flow and define a new queue name for

the MQGet node to read for messages, by including the following ESQL statement:

SET LocalEnvironment.MQ.GET.QueueName = ’new_queue’;

Use LocalEnvironment.MQ.GET. as the correlation name for all fields that relate to

the MQGet node.

Configuring for coordinated transactions

When you include an MQGet node in a message flow, the value that you set for

Transaction mode defines whether messages are received under sync point.

v If you set the property to Yes (the default), the queue message is received under

sync point (that is, within a WebSphere MQ unit of work). Any messages that

an output node in the same instance of the message flow sends subsequently are

put under sync point, unless the output node, or any other subsequent node,

overrides this setting explicitly.

v If you set the property to Automatic, the queue message is received under sync

point if the incoming message is marked as persistent. Otherwise, it is not

received under sync point. Any message that is sent subsequently by an output

998 Message Flows

|

|
|
|
|

|
|
|
|
|

|
|

|

|
|

node is put under sync point, as determined by the incoming persistence

property, unless the output node, or any other subsequent node, overrides this

setting explicitly.

v If you set the property to No, the queue message is not received under sync

point. Any messages that are sent subsequently by an output node in the

message flow are not put under sync point, unless an individual output node, or

any other subsequent node, specifies that the message must be put under sync

point.

If you set the Browse only property, the value that you set for the Transaction

mode property is ignored because a message cannot be browsed under sync point.

However, any derived messages that are propagated subsequently by an output

node in the same instance of the message flow follow the behavior that is

described previously in accordance with the specified Transaction mode value.

Connecting the terminals

Connect the Out, Warning, Failure, and No Message output terminals of this node

to another node in the message flow to process the message further, process errors,

or send the message to an additional destination.

The completion code (CC) that is generated by the MQGET call controls what is

propagated to each of the output terminals.

v If the MQGET call is successful, the MQGet node routes each parsed output

message to the Out terminal.

v If the MQGET call fails, but with a CC that indicates a warning, an unparsed

output message is propagated to the Warning terminal.

v If the MQGET call fails with a CC more severe than a warning, the input

message is propagated to the Failure terminal.

v If the MQGET call fails with a reason code of MQRC_NO_MSG_AVAILABLE,

the output message is propagated (without a result body) to the No Message

terminal. The output message that is propagated to the No Message terminal is

constructed from the input message only, according to the values of the Generate

mode, Copy message, and Copy local environment properties.

v If you do not connect the Out, Warning, or No Message terminals to another

node in the message flow, any message that is propagated to those terminals is

discarded.

v If you do not connect the Failure terminal to another node in the message flow,

the broker generates an exception when a message is propagated to that

terminal.

For more information, see “Connecting failure terminals” on page 206.

Terminals and properties

The terminals of the MQGet node are described in the following table.

 Terminal Description

In The input terminal that accepts the message that is being processed by the message

flow.

Message flows 999

Terminal Description

Warning The output terminal to which the output tree is propagated if an error (with a CC that

indicates a warning) occurs within the node while trying to get a message from the

queue. The MQMD part of the message is parsed, but the rest of the message is an

unparsed BLOB element. The warning is discarded if the terminal is not connected,

and there is no output propagation from the node at all.

Failure The output terminal to which the input message is routed if an error (with a CC that

indicates an error that is more severe than a warning) occurs within the node while

trying to get a message from the queue.

Out The output terminal to which the message is routed if it is retrieved successfully from

the WebSphere MQ queue.

No Message The output terminal to which the input message is routed if no message is available

on the queue. The output message that is propagated to the No Message terminal is

constructed from the input message only, according to the values of the Generate

mode, Copy message, and Copy local environment properties.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value); the column headed C indicates whether the property is configurable (you

can change the value when you add the message flow to the bar file to deploy it).

The Description properties of the MQGet node are described in the following table.

 Property M C Default Description

Node name No No The node

type, MQGet

The name of the node.

Short description No No Blank A brief description of the node.

Long description No No Blank Text that describes the purpose of the node in the

message flow.

The Basic properties of the MQGet node are described in the following table.

 Property M C Default Description

Queue name Yes Yes None The name of the WebSphere MQ message queue from

which this node retrieves messages.

The Input Message Parsing properties of the MQGet node are described in the

following table.

 Property M C Default Description

Message domain No No BLOB The domain that is used to parse the queue message. If

the MQRFH2 header does not supply the Message

domain value, then you can select a value from the list.

If you do not select a value, the default value is BLOB.

Message set No No None The name or identifier of the message set in which the

queue message is defined.

If you set this property, then subsequently update the

project dependencies to remove this message set

reference, a warning is issued. Either update the

Message set property, or restore the reference to this

message set project.

1000 Message Flows

|
|
|
|
|

Property M C Default Description

Message type No No None The name of the queue message.

Message format No No None The name of the physical format of the queue message.

The Parser Options properties of the MQGet node are described in the following

table.

 Property M C Default Description

Parse timing No No On Demand This property controls when the queue message is

parsed. Valid values are On Demand, Immediate, and

Complete.

For a full description of this property, see “Parsing on

demand” on page 1363.

Use MQRFH2C

compact parser for

MQRFH2 header

No No Cleared This property controls whether the MQRFH2C compact

parser, instead of the MQRFH2 parser, is used for

MQRFH2 headers.

Build tree using XML

schema data types

No No Cleared This property controls whether the XMLNSC parser

creates syntax elements in the message tree with data

types taken from the XML Schema. You can select this

property only if you set the Validate property on the

Validation tab to Content or Content and Value.

Use XMLNSC compact

parser for XMLNS

domain

No No Cleared This property controls whether the XMLNSC Compact

Parser is used for messages in the XMLNS Domain. If

you set this property, the message data appears under

XMLNSC in nodes that are connected to the output

terminal when the input MQRFH2 header or Input

Message Parsing properties Message domain is

XMLNS.

Retain mixed content No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

mixed text in the queue message message. If you select

the check box, elements are created for mixed text. If

you clear the check box, mixed text is ignored and no

elements are created.

Retain comments No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

comments in the queue message message. If you select

the check box, elements are created for comments. If

you clear the check box, comments are ignored and no

elements are created.

Retain processing

instructions

No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

processing instructions in the queue message. If you

select the check box, elements are created for

processing instructions. If you clear the check box,

processing instructions are ignored and no elements are

created.

Opaque elements No No Blank This property is used to specify a list of elements in the

queue message that are to be opaquely parsed by the

XMLNSC parser. Opaque parsing is performed only if

validation is not enabled (that is, if Validate is None);

entries that are specified in Opaque Elements are

ignored if validation is enabled.

Message flows 1001

The Advanced properties of the MQGet node are described in the following table.

 Property M C Default Description

Transaction mode No No Yes This property controls whether the incoming message is

received under sync point. Valid values are Automatic,

Yes, and No.

Generate mode No No Message This property controls which parts of the message from

the input tree are copied. Valid values are Message,

LocalEnvironment, Message And LocalEnvironment,

and None.

Copy message No No None This property controls which parts of the message from

the input tree are copied. Valid values are None, Copy

Headers, and Copy Entire Message.

Copy local

environment

No No Copy Entire

LocalEnvironment

This property controls how the local environment is

copied to the output message. If you set it to Copy

Entire LocalEnvironment, at each node in the message

flow, a new copy of the local environment is created in

the tree, and it is populated with the contents of the

local environment from the preceding node. So if a node

changes the local environment, the upstream nodes do

not see those changes because they have their own

copies. This behavior might be an issue if you are using

a FlowOrder node, or if you use the propagate

command on a Compute node.

If you set this property to None, each node does not

generate its own copy of the local environment, but it

uses the local environment that is passed to it by the

previous node. So if a node changes the local

environment, those changes are seen by the upstream

nodes.

Wait interval (ms) Yes No 1000 The maximum time, in milliseconds, to wait for the

queue message to be obtained from the message queue.

Minimum

message buffer

size (KB)

Yes No 4 The minimum size, in KB, of the get buffer. The

minimum value of this property is 1.

The Request properties of the MQGet node are described in the following table.

 Property M C Default Description

Input MQMD location No No The location in the input message assembly where the

MQMD that is to be used for the MQGET can be

found. The default location is InputRoot.MQMD.

Input MQ parameters

location

No No The location in the input message assembly where the

WebSphere MQ parameters (for example, the initial

buffer size and the MQGMO overrides) can be found.

The default location is

InputLocalEnvironment.MQ.GET.

Get by correlation ID No No Cleared If you select this check box, only messages that have

the specified correlation ID are retrieved.

Get by message ID No No Cleared If you select this check box, only messages that have

the specified message ID are retrieved.

Use all input MQMD

fields

No No Cleared If you select this check box, all MQMD fields supplied

are used; otherwise, only the message ID and

correlation ID are used.

1002 Message Flows

Property M C Default Description

Browse only No No Cleared This property controls whether a message is removed

from the queue when it is read. If this check box is

selected, the message is not removed from the queue

when it is read.

The Result properties of the MQGet node are described in the following table.

 Property M C Default Description

Output data location No No OutputRoot This property specifies where the output data is placed.

If you leave the field blank, OutputRoot is used as a

default.

Result data location No No ResultRoot This property specifies which subtree (of the queue

message) to use. If you leave this field blank,

ResultRoot is used as a default, and the whole queue

message is used. If, for example,

ResultRoot.MQMD.ReplyToQ is specified, only that

subtree is used.

Output MQ

parameters location

No No This property specifies where the output

WebSphere MQ parameters are located. If you leave

this field blank, OutputLocalEnvironment.MQ.GET is

used as a default. Set Generate mode to include

LocalEnvironment to ensure that the updated values

are visible in downstream nodes. The default location is

OutputLocalEnvironment.MQ.GET.

Warning data location No No OutputRoot This property specifies where the output data is placed

if MQGET returns a warning code. If you leave this

field blank, OutputRoot is used as a default.

Include message

contents in output

message assembly

No No Selected This property specifies that no result or warning data is

required for the output message assembly. If you select

this check box, the node gets or browses the message

on the queue without completely reading or parsing its

contents.

If you select Include message contents in output

message assembly, it does not guarantee that the

message contents are included in the output tree

because this inclusion depends on other node

properties, such as the Generate mode property.

The Validation properties of the MQGet node are described in the following table.

For a full description of these properties, see “Validation properties” on page 1359.

 Property M C Default Description

Validate No Yes None This property controls whether validation takes place.

Valid values are None, Content, Content and Value,

and Inherit.

Failure action No No Exception This property controls what happens if validation fails.

You can set this property only if you set Validate to

Content or Content and Value. Valid values are User

Trace, Local Error Log, Exception, and Exception List.

Message flows 1003

MQHeader node

Use the MQHeader node to add, modify, or delete MQ Message Descriptor

(MQMD) and MQ Dead Letter Header (MQDLH) headers.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow”

v “Terminals and properties”

Purpose

You can add or remove a whole header, or you can change only certain fields in a

header. You can set these fields to a fixed value, or to a value specified by an

XPath expression to access a value in one of the message trees. XPath is used to

provide a valid location from which a value for a property can be copied. For

example, the location can be the body of the message, the local environment tree,

or an exception list.

The MQHeader node is contained in the WebSphere MQ drawer of the palette,

and is represented in the workbench by the following icon:

Using this node in a message flow

Look at the following sample for more details about how to use the node:

v MQHeader node sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Terminals and properties

When you have put an instance of the node into a message flow, you can configure

it; see “Configuring a message flow node” on page 235. The properties of the node

are displayed in the Properties view. This node has no mandatory properties.

MQHeader node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is routed if a failure is detected.

Out The output terminal to which the transformed message is routed if the input message

is processed successfully.

The following tables describes the node properties. The column headed M

indicates whether the property is mandatory (marked with an asterisk if you must

enter a value when no default is defined); the column headed C indicates whether

the property is configurable (you can change the value when you add the message

flow to the bar file to deploy it).

The MQHeader node Description properties are described in the following table.

1004 Message Flows

|

|
|

|
|
|
|

|

|
|
|
|
|
|

|
|

|

|

|

|

|
|

|

|
|
|

|

|||

||

||

||
|
|

|
|
|
|
|

|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.thn.mqheadernode.doc/doc/overview.htm

Property M C Default Description

Node name No No MQHeader The name of the node.

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message flow.

The MQ Message Descriptor properties are described in the following table. Refer

to WebSphere MQ Application Programming Reference and WebSphere MQ Application

Programming Guide for full details of each of the MQ property and its supported

values.

 Property M C Default Description

MQMD header options No Yes Carry forward header Options to control the MQMD as a whole.

Select Carry forward header to carry forward any

values that are present in an incoming message.

Select Add header to add a new header using the

specified property values. If a header already exists,

the header is modified using the specified property

values. If Inherit from header is specified as a property

value and the header does not exist, the default value

for the property is used.

Select Modify header to change an existing header

using the specified property values. If a header does

not exist, a new header is added first. If Inherit from

header is specified as a property value and the header

does not exist, the default value for the property is

used.

Select Delete header to delete the header, if it exists.

Note: The Add header and Modify header options

both add a header if it does not exist, and change a

header if it does exist. However, the default values

offered by each option differ, so use the appropriate

option.

Coded Character Set

Identifer

No Yes MQCCSI_Q_MGR The character set identifier of character data in the

message. A sample set of custom literals for EBCIDIC

and other common Unicode values is given here:

 MQCCSI_INTL_EBCIDIC : 500

MQCCSI_US_EBCIDIC : 037

MQCCSI_UNICODE_1200 : 1200

MQCCSI_UNICODE_1208 : 1208

MQCCSI_UNICODE_13488 : 13488

MQCCSI_UNICODE_17584 : 17584

Refer to the WebSphere MQ Application Programming

Reference and WebSphere MQ Application Programming

Guide for full details.

Format No Yes MQFMT_NONE A name that the sender of the message can use to

indicate to the receiver the nature of the data in the

message.

Version Number No Yes MQMD_VERSION_1 The version ID of the MQMD message.

Message Type No Yes MQMT_DATAGRAM The message type.

Message Expiry No Yes MQEI_UNLIMITED A period of time expressed in tenths of a second, set

by the application that puts the message. The message

becomes eligible to be discarded if it has not been

removed from the destination queue before this period

of time elapses.

Feedback or Reason Code No Yes MQFB_NONE Used with a message of type MQMT_REPORT to

indicate the nature of the report, and meaningful only

with that type of message.

Message flows 1005

||||||

|||||

|
|
||||

|
|
||||

|

|
|
|
|

||||||
|||||

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
||||
|
|

|
|
|
|
|
|

|
|
|
|||||
|
|

Property M C Default Description

Message Priority No Yes MQPRI_PRIORITY_AS_Q_DEF Message priority. 0 is the lowest value, and 9 is the

highest. Custom display literals are as follows:

 MQPRI_PRIORITY_HIGH : 9

MQPRI_PRIORITY_8 : 8

MQPRI_PRIORITY_7 : 7

MQPRI_PRIORITY_6 : 6

MQPRI_PRIORITY_5 : 5

MQPRI_PRIORITY_MEDIUM : 4

MQPRI_PRIORITY_3 : 3

MQPRI_PRIORITY_2 : 2

MQPRI_PRIORITY_1 : 1

MQPRI_PRIORITY_LOW : 0

Message Persistence No Yes MQPER_PERSISTENCE_AS_Q_DEF Indicates whether the message survives system failures

and restarts of the queue manager.

Message Identifier No Yes MQMI_NONE A string that is used to distinguish one message from

another.

Correlation Identifier No Yes MQCI_NONE A string that the application can use to relate one

message to another, or to relate the message to other

work that the application is performing.

Reply To Queue No Yes <No default value> The message queue to which the application that

issued the get request for the message should send

Reply and Report messages.

Reply To Queue Manager No Yes <No default value> The queue manager to which the reply message or

report message should be sent.

The Report properties are described in the following table.

 Property M C Default Description

Inherit from header No Yes Selected This property is enabled only when the

Modify header option is selected. Select this

field to inherit any MQMD report property

value that is present in an incoming message.

Exception No Yes No default value A type of MQ report message. Exception

report message is generated.

Expiration No Yes No default value A type of MQ report message. Expiration

report message is generated.

Confirm on arrival No Yes No default value A type of MQ report message. Confirm on

arrival report message is generated.

Confirm on delivery No Yes No default value A type of MQ report message. Confirm on

delivery report message is generated.

Notification No Yes No default value A type of MQ report Message. Action

notification report message is generated.

The MQDLH header properties are described in the following table.

1006 Message Flows

|||||
|||||
|

|
|
|
|
|
|
|
|
|
|
|||||
|
|||||
|
|||||
|
|
|||||
|
|
|||||
|
|

|

||||||

|||||
|
|
|

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|
|

|

Property M C Default Description

MQDLH header

options

No Yes Carry forward the header Options to control the MQMD as a whole.

Select Carry forward header to carry

forward any values that are present in an

incoming message.

Select Add header to add a new header

using the specified property values. If a

header already exists, the header is

modified using the specified property

values. If Inherit from header is specified as

a property value and the header does not

exist, the default value for the property is

used.

Select Modify header to change an

existing header using the specified

property values. If a header does not exist,

a new header is added first. If Inherit from

header is specified as a property value and

the header does not exist, the default

value for the property is used.

Select Delete header to delete the header,

if it exists.

Note: The Add header and Modify

header options both add a header if it

does not exist, and change a header if it

does exist. However, the default values

offered by each option differ, so use the

appropriate option.

Coded Character Set

Identifer

No Yes MQCCSI_UNDEFINED The character set identifier of character

data in the message.

Format No Yes MQFMT_NONE A name that the sender of the message can

use to indicate to the receiver the nature of

the data in the message.

Reason No Yes MQRC_NONE A code that indicates why the message is

sent to the dead letter queue (DLQ).

Destination Queue

Name

No Yes No default value The name of the destination queue.

Destination Queue

Manager Name

No Yes No default value The name of the destination queue

manager.

Save dead letter queue No Yes Selected If selected, the dead letter queue name is

stored in the local environment.

Save source queue No Yes Selected If selected, the original source queue name

is stored in the local environment.

MQInput node

Use the MQInput node to receive messages from clients that connect to the broker

using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI

application programming interfaces.

This topic contains the following sections:

v “Purpose” on page 1008

Message flows 1007

||||||

|
|
||||

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
||||
|

|||||
|
|

|||||
|

|
|
||||

|
|
||||
|

|||||
|

|||||
|
|

|

v “Using the MQInput node in a message flow” on page 1009

v “Configuring the MQInput node” on page 1009

v “Connecting the terminals” on page 1014

v “Configuring for coordinated transactions” on page 1014

v “Terminals and properties” on page 1015

Purpose

The MQInput node receives a message from a WebSphere MQ message queue that

is defined on the broker’s queue manager. The node uses MQGET to read a

message from a specified queue, and establishes the processing environment for

the message. If appropriate, you can define the input queue as a WebSphere MQ

clustered queue or shared queue.

Message flows that handle messages that are received across WebSphere MQ

connections must always start with an MQInput node. You can set the properties

of the MQInput node to control the way in which messages are received, by

causing appropriate MQGET options to be set. For example, you can indicate that

a message is to be processed under transaction control. You can also request that

data conversion is performed on receipt of every input message.

The MQInput node handles messages in the following message domains:

v MRM

v XMLNSC

v DataObject

v XMLNS

v JMSMap

v JMSStream

v MIME

v BLOB

v XML (this domain is deprecated; use XMLNSC)

v IDOC (this domain is deprecated; use MRM)

If you include an output node in a message flow that starts with an MQInput

node, it can be any of the supported output nodes, including user-defined output

nodes; you do not need to include an MQOutput node. You can create a message

flow that receives messages from WebSphere MQ clients and generates messages

for clients that use any of the supported transports to connect to the broker,

because you can configure the message flow to request that the broker provides

any conversion that is necessary.

If you create a message flow to use as a subflow, you cannot use a standard input

node; you must use an instance of the Input node as the first node to create an In

terminal for the subflow.

If your message flow does not receive messages across WebSphere MQ

connections, you can choose one of the supported input nodes.

The MQInput node is contained in the WebSphere MQ drawer of the palette, and

is represented in the workbench by the following icon:

1008 Message Flows

Using the MQInput node in a message flow

Look at the following samples to see how to use the MQInput node:

v Pager samples

v Airline Reservations sample

v Error Handler sample

v Aggregation sample

v JMS Nodes sample

v Large Messaging sample

v Message Routing sample

v Scribble sample

v Soccer Results sample

v Timeout Processing sample

v Video Rental sample

v XSL Transform sample

v Browsing WebSphere MQ Queues sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Configuring the MQInput node

When you have put an instance of the MQInput node into a message flow, you can

configure it; see “Configuring a message flow node” on page 235. The properties of

the node are displayed in the Properties view.

All mandatory properties that do not have a default value defined are marked

with an asterisk.

Configure the MQInput node:

1. Optional: On the Description tab, enter a Short description, a Long description,

or both. You can also rename the node on this tab.

2. On the Basic tab, enter the Queue name from which the message flow receives

messages. You must predefine this WebSphere MQ queue to the queue

manager that hosts the broker to which the message flow is deployed. This

property is mandatory.

3. On the Input Message Parsing tab, set values for the properties that describe

the message domain, message set, message type, and message format that the

node uses to determine how to parse the incoming message.

If the incoming message has an MQRFH2 header, you do not need to set values

for the Input Message Parsing properties because the values are derived from

the <mcd> folder in the MQRFH2 header; for example:

<mcd><Msd>MRM</Msd><Set>DHM4UO906S001</Set><Type>receiptmsg1</Type>

<Fmt>XML</Fmt></mcd>

If you set values, and those values differ from those in the MQRFH2 header,

and the <Msd> element is a valid domain, the values in the MQRFH2 header

take precedence.

v In Message domain, select the name of the parser that you want to use from

the list. If no MQRFH2 header exists to supply the value for the Message

domain, then you can select the property value from the list. You can either

Message flows 1009

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.pager.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.aggregation.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.jmsnode.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.largemessaging.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.routing.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.scribble.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.soccer.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.timeout.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.xmlt.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.mqbrowse.doc/doc/overview.htm

select an option or leave the property blank, in which case the default that is

used is BLOB. You can select from the following options:

– MRM

– XMLNSC

– DataObject

– XMLNS

– JMSMap

– JMSStream

– MIME

– BLOB

– XML (this domain is deprecated; use XMLNSC)

– IDOC (this domain is deprecated; use MRM)

You can also specify a user-defined parser, if appropriate.

v If you use the MRM or IDOC parser, or the XMLNSC parser in validating

mode, select the Message set that you want to use. The list of message sets

consists of those that are available when you select MRM, XMLNSC, or

IDOC as the domain.

v If you use the MRM parser, select the type of message from the list in

Message type. This list is populated with messages that are defined in the

Message set that you have selected.

v If you are using the MRM or IDOC parser, select the format of the message

from the list in Message format. This list includes all the physical formats

that you have defined for this Message set.
4. On the Parser Options sub-tab:

a. Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed. To cause the message to be parsed immediately, see

“Parsing on demand” on page 1363.

b. Select Use MQRFH2C compact parser for MQRFH2 header if you want the

MQRFH2C parser to be used. By default, this check box is cleared, which

means that the compact parser is not used.

c. If you are using the XMLNSC parser, set values for the properties that

determine how the XMLNSC parser operates. For more information, see

“Manipulating messages in the XMLNSC domain” on page 364.
5. On the Advanced tab, set the properties that determine how the message is

processed, such as its transactional characteristics. Many of these properties

map to options on the MQGET call.

v Select Transaction mode from the list to define the transactional

characteristics of how this message is handled:

– If you select Automatic, the incoming message is received under syncpoint

if it is marked persistent, otherwise it is not received under syncpoint. The

transactionality of any derived messages that are sent subsequently by an

output node is determined by the incoming persistence property, unless

the output node has overridden transactionality explicitly.

– If you select Yes, the incoming message is received under syncpoint. Any

derived messages that are sent subsequently by an output node in the

same instance of the message flow are sent transactionally, unless the

output node has overridden transactionality explicitly.

– If you select No, the incoming message is not received under syncpoint.

Any derived messages that are sent subsequently by an output node in

the message flow are sent non-transactionally, unless the output node has

specified that the messages must be put under syncpoint.

1010 Message Flows

|

v Select Order mode from the list to determine the order in which messages

are retrieved from the input queue. This property has an effect only if the

message flow property Additional instances on the Instances tab, is set to

greater than zero; that is, if multiple threads read the input queue. Valid

values are:

– Default. Messages are retrieved in the order that is defined by the queue

attributes, but this order is not guaranteed because the messages are

processed by the message flow.

– By User ID. Messages that have the same UserIdentifier in the MQMD are

retrieved and processed in the order that is defined by the queue

attributes; this order is guaranteed to be preserved when the messages are

processed. A message that is associated with a particular UserIdentifier

that is being processed by one thread, is completely processed before the

same thread, or another thread, can start to process another message with

the same UserIdentifier. No other ordering is guaranteed to be preserved.

– By Queue Order. Messages are retrieved and processed by this node in the

order that is defined by the queue attributes; this order is guaranteed to

be preserved when the messages are processed. This behavior is identical

to the behavior that is exhibited if the message flow property Additional

instances is set to zero.

For more details about using this option, see “Receiving messages in a

WebSphere MQ message group” on page 610.

v Select Logical order to ensure that messages that are part of a message group

are received in the order that has been assigned by the sending application.

This option maps to the MQGMO_LOGICAL_ORDER option of the

MQGMO of the MQI.

If you clear the check box, messages that are sent as part of a group are not

received in a predetermined order. If a broker expects to receive messages in

groups, and you have not selected this check box, either the order of the

input messages is not significant, or you must design the message flow to

process them appropriately.

You must also select Commit by message group if you want message

processing to be committed only after the final message of a group has been

received and processed.

More information about the options to which this property maps is available

in the Application Programming Reference section of the WebSphere MQ

Version 6 information center online.

For more details about using this option, see “Receiving messages in a

WebSphere MQ message group” on page 610.

v Select All messages available if you want message retrieval and processing to

be done only when all messages in a single group are available. This

property maps to the MQGMO_ALL_MSGS_AVAILABLE option of the

MQGMO of the MQI. Clear this check box if message retrieval does not

depend on all messages in a group being available before processing starts.

More information about the options to which this property maps is available

in the Application Programming Reference section of the WebSphere MQ

Version 6 information center online.

v Enter a message identifier in Match message ID if you want the input node

to receive only messages that contain a matching message identifier value in

the MsgId field of the MQMD.

Enter an even number of hexadecimal digits (characters 0 to 9, A to F, and

a to f are valid) up to a maximum of 48 digits. If the ID that you enter is

Message flows 1011

|
|

|
|

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

shorter than the size of the MsgId field, it is padded on the right with X’00’

characters. This property maps to the MQMO_MATCH_MSG_ID option of

the MQGMO of the MQI.

Leave this property blank if you do not want the input node to check that

the message ID matches.

More information about the options to which this property maps is available

in the Application Programming Reference section of the WebSphere MQ

Version 6 information center online.

v Enter a message identifier in Match correlation ID if you want the input

node to receive only messages that contain a matching correlation identifier

value in the CorrelId field of the MQMD.

Enter an even number of hexadecimal digits (characters 0 to 9, A to F, and

a to f are valid) up to a maximum of 48 digits. If the ID that you enter is

shorter than the size of the CorrelId field, it is padded on the right with

X’00’ characters. This property maps to the MQMO_MATCH_CORREL_ID

option of the MQGMO of the MQI.

Leave this property blank if you do not want the input node to check that

the CorrelID matches.

More information about the options to which this property maps is available

in the Application Programming Reference section of the WebSphere MQ

Version 6 information center online.

v Select Convert if you want WebSphere MQ to perform data conversion on

the message when it is retrieved from the queue. This option is useful if you

are handling messages in the BLOB domain, or are using a user-defined

parser. Do not select this option if you are parsing messages with the XML or

MRM domains, because the parser does the conversion.

WebSphere MQ converts the incoming message to the encoding and coded

character set that is specified in the MQMD that the input node supplies on

the MQGET call to retrieve the message from the input queue. The broker

uses the MQGMO_CONVERT option on the MQGET call; typical rules for

WebSphere MQ conversion apply. The values that you specify in the Convert

encoding and Convert coded character set ID options are used in the

MsgDesc Encoding and CCSID fields in the MQGET call. WebSphere MQ

can convert the incoming message only if the MQMD Format field is a

built-in MQ value that identifies character data, or if a data conversion exit

exists in WebSphere MQ.

This property maps to the MQGMO_CONVERT option of the MQGMO of

the MQI.

Clear the check box if you do not want WebSphere MQ to convert the

message.

If you select this check box, you can also specify:

– Convert encoding. Enter the number that represents the encoding to

which you want to convert numeric data in the message body. Valid

values include:

-

Windows

546 for DOS and all Windows systems

-

Linux

UNIX

273 for all Linux and UNIX systems

-

z/OS

785 for z/OS systems

The encoding is used only in the following circumstances:

- If a user-defined WebSphere MQ data conversion exit uses the

encoding.

1012 Message Flows

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

- If the built-in WebSphere MQ conversion exit uses the encoding to

convert messages in any of the predefined WebSphere MQ formats.

If you specify an incorrect value, no conversion is done.

– Convert coded character set ID. Enter the value that represents the

character set identifier to which you want to convert character data in the

message body.

If you specify an incorrect value, no conversion is done.

For more information about WebSphere MQ data conversion, and why you

might choose to use this option, see the Application Programming Guide

section of the WebSphere MQ Version 6 information center online. For

further information about the values that you can specify for Convert

encoding and Convert coded character set ID, see the Application

Programming Reference section of the WebSphere MQ Version 6 information

center online.

v Select Commit by message group if you want message processing to be

committed only after the final message of a group has been received and

processed. If you leave this check box cleared, a commit is performed after

each message has been propagated completely through the message flow.

This property is relevant only if you have selected Logical order.

Set the Order mode property to By Queue Order if the messages in a group

must be retrieved and processed in the order in which they are displayed on

the queue.

v

z/OS

On z/OS only: Enter a serialization token in z/OS serialization

token if you want to use the serialized access to shared resources that is

provided by WebSphere MQ.

The value that you provide for the serialization token must conform to the

rules described in the Application Programming Reference section of the

WebSphere MQ Version 6 information center online.

For more information about serialization and queue sharing on z/OS, see the

Concepts and Planning Guide section of the WebSphere MQ Version 6

information center online.

v Optional: You can associate a message with a publish/subscribe topic using

the Topic property. You can enter any characters as the topic name. When

messages pass through the MQInput node, they take on whatever topic name

you have entered. (If you are using publish/subscribe, you can subscribe to a

topic and see any messages that passed through the MQInput node and were

published under that topic name.) If the incoming message has an MQRFH2

header, you do not need to set a value for the Topic property because the

value can be obtained from the <psc> folder in the MQRFH2 header; for

example:

<psc><Topic>stockquote</Topic></psc>

If you set a Topic property value, and that value differs from the <Topic>

value in the MQRFH2 header, the value in the MQRFH2 header takes

precedence.

v Select Browse Only to specify that the message must be retained on the

queue when it is read. If you select this option,

OutputLocalEnvironment.MQ.GET.Browsed is set to true when a message is

propagated to the output terminal of the MQInput node.

v Provide a value for Reset browse timeout (ms) to specify how many

milliseconds to wait between the last eligible message being browsed on the

Message flows 1013

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

input queue and the browse being reset to the beginning of the queue. If you

do not provide a value, the default value of -1 is used to indicate that the

browse is not reset.
6. On the Validation tab, set the validation properties if you want the parser to

validate the body of messages against the Message set. (If a message is

propagated to the Failure terminal of the node, it is not validated.)

For more details, see “Validating messages” on page 164 and “Validation

properties” on page 1359.

7. Optional: On the Security tab, set values for the properties that control the

extraction of an identity from a message (when a security profile is associated

with the node).

v Optional: Select an option from the Identity token type list to specify the

type of identity in the incoming message. If you leave this option to default,

the identity is retrieved from the transport headers, and the type is set to

Username.

v Optional: In Identity token location, enter the location in the message where

the identity is specified. If you leave this option blank, the identity is

retrieved from the MQMD.UserIdentifier transport header.

v Optional: In Identity password location, enter the location in the message

where the password is specified. This option can be set only if the Identity

token type is set to Username + Password. If you leave this option blank, the

password is not set.

v Optional: In Identity issuedBy location, specify the location in the message

where information about the issuer of the identity is held. If you leave this

blank, the MQMD.PutApplName value is used. If you leave the Identity

issuedBy location field blank and the MQMD.PutApplName is also blank,

the string MQ is used.

v Optional: Select Treat security exceptions as normal exceptions if you want

security exceptions, for example Access Denied, to be treated as normal

exceptions and propagated down the failure terminal (if it is wired).

For more information, see Message flow security and Setting up message flow

security.

8. Optional: On the Instances tab, set values for the properties that control the

additional instances that are available for a node. For more details, see

“Configurable message flow properties” on page 1372.

Connecting the terminals:

The MQInput node routes each message that it retrieves successfully to the Out

terminal. If this action fails, the message is retried. If the backout count is exceeded

(as defined by the BackoutThreshold attribute of the input queue), the message is

routed to the Failure terminal; you can connect nodes to this terminal to handle

this condition. If you have not connected the Failure terminal, the message is

written to the backout queue.

If the message is caught by this node after an exception has been thrown further

on in the message flow, the message is routed to the Catch terminal. If you have

not connected the Catch terminal, the message loops continually through the node

until the problem is resolved.

You must define a backout queue or a dead-letter queue (DLQ) to prevent the

message from looping continually through the node.

Configuring for coordinated transactions:

1014 Message Flows

When you include an MQInput node in a message flow, the value that you set for

Transaction mode defines whether messages are received under syncpoint:

v If you set the property to Automatic, the message is received under syncpoint if

the incoming message is marked as persistent; otherwise, it is not received

under syncpoint. Any message that is sent subsequently by an output node is

put under syncpoint, as determined by the incoming persistence property, unless

the output node has overridden this explicitly.

v If you set the property to Yes (the default), the message is received under

syncpoint; that is, within a WebSphere MQ unit of work. Any messages that are

sent subsequently by an output node in the same instance of the message flow

are put under syncpoint, unless the output node has overridden this explicitly.

v If you set the property to No, the message is not received under syncpoint. Any

messages that are sent subsequently by an output node in the message flow are

not put under syncpoint, unless an individual output node has specified that the

message must be put under syncpoint.

The MQOutput node is the only output node that you can configure to override

this option.

If you have set the Browse Only property, the value that is set for the Transaction

mode property is ignored because a message cannot be browsed under syncpoint.

However, any derived messages that are propagated subsequently by an output

node in the same instance of the message flow follow the behavior that is

described previously in accordance with the specified Transaction mode value.

MQGET buffer size

The MQGET buffer size is implemented internally by the broker and you cannot

change it. The following description is provided for information only. You must not

rely on it when you develop your message flows, because the internal

implementation might change.

When the MQInput node initializes, it sets the size of the default buffer for the first

MQGET to 4 KB. The MQInput node monitors the size of messages and increases

or reduces the size of the buffer:

1. If an MQGET fails because the message is larger than the size of the buffer, the

node immediately increases the size of the buffer to accommodate the message,

issues the MQGET again, and zeros a message count.

2. When 10 messages have been counted since the increase in the size of the

buffer, the node compares the size of the largest of the 10 messages with the

size of the buffer. If the size of the largest message is less than 75% of the size

of the buffer, the buffer is reduced to the size of the largest of the 10 messages.

If an MQGET fails during the 10 messages because the message is larger than

the size of the buffer, the node takes action 1.

For example, if the first message that the node receives is 20 MB, and the next 10

messages are each 14 MB, the size of the buffer is increased from 4 KB to 20 MB

and remains at 20 MB for 10 messages. However, after the 10th message the size of

the buffer is reduced to 14 MB.

Terminals and properties

The terminals of the MQInput node are described in the following table.

Message flows 1015

Terminal Description

Failure The output terminal to which the message is routed if an error occurs. Even if the

Validation property is set, messages propagated to this terminal are not validated.

Out The output terminal to which the message is routed if it is successfully retrieved from

the WebSphere MQ queue.

Catch The output terminal to which the message is routed if an exception is thrown

downstream and caught by this node.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Description properties of the MQInput node are described in the following

table.

 Property M C Default Description

Node name No No The node

type,

MQInput

The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the

message flow.

The Basic properties of the MQInput node are described in the following table.

 Property M C Default Description

Queue name Yes Yes The name of the WebSphere MQ input queue from

which this node retrieves messages (using MQGET) for

processing by this message flow.

The Input Message Parsing properties of the MQInput node are described in the

following table.

 Property M C Default Description

Message domain No No BLOB The domain that is used to parse the incoming

message. The default value, BLOB, applies only if no

preset MQRFH2 header values exist and no option has

been selected from the list.

Message set No No The name or identifier of the message set in which the

incoming message is defined.

If you set this property, then subsequently update the

project dependencies to remove this message set

reference, a warning is issued. Either update the

Message set property, or restore the reference to this

message set project.

Message type No No The name of the incoming message.

Message format No No The name of the physical format of the incoming

message.

1016 Message Flows

|
|
|
|
|

The properties of the Parser Options for the MQInput node are described in the

following table.

 Property M C Default Description

Parse timing No No On Demand This property controls when an input message is

parsed. Valid values are On Demand, Immediate, and

Complete.

For a full description of this property, see “Parsing on

demand” on page 1363.

Use MQRFH2C

compact parser for

MQRFH2 header

No No Cleared This property controls whether the MQRFH2C compact

parser, instead of the MQRFH2 parser, is used for

MQRFH2 headers.

Build tree using XML

schema data types

No No Cleared This property controls whether the XMLNSC parser

creates syntax elements in the message tree with data

types taken from the XML Schema. You can select this

property only if you set the Validate property on the

Validation tab to Content or Content and Value.

Use XMLNSC compact

parser for XMLNS

domain

No No Cleared This property controls whether the XMLNSC compact

parser is used for messages in the XMLNS domain. If

you set this property, the message data appears under

XMLNSC in nodes that are connected to the output

terminal when the input MQRFH2 header or Input

Message Parsing properties Message domain is

XMLNS.

Retain mixed content No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

mixed text in an input message. If you select the check

box, elements are created for mixed text. If you clear

the check box, mixed text is ignored and no elements

are created.

Retain comments No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

comments in an input message. If you select the check

box, elements are created for comments. If you clear

the check box, comments are ignored and no elements

are created.

Retain processing

instructions

No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

processing instructions in an input message. If you

select the check box, elements are created for

processing instructions. If you clear the check box,

processing instructions are ignored and no elements are

created.

Opaque elements No No Blank This property is used to specify a list of elements in the

input message that are to be opaquely parsed by the

XMLNSC parser. Opaque parsing is performed only if

validation is not enabled (that is, if Validate is None);

entries that are specified in Opaque Elements are

ignored if validation is enabled.

The Advanced properties of the MQInput node are described in the following

table.

Message flows 1017

Property M C Default Description

Transaction mode Yes No Yes This property controls whether the incoming message

is received under syncpoint. Valid values are

Automatic, Yes, and No.

Order mode Yes No Default The order in which messages are retrieved from the

input queue and processed. Valid values are Default,

By User ID, and By Queue Order.

Logical order Yes No Selected If you select this check box, messages are received in

logical order, as defined by WebSphere MQ.

All messages available Yes No Cleared If you select the check box, all of the messages in a

group must be available before retrieval of a message is

possible.

Match message ID No No A message ID that must match the message ID in the

MQMD of the incoming message.

Match correlation ID No No A correlation ID that must match the correlation ID in

the MQMD of the incoming message.

Convert Yes No Cleared If you select this check box, WebSphere MQ converts

data in the message to be received, in conformance

with the CodedCharSetId and Encoding values set in

the MQMD.

Convert encoding No No The representation used for numeric values in the

message data, expressed as an integer value. This

property is valid only if you have selected Convert.

Convert coded

character set ID

No No The coded character set identifier of character data in

the message data, expressed as an integer value. This

property is valid only if you have selected Convert.

Commit by message

group

Yes No Cleared This property controls when a transaction is committed

when processing messages that are part of a message

group. If you select the check box, the transaction is

committed when the message group has been

processed.

z/OS serialization

token

No No A user-defined token for serialized application support.

The value that is specified must conform to the rules

for a valid ConnTag in the WebSphere MQ MQCNO

structure.

Topic No Yes The default topic for the input message.

Browse Only No No Cleared This property controls whether a message is removed

from the queue when it is read. If you select this check

box, the message is not removed from the queue when

it is read.

Reset browse timeout

(ms)

Yes Yes -1 The time, in milliseconds, between the last eligible

message being browsed on the input queue and the

browse being reset to the beginning of the queue. The

default value of -1 indicates that the browse is not

reset.

The Validation properties of the MQInput node are described in the following

table.

For a full description of these properties, see “Validation properties” on page 1359.

1018 Message Flows

Property M C Default Description

Validate No Yes None This property controls whether validation takes place.

Valid values are None, Content, and Content and

Value.

Failure action No No Exception This property controls what happens if validation fails.

You can set this property only if you set Validate to

Content or Content and Value. Valid values are User

Trace, Local Error Log, Exception, and Exception List.

The Security properties of the MQInput node are described in the following table.

For more information about these properties, see Identity and Configuring identity

extraction.

 Property M C Default Description

Identity token type No No None This property specifies the type of identity token

present in the incoming message. Valid values are:

Transport Default, Username, Username + Password,

and X.509 Certificate. If this property is not specified,

the identity is retrieved from the transport headers and

the type is set to Username.

Identity token location No No None This property specifies where, in the message, the

identity can be found. The location is specified as an

ESQL field reference or XPath. If this property is not

specified, the identity is retrieved from the

MQMD.UserIdentifier transport header.

Identity password

location

No No None This property specifies where, in the message, the

password can be found. The location is specified as an

ESQL field reference or XPath. If it is not specified, the

password is not set. This property can be set only if the

Identity type is set to Username + Password.

Identity IssuedBy

location

No No None This property specifies a string or path expression

describing the issuer of the identity. The location is

specified as an ESQL field reference or XPath. This is

for use in an identity mapper. If this property is not

specified, the MQMD.PutApplName value is used.

Treat security

exceptions as normal

exceptions

No No False This property specifies whether to treat security

exceptions (such as Access Denied) as normal

exceptions, and propagate them down the failure

terminal (if wired). This is turned off by default, which

ensures that security exceptions cause the message to

be backed out even if the failure terminal is wired.

The Instances properties of the MQInput node are described in the following table.

For a full description of these properties, see “Configurable message flow

properties” on page 1372.

Message flows 1019

Property M C Default Description

Additional instances

pool

No Yes Use Pool

Associated

with

Message

Flow

The pool from which additional instances are obtained.

v If you select Use Pool Associated with Message Flow,

additional instances are obtained from the message

flow value.

v If you select Use Pool Associated with Node,

additional instances are allocated from the node’s

additional instances based on the number specified

in the Additional instances property.

Additional instances No Yes 0 The number of additional instances that the node can

start if the Additional instances pool property is set to

Use Pool Associated with Node. By default, no

additional instances are given to the node.

MQJMSTransform node

Use the MQJMSTransform node to receive messages that have a WebSphere MQ

JMS provider message tree format, and transform them into a format that is

compatible with messages that are to be sent to JMS destinations.

This topic contains the following sections:

v “Purpose”

v “Using the MQJMSTransform node in a message flow”

v “Terminals and properties”

Purpose

Use the MQJMSTransform node to send messages to legacy message flows and to

interoperate with WebSphere MQ JMS and WebSphere Message Broker

publish/subscribe.

The JMSMQTransform node handles messages in all supported message domains.

The MQJMSTransform node is contained in the JMS drawer of the palette, and is

represented in the workbench by the following icon:

Using the MQJMSTransform node in a message flow

The following sample contains a message flow in which the MQJMSTransform

node is used. Refer to this sample for an example of how to use the

MQJMSTransform node.

v JMS Nodes sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Terminals and properties

When you have put an instance of the MQJMSTransform node into a message flow,

you can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view.

1020 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.jmsnode.doc/doc/overview.htm

The terminals of the MQJMSTransform node are described in the following table.

 Terminal Description

Failure The output terminal to which the message is routed if an error occurs. Even if the Validation property

is set, messages that are propagated to this terminal are not validated.

Out The output terminal to which the message is routed if it is successfully retrieved from the

WebSphere MQ queue.

In The input terminal that accepts a message for processing by the node.

The following table describes the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The MQJMSTransform node Description properties are described in the following

table.

 Property M C Default Description

Node name No No The node

type,

MQJMSTransform

The name of the node.

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the message

flow.

MQOptimizedFlow node

Use the MQOptimizedFlow node to provide a high-performance publish/subscribe

message flow. The node supports publishers and subscribers that use Java Message

Service (JMS) application programming interfaces and the WebSphere MQ

Enterprise Transport.

Restriction:

z/OS

You cannot use an MQOptimizedFlow node in message

flows that you deploy to z/OS systems.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 1022

v “Terminals and properties” on page 1022

Purpose

Use the MQOptimizedFlow node to replace a publish/subscribe message flow that

consists of an MQInput node that is connected to a Publication node and that uses

the Java Message Service (JMS) over WebSphere MQ transport.

Use the MQOptimizedFlow node to improve performance, particularly where a

single publisher produces a persistent publication for a single subscriber.

The MQOptimizedFlow node is contained in the WebSphere MQ drawer of the

palette, and is represented in the workbench by the following icon:

Message flows 1021

Using this node in a message flow

Use an MQOptimizedFlow node in a message flow to publish a persistent JMS

message to a single subscriber.

The MQOptimizedFlow node has no terminals, so you cannot connect it to any

other message flow node.

Terminals and properties

When you have put an instance of the MQOptimizedFlow node into a message

flow, you can configure it; see “Configuring a message flow node” on page 235.

The properties of the node are displayed in the Properties view. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The MQOptimizedFlow node has no terminals. It is a complete message flow and

you cannot connect it to other message flow nodes to extend the message

processing.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory; that is, whether you must enter a value if no

default value is defined; an asterisk next to the name of the property denotes this.

The column headed C indicates whether the property is configurable; that is,

whether you can change the value in the bar file.

The MQOptimizedFlow node Description properties are described in the following

table.

 Property M C Default Description

Node name No No MQOptimizedFlow The name of the node.

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message

flow.

The MQOptimizedFlow node Basic properties are described in the following table.

 Property M C Default Description

Queue

name

Yes Yes None The name of the WebSphere MQ input queue from which this node retrieves

messages for processing by this message flow.

The MQOptimizedFlow node Advanced properties are described in the following

table.

 Property M C Default Description

Transaction

mode

Yes No Yes This property controls whether the incoming message is received under

syncpoint. Valid values are Automatic, Yes, and No.

1022 Message Flows

MQOutput node

Use the MQOutput node to send messages to clients that connect to the broker

using the WebSphere MQ Enterprise Transport and that use the MQI and AMI

application programming interfaces.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 1024

v “Configuring the MQOutput node” on page 1024

v “Terminals and properties” on page 1027

Purpose

The MQOutput node delivers an output message from a message flow to a

WebSphere MQ queue. The node uses MQPUT to put the message to the

destination queue or queues that you specify.

If appropriate, define the queue as a WebSphere MQ clustered queue or shared

queue. When you use a WebSphere MQ clustered queue, leave the queue manager

name empty.

You can configure the MQOutput node to put a message to a specific

WebSphere MQ queue that is defined on any queue manager that is accessible by

the broker’s queue manager, or to the destinations identified in the

LocalEnvironment (also known as the DestinationList) that is associated with the

message.

Set other properties to control the way in which messages are sent, by causing

appropriate MQPUT options to be set; for example, you can request that a message

is processed under transaction control. You can also specify that WebSphere MQ

can, if appropriate, break the message into segments in the queue manager.

If you create a message flow to use as a subflow, you cannot use a standard output

node; use an instance of the Output node to create an Out terminal for the subflow

through which to propagate the message.

If you do not want your message flow to send messages to a WebSphere MQ

queue, choose another supported output node.

The MQOutput node checks for the presence of an MQMD (WebSphere MQ

message descriptor) header in the message tree. If no MQMD is present, the

MQOutput node creates an MQMD header in the message tree, and populates it

with MQMD default properties. If an MQMD header is found, the MQOutput

node checks that it is an MQ type header; if it is not, the Message Context

property is set to Default. The MQOutput node treats any other transport headers

in the message tree as data.

The MQOutput node is contained in the WebSphere MQ drawer of the palette,

and is represented in the workbench by the following icon:

Message flows 1023

Using this node in a message flow

Look at the following samples to see how to use this node:

v Pager samples

v Airline Reservations sample

v Error Handler sample

v Aggregation sample

v Large Messaging sample

v Message Routing sample

v Timeout Processing sample

v Video Rental sample

v XSL Transform sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

For an example of how to use this node, assume that you have written a

publishing application that publishes stock updates on a regular basis. The

application sends the messages to the broker on an MQInput node, and the

message flow makes the publications available to multiple subscribers through a

Publication node. You configure a Compute node to create a new output message

whenever one particular stock is changed, and connect this node to an MQOutput

node to record each price change for this stock.

Working with WrittenDestination data

After the message has been put, the WrittenDestination folder in the

LocalEnvironment is updated with the destination information. A

WrittenDestination for an MQOutput node has the following format:

WrittenDestination = (

 MQ = (

 DestinationData = (

 queueName = ’OUT’

 queueManagerName = ’MYQUEUEMANAGER’

 replyIdentifier = X’4d...2e’

 msgId = X’3c...2c’

 correlId = X’2a...00’

 GroupId = X’3a...00’

)

)

)

Configuring the MQOutput node

When you have put an instance of the MQOutput node into a message flow, you

can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view.

All mandatory properties for which you must enter a value (those that do not have

a default value defined) are marked with an asterisk.

Configure the MQOutput node.

1. Optional: On the Description tab, enter a short description, a long description,

or both. You can also rename the node on this page.

2. On the Basic tab:

1024 Message Flows

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.pager.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.aggregation.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.largemessaging.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.routing.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.timeout.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.xmlt.doc/doc/overview.htm

v To send the output message to a single destination queue that is defined by

this node, enter the name of the queue to which the message flow sends

messages in Queue Name.

v Enter the name of the queue manager to which this queue is defined in

Queue Manager Name. You must set these properties if you set the

Destination Mode property on the Advanced tab (described below) to Queue

Name. If you set Destination Mode to another value, these properties are

ignored.
3. The properties on the Advanced tab define the transactional control for the

message and the way in which the message is put to the queue. Many of these

properties map to options on the MQPUT call.

v Select the Destination Mode from the list. This property identifies the queues

to which the output message is put:

– Queue Name (the default). The message is sent to the queue that is named

in the Queue Name property. The Queue Manager Name and Queue

Name properties on the Basic tab are mandatory if you select this option.

– Reply To Queue. The message is sent to the queue that is named in the

ReplyToQ field in the MQMD.

– Destination List. The message is sent to the list of queues that are named

in the LocalEnvironment (also known as DestinationList) that is associated

with the message.
v Select the Transaction Mode from the list to determine how the message is

put:

– If you select Automatic (the default), the message transactionality is

derived from the way that it was specified at the input node.

– If you select Yes, the message is put transactionally.

– If you select No, the message is put non-transactionally.

For more information, see “Configuring for coordinated transactions” on

page 1027.

v Select the Persistence Mode from the list to determine whether the message

is put persistently:

– If you select Automatic (the default), the persistence is as specified in the

incoming message.

– If you select Yes, the message is put persistently.

– If you select No, the message is put non-persistently.

– If you select As Defined for Queue, the message persistence is set as

defined for the WebSphere MQ queue.
v Select New Message ID to generate a new message ID for this message. This

property maps to the MQPMO_NEW_MSG_ID option of the MQPMO of the

MQI.

Clear the check box if you do not want to generate a new ID. A new message

ID is still generated if you select Request on the Request tab.

More information about the options to which this property maps is available

in the Application Programming Reference section of the WebSphere MQ

Version 6 information center online.

v Select New Correlation ID to generate a new correlation ID for this message.

This property maps to the MQPMO_NEW_CORREL_ID option of the

MQPMO of the MQI. Clear the check box if you do not want to generate a

new ID.

Message flows 1025

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

More information about the options to which this property maps is available

in the Application Programming Reference section of the WebSphere MQ

Version 6 information center online.

v Select Segmentation Allowed if you want WebSphere MQ to segment the

message within the queue manager when appropriate. Clear the check box if

you do not want segmentation to occur. See “Sending message segments in a

WebSphere MQ message” on page 612 for more information about message

segmentation.

More information about the options to which this property maps is available

in the Application Programming Reference section of the WebSphere MQ

Version 6 information center online.

v Select the Message Context to indicate how origin context is handled. Choose

one of the following options:

– Pass All maps to the MQPMO_PASS_ALL_CONTEXT option of the

MQPMO of the MQI.

– Pass Identity maps to the MQPMO_PASS_IDENTITY_CONTEXT option of

the MQPMO of the MQI.

– Set All maps to the MQPMO_SET_ALL_CONTEXT option of the MQPMO

of the MQI.

– Set Identity maps to the MQPMO_SET_IDENTITY_CONTEXT option of

the MQPMO of the MQI.

– Default maps to the MQPMO_DEFAULT_CONTEXT option of the

MQPMO of the MQI.

– None maps to the MQPMO_NO_CONTEXT option of the MQPMO of the

MQI.

More information about the options to which these properties map is

available in the Application Programming Reference section of the WebSphere

MQ Version 6 information center online.

When a security profile is associated with the node and is configured to

perform identity propagation, the chosen context can be overridden to ensure

that the outgoing identity is set.

v Select Alternate User Authority if you want the

MQOO_ALTERNATE_USER_AUTHORITY option to be set in the open

options (MQOO) of the MQI. If you select this check box, this option is

specified when the queue is opened for output. The alternate user

information is retrieved from the context information in the message. Clear

the check box if you do not want to specify alternate user authority. If you

clear the check box, the broker service user ID is used when the message is

put.
4. On the Request tab, set the properties to define the characteristics of each

output message generated.

v Select Request to mark each output message in the MQMD as a request

message (MQMT_REQUEST), and clear the message identifier field (which is

set to MQMI_NONE) to ensure that WebSphere MQ generates a new

identifier. Clear the check box to indicate that each output message is not

marked as a request message. You cannot select this check box if you have

selected a Destination Mode of Reply To Queue.

A new message identifier is generated even if the New Message ID check

box is not selected on the Advanced tab.

v Enter a queue manager name in Reply-to Queue Manager. This name is

inserted into the MQMD of each output message as the reply-to queue

manager.

1026 Message Flows

|
|
|

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

v Enter a queue name in Reply-to Queue. This name is inserted into the

MQMD of each output message as the reply-to queue.
5. On the Validation tab, set the validation properties if you want the parser to

validate the body of messages against the message set. (If a message is

propagated to the Failure terminal of the node, it is not validated.)

For more details, refer to “Validating messages” on page 164 and “Validation

properties” on page 1359.

Connecting the terminals:

Connect the In terminal to the node from which outbound messages bound are

routed.

Connect the Out or Failure terminal of this node to another node in this message

flow to process the message further, process errors, or send the message to an

additional destination.

If you use aggregation in your message flows, you must use the output terminals.

Configuring for coordinated transactions:

When you define an MQOutput node, the option that you select for the

Transaction Mode property defines whether the message is written under sync

point:

v If you select Yes, the message is written under sync point (that is, within a

WebSphere MQ unit of work).

v If you select Automatic (the default), the message is written under sync point if

the incoming input message is marked as persistent.

v If you select No, the message is not written under sync point.

Another property of the MQOutput node, Persistence Mode, defines whether the

output message is marked as persistent when it is put to the output queue:

v If you select Yes, the message is marked as persistent.

v If you select Automatic (the default), the message persistence is determined from

the properties of the incoming message, as set in the MQMD.

v If you select No, the message is not marked as persistent.

v If you select As Defined for Queue, the message persistence is set as defined in

the WebSphere MQ queue by the MQOutput node specifying the

MQPER_PERSISTENCE_AS_Q_DEF option in the MQMD.

Terminals and properties

The MQOutput node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected when the

message is put to the output queue.

Out The output terminal to which the message is routed if it has been successfully put to

the output queue, and if further processing is required within this message flow.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

Message flows 1027

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The MQOutput node Description properties are described in the following table.

 Property M C Default Description

Node name No No The node

type,

MQOutput

The name of the node.

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the

message flow.

The MQOutput node Basic properties are described in the following table.

 Property M C Default Description

Queue Manager Name No Yes The name of the WebSphere MQ queue manager to

which the output queue, which is specified in Queue

Name, is defined.

Queue Name No Yes The name of the WebSphere MQ output queue to which

this node puts messages (using MQPUT).

If you set the Destination Mode property to Queue

Name, you must specify a value for the Queue Name

property.

The MQOutput node Advanced properties are described in the following table.

 Property M C Default Description

Destination Mode Yes No Queue Name The queues to which the output message is sent. Valid

values are Destination List, Reply To Queue, and

Queue Name.

If you set the Destination Mode to Queue Name, you

must specify a value for the Queue Name property.

Transaction Mode Yes No Automatic This property controls whether the message is put

transactionally. Valid values are Automatic, Yes, and

No.

Persistence Mode Yes No Automatic This property controls whether the message is put

persistently. Valid values are Automatic, Yes, No, and

As Defined for Queue.

New Message ID Yes No Cleared If you select this check box, WebSphere MQ generates

a new message identifier to replace the contents of the

MsgId field in the MQMD.

New Correlation ID Yes No Cleared If you select this check box, WebSphere MQ generates

a new correlation identifier to replace the contents of

the CorrelId field in the MQMD.

Segmentation Allowed Yes No Cleared If you select this check box, WebSphere MQ breaks the

message into segments in the queue manager.

Message Context Yes No Pass All This property controls how origin context is handled.

Valid values are Pass All, Pass Identity, Set All, Set

Identity, and Default.

1028 Message Flows

|
|
|

|
|

Property M C Default Description

Alternate User

Authority

Yes No Cleared If you select this check box, alternate authority is used

when the output message is put.

The MQOutput node Request properties are described in the following table.

 Property M C Default Description

Request Yes No Cleared If you select the check box, each output message is

generated as a request message.

Reply-to Queue

Manager

No Yes The name of the WebSphere MQ queue manager to

which the output queue, which is specified in Reply-to

Queue, is defined.

Reply-to Queue No Yes The name of the WebSphere MQ queue to which to put

a reply to this request.

The Validation properties of the MQOutput node are described in the following

table.

For a full description of these properties, see “Validation properties” on page 1359.

 Property M C Default Description

Validate No Yes Inherit This property controls whether validation takes place.

Valid values are None, Content and Value, Content,

and Inherit.

Failure Action No No Exception This property controls what happens if validation fails.

You can set this property only if you set Validate to

Content or Content and Value. Valid values are User

Trace, Local Error Log, Exception, and Exception List.

MQReply node

Use the MQReply node to send a response to the originator of the input message.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 1030

v “Configuring the MQReply node” on page 1030

v “Terminals and properties” on page 1032

Purpose

The MQReply node is a specialized form of the MQOutput node that puts the

output message to the WebSphere MQ queue that is identified by the ReplyToQ

field of the input message header. If appropriate, define the queue as a

WebSphere MQ clustered queue or shared queue.

The MQReply node uses the options that are set in the Report field in the MQMD.

By default (if no options are set), the MQReply node generates a new MsgId and

CorrelId in the reply message. If the receiving application expects other values in

these fields, ensure that the application that puts the message to the message flow

input queue sets the required report options, or that you set the appropriate

options within the MQMD during message processing in the message flow; for

example, use a Compute node to set the Report options in the message.

Message flows 1029

You can find more information about the Report field in the WebSphere MQ

Application Programming Reference.

The MQReply node is contained in the WebSphere MQ drawer of the palette, and

is represented in the workbench by the following icon:

Using this node in a message flow

Look at the following sample to see how to use this node:

v Airline Reservations sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

You can use this node when you receive an order from a customer. When the order

message is processed, a response is sent to the customer acknowledging receipt of

the order and providing a possible date for delivery.

Working with WrittenDestination data

After the message has been put, the WrittenDestination folder in the

LocalEnvironment is updated with the destination information. A

WrittenDestination for an MQOutput node has the following format:

WrittenDestination = (

 MQ = (

 DestinationData = (

 queueName = ’OUT’

 queueManagerName = ’MYQUEUEMANAGER’

 replyIdentifier = X’4d...2e’

 msgId = X’3c...2c’

 correlId = X’2a...00’

 GroupId = X’3a...00’

)

)

)

Configuring the MQReply node

When you have put an instance of the MQReply node into a message flow, you

can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view.

All mandatory properties for which you must enter a value (those that do not have

a default value defined) are marked with an asterisk.

Configure the MQReply node as follows:

1. Optional: On the Description tab, enter a short description, a long description,

or both. You can also rename the node on this tab.

2. On the Advanced tab:

a. Select Segmentation Allowed if you want WebSphere MQ to break the

message into segments in the queue manager, when appropriate. You must

also set MQMF_SEGMENTATION_ALLOWED in the MsgFlags field in the MQMD for

segmentation to occur.

1030 Message Flows

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm

More information about the options to which this property maps is

available in the WebSphere MQ Application Programming Reference.

b. Select the Persistence Mode that you want for the output message.

v If you select Automatic (the default), the persistence is as specified in the

incoming message.

v If you select Yes, the message is put persistently.

v If you select No, the message is put non-persistently.

v If you select As Defined for Queue, the message persistence is set as

defined in the WebSphere MQ queue.
c. Select the Transaction Mode that you want for the output message.

v If you select Automatic (the default), the message transactionality is

derived from how it was specified at the MQInput node.

v If you select Yes, the message is put transactionally.

v If you select No, the message is put non-transactionally.
3. On the Validation tab, set the validation properties; see “Validation properties”

on page 1359. If a message is propagated to the Failure terminal of the node, it

is not validated.

For more details, see “Validating messages” on page 164.

The reply message is put (using MQPUT) to the queue named in the input

message MQMD as the ReplyTo queue. You cannot change this destination.

Connecting the output terminals to another node:

Connect the Out or Failure terminal of this node to another node in this message

flow to process the message further, process errors, or send the message to an

additional destination.

If you use aggregation in your message flows, you must use these output

terminals.

Configuring for coordinated transactions:

When you define an MQReply node, the option that you select for the Transaction

Mode property defines whether the message is written under sync point:

v If you select Yes, the message is written under sync point (that is, within a

WebSphere MQ unit of work).

v If you select Automatic (the default), the message is written under sync point if

the incoming input message is marked as persistent.

v If you select No, the message is not written under sync point.

Another property of the MQReply node, Persistence Mode, defines whether the

output message is marked as persistent when it is put to the output queue:

v If you select Yes, the message is marked as persistent.

v If you select Automatic (the default), the message persistence is determined by

the properties of the incoming message, as set in the MQMD (the

WebSphere MQ message descriptor).

v If you select No, the message is not marked as persistent.

v If you select As Defined for Queue, the message persistence is set as defined in

the WebSphere MQ queue; the MQReply node specifies the

MQPER_PERSISTENCE_AS_Q_DEF option in the MQMD.

Message flows 1031

Terminals and properties

The MQReply node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected when the

message is put to the output queue.

Out The output terminal to which the message is routed if it has been successfully put to

the output queue, and if further processing is required within this message flow.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The MQReply node Description properties are described in the following table.

 Property M C Default Description

Node name No No The node

type.

The name of the node.

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the

message flow.

The MQReply node Advanced properties are described in the following table.

 Property M C Default Description

Segmentation Allowed Yes No Cleared If you select this check box, WebSphere MQ breaks the

message into segments in the queue manager.

Persistence Mode Yes No Automatic This property controls whether the message is put

persistently. Valid values are Automatic, Yes, No, and

As Defined for Queue.

Transaction Mode Yes No Automatic This property controls whether the message is put

transactionally. Valid values are Automatic, Yes, and

No.

The Validation properties of the MQReply node are described in the following

table.

For a full description of these properties, see “Validation properties” on page 1359.

 Property M C Default Description

Validate No Yes Inherit This property controls whether validation takes place.

Valid values are None, Content and Value, Content,

and Inherit.

Failure Action No No Exception This property controls what happens if validation fails.

You can set this property only if you set Validate to

Content or Content and Value. Valid values are User

Trace, Local Error Log, Exception, and Exception List.

1032 Message Flows

The MQReply node also has the following properties that you cannot access or

modify through the workbench interface. However, these values are used by the

broker when the message is processed in the message flow.

 Property Description

Queue Manager Name The name of the WebSphere MQ queue manager to which the output queue,

identified in Queue Name, is defined. This name is retrieved from the ReplyTo field

of the MQMD of the input message.

Queue Name The name of the WebSphere MQ queue to which the output message is put. This

name is retrieved from the ReplyTo field of the MQMD of the input message.

Destination This property always has the value reply.

Output node

Use the Output node as an out terminal for an embedded message flow (a

subflow).

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 1034

v “Terminals and properties” on page 1034

Purpose

You can use a subflow for a common task that can be represented by a sequence of

message flow nodes. For example, you can create a subflow to increment or

decrement a loop counter, or to provide error processing that is common to a

number of message flows.

You must use an Output node to provide the Out terminal to a subflow; you

cannot use a standard output node (a built-in output node such as MQOutput, or a

user-defined output node).

You can include one or more Output nodes in a subflow. Each one that you

include provides a terminal through which you can propagate messages to

subsequent nodes in the message flow in which you include the subflow.

The Output node is contained in the Construction drawer of the palette, and is

represented in the workbench by the following icon:

When you select and include a subflow in a message flow, it is represented by the

following icon:

When you include the subflow in a message flow, this icon exhibits a terminal for

each Output node that you included in the subflow, and the name of the terminal

(which you can see when you hover over it) matches the name of that instance of

Message flows 1033

the Output node. Give your Output nodes meaningful names, you can easily

recognize them when you use their corresponding terminal on the subflow node in

your message flow.

Using this node in a message flow

Look at the following sample to see how to use this node:

v Error Handler sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Terminals and properties

When you have put an instance of the Output node into a message flow, you can

configure it; see “Configuring a message flow node” on page 235. The properties of

the node are displayed in the Properties view.

The Output node terminals are described in the following table.

 Terminal Description

In The output terminal that defines an out terminal for the subflow.

The following table describes the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Output node Description properties are described in the following table.

 Property M C Default Description

Node name No No The node

type, Output

The name of the node.

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message

flow.

Passthrough node

Use the Passthrough node to enable version control of a subflow at run time.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 1035

v “Terminals and properties” on page 1035

Purpose

Use the Passthrough node to add a label to your message flow or subflow. By

combining this label with keyword replacement from your version control system,

you can identify which version of a subflow is included in a deployed message

flow. You can use this label for your own purposes. If you have included the

correct version keywords in the label, you can see the value of the label:

1034 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.doc/doc/overview.htm

v Stored in the broker archive (bar) file, using the mqsireadbar command

v As last deployed to a particular broker, on the properties of a deployed message

flow in the workbench

v At run time, if you enable user trace for that message flow

The Passthrough node does not process the message in any way. The message that

it propagates on its Out terminal is the same message that it received on its In

terminal.

The Passthrough node is contained in the Construction drawer of the palette, and

is represented in the workbench by the following icon:

Using this node in a message flow

Use this node to identify a subflow; for example, if you develop an error

processing subflow to include in several message flows, you might want to modify

that subflow. However, you might want to introduce the modified version initially

to just a subset of the message flows in which it is included. Set a value for the

instance of the Passthrough node that identifies which version of the subflow you

have included.

Terminals and properties

When you have put an instance of the Passthrough node into a message flow, you

can configure it. For more information, see “Configuring a message flow node” on

page 235. The properties of the node are displayed in the Properties view. All

mandatory properties for which you must enter a value (those that do not have a

default value defined) are marked with an asterisk.

The Passthrough node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Out The input terminal that delivers a message to the subflow.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined), the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Passthrough node Description properties are described in the following table.

 Property M C Default Description

Node name No No Passthrough The name of the node.

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message

flow.

Message flows 1035

The Passthrough node Basic properties are described in the following table.

 Property M C Default Description

Label No No The label (identifier) of the node. Enter a value that defines a unique

characteristic; for example, the version of the subflow in which the node is

included.

PeopleSoftInput node

Use the PeopleSoftInput node to interact with a PeopleSoft application.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow”

v “Terminals and properties” on page 1037

Purpose

Use the PeopleSoftInput node to interact with PeopleSoft applications. For

example, a PeopleSoftInput node monitors a PeopleSoft system for a specified

event. When that event occurs, the PeopleSoftInput node generates a message tree

that represents the business object with the new event details. The message tree is

propagated to the Out terminal so that the rest of the message flow can use the

data to update other systems, or audit the changes.

The PeopleSoftInput node is contained in the WebSphere Adapters drawer of the

message flow node palette, and is represented in the workbench by the following

icon:

Using this node in a message flow

To function correctly, the PeopleSoftInput node needs an adapter component,

which you set using the Adapter component node property, and business object

definitions, which are stored in the message set that you reference from the node.

For this reason, you must provide a message set. By default, the message that is

propagated from the PeopleSoftInput node is in the DataObject domain, so the

Message domain property is set to DataObject. You cannot specify a different

domain. The message type is detected automatically by the node.

The PeopleSoftInput node populates the route to label destination list with the

name of the method binding. If you add a RouteToLabel node to the message flow

after the PeopleSoftInput node, the RouteToLabel node can use the name of the

method binding to route the message to the correct part of the message flow for

processing.

You can deploy only one input node that uses a particular adapter component to

an execution group, but you can deploy many input nodes that use different

adapter components to an execution group.

You can use the mqsisetdbparms command in the following format to configure an

account name with a user name and password for the Adapter for PeopleSoft

Enterprise.

1036 Message Flows

mqsisetdbparms broker name -n adapter name -u user name -p password

For example:

mqsisetdbparms BRK1 -n PeopleSoftCustomerInbound.inadapter -u peoplesoftuid -p ********

Terminals and properties

When you have put an instance of the PeopleSoftInput node into a message flow,

you can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. If you double-click a

PeopleSoftInput node, you open the Adapter Connection wizard. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The PeopleSoftInput node terminals are described in the following table.

 Terminal Description

Out Business object events from the adapter are sent to the Out terminal.

Failure If an error happens in the PeopleSoftInput node, the message is propagated to the Failure terminal.

Information about the error, and business object events can also be propagated to the Failure terminal.

Catch Business object events are sent to the Catch terminal if they cause an uncaught exception in the

message flow. If the Catch terminal is not connected, the retry process is activated to handle the

business object.

The following table describes the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The PeopleSoftInput node Description properties are described in the following

table.

 Property M C Default Description

Node name No No The node type,

PeopleSoftInput.

The name of the node.

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message

flow.

The PeopleSoftInput node Basic properties are described in the following table.

 Property M C Default Description

Adapter

component

Yes Yes The name of the adapter component that contains configuration properties

for the adapter. Either enter a name of an adapter file or click Browse to

select an adapter file from the list of files that are available in referenced

message set projects.

The PeopleSoftInput node Routing properties are described in the following table.

Message flows 1037

Property M C Default Description

Set

destination

list

No No Selected This property specifies whether to add the method binding name to the route

to label destination list. If you select this check box, the method binding name

is added so that you can use a RouteToLabel node in the message flow after

the PeopleSoftInput node.

Label

prefix

No No The prefix to add to the method name when routing to label. Add a label

prefix to avoid a clash of corresponding label nodes when you include

multiple WebSphere Adapters input nodes in the same message flow. By

default, there is no label prefix, so the method name and label name are

identical.

The PeopleSoftInput node Input Message Parsing properties are described in the

following table.

 Property M C Default Description

Message

domain

No No DataObject The domain that is used to parse the incoming message. By default, the

message that is propagated from the PeopleSoftInput node is in the

DataObject domain. You cannot specify a different domain.

Message

set

Yes No Set

automatically

The name of the message set in which the incoming message is defined.

This field is set automatically from the Adapter component property.

If you set this property, then subsequently update the project

dependencies to remove this message set reference, a warning is issued.

Either update the Message set property, or restore the reference to this

message set project.

Message

type

No No The name of the incoming message. The node detects the message type

automatically. You cannot set this property.

Message

format

No No The name of the physical format of the incoming message. You cannot

set this property.

The PeopleSoftInput node Transactionality properties are described in the

following table.

 Property M C Default Description

Transaction

mode

No Yes This property specifies how updates are handled. If you select Yes, updates are

performed in a single transaction. If you select No, updates are performed

independently.

The Instances properties of the PeopleSoftInput node are described in the following

table. For a full description of these properties, refer to “Configurable message

flow properties” on page 1372.

 Property M C Default Description

Additional

instances

pool

No Yes Use Pool

Associated

with

Message

Flow

The pool from which additional instances are obtained.

v If you select Use Pool Associated with Message Flow, additional instances

are obtained from the message flow value.

v If you select Use Pool Associated with Node, additional instances are

allocated from the node’s additional instances based on the number

specified in the Additional instances property.

Additional

instances

No Yes 0 The number of additional instances that the node can start if the Additional

instances pool property is set to Use Pool Associated with Node. By default,

no additional instances are given to the node.

1038 Message Flows

|
|
|
|

The PeopleSoftInput node Retry properties are described in the following table.

 Property M C Default Description

Retry

mechanism

No No Failure This property specifies how retry processing is handled when a failure is rolled

back to the PeopleSoftInput node.

v If you select Failure, retry processing is not performed so you cannot set the

remaining properties.

v If you select Short and long retry, retry processing is performed first at the

interval that is specified by the Short retry interval property, and if that is

unsuccessful, it is then performed at the interval that is specified by the Long

retry interval property.

Retry

threshold

No Yes 0 The maximum number of times that retry processing is performed for short

retry.

Short retry

interval

No Yes 0 The interval between short retry attempts.

Long retry

interval

No Yes 0 The interval between long retry attempts.

PeopleSoftRequest node

Use the PeopleSoftRequest node to interact with a PeopleSoft application.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow”

v “Terminals and properties” on page 1040

Purpose

Use the PeopleSoftRequest node to interact with PeopleSoft applications. For

example, a PeopleSoftRequest node requests information from a PeopleSoft

Enterprise Information System (EIS). A customer business object is sent to

PeopleSoft, causing PeopleSoft to retrieve information about a customer, such as an

address and account details. The response information that is retrieved by the

PeopleSoftRequest node can then be used by the rest of the message flow. The

PeopleSoftRequest node can send and receive business data.

The PeopleSoftRequest node is contained in the WebSphere Adapters drawer of

the message flow node palette, and is represented in the workbench by the

following icon:

Using this node in a message flow

To function correctly, the PeopleSoftRequest node needs an adapter component,

which you set using the Adapter component node property, and business object

definitions, which are stored in the message set that you reference from the node.

For this reason, you must provide a message set. By default, the message that is

propagated from the PeopleSoftRequest node is in the DataObject domain, so the

Message domain property is set to DataObject. You cannot specify a different

domain. The message type is detected automatically by the node.

Message flows 1039

The PeopleSoftRequest node supports local transactions using the broker’s Local

Transaction Manager, and global transactions using the broker’s external syncpoint

coordinator.

You can deploy several WebSphere Adapters request nodes that use the same

adapter component to an execution group.

You can use the mqsisetdbparms command in the following format to configure an

account name with a user name and password for the Adapter for PeopleSoft

Enterprise.

mqsisetdbparms broker name -n adapter name -u user name -p password

For example:

mqsisetdbparms BRK1 -n PeopleSoftCustomerOutbound.outadapter -u peoplesoftuid -p ********

Terminals and properties

When you have put an instance of the PeopleSoftRequest node into a message

flow, you can configure it; see “Configuring a message flow node” on page 235.

The properties of the node are displayed in the Properties view. If you double-click

a PeopleSoftRequest node, you open the Adapter Connection wizard. All

mandatory properties for which you must enter a value (those that do not have a

default value defined) are marked with an asterisk.

The PeopleSoftRequest node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts the request business object.

Out The output terminal to which the response business object is sent if it represents successful completion

of the request, and if further processing is required within this message flow.

Failure If an error happens in the PeopleSoftRequest node, the message is propagated to the Failure terminal.

Information about the error, and business object events can also be propagated to the Failure terminal.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk on the panel if you

must enter a value when no default is defined); the column headed C indicates

whether the property is configurable (you can change the value when you add the

message flow to the bar file to deploy it).

The PeopleSoftRequest node Description properties are described in the following

table.

 Property M C Default Description

Node name No No The node type, e.g.

PeopleSoftRequest

The name of the node.

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message flow.

The PeopleSoftRequest node Basic properties are described in the following table.

1040 Message Flows

Property M C Default Description

Adapter

component

Yes No The name of the adapter component that contains configuration properties for

the adapter. Either enter a name of an adapter file, or click Browse to select an

adapter file from the list of files that are available in referenced message set

projects.

Default

method

Yes Yes The default method binding to use.

The PeopleSoftRequest node Response Message Parsing properties are described in

the following table.

 Property M C Default Description

Message

domain

No No DataObject The domain that is used to parse the response message. By default, the

response message that is propagated from the PeopleSoftRequest node is in

the DataObject domain. You cannot specify a different domain.

Message

set

Yes No Set

automatically

The name of the message set in which the response message is defined.

This field is set automatically from the Adapter component property.

If you set this property, then subsequently update the project dependencies

to remove this message set reference, a warning is issued. Either update the

Message set property, or restore the reference to this message set project.

Message

type

No No The name of the response message. The node detects the message type

automatically. You cannot set this property.

Message

format

No No The name of the physical format of the response message. You cannot set

this property.

The PeopleSoftRequest node Transactionality properties are described in the

following table.

 Property M C Default Description

Transaction

mode

No No No This property specifies that updates are performed independently, not as part of

a local transaction. You cannot change this property.

The PeopleSoftRequest node Request properties are described in the following

table.

 Property M C Default Description

Method

Location

Yes No $LocalEnvironment/Adapter/
MethodName

The business method that is used to trigger the

PeopleSoftRequest node to perform an action on the

external system. For example:

v createPurchaseOrder causes the PeopleSoftRequest

node to create a purchase order in the EIS.

v deletePurchaseOrder causes the PeopleSoftRequest

node to delete a purchase order in the EIS.

Data

Location

Yes No $Body The location in the incoming message tree from which

data is retrieved to form the request that is sent from

the PeopleSoftRequest node to the EIS.

The PeopleSoftRequest node Result properties are described in the following table.

Message flows 1041

|
|
|

Property M C Default Description

Output

data

location

No No $OutputRoot The message tree location to which the PeopleSoftRequest node sends

output.

Copy local

environment

No No Selected This property controls how the local environment is copied to the output

message. If you select the check box, at each node in the message flow, a

new copy of the local environment is created in the tree, and it is

populated with the contents of the local environment from the preceding

node. So if a node changes the local environment, the upstream nodes do

not see those changes because they have their own copies. This behavior

might be an issue if you are using a FlowOrder node, or if you use the

propagate command on a Compute node.

If you clear the check box, each node does not generate its own copy of

the local environment, but it uses the local environment that is passed to it

by the previous node. So if a node changes the local environment, those

changes are seen by the upstream nodes.

Publication node

Use the Publication node to filter output messages from a message flow and

transmit them to subscribers who have registered an interest in a particular set of

topics. The Publication node must always be an output node of a message flow

and has no output terminals of its own.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 1043

v “Terminals and properties” on page 1043

Purpose

Use the Publication node (or a user-defined node that provides a similar service) if

your message flow supports publish/subscribe applications. Applications that

expect to receive publications must register a subscription with a broker, and can

optionally qualify the publications that they get by providing restrictive criteria

(such as a specific publication topic).

If your subscriber applications use the WebSphere MQ Enterprise Transport to

connect to the broker, you can define the queues to which messages are published

as WebSphere MQ clustered queues or shared queues.

Publications can also be sent to subscribers within a WebSphere MQ cluster if a

cluster queue is nominated as the subscriber queue. In this case, the subscriber

should use the name of an ″imaginary″ queue manager that is associated with the

cluster, and should ensure that a corresponding blank queue manager alias

definition for this queue manager is made on the broker that satisfies the

subscription.

The Publication node is contained in the Routing drawer of the palette, and is

represented in the workbench by the following icon:

1042 Message Flows

Using this node in a message flow

Look at the following samples to see how to use this node:

v Soccer Results sample

v Scribble sample

v JMS Nodes sample

v Pager samples

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

For an example of how to use this node, assume that you have written a

publishing application that publishes stock updates on a regular basis. The

application sends the messages to the broker on an MQInput node, and the

message flow provides a conversion from the input currency to a number of

output currencies. Include a Publication node for each currency that is supported,

and set the Subscription Point to a value that reflects the currency in which the

stock price is published by the node; for example, Sterling, or USD.

Terminals and properties

When you have put an instance of the Publication node into a message flow, you

can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The Publication node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Publication node Description properties are described in the following table.

 Property M C Default Description

Node name No No The node type:

Publication

The name of the node.

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message flow.

The Publication node Basic properties are described in the following table.

Message flows 1043

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.soccer.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.scribble.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.jmsnode.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.pager.doc/doc/overview.htm

Property M C Default Description

Implicit

Stream

Naming

Yes No Cleared Select Implicit Stream Naming to take the name of the WebSphere MQ queue on

which the message was received by the message flow as the stream name. This

property provides forward compatibility with WebSphere MQ Publish/Subscribe,

and applies to messages with an MQRFH header when MQPSStream is not

specified.

Clear the check box if you do not want this action to be taken.

Subscription

Point

No No The subscription point value for the node. If you do not specify a value for this

property, the default subscription point is assumed. This value uniquely identifies

the node, and can be used by subscribers to get a specific publication (as described

in the example scenario in “Using this node in a message flow” on page 1043).

For more information, see Subscription points.

Real-timeInput node

Use the Real-timeInput node to receive messages from clients that connect to the

broker using the WebSphere MQ Real-time Transport or the WebSphere MQ

Multicast Transport, and that use JMS application programming interfaces.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 1045

v “Terminals and properties” on page 1045

Purpose

The Real-timeInput node handles messages in the following message domains:

v JMSMap

v JMSStream

An output node in a message flow that starts with a Real-timeInput node can be

any of the supported output nodes, including user-defined output nodes. You can

create a message flow that receives messages from real-time clients and generates

messages for clients that use all supported transports to connect to the broker,

because you can configure the message flow to request the broker to provide any

conversion that is required.

If you create a message flow to use as a subflow, you cannot use a standard input

node; you must use an instance of the Input node as the first node to create an In

terminal for the subflow.

If your message flow does not receive messages from JMS applications, choose one

of the supported input nodes.

The Real-timeInput node is contained in the Additional Protocols drawer of the

palette, and is represented in the workbench by the following icon:

1044 Message Flows

Using this node in a message flow

Look at the following sample to see how you can use this node:

v Scribble sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Terminals and properties

When you have put an instance of the Real-timeInput node into a message flow,

you can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The Real-timeInput node terminals are described in the following table.

 Terminal Description

Out The output terminal to which the message is routed if it is successfully retrieved from JMS. If this

routing fails, the message is retried.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined), the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Real-timeInput node Description properties are described in the following

table.

 Property M C Default Description

Node name No No The node type:

Real-timeInput

The name of the node.

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message flow.

The Real-timeInput node Basic properties are described in the following table.

 Property M C Default Description

Port Yes Yes The port number on which the input node listens for publish or

subscribe requests from JMS applications. Ensure that the port number

that you specify does not conflict with any other listener service. No

default value is provided for this property; you must enter a value.

Authentication Yes No Cleared To authenticate users that send messages on receipt of their messages,

select this check box. If you clear the check box (the default setting),

users are not authenticated.

Message flows 1045

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.scribble.doc/doc/overview.htm

Property M C Default Description

Tunnel through

HTTP

Yes No Cleared Select the check box to indicate that users use HTTP tunneling. If you

clear the check box (the default setting), messages do not use HTTP

tunneling. If you select the check box, all client applications that connect

must use this feature. If they do not use this feature, their connection is

rejected. The client application cannot use this option in conjunction with

the connect-via proxy setting, which is activated from the client side.

Read Threads No Yes 10 The number of threads that you want the broker to allocate to read

messages. The broker starts as many instances of the message flow as are

necessary to process current messages, up to this limit.

Write Threads No Yes 10 The number of threads that you want the broker to allocate to write

messages. The broker starts as many instances of the message flow as are

necessary to process current messages, up to this limit.

Authentication

Threads

No Yes 10 The number of threads that you want the broker to allocate to user

authentication checks. The user authentication check is performed when

a message is received. The broker starts as many instances of the

message flow as are necessary to process current messages, up to this

limit.

The properties of the General Message Options for the Real-timeInput node are

described in the following table.

 Property M C Default Description

Parse

Timing

No No On Demand This property controls when an input message is parsed. Valid values are

On Demand, Immediate, and Complete.

Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed. To cause the message to be parsed immediately, see

“Parsing on demand” on page 1363.

Real-timeOptimizedFlow node

Use the Real-timeOptimizedFlow node to receive messages from clients that

connect to the broker using the WebSphere MQ Real-time Transport or the

WebSphere MQ Multicast Transport, and that use JMS application programming

interfaces.

Purpose

The Real-timeOptimizedFlow node is a complete message flow that provides a

high performance publish/subscribe message flow. The actions that are taken by

this node are all internalized; you cannot influence the node’s operation except by

configuring its properties, and you cannot connect it to any other node.

This node also supports publication to, or subscription from, standard WebSphere

MQ applications, but its performance for these applications is not as good as the

performance achieved for JMS applications.

You cannot affect the message content in any way when you use the

Real-timeOptimizedFlow node. To modify the input message, or to send messages

or make publications available to applications that use other communications

protocols, use the Real-timeInput node.

Include the Real-timeOptimizedFlow node in a message flow when you want to

distribute messages through a broker to and from client applications that use JMS.

1046 Message Flows

The Real-timeOptimizedFlow node is contained in the Additional Protocols

drawer of the palette, and is represented in the workbench by the following icon:

Terminals and properties

When you have put an instance of the Real-timeOptimizedFlow node into a

message flow, you can configure it. For more information, see “Configuring a

message flow node” on page 235. The properties of the node are displayed in the

Properties view. All mandatory properties for which you must enter a value (those

that do not have a default value defined) are marked with an asterisk.

The Real-timeOptimizedFlow node has no terminals. It is a complete message flow

and cannot be connected to other nodes to extend the message processing.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined), the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Real-timeOptimizedFlow node Description properties are described in the

following table.

 Property M C Default Description

Node

name

No No Real-
timeOptimizedFlow

The name of the node.

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message flow.

The Real-timeOptimizedFlow node Basic properties are described in the following

table.

 Property M C Default Description

Port Yes Yes The port number on which the node listens for publish or subscribe

requests from JMS applications. Ensure that the port number that you

specify does not conflict with any other listener service. No default value is

provided for this property; you must enter a value.

Authentication Yes No Cleared For users to authenticate that send messages on receipt of their messages,

select Authentication. If you clear the check box (the default setting), users

are not authenticated.

Tunnel through

HTTP

Yes No Cleared For clients to use HTTP tunneling, select Tunnel through HTTP. If you clear

the check box (the default setting), messages do not use HTTP tunneling. If

you select the check box, all client applications that connect must use this

feature. If they do not use this feature, their connection is rejected. The

client application cannot use this option in conjunction with the

connect-via-proxy setting, which is activated from the client side.

Message flows 1047

Property M C Default Description

Read threads No Yes 10 The number of threads that you want the broker to allocate to read

messages. The broker starts as many instances of the message flow as are

necessary to process current messages, up to this limit.

Write threads No Yes 10 The number of threads that you want the broker to allocate to write

messages. The broker starts as many instances of the message flow as are

necessary to process current messages, up to this limit.

Authentication

threads

No Yes 10 The number of threads that you want the broker to allocate to user

authentication checks. The user authentication check is performed when a

message is received. The broker starts as many instances of the message

flow as are necessary to process current messages, up to this limit.

RegistryLookup node

Use the RegistryLookup node to access service metadata that resides in

theWebSphere Service Registry and Repository. The RegistryLookup node does not

perform additional filtering or selection other than that specified by the property

matching.

This topic contains the following sections:

v “Purpose”

v “Terminals and properties” on page 1049

Important: WebSphere Message Broker V6.1.0.2 only supports WebSphere Service

Registry and Repository V6.1. Previous versions of the product are not

supported.

Purpose

You can use two nodes to access service metadata that resides in the WebSphere

Service Registry and Repository, the EndpointLookup node and the

RegistryLookup node. These nodes are designed to be included in message

processing flows that mediate between service consumers and service providers in

an SOA installation. These nodes are for generic WebSphere Service Registry and

Repository access.

The RegistryLookup node is contained in the Web services drawer of the message

flow node palette, and is represented in the workbench by the following icon:

RegistryLookup node processing

The RegistryLookup node processes messages in the following sequence.

1. The RegistryLookup node receives a message.

2. The RegistryLookup node retrieves the entity metadata information from the

WebSphere Service Registry and Repository using the specified query string.

The RegistryLookup node can be used to define a query dynamically within

the message. Both the RegistryLookup and the EndpointLookup nodes can

accept a query specified within the LocalEnvironment. Accepting a query

specified within the LocalEnvironment overrides any property values set on the

node, and all values are strings. XPath and ESQL are not supported when

1048 Message Flows

|
|
|

specifying the User Properties using the LocalEnvironment. Using the

LocalEnvironment to set the properties, you can define the properties at

runtime, or message processing time, rather than defining them at development

time. You must use the format

LocalEnvironment.ServiceRegistryLookupProperties.Name where Name is the

property you want to define. It is still mandatory to set values on the

properties of the nodes because the nodes cannot deploy without doing so.

3. If one or more matches are found:

v If Match Policy is set to One, the RegistryLookup node adds the single

matching metadata information to the message instance. If multiple possible

matches exist the RegistryLookup node retrieves a random match.

v If Match Policy is set to All, the RegistryLookup node adds all matching

metadata to the message instance, leaving all other message content

unchanged.

Metadata information is propagated to the Out terminal, where it is available

for further processing either by ESQL or by a JavaCompute node.

4. If no matches are found, the RegistryLookup node propagates the input

message to the NoMatch terminal.

Example usage. RegistryLookup node can be used to select the current endpoint

address from multiple Version properties. When the destination is not a Web

service you can use the RegistryLookup node to retrieve entity metadata, which

can include the endpoint address. The Match Policy property value must be set to

All. You can use a transformation node, such as the JavaCompute, Compute,

XSLTransform, or Mapping node, to select the current version, to set endpoint

address, and to add appropriate transport header. You must propagate the

LocalEnvironment tree with the message.

Terminals and properties

When you have put an instance of the RegistryLookup node into a message flow,

you can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The RegistryLookup node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if an error occurs.

Out The output terminal to which matching registry information is sent.

NoMatch The terminal to which the message is sent if no matching entity is found based on the specified values.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The RegistryLookup node Description properties are described in the following

table:

Message flows 1049

Property M C Default Description

Node name No No The node type:

RegistryLookup

The name of the node.

Short

description

No No None A brief description of the node.

Long

description

No No None Text that describes the purpose of the node in the message

flow.

The RegistryLookup node Basic properties are described in the following table:

 Property M C Default Description

Name No Yes None Enter the string values for one or more of Name, Namespace, and Version for

the entities or artifacts that you want to retrieve from the WebSphere Service

Registry and Repository. At least one of the properties is required. If you

leave all three property values blank, you will get an error message when

you try to save.

Namespace No Yes None

Version No Yes None

Template No Yes None The template or artifact type that you want to return from WebSphere Service

Registry and Repository.

User

Properties

No No None Allows a query to specify user-defined properties. Add User Properties by

clicking Add. User Properties refer to the Custom Properties that are used to

catalogue the entities in WebSphere Service Registry and Repository. Enter

values for Property Name, Property Type, and Property Value. The Property

Type can be a String (the default), XPATH expression, or ESQL Expression.

The Property Type refers to the type of property provided within the

Property Value.

Classification No No None The Web Ontology Language (OWL) classification system property. Each

classifier is a class in OWL, and has a Uniform Resource Identifier (URI).

Using classifications in the registry can help to make objects easier to find

and can also add meaning to custom objects that are unique to a particular

system.

Add a Classification by clicking Add and typing the complete fully qualified

OWL URI for the OWL classification.

Match Policy Yes No One The policies to be returned. Select One to match one policy, or All to match

all policies to the search criteria.

ResetContentDescriptor node

Use the ResetContentDescriptor node to request that the message is re-parsed by a

different parser.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 1051

v “Configuring the ResetContentDescriptor node” on page 1052

v “Terminals and properties” on page 1053

Purpose

If you specify MRM as the new parser, you can also specify a different message

template (message set, message type, and message format). This node does not

re-parse the message, but the properties that you set for this node determine how

the message is parsed when it is next re-parsed by the message flow.

1050 Message Flows

|
|
|
|
|

|
|

The node associates the new parser information with the input message bit stream.

If the message has been parsed already to create a message tree, and the contents

of the tree have been modified (for example, by a Compute node), the

ResetContentDescriptor node must re-create the bit stream from the message tree

by calling the current parser.

If your message flow has updated the message before it is received by the

ResetContentDescriptor node, ensure that the changed message contents are still

valid for the current parser. If the contents are not valid, the parser generates an

error when it attempts to re-create the bit stream from the message tree, and the

ResetContentDescriptor node raises an exception. For example, if you have added

a new field to a message in the MRM domain, and the field is not present in the

model, the re-creation of the bit stream fails.

The ResetContentDescriptor node does not:

v Change the message content; it changes message properties to specify the way in

which the bit stream is parsed next time that the parser is started.

v Convert the message from one format to another; for example, if the incoming

message has a message format of XML and the outgoing message format is

binary, the ResetContentDescriptor node does not do any reformatting. It starts

the parser to re-create the bit stream of the incoming XML message, which

retains the XML tags in the message. When the message is re-parsed by a

subsequent node, the XML tags are not valid and the re-parse fails.

The ResetContentDescriptor node is contained in the Construction drawer of the

palette, and is represented in the workbench by the following icon:

Using this node in a message flow

For an example of how to use this node, assume that you want to swap between

the BLOB and the MRM domains. The format of an incoming message might be

unknown when it enters a message flow, therefore the BLOB parser is started.

Later on in the message flow, you might decide that the message is predefined as a

message in the MRM domain, and you can use the ResetContentDescriptor node to

set the correct values to use when the message is parsed by a subsequent node in

the message flow.

The following table shows typical ResetContentDescriptor node properties.

 Property Value

Message domain MRM

Reset message domain Selected

Message set MyMessageSet

Reset message set Selected

Message type m_MESSAGE1

Reset message type Selected

Message format Text1

Reset message format Selected

Message flows 1051

The Message domain is set to MRM, and the MRM parser is started when the

message is next parsed. The Message set, Message type, and Message format are

the message template values that define the message model, and all of the reset

check boxes are selected because all of the properties need to change.

The ResetContentDescriptor node causes the BLOB parser that is associated with

the input message to construct the physical bit stream of the message (not the

logical tree representation of it), which is later passed to the MRM parser. The

MRM parser then parses the bit stream using the message template (Message set,

Message type, and Message format) specified in this ResetContentDescriptor node.

In Version 6.1, you do not have to include a ResetContentDescriptor node after an

XSLTransform node in your message flow to set Message domain, Message set,

Message type, and Message format of the message generated by the XSLTransform

node. The XSLTransform node performs this function.

Configuring the ResetContentDescriptor node

When you have put an instance of the ResetContentDescriptor node into a message

flow, you can configure it. For more information, see “Configuring a message flow

node” on page 235. The properties of the node are displayed in the Properties

view.

All mandatory properties for which you must enter a value (those that do not have

a default value defined) are marked with an asterisk.

1. Optional: On the Description tab, enter a Short description, a Long description,

or both. You can also rename the node on this tab.

2. On the Basic tab:

a. To use a different parser associated with the message, specify the new

domain in the Message domain property:

v MRM

v XMLNSC

v DataObject

v XMLNS

v JMSMap

v JMSStream

v MIME

v BLOB

v XML (this domain is deprecated; use XMLNSC)

v IDOC (this domain is deprecated; use MRM)

You can also specify a user-defined parser if appropriate.

Select Reset message domain.

If you leave the Message domain property blank and do not select Reset

message domain, the domain is not reset. If you leave the Message domain

property blank and select Reset message domain, the default value is BLOB.

b. If the MRM, XMLNSC, or IDOC parser is to re-parse the message, specify

the other properties of the model that are to be associated with the input

message, and select the relevant reset check box beneath each field. If you

select a reset check box for a property then, if you have not specified a

value for that property, the value of that property is reset to blank.

Alternatively, if you have specified a value for that property, the property is

not blank. If you do not select the reset check box for a property, the value

1052 Message Flows

for that property is inherited from the incoming message. If the parser is

associated with the input message already, specify only the properties that

are to change.

1) Define the Message set. Choose a value from the list of available

message sets (the name and identifier of the message set are shown),

and select Reset message set.

2) For MRM only, define the name of the message in Message type. Enter

the name and select Reset message type.

3) For MRM and IDOC, define the Message format. This property specifies

the physical format for the parser. You can select one of the formats

from the list (which lists the names of those formats that you have

defined on the Message set specified previously), and select Reset

message format.

These properties set the message domain, message set, message type, and

message format values in the message header of the message that you want

to pass through the ResetContentDescriptor node. However, these actions

are taken only if suitable headers already exist. If the message does not

have an MQRFH2 header, the node does not create one.
3. On the Parser Options sub-tab:

a. Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed.

For more details, see “Parsing on demand” on page 1363.

b. Select Use MQRFH2C compact parser for MQRFH2 header if you want the

MQRFH2C parser to be used. By default, this check box is cleared, which

means that the compact parser is not used.

c. If you are using the XMLNSC parser, set values for the properties that

determine how the XMLNSC parser operates. For more information, see

“Manipulating messages in the XMLNSC domain” on page 364.
4. On the Validation tab, set the validation properties if you want the parser to

validate the body of messages against the Message set. (If a message is

propagated to the Failure terminal of the node, it is not validated.)

For more details, see “Validating messages” on page 164 and “Validation

properties” on page 1359.

Terminals and properties

The ResetContentDescriptor node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if an error is detected by the

node.

Out The output terminal to which the message is routed if a new parser is identified by

the properties.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

Message flows 1053

The Description properties of the ResetContentDescriptor node are described in the

following table.

 Property M C Default Description

Node name No No The node

type

The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the

message flow.

The Basic properties of the ResetContentDescriptor node are described in the

following table.

 Property M C Default Description

Message domain No No BLOB The message domain that is associated with the

message that you want to re-parse.

Reset message domain Yes No Cleared If you select the reset check box, the Message domain

property is reset. In this case, if you do not select a

value for the Message domain property, the Message

domain property value is BLOB.

Message set No No The message set that is associated with the message

that you want to re-parse.

If you set this property, then subsequently update the

project dependencies to remove this message set

reference, a warning is issued. Either update the

Message set property, or restore the reference to this

message set project.

Reset message set Yes No Cleared If you select the reset check box, the Message set

property is reset. In this case, if you do not select a

value for the Message set property, the Message set

property value is blank.

Message type No No The message type that is associated with the message

that you want to re-parse.

Reset message type Yes No Cleared If you select the reset check box, the Message type

property is reset. In this case, if you do not select a

value for the Message type property, the Message type

property value is blank.

Message format No No The message format that is associated with the message

that you want to re-parse.

Reset message format Yes No Cleared If you select the reset check box, the Message format

property is reset. In this case, if you do not select a

value for the Message format property, the Message

format property value is blank.

The Parser Options properties of the ResetContentDescriptor node are described in

the following table.

1054 Message Flows

|
|
|
|
|

Property M C Default Description

Parse timing No No On Demand This property controls when the re-parsed message is

parsed. Valid values are On Demand, Immediate, and

Complete.

For a full description of this property, see “Parsing on

demand” on page 1363.

Use MQRFH2C

compact parser for

MQRFH2 header

No No Cleared This property controls whether the MQRFH2C compact

parser, instead of the MQRFH2 parser, is used for

MQRFH2 headers.

Build tree using XML

schema data types

No No Cleared This property controls whether the XMLNSC parser

creates syntax elements in the message tree with data

types taken from the XML Schema. You can select this

property only if you set the Validate property on the

Validation tab to Content or Content and Value.

Use XMLNSC compact

parser for XMLNS

domain

No No Cleared This property controls whether the XMLNSC Compact

Parser is used for messages in the XMLNS Domain. If

you set this property, the message data appears under

XMLNSC in nodes that are connected to the output

terminal when the input MQRFH2 header or Domain is

XMLNS.

Retain mixed content No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

mixed text in the re-parsed message. If you select the

check box, elements are created for mixed text. If you

clear the check box, mixed text is ignored and no

elements are created.

Retain comments No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

comments in the re-parsed message. If you select the

check box, elements are created for comments. If you

clear the check box, comments are ignored and no

elements are created.

Retain processing

instructions

No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

processing instructions in the re-parsed message. If you

select the check box, elements are created for

processing instructions. If you clear the check box,

processing instructions are ignored and no elements are

created.

Opaque elements No No Blank This property is used to specify a list of elements in the

re-parsed message that are to be opaquely parsed by

the XMLNSC parser. Opaque parsing is performed only

if validation is not enabled (that is, if Validate is None);

entries that are specified in Opaque Elements are

ignored if validation is enabled.

The Validation properties of the ResetContentDescriptor node are described in the

following table. For a full description of these properties, see “Validation

properties” on page 1359.

 Property M C Default Description

Validate No Yes None This property controls whether validation takes place.

Valid values are None, Content, Content and Value,

and Inherit.

Message flows 1055

Property M C Default Description

Failure action No No Exception This property controls what happens if validation fails.

You can set this property only if you set Validate to

Content and Value or Content. Valid values are User

Trace, Local Error Log, Exception, and Exception List.

Route node

Use the Route node to direct messages that meet certain criteria down different

paths of a message flow.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow”

v “Terminals” on page 1057

v “Properties” on page 1058

Purpose

As an example, you can forward a message to different service providers, based on

the request details. You can also use the Route node to bypass unnecessary steps.

For example, you can check to see if certain data is in a message, and perform a

database lookup operation only if the data is missing. If you set the Distribution

Mode property to All, you can trigger multiple events that each require different

conditions. For example, you could log requests that relate to a particular account

identifier, and send requests that relate to a particular product to be audited.

You use XPath filter expressions to control processing. A filter expression’s result is

cast as Boolean, so the result is guaranteed to be either true or false. For more

information about XPath 1.0 query syntax, see XPath.

The Route node is contained in the Routing drawer of the message flow node

palette, and is represented in the workbench by the following icon:

Using this node in a message flow

Look at the Simplified Database Routing sample to see how to use this node. You

can view samples only when you use the information center that is integrated with

the Message Broker Toolkit.

The Route node has one input terminal and a minimum of three output terminals:

Match, Default, and Failure. The Default and Failure output terminals are static, so

they are always present on the node. The dynamic Match terminal is created

automatically each time a new Route node is selected and used in the Message

Flow editor. This behavior means that you do not always need to create this node’s

first dynamic output terminal, which is the minimum number of terminals needed

for this node to operate. You can rename this dynamic terminal if ″Match″ is not

an appropriate name.

A message is copied to the Default terminal if none of the filter expressions are

true. If an exception occurs during filtering, the message is propagated to the

Failure terminal. The Route node can define one or more dynamic output

1056 Message Flows

http://www.w3.org/TR/xpath
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.simplifieddbrouting.doc/doc/overview.htm

terminals. For all terminals, the associated filter expression is applied to the input

message and, if the result is true, a copy of the message is routed to the given

terminal. The Route node determines the order in which the terminals are driven.

The node always propagates messages to the terminals in the order in which they

appear in the filter table.

Each filter expression is applied to the input message in the order that is given in

the filter table. If the result is true, a copy of the message is routed to its associated

dynamic output terminal. If you set the Distribution Mode property to First,

application of all filter expressions might not occur.

Consider the following example input message:

<EmployeeRecord>

 <EmployeeNumber>00001</EmployeeNumber>

 <FamilyName>Smith</FamilyName>

 <Wage>20000</Wage>

</EmployeeRecord>

and the following XPath filter expressions:

$Body/EmployeeRecord/EmployeeNumber="00002"|Match

$Body/EmployeeRecord/EmployeeNumber="00001"|out_exp2

In this example, the Distribution Mode property is set to First. The Route node

processes the XPath filter expressions, in the order in which they appear, against

the input message. Because the Distribution Mode property is set to First, the

unmodified input message is propagated only once to the dynamic output terminal

that is mapped to the first filter expression that resolves to true. In the example

above, the first filter expression, which is associated with the Match terminal, is

false because the employee number in the input message is not ″00002″. So no

message is propagated to the Match terminal. The second filter expression is true,

so a copy of the input message is routed to the ″out_expr2″ dynamic terminal. If

the employee number in the input message were ″00003″, and therefore did not

match either filter expression, the message would be propagated to the static

Default output terminal. If the Distribution Mode property were set to All for this

example, the same outcome would be achieved because only one filter expression

was true.

Terminals

The Route node terminals are described in the following table.

 Terminal Description

In The static input terminal that accepts a message for processing by the node.

Match A dynamic output terminal to which the original message can be routed when

processing completes successfully. You can create additional dynamic terminals; see

“Dynamic terminals.”

Default The static output terminal to which the message is routed if no filter expression

resolves to true.

Failure The static output terminal to which the message is routed if a failure is detected

during processing.

Dynamic terminals

The Route node can have further dynamic output terminals. Not all dynamic

output terminals that are created on a Route node need to be mapped to an

Message flows 1057

expression in the filter table. For unmapped dynamic output terminals, messages

are never propagated to them. Several expressions can map to the same single

dynamic output terminal. No static output terminal exists to which the message is

passed straight through. For more information about using dynamic terminals, see

“Using dynamic terminals” on page 237.

Properties

When you have put an instance of the Route node into a message flow, you can

configure it. For more information, see “Configuring a message flow node” on

page 235. The properties of the node are displayed in the Properties view. All

mandatory properties for which you must enter a value (those that do not have a

default value defined) are marked with an asterisk.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Route node Description properties are described in the following table.

 Property M C Default Description

Node name No No The node

type, Route

The name of the node.

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the

message flow.

The Route node Basic properties are described in the following table.

 Property M C Default Description

Filter table Yes No A table where all rows are expressions and associated

terminal names that define the switching that is

performed by this node following evaluation of each

filter expression. The full expression is in the format

XPath filter expression, terminal name

All XPath expressions must start with $Root, $Body,

$Properties, $LocalEnvironment, $DestinationList,

$ExceptionList, or $Environment. Expressions are

evaluated in the order in which they appear in the

table. To improve performance, specify the expressions

that are satisfied most frequently at the top of the filter

table. Typically, you specify a unique terminal name for

each XPath expression.

1058 Message Flows

Property M C Default Description

Distribution Mode No Yes All This property determines the routing behavior of the

node when an inbound message matches multiple filter

expressions. If you set the Distribution Mode property

to First, the message is propagated to the associated

output terminal of the first expression in the table that

resolves to true. If you set this property to All, the

message is propagated to the associated output terminal

for each expression in the table that resolves to true. If

no output terminal matches, the message is propagated

to the Default terminal.

RouteToLabel node

Use the RouteToLabel node in combination with one or more Label nodes to

dynamically determine the route that a message takes through the message flow,

based on its content.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 1060

v “Terminals and properties” on page 1060

Purpose

The RouteToLabel node interrogates the LocalEnvironment of the message to

determine the identifier of the Label node to which to route the message.

You must precede the RouteToLabel node in the message flow with a Compute

node that populates the LocalEnvironment of the message with the identifiers of

one or more Label nodes that introduce the next sequence of processing for the

message. The destinations are set up as a list of label names in the

LocalEnvironment tree in a specific location. This excerpt of ESQL from the Airline

Reservations sample demonstrates how to set up the LocalEnvironment content in

a Compute node:

IF InputRoot.XMLNSC.PassengerQuery.ReservationNumber<>’’ THEN

 SET OutputLocalEnvironment.Destination.RouterList.DestinationData[1].labelname = ’SinglePassenger’;

ELSE

 SET OutputLocalEnvironment.Destination.RouterList.DestinationData[1].labelname = ’AllReservations’;

END IF;

The label names can be any string value, and can be specified explicitly in the

Compute node, taken or cast from any field in the message, or retrieved from a

database. A label name in the LocalEnvironment must match the Label Name

property of a corresponding Label node.

When you configure the Compute node, you must also select a value for the

Compute Mode property from the list that includes LocalEnvironment.

Design your message flow so that a RouteToLabel node logically precedes one or

more Label nodes within a message flow, but do not physically wire the

RouteToLabel node with a Label node. The connection is made by the broker,

when required, according to the contents of LocalEnvironment.

The RouteToLabel node is contained in the Routing drawer of the palette, and is

represented in the workbench by the following icon:

Message flows 1059

Using this node in a message flow

Look at the following sample to see how to use this node:

v Airline Reservations sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Terminals and properties

When you have put an instance of the RouteToLabel node into a message flow,

you can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. All mandatory

properties for which you must enter a value are marked with an asterisk.

The RouteToLabel node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected during processing.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The RouteToLabel node Description properties are described in the following table.

 Property M C Default Description

Node name No No The node type:

RouteToLabel

The name of the node.

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message flow.

The RouteToLabel node Basic properties are described in the following table.

 Property M C Default Description

Mode Yes No Route To Last This property controls how the RouteToLabel node processes the items

within the LocalEnvironment that is associated with the current

message . Valid values are:

v Route To First: removes the first item from LocalEnvironment. The

current message is routed to the Label node that is identified by

labelName in that list item.

v Route To Last (the default): removes the last item from

LocalEnvironment. The current message is routed to the Label node

that is identified by labelName in that list item.

1060 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm

SAPInput node

Use the SAPInput node to accept input from an SAP application.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow”

v “Terminals and properties” on page 1062

Purpose

Use the SAPInput node to accept input from SAP applications. For example, the

SAPInput node might monitor an SAP system for new purchase orders. When a

new purchase order is raised, the SAPInput node generates a message tree that

represents the business object with the new purchase order details. The message

tree is propagated to the Out terminal so that the rest of the message flow can use

the data to update other systems, or to audit the changes.

The SAPInput node is contained in the WebSphere Adapters drawer of the

message flow node palette, and is represented in the workbench by the following

icon:

Using this node in a message flow

The SAPInput node needs an adapter component to function correctly. You set the

component by using the Adapter component node property and business object

definitions, which are stored in the message set that you reference from the node.

For this reason, you must provide a message set. By default, the message that is

propagated from the SAPInput node is in the DataObject domain, so the Message

domain property is set to DataObject. You cannot specify a different domain. The

message type is detected automatically by the node.

The SAPInput node populates the route-to-label destination list with the name of

the method binding. If you add a RouteToLabel node to the message flow after the

SAPInput node, the RouteToLabel node can use the name of the method binding to

route the message to the correct part of the message flow for processing.

You can deploy only one input node that uses a particular adapter component to

an execution group, but you can deploy many input nodes that use different

adapter components to an execution group.

You can use the mqsisetdbparms command in the following format to configure an

account name with a user name and password for the Adapter for SAP Software.

mqsisetdbparms broker name -n adapter name -u user name -p password

For example:

mqsisetdbparms BRK1 -n SAPCustomerInbound.inadapter -u sapuid -p ********

The SAP inbound adapter has a property called Number of listeners, which

configures the adapter to have a particular number of threads listening to the SAP

program ID. These threads are not used directly to process messages in a message

flow. When a message listener has an event to deliver to the message flow, it

requests one of the instances of the flow. In general, it is sensible to keep the

Message flows 1061

number of listeners equal to the number of instances (where instances equals 1

plus additional instances set on the flow or node). For example:

v If the number of listeners is 1, and additional instances is 0, you get a

single-threaded message flow that processes one message at a time.

v If the number of listeners is 2, and additional instances is 1, you get two threads

that process messages at the same time.

v If the number of listeners is 2, and additional instances is 0, you get two threads

that receive data from the EIS, but only one message flow thread will ever run.

The listeners block processing until a message flow instance is available; the

listeners do not queue multiple pieces of work. If you leave the number of listeners

set to 1 (the default value), the broker ensures that the number of listeners is equal

to the number of additional instances plus one.

Look at the SAP Connectivity sample to see how to use this node. You can view

samples only when you use the information center that is integrated with the

Message Broker Toolkit.

Terminals and properties

When you have put an instance of the SAPInput node into a message flow, you

can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. If you double-click a

SAPInput node, you open the Adapter Connection wizard. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The SAPInput node terminals are described in the following table.

 Terminal Description

Out Business object events from the adapter are sent to the Out terminal.

Failure If an error occurs in the SAPInput node, the message is propagated to the Failure terminal.

Information about the error, and business object events can also be propagated to the Failure terminal.

Catch Business object events are sent to the Catch terminal if they cause an uncaught exception in the

message flow. If the Catch terminal is not connected, the retry process is activated to handle the

business object.

The following tables describe the node properties. The columns headed M indicate

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the columns headed C indicate whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The SAPInput node Description properties are described in the following table.

 Property M C Default Description

Node name No No The node type,

SAPInput

The name of the node.

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message

flow.

1062 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.sapconnectivity.doc/doc/overview.htm

The SAPInput node Basic properties are described in the following table.

 Property M C Default Description

Adapter

component

Yes Yes The name of the adapter component that contains configuration properties

for the adapter. Either enter a name of an adapter file, or click Browse to

select an adapter file from the list of files that are available in referenced

message set projects.

The SAPInput node Routing properties are described in the following table.

 Property M C Default Description

Set

destination

list

No No Selected Specifies whether to add the method binding name to the route-to-label

destination list. If you select this check box, the method binding name is

added so that you can use a RouteToLabel node in the message flow after the

SAPInput node.

Label

prefix

No No The prefix to add to the method name when routing to a label. Add a label

prefix to avoid a clash of corresponding label nodes when you include

multiple WebSphere Adapters input nodes in the same message flow. By

default, there is no label prefix, so the method name and label name are

identical.

The SAPInput node Input Message Parsing properties are described in the

following table.

 Property M C Default Description

Message

domain

No No DataObject The domain that is used to parse the incoming message. By default, the

message that is propagated from the SAPInput node is in the DataObject

domain. You cannot specify a different domain.

Message set Yes No Set

automatically

The name of the message set in which the incoming message is defined.

This field is set automatically from the Adapter component property.

If you set this property, then subsequently update the project dependencies

to remove this message set reference, a warning is issued. Either update the

Message set property, or restore the reference to this message set project.

Message

type

No No The name of the incoming message. The node detects the message type

automatically. You cannot set this property.

Message

format

No No The name of the physical format of the incoming message. You cannot set

this property.

The SAPInput node Transactionality properties are described in the following table.

 Property M C Default Description

Transaction

mode

No No Yes Specifies how updates are handled. If you select Yes, updates are performed

in a single transaction. If you select No, updates are performed

independently.

The Instances properties of the SAPInput node are described in the following table.

For a full description of these properties, refer to “Configurable message flow

properties” on page 1372.

Message flows 1063

|
|
|

Property M C Default Description

Additional

instances pool

No Yes Use Pool

Associated

with

Message

Flow

The pool from which additional instances are obtained.

v If you select Use Pool Associated with Message Flow, additional

instances are obtained from the message flow value.

v If you select Use Pool Associated with Node, additional instances are

allocated from the node’s additional instances based on the number

specified in the Additional instances property.

Additional

instances

No Yes 0 The number of additional instances that the node can start if the

Additional instances pool property is set to Use Pool Associated with

Node. By default, no additional instances are given to the node.

The SAPInput node Retry properties are described in the following table.

 Property M C Default Description

Retry

mechanism

No No Failure Specifies how retry processing is handled when a failure is rolled back to

the SAPInput node.

v If you select Failure, retry processing is not performed so you cannot set

the remaining properties.

v If you select Short and long retry, retry processing is performed first at

the interval that is specified by the Short retry interval property, and if

that is unsuccessful, it is then performed at the interval that is specified

by the Long retry interval property.

Retry

threshold

No Yes 0 The maximum number of times that retry processing is performed for short

retry.

Short retry

interval

No Yes 0 The interval between short retry attempts.

Long retry

interval

No Yes 0 The interval between long retry attempts.

SAPRequest node

Use the SAPRequest node to send requests to an SAP application.

This topic contains the following sections:

v “Purpose”

v “Using the SAPRequest node in a message flow” on page 1065

v “Terminals and properties” on page 1065

Purpose

Use the SAPRequest node to send requests to an SAP applications. For example,

the SAPRequest node might request information from an SAP Enterprise

Information System (EIS). A customer business object is sent to SAP, causing SAP

to retrieve information about a customer, such as an address and account details.

The response information that is retrieved by the SAPRequest node can then be

used by the rest of the message flow. The SAPRequest node can send and receive

business data.

The SAPRequest node is contained in the WebSphere Adapters drawer of the

message flow node palette, and is represented in the workbench by the following

icon:

1064 Message Flows

Using the SAPRequest node in a message flow

The SAPRequest node needs an adapter component to function correctly. You set

the component by using the Adapter component node property and business object

definitions, which are stored in the message set that you reference from the node.

For this reason, you must provide a message set. By default, the message that is

propagated from the SAPRequest node is in the DataObject domain, so that the

Message domain property is set to DataObject. You cannot specify a different

domain. The node automatically detects the message type.

The SAPRequest node supports local transactions using the broker’s Local

Transaction Manager, and global transactions using the broker’s external sync point

coordinator.

You can deploy several WebSphere Adapters request nodes that use the same

adapter component to an execution group.

You can use the mqsisetdbparms command in the following format to configure an

account name with a user name and password for the Adapter for SAP Software.

The mqsisetdbparms command stores the password in case-sensitive form.

However, when the SAP GUI sets a password, it automatically converts the

password to upper case. Therefore, specify an upper case password to connect to

the SAP system.

mqsisetdbparms broker name -n adapter name -u user name -p PASSWORD

For example:

mqsisetdbparms BRK1 -n SAPCustomerOutbound.outadapter -u sapuid -p ********

Look at the SAP Connectivity sample to see how to use this node. You can view

samples only when you use the information center that is integrated with the

Message Broker Toolkit.

Terminals and properties

When you have put an instance of the SAPRequest node into a message flow, you

can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. If you double-click a

SAPRequest node, you open the Adapter Connection wizard. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The SAPRequest node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts the request business object.

Out The output terminal to which the response business object is sent if it represents successful completion

of the request, and if further processing is required within this message flow.

Failure If an error occurs in the SAPRequest node, the message is propagated to the Failure terminal.

Information about the error, and business object events can also be propagated to the Failure terminal.

Message flows 1065

|
|
|
|
|
|

|

|

|

|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.sapconnectivity.doc/doc/overview.htm

The following tables describe the node properties. The columns headed M indicate

whether the property is mandatory (marked with an asterisk on the panel if you

must enter a value when no default is defined); the columns headed C indicate

whether the property is configurable (you can change the value when you add the

message flow to the bar file to deploy it).

The SAPRequest node Description properties are described in the following table.

 Property M C Default Description

Node name No No The node type, e.g.

SAPRequest

The name of the node.

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message flow.

The SAPRequest node Basic properties are described in the following table.

 Property M C Default Description

Adapter

component

Yes No The name of the adapter component that contains configuration properties for

the adapter. Either enter a name of an adapter file, or click Browse to select an

adapter file from the list of files that are available in referenced message set

projects.

Default

method

Yes Yes The default method binding to use.

The SAPRequest node Response Message Parsing properties are described in the

following table.

 Property M C Default Description

Message

domain

No No DataObject The domain that is used to parse the response message. By default, the

message that is propagated from the SAPRequest node is in the

DataObject domain. You cannot specify a different domain.

Message set Yes No Set

automatically

The name of the message set in which the incoming message is defined.

This field is set automatically from the Adapter component property.

If you set this property, then subsequently update the project

dependencies to remove this message set reference, a warning is issued.

Either update the Message set property, or restore the reference to this

message set project.

Message

type

No No The name of the response message. The node detects the message type

automatically. You cannot set this property.

Message

format

No No The name of the physical format of the response message. You cannot set

this property.

The SAPRequest node Transactionality properties are described in the following

table.

1066 Message Flows

|
|
|
|

Property M C Default Description

Transaction

mode

No No Automatic Specifies how updates are handled.

v If you select Yes, the SAPRequest node takes part in the local

transaction that is started by the message flow’s input node.

v If you select No, the SAPRequest node does not take part in the local

transaction that is started by the message flow’s input node.

v If you select Automatic, the SAPRequest node uses the value that is set

on the input node that drives the message flow. For example, if the

message flow is driven by a SAPInput node, the SAPRequest assumes

the Transaction mode that is set on the SAPInput node.

The SAPRequest node Request properties are described in the following table.

 Property M C Default Description

Method

Location

Yes No $LocalEnvironment/
Adapter/MethodName

The business method that is used to trigger the SAPRequest

node to perform an action on the external system. For example:

v createPurchaseOrder causes the SAPRequest node to create a

purchase order in the EIS.

v deletePurchaseOrder causes the SAPRequest node to delete a

purchase order in the EIS.

Data

Location

Yes No $Body The location in the incoming message tree from which data is

retrieved to form the request that is sent from the SAPRequest

node to the EIS.

The SAPRequest node Result properties are described in the following table.

 Property M C Default Description

Output data

location

No No $OutputRoot The message tree location to which the SAPRequest node sends output.

Copy local

environment

No No Selected This property controls how the local environment is copied to the output

message. If you select this check box, a new copy of the local environment

is created in the tree (at each node in the message flow), and it is

populated with the contents of the local environment from the preceding

node. Therefore, if a node changes the local environment, the previous

nodes in the flow do not see those changes because they have their own

copies. This behavior might be an issue if you are using a FlowOrder

node, or if you use the propagate command on a Compute node.

If you clear the check box, each node does not generate its own copy of

the local environment, but it uses the local environment that is passed to it

by the previous node. Therefore, if a node changes the local environment,

those changes are seen by the upstream nodes.

SCADAInput node

Use the SCADAInput node to receive messages from clients that connect to the

broker across the WebSphere MQ Telemetry Transport.

This topic contains the following sections:

v “Purpose” on page 1068

v “Using this node in a message flow” on page 1069

v “Configuring the SCADAInput node” on page 1069

v “Terminals and properties” on page 1071

Message flows 1067

Purpose

SCADA device clients use the MQIsdp protocol to send messages that are

converted by the SCADAInput node into a format that is recognized by WebSphere

Message Broker. The node also establishes the processing environment for these

messages.

Message flows that handle messages received from SCADA devices must always

start with a SCADAInput node. Set the SCADAInput node properties to control

the way in which messages are received; for example, you can indicate that a

message is to be processed under transaction control.

When you deploy message flows that contain SCADA nodes to a broker, deploy

them to a single execution group, regardless of the number of message flows.

The execution group to which the SCADA flows are deployed must be the default

execution group. The default execution group can be identified by inspecting the

defaultExecutionGroup field in the BIP2201 message at the execution group

startup. A value of true denotes the default execution group.

SCADA is primarily a publish/subscribe protocol; therefore, you typically include

a Publication node to end the flow. In scenarios where you do not want to use a

Publication node, include a SCADAOutput node. If you include a SCADAOutput

node, you must also include a SCADAInput node, regardless of the source of the

messages, because the SCADAInput node provides the connectivity information

that is required by the SCADAOutput node.

If you include an output node in a message flow that starts with a SCADAInput

node, it can be any of the supported output nodes, including user-defined output

nodes. You can create a message flow that receives messages from SCADA devices,

and generates messages for clients that use all supported transports to connect to

the broker, because you can configure the message flow to request the broker to

provide any necessary conversion.

You can request that the broker starts or stops a SCADA listener by publishing

messages with a specific topic. This request can apply to all ports or to a single

port that is identified in the message.

The SCADAInput node handles messages in the following message domains:

v MRM

v XMLNSC

v XMLNS

v JMSMap

v JMSStream

v MIME

v BLOB

v XML (this domain is deprecated; use XMLNSC)

You also specify that a user-defined parser is to be used, if appropriate.

z/OS

You cannot use SCADAInput nodes in message flows that are to be

deployed on z/OS systems.

To process the data in an incoming SCADA message, include a node such as the

ResetContentDescriptor node, and set its properties to force the bit stream to be

re-parsed by a subsequent node.

1068 Message Flows

|
|
|

|

If you create a message flow to use as a subflow, you cannot use a standard input

node; you must use an instance of the Input node as the first node to create an In

terminal for the subflow.

If your message flow does not receive messages across SCADA connections, choose

one of the supported input nodes.

The SCADAInput node is contained in the Additional Protocols drawer of the

palette, and is represented in the workbench by the following icon:

Using this node in a message flow

For an example of how to use this node, assume that you create a message flow

with a SCADAInput node that receives messages from a remote sensor when it

detects a change in its operating environment (for example, a drop in outside

temperature). You connect the node to an MQOutput node, which makes these

messages available on a queue that is serviced by a WebSphere MQ application

that analyses and responds to the information that is received.

In another example, you create a message flow with a SCADAInput node that

receives messages every minute from a remote system. The messages contain

details of the system’s switch settings. The data that is received is fed into a

ResetContentDescriptor node to cast the data from binary (BLOB) to MRM

message format. The information about the system is stored in a database using

the Database node, and enriched using a Compute node to create an XML

message, which is published using a Publication node.

XML messages are expensive to send (because satellite transmission has a high cost

for each byte); therefore, it is advantageous to use this method because data is

enriched by the broker.

Configuring the SCADAInput node

When you have put an instance of the SCADAInput node into a message flow, you

can configure it. For more information, see “Configuring a message flow node” on

page 235. The properties of the node are displayed in the Properties view.

All mandatory properties for which you must enter a value (those that do not have

a default value defined) are marked with an asterisk.

1. Optional: On the Description tab, enter a Short description, a Long description,

or both. You can also rename the node on this tab.

2. On the Basic tab, set the following properties:

v Update the status of the listener by publishing on the control topic

$SYS/SCADA/MQIsdpListener/<port_number> with the Payload part of the

message set to ON or OFF. Enable listener on startup is initially selected, which

means that the listener for MQIsdp clients is initialized when the message

flow is deployed.

v Specify the Port number on which the MQIsdp server listens. This value

must be a unique port number, and must not conflict with other listeners (for

example, those set up for WebSphere MQ or WebSphere MQ Everyplace).

The default number is 1883.

Message flows 1069

v Set the Max threads value to indicate the maximum number of threads

available to the MQIsdp server to support clients. The default value is 500.

If you are using DB2 as your broker database, specify a value that is less

than or equal to the value that you have set for the DB2 configuration

parameters maxappls and maxagents. For further information, see Enabling

ODBC connections to the databases.

v Select Use thread pooling if you want the node to use a pool of threads to

service clients. If you select this option, the number of threads that are

available to the MQIsdp server is limited by Max threads, which is most

effective when set to a value between 20 and 40. If you do not select this

option, a new thread is created for each client that connects. The check box is

cleared initially.

Use this option only if you expect a large number of clients (greater than

200) to connect.
3. On the Input Message Parsing tab, set values for the properties that describe

the message domain, message set, message type, and message format that the

node uses to determine how to parse the incoming message.

v In Message domain, select the name of the parser that you are using from

the list. The default value is BLOB. You can choose from the following

options:

– MRM

– XMLNSC

– XMLNS

– JMSMap

– JMSStream

– MIME

– BLOB

– XML (this domain is deprecated; use XMLNSC)

You can also specify a user-defined parser, if appropriate.

v If you are using the MRM parser or XMLNSC parser in validating mode,

select the Message set that you want to use. This list is populated with

available message sets when you select MRM or XMLNSC as the domain.

v If you are using the MRM parser, select the correct message from the list in

Message type. This list is populated with messages that are defined in the

Message set that you have selected.

v If you are using the MRM parser, select the format of the message from the

list in Message format. This list includes all the physical formats that you

have defined for this Message set.
4. On the Parser Options sub-tab:

v Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed. To cause the message to be parsed immediately, see

“Parsing on demand” on page 1363.

v If you are using the XMLNSC parser, set values for the properties that

determine how the XMLNSC parser operates. For more information, see

“Manipulating messages in the XMLNSC domain” on page 364.
5. On the Advanced tab, set the required value for Transaction mode to define the

transactional characteristics of how this message is handled:

v If you select Automatic, the incoming message is received under sync point if

it is marked as persistent; otherwise, it is not received under sync point. The

transactionality of any derived messages that are sent subsequently by an

output node is determined by the incoming persistence property, unless the

output node has overridden transactionality explicitly.

1070 Message Flows

|
|
|

|

v If you select Yes, the incoming message is received under sync point. Any

derived messages that are sent subsequently by an output node in the same

instance of the message flow are sent transactionally, unless the output node

has overridden transactionality explicitly.

v If you select No, the incoming message is not received under sync point. Any

derived messages that are sent subsequently by an output node in the flow

are sent non-transactionally, unless the output node has specified that the

message must be put under sync point.
6. On the Validation tab, set the validation properties if you want the parser to

validate the body of messages from the Message set. If a message is propagated

to the Failure terminal of the node, it is not validated.

For more details, see “Validating messages” on page 164 and “Validation

properties” on page 1359.

Connecting the terminals:

The SCADAInput node routes each message that it retrieves successfully to the

Out terminal. If this action fails, the message is propagated to the Failure terminal;

you can connect nodes to this terminal to handle this condition. If you have not

connected the Failure terminal, the message loops continually through the node

until the problem is resolved.

If the message is caught by this node after an exception has been thrown further

on in the message flow, the message is routed to the Catch terminal. If you have

not connected the Catch terminal, the message loops continually through the node

until the problem is resolved. Ensure that a node is always connected to this

terminal if there is the possibility of the message rolling back within a message

flow.

Configuring for coordinated transactions:

When you include a SCADAInput node in a message flow, the value that you set

for Transaction mode defines whether messages are received under sync point:

v If you set this property to Yes (the default), the message is received under sync

point; that is, within a WebSphere MQ unit of work. Any messages that are sent

subsequently by an output node in the same instance of the message flow are

put under sync point, unless the output node has overridden this explicitly.

v If you set this property to Automatic, the message is received under sync point

if the incoming message is marked as persistent; otherwise, it is not received

under sync point. Any message that is sent subsequently by an output node is

put under sync point, as determined by the incoming persistence property,

unless the output node has overridden this explicitly.

v If you set this property to No, the message is not received under sync point.

Any messages that are sent subsequently by an output node in the message flow

are not put under sync point, unless an individual output node has specified

that the message must be put under sync point.

The MQOutput node is the only output node that you can configure to override

this option.

Terminals and properties

The SCADAInput node terminals are described in the following table.

Message flows 1071

Terminal Description

Failure The output terminal to which the message is routed if an error occurs.

Out The output terminal to which the message is routed if it is successfully retrieved from

the queue.

Catch The output terminal to which the message is routed if an exception is thrown

downstream and caught by this node.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The SCADAInput node Description properties are described in the following table.

 Property M C Default Description

Node name No No The node

type,

SCADAInput

The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the

message flow.

The SCADAInput node Basic properties are described in the following table.

 Property M C Default Description

Enable listener on

startup

Yes No Selected This property controls when the listener is started. If

you select the check box, the listener starts when the

message flow is started by the broker. If you clear the

check box, the listener starts on the arrival of a message

on the specified port.

Port Yes Yes 1883 The port on which the SCADA protocol is listening.

Max threads Yes Yes 500 The maximum number of threads to be started to

support SCADA devices.

Use thread pooling Yes Yes Cleared If you select the check box, thread pooling is used.

The SCADAInput node Input Message Parsing properties are described in the

following table.

 Property M C Default Description

Message domain No No BLOB The domain that is used to parse the incoming

message.

Message set No No The name or identifier of the message set in which the

incoming message is defined.

If you set this property, then subsequently update the

project dependencies to remove this message set

reference, a warning is issued. Either update the

Message set property, or restore the reference to this

message set project.

Message type No No The name of the incoming message.

1072 Message Flows

|
|
|
|
|

Property M C Default Description

Message format No No The name of the physical format of the incoming

message.

The SCADAInput node Parser Options properties are described in the following

table.

 Property M C Default Description

Parse timing No No On Demand This property controls when an input message is

parsed. Valid values are On Demand, Immediate, and

Complete.

For a full description of this property, see “Parsing on

demand” on page 1363.

Build tree using XML

schema data types

No No Cleared This property controls whether the XMLNSC parser

creates syntax elements in the message tree with data

types taken from the XML Schema. You can select this

property only if you set the Validate property on the

Validation tab to Content or Content and Value.

Use XMLNSC compact

parser for XMLNS

domain

No No Cleared This property controls whether the XMLNSC Compact

Parser is used for messages in the XMLNS Domain. If

you set this property, the message data appears under

XMLNSC in nodes that are connected to the output

terminal when the Input Message Parsing properties

Message domain is XMLNS.

Retain mixed content No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

mixed text in an input message. If you select the check

box, elements are created for mixed text. If you clear

the check box, mixed text is ignored and no elements

are created.

Retain comments No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

comments in an input message. If you select the check

box, elements are created for comments. If you clear

the check box, comments are ignored and no elements

are created.

Retain processing

instructions

No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

processing instructions in an input message. If you

select the check box, elements are created for

processing instructions. If you clear the check box,

processing instructions are ignored and no elements are

created.

Opaque elements No No Blank This property is used to specify a list of elements in the

input message that are to be opaquely parsed by the

XMLNSC parser. Opaque parsing is performed only if

validation is not enabled (that is, if Validate is None);

entries that are specified in Opaque Elements are

ignored if validation is enabled.

The SCADAInput node Advanced property is described in the following table.

Message flows 1073

Property M C Default Description

Transaction mode Yes No Yes This property controls whether the incoming message

is received under sync point. Valid values are

Automatic, Yes, and No.

The SCADAInput node Validation properties are described in the following table.

For a full description of these properties, see “Validation properties” on page 1359.

 Property M C Default Description

Validate No Yes None This property controls whether validation takes place.

Valid values are None, Content and Value, and

Content.

Failure action No No Exception This property controls what happens if validation fails.

You can set this property only if you set Validate to

Content or Content and Value. Valid values are User

Trace, Local Error Log, Exception, and Exception List.

SCADAOutput node

Use the SCADAOutput node to send a message to a client that connects to the

broker using the MQIsdp protocol across the WebSphere MQ Telemetry Transport.

This topic contains the following sections:

v “Purpose”

v “Connecting the terminals” on page 1075

v “Terminals and properties” on page 1075

Purpose

You use the Publication node to send output to a SCADA client. The

SCADAOutput node lets you write your own Publication node.

If you include a SCADAOutput node in a message flow, also include a

SCADAInput node, regardless of the source of the messages, because the

SCADAInput node provides the connectivity information that is required by the

SCADAOutput node.

When you deploy message flows that contain SCADA nodes to a broker, deploy

them to a single execution group, regardless of the number of message flows.

The execution group to which the SCADA flows are deployed must be the default

execution group. The default execution group can be identified by inspecting the

defaultExecutionGroup field in the BIP2201 message at the execution group

startup. A value of true denotes the default execution group.

You cannot use the SCADAOutput node to change the transactional characteristics

of the message flow. The transactional characteristics that are set by the message

flow’s input node determine the transactional behavior of the flow.

z/OS

You cannot use SCADAOutput nodes in message flows that you deploy

to z/OS systems.

1074 Message Flows

If you create a message flow to use as a subflow, you cannot use a standard output

node; use an instance of the Output node to create an out terminal for the subflow

through which the message can be propagated.

If you do not want your message flow to send messages to a SCADA device,

choose another supported output node.

The SCADAOutput node is contained in the Additional Protocols drawer of the

message flow node palette, and is represented in the workbench by the following

icon:

Connecting the terminals

Connect the In terminal to the node from which messages that are bound for

SCADA destinations are routed.

Connect the Out or Failure terminal of this node to another node in this message

flow to process the message further, process errors, or send the message to an

additional destination.

If you connect the Out or Failure terminal, the LocalEnvironment that is associated

with the message is enhanced with the following information for each destination

to which the message has been put by this node:

v Queue name

v Queue manager name

v Message reply identifier (this is set to the same value as message ID)

v Message ID (from the MQMD)

v Correlation ID (from the MQMD)

These values are written in WrittenDestination within the LocalEnvironment tree

structure.

If you do not connect either terminal, the LocalEnvironment tree is unchanged.

Terminals and properties

When you have put an instance of the SCADAOutput node into a message flow,

you can configure it. For more information, see “Configuring a message flow

node” on page 235. The properties of the node are displayed in the Properties

view. All mandatory properties for which you must enter a value (those that do

not have a default value defined) are marked with an asterisk.

The SCADAOutput node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected when the message is put to

the output queue.

Out The output terminal to which the message is routed if it has been successfully put to the output queue,

and if further processing is required within this message flow.

Message flows 1075

The following table describes the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The SCADAOutput node Description properties are described in the following

table.

 Property M C Default Description

Node name No No The node type,

SCADAOutput

The name of the node.

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message flow.

The Validation properties of the SCADAOutput node are described in the

following table.

If a message is propagated to the Failure terminal of the node, it is not validated.

For more details, see “Validating messages” on page 164 and “Validation

properties” on page 1359.

 Property M C Default Description

Validate No Yes Inherit This property controls whether validation takes place. Valid values are None,

Content and Value, Content, and Inherit.

Failure

action

No No Exception This property controls what happens if validation fails. You can set this

property only if you set Validate to Content or Content and Value. Valid values

are User Trace, Local Error Log, Exception, and Exception List.

SiebelInput node

Use the SiebelInput node to interact with a Siebel application.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 1077

v “Terminals and properties” on page 1077

Purpose

Use the SiebelInput node to interact with Siebel applications. For example, a

SiebelInput node monitors a Siebel system for a specified event. When that event

occurs, the SiebelInput node generates a message tree that represents the business

object with the new event details. The message tree is propagated to the Out

terminal so that the rest of the message flow can use the data to update other

systems, or audit the changes.

The SiebelInput node is contained in the WebSphere Adapters drawer of the

message flow node palette, and is represented in the workbench by the following

icon:

1076 Message Flows

Using this node in a message flow

To use the SiebelInput node, you must first create the Siebel event table. For

instructions, see “Creating the event store manually” on page 252.

To function correctly, the SiebelInput node needs an adapter component, which

you set using the Adapter component node property, and business object

definitions, which are stored in the message set that you reference from the node.

For this reason, you must provide a message set. By default, the message that is

propagated from the SiebelInput node is in the DataObject domain, so the Message

domain property is set to DataObject. You cannot specify a different domain. The

message type is detected automatically by the node.

The SiebelInput node populates the route to label destination list with the name of

the method binding. If you add a RouteToLabel node to the message flow after the

SiebelInput node, the RouteToLabel node can use the name of the method binding

to route the message to the correct part of the message flow for processing.

You can deploy only one input node that uses a particular adapter component to

an execution group, but you can deploy many input nodes that use different

adapter components to an execution group.

You can use the mqsisetdbparms command in the following format to configure an

account name with a user name and password for the Adapter for Siebel Business

Applications.

mqsisetdbparms broker name -n adapter name -u user name -p password

For example:

mqsisetdbparms BRK1 -n SiebelCustomerInbound.inadapter -u siebeluid -p ********

Terminals and properties

When you have put an instance of the SiebelInput node into a message flow, you

can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. If you double-click a

SiebelInput node, you open the Adapter Connection wizard. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The SiebelInput node terminals are described in the following table.

 Terminal Description

Out Business object events from the adapter are sent to the Out terminal.

Failure If an error happens in the SiebelInput node, the message is propagated to the Failure terminal.

Information about the error, and business object events can also be propagated to the Failure terminal.

Catch Business object events are sent to the Catch terminal if they cause an uncaught exception in the

message flow. If the Catch terminal is not connected, the retry process is activated to handle the

business object.

The following table describes the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

Message flows 1077

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The SiebelInput node Description properties are described in the following table.

 Property M C Default Description

Node

name

No No The node type,

SiebelInput.

The name of the node.

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message flow.

The SiebelInput node Basic properties are described in the following table.

 Property M C Default Description

Adapter

component

Yes Yes The name of the adapter component that contains configuration properties for

the adapter. Either enter a name of an adapter file or click Browse to select an

adapter file from the list of files that are available in referenced message set

projects.

The SiebelInput node Routing properties are described in the following table.

 Property M C Default Description

Set

destination

list

No No Selected This property specifies whether to add the method binding name to the route to

label destination list. If you select this check box, the method binding name is

added so that you can use a RouteToLabel node in the message flow after the

SiebelInput node.

Label

prefix

No No The prefix to add to the method name when routing to label. Add a label prefix

to avoid a clash of corresponding label nodes when you include multiple

WebSphere Adapters input nodes in the same message flow. By default, there is

no label prefix, so the method name and label name are identical.

The SiebelInput node Input Message Parsing properties are described in the

following table.

 Property M C Default Description

Message

domain

No No DataObject The domain that is used to parse the incoming message. By default,

the message that is propagated from the SiebelInput node is in the

DataObject domain. You cannot specify a different domain.

Message

set

Yes No Set automatically The name of the message set in which the incoming message is

defined. This field is set automatically from the Adapter component

property.

If you set this property, then subsequently update the project

dependencies to remove this message set reference, a warning is

issued. Either update the Message set property, or restore the reference

to this message set project.

Message

type

No No The name of the incoming message. The node detects the message type

automatically. You cannot set this property.

Message

format

No No The name of the physical format of the incoming message. You cannot

set this property.

1078 Message Flows

|
|
|
|

The SiebelInput node Transactionality properties are described in the following

table.

 Property M C Default Description

Transaction

mode

No No Yes This property specifies how updates are handled. If you select Yes, updates are

performed in a single transaction. If you select No, updates are performed

independently.

The Instances properties of the SiebelInput node are described in the following

table. For a full description of these properties, see “Configurable message flow

properties” on page 1372.

 Property M C Default Description

Additional

instances

pool

No Yes Use Pool

Associated

with

Message

Flow

The pool from which additional instances are obtained.

v If you select Use Pool Associated with Message Flow, additional instances are

obtained from the message flow value.

v If you select Use Pool Associated with Node, additional instances are

allocated from the node’s additional instances based on the number specified

in the Additional instances property.

Additional

instances

No Yes 0 The number of additional instances that the node can start if the Additional

instances pool property is set to Use Pool Associated with Node. By default, no

additional instances are given to the node.

The SiebelInput node Retry properties are described in the following table.

 Property M C Default Description

Retry

mechanism

No No Failure This property specifies how retry processing is handled when a failure is

rolled back to the SiebelInput node.

v If you select Failure, retry processing is not performed so you cannot set the

remaining properties.

v If you select Short and long retry, retry processing is performed first at the

interval that is specified by the Short retry interval property, and if that is

unsuccessful, it is then performed at the interval that is specified by the

Long retry interval property.

Retry

threshold

No Yes 0 The maximum number of times that retry processing is performed for short

retry.

Short retry

interval

No Yes 0 The interval between short retry attempts.

Long retry

interval

No Yes 0 The interval between long retry attempts.

SiebelRequest node

Use the SiebelRequest node to interact with a Siebel application.

This topic contains the following sections:

v “Purpose” on page 1080

v “Using this node in a message flow” on page 1080

v “Terminals and properties” on page 1080

Message flows 1079

Purpose

Use the SiebelRequest node to interact with Siebel applications. For example, a

SiebelRequest node requests information from a Siebel Enterprise Information

System (EIS). A customer business object is sent to Siebel, causing Siebel to retrieve

information about a customer, such as an address and account details. The

response information that is retrieved by the SiebelRequest node can then be used

by the rest of the message flow. The SiebelRequest node can send and receive

business data.

The SiebelRequest node is contained in the WebSphere Adapters drawer of the

message flow node palette, and is represented in the workbench by the following

icon:

Using this node in a message flow

To function correctly, the SiebelRequest node needs an adapter component, which

you set using the Adapter component node property, and business object

definitions, which are stored in the message set that you reference from the node.

For this reason, you must provide a message set. By default, the message that is

propagated from the SiebelRequest node is in the DataObject domain, so the

Message domain property is set to DataObject. You cannot specify a different

domain. The message type is detected automatically by the node.

The SiebelRequest node supports local transactions using the broker’s Local

Transaction Manager, and global transactions using the broker’s external syncpoint

coordinator.

You can deploy several WebSphere Adapters request nodes that use the same

adapter component to an execution group.

You can use the mqsisetdbparms command in the following format to configure an

account name with a user name and password for the Adapter for Siebel Business

Applications.

mqsisetdbparms broker name -n adapter name -u user name -p password

For example:

mqsisetdbparms BRK1 -n SiebelCustomerOutbound.outadapter -u siebeluid -p ********

Terminals and properties

When you have put an instance of the SiebelRequest node into a message flow,

you can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. If you double-click a

SiebelRequest node, you open the Adapter Connection wizard. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The SiebelRequest node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts the request business object.

1080 Message Flows

Terminal Description

Out The output terminal to which the response business object is sent if it represents successful completion of

the request, and if further processing is required within this message flow.

Failure If an error happens in the SiebelRequest node, the message is propagated to the Failure terminal.

Information about the error, and business object events can also be propagated to the Failure terminal.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk on the panel if you

must enter a value when no default is defined); the column headed C indicates

whether the property is configurable (you can change the value when you add the

message flow to the bar file to deploy it).

The SiebelRequest node Description properties are described in the following table.

 Property M C Default Description

Node

name

No No The node type, for

example,

SiebelRequest

The name of the node.

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message flow.

The SiebelRequest node Basic properties are described in the following table.

 Property M C Default Description

Adapter

component

Yes No The name of the adapter component that contains configuration properties for

the adapter. Either enter a name of an adapter file, or click Browse to select an

adapter file from the list of files that are available in referenced message set

projects.

Default

method

Yes Yes The default method binding to use.

The SiebelRequest node Response Message Parsing properties are described in the

following table.

 Property M C Default Description

Message

domain

No No DataObject The domain that is used to parse the response message. By default, the

response message that is propagated from the SiebelRequest node is in the

DataObject domain. You cannot specify a different domain.

Message

set

Yes No Set

automatically

The name of the message set in which the incoming message is defined.

This field is set automatically from the Adapter component property.

If you set this property, then subsequently update the project dependencies

to remove this message set reference, a warning is issued. Either update the

Message set property, or restore the reference to this message set project.

Message

type

No No The name of the response message. The node detects the message type

automatically. You cannot set this property.

Message

format

No No The name of the physical format of the response message. You cannot set

this property.

Message flows 1081

|
|
|

The SiebelRequest node Transactionality properties are described in the following

table.

 Property M C Default Description

Transaction

mode

No No No This property specifies that updates are performed independently, not as part

of a local transaction. You cannot change this property.

The SiebelRequest node Request properties are described in the following table.

 Property M C Default Description

Method

Location

Yes No $LocalEnvironment/
Adapter/MethodName

The business method that is used to trigger the SiebelRequest

node to perform an action on the external system. For example:

v createPurchaseOrder causes the SiebelRequest node to create

a purchase order in the EIS.

v deletePurchaseOrder causes the SiebelRequest node to delete

a purchase order in the EIS.

Data

Location

Yes No $Body The location in the incoming message tree from which data is

retrieved to form the request that is sent from the SiebelRequest

node to the EIS.

The SiebelRequest node Result properties are described in the following table.

 Property M C Default Description

Output data

location

No No $OutputRoot The message tree location to which the SiebelRequest node sends output.

Copy local

environment

No No Selected This property controls how the local environment is copied to the output

message. If you select the check box, at each node in the message flow, a

new copy of the local environment is created in the tree, and it is

populated with the contents of the local environment from the preceding

node. So if a node changes the local environment, the upstream nodes do

not see those changes because they have their own copies. This behavior

might be an issue if you are using a FlowOrder node, or if you use the

propagate command on a Compute node.

If you clear the check box, each node does not generate its own copy of

the local environment, but it uses the local environment that is passed to it

by the previous node. So if a node changes the local environment, those

changes are seen by the upstream nodes.

SOAPAsyncRequest node

Use the SOAPAsyncRequest node in conjunction with the SOAPAsyncResponse

node to construct a pair of message flows that call a Web service asynchronously.

This topic contains the following sections:

v “Purpose” on page 1083

v “Using this node in a message flow” on page 1084

v “Configuring the SOAPAsyncRequest node” on page 1084

v “LocalEnvironment overrides” on page 1088

v “Working with WrittenDestination data” on page 1088

v “Terminals and properties” on page 1089

1082 Message Flows

|
|

Purpose

The SOAPAsyncRequest node sends a Web service request, but the node does not

wait for the associated Web service response to be received. However, the

SOAPAsyncRequest node does wait for the HTTP 202 acknowledgement before

continuing with the message flow, and the SOAPAsyncRequest node blocks if the

acknowledgement is not received. The Web service response is received by the

SOAPAsyncResponse node, which can be in a separate message flow. The nodes

are used as a pair, and correlate responses against the original requests.

The SOAPAsyncRequest node is the first half of the asynchronous request and

response node pair. The SOAPAsyncRequest node calls a remote SOAP-based Web

service. The request is sent by the SOAPAsyncRequest node, but the

SOAPAsyncRequest node does not receive the response. The response is received

by a SOAPAsyncResponse node that is running on a different thread. The

SOAPAsyncResponse node is typically at the beginning of a different message

flow; however, it must be in the same execution group as the SOAPAsyncRequest

node.

The SOAPAsyncRequest node is WSDL-driven, in a similar manner to the

SOAPRequest node.

The SOAPAsyncRequest node is contained in the Web Services drawer of the

palette, and is represented in the workbench by the following icon:

some
message

some
response

WSDLInput

Output

SOAP
Async

Request

SOAP
Async

Response

External
Web service

Message flows 1083

Using this node in a message flow

The following sample demonstrates how to use the asynchronous SOAP nodes

when you call a Web service. The Web service simulates an order service, and the

client shows how existing WebSphere MQ interfaces can be extended to make Web

service requests.

v Asynchronous Consumer sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Configuring the SOAPAsyncRequest node

When you have put an instance of the SOAPAsyncRequest node into a message

flow, you can configure it; see “Configuring a message flow node” on page 235.

The properties of the node are displayed in the Properties view.

All mandatory properties for which you must enter a value (those that do not have

a default value defined) are marked with an asterisk.

1. Optional: On the Description tab, enter a Short description, a Long description,

or both. You can also rename the node on this tab.

2. On the Basic tab, you must set the following properties:

v Unique identifier. You must specify the unique URL fragment that is

common to your pair of SOAPAsyncRequest and SOAPAsyncResponse

nodes. This property is mandatory.

v You must associate a WSDL file with this node, and configure a number of

WSDL-related properties. Before configuring the WSDL file on this node you

must have a message set with a Deployable WSDL resource.

– WSDL file name. This property is mandatory and is of type String. If the

node was created by dropping a WSDL file from a message set onto the

message flow editor, this property will be preset to the name of the WSDL

file. If the name of the WSDL file is not preset, you can set this property

in one of the following ways.

- If you have Deployable WSDL, you can select from the Deployable

WSDL files by clicking Browse.

- If you have WSDL definitions, but no message set, then you can create

a message set:

a. Click Browse to open the WSDL Selection window.

b. Click Import/Create New to open the Import WSDL file wizard.

c. Enter the message set name and message set project name. Click

Next.

d. Choose the relevant option:

v If your WSDL file already exists in your workspace, select Use

resources from the workspace, and select the WSDL file.

v If your WSDL file is in the file system, select Use external

resources. Select the WSDL file. Click Next.
e. Select the WSDL bindings to import. Any warnings or errors are

displayed in the wizard banner.

f. Click Finish. Result: Creates a new message set project and message

set, with message definitions. The WSDL definitions are added to the

Deployable WSDL folder.

1084 Message Flows

|
|

|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.WebServicesAsync.doc/doc/overview.htm

g. You can now select the WSDL file from the WSDL Selection window.

Click OK.
- If you have a message set but no WSDL definition, you must generate a

WSDL definition. See Generating a WSDL definition from a message set.

- Drag a WSDL file from a message set onto the node.

- Type in a file name that is relative to the message set project in which

the deployable WSDL file exists.

When you select a WSDL file for the WSDL file name field, the WSDL is

validated to ensure that it is WS-I compliant. The other properties on the

Basic tab are automatically completed with values based on the WSDL

definition.

Only Deployable WSDL can be used to configure the SOAP nodes.

After a valid WSDL file is selected, the message set project to which

WSDL file belongs is added as a referenced project to the corresponding

flow project, if the reference does not already exist.

If the WSDL file is not valid, or an incorrect file name is entered, an error

message is displayed in the Properties view and all WSDL properties are

blank.

The following situations lead to error conditions on this property:

- The WSDL file does not come from a message set project, or the WSDL

file was not imported correctly; see Importing from WSDL and

Importing WSDL definitions from the command line.

- The WSDL file contains no HTTP bindings.

- The WSDL file contains no port type.

- The WSDL file entered in the text box does not exist.
– Port type. This property is mandatory and is of type String. This field lists

all of the port types defined by the specified WSDL file. By default, the

first port type found in the WSDL file that has an associated HTTP

binding, is selected.

Error Conditions:

- Selected Port type does not contain at least one operation.
– Imported binding. This property is mandatory and is of type String. The

Imported binding box lists all of the SOAP bindings associated with the

selected port type. Only HTTP transport is supported. Bindings are listed

in the order that they are displayed in the WSDL file. By default, the first

binding that implements the operation and has an associated service port,

is selected. This property is updated every time the Port type value

changes.

Error Conditions:

- No SOAP bindings (with HTTP transport) in the WSDL file are

associated with the Port type.

- Selected binding does not have any operations.
– Binding operation. This property is mandatory and is of type String. The

Binding operation box lists all of the operations defined by the selected

binding. The first operation in the list is selected by default. This property

is updated every time the selected binding value changes.

– Service port. This property is mandatory and is of type String. The Service

port box lists all of the service ports that point to the selected binding. The

first service port for the binding is selected by default. This property is

updated every time the selected binding value changes.

Message flows 1085

|
|
|
|

|

Error Conditions:

- No ports point to the selected binding.
– Target namespace. This property type is String. Target namespace displays

the namespace of the selected WSDL file.

When you save the flow file, validation of some of the WSDL-related properties

occur:

v It is validated that the WSDL file exists in the message set.

v It is validated that the selected Port type, Binding operation, and Service port

are all valid within the content of the selected WSDL file.

If any of these conditions are not met, an error is generated, and you will not

be able to add a flow that contains this SOAPAsyncRequest node to the broker

archive (bar) file.

3. On the HTTP Transport tab, you can set the HTTP transport related properties:

v Web service URL. This property is mandatory and is of type String. This is

automatically derived from the <soap:address> element of the selected

Service port. Whenever the selected port is updated, the Web service URL is

updated accordingly. However, if you override the value then your value

persists and the URL is no longer updated from the service port.

If you choose to override this property you must specify it in the form

http://<hostname>[:<port>]/[<path>] where:

– http://<hostname> must be specified.

– <port> has a default of 80. If you specify a value, you must include the :

before the port number.

– <path> has a default of /. If you specify a value, you must include the /

before the path.

For more details of how to override this property, see Changing the default

URL for a SOAPRequest node or a SOAPAsyncRequest node request.

v Request timeout (in seconds). This property type is Integer. This property has

the value of the wait time for the remote server to respond with an

acknowledgement that the message has been received. The time in seconds

that the node waits for a response from the Web service. The valid range is 1

to (231)-1. You cannot enter a value that represents an unlimited wait. The

default is 120.

v HTTP(S) Proxy Location. This property type is String. In the HTTP(S) Proxy

Location field, set the location of the proxy server to which requests are sent.

This value must be in the form hostname:port.

v SSL Protocol (if using SSL). This property type is Enumerate. Specify the SSL

Protocol that you want to use to make the request. The following options are

available:

SSL The default. This option attempts to connect using the SSLv3

protocol first, but the handshake can fall back to the SSLv2 protocol

where the SSLv2 protocol is supported by the underlying JSSE

provider.

SSLv3 This option attempts to connect with the SSLv3 protocol only. The

handshake cannot fallback to SSLv2.

TLS This option attempts to connect with the TLS protocol only. The

handshake cannot fallback to SSLv3 or SSLv2.
Both ends of an SSL connection must use the same protocol. The protocol

must be one that the remote server can accept.

1086 Message Flows

v Allowed SSL Ciphers (if using SSL). This property type is String. This setting

enables you to specify a single cipher (such as

SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA), or a list of ciphers that are the

only ones used by the connection. This list of ciphers must include one or

more that are accepted by the remote server. A comma (,) is used as a

separator between the ciphers. The default value is an empty string, which

allows the node to use any, or all, of the available ciphers during the SSL

connection handshake. This method enables the greatest scope for making a

successful SSL connection.
4. Use the Advanced tab to define your headers.

SOAP headers that are part of the must understand headers list are

incorporated into the flow rather than causing a SOAP fault. Adding headers to

the must understand headers list stops SOAP faults being generated by SOAP

headers.

v The WSDL-defined SOAP headers table is read-only, and is populated based

on the SOAP headers defined in the output part of the selected operations.

By default, the check boxes, in the second column of the table, are cleared for

all entries in the WSDL-defined SOAP headers table. You must select the

relevant check box to add the header to the must understand headers list.

v You can add custom headers (headers that are not defined in the WSDL file)

in the User-defined SOAP headers table. Use Add, Edit, and Delete for this

table. You must select the check box, in the second column of the table, to

ensure that the newly added custom header is added to the must understand

headers list.

You do not need to add must understand headers for WS-Addressing and

WS-Security as these are understood if you configure WS Extensions.

The must understand headers list that is configured on this node is applied to

the corresponding SOAPAsyncResponse node when the SOAPAsyncResponse

node receives the reply from the remote server.

5. Use the WS Extensions tab to configure WS extensions. The tab features two

configurations:

v Use WS-Addressing. This property indicates that WS-Addressing is always

engaged on the SOAPAsyncRequest node.

v WS-Security. The WS-Security table features two columns:

– Alias

– XPath Expression

You can add XPath expressions with an associated Alias value to the

WS-Security table. The Alias is resolved in a Policy Set that is created by the

administrator. The Policy Set resolves the Alias to either encrypt or sign the

part of the message referred to by the XPath Expression. You can Add, Edit,

and Delete in this table.

For more details about WS-Addressing with the SOAPAsyncRequest node,

see “WS-Addressing with the SOAPAsyncRequest and SOAPAsyncResponse

nodes” on page 640.
6. Use the Request Parser Options tab to configure request parser options. The

tab features a property that controls whether MTOM is enabled for the parser.

Valid values are Yes, No, and Inherit. For more information about MTOM, see

“SOAP MTOM” on page 682.

Message flows 1087

|
|
|
|

LocalEnvironment overrides

You can dynamically override set values in the LocalEnvironment in the same way

as setting values in other elements of a message. You can be set the following

properties under LocalEnvironment.Destination.SOAP.Request.Transport.HTTP.

 Setting Description

WebServiceURL Overrides the Web service URL property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.WebServiceURL =

’http://ibm.com/abc/’;

RequestURI Overrides the RequestURI, which is the path after the URL and port. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.RequestURI =

’/abc/def?x=y&g=h’;

Timeout Overrides the Request timeout (in seconds) property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.Timeout = 42;

ProxyURL Overrides the HTTP(S) proxy location property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.ProxyURL =

’my.proxy’;

SSLProtocol Overrides the SSLProtocol property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.SSLProtocol =

’TLS’;

Valid values are: SSL, SSLv3, and TLS.

SSLCiphers Overrides the Allowed SSL Ciphers (if using SSL) property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.SSLCiphers =

’SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA’;

HTTPVersion Overrides the HTTPVersion. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.HTTPVersion =

’HTTP/1.1’;

Method Overrides the Method. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.Method = ’GET’;

ProxyConnectHeaders Sets the ProxyConnectHeaders. Set this, when using a proxy server, to send extra SOAP

headers when connecting to that server. For example, this allows you to send proxy

authentication information to a proxy server. Multiple headers can be sent but each must be

separated by a carriage return and a line feed (ASCII 0x0D 0x0A) in accordance with

RFC2616. For example:

DECLARE CRLF CHAR CAST(X’0D0A’ AS CHAR CCSID 1208);

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.

ProxyConnectHeaders =

’Proxy-Authorization: Basic Zm5lcmJsZTpwYXNzd29yZAo=’ || CRLF ||

’Proxy-Connection: Keep-Alive’ || CRLF;

Working with WrittenDestination data

After the request has been made, the WrittenDestination folder in

LocalEnvironment is updated with the WS-Addressing (if in use) and transport

details. A WrittenDestination for a SOAPAsyncRequest node has the following

format, with WS-Addressing present only if it is used:

WrittenDestination = (

 SOAP = (

 Request = (

 WSA = (

 To = ’URI’

 MessageID = ’id’

1088 Message Flows

|

|
|
|

|||

||

|
|

||

|
|

||

|

||

|
|

||

|
|

|

||

|
|

||

|
|

||

|

||
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|

Action = ’doAllTheStuff’

)

 Transport = (

 HTTP = (

 WebServiceURL = ’http://server:8080/thing’

)

)

)

)

)

Terminals and properties

The SOAPAsyncRequest node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which a message is routed if a failure is detected when the

message is propagated to the Out flow (such as a message validation failure). Failures

routed to this terminal include those caused by the retry processing occurring before

the retry propagates the message to the Out flow.

Out The output terminal to which the message is routed if it has been successfully put to

the output queue, and if further processing is required within this message flow. The

message that leaves the Out terminal is the same as the message that arrived at the In

terminal. If no errors occur within the input node, a message received from an

external resource is always sent to the Out terminal first.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The SOAPAsyncRequest node Description properties are described in the following

table.

 Property M C Default Description

Node name No No The node

type

The name of the node.

Short description No No None A brief description of the node.

Long description No No None Text that describes the purpose of the node in the

message flow.

The SOAPAsyncRequest node Basic properties are described in the following table.

 Property M C Default Description

Unique identifier Yes No Specify the unique URL fragment that is common to

your pair of SOAPAsyncRequest and

SOAPAsyncResponse nodes.

Message flows 1089

|
|
|
|
|
|
|
|
|
|
|

|

Property M C Default Description

WSDL file name Yes No This property type is String. When you select a WSDL

file for the WSDL file name field, the WSDL is

validated to ensure that it is WS-I compliant. Only

Deployable WSDL can be used to configure the SOAP

nodes. After a valid WSDL file is selected, the message

set project to which WSDL file belongs is added as a

referenced project to the corresponding flow project, if

the reference does not already exist.

Port type Yes No By default,

the first Port

type found

in the WSDL

file, that has

an

associated

HTTP

binding with

it, is

selected.

This property type is String. This field lists all of the

port types defined by the specified WSDL file. By

default, the first port type found in the WSDL file that

has an associated HTTP binding, is selected.

Error Conditions:

v Selected Port type does not contain at least one

operation.

Imported binding Yes No This property type is String. The Imported binding box

lists all of the SOAP bindings associated with the

selected port type. Only HTTP transport is supported.

Bindings are listed in the order that they are displayed

in the WSDL file. By default, the first binding that

implements the operation and has an associated

service port, is selected. This property is updated

every time the Port type value changes.

Error Conditions:

v No SOAP bindings (with HTTP transport) in the

WSDL file are associated with the Port type.

v Selected binding does not have any operations.

Binding operation Yes No This property type is String.

The Binding operation box contains all of the

operations defined by the selected binding. The first

operation in the list is selected by default.

Service port Yes No This property type is String. The Service port box lists

all of the service ports that point to the selected

binding. The first service port for the binding is

selected by default. This property is updated every

time the selected binding value changes.

Error Conditions:

v No ports point to the selected binding.

Target namespace No No This property type is String. Target namespace

displays the namespace of the selected WSDL file.

The SOAPAsyncRequest node HTTP Transport properties are described in the

following table.

1090 Message Flows

Property M C Default Description

Web service URL Yes No This property type is String. This property is

automatically derived from the <soap:address>

element of the selected Service port. Whenever the

selected port is updated, the Web service URL is

updated accordingly. However, if you override the

value then your value persists and the URL is no

longer updated from the service port.

If you choose to override this property you must

specify it in the form http://<hostname>[:<port>]/
[<path>] where:

v http://<hostname> must be specified.

v <port> has a default of 80. If you specify a value,

you must include the : before the port number.

v <path> has a default of /. If you specify a value,

you must include the / before the path.

Request timeout (in

seconds)

No No 120 This property type is Integer. This property has the

value of the wait time for the remote server to respond

with an acknowledgement that the message has been

received.

The time in seconds that the node waits for a response

from the Web service. The valid range is 1 to (231)-1.

You cannot enter a value that represents an unlimited

wait.

HTTP(S) proxy location No No This property type is String. The proxy server to which

requests are sent. This value must be in the form

hostname:port.

SSL Protocol (if using

SSL)

No No SSL This property type is Enumerate. The SSL protocol to

use when making an HTTPS request. Valid values are:

v SSL

v SSLv3

v TLS

Allowed SSL ciphers (if

using SSL)

No No Empty This property type is String. A comma-separated list of

ciphers to use when making an SSL request. The

default value of an empty string means use all

available ciphers.

The SOAPAsyncRequest node Advanced properties are described in the following

table.

 Property M C Default Description

WSDL-defined SOAP

headers

No No The WSDL-defined SOAP headers table is read-only,

and is populated based on the SOAP headers defined

in the output part of the selected operations. By

default, the check boxes, in the second column of the

table, are cleared for all entries in the WSDL-defined

SOAP headers table. You must select the relevant

check box to add the header to the ’must understand

headers’ list.

Message flows 1091

Property M C Default Description

User-defined SOAP

headers

No No You can add custom headers (headers that are not

defined in the WSDL file) in the User-defined SOAP

headers table. Use Add, Edit, and Delete for this table.

You must select the relevant check box, in the second

column of the table, to ensure that the newly added

custom header is added to the ’must understand

headers’ list.

The SOAPAsyncRequest node WS Extensions properties are described in the

following table.

 Property M C Default Description

Use WS-Addressing No No Selected You cannot edit this property. This property indicates

that WS-Addressing is always engaged on the

SOAPAsyncRequest node.

WS-Security No No This table and features two columns:

v Alias

v XPath Expression

You can add XPath expressions with an associated

Alias value to the WS-Security table. The Alias is

resolved in a Policy Set that is created by the

administrator. The Policy Set resolves the Alias to

either encrypt or sign the part of the message referred

to by the XPath Expression. You can Add, Edit and

Delete in this table.

The SOAPAsyncRequest node Request Parser Options property is described in the

following table.

 Property M C Default Description

Allow MTOM No Yes No This property controls whether MTOM is enabled for the parser. Valid

values are Yes, No, and Inherit. For more information about using SOAP

MTOM with the SOAPReply, SOAPRequest, and SOAPAsyncRequest

nodes, see “Using SOAP MTOM with the SOAPReply, SOAPRequest, and

SOAPAsyncRequest nodes” on page 634.

SOAPAsyncResponse node

Use the SOAPAsyncResponse node in conjunction with the SOAPAsyncRequest

node to construct a pair of message flows that call a Web service asynchronously.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 1093

v “Terminals and properties” on page 1093

Purpose

The SOAPAsyncRequest node sends a Web service request, but the node does not

wait for the associated Web service response to be received. However, the

SOAPAsyncRequest node does wait for the HTTP 202 acknowledgement before

continuing with the message flow, and the SOAPAsyncRequest node blocks if the

acknowledgement is not received. The Web service response is received by the

1092 Message Flows

|
|

||||||

|||||
|
|
|
|
|

SOAPAsyncResponse node, which can be in a separate message flow. The nodes

are used as a pair, and correlate responses against the original requests.

The SOAP parser invokes the XMLNSC parser to parse the XML content of the

SOAP Web service, and to validate the XML body of the SOAP Web service. The

SOAP parser options are passed through to the XMLNSC parser. For more

information, see “Manipulating messages in the XMLNSC domain” on page 364.

The SOAPAsyncResponse node is contained in the Web Services drawer of the

palette, and is represented in the workbench by the following icon:

Using this node in a message flow

Configuration of the SOAPAsyncResponse node is not WSDL-driven, although the

’must understand headers’ list configured on the corresponding

SOAPAsyncRequest node is applicable to the SOAPAsyncResponse node.

The following sample demonstrates how to use the asynchronous SOAP nodes

when you call a Web service. The Web service simulates an order service, and the

client shows how existing WebSphere MQ interfaces can be extended to make Web

service requests.

v Asynchronous Consumer sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Terminals and properties

When you have put an instance of the SOAPAsyncResponse node into a message

flow, you can configure it; see “Configuring a message flow node” on page 235.

some
message

some
response

WSDLInput

Output

SOAP
Async

Request

SOAP
Async

Response

External
Web service

Message flows 1093

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.WebServicesAsync.doc/doc/overview.htm

The properties of the node are displayed in the Properties view. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The SOAPAsyncResponse node terminals are described in the following table.

 Terminal Description

Failure The output terminal to which the message is routed if a failure is detected when the message is

propagated.

Out The output terminal to which the message is routed if it has been propagated successfully, and if further

processing is required within this message flow.

Fault SOAP fault messages will be directed down the Fault terminal.

Catch The output terminal to which the message is routed if an exception is thrown downstream and caught

by this node.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The SOAPAsyncResponse node Description properties are described in the

following table.

 Property M C Default Description

Node name No No The node type:

SOAPAsyncResponse

The name of the node.

Short

description

No No None A brief description of the node.

Long

description

No No None Text that describes the purpose of the node in the message

flow.

The SOAPAsyncResponse node Basic properties are described in the following

table:

 Property M C Default Description

Unique

identifier

Yes No Specify the unique URL fragment that is common to your pair of

SOAPAsyncRequest and SOAPAsyncResponse nodes.

The SOAPAsyncResponse node Advanced property is described in the following

table.

 Property M C Default Description

Set

destination

list

No No Selected This property indicates whether to add the incoming SOAP operation to the route

to label destination list.

Label

prefix

No No Use this property to add a prefix to the SOAP Operation name in the destination

list. You must add a Label prefix if you want to use multiple SOAPAsyncResponse

nodes in the same message flow without causing their corresponding Label nodes

to clash. By default, the prefix is an empty string so that the operation name and

the label name are identical. This property is not available if the Set destination

list property is cleared.

1094 Message Flows

||||||

|
|
|

||||
|

|
|
||||
|
|
|
|
|

Property M C Default Description

Place

WS-Addressing

headers

into

LocalEnvironment

No No Cleared This property specifies whether the node puts WS-Addressing headers from the

response message into the LocalEnvironment tree. WS-Addressing headers are not

accessible to the flow if this check box is cleared because by default, all headers

are processed and removed.

The SOAPAsyncResponse node Instances properties are described in the following

table.

 Property M C Default Description

Additional

instances

pool

No Yes Use Pool

Associated

with

Message

Flow

The pool from which additional instances are obtained.

v If you select Use Pool Associated with Message Flow, additional instances

are obtained from the message flow value.

v If you select Use Pool Associated with Node, additional instances are

allocated from the node’s additional instances based on the number

specified in the Additional instances property.

Additional

instances

No Yes 0 The number of additional instances that the node can start if the Additional

instances pool property is set to Use Pool Associated with Node. By default,

no additional instances are given to the node.

The SOAPAsyncResponse node Response Message Parsing properties are described

in the following table. The SOAPAsyncResponse node sets these properties

automatically; you cannot set them yourself.

 Property M C Default Description

Message

domain

No No SOAP The domain that is used to parse the response

message. By default, the message that is propagated

from the SOAPAsyncResponse node is in the SOAP

domain. You cannot specify a different domain. For

more information, see “SOAP parser and domain”

on page 78.

Message

set

Yes No Set automatically from the WSDL file

name property that is provided by the

SOAPAsyncRequest node.

The name of the message set in which the response

message is defined. Message set is set automatically

to the message set that contains the WSDL file that

is configured on the corresponding

SOAPAsyncRequest node.

If you set this property, then subsequently update

the project dependencies to remove this message set

reference, a warning is issued. Either update the

Message set property, or restore the reference to this

message set project.

Message

type

No No The name of the response message. The node

detects the message type automatically. You cannot

set this property.

Message

format

No No The name of the physical format of the response

message. You cannot set this property.

The SOAPAsyncResponse node Parser Options properties are described in the

following table. The properties are passed through to the XMLNSC parser.

Message flows 1095

|||||

|
|
|
|
|

||||
|
|
|

|

|
|
|
|
|

Property M C Default Description

Parse timing No No On

Demand

This property controls when a response message is parsed. Valid values

are On Demand, Immediate, and Complete.

By default, parse timing is set to On demand, which causes parsing of

the input message to be delayed. For a full description of this property,

see “Parsing on demand” on page 1363.

Build tree

using XML

schema data

types

No No Selected This property controls whether the XMLNSC parser creates syntax

elements in the message tree with data types taken from the XML

Schema.

Retain mixed

content

No No Cleared This property controls whether the XMLNSC parser creates elements in

the message tree when it encounters mixed text in a response message.

If you select the check box, elements are created for mixed text. If you

clear the check box, mixed text is ignored and no elements are created.

Retain

comments

No No Cleared This property controls whether the XMLNSC parser creates elements in

the message tree when it encounters comments in an response message.

If you select the check box, elements are created for comments. If you

clear the check box, comments are ignored and no elements are created.

Retain

processing

instructions

No No Cleared This property controls whether the XMLNSC parser creates elements in

the message tree when it encounters processing instructions in a

response message. If you select the check box, elements are created for

processing instructions. If you clear the check box, processing

instructions are ignored and no elements are created.

Opaque

elements

No No Blank This property is used to specify a list of elements in the response

message that are to be opaquely parsed by the XMLNSC parser. Opaque

parsing is performed only if validation is not enabled (that is, if Validate

is None); entries that are specified in Opaque Elements are ignored if

validation is enabled.

The SOAPAsyncResponse node Validation properties are described in the following

table. By default, validation is enabled.

If a message is propagated to the failure terminal of the node, it is not validated.

For more details, see “Validating messages” on page 164 and “Validation

properties” on page 1359.

 Property M C Default Description

Validate No Yes Content

and

value

This property controls whether validation takes place. Valid values are None,

Content and value, and Content.

Failure

action

No Yes Exception This property controls what happens if validation fails. You can set this

property only if you set Validate to Content or Content and value. Valid values

are User trace, Exception list, Local error log, and Exception.

SOAPEnvelope node

Use the SOAPEnvelope node to add a SOAP envelope onto an existing message.

This node is designed to be used with the SOAPExtract node.

This topic contains the following sections:

v “Purpose” on page 1097

v “Using the SOAPEnvelope node in a message flow” on page 1097

v “Configuring the SOAPEnvelope node” on page 1097

1096 Message Flows

v Supported parsers

v “Terminals and properties” on page 1098

v “Example SOAP messages” on page 1099

Purpose

The default behavior of the SOAPEnvelope node is to attach the SOAP envelope

from a standard location ($LocalEnvironment/SOAP/Envelope) in the

LocalEnvironment tree; you can specify an explicit location by using an XPath

expression.

You can also use the node in a flow without a corresponding SOAPExtract node;

the node has an option to create a default SOAP envelope.

The SOAPEnvelope node is contained in the Web Services drawer of the palette,

and is represented in the workbench by the following icon:

Using the SOAPEnvelope node in a message flow

This node is designed to be used in conjunction with the SOAPExtract node; see

“SOAPExtract node” on page 1099.

Configuring the SOAPEnvelope node

When you have put an instance of the SOAPEnvelope node into a message flow,

you can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view.

1. Optional: On the Description tab, enter a Short description, a Long description,

or both. You can also rename the node on this tab.

2. On the Basic tab:

a. In Create new envelope, specify whether the node must create a SOAP

envelope, or use an existing one. The default value is to use an existing one.

b. In Existing Envelope Location, specify an XPath expression that represents

the location from which the node will copy the SOAP envelope. By default

the node copies the envelope from the LocalEnvironment

($LocalEnvironment/SOAP/Envelope).

Supported parsers

This node is designed to work with SOAP messages. Use one of the following

parsers:

v SOAP

v XMLNSC

v MRM

v XMLNS

Other XML parsers are not supported because they do not support namespaces. An

exception is thrown if a message is received which is not using the correct parser

or does not conform to the basic structure of a SOAP message.

Message flows 1097

Full validation is not done on the SOAP message, which just needs to contain a

body element.

Terminals and properties

The terminals of the SOAPEnvelope node are described in the following table:

 Terminal Description

In The input terminal that accepts a SOAP message for processing by the node.

Out The output terminal that outputs the SOAP message that was constructed from the

SOAP message body and a SOAP envelope.

Failure The output terminal to which the message is routed if a failure is detected during

processing.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Description properties of the SOAPEnvelope node are described in the

following table.

 Property M C Default Description

Node name No No The node

type

The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the

message flow.

The Basic properties of the SOAPEnvelope node are described in the following

table.

 Property M C Default Description

Create new

envelope

No No Cleared This property controls whether the node creates a SOAP

envelope, or gets an existing one from the message tree.

If you select the check box, the node creates a new

envelope. If you clear the check box, the node copies the

envelope from the value entered in the Existing Envelope

Location property.

Existing

Envelope

Location

No No $LocalEnvironment/
SOAP/Envelope

An XPath expression that represents the location from

which the node will copy the SOAP envelope. The

following correlation names are available:

$Root

The root of the message tree.

$Body

The last child of the root of the message tree

(equivalent to /).

$LocalEnvironment

The root of the LocalEnvironment tree.

$Environment

The root of the Global Environment tree.

1098 Message Flows

Example SOAP messages

Incoming SOAP envelope

<?xml version="1.0"?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:tns="http://ws3.st.mqsi.ibm.com/App/DocLiteral1"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Header>

 <tns:requestHeader>

 <tns:assessorUrl>header1</tns:assessorUrl>

 </tns:requestHeader>

 </soapenv:Header>

</soapenv:Envelope>

Incoming SOAP message body

<?xml version="1.0"?>

<tns:requestAvailability

xmlns:tns="http://ws3.st.mqsi.ibm.com/App/DocLiteral1"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <tns:carDetails>body1</tns:carDetails>

 <tns:claimID>body2</tns:claimID>

 <tns:location>body3</tns:location>

 <tns:reqDate>body4</tns:reqDate>

</tns:requestAvailability>

Outgoing SOAP message

<?xml version="1.0"?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:tns="http://ws3.st.mqsi.ibm.com/App/DocLiteral1"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Header>

 <tns:requestHeader>

 <tns:assessorUrl>header1</tns:assessorUrl>

 </tns:requestHeader>

 </soapenv:Header>

 <soapenv:Body>

 <tns:requestAvailability>

 <tns:carDetails>body1</tns:carDetails>

 <tns:claimID>body2</tns:claimID>

 <tns:location>body3</tns:location>

 <tns:reqDate>body4</tns:reqDate>

 </tns:requestAvailability>

 </soapenv:Body>

</soapenv:Envelope>

SOAPExtract node

Use the SOAPExtract node to remove SOAP envelopes, allowing just the body of a

SOAP message to be processed. It can also route a SOAP message based on its

operation name. Both functions are optional; they are contained within one node

because they are often used together.

This topic contains the following sections:

Message flows 1099

v “Purpose”

v “Using the SOAPExtract node in a message flow”

v “Configuring the SOAPExtract node”

v “Supported parsers” on page 1101

v “Terminals and properties” on page 1101

v “Example SOAP messages” on page 1103

Purpose

The SOAPExtract node can perform two functions:

Extract function

The default behavior is to detach the SOAP envelope to a standard location

($LocalEnvironment/SOAP/Envelope) in the LocalEnvironment tree.

Alternatively, you can specify an explicit location using an XPath expression.

Any existing SOAP envelope at the chosen location is replaced.

Routing function

The SOAP message is routed to a Label node within the message flow as

identified by the SOAP operation within the message. The SOAP Operation is

identified within the SOAP body tag.

Ensure that the message parser options in the properties folder of the outgoing

message are correctly set up to parse the message, by copying the message set and

message format from the incoming message. The message type is derived from the

SOAP envelope message body first child.

Only a single child of the SOAP message body is supported.

The SOAPExtract node is contained in the Web Services drawer of the palette, and

is represented in the workbench by the following icon:

Using the SOAPExtract node in a message flow

Look at the following sample to see how to use this node:

v SOAP Nodes sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Configuring the SOAPExtract node

When you have put an instance of the SOAPExtract node into a message flow, you

can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view.

1. Optional: On the Description tab, enter a Short description, a Long description,

or both. You can also rename the node on this tab.

2. On the Basic tab:

a. Specify in Remove envelope whether the node must remove the soap

envelope and place it in the location given in Envelope Destination, or leave

it on the message. The default value is that the node removes the envelope.

1100 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.SOAPNodes.doc/doc/overview.htm

b. In Envelope Destination, enter an XPath expression that represents the

destination to which the node will copy the envelope. By default, the node

copies the envelope to the LocalEnvironment ($LocalEnvironment/SOAP/
Envelope).

c. In Destination path mode, specify the behavior of the Envelope Destination

property.

v Create path: The node creates the tree if the path specifies a location that

does not already exist. Only simple expressions of the form aaa/bbb/ccc

in Envelope Destination are supported. The default.

v XPath location of existing element: If you know that the destination

element exists, you can use any valid XPath 1.0 expression in Envelope

Destination.
d. In Route to ’operation’ label, specify whether the node must route the

message to the SOAP operation given in the message. The default setting is

for the node to send the message to the Out terminal.

e. In Label Prefix, enter the value to prefix to the label used for routing by the

node. Entering a prefix allows for name spacing between subflows. By

default, no value is prefixed to the label name used for routing the message.

Supported parsers

This node is designed to work with SOAP messages. Use one of the following

parsers:

v SOAP

v XMLNSC

v MRM

v XMLNS

Other XML parsers are not supported because they do not support namespaces. An

exception is thrown if a message is received which is not using the correct parser

or does not conform to the basic structure of a SOAP message.

Full validation is not done on the SOAP message, which just needs to contain a

body element.

Terminals and properties

The terminals of the SOAPExtract node are described in the following table:

 Terminal Description

In The input terminal that accepts a SOAP message for processing by the node.

Out The output terminal that outputs the SOAP message body (without the envelope if

the Remove envelope check box is selected on the node properties).

Failure The output terminal to which the message is routed if a failure is detected during

processing.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

Message flows 1101

The Description properties of the SOAPExtract node are described in the following

table.

 Property M C Default Description

Node name No No The node

type

The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the

message flow.

The Basic properties of the SOAPExtract node are described in the following table.

 Property M C Default Description

Remove

envelope

No No Selected If you select the check box, the node removes the SOAP

header from the message. For a SOAP tree, the node

outputs to the Out terminal the first child of SOAP.body

from the SOAP tree. It outputs to Envelope Destination

the full SOAP tree minus the first child of SOAP.body.

If you clear the check box, the node leaves the envelope

on the message. In the case of a SOAP tree, the full tree

is propagated to the Out terminal.

Envelope

Destination

No No $LocalEnvironment/
SOAP/Envelope

An XPath expression that represents the destination to

which the node will copy the SOAP envelope. The

following correlation names are available:

$Root

The root of the message tree.

$Body

The last child of the root of the message tree

(equivalent to /).

$LocalEnvironment

The root of the LocalEnvironment tree.

$Environment

The root of the Global Environment tree.

Destination path

mode

No No Create path This determines the behavior of the Envelope Destination

property. Set this property:

Create path

The default. The tree is created if the path specifies a

location that does not exist. Only simple expressions

of the form aaa/bbb/ccc are supported.

XPath location of existing element

If you know that the destination element exists, you

can enter any valid XPath 1.0 expression.

1102 Message Flows

Property M C Default Description

Route to

’operation’ label

No No Cleared This property determines whether the node must route

the message to the SOAP operation given in the message.

If you select the check box, the message is routed to a

Label node that matches the SOAP operation. An

exception is thrown if no Label node matches. The name

of the first child element of the SOAP body is used to

determine the RouteToLabel name. For the ‘RPC literal’

and ‘wrapped doc literal’ WSDL types, this is the

‘operation’ name. For a SOAP tree, the first child of

SOAP.Body supplies the operation name.

If you clear the check box, the node sends the message to

the Out terminal.

Label Prefix No No The value to prefix to the label that the node uses for

routing. Entering a prefix allows for name spacing

between subflows.

Example SOAP messages

Incoming SOAP message

<?xml version="1.0"?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:tns="http://ws3.st.mqsi.ibm.com/App/DocLiteral1"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Header>

 <tns:requestHeader>

 <tns:assessorUrl>header1</tns:assessorUrl>

 </tns:requestHeader>

 </soapenv:Header>

 <soapenv:Body>

 <tns:requestAvailability>

 <tns:carDetails>body1</tns:carDetails>

 <tns:claimID>body2</tns:claimID>

 <tns:location>body3</tns:location>

 <tns:reqDate>body4</tns:reqDate>

 </tns:requestAvailability>

 </soapenv:Body>

</soapenv:Envelope>

De-enveloped message

The operation name is requestAvailability. Note that the namespacing is removed

from the operation.

<?xml version="1.0"?>

<tns:requestAvailability

xmlns:tns="http://ws3.st.mqsi.ibm.com/App/DocLiteral1"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <tns:carDetails>body1</tns:carDetails>

 <tns:claimID>body2</tns:claimID>

 <tns:location>body3</tns:location>

 <tns:reqDate>body4</tns:reqDate>

</tns:requestAvailability>

Message flows 1103

Removed envelope

<?xml version="1.0"?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:tns="http://ws3.st.mqsi.ibm.com/App/DocLiteral1"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Header>

 <tns:requestHeader>

 <tns:assessorUrl>header1</tns:assessorUrl>

 </tns:requestHeader>

 </soapenv:Header>

</soapenv:Envelope>

SOAPInput node

Use the SOAPInput node to process client SOAP messages, thus enabling the

broker to be a SOAP Web services provider.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow”

v “Configuring the SOAPInput node”

v “Terminals and properties” on page 1109

Purpose

The SOAPInput node is typically used in conjunction with the SOAPReply node.

The SOAPInput node is contained in the Web Services drawer of the message flow

node palette, and is represented in the workbench by the following icon:

Using this node in a message flow

The SOAPInput node can be used in any message flow that needs to accept SOAP

messages. Look at the following sample to see how to use this node:

v SOAP Nodes sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Configuring the SOAPInput node

When you have put an instance of the SOAPInput node into a message flow, you

can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view.

All mandatory properties for which you must enter a value (those that do not have

a default value defined) are marked with an asterisk.

 1. Optional: On the Description tab, enter a Short description, a Long

description, or both. You can also rename the node on this tab.

1104 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.SOAPNodes.doc/doc/overview.htm

2. On the Basic tab, you must configure the following WSDL Properties. Before

configuring the WSDL file on this node you must have a message set with a

Deployable WSDL resource.

v WSDL file name. This property is mandatory and is of type String. If the

node was created by dropping a WSDL file from a message set onto the

message flow editor, this property will be preset to the name of the WSDL

file. If the name of the WSDL file is not preset, you can set this property in

one of the following ways.

– If you have Deployable WSDL, you can select from the Deployable

WSDL files by clicking Browse.

– If you have WSDL definitions, but no message set, then you can create a

message set:

a. Click Browse to open the WSDL Selection window.

b. Click Import/Create New to open the Import WSDL file wizard.

c. Enter the message set name and message set project name. Click

Next.

d. Choose the relevant option:

- If your WSDL file already exists in your workspace, select Use

resources from the workspace, and select the WSDL file.

- If your WSDL file is in the file system, select Use external

resources. Select the WSDL file. Click Next.
e. Select the WSDL bindings to import. Any warnings or errors are

displayed in the wizard banner.

f. Click Finish. Result: Creates a new message set project and message

set, with message definitions. The WSDL definitions are added to the

Deployable WSDL folder.

g. You can now select the WSDL file from the WSDL Selection window.

Click OK.
– If you have a message set but no WSDL definition, you must generate a

WSDL definition. See Generating a WSDL definition from a message set.

– Drag a WSDL file from a message set onto the node.

– Type in a file name that is relative to the message set project in which

the deployable WSDL file exists.

When you select a WSDL file for the WSDL file name field, the WSDL is

validated to ensure that it is WS-I compliant. The other properties on the

Basic tab are automatically completed with values based on the WSDL

definition.

Only Deployable WSDL can be used to configure the SOAP nodes.

After a valid WSDL file is selected, the message set project to which WSDL

file belongs is added as a referenced project to the corresponding flow

project, if the reference does not already exist.

If the WSDL file is not valid, or an incorrect file name is entered, an error

message is displayed in the Properties view and all WSDL properties are

blank.

The following situations lead to error conditions on this property:

– The WSDL file does not come from a message set project, or the WSDL

file was not imported correctly; see Importing from WSDL and Importing

WSDL definitions from the command line.

– The WSDL file contains no HTTP bindings.

– The WSDL file contains no port type.

Message flows 1105

|
|
|

|
|
|
|
|

|
|

|
|

|

|

|
|

|

|
|

|
|

|
|

|
|
|

|
|

|
|

|

|
|

|
|
|
|

|

|
|
|

|
|
|

|

|
|
|

|

|

– The WSDL file entered in the text box does not exist.
v Port type. This property is mandatory and is of type String. This field lists

all of the port types defined by the specified WSDL file. By default, the first

port type found in the WSDL file that has an associated HTTP binding, is

selected.

Error Conditions:

– Selected Port type does not contain at least one operation.
v Imported binding. This property is mandatory and is of type String. The

Imported binding box lists all of the SOAP bindings associated with the

selected port type. Only HTTP transport is supported. Bindings are listed in

the order that they are displayed in the WSDL file. By default, the first

binding that implements the operation and has an associated service port, is

selected. This property is updated every time the Port type value changes.

Error Conditions:

– No SOAP bindings (with HTTP transport) in the WSDL file are

associated with the Port type.

– Selected binding does not have any operations.
v Service port. This property is mandatory and is of type String. The Service

port box lists all of the service ports that point to the selected binding. The

first service port for the binding is selected by default. This property is

updated every time the selected binding value changes.

Error Conditions:

– No ports point to the selected binding.
v Target namespace. This property type is String. Target namespace displays

the namespace of the selected WSDL file.
When you save the flow file, validation of some of the WSDL-related

properties occur:

v It is validated that the WSDL file exists in the message set.

v It is validated that the selected Port type, Binding operation, and Service

port are all valid within the content of the selected WSDL file.

If any of these conditions are not met, an error is generated, and you will not

be able to add a flow that contains this SOAPInput node to the broker archive

(bar) file.

 3. On the HTTP Transport tab, set the following HTTP transport related

properties. You can use the mqsichangeproperties command to change port

ranges and keyStores using the BrokerRegistry component; see

mqsichangeproperties command.

v URL Selector. This property type is String. This property is automatically set

from the <soap:address> element of the selected Service port. Whenever the

selected port is updated, URL Selector is updated accordingly. However, if

you override the value then your value persists, and the URL is no longer

updated from the service port.

If you choose to override this property, you must specify the [<path>].

v Use HTTPS. This property type is Boolean. This property is also

automatically configured from the <soap:address> element of the selected

Service port.

If the address contains an https URL, the check box is selected, otherwise it

is not.

However, if you manually override this property value it will no longer be

updated from the corresponding service port.

1106 Message Flows

|

|
|
|
|

|

|

|
|
|
|
|
|

|

|
|

|

|
|
|
|

|

|

|
|

|
|

|

|
|

|
|
|

v Maximum client wait time (sec). Enter the Maximum client wait time

timeout interval in seconds. The SOAPInput node is typically used in

conjunction with the SOAPReply node. This property specifies the length of

time that the TCP/IP listener that received the input message from the Web

service client waits for a response from the SOAPReply node in the message

flow. If a response is received within this time, the listener propagates the

response to the client. If a response is not received in this time, the listener

sends a SOAP Fault message to the client indicating that its timeout has

expired.
 4. Use the Advanced tab to define your headers:

v SOAP 1.1 actor (SOAP 1.2 role). This property type is String. This property

enables configuring of SOAP actor (SOAP 1.1 protocol) or SOAP role (SOAP

1.2 protocol) that the SOAPInput node acts as. The default value is Ultimate

Destination (Ultimate Receiver). (Ultimate Destination relates to SOAP 1.1

and Ultimate Receiver relates to SOAP 1.2). You can enter any predefined or

user-defined value.

Predefined roles are specified in the respective SOAP 1.1 or SOAP 1.2

specifications, and are used to process SOAP Headers targeted at the

specific role.

Error Conditions:

– If you select empty, there is an error on flow validation.
v Set destination list. This property type is Boolean. This property indicates

whether to add the incoming SOAP operation to the route to label in the

destination list.

v Label prefix. This property type is String. A prefix to add to the operation

name in the destination list. You must add a Label prefix if you want to use

multiple SOAPInput nodes in the same flow without their corresponding

label nodes clashing.

The default prefix is an empty string so that the operation name and the

label name are identical, but the field displays the user instruction: <enter a

prefix if required>. This property is not enabled if the setDestinationList

property is not enabled.

v SOAP headers that are part of the must understand headers list are

incorporated into the flow rather than causing a SOAP fault. Adding

headers to the must understand headers list stops SOAP faults being

generated by SOAP headers.

– The WSDL-defined headers table is read-only, and is populated, based on

the SOAP headers defined in the input part of all operations of the

selected binding. By default, the check boxes in the second column of the

table, are cleared for all entries in the WSDL-defined table. You must

select the check box for those headers that you want to add to the must

understand headers list.

– You can add custom headers, that is, headers not defined in the WSDL,

in the User-defined SOAP headers table. You can Add, Edit, and Delete

rows in this table. You must ensure that the check box for the newly

added custom header, in the second column of the table, is selected in

order for the header to be added to the must understand headers list.

You do not need to add must understand headers for WS-Addressing and

WS-Security as these are understood if you configure WS Extensions.
 5. Use the WS Extensions tab to configure WS extensions.

Message flows 1107

v Use WS-Addressing. This property indicates whether to engage

WS-Addressing on the SOAPInput node. This check box is selected by

default.

v Place WS-Addressing Headers into LocalEnvironment. This property

specifies whether the node puts WS-Addressing headers received in the

message into the LocalEnvironment tree. WS-Addressing headers are not

accessible to the flow if this check box is cleared because by default, all

headers are processed and removed.

v The WS-Security table features two columns:

– Alias

– XPath Expression

You can add XPath expressions with an associated Alias value to the

WS-Security table. The Alias is resolved in a Policy Set that is created by the

administrator. The Policy Set resolves the Alias to either encrypt or sign the

part of the message referred to by the XPath Expression. You can Add, Edit,

and Delete in this table.

 6. On the Input Message Parsing tab, the properties are automatically set when

the WSDL file property is configured, you cannot set them yourself.

v Message domain. This value is always set to SOAP. For more information,

see “SOAP parser and domain” on page 78.

v Message set. This property is automatically set to the message set that

contains the WSDL file, when the WSDL is associated with the node.

v Message type. This property is not used.

v Message format. This property is not used.
 7. On the Parser Options sub tab, set properties associated with the parser. The

following properties are listed on this tab:

v Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed. To cause the message to be parsed immediately, see

“Parsing on demand” on page 1363.

v Soap Parser Options. Set values for the properties that determine how the

SOAP parser operates. The SOAP parser options are passed through to the

XMLNSC parser. For more information, see “Manipulating messages in the

XMLNSC domain” on page 364.
 8. On the Error Handling tab, set the properties associated with fault processing:

v Send failures during inbound SOAP processing to failure terminal. This

property type is Boolean. If a situation arises during inbound SOAP

processing that results in a SOAP Fault, instead of immediately sending the

SOAP Fault back to the client, send it to the Failure terminal instead, to

allow logging, and recovery processing.

In this situation an exception list is sent down the Failure terminal with the

inbound message as a BLOB. The default value of this property is Cleared.
 9. On the Validation tab, set the validation properties if you want the SOAP

parser to validate the body of each input message against XML Schema

generated from the message set. By default, validation is enabled. The SOAP

parser invokes the XMLNSC parser to validate the XML body of the SOAP

Web service. If a message is propagated to the Failure terminal of the node, it

is not validated.

For more details, see “Validating messages” on page 164 and “Validation

properties” on page 1359.

10. On the Instances tab, you can set the following properties:

v Additional instances pool. This property has the following values:

1108 Message Flows

|
|
|
|
|

– Use Pool Associated with Message Flow; this value is default value.

– Use Pool Associated with Node.
v Additional instances. This property has the default value 0.

11. Use the Retry tab to define how retry processing is carried out when a failure

gets rolled back to the input node:

v Retry mechanism: This property type is Enumerate and defines the format

of the mechanism. Enter one of the values Failure or Short and long retry.

v Retry threshold: This property type is Integer and defines the number of

retries to correct the failure.

v Short retry interval: This property type is Integer and defines the time the

client waits in seconds before attempting to correct the failure.

v Long retry interval: This property type is Integer and defines the time the

client waits in seconds before attempting to correct the failure.

Terminals and properties

The SOAPInput node terminals are described in the following table.

 Terminal Description

Failure The output terminal to which a message is routed if a failure is detected when the

message is propagated to the Out flow (such as a message validation failure). Failures

routed to this terminal include those caused by the retry processing occurring before

the retry propagates the message to the Out flow.

Out The output terminal to which the message is routed if it has been successfully put to

the output queue, and if further processing is required within this message flow. If no

errors occur within the input node, a message received from an external resource is

always sent to the Out terminal first.

Catch The output terminal to which the message is routed if an exception is thrown

downstream and caught by this node.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The SOAPInput node Description properties are described in the following table.

 Property M C Default Description

Node name No No The node

type

The name of the node.

Short description No No None A brief description of the node.

Long description No No None Text that describes the purpose of the node in the

message flow.

The SOAPInput node Basic properties are described in the following table.

Message flows 1109

Property M C Default Description

WSDL file name Yes No <None> This property type is String. When you select a WSDL

file for the WSDL file name field, the WSDL is

validated to ensure that it is WS-I compliant. Only

Deployable WSDL can be used to configure the SOAP

nodes. After a valid WSDL file is selected, the message

set project to which WSDL file belongs is added as a

referenced project to the corresponding flow project, if

the reference does not already exist.

Port type Yes No By default,

the first Port

type found

in the WSDL

file, that has

an

associated

HTTP

binding with

it, is

selected.

This property type is String. This field lists all of the

port types defined by the specified WSDL file. By

default, the first port type found in the WSDL file that

has an associated HTTP binding, is selected.

Error Conditions:

v Selected Port type does not contain at least one

operation.

Imported binding Yes No This property type is String. The Imported binding box

lists all of the SOAP bindings associated with the

selected port type. Only HTTP transport is supported.

Bindings are listed in the order that they are displayed

in the WSDL file. By default, the first binding that

implements the operation and has an associated

service port, is selected. This property is updated

every time the Port type value changes.

Error Conditions:

v No SOAP bindings (with HTTP transport) in the

WSDL file are associated with the Port type.

v Selected binding does not have any operations.

Service port Yes No This property type is String. The Service port box lists

all of the service ports that point to the selected

binding. The first service port for the binding is

selected by default. This property is updated every

time the selected binding value changes.

Error Conditions:

v No ports point to the selected binding.

Target namespace Yes No This property type is String. Target namespace

displays the namespace of the selected WSDL file.

The SOAPInput node HTTP Transport properties are described in the following

table.

 Property M C Default Description

URL selector Yes Yes None This property is the HTTP path selector upon which

the node accepts inbound messages

Use HTTPS No Yes Cleared If the address contains an HTTPS URL, the check box

is selected, otherwise it is not.

Maximum client wait

time (sec)

Yes Yes 180 The time the client waits for a for a remote server to

respond with a ’message received’ acknowledgement.

1110 Message Flows

The SOAPInput node Advanced properties are described in the following table.

 Property M C Default Description

SOAP 1.1 actor (SOAP

1.2 role)

Yes No Ultimate

Destination

(Ultimate

Receiver)

The SOAP role the receiver is acting in.

Set destination list No No Selected This property specifies whether to add the method

binding name to the route to label destination list. If

you select this check box, the method binding name is

added so that you can use a RouteToLabel node in the

message flow after the SOAPInput node.

Label prefix No No None The prefix to add to the method name when routing to

label. Add a label prefix to avoid a clash of

corresponding label nodes when you include multiple

input nodes in the same message flow. By default,

there is no label prefix, therefore the method name and

label name are identical.

WSDL defined SOAP

headers

No No This table is read-only, and is populated by the SOAP

headers defined in the output part of the selected

operations. The table is updated automatically when

the selected operation is updated. This property is

generated in the CMF file.

User defined SOAP

headers

No Yes None You can add custom headers in this table. You can

Add, Edit and Delete rows in this table. This property

is generated in the CMF file.

The SOAPInput node WS Extensions properties are described in the following

table.

 Property M C Default Description

Use WS-Addressing No No Cleared This property specifies whether to use WS-Addressing.

Place WS-Addressing

headers into

LocalEnvironment

No No Cleared This property specifies whether the node puts

WS-Addressing headers received in the message into

the LocalEnvironment tree. WS-Addressing headers are

not accessible to the flow if this check box is cleared.

WS-Security No Yes This complex property is in the form of a table and

consists of two columns:

v Alias

v XPath Expression

You can add XPath expressions with an associated

Alias value to the WS-Security table. The Alias is

resolved in a Policy Set that is created by the

administrator. The Policy Set resolves the Alias to

either encrypt or sign the part of the message referred

to by the XPath Expression. You can Add, Edit and

Delete in this table.

The SOAPInput node Input Message Parsing properties are described in the

following table.

Message flows 1111

||||||

|||||

|
|
|

||||
|
|
|

|||||
|

|

|

|
|
|
|
|
|
|
|

Property M C Default Description

Message domain No No SOAP The domain that is used to parse the incoming

message. By default, the message that is propagated

from the SOAPInput node is in the SOAP domain. You

cannot specify a different domain.

Message set Yes No Set

automatically

from the

WSDL file

name

property.

The name of the message set in which the incoming

message is defined.

If you set this property, then subsequently update the

project dependencies to remove this message set

reference, a warning is issued. Either update the

Message set property, or restore the reference to this

message set project.

Message type No No The name of the incoming message. The node detects

the message type automatically. You cannot set this

property.

Message format No No The name of the physical format of the incoming

message. You cannot set this property.

The SOAPInput node Parser Options properties are described in the following

table.

 Property M C Default Description

Parse timing No No On demand This property controls when an input message is

parsed. Valid values are On demand, Immediate, and

Complete.

For a full description of this property, see “Parsing on

demand” on page 1363.

Build tree using XML

Schema data types

No No Selected This property controls whether the syntax elements in

the message tree has data types taken from the XML

Schema.

Retain mixed content No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it

encounters mixed text in an input message. If you

select the check box, elements are created for mixed

text. If you clear the check box, mixed text is ignored

and no elements are created.

Retain comments No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it

encounters comments in an input message. If you

select the check box, elements are created for

comments. If you clear the check box, comments are

ignored and no elements are created.

Retain processing

instructions

No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it

encounters processing instructions in an input

message. If you select the check box, elements are

created for processing instructions. If you clear the

check box, processing instructions are ignored and no

elements are created.

1112 Message Flows

|
|
|
|
|

Property M C Default Description

Opaque elements No No Blank This property is used to specify a list of elements in

the input message that are to be opaquely parsed.

Opaque parsing is performed only if validation is not

enabled (that is, if Validate is None); entries that are

specified in Opaque Elements are ignored if validation

is enabled.

The SOAPInput node Error Handling property is described in the following table.

 Property M C Default Description

Send failures during

inbound SOAP

processing to failure

terminal

No Yes Cleared During inbound SOAP processing, send any fault to

the Failure terminal

The SOAPInput node Validation properties are described in the following table.

See “Validation properties” on page 1359.

 Property M C Default Description

Validate No Yes Content and

value

This property controls whether validation takes place.

Valid values are None, Content and value, and

Content.

Failure action No No Exception This property controls what happens if validation fails.

You can set this property only if you set Validate to

Content or Content and value. Valid values are User

Trace, Local Error Log, Exception, and Exception List.

The SOAPInput node Instances properties are described in the following table.

 Property M C Default Description

Additional instances

pool

No Yes Use Pool

Associated

with

Message

Flow

The pool from which additional instances are obtained.

v If you select Use Pool Associated with Message

Flow, additional instances are obtained from the

message flow value.

v If you select Use Pool Associated with Node,

additional instances are allocated from the node’s

additional instances based on the number specified

in the Additional instances property.

Additional instances No Yes 0 The number of additional instances that the node can

start if the Additional instances pool property is set to

Use Pool Associated with Node. By default, no

additional instances are given to the node.

The SOAPInput node Retry properties are described in the following table.

Message flows 1113

Property M C Default Description

Retry mechanism No No Failure This property specifies how retry processing is

handled when a failure is rolled back to the

SOAPInput node.

v If you select Failure, retry processing is not

performed so you cannot set the remaining

properties.

v If you select Short and long retry, retry processing is

performed first at the interval that is specified by

the Short retry interval property, and if that is

unsuccessful, it is then performed at the interval that

is specified by the Long retry interval property.

Retry threshold No Yes 0 The maximum number of times that retry processing is

performed for short retry.

Short retry interval No Yes 0 The interval between short retry attempts.

Long retry interval No Yes 0 The interval between long retry attempts.

SOAPReply node

Use the SOAPReply node to send SOAP messages from the broker to the

originating client in response to a message received by a SOAPInput node.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow”

v “Working with WrittenDestination data”

v “Terminals and properties” on page 1115

Purpose

The SOAPReply node is contained in the Web Services drawer of the message

flow node palette, and is represented in the workbench by the following icon:

Using this node in a message flow

The SOAPReply node can be used in any message flow that needs to send SOAP

messages from the broker to the originating client in response to a message

received by a SOAPInput node. Look at the following sample to see how to use

this node:

v SOAP Nodes sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Working with WrittenDestination data

After the reply has been made, the WrittenDestination folder in the

LocalEnvironment is updated if WS-Addressing is in use, and with transport

details if WS-Addressing is in non-anonymous mode. A WrittenDestination for a

SOAPReply node has the following format:

1114 Message Flows

|

|

|
|
|
|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.SOAPNodes.doc/doc/overview.htm

WrittenDestination = (

 SOAP = (

 Reply = (

 WSA = (

 To = ’URI’

 MessageID = ’id’

 Action = ’doAllTheStuff’

))

)

)

Terminals and properties

When you have put an instance of the SOAPReply node into a message flow, you

can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The SOAPReply node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected when the message is

propagated.

Out The output terminal to which the message is routed if it has been propagated successfully, and if further

processing is required within this message flow.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The SOAPReply node Description properties are described in the following table.

 Property M C Default Description

Node

name

No No The node type:

SOAPReply

The name of the node.

Short

description

No No None A brief description of the node.

Long

description

No No None Text that describes the purpose of the node in the message flow.

The SOAPReply node Validation properties are described in the following table. By

default, validation is enabled.

If a message is propagated to the Failure terminal of the node, it is not validated.

For more details, see “Validating messages” on page 164 and “Validation

properties” on page 1359.

 Property M C Default Description

Validate No Yes Inherit This property controls whether validation takes place. Valid values are

None, Content and Value, Content, and Inherit.

Message flows 1115

|
|
|
|
|
|
|
|
|
|

|

Property M C Default Description

Failure action No No User trace This property controls what happens if validation fails. You can set this

property only if you set Validate to Content or Content and Value. Valid

values are User trace, Local error log, Exception, and Exception list.

The SOAPReply node Parser Options property is described in the following table.

 Property M C Default Description

Allow MTOM No Yes No This property controls whether MTOM is enabled for the parser. Valid

values are Yes, No, and Inherit. For more information about using SOAP

MTOM with the SOAPReply, SOAPRequest, and SOAPAsyncRequest

nodes, see “Using SOAP MTOM with the SOAPReply, SOAPRequest,

and SOAPAsyncRequest nodes” on page 634.

SOAPRequest node

Use the SOAPRequest node to send a SOAP request to the remote Web service.

The node is a synchronous request and response node and blocks after sending the

request until the response is received.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow”

v “Configuring the SOAPRequest node”

v “Working with WrittenDestination data” on page 1120

v “LocalEnvironment overrides” on page 1121

v “Terminals and properties” on page 1121

Purpose

The SOAPRequest node is contained in the Web Services drawer of the message

flow node palette, and is represented in the workbench by the following icon:

Using this node in a message flow

The SOAPRequest node can be used in any message flow that needs to call a Web

service. Look at the following sample to see how to use this node:

v SOAP Nodes sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Configuring the SOAPRequest node

When you have put an instance of the SOAPRequest node into a message flow,

you can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view.

All mandatory properties for which you must enter a value (those that do not have

a default value defined) are marked with an asterisk.

1116 Message Flows

|

||||||

|||||
|
|
|
|
|

|
|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.SOAPNodes.doc/doc/overview.htm

1. Optional: On the Description tab, enter a Short description, a Long description,

or both. You can also rename the node on this tab.

2. On the Basic tab, you must configure the following WSDL Properties. Before

configuring the WSDL file on this node you must have a message set with a

Deployable WSDL resource.

v WSDL file name. This property is mandatory and is of type String. If the

node was created by dropping a WSDL file from a message set onto the

message flow editor, this property will be preset to the name of the WSDL

file. If the name of the WSDL file is not preset, you can set this property in

one of the following ways.

– If you have Deployable WSDL, you can select from the Deployable

WSDL files by clicking Browse.

– If you have WSDL definitions, but no message set, then you can create a

message set:

a. Click Browse to open the WSDL Selection window.

b. Click Import/Create New to open the Import WSDL file wizard.

c. Enter the message set name and message set project name. Click Next.

d. Choose the relevant option:

- If your WSDL file already exists in your workspace, select Use

resources from the workspace, and select the WSDL file.

- If your WSDL file is in the file system, select Use external resources.

Select the WSDL file. Click Next.
e. Select the WSDL bindings to import. Any warnings or errors are

displayed in the wizard banner.

f. Click Finish. Result: Creates a new message set project and message

set, with message definitions. The WSDL definitions are added to the

Deployable WSDL folder.

g. You can now select the WSDL file from the WSDL Selection window.

Click OK.
– If you have a message set but no WSDL definition, you must generate a

WSDL definition. See Generating a WSDL definition from a message set.

– Drag a WSDL file from a message set onto the node.

– Type in a file name that is relative to the message set project in which the

deployable WSDL file exists.

When you select a WSDL file for the WSDL file name field, the WSDL is

validated to ensure that it is WS-I compliant. The other properties on the

Basic tab are automatically completed with values based on the WSDL

definition.

Only Deployable WSDL can be used to configure the SOAP nodes.

After a valid WSDL file is selected, the message set project to which WSDL

file belongs is added as a referenced project to the corresponding flow

project, if the reference does not already exist.

If the WSDL file is not valid, or an incorrect file name is entered, an error

message is displayed in the Properties view and all WSDL properties are

blank.

The following situations lead to error conditions on this property:

– The WSDL file does not come from a message set project, or the WSDL

file was not imported correctly; see Importing from WSDL and Importing

WSDL definitions from the command line.

– The WSDL file contains no HTTP bindings.

Message flows 1117

|
|
|

|
|
|
|
|

|
|

|
|

|

|

|

|

|
|

|
|

|
|

|
|
|

|
|

|
|

|

|
|

|
|
|
|

|

|
|
|

|
|
|

|

|
|
|

|

– The WSDL file contains no port type.

– The WSDL file entered in the text box does not exist.
v Port type. This property is mandatory and is of type String. This field lists all

of the port types defined by the specified WSDL file. By default, the first port

type found in the WSDL file that has an associated HTTP binding, is

selected.

Error Conditions:

– Selected Port type does not contain at least one operation.
v Imported binding. This property is mandatory and is of type String. The

Imported binding box lists all of the SOAP bindings associated with the

selected port type. Only HTTP transport is supported. Bindings are listed in

the order that they are displayed in the WSDL file. By default, the first

binding that implements the operation and has an associated service port, is

selected. This property is updated every time the Port type value changes.

Error Conditions:

– No SOAP bindings (with HTTP transport) in the WSDL file are associated

with the Port type.

– Selected binding does not have any operations.
v Binding operation. This property is mandatory and is of type String. The

Binding operation box lists all of the operations defined by the selected

binding. The first operation in the list is selected by default. This property is

updated every time the selected binding value changes.

v Service port. This property is mandatory and is of type String. The Service

port box lists all of the service ports that point to the selected binding. The

first service port for the binding is selected by default. This property is

updated every time the selected binding value changes.

Error Conditions:

– No ports point to the selected binding.
v Target namespace. This hidden property type is String. Target namespace is

implemented as a read-only field. This property is updated with the Target

namespace of the WSDL file when the WSDL file name is configured.
3. On the HTTP Transport tab, set the HTTP transport related properties:

v Web service URL. This property is mandatory and is of type String. This is

automatically derived from the <soap:address> element of the selected

Service port. Whenever the selected port is updated, the Web service URL is

updated accordingly. However, if you override the value then your value

persists and the URL is no longer updated from the service port.

If you choose to override this property you must specify it in the form

http://<hostname>[:<port>]/[<path>] where:

– http://<hostname> must be specified.

– <port> has a default of 80. If you specify a value, you must include the

colon : before the port number.

– <path> has a default of /. If you specify a value, you must include the /

before the path.

For more details of how to override this property, see Changing the default

URL for a SOAPRequest node or a SOAPAsyncRequest node request.

v Request timeout (in seconds). This property type is Integer. This is the wait

time for a remote server to respond with a ’message received’

acknowledgement.

v HTTP(S) proxy location. This property type is String. This is the location of

the proxy server to which requests are sent.

1118 Message Flows

|

|

|
|
|
|

|

|

|
|
|
|
|
|

|

|
|

|

|
|
|
|

|
|
|
|

|

|

|
|
|

v Protocol (if using SSL) This property type is Enumerate. The following

options are available:

SSL (the default). This option tries to connect using the SSLv3 protocol

first, but allows the handshake to fall back to the SSLv2 protocol

where the SSLv2 protocol is supported by the underlying JSSE

provider.

SSLv3 This option tries to connect with the SSLv3 protocol only. Fallback to

SSLv2 is not allowed.

TLS This option tries to connect with the TLS protocol only. Fallback to

SSLv3 or SSLv2 is not allowed.

 Note that both ends of an SSL connection must agree on the protocol

to use, so the chosen protocol must be one that the remote server can

accept.
v Allowed SSL ciphers (if using SSL) This property type is String. This setting

allows you to specify a single cipher (such as

SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA) or a list of ciphers that are the

only ones used by the connection. This set of ciphers must include one or

more that are accepted by the remote server.

A comma is used as a separator between the ciphers. The default value is an

empty string, which allows the node to use any, or all, of the available

ciphers during the SSL connection handshake. This method allows the

greatest scope for making a successful SSL connection.
4. Use the Advanced tab to define your headers.

SOAP headers that are part of the must understand headers list are

incorporated into the flow rather than causing a SOAP fault. Adding headers to

the must understand headers list stops SOAP faults being generated by SOAP

headers.

v The WSDL-defined SOAP headers table is read-only, and is populated based

on the SOAP headers defined in the output part of the selected operations.

By default, the check boxes, in the second column of the table, are cleared for

all entries in the WSDL-defined SOAP headers table. You must select the

relevant check box to add the header to the must understand headers list.

v You can add custom headers (headers that are not defined in the WSDL file)

in the User-defined SOAP headers table. Use Add, Edit, and Delete for this

table. You must select the check box, in the second column of the table, to

ensure that the newly added custom header is added to the must understand

headers list.

You do not need to add must understand headers for WS-Addressing and

WS-Security as these are understood if you configure WS Extensions.

5. Use the WS Extensions tab to implement WS extensions.

v Use WS-Addressing. This property indicates whether to engage

WS-Addressing on the SOAPRequest node.

v Place WS-Addressing Headers into LocalEnvironment. This property specifies

whether the node puts WS-Addressing headers received in the response

message into the LocalEnvironment tree. WS-Addressing headers are not

accessible to the flow if this check box is cleared because by default, all

headers are processed and removed.

v The WS-Security table features two columns:

– Alias

– XPath Expression

Message flows 1119

|
|
|
|
|

You can add XPath expressions with an associated Alias value to the

WS-Security table. The Alias is resolved in a Policy Set that is created by the

administrator. The Policy Set resolves the Alias to either encrypt or sign the

part of the message referred to by the XPath expression. You can Add, Edit,

and Delete in this table.

For more details about WS-Addressing with the SOAPRequest node, see

“WS-Addressing with the SOAPRequest node” on page 639.

6. On the Response Message Parsing tab, the properties are automatically set

when the WSDL file property is configured, you cannot set them yourself.

v Message domain. This value is always set to SOAP. For more information,

see “SOAP parser and domain” on page 78.

v Message set. This property is automatically set to the message set that

contains the WSDL file, when the WSDL is associated with the node.

v Message type. This property is not used.

v Message format. This property is not used.
7. On the Parser Options sub tab, set properties associated with the parser. The

following properties are listed on this tab:

v Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed. To cause the message to be parsed immediately, see

“Parsing on demand” on page 1363.

v Soap Parser Options. Set values for the properties that determine how the

SOAP parser operates. The SOAP parser options are passed through to the

XMLNSC parser. For more information, see “Manipulating messages in the

XMLNSC domain” on page 364.
8. On the Validation tab, set the validation properties if you want the SOAP

parser to validate the body of each input message against XML Schema

generated from the message set. By default, validation is enabled. The SOAP

parser invokes the XMLNSC parser to validate the XML body of the SOAP Web

service. If a message is propagated to the Failure terminal of the node, it is not

validated.

For more details, see “Validating messages” on page 164 and “Validation

properties” on page 1359.

Working with WrittenDestination data

After the request has been made, the WrittenDestination folder in the

LocalEnvironment is updated with the WS-Addressing (if in use) and transport

details. A WrittenDestination for a SOAPRequest node has the following format,

with WS-Addressing present only if it is used:

WrittenDestination = (

 SOAP = (

 Request = (

 WSA = (

 To = ’URI’

 MessageID = ’id’

 Action = ’doAllTheStuff’

)

 Transport = (

 HTTP = (

 WebServiceURL = ’http://server:8080/thing’

)

)

)

)

)

1120 Message Flows

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

LocalEnvironment overrides

You can dynamically override set values in LocalEnvironment in the same way as

setting values in other elements of a message. You can set the following properties

under LocalEnvironment.Destination.SOAP.Request.Transport.HTTP.

 Setting Description

WebServiceURL Overrides the Web service URL property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.WebServiceURL =

’http://ibm.com/abc/’;

RequestURI Overrides the RequestURI, which is the path after the URL and port. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.RequestURI =

’/abc/def?x=y&g=h’;

Timeout Overrides the Request timeout (in seconds) property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.Timeout = 42;

ProxyURL Overrides the HTTP(S) proxy location property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.ProxyURL =

’my.proxy’;

SSLProtocol Overrides the SSLProtocol property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.SSLProtocol =

’TLS’;

Valid values are SSL, SSLv3, and TLS.

SSLCiphers Overrides the Allowed SSL Ciphers (if using SSL) property on the node. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.SSLCiphers =

’SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA’;

HTTPVersion Overrides the HTTPVersion. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.HTTPVersion =

’HTTP/1.1’;

Method Overrides the Method. For example:

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.Method = ’GET’;

ProxyConnectHeaders Sets the ProxyConnectHeaders. Set this, when using a proxy server, to send extra SOAP

headers when connecting to that server. For example, this allows you to send proxy

authentication information to a proxy server. Multiple headers can be sent but each must be

separated by a carriage return and a line feed (ASCII 0x0D 0x0A) in accordance with

RFC2616. For example:

DECLARE CRLF CHAR CAST(X’0D0A’ AS CHAR CCSID 1208);

SET OutputLocalEnvironment.Destination.SOAP.Request.Transport.HTTP.

ProxyConnectHeaders =

’Proxy-Authorization: Basic Zm5lcmJsZTpwYXNzd29yZAo=’ || CRLF ||

’Proxy-Connection: Keep-Alive’ || CRLF;

Terminals and properties

The SOAPRequest node terminals are described in the following table.

 Terminal Description

Failure The output terminal to which a message is routed if a failure is detected when the

message is propagated to the Out flow (such as a message validation failure). Failures

routed to this terminal include those caused by the retry processing occurring before

the retry propagates the message to the Out flow.

Message flows 1121

|

|
|
|

|||

||

|
|

||

|
|

||

|

||

|
|

||

|
|

|

||

|
|

||

|
|

||

|

||
|
|
|
|

|
|
|
|
|
|

|

Terminal Description

Out The output terminal to which the message is routed if it has been successfully put to

the output queue, and if further processing is required within this message flow. If no

errors occur within the input node, a message received from an external resource is

always sent to the Out terminal first.

Catch The output terminal to which the message is routed if an exception is thrown

downstream and caught by this node.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined; the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The SOAPRequest node Description properties are described in the following table.

 Property M C Default Description

Node name No No The node

type

The name of the node.

Short description No No None A brief description of the node.

Long description No No None Text that describes the purpose of the node in the

message flow.

The SOAPRequest node Basic properties are described in the following table.

 Property M C Default Description

WSDL file name Yes No <None> This property type is String. When you select a WSDL

file for the WSDL file name field, the WSDL is

validated to ensure that it is WS-I compliant. Only

Deployable WSDL can be used to configure the SOAP

nodes. After a valid WSDL file is selected, the message

set project to which WSDL file belongs is added as a

referenced project to the corresponding flow project, if

the reference does not already exist.

Port type Yes No By default,

the first Port

type found

in the WSDL

file, that has

an

associated

HTTP

binding with

it, is

selected.

This property type is String. The field lists all of the

Port types defined in WSDL file selected in the WSDL

file name property.

Error Conditions:

v Selected Port type does not contain at least one

operation.

1122 Message Flows

Property M C Default Description

Imported binding Yes No This property type is String.

This property is updated every time that the Port type

value changes. The field lists all of the SOAP bindings

with HTTP transport (6.1) associated with the selected

Port type. Bindings are listed in the same order in

which they appear in the WSDL file. The selected

binding is the one that has both ports and operations.

If there is no such binding, then binding with ports is

selected. If no bindings have ports then the first

binding in the list is selected.

Error Conditions:

v No SOAP bindings (with HTTP transport) in the

WSDL file are associated with the Port type.

v The selected binding does not have any operations.

Binding operation Yes No This property type is String.

The Binding operation box contains all of the

operations defined by the selected binding. The first

operation in the list is selected by default.

Service port Yes No This property type is String. This field is updated

every time that the selected binding is updated. This

field lists all of the WSDL ports that point to the

selected binding. The first port for the binding is the

selected port by default.

Error Conditions:

v No ports point to the selected binding.

Target namespace Yes No Target namespace is implemented as a read-only field.

This hidden property type is String. It is updated with

the Target namespace of the WSDL file when the

WSDL file name is configured.

The SOAPRequest node HTTP Transport properties are described in the following

table.

 Property M C Default Description

Web service URL Yes Yes SOAP

address of

the selected

port

The URL of the SOAP address selected.

Request timeout (in

seconds)

No Yes 180 The time the client waits for a for a remote server to

respond with a ’message received’ acknowledgement.

HTTP(S) proxy location No Yes Blank The location of the proxy server.

Protocol (if using SSL) No Yes SSL The selected protocol if you use SSL

Allowed SSL ciphers (if

using SSL)

No Yes None The specific SSL cipher, or ciphers, you are using.

The SOAPRequest node Advanced properties are described in the following table.

Message flows 1123

Property M C Default Description

WSDL-defined SOAP

headers

No No This table is read-only, and is populated by the SOAP

headers defined in the output part of the selected

operations. The table is updated automatically when

the selected operation is updated. This property is

generated in the CMF file.

User-defined SOAP

headers

No Yes None You can add custom headers in this table. You can

Add, Edit and Delete in this table. This property is

generated in the CMF file.

The SOAPRequest node WS Extensions properties are described in the following

table.

 Property M C Default Description

Use WS-Addressing No No This property specifies whether to use WS-Addressing.

Place WS-Addressing

headers into

LocalEnvironment

No No Cleared This property specifies whether the node puts

WS-Addressing headers received in the response

message into the LocalEnvironment tree.

WS-Addressing headers are not accessible to the flow

if this check box is cleared because by default, all

headers are processed and removed.

WS-Security No Yes This complex property is in the form of a table and

consists of two columns:

v Alias

v XPath Expression

You can add XPath expressions with an associated

Alias value to the WS-Security table. The Alias is

resolved in a Policy Set that is created by the

administrator. The Policy Set resolves the Alias to

either encrypt or sign the part of the message referred

to by the XPath Expression. You can Add, Edit and

Delete in this table.

The SOAPRequest node Response Message Parsing properties are described in the

following table.

 Property M C Default Description

Message domain No No SOAP The domain that is used to parse the response message.

By default, the message that is propagated from the

SOAPInput node is in the SOAP domain. You cannot

specify a different domain.

Message set Yes No Set

automatically

from the

WSDL file

name

property.

The name of the message set in which the response

message is defined.

If you set this property, then subsequently update the

project dependencies to remove this message set

reference, a warning is issued. Either update the

Message set property, or restore the reference to this

message set project.

Message type No No The name of the response message. The node detects

the message type automatically. You cannot set this

property.

1124 Message Flows

||||||

|||||

|
|
|

||||
|
|
|
|
|

|||||
|

|

|

|
|
|
|
|
|
|
|

|
|
|
|
|

Property M C Default Description

Message format No No The name of the physical format of the response

message. You cannot set this property.

The SOAPRequest node Parser Options properties are described in the following

table.

 Property M C Default Description

Parse timing No No On demand This property controls when a response message is

parsed. Valid values are On demand, Immediate, and

Complete.

For a full description of this property, see “Parsing on

demand” on page 1363.

Build tree using XML

schema data types

No No Set This property controls whether the syntax elements in

the message tree has data types taken from the XML

Schema.

Retain mixed content No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it

encounters mixed text in a response message. If you

select the check box, elements are created for mixed

text. If you clear the check box, mixed text is ignored

and no elements are created.

Retain comments No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it

encounters comments in a response message. If you

select the check box, elements are created for

comments. If you clear the check box, comments are

ignored and no elements are created.

Retain processing

instructions

No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it

encounters processing instructions in a response

message. If you select the check box, elements are

created for processing instructions. If you clear the

check box, processing instructions are ignored and no

elements are created.

Opaque elements No No Blank This property is used to specify a list of elements in

the input message that are to be opaquely parsed.

Opaque parsing is performed only if validation is not

enabled (that is, if Validate is None); entries that are

specified in Opaque Elements are ignored if validation

is enabled.

The SOAPRequest node Validation properties are described in the following table.

 Property M C Default Description

Validate No Yes Content and

value

This property controls whether validation takes place.

Valid values are None, Content and value, and

Content.

Failure action No Yes Exception This property controls what happens if validation fails.

You can set this property only if you set Validate to

Content or Content and value. Valid values are User

trace, Local error log, Exception, and Exception list.

Message flows 1125

The SOAPRequest node Request Parser Options property is described in the

following table.

 Property M C Default Description

Allow MTOM No Yes No This property controls whether MTOM is enabled for the parser. Valid

values are Yes, No, and Inherit. For more information about using SOAP

MTOM with the SOAPReply, SOAPRequest, and SOAPAsyncRequest

nodes, see “Using SOAP MTOM with the SOAPReply, SOAPRequest, and

SOAPAsyncRequest nodes” on page 634.

TCPIPClientInput node

Use the TCPIPClientInput node to create a client connection to a raw TCP/IP

socket, and to receive data over that connection.

This topic contains the following sections:

v “Purpose”

v “Using the TCPIPClientInput node in a message flow” on page 1128

v “Configuring the TCPIPClientInput node” on page 1128

v “Terminals and properties” on page 1132

Purpose

The TCPIPClientInput node opens connections to a remote server application that

is listening on a TCP/IP port. The connections are not made directly by the node

but are obtained from a connection pool managed by the message broker execution

group. The execution group uses the default TCPIPClient configurable service to

determine which attributes are used for the socket connection. However, if the

configurable service is set on the node, the configurable service is used for all the

properties, including the host and port number.

The node requests a client connection that contains data ready for reading. Until

such a connection is available the node is paused waiting for data (in a similar

way to the MQ input node). Therefore, two criteria must be met before the node

becomes active:

v A client connection has been made

v There is at least 1 byte of data available to be processed.

By default (as set in the configurable service), no client connections are made by

the input node. It relies on the creation of client connections by output or request

nodes. In this mode of operation, an input node is never started until an output or

request node starts an interaction.

The mode can be changed on the configurable service to create a pool of client

connections ready for processing. To enable this function, minimumConnections

must be set to a value larger than zero. The execution group then ensures that the

specified number of connections are always available by creating them at start up

and continuing to make them until the minimum value is reached.

This is different from the TCPIPServerInput node, which does not attempt to make

a minimum number of connections. For more information, see “TCPIPServerInput

node” on page 1158.

The client node also has a maximum value, which limits how many connections it

can create. There can be more connections than the minimum value as a result of

output nodes creating connections.

1126 Message Flows

|
|

||||||

|||||
|
|
|
|
|

|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|

|

|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

When connections are available, the second criterion is met when there is at least 1

byte of data to be processed; otherwise the connection closes. In either case the

connection is given to the node and the event is processed.

The first record of data is detected in accordance with properties on the node and

then sent to the Out terminal. If an error occurs, including a timeout waiting for

data or the closure of a connection while waiting for the full record, the data is

sent to the failure terminal. If the connection closes and there is no data, a message

is sent to the Close terminal. Although the message has no data, the local

environment does have details of the connection that closed.

For both data and close events, the following local environment is created:

 Table 35. Location in local environment

Location in local environment Description

$LocalEnvironment/TCPIP/Input/
ConnectionDetails/Type

Client

$LocalEnvironment/TCPIP/Input/
ConnectionDetails/Hostname

The hostname used to make a connection

$LocalEnvironment/TCPIP/Input/
ConnectionDetails/Port

The port number used to make a connection

$LocalEnvironment/TCPIP/Input/
ConnectionDetails/OpenTimestamp

The timestamp when the connection was

first opened

$LocalEnvironment/TCPIP/Input/
ConnectionDetails/CloseTimestamp

The timestamp when the connection was

closed (null if not yet closed)

$LocalEnvironment/TCPIP/Input/
ConnectionDetails/SequenceNumber/
InputRecord

The sequence number of the message

received on this connection. The first record

has a sequencing number of 1. The second

record has a sequencing number of 2, and so

on.

$LocalEnvironment/TCPIP/Input/
ConnectionDetails/SequenceNumber/
OutputRecord

The sequence number of the message sent

on this connection. The first record has a

sequencing number of 1. The second record

has a sequencing number of 2, and so on.

$LocalEnvironment/TCPIP/Input/
ConnectionDetails/Id

The ID of the socket being used. This is an

internal identifier used by the message

broker to uniquely identify a connection.

$LocalEnvironment/TCPIP/Input/
ConnectionDetails/ReplyId

The Reply ID that has been stored on this

connection. It can be any text string.

When the node has constructed the record from the connection stream it releases

the connection back to the connection pool for use by other nodes. Properties on

the Advanced panel of the node control how that connection can be used by other

nodes in the future. By default, the Advanced options mark the input stream on

the TCP/IP connection as being reserved, which means that no other input node

can use it, until the message flow’s current use is finished. Alternatively, you can

choose to reserve the connection until it is unreserved by another node, or to not

reserve it at all but allow any other node (or thread in this node) to use the

connection straight away. Similar options are available on the output stream but it

is kept unreserved by default.

Message flows 1127

|
|
|

|
|
|
|
|
|

|

||

||

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

A reserved stream can be accessed by another node only if the ID of the connection

is known. This allows all the nodes in a message flow to access the same

connection using the same ID while stopping any other flow acquiring the

connection.

The TCPIPClientInput node is contained in the TCPIP drawer of the palette, and is

represented in the workbench by the following icon:

Message structure

The TCPIPClientInput node handles messages in the following message domains:

v MRM

v XMLNSC

v DataObject

v XMLNS

v JMSMap

v JMSStream

v MIME

v BLOB

v XML (this domain is deprecated; use XMLNSC)

v IDOC (this domain is deprecated; use MRM)

Using the TCPIPClientInput node in a message flow

Look at the following samples to see how to use the TCPIPClientInput node:

v TCPIP Client Nodes sample

v TCPIP Handshake sample.

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Configuring the TCPIPClientInput node

When you have put an instance of the TCPIPClientInput node into a message flow,

you can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view.

All mandatory properties that do not have a default value defined are marked

with an asterisk.

Configure the TCPIPClientInput node:

 1. Optional: On the Description tab, enter a Short description, a Long

description, or both. You can also rename the node on this tab.

 2. On the Basic tab, set the properties that determine how the TCP/IP

connection is controlled.

v Use the Connection details property to specify either the hostname and port

number to be used, or the name of a configurable service. This property is

mandatory. The following formats are supported:

– Configurable service name. This is used to look up the port and

hostname in configurable services. For example, TCPIPProfile1.

1128 Message Flows

|
|
|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|
|

|
|

|

|
|

|
|

|
|
|

|
|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.tcpipclientnodes.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.tcpiphandshake.doc/doc/overview.htm

– <Hostname>:<Port>. This is the hostname followed by the port number

(separated by a colon). For example, tcpip.server.com:1111

– <Port>. This is the port number. In this case the hostname is assumed to

be localhost.
v Use the Timeout waiting for a data record (seconds) property to specify

how long the node will listen on a connection for more data after the first

byte of data has arrived. You can specify any length of time in seconds. A

value of -1 specifies that there is no time limit (wait forever). The default is

60 seconds. When the specified time has been exceeded, all available data is

sent to the failure terminal.
 3. On the Advanced tab, set the properties that determine how the data stream

is controlled.

v Use the Close connection property to specify when and how to close the

connection.

– Select No to leave the connection open. This is the default.

– Select After timeout to close the connection when a timeout occurs.

– Select After data has been received to close the connection when the end

of the record is found.

– Select At end of flow to close the connection after the flow has been

invoked.
v Select Close input stream after a record has been received to close the input

stream as soon as the data has been retrieved. When the connection input

stream is reserved no other node can use it without specifying the ID. This

property is not selected by default.

v Use the Input Stream Modification property to specify whether to reserve

the input stream for use only by input and receive nodes that specify the

connection ID, and, if so, whether to release it at the end of the flow. These

options are available only if you have not selected the Close input stream

after a record has been received property.

– Select Leave unchanged to leave the input stream as it was when it

entered the node. This is selected by default.

– Select Reserve input stream (for use by future TCP/IP input and receive

nodes) to specify that this input stream can be used only by this node

and by other receive nodes that request it by specifying the connection

ID. When the connection input stream is reserved no other nodes can use

it without specifying the correct connection ID.

– Select Reserve input stream (for use by future TCP/IP input and receive

nodes) then release at end of flow to specify that this input stream can be

used only by this node and receive nodes that request it by specifying

the correct connection ID. After the flow has been run, this input stream

is returned to the pool and becomes available for use by any input or

receive node.
v Use the Output Stream Modification property to specify whether to release

the output stream.

– Select Leave unchanged to leave the output stream as it was when it

entered the node. This is selected by default.

– Select Release output stream and reset ReplyID to specify that this

output stream is returned to the pool and is available for use by any

output node. The ReplyID is passed in the LocalEnvironment when

leaving this node, but is reset for the next record on this connection.
 4. On the Input Message Parsing tab, set values for the properties that the node

uses to determine how to parse the incoming message.

Message flows 1129

|
|

|
|

|
|
|
|
|
|

|
|

|
|

|

|

|
|

|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|

|
|

If the incoming message has an MQRFH2 header, you do not need to set

values for the Input Message Parsing properties because the values are

derived from the <mcd> folder in the MQRFH2 header; for example:

<mcd><Msd>MRM</Msd><Set>DHM4UO906S001</Set><Type>receiptmsg1</Type>

<Fmt>XML</Fmt></mcd>

If you set values, and those values differ from those in the MQRFH2 header,

the values in the MQRFH2 header take precedence.

v In Message domain, select the name of the parser that you are using from

the list. The default is BLOB. You can choose from the following options:

– MRM

– XMLNSC

– DataObject

– XMLNS

– JMSMap

– JMSStream

– MIME

– BLOB

– XML (this domain is deprecated; use XMLNSC)

– IDOC (this domain is deprecated; use MRM)

You can also specify a user-defined parser, if appropriate.

v If you are using the MRM or IDOC parser, or the XMLNSC parser in

validating mode, select the Message set that you want to use. The list

contains the message sets that are available when you select MRM,

XMLNSC, or IDOC as the domain.

v If you are using the MRM parser, select the correct message type from the

list in Message type. This list is populated with available message types

when you select the MRM parser.

v If you are using the MRM or IDOC parser, select the correct message format

from the list in Message format. This list is populated with available

message formats when you select the MRM or IDOC parser.

v Specify the message coded character set ID in Message coded character set

ID.

v Select the message encoding from the list in Message encoding or specify a

numeric encoding value. For more information about encoding, see

“Converting data with message flows” on page 128.
 5. On the Parser Options sub-tab:

v Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed. To cause the message to be parsed immediately, see

“Parsing on demand” on page 1363.

v If you are using the XMLNSC parser, set values for the properties that

determine how the XMLNSC parser operates. For more information, see

“Manipulating messages in the XMLNSC domain” on page 364.
 6. Use the Retry tab to define how retry processing is performed when a flow

fails. You can set the following:

v Retry mechanism determines the action that occurs should the flow fail.

Choose from the following:

– Select Failure for the node to report a failure without any retry attempts.

– Select Short retry for the node to retry before reporting a failure if the

condition persists. The number of times that it retries is specified in

Retry threshold.

– Select Short retry and long retry for the node to retry, first using the

value in Retry threshold as the number of attempts it should make. If the

1130 Message Flows

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|

|
|

|
|
|

|

|
|
|

|
|
|

|
|

|
|

|

|
|
|

|
|

condition persists after the Retry threshold has been reached, the node

then uses the Long retry interval between attempts.
v Specify the Retry threshold. The number of times the node retries the flow

transaction if the Retry mechanism property is set to either Short retry or

Short retry and long retry.

v Specify the Short retry interval. The length of time, in seconds, to wait

between short retry attempts.

v Specify the Long retry interval. The length of time to wait between long

retry attempts until a message is successful, the message flow is stopped, or

the message flow is redeployed. The broker property

MinLongRetryInterval defines the minimum value that the Long retry

interval can take. If the value is lower than the minimum then the broker

value is used.
 7. Use the Records and Elements tab to specify how the data is interpreted as

records:

v Use the Record detection property to determine how the data is split into

records, each of which generates a single message. Choose from the

following options:

– End of stream specifies that all of the data sent in the data stream is a

single record.

– Fixed Length specifies that each record is a fixed number of bytes in

length. Each record should contain the number of bytes specified in the

Length property, except possibly a shorter final record in the file.

– Select Delimited, if the records you are processing are separated, or

terminated, by a DOS or UNIX line end or by a sequence of user-defined

delimiter bytes. Specify the delimiter and delimiter type in the Delimiter,

and Delimiter type properties.

– Select Parsed Record Sequence if the data contains a sequence of one or

more records that are serially recognized by the parser that is specified in

Message domain. The node propagates each recognized record as a

separate message. If you select this Record detection option, the parser

specified in Message domain must be either XMLNSC or MRM (either

CWF or TDS physical format).
v If you specified Fixed Length in Record detection, use Length to specify the

required length of the output record. This value must be between 1 byte

and 100 MB. The default is 80 bytes.

If you specify Connection closed, Fixed Length, or Delimited in Record

detection, a limit of 100 MB applies to the length of the records. If you

specify Parsed Record Sequence in Record detection, the TCPIPClientInput

node does not determine or limit the length of a record. Nodes that are

downstream in the message flow might try to determine the record length

or process a very long record. If you intend to process large records in this

way, ensure that your broker has sufficient memory. You might need to

apply flow techniques described in the Large Messaging sample to best use

the available memory.

v If you specified Delimited in Record detection, use Delimiter to specify the

delimiter to be used. Choose from:

– DOS or UNIX Line End, which, on UNIX systems, specifies the line feed

character (<LF>, X’0A’), and, on Windows systems, specifies a carriage

return character followed by a line feed character (<CR><LF>, X’0D0A’).

The node treats both of these strings as delimiters, irrespective of the

system on which the broker is running. If they both appear in the same

record, the node recognizes both as delimiters. The node does not

Message flows 1131

|
|

|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

recognize X’15’ which, on z/OS systems, is the ’newline’ byte; specify a

value of Custom Delimiter in this property and a value of 15 in the

Custom delimiter property if your input file is coded using EBCDIC new

lines, such as EBCDIC files from a z/OS system.

– Custom Delimiter, which permits a sequence of bytes to be specified in

Custom delimiter
v In Custom delimiter, specify the delimiter byte or bytes to be used when

Custom delimiter is set in the Delimiter property. Specify this value as an

even-numbered string of hexadecimal digits. The default is X’0A’ and the

maximum length of the string is 16 bytes (represented by 32 hexadecimal

digits).

v If you specified Delimited in Record detection, use Delimiter type to specify

the type of delimiter. Permitted values are:

– Infix. If you select this value, each delimiter separates records. If the data

ends with a delimiter the (zero length) data following the final delimiter

is still propagated although it contains no data.

– Postfix. If you specify this value, each delimiter terminates records. If the

data ends with a delimiter, no empty record is propagated after the

delimiter. If the data does not end with a delimiter, it is processed as if a

delimiter follows the final bytes of the data. Postfix is the default value.
v The TCPIPClientInput node considers each occurrence of the delimiter in

the input as either separating (infix) or terminating (postfix) each record. If

the data begins with a delimiter, the node treats the (zero length) contents

preceding that delimiter as a record and propagates an empty record to the

flow. The delimiter is never included in the propagated message.
 8. Use the Validation tab to provide validation based on the message set for

predefined messages. For more information about validation, see “Validating

messages” on page 164. For information about how to complete this tab, see

“Validation tab properties” on page 1360.

 9. On the Transactions tab, set the transaction mode. Although TCP/IP

operations are non-transactional, the transaction mode on this input node

determines whether the rest of the nodes in the flow are to be executed under

sync point. Select Yes if you want the flow updates to be treated

transactionally (if possible) or No if you do not. The default for this property

is No.

10. Optional: On the Instances tab, set values for the properties that control the

additional instances (threads) that are available for a node. For more details,

see “Configurable message flow properties” on page 1372.

Terminals and properties

The terminals of the TCPIPClientInput node are described in the following table.

 Terminal Description

Failure The output terminal to which the message is routed if an error occurs. This includes

failures caused by retry processing. Even if the Validation property is set, messages

propagated to this terminal are not validated.

Out The output terminal to which the message is routed if it is successfully retrieved from

an external resource. If no errors occur within the input node, a message received

from an external resource is always sent to the Out terminal first.

Close The output terminal to which the message is routed if the connection closes.

1132 Message Flows

|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|

|

|||

||
|
|

||
|
|

||

Terminal Description

Catch The output terminal to which the message is routed if an exception is thrown

downstream and caught by this node. Exceptions are caught only if this terminal is

attached.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Description properties of the TCPIPClientInput node are described in the

following table.

 Property M C Default Description

Node name No No TCPIPClientInput The name of the node.

Short description No No None A brief description of the node.

Long description No No None Text that describes the purpose of the node in the

message flow.

The Basic properties of the TCPIPClientInput node are described in the following

table.

 Property M C Default Description

Connection details Yes Yes Node

properties

A string containing either the hostname and port

number to be used, or the name of a configurable

service.

Timeout waiting for a

data record (seconds)

Yes Yes 60 Specifies how long the node will listen on a connection

for more data after the first byte of data has arrived.

You can specify any length of time in seconds. A value

of -1 specifies that there is no time limit (wait forever).

The Advanced properties of the TCPIPClientInput node are described in the

following table.

 Property M C Default Description

Close connection Yes No No Controls when the connection is closed, or if it remains

open. Valid options are:

v No

v After timeout

v After data has been received

v At end of flow.

Close input stream

after a record has been

received

Yes No False Specifies whether to close the input stream as soon as

the data has been retrieved. When the connection input

stream is reserved no other node can use it without

knowing the ID. This property is not selected by

default.

Message flows 1133

||

||
|
|
|

|
|
|
|
|

|
|

||||||

|||||

|||||

|||||
|
|

|
|

||||||

||||
|
|
|
|

|
|
||||
|
|
|
|

|
|

||||||

|||||
|

|

|

|

|

|
|
|

||||
|
|
|
|

Property M C Default Description

Input stream

modification

No No Leave

unchanged

Specifies whether to reserve the input stream for use

only by input and receive nodes that specify the

connection ID, and, if so, whether to release it at the

end of the flow. Valid options are:

v Leave unchanged

v Reserve input stream (for use by future TCP/IP

input and receive nodes)

v Reserve input stream (for use by future TCP/IP

input and receive nodes) then release at end of flow.

When the connection input stream is reserved no other

nodes can use it without specifying the correct

connection ID. If the input stream is released at the end

of the flow, it is returned to the pool and becomes

available for use by any input or receive node.

Output stream

modification

No No Leave

unchanged

Specifies whether this output stream is released and

returned to the pool for use by any output node. Valid

options are:

v Leave unchanged

v Release output stream and reset ReplyID.

If you select Release output stream and reset ReplyID,

the ReplyID is passed in the LocalEnvironment when

leaving this node, but is reset for the next record on

this connection.

The Input Message Parsing properties of the TCPIPClientInput node are described

in the following table.

 Property M C Default Description

Message Domain No No The domain that is used to parse the incoming

message.

Message Set No No The name or identifier of the message set in which the

incoming message is defined.

If you set this property, then subsequently update the

project dependencies to remove this message set

reference, a warning is issued. Either update the

Message Set property, or restore the reference to this

message set project.

Message Type No No The name of the incoming message.

Message Format No No The name of the physical format of the incoming

message.

Message coded

character set ID

Yes No Broker

System

Default

The ID of the coded character set used to interpret the

data being read.

Message encoding Yes No Broker

System

Default

The encoding scheme for numbers and large characters

used to interpret the data being read. Valid values are

Broker System Determined or a numeric encoding

value. For more information about encoding, see

“Converting data with message flows” on page 128.

1134 Message Flows

|||||

|
|
|||
|
|
|
|
|

|

|
|

|
|

|
|
|
|
|

|
|
|||
|
|
|
|

|

|

|
|
|
|
|

|
|

||||||

|||||
|

|||||
|

|
|
|
|
|

|||||

|||||
|

|
|
|||
|
|

|
|

||||
|
|

|
|
|
|
|
|

The Parser Options properties of the TCPIPClientInput node are described in the

following table.

 Property M C Default Description

Parse timing No No On Demand This property controls when an input message is

parsed. Valid values are:

v On Demand

v Immediate

v Complete.

For a full description of this property, see “Parsing on

demand” on page 1363.

Build tree using XML

schema data types

No No Cleared This property controls whether the syntax elements in

the message tree have data types taken from the XML

Schema.

Use XMLNSC compact

parser for XMLNS

domain

No No Cleared This property controls whether the XMLNSC Compact

Parser is used for messages in the XMLNS Domain. If

you set this property, the message data appears under

XMLNSC in nodes that are connected to the output

terminal when the input MQRFH2 header or Input

Message Parsing property, Message Domain, is

XMLNS.

Retain mixed content No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

mixed text in an input message. If you select the check

box, elements are created for mixed text. If you clear

the check box, mixed text is ignored and no elements

are created.

Retain comments No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

comments in an input message. If you select the check

box, elements are created for comments. If you clear

the check box, comments are ignored and no elements

are created.

Retain processing

instructions

No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

processing instructions in an input message. If you

select the check box, elements are created for

processing instructions. If you clear the check box,

processing instructions are ignored and no elements are

created.

Opaque elements No No Blank This property is used to specify a list of elements in the

input message that are to be opaquely parsed by the

XMLNSC parser.

The Records and Elements properties of the TCPIPClientInput node are described

in the following table:

Message flows 1135

|
|

||||||

|||||
|

|

|

|

|
|

|
|
||||
|
|

|
|
|

||||
|
|
|
|
|
|

|||||
|
|
|
|
|

|||||
|
|
|
|
|

|
|
||||
|
|
|
|
|
|

|||||
|
|
|

|
|

Property M C Default Description

Record detection Yes No End of

stream

The mechanism used to identify records in the input

data. Valid options are:

v End of stream

v Fixed Length

v Delimited

v Parsed Record Sequence.

Length Yes No 80 The length of each record, in bytes, when Fixed Length

record detection is selected.

Delimiter Yes No DOS or

UNIX Line

End

The type of delimiter bytes that separate, or terminate,

each record when Delimited record detection is

selected. Valid options are:

v DOS or UNIX Line End

v Custom Delimiter.

Custom delimiter No No The delimiter bytes, expressed in hexadecimal, when

Delimited record detection and Custom Delimiter are

selected. This property is mandatory only if the

Delimiter property is set to Custom Delimiter.

Delimiter type Yes No Postfix The position of the delimiter when Delimited record

detection and Custom Delimiter are selected. Valid

options are:

v Postfix

v Infix.

This property is ignored unless the Delimiter property

is set to Custom Delimiter.

The Retry properties of the TCPIPClientInput node are described in the following

table:

 Property M C Default Description

Retry mechanism Yes No Failure How the node handles a flow failure. Valid options

are:

v Failure

v Short retry

v Short and long retry.

Retry threshold Yes Yes 0 The number of times to retry the flow transaction

when Retry mechanism is Short retry.

Short retry interval No Yes 0 The interval, in seconds, between each retry if Retry

threshold is not zero.

Long retry interval No Yes 300 The interval between retries if Retry mechanism is

Short and long retry and the retry threshold has been

exhausted.

The Validation properties of the TCPIPClientInput node are described in the

following table.

For a full description of these properties, see “Validation properties” on page 1359.

1136 Message Flows

||||||

||||
|
|
|

|

|

|

|

|||||
|

||||
|
|

|
|
|

|

|

|||||
|
|
|

|||||
|
|

|

|

|
|
|

|
|

||||||

|||||
|

|

|

|

|||||
|

|||||
|

|||||
|
|
|

|
|

|

Property M C Default Description

Validate No Yes None This property controls whether validation takes place.

Valid values are

v None

v Content and Value

v Content.

Failure action No No Exception This property controls what happens if validation fails.

Valid values are:

v User Trace

v Local Error Log

v Exception

v Exception List.

The Transactions properties of the TCPIPClientInput node are described in the

following table:

 Property M C Default Description

Transaction mode No Yes No The transaction mode on this input node determines

whether the rest of the nodes in the flow are executed

under sync point. Valid options are:

v No

v Yes.

The Instances properties of the TCPIPClientInput node are described in the

following table. For a full description of these properties, see “Configurable

message flow properties” on page 1372.

 Property M C Default Description

Additional instances

pool

No Yes Use Pool

Associated

with

Message

Flow

The pool from which additional instances are obtained.

v If you select Use Pool Associated with Message Flow,

additional instances are obtained from the message

flow pool.

v If you select Use Pool Associated with Node,

additional instances are allocated from the node’s

additional instances based on the number specified

in the Additional instances property.

Additional instances No Yes 0 The number of additional instances that the node can

start if the Additional instances pool property is set to

Use Pool Associated with Node.

TCPIPClientOutput node

Use the TCPIPClientOutput node to create a client connection to raw a TCP/IP

socket, and to send data over that connection to an external application.

This topic contains the following sections:

v “Purpose” on page 1138

v “Using the TCPIPClientOutput node in a message flow” on page 1139

v “Configuring the TCPIPClientOutput node” on page 1139

v “Terminals and properties” on page 1143

Message flows 1137

||||||

|||||
|

|

|

|

|||||
|

|

|

|

|
|

|
|

||||||

|||||
|
|

|

|
|

|
|
|

||||||

|
|
|||
|
|
|
|

|

|
|
|

|
|
|
|

|||||
|
|
|

|

|
|

|
|
|
|
|

Purpose

The TCPIPClientOutput node opens connections to a remote server application that

is listening on a TCP/IP port. The connections are not made directly by the node

but are obtained from a connection pool managed by the message broker execution

group. The execution group uses the default TCPIPClient configurable service to

determine which attributes are used for the socket connection. However, if the

configurable service is set on the node, the configurable service is used for all the

properties, including the host and port number.

The TCPIPClient configurable service is used to create a pool of client connections

ready for processing. To enable this function, the minimumConnections property

must be set to a value larger than zero. The execution group then ensures that the

specified number of connections are always available by creating them at start up

and continuing to make them until the minimum value is reached.

The node requests a client connection, and, if there are no connections available for

sending data, the output node requests that the pool creates a new connection. If

the maximumConnections property has not been exceeded, a new connection is

created.

When the connection has been established, the data is sent. If the data has not be

sent successfully within the time limit specified by the node’s Timeout sending a

data record property, an exception is thrown.

Properties in the local environment can override the TCP/IP connection used by

the node:

 Table 36. Input local environment properties

Location in local environment Description

$LocalEnvironment/Destination/TCPIP/
Output/Hostname

The hostname used to make a connection

$LocalEnvironment/Destination/TCPIP/
Output/Port

The port number used to make a connection

$LocalEnvironment/Destination/TCPIP/
Output/Id

The ID of the socket being used. This is an

internal identifier used by message broker to

uniquely identify a connection.

$LocalEnvironment/Destination/TCPIP/
Output/ReplyId

The Reply ID that has been stored on this

connection. It can be any text string.

These properties allow the connection details (hostname and port number) and the

connection used (ID) to be chosen dynamically. The Reply ID can also be set on the

connection. This enables a string to be stored in the connection and to appear in

the local environment. This can be used to store Reply IDs from other TCP/IP

nodes or from other transports such WebSphere MQ.

The output of the node contains the same information as the input, plus any fields

that were missing from the input are updated with details from the connection

used. For example, if the Id property is not provided as input (because you want

to create a new connection or reuse a pool connection), the output local

environment will contain the ID of the connection that is used.

1138 Message Flows

|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|

||

||

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

Table 37. Output local environment properties

Location in local environment Description

$LocalEnvironment/WrittenDestination/
TCPIP/Output/ConnectionDetails/
Hostname

The hostname used to make a connection

$LocalEnvironment/WrittenDestination/
TCPIP/Output/ConnectionDetails/Port

The port number used to make a connection

$LocalEnvironment/WrittenDestination/
TCPIP/Output/ConnectionDetails/
OpenTimestamp

The timestamp when the connection was

first opened

$LocalEnvironment/WrittenDestination/
TCPIP/Output/ConnectionDetails/
CloseTimestamp

The timestamp when the connection was

closed (null if not yet closed)

$LocalEnvironment/WrittenDestination/
TCPIP/Output/ConnectionDetails/
SequenceNumber

The sequence number of the message

received on this connection. The first record

has a sequencing number of 1. The second

record has a sequencing number of 2, and so

on.

$LocalEnvironment/WrittenDestination/
TCPIP/Output/ConnectionDetails/Id

The ID of the socket being used. This is an

internal identifier used by message broker to

uniquely identify a connection.

$LocalEnvironment/WrittenDestination/
TCPIP/Output/ConnectionDetails/ReplyId

The Reply ID that has been stored on this

connection. It can be any text string.

If the connection closes (or any other type of exception occurs) while using the

TCP/IP transport, an exception is thrown. This goes to the failure terminal if it is

connected, otherwise the exception returns back down the flow.

The node also has a Close input terminal. If a message is sent to this terminal, the

connection is closed using a combination of the details provided in the node and

the local environment.

The TCPIPClientOutput node is contained in the TCPIP drawer of the palette and

is represented in the workbench by the following icon:

Using the TCPIPClientOutput node in a message flow

The TCPIPClientOutput node can be used in any message flow that needs to send

data to an external application. Look at the following samples to see how to use

this node:

v TCPIP Client Nodes sample

v TCPIP Handshake sample.

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Configuring the TCPIPClientOutput node

When you have put an instance of the TCPIPClientOutput node into a message

flow, you can configure it. The properties of the node are displayed in the

Message flows 1139

||

||

|
|
|

|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|

|

|

|
|
|

|

|

|
|

|

|
|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.tcpipclientnodes.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.tcpiphandshake.doc/doc/overview.htm

Properties view. All mandatory properties for which you must enter a value (those

that do not have a default value defined) are marked with an asterisk in that view.

To configure the TCPIPClientOutput node:

1. Optional: On the Description tab, enter a short description, a long description,

or both. You can also rename the node on this tab.

2. On the Basic tab, set the properties that determine how the TCP/IP connection

is controlled.

v Use the Connection details property to specify either the hostname and port

number to be used, or the name of a configurable service. This property is

mandatory. The following formats are supported:

– Configurable service name. This is used to look up the port and hostname

in configurable services. For example, TCPIPProfile1.

– <Hostname>:<Port>. This is the hostname followed by the port number

(separated by a colon). For example, tcpip.server.com:1111

– <Port>. This is the port number. In this case the hostname is assumed to

be localhost.
v Use the Timeout sending a data record (seconds) property to specify how

long the node will wait when trying to send data. You can specify any length

of time in seconds. When the specified time has been exceeded, all available

data is sent to the failure terminal. The default is 60 seconds.
3. On the Advanced tab, set the properties that determine how the data stream is

controlled.

v Use the Send to: property to specify whether the data is to be sent to one

connection or to all available connections:

– Select One connection to send the message to only one connection, as

specified by the node properties and message overrides. This is the

default.

– Select All available connections to send the data to all available

connections.
v Use the Close connection property to specify when and how to close the

connection.

– Select No to leave the connection open. This is the default.

– Select After timeout to close the connection when a timeout occurs.

– Select After data has been sent to close the connection when the end of

the record has been sent.
v Select Close output stream after a record has been sent to close the output

stream as soon as the data has been sent. This property is not selected by

default.

v Use the Output Stream Modification property to specify whether to reserve

or release the output stream. These options are available only if you have not

selected the Close output stream after a record has been sent property.

– Select Leave unchanged to leave the output stream as it was when it

entered the node. This is selected by default.

– Select Release output stream to specify that this output stream is returned

to the pool and is available for use by any output node.

– Select Reserve output stream (for use by future TCP/IP output nodes) to

specify that this output stream can be used only by this node and by other

output nodes that request it by specifying the connection ID. When the

connection input stream is reserved no other nodes can use it without

specifying the correct connection ID.

1140 Message Flows

|
|

|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|

|
|

|
|

|

|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

– Select Reserve output stream (for use by future TCP/IP output nodes)

then release after propagate to specify that this output stream can be used

only by this node and output nodes that request it by specifying the

correct connection ID. After the message has been propagated, this output

stream is returned to the pool and becomes available for use by any

output node.
v Use the Input Stream Modification property to specify whether to reserve the

input stream for use only by input and receive nodes that specify the

connection ID, and, if so, whether to release it at the end of the flow.

– Select Leave unchanged to leave the input stream as it was when it

entered the node. This is selected by default.

– Select Release input stream to specify that this input stream is returned to

the pool and is available for use by any input or receive node.

– Select Reserve input stream (for use by future TCP/IP input and receive

nodes) to specify that this input stream can be used only by this node and

by other input or receive nodes that request it by specifying the

connection ID. When the connection input stream is reserved no other

nodes can use it without specifying the correct connection ID.

– Select Reserve input stream (for use by future TCP/IP input and receive

nodes) then release after propagate to specify that this input stream can be

used only by this node and receive nodes that request it by specifying the

correct connection ID. After the message has been propagated, this input

stream is returned to the pool and becomes available for use by any input

or receive node.
4. On the Request tab, specify the location of the data to be written. You can

specify the properties on this tab as XPath or ESQL expressions. Content-assist

is available in the properties pane and also in the XPath Expression Builder,

which you can invoke by using the Edit... button to the right of each property.

a. In Data location, specify the input data location. This is the location in the

input message tree that contains the record to be written. The default value

is $Body, which is the entire message body ($InputRoot.Body).

When you are specifying this property and the data in the message tree that

it identifies is owned by a model-driven parser, such as the MRM parser or

XMLNSC parser, be aware of the following considerations:

v If you are using MRM CWF format, ensure that the identified message

tree exists as a message definition. If this is defined as a global element

only, exceptions BIP5180 and BIP5167 are generated.

v If you are using MRM TDS format, the serialization of the identified

message is successful if the element is defined as a global element or

message. However, if the identified field is not found as a global element

or message, note that:

– If this is a leaf field in the message tree, the field is written as

self-defining. No validation occurs even if validation is enabled.

– If this is a complex element, an internal exception is generated,

BIP5522, indicating that the logical type cannot be converted to a

string.
v If you are using MRM XML, the events are similar as for the MRM TDS

format except that, if the field is a complex element, it is written as

self-defining.

v If you use the XMLNSC parser, no validation occurs even if validation is

enabled.

Message flows 1141

|
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|

b. In Hostname location, specify the location of the value to override the

Hostname set in the Connection details property of the Basic tab. If you do

not specify a location, the default value is $LocalEnvironment/Destination/
TCPIP/Output/Hostname.

c. In Port location, specify the location of the value to override the Port set in

the Connection details property of the Basic tab. If you do not specify a

location, the default value is $LocalEnvironment/Destination/TCPIP/
Output/Port.

d. In ID location, specify the location of the Id of the socket being used. This

internal identifier is used by Message Broker to uniquely identify a

connection. If you do not specify a location, the default value is

$LocalEnvironment/Destination/TCPIP/Output/Id.

e. In Reply ID location, specify the location of the Reply ID that is stored on

the connection being used. The Reply ID can be used when data is returned

in an input node. If you do not specify a location, the default value is

$LocalEnvironment/Destination/TCPIP/Output/ReplyId.
5. Use the Records and Elements tab to specify how the TCPIPClientOutput node

writes the record derived from the message.

v In Record definition, choose from:

– Record is Unmodified Data to specify that records are left unchanged. This

is the default.

– Record is Fixed Length Data to specify that records are padded to a given

length if necessary. You specify this length in the Length property. If the

record is longer than the value specified in Length, the node generates an

exception. Use the Padding byte (hexadecimal) property to specify the

byte to be used for padding the message to the required length.

– Record is Delimited Data to specify that records are separated by a

delimiter and accumulated by concatenation. The delimiter is specified by

the Delimiter, Custom delimiter, and Delimiter type properties. The file is

finished only when a message is received on the Finish File terminal.
v In Length (bytes), specify the length (in bytes) of records when Record is

Fixed Length Data is specified in Record definition. Records longer than this

value cause an exception to be thrown. This must be a value between 1 byte

and 100 MB. The default is 80 bytes.

v When Record is Fixed Length Data is specified in Record definition, use

Padding byte (hexadecimal) to specify the byte to be used when padding

records to the specified length if they are shorter than this length. Specify

this as 2 hexadecimal digits. The default value is X’20’.

v In Delimiter, specify the delimiter to be used if you specify Record is

Delimited Data in Record definition. Choose from:

– Broker System Line End to specify that a line end sequence of bytes is

used as the delimiter as appropriate for the file system on which the

broker is to run. This is the default. For example, on Windows systems,

this is a ’carriage-return, line-feed’ pair (X’0D0A’); on UNIX systems, this

is a single ’line-feed’ byte (X’0A’); on z/OS systems, it is a ’newline’ byte

(X’15’).

– Custom Delimiter (hexadecimal) to specify that the explicit delimiter

sequence defined in the Custom delimiter property is to be used to delimit

records.
v In Custom delimiter (hexadecimal), specify the delimiter sequence of bytes to

be used to be used to delimit records when Custom Delimiter is specified in

1142 Message Flows

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|

the Delimiter property. Specify this as an even-numbered string of

hexadecimal digits. The default is X’0A’ and the maximum length of the

string is 16 bytes.

v If you specified Record is Delimited Data in Record definition, use Delimiter

type to specify how the delimiter is to separate records. Choose from:

– Postfix to specify that the delimiter is added after each record that is

written. This is the default.

– Infix to specify that the delimiter is only inserted between any two

adjacent records.
6. On the Validation tab, specify the parser validation properties of the node. For

more information about validation, see “Validating messages” on page 164. For

information on how to fill in this tab, see “Validation tab properties” on page

1360.

Terminals and properties

The TCPIPClientOutput node terminals are described in the following table.

 Terminal Type Description

In Input data The input terminal that accepts a message for processing by the

node.

Close Input control The input terminal to which a message is routed when the

connection given in the local environment is closed.

Out Output data The output terminal to which the message is routed if it is

successfully sent to an external resource. The message received on

the In terminal is propagated to the Out terminal and is left

unchanged except for the addition of status information.

Close Output control The output terminal to which a message propagated from the Close

input terminal is routed.

Failure Output data The output terminal to which the message is routed if a failure is

detected in the node.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Description properties of the TCPIPClientOutput node are described in the

following table:

 Property M C Default Description

Node name No No TCPIPClientOutput The name of the node.

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the

message flow.

The Basic properties of the TCPIPClientOutput node are described in the following

table:

Message flows 1143

|
|
|

|
|

|
|

|
|

|
|
|
|

|

|

||||

|||
|

|||
|

|||
|
|
|

|||
|

|||
|
|

|
|
|
|
|

|
|

||||||

|||||

|||||

|||||
|
|

|
|

Property M C Default Description

Connection details Yes Yes Node

properties

A string containing either the hostname and port

number to be used, or the name of a configurable

service.

Timeout sending a data

record (seconds)

Yes Yes 60 Specifies how long the node will wait when trying to

send data. You can specify any length of time in

seconds.

The Advanced properties of the TCPIPClientOutput node are described in the

following table.

 Property M C Default Description

Send to: Yes No One

connection

Valid options are:

v One connection

v All available connections.

Close connection Yes No No Controls when the connection is closed, or if it remains

open. Valid options are:

v No

v After timeout

v After data has been sent .

Close output stream

after a record has been

sent

Yes No False Specifies whether to close the output stream as soon as

the data has been sent. This property is not selected by

default.

Output stream

modification

No No Leave

unchanged

Specifies whether to reserve this output stream or

release it and return it to the pool for use by any

output node. Valid options are:

v Leave unchanged

v Release output stream

v Reserve output stream (for use by future TCP/IP

output nodes)

v Reserve output stream (for use by future TCP/IP

output nodes) then release after propagate.

Input stream

modification

No No Leave

unchanged

Specifies whether to reserve the input stream for use

only by input and receive nodes that specify the

connection ID, and, if so, whether to release it at the

end of the flow. Valid options are:

v Leave unchanged

v Release input stream

v Reserve input stream (for use by future TCP/IP

input and receive nodes)

v Reserve input stream (for use by future TCP/IP

input and receive nodes) then release after

propagate.

When the connection input stream is reserved no other

nodes can use it without specifying the correct

connection ID. If the input stream is released after the

message has been propagated, it is returned to the pool

and becomes available for use by any input or receive

node.

1144 Message Flows

||||||

||||
|
|
|
|

|
|
||||
|
|
|

|
|

||||||

||||
|
|

|

|

|||||
|

|

|

|

|
|
|

||||
|
|

|
|
|||
|
|
|
|

|

|

|
|

|
|

|
|
|||
|
|
|
|
|

|

|

|
|

|
|
|

|
|
|
|
|
|
|

The Request properties of the TCPIPClientOutput node are described in the

following table:

 Property M C Default Description

Data location Yes No $Body The location in

the input message

tree containing

the record to be

written.

Hostname location Yes No $LocalEnvironment/Destination/TCPIP/Output/
Hostname

The message

element location

containing the

Hostname.

Port location Yes No $LocalEnvironment/Destination/TCPIP/Output/
Port

The message

element location

containing the

Port.

ID location Yes No $LocalEnvironment/Destination/TCPIP/
Output/Id

The message

element location

containing the ID.

Reply ID location Yes No $LocalEnvironment/Destination/TCPIP/Output/
ReplyId

The message

element location

containing the

Reply ID.

The Records and Elements properties of the TCPIPClientOutput node are described

in the following table:

 Property M C Default Description

Record definition Yes No Record is

Unmodified

data

This property controls how the records derived from

the message are written. Valid options are:

v Record is Unmodified Data

v Record is Fixed Length Data

v Record is Delimited Data.

Length Yes No 80 The required length of the output record. This

property applies only when Record is Fixed Length

Data is specified in Record definition.

Padding byte Yes No X’20’ The 2-digit hexadecimal byte to be used to pad short

messages when Record is Fixed Length Data is

specified in Record definition.

Delimiter Yes No Broker

System Line

End

The delimiter to be used when Record is Delimited

Data is specified in Record definition. Valid options

are:

v Broker System Line End

v Custom Delimiter.

Custom delimiter No No None The delimiter byte sequence to be used when Record is

Delimited Data is specified in the Record definition

property and Custom Delimiter is specified in the

Delimiter property.

Message flows 1145

|
|

||||||

|||||
|
|
|
|

||||
|
|
|
|
|

||||
|
|
|
|
|

||||
|
|
|
|

||||
|
|
|
|
|
|

|
|

||||||

||||
|
|

|
|

|

|

|

|||||
|
|

|||||
|
|

||||
|
|

|
|
|

|

|

|||||
|
|
|

Property M C Default Description

Delimiter type Yes No Postfix This property specifies the way in which the delimiters

are to be inserted between records when Record is

Delimited Data is specified in Record definition. Valid

options are:

v Postfix

v Infix.

The Validation properties of the TCPIPClientOutput node are described in the

following table.

For a full description of these properties, see “Validation properties” on page 1359.

 Property M C Default Description

Validate No Yes Inherit This property controls whether validation takes place.

Valid values are:

v None

v Content and Value

v Content

v Inherit.

Failure action No No Exception This property controls what happens if validation fails.

You can set this property only if you set Validate to

Content or Content and Value. Valid values are:

v User Trace

v Local Error Log

v Exception

v Exception List.

TCPIPClientReceive node

Use the TCPIPClientReceive node to receive data over a client TCP/IP connection.

This topic contains the following sections:

v “Purpose”

v “Using the TCPIPClientReceive node in a message flow” on page 1148

v “Configuring the TCPIPClientReceive node” on page 1148

v “Terminals and properties” on page 1153

Purpose

The TCPIPClientReceive node waits for data to be received on a TCP/IP

connection, and retrieves the data. If the connection is closed, an exception is

thrown.

When a connection is established, the data is sent to the TCPIPClientReceive node.

If the TCPIPClientReceive node fails to receive all of the data within the time

specified in the Timeout waiting for a data record property, the message is sent to

the Timeout terminal; if no Timeout terminal is connected, an exception is thrown.

Properties in the local environment can override the TCP/IP connection used by

the node:

1146 Message Flows

|||||

|||||
|
|
|

|

|
|

|
|

|

||||||

|||||
|

|

|

|

|

|||||
|
|

|

|

|

|
|

|

|

|
|
|
|
|

|

|
|
|

|
|
|
|

|
|

Table 38. Input local environment properties

Location in local environment for input to

node Description

$LocalEnvironment//TCPIP/Receive/
Hostname

The hostname used to make a connection

$LocalEnvironment//TCPIP/Receive/Port The port number used to make a connection

$LocalEnvironment/TCPIP/Receive/Id The ID of the socket being used. This is an

internal identifier used by message broker to

uniquely identify a connection.

$LocalEnvironment/TCPIP/Receive/ReplyId The Reply ID to be stored on this

connection. This can then be used when data

is returned on an input node. The Reply ID

can be any text string.

These properties allow the connection details (hostname and port number) and the

connection used (ID) to be chosen dynamically. The Reply ID can also be set on the

connection, which enables a string to be stored in the connection and to appear in

the local environment of any data that is received back from this connection. This

connection can be used to store Reply IDs from other TCP/IP nodes or from other

transports such as WebSphere MQ.

When a record has been retrieved, the ConnectionDetails field in the

LocalEnvironment is populated with the details of the connection that is being

used.

 Table 39. Output local environment properties

Location in local environment for output

from node Description

$LocalEnvironment/TCPIP/Receive/
ConnectionDetails/Type

Client

$LocalEnvironment/TCPIP/Receive/
ConnectionDetails/Hostname

The hostname used to make a connection

$LocalEnvironment/TCPIP/Receive/
ConnectionDetails/Port

The port number used to make a connection

$LocalEnvironment/TCPIP/Receive/
ConnectionDetails/OpenTimestamp

The timestamp when the connection was

first opened

$LocalEnvironment/TCPIP/Receive/
ConnectionDetails/CloseTimestamp

The timestamp when the connection was

closed (null if not yet closed)

$LocalEnvironment/TCPIP/Receive/
ConnectionDetails/SequenceNumber/
InputRecord

The sequence number of the message

received on this connection. The first record

has a sequencing number of 1. The second

record is 2, and so on.

$LocalEnvironment/TCPIP/Receive/
ConnectionDetails/SequenceNumber/
OutputRecord

The sequence number of the message sent

on this connection. The first record has a

sequencing number of 1. The second record

is 2, and so on.

$LocalEnvironment/TCPIP/Receive/
ConnectionDetails/Id

The ID of the socket being used. This is an

internal identifier used by message broker to

uniquely identify a connection.

$LocalEnvironment/TCPIP/Receive/
ConnectionDetails/ReplyId

The Reply ID that has been stored on this

connection. It can be any text string.

Message flows 1147

||

|
||

|
|
|

||

||
|
|

||
|
|
|
|

|
|
|
|
|
|

|
|
|

||

|
||

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

The TCPIPClientReceive node is contained in the TCPIP drawer of the palette, and

is represented in the workbench by the following icon:

Message structure

The TCPIPClientReceive node handles messages in the following message

domains:

v MRM

v XMLNSC

v DataObject

v XMLNS

v JMSMap

v JMSStream

v MIME

v BLOB

v XML (this domain is deprecated; use XMLNSC)

v IDOC (this domain is deprecated; use MRM)

Using the TCPIPClientReceive node in a message flow

Look at the following samples to see how to use the TCPIPClientReceive node:

v TCPIP Client Nodes sample

v TCPIP Handshake sample.

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Configuring the TCPIPClientReceive node

When you have put an instance of the TCPIPClientReceive node into a message

flow, you can configure it; see “Configuring a message flow node” on page 235.

The properties of the node are displayed in the Properties view.

All mandatory properties that do not have a default value defined are marked

with an asterisk.

Configure the TCPIPClientReceive node:

1. Optional: On the Description tab, enter a Short description, a Long description,

or both. You can also rename the node on this tab.

2. On the Basic tab, set the properties that determine how the TCP/IP connection

is controlled.

v Use the Connection details property to specify either the hostname and port

number to be used, or the name of a configurable service. This property is

mandatory. The following formats are supported:

– Configurable service name. This is used to look up the port and hostname

in configurable services. For example, TCPIPProfile1.

– <Hostname>:<Port>. This is the hostname followed by the port number

(separated by a colon). For example, tcpip.server.com:1111

1148 Message Flows

|
|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|
|

|
|

|

|
|

|
|

|
|
|

|
|

|
|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.tcpipclientnodes.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.tcpiphandshake.doc/doc/overview.htm

– <Port>. This is the port number. In this case the hostname is assumed to

be localhost.
v Use the Timeout waiting for a data record (seconds) property to specify how

long the node will listen on a connection for more data after the first byte of

data has arrived. You can specify any length of time in seconds. A value of -1

specifies that there is no time limit (wait forever). The default is 60 seconds.

When the specified time has been exceeded, all available data is sent to the

failure terminal.
3. On the Advanced tab, set the properties that determine how the data stream is

controlled.

v Use the Close connection property to specify when and how to close the

connection.

– Select No to leave the connection open. This is the default.

– Select After timeout to close the connection when a timeout occurs.

– Select After data has been received to close the connection when the end

of the record is found.
v Select Close input stream after a record has been received to close the input

stream as soon as the data has been retrieved. This property is not selected

by default. When the connection input stream is reserved no other node can

use it without knowing the ID.

v Use the Input Stream Modification property to specify whether to reserve the

input stream for use only by input and receive nodes that specify the

connection ID, and, if so, whether to release it at the end of the flow.

– Select Leave unchanged to leave the input stream as it was when it

entered the node. This is selected by default.

– Select Release input stream to specify that this input stream is returned to

the pool and is available for use by any input or receive node.

– Select Reserve input stream (for use by future TCP/IP input and receive

nodes) to specify that this input stream can be used only by this node and

by other input or receive nodes that request it by specifying the

connection ID. When the connection input stream is reserved no other

nodes can use it without specifying the correct connection ID.

– Select Reserve input stream (for use by future TCP/IP input and receive

nodes) then release after propagate to specify that this input stream can be

used only by this node and receive nodes that request it by specifying the

correct connection ID. After the message has been propagated, this input

stream is returned to the pool and becomes available for use by any input

or receive node.
v Use the Output Stream Modification property to specify whether to reserve

or release the output stream. These options are available only if you have not

selected the Close output stream after a record has been sent property.

– Select Leave unchanged to leave the output stream as it was when it

entered the node. This is selected by default.

– Select Release output stream to specify that this output stream is returned

to the pool and is available for use by any output node.

– Select Reserve output stream (for use by future TCP/IP output nodes) to

specify that this output stream can be used only by this node and by other

output nodes that request it by specifying the connection ID. When the

connection input stream is reserved no other nodes can use it without

specifying the correct connection ID.

– Select Reserve output stream (for use by future TCP/IP output nodes)

then release after propagate to specify that this output stream can be used

Message flows 1149

|
|

|
|
|
|
|
|

|
|

|
|

|

|

|
|

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|

only by this node and output nodes that request it by specifying the

correct connection ID. After the message has been propagated, this output

stream is returned to the pool and becomes available for use by any

output node.
4. On the Request tab, specify the location of the data to be written. You can

specify the properties on this tab as XPath or ESQL expressions. Content-assist

is available in the properties pane and also in the XPath Expression Builder,

which you can run by clicking Edit to the right of each property.

v In Data location, specify the location of the message to be sent out as part of

the request. This is the location in the input message tree that contains the

record to be written. The default value is $Body, which is the entire message

body ($InputRoot.Body).

When you are specifying this property and the data in the message tree that

it identifies is owned by a model-driven parser, such as the MRM parser or

XMLNSC parser, be aware of the following considerations:

– If you are using MRM CWF format, ensure that the identified message

tree exists as a message definition. If this is defined as a global element

only, exceptions BIP5180 and BIP5167 are generated.

– If you are using MRM TDS format, the serialization of the identified

message is successful if the element is defined as a global element or

message. However, if the identified field is not found as a global element

or message, note that:

- If this is a leaf field in the message tree, the field is written as

self-defining. No validation occurs even if validation is enabled.

- If this is a complex element, an internal exception is generated, BIP5522,

indicating that the logical type cannot be converted to a string.
– If you are using MRM XML, the events are similar to those for the MRM

TDS format except that, if the field is a complex element, it is written as

self-defining.

– If you use the XMLNSC parser, no validation occurs even if validation is

enabled.
v In Hostname location, specify the location of the value to override the

Hostname set in the Connection details property of the Basic tab. If you do

not specify a location, the default value is $LocalEnvironment/TCPIP/
Receive/Hostname.

v In Port location, specify the location of the value to override the Port set in

the Connection details property of the Basic tab. If you do not specify a

location, the default value is $LocalEnvironment/TCPIP/Receive/Port.

v In ID location, specify the location of the Id of the socket being used. This

internal identifier is used by Message Broker to uniquely identify a

connection. If you do not specify a location, the default value is

$LocalEnvironment/TCPIP/Receive/Id.

v In Reply ID location, specify the location of the Reply ID that is stored on the

connection being used. The Reply ID can be used when data is returned in

an input node. If you do not specify a location, the default value is

$LocalEnvironment/TCPIP/Receive/ReplyId.
5. On the Result tab, set values for the properties that determine where the reply

is to be stored.

v Use the Output data location property to specify the start location within the

output message tree where the parsed elements from the bit string of the

message are stored. The default value is $Root.

1150 Message Flows

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|

v Use the Copy local environment property to specify whether or not the

LocalEnvironment is copied to the output message.

– If Copy local environment is selected, a new copy of the

LocalEnvironment is created in the tree, and it is populated with the

contents of the LocalEnvironment from the preceding node. This means

that if a node changes the LocalEnvironment, the upstream nodes are not

affected by those changes because they have their own copies. This is the

default.

– If Copy local environment is not selected, the node does not generate its

own copy of the LocalEnvironment, but uses the LocalEnvironment

passed to it by the preceding node. This means that if a node changes the

LocalEnvironment, the changes are reflected by the upstream nodes.
6. On the Input Message Parsing tab, set values for the properties that the node

uses to determine how to parse the incoming message.

If the incoming message has an MQRFH2 header, you do not need to set values

for the Input Message Parsing properties because the values are derived from

the <mcd> folder in the MQRFH2 header; for example:

<mcd><Msd>MRM</Msd><Set>DHM4UO906S001</Set><Type>receiptmsg1</Type>

<Fmt>XML</Fmt></mcd>

If you set values, and those values differ from those in the MQRFH2 header,

the values in the MQRFH2 header take precedence.

v In Message domain, select the name of the parser that you are using from

the list. The default is BLOB. You can choose from the following options:

– MRM

– XMLNSC

– DataObject

– XMLNS

– JMSMap

– JMSStream

– MIME

– BLOB

– XML (this domain is deprecated; use XMLNSC)

– IDOC (this domain is deprecated; use MRM)

You can also specify a user-defined parser, if appropriate.

v If you are using the MRM or IDOC parser, or the XMLNSC parser in

validating mode, select the Message set that you want to use. The list

contains the message sets that are available when you select MRM,

XMLNSC, or IDOC as the domain.

v If you are using the MRM parser, select the correct message type from the

list in Message type. This list is populated with available message types

when you select the MRM parser.

v If you are using the MRM or IDOC parser, select the correct message format

from the list in Message format. This list is populated with available message

formats when you select the MRM or IDOC parser.

v Specify the message coded character set ID in Message coded character set

ID.

v Select the message encoding from the list in Message encoding or specify a

numeric encoding value. For more information about encoding, see

“Converting data with message flows” on page 128.
7. On the Parser Options sub-tab:

Message flows 1151

|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|

|
|

|
|
|

|

v Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed. To cause the message to be parsed immediately, see

“Parsing on demand” on page 1363.

v If you are using the XMLNSC parser, set values for the properties that

determine how the XMLNSC parser operates. For more information, see

“Manipulating messages in the XMLNSC domain” on page 364.
8. Use the Records and Elements tab to specify how the data is interpreted as

records:

v Use the Record detection property to determine how the data is split into

records, each of which generates a single message. Choose from the

following options:

– Connection closed specifies that all of the data sent during a connection is

a single record.

– Fixed Length specifies that each record is a fixed number of bytes in

length. Each record should contain the number of bytes specified in the

Length property, except possibly a shorter final record in the file.

– Select Delimited, if the records you are processing are separated, or

terminated, by a DOS or UNIX line end or by a sequence of user-defined

delimiter bytes. Specify the delimiter and delimiter type in the Delimiter,

and Delimiter type properties.

– Select Parsed Record Sequence if the data contains a sequence of one or

more records that are serially recognized by the parser specified in

Message domain. The node propagates each recognized record as a

separate message. If you select this Record detection option, the parser

specified in Message domain must be either XMLNSC or MRM (either

CWF or TDS physical format).
v If you specified Fixed Length in Record detection, use Length to specify the

required length of the output record. This value must be between 1 byte and

100 MB. The default is 80 bytes.

If you specify Connection closed, Fixed Length, or Delimited in Record

detection, a limit of 100 MB applies to the length of the records. If you

specify Parsed Record Sequence in Record detection, the TCPIPClientReceive

node does not determine or limit the length of a record. Nodes that are

downstream in the message flow might try to determine the record length or

process a very long record. If you intend to process large records in this way,

ensure that your broker has sufficient memory. You might need to apply flow

techniques described in the Large Messaging sample to best use the available

memory.

v If you specified Delimited in Record detection, use Delimiter to specify the

delimiter to be used. Choose from:

– DOS or UNIX Line End, which, on UNIX systems, specifies the line feed

character (<LF>, X’0A’), and, on Windows systems, specifies a carriage

return character followed by a line feed character (<CR><LF>, X’0D0A’).

The node treats both of these strings as delimiters, irrespective of the

system on which the broker is running. If they both appear in the same

record, the node recognizes both as delimiters. The node does not

recognize X’15’ which, on z/OS systems, is the ’newline’ byte; specify a

value of Custom Delimiter in this property and a value of 15 in the

Custom delimiter property if your input file is coded using EBCDIC new

lines.

– Custom Delimiter (hexadecimal), which permits a sequence of bytes to be

specified in Custom delimiter (hexadecimal)

1152 Message Flows

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

v In Custom delimiter (hexadecimal), specify the delimiter byte or bytes to be

used when Custom delimiter (hexadecimal) is set in the Delimiter property.

Specify this value as an even-numbered string of hexadecimal digits. The

default is X’0A’ and the maximum length of the string is 16 bytes

(represented by 32 hexadecimal digits).

v If you specified Delimited in Record detection, use Delimiter type to specify

the type of delimiter. Permitted values are:

– Infix. If you select this value, each delimiter separates records. If the data

ends with a delimiter the (zero length) data following the final delimiter is

still propagated although it contains no data.

– Postfix. If you specify this value, each delimiter terminates records. If the

data ends with a delimiter, no empty record is propagated after the

delimiter. If the data does not end with a delimiter, it is processed as if a

delimiter follows the final bytes of the data. Postfix is the default value.
v The TCPIPClientReceive node considers each occurrence of the delimiter in

the input as either separating (infix) or terminating (postfix) each record. If

the data begins with a delimiter, the node treats the (zero length) contents

preceding that delimiter as a record and propagates an empty record to the

flow. The delimiter is never included in the propagated message.
9. Use the Validation tab to provide validation based on the message set for

predefined messages. For more information about validation, see “Validating

messages” on page 164. For information about how to complete this tab, see

“Validation tab properties” on page 1360.

Terminals and properties

The terminals of the TCPIPClientReceive node are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Out The output terminal to which the message is routed if it is successfully retrieved from

an external resource. If no errors occur within the input node, a message received

from an external resource is always sent to the Out terminal first.

Timeout The terminal to which a message is sent when the time specified in the Timeout

waiting for a data record property has been exceeded. The message text is “Timeout

value is exceeded”.

Failure The output terminal to which the message is routed if an error occurs. This includes

failures caused by retry processing. Even if the Validation property is set, messages

propagated to this terminal are not validated.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Description properties of the TCPIPClientReceive node are described in the

following table.

 Property M C Default Description

Node name No No TCPIPClientReceive The name of the node.

Short description No No None A brief description of the node.

Message flows 1153

|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|

|

|||

||

||
|
|

||
|
|

||
|
|
|

|
|
|
|
|

|
|

||||||

|||||

|||||

Property M C Default Description

Long description No No None Text that describes the purpose of the node in the message

flow.

The Basic properties of the TCPIPClientReceive node are described in the following

table.

 Property M C Default Description

Connection details Yes Yes Node

properties

A string containing either the hostname and port

number to be used, or the name of a configurable

service.

Timeout waiting for a

data record (seconds)

Yes Yes 60 Specifies how long the node will listen on a connection

for more data after the first byte of data has arrived.

You can specify any length of time in seconds. A value

of -1 specifies that there is no time limit (wait forever).

The Advanced properties of the TCPIPClientReceive node are described in the

following table.

 Property M C Default Description

Close connection Yes No No Controls when the connection is closed, or if it remains

open. Valid options are:

v No

v After data has been received

v After timeout.

Close input stream

after a record has been

received

Yes No False Specifies whether to close the input stream as soon as

the data has been retrieved. When the connection input

stream is reserved no other node can use it without

knowing the ID. This property is not selected by

default.

Input stream

modification

No No Leave

unchanged

Specifies whether to reserve the input stream for use

only by input and receive nodes that specify the

connection ID, and, if so, whether to release it at the

end of the flow. Valid options are:

v Leave unchanged

v Release input stream

v Reserve input stream (for use by future TCP/IP

input and receive nodes)

v Reserve input stream (for use by future TCP/IP

input and receive nodes) then release after

propagate.

When the connection input stream is reserved no other

nodes can use it without specifying the correct

connection ID. If the input stream is released after the

message has been propagated, it is returned to the pool

and becomes available for use by any input or receive

node.

1154 Message Flows

|||||

|||||
|
|

|
|

||||||

||||
|
|
|
|

|
|
||||
|
|
|
|

|
|

||||||

|||||
|

|

|

|

|
|
|

||||
|
|
|
|

|
|
|||
|
|
|
|
|

|

|

|
|

|
|
|

|
|
|
|
|
|

Property M C Default Description

Output stream

modification

No No Leave

unchanged

Specifies whether to reserve this output stream or

release it and return it to the pool for use by any

output node. Valid options are:

v Leave unchanged

v Release output stream

v Reserve output stream (for use by future TCP/IP

output nodes)

v Reserve output stream (for use by future TCP/IP

output nodes) then release after propagate.

The Request properties of the TCPIPClientReceive node are described in the

following table:

 Property M C Default Description

Data location Yes No $Body The location in

the input message

tree containing

the record to be

written.

Hostname location Yes No $LocalEnvironment/TCPIP/Receive/Hostname The message

element location

containing the

hostname.

Port location Yes No $LocalEnvironment/TCPIP/Receive/Port The message

element location

containing the

port.

ID location Yes No $LocalEnvironment//TCPIP/Receive/Id The message

element location

containing the ID.

Reply ID location Yes No $LocalEnvironment/TCPIP/Receive/ReplyId The message

element location

containing the

Reply ID.

The Result properties of the TCPIPClientReceive node are described in the

following table:

 Property M C Default Description

Output data location No No $Root The start location

within the output

message tree

where the parsed

elements from the

bit string of the

message are

stored.

Copy local

environment

No No True Specifies whether

or not the

LocalEnvironment

is copied to the

output message.

Message flows 1155

|||||

|
|
|||
|
|
|
|

|

|

|
|

|
|
|

|
|

||||||

|||||
|
|
|
|

|||||
|
|
|

|||||
|
|
|

|||||
|
|

|||||
|
|
|
|

|
|

||||||

|||||
|
|
|
|
|
|
|

|
|
||||
|
|
|
|
|

The Input Message Parsing properties of the TCPIPClientReceive node are

described in the following table.

 Property M C Default Description

Message Domain No No The domain that is used to parse the incoming

message.

Message Set No No The name or identifier of the message set in which the

incoming message is defined.

If you set this property, then subsequently update the

project dependencies to remove this message set

reference, a warning is issued. Either update the

Message Set property, or restore the reference to this

message set project.

Message Type No No The name of the incoming message.

Message Format No No The name of the physical format of the incoming

message.

Message coded

character set ID

Yes No Broker

System

Default

The ID of the coded character set used to interpret the

data being read.

Message encoding Yes No Broker

System

Default

The encoding scheme for numbers and large characters

used to interpret the data being read. Valid values are

Broker System Determined or a numeric encoding

value. For more information about encoding, see

“Converting data with message flows” on page 128.

The Parser Options properties of the TCPIPClientReceive node are described in the

following table.

 Property M C Default Description

Parse timing No No On Demand This property controls when an input message is

parsed. Valid values are:

v On Demand

v Immediate

v Complete.

For a full description of this property, see “Parsing on

demand” on page 1363.

Build tree using XML

schema data types

No No Cleared This property controls whether the syntax elements in

the message tree have data types taken from the XML

Schema.

Use XMLNSC compact

parser for XMLNS

domain

No No Cleared This property controls whether the XMLNSC Compact

Parser is used for messages in the XMLNS Domain. If

you set this property, the message data appears under

XMLNSC in nodes that are connected to the output

terminal when the input MQRFH2 header or Input

Message Parsing property, Message Domain, is

XMLNS.

Retain mixed content No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

mixed text in an input message. If you select the check

box, elements are created for mixed text. If you clear

the check box, mixed text is ignored and no elements

are created.

1156 Message Flows

|
|

||||||

|||||
|

|||||
|

|
|
|
|
|

|||||

|||||
|

|
|
|||
|
|

|
|

||||
|
|

|
|
|
|
|
|

|
|

||||||

|||||
|

|

|

|

|
|

|
|
||||
|
|

|
|
|

||||
|
|
|
|
|
|

|||||
|
|
|
|
|

Property M C Default Description

Retain comments No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

comments in an input message. If you select the check

box, elements are created for comments. If you clear

the check box, comments are ignored and no elements

are created.

Retain processing

instructions

No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

processing instructions in an input message. If you

select the check box, elements are created for

processing instructions. If you clear the check box,

processing instructions are ignored and no elements are

created.

Opaque elements No No Blank This property is used to specify a list of elements in the

input message that are to be opaquely parsed by the

XMLNSC parser.

The Records and Elements properties of the TCPIPClientReceive node are

described in the following table:

 Property M C Default Description

Record detection Yes No Connection

closed

The mechanism used to identify records in the input

data. Valid options are:

v Connection closed

v Fixed Length

v Delimited

v Parsed Record Sequence.

Length Yes No 80 The length of each record, in bytes, when Fixed Length

record detection is selected.

Delimiter Yes No DOS or

UNIX Line

End

The type of delimiter bytes that separate, or terminate,

each record when Delimited record detection is

selected. Valid options are:

v DOS or UNIX Line End

v Custom Delimiter.

Custom delimiter No No The delimiter bytes, expressed in hexadecimal, when

Delimited record detection and Custom Delimiter are

selected. This property is not mandatory if the

Delimiter property is not set to Custom Delimiter.

Delimiter type Yes No Postfix The position of the delimiter when Delimited record

detection and Custom Delimiter are selected. Valid

options are:

v Postfix

v Infix.

This property is ignored unless the Delimiter property

is set to Custom Delimiter.

The Validation properties of the TCPIPClientReceive node are described in the

following table.

For a full description of these properties, see “Validation properties” on page 1359.

Message flows 1157

|||||

|||||
|
|
|
|
|

|
|
||||
|
|
|
|
|
|

|||||
|
|
|

|
|

||||||

||||
|
|
|

|

|

|

|

|||||
|

||||
|
|

|
|
|

|

|

|||||
|
|
|

|||||
|
|

|

|

|
|
|

|
|

|

Property M C Default Description

Validate No Yes Inherit This property controls whether validation takes place.

Valid values are

v None

v Content and Value

v Content

v Inherit.

Failure action No No Exception This property controls what happens if validation fails.

You can set this property only if you set Validate to

Content or Content and Value. Valid values are:

v User Trace

v Local Error Log

v Exception

v Exception List.

TCPIPServerInput node

Use the TCPIPServerInput node to create a server connection to raw a TCP/IP

socket, and to receive data over that connection.

This topic contains the following sections:

v “Purpose”

v “Using the TCPIPServerInput node in a message flow” on page 1159

v “Configuring the TCPIPServerInput node” on page 1160

v “Terminals and properties” on page 1164

Purpose

The TCPIPServerInput node listens on a port and, when a client socket connects to

the port, the server socket creates a new connection for the client. Unlike the

TCPIPClientInput node, the TCPIPServerInput node does not attempt to make a

minimum number of connections, because the server end of the socket cannot

initiate new connections, it can only accept them. The TCPIPServerInput node

accepts connections up to a maximum value, which is specified in the

MaximumConnections property of the TCPIPServer configurable service. By

default the broker can accept up to 100 server connections. For more information

see mqsicreateconfigurableservice command and the mqsireportproperties

command.

The first record of data is detected in accordance with properties on the node and

then sent to the Out terminal. If an error occurs, including a timeout waiting for

data or the closure of a connection while waiting for the full record, the data is

sent to the Failure terminal. If the connection closes and there is no data, a

message is sent to the Close terminal. Although the message has no data, the local

environment does have details of the connection that closed.

For both data and close events, the following local environment is created:

 Table 40. Location in local environment

Location in local environment Description

$LocalEnvironment/TCPIP/Input/
ConnectionDetails/Type

Server

1158 Message Flows

||||||

|||||
|

|

|

|

|

|||||
|
|

|

|

|

|
|

|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

||

||

|
|
|

Table 40. Location in local environment (continued)

Location in local environment Description

$LocalEnvironment/TCPIP/Input/
ConnectionDetails/Hostname

The hostname used to make a connection

$LocalEnvironment/TCPIP/Input/
ConnectionDetails/Port

The port number used to make a connection

$LocalEnvironment/TCPIP/Input/
ConnectionDetails/OpenTimestamp

The timestamp when the connection was

first opened

$LocalEnvironment/TCPIP/Input/
ConnectionDetails/CloseTimestamp

The timestamp when the connection was

closed (null if not yet closed)

$LocalEnvironment/TCPIP/Input/
ConnectionDetails/SequenceNumber/
InputRecord

The sequence number of the message

received on this connection. The first record

has a sequencing number of 1. The second

record has a sequencing number of 2, and so

on.

$LocalEnvironment/TCPIP/Input/
ConnectionDetails/SequenceNumber/
OutputRecord

The sequence number of the message sent

on this connection. The first record has a

sequencing number of 1. The second record

has a sequencing number of 2, and so on.

$LocalEnvironment/TCPIP/Input/
ConnectionDetails/Id

The ID of the socket being used. This is an

internal identifier used by message broker to

uniquely identify a connection.

$LocalEnvironment/TCPIP/Input/
ConnectionDetails/ReplyId

The Reply ID that has been stored on this

connection. It can be any text string.

The TCPIPServerInput node is contained in the TCPIP drawer of the palette, and

is represented in the workbench by the following icon:

Message structure

The TCPIPServerInput node handles messages in the following message domains:

v MRM

v XMLNSC

v DataObject

v XMLNS

v JMSMap

v JMSStream

v MIME

v BLOB

v XML (this domain is deprecated; use XMLNSC)

v IDOC (this domain is deprecated; use MRM)

Using the TCPIPServerInput node in a message flow

Look at the following samples to see how to use the TCPIPServerInput node:

v TCPIP Client Nodes sample

v TCPIP Handshake sample.

Message flows 1159

|

||

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.tcpipclientnodes.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.tcpiphandshake.doc/doc/overview.htm

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Configuring the TCPIPServerInput node

When you have put an instance of the TCPIPServerInput node into a message

flow, you can configure it; see “Configuring a message flow node” on page 235.

The properties of the node are displayed in the Properties view.

All mandatory properties that do not have a default value defined are marked

with an asterisk.

Configure the TCPIPServerInput node:

 1. Optional: On the Description tab, enter a Short description, a Long

description, or both. You can also rename the node on this tab.

 2. On the Basic tab, set the properties that determine how the TCP/IP

connection is controlled.

v Use the Connection details property to specify either the hostname and port

number to be used, or the name of a configurable service. This property is

mandatory. The following formats are supported:

– Configurable service name. This is used to look up the port and

hostname in configurable services. For example, TCPIPProfile1.

– <Hostname>:<Port>. This is the hostname followed by the port number

(separated by a colon). For example, tcpip.server.com:1111

– <Port>. This is the port number. In this case the hostname is assumed to

be localhost.
v Use the Timeout waiting for a data record (seconds) property to specify

how long the node will listen on a connection for more data after the first

byte of data has arrived. You can specify any length of time in seconds. A

value of -1 specifies that there is no time limit (wait forever). The default is

60 seconds. When the specified time has been exceeded, all available data is

sent to the Failure terminal.
 3. On the Advanced tab, set the properties that determine how the data stream

is controlled.

v Use the Close connection property to specify when and how to close the

connection.

– Select No to leave the connection open. This is the default.

– Select After timeout to close the connection when a timeout occurs.

– Select After data has been received to close the connection when the end

of the record is found.

– Select At end of flow to close the connection after the flow has been

invoked.
v Select Close input stream after a record has been received to close the input

stream as soon as the data has been retrieved. When the connection input

stream is reserved no other node can use it without specifying the ID. This

property is not selected by default.

v Use the Input Stream Modification property to specify whether to reserve

the input stream for use only by input and receive nodes that specify the

connection ID, and, if so, whether to release it at the end of the flow. These

options are available only if you have not selected the Close input stream

after a record has been received property.

1160 Message Flows

|
|

|

|
|
|

|
|

|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|

|
|

|
|

|

|

|
|

|
|

|
|
|
|

|
|
|
|
|

– Select Leave unchanged to leave the input stream as it was when it

entered the node. This is selected by default.

– Select Reserve input stream (for use by future TCP/IP input and receive

nodes) to specify that this input stream can be used only by this node

and by other receive nodes that request it by specifying the connection

ID. When the connection input stream is reserved no other nodes can use

it without specifying the correct connection ID.

– Select Reserve input stream (for use by future TCP/IP input and receive

nodes) then release at end of flow to specify that this input stream can be

used only by this node and receive nodes that request it by specifying

the connection ID. After the flow has been run, this input stream is

returned to the pool and becomes available for use by any input or

receive node.
v Use the Output Stream Modification property to specify whether to release

the output stream.

– Select Leave unchanged to leave the output stream as it was when it

entered the node. This is selected by default.

– Select Release output stream and reset ReplyID to specify that this

output stream is returned to the pool and is available for use by any

output node. The ReplyID is passed in the LocalEnvironment when

leaving this node, but is reset for the next record on this connection.
 4. On the Input Message Parsing tab, set values for the properties that the node

uses to determine how to parse the incoming message.

If the incoming message has an MQRFH2 header, you do not need to set

values for the Input Message Parsing properties because the values are

derived from the <mcd> folder in the MQRFH2 header; for example:

<mcd><Msd>MRM</Msd><Set>DHM4UO906S001</Set><Type>receiptmsg1</Type>

<Fmt>XML</Fmt></mcd>

If you set values, and those values differ from those in the MQRFH2 header,

the values in the MQRFH2 header take precedence.

v In Message domain, select the name of the parser that you are using from

the list. The default is BLOB. You can choose from the following options:

– MRM

– XMLNSC

– DataObject

– XMLNS

– JMSMap

– JMSStream

– MIME

– BLOB

– XML (this domain is deprecated; use XMLNSC)

– IDOC (this domain is deprecated; use MRM)

You can also specify a user-defined parser, if appropriate.

v If you are using the MRM or IDOC parser, or the XMLNSC parser in

validating mode, select the Message set that you want to use. The list

contains the message sets that are available when you select MRM,

XMLNSC, or IDOC as the domain.

v If you are using the MRM parser, select the correct message type from the

list in Message type. This list is populated with available message types

when you select the MRM parser.

Message flows 1161

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

v If you are using the MRM or IDOC parser, select the correct message format

from the list in Message format. This list is populated with available

message formats when you select the MRM or IDOC parser.

v Specify the message coded character set ID in Message coded character set

ID.

v Select the message encoding from the list in Message encoding or specify a

numeric encoding value. For more information about encoding, see

“Converting data with message flows” on page 128.
 5. On the Parser Options sub-tab:

a. Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed. To cause the message to be parsed immediately,

see “Parsing on demand” on page 1363.

b. If you are using the XMLNSC parser, set values for the properties that

determine how the XMLNSC parser operates. For more information, see

“Manipulating messages in the XMLNSC domain” on page 364.
 6. Use the Retry tab to define how retry processing is performed when a flow

fails. You can set the following:

v Retry mechanism determines the action that occurs should the flow fail.

Choose from the following:

– Select Failure for the node to report a failure without any retry attempts.

– Select Short retry for the node to retry before reporting a failure if the

condition persists. The number of times that it retries is specified in

Retry threshold.

– Select Short retry and long retry for the node to retry, first using the

value in Retry threshold as the number of attempts it should make. If the

condition persists after the Retry threshold has been reached, the node

then uses the Long retry interval between attempts.
v Specify the Retry threshold. The number of times the node retries the flow

transaction if the Retry mechanism property is set to either Short retry or

Short retry and long retry.

v Specify the Short retry interval. The length of time, in seconds, to wait

between short retry attempts.

v Specify the Long retry interval. The length of time to wait between long

retry attempts until a message is successful, the message flow is stopped, or

the message flow is redeployed. The broker property

MinLongRetryInterval defines the minimum value that the Long retry

interval can take. If the value is lower than the minimum then the broker

value is used.
 7. Use the Records and Elements tab to specify how the data is interpreted as

records:

v Use the Record detection property to determine how the data is split into

records, each of which generates a single message. Choose from the

following options:

– End of stream specifies that all of the data sent in the data stream is a

single record.

– Fixed Length specifies that each record is a fixed number of bytes in

length. Each record should contain the number of bytes specified in the

Length property.

1162 Message Flows

|
|
|

|
|

|
|
|

|

|
|
|

|
|
|

|
|

|
|

|

|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|

– Select Delimited, if the records you are processing are separated, or

terminated, by a DOS or UNIX line end or by a sequence of user-defined

delimiter bytes. Specify the delimiter and delimiter type in the Delimiter,

and Delimiter type properties.

– Select Parsed Record Sequence if the data contains a sequence of one or

more records that are serially recognized by the parser specified in

Message domain. The node propagates each recognized record as a

separate message. If you select this Record detection option, the parser

specified in Message domain must be either XMLNSC or MRM (either

CWF or TDS physical format).
v If you specified Fixed Length in Record detection, use Length to specify the

required length of the output record. This value must be between 1 byte

and 100 MB. The default is 80 bytes.

If you specify End of stream, Fixed Length, or Delimited in Record

detection, a limit of 100 MB applies to the length of the records. If you

specify Parsed Record Sequence in Record detection, the TCPIPServerInput

node does not determine or limit the length of a record. Nodes that are

downstream in the message flow might try to determine the record length

or process a very long record. If you intend to process large records in this

way, ensure that your broker has sufficient memory. You might need to

apply flow techniques described in the Large Messaging sample to best use

the available memory.

v If you specified Delimited in Record detection, use Delimiter to specify the

delimiter to be used. Choose from:

– DOS or UNIX Line End, which, on UNIX systems, specifies the line feed

character (<LF>, X’0A’), and, on Windows systems, specifies a carriage

return character followed by a line feed character (<CR><LF>, X’0D0A’).

The node treats both of these strings as delimiters, irrespective of the

system on which the broker is running. If they both appear in the same

record, the node recognizes both as delimiters. The node does not

recognize X’15’ which, on z/OS systems, is the ’newline’ byte; specify a

value of Custom Delimiter in this property and a value of 15 in the

Custom delimiter property if your input data is coded using EBCDIC

new lines.

– Custom Delimiter, which permits a sequence of bytes to be specified in

Custom delimiter
v In Custom delimiter, specify the delimiter byte or bytes to be used when

Custom delimiter is set in the Delimiter property. Specify this value as an

even-numbered string of hexadecimal digits. The default is X’0A’ and the

maximum length of the string is 16 bytes (represented by 32 hexadecimal

digits).

v If you specified Delimited in Record detection, use Delimiter type to specify

the type of delimiter. Permitted values are:

– Infix. If you select this value, each delimiter separates records. If the data

ends with a delimiter the (zero length) data following the final delimiter

is still propagated although it contains no data.

– Postfix. If you specify this value, each delimiter terminates records. If the

data ends with a delimiter, no empty record is propagated after the

delimiter. If the data does not end with a delimiter, it is processed as if a

delimiter follows the final bytes of the data. Postfix is the default value.
v The TCPIPServerInput node considers each occurrence of the delimiter in

the input as either separating (infix) or terminating (postfix) each record. If

the data begins with a delimiter, the node treats the (zero length) contents

Message flows 1163

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|

preceding that delimiter as a record and propagates an empty record to the

flow. The delimiter is never included in the propagated message.
 8. Use the Validation tab to provide validation based on the message set for

predefined messages. For more information about validation, see “Validating

messages” on page 164. For information about how to complete this tab, see

“Validation tab properties” on page 1360.

 9. On the Transactions tab, set the transaction mode. Although TCP/IP

operations are non-transactional, the transaction mode on this input node

determines whether the rest of the nodes in the flow are to be executed under

sync point or not. Select Yes if you want the flow updates to be treated

transactionally (if possible) or No if you do not. The default for this property

is No.

10. Optional: On the Instances tab, set values for the properties that control the

additional instances (threads) that are available for a node. For more details,

see “Configurable message flow properties” on page 1372.

Terminals and properties

The terminals of the TCPIPServerInput node are described in the following table.

 Terminal Description

Failure The output terminal to which the message is routed if an error occurs. This includes

failures caused by retry processing. Even if the Validation property is set, messages

propagated to this terminal are not validated.

Out The output terminal to which the message is routed if it is successfully retrieved from

an external resource. If no errors occur within the input node, a message received

from an external resource is always sent to the Out terminal first.

Close The output terminal to which the message is routed if the connection closes.

Catch The output terminal to which the message is routed if an exception is thrown

downstream and caught by this node. Exceptions are caught only if this terminal is

attached.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Description properties of the TCPIPServerInput node are described in the

following table.

 Property M C Default Description

Node name No No TCPIPServerInput The name of the node.

Short description No No None A brief description of the node.

Long description No No None Text that describes the purpose of the node in the

message flow.

The Basic properties of the TCPIPServerInput node are described in the following

table.

1164 Message Flows

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|

|

|||

||
|
|

||
|
|

||

||
|
|
|

|
|
|
|
|

|
|

||||||

|||||

|||||

|||||
|
|

|
|

Property M C Default Description

Connection details Yes Yes Node

properties

A string containing either the hostname and port

number to be used, or the name of a configurable

service.

Timeout waiting for a

data record (seconds)

Yes Yes 60 Specifies how long the node will listen on a connection

for more data after the first byte of data has arrived.

You can specify any length of time in seconds. A value

of -1 specifies that there is no time limit (wait forever).

The Advanced properties of the TCPIPServerInput node are described in the

following table.

 Property M C Default Description

Close connection Yes No No Controls when the connection is closed, or if it remains

open. Valid options are:

v No

v After timeout

v After data has been received

v At end of flow.

Close input stream

after a record has been

received

Yes No False Specifies whether to close the input stream as soon as

the data has been retrieved. When the connection input

stream is reserved no other node can use it without

knowing the ID. This property is not selected by

default.

Input stream

modification

No No Leave

unchanged

Specifies whether to reserve the input stream for use

only by input and receive nodes that specify the

connection ID, and, if so, whether to release it at the

end of the flow. Valid options are:

v Leave unchanged

v Reserve input stream (for use by future TCP/IP

input and receive nodes)

v Reserve input stream (for use by future TCP/IP

input and receive nodes) then release at end of flow.

When the connection input stream is reserved no other

nodes can use it without specifying the correct

connection ID. If the input stream is released at the end

of the flow, it is returned to the pool and becomes

available for use by any input or receive node.

Output stream

modification

No No Leave

unchanged

Specifies whether this output stream is released and

returned to the pool for use by any output node. Valid

options are:

v Leave unchanged

v Release output stream and reset ReplyID.

If you select Release output stream and reset ReplyID,

the ReplyID is passed in the LocalEnvironment when

leaving this node, but is reset for the next record on

this connection.

The Input Message Parsing properties of the TCPIPServerInput node are described

in the following table.

Message flows 1165

||||||

||||
|
|
|
|

|
|
||||
|
|
|
|

|
|

||||||

|||||
|

|

|

|

|

|
|
|

||||
|
|
|
|

|
|
|||
|
|
|
|
|

|

|
|

|
|

|
|
|
|
|

|
|
|||
|
|
|
|

|

|

|
|
|
|
|

|
|

Property M C Default Description

Message Domain No No The domain that is used to parse the incoming

message.

Message Set No No The name or identifier of the message set in which the

incoming message is defined.

If you set this property, then subsequently update the

project dependencies to remove this message set

reference, a warning is issued. Either update the

Message Set property, or restore the reference to this

message set project.

Message Type No No The name of the incoming message.

Message Format No No The name of the physical format of the incoming

message.

Message coded

character set ID

Yes No Broker

System

Default

The ID of the coded character set used to interpret the

data being read.

Message encoding Yes No Broker

System

Default

The encoding scheme for numbers and large characters

used to interpret the data being read. Valid values are

Broker System Determined or a numeric encoding

value. For more information about encoding, see

“Converting data with message flows” on page 128.

The Parser Options properties of the TCPIPServerInput node are described in the

following table.

 Property M C Default Description

Parse timing No No On Demand This property controls when an input message is

parsed. Valid values are:

v On Demand

v Immediate

v Complete.

For a full description of this property, see “Parsing on

demand” on page 1363.

Build tree using XML

schema data types

No No Cleared This property controls whether the syntax elements in

the message tree have data types taken from the XML

Schema.

Use XMLNSC compact

parser for XMLNS

domain

No No Cleared This property controls whether the XMLNSC Compact

Parser is used for messages in the XMLNS Domain. If

you set this property, the message data appears under

XMLNSC in nodes that are connected to the output

terminal when the input MQRFH2 header or Input

Message Parsing property, Message Domain, is

XMLNS.

Retain mixed content No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

mixed text in an input message. If you select the check

box, elements are created for mixed text. If you clear

the check box, mixed text is ignored and no elements

are created.

1166 Message Flows

||||||

|||||
|

|||||
|

|
|
|
|
|

|||||

|||||
|

|
|
|||
|
|

|
|

||||
|
|

|
|
|
|
|
|

|
|

||||||

|||||
|

|

|

|

|
|

|
|
||||
|
|

|
|
|

||||
|
|
|
|
|
|

|||||
|
|
|
|
|

Property M C Default Description

Retain comments No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

comments in an input message. If you select the check

box, elements are created for comments. If you clear

the check box, comments are ignored and no elements

are created.

Retain processing

instructions

No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

processing instructions in an input message. If you

select the check box, elements are created for

processing instructions. If you clear the check box,

processing instructions are ignored and no elements are

created.

Opaque elements No No Blank This property is used to specify a list of elements in the

input message that are to be opaquely parsed by the

XMLNSC parser.

The Records and Elements properties of the TCPIPServerInput node are described

in the following table:

 Property M C Default Description

Record detection Yes No End of

stream

The mechanism used to identify records in the input

data. Valid options are:

v End of stream

v Fixed Length

v Delimited

v Parsed Record Sequence.

Length Yes No 80 The length of each record, in bytes, when Fixed Length

record detection is selected.

Delimiter Yes No DOS or

UNIX Line

End

The type of delimiter bytes that separate, or terminate,

each record when Delimited record detection is

selected. Valid options are:

v DOS or UNIX Line End

v Custom Delimiter.

Custom delimiter No No The delimiter bytes, expressed in hexadecimal, when

Delimited record detection and Custom Delimiter are

selected. This property mandatory only if the Delimiter

property is set to Custom Delimiter.

Delimiter type Yes No Postfix The position of the delimiter when Delimited record

detection and Custom Delimiter are selected. Valid

options are:

v Postfix

v Infix.

This property is ignored unless the Delimiter property

is set to Custom Delimiter.

The Retry properties of the TCPIPServerInput node are described in the following

table:

Message flows 1167

|||||

|||||
|
|
|
|
|

|
|
||||
|
|
|
|
|
|

|||||
|
|
|

|
|

||||||

||||
|
|
|

|

|

|

|

|||||
|

||||
|
|

|
|
|

|

|

|||||
|
|
|

|||||
|
|

|

|

|
|
|

|
|

Property M C Default Description

Retry mechanism Yes No Failure How the node handles a flow failure. Valid options

are:

v Failure

v Short retry

v Short and long retry.

Retry threshold Yes Yes 0 The number of times to retry the flow transaction

when Retry mechanism is Short retry.

Short retry interval No Yes 0 The interval, in seconds, between each retry if Retry

threshold is not zero.

Long retry interval No Yes 300 The interval between retries if Retry mechanism is

Short and long retry and the retry threshold has been

exhausted.

The Validation properties of the TCPIPServerInput node are described in the

following table.

For a full description of these properties, see “Validation properties” on page 1359.

 Property M C Default Description

Validate No Yes None This property controls whether validation takes place.

Valid values are

v None

v Content and Value

v Content.

Failure action No No Exception This property controls what happens if validation fails.

Valid values are:

v User Trace

v Local Error Log

v Exception

v Exception List.

The Transactions properties of the TCPIPServerInput node are described in the

following table:

 Property M C Default Description

Transaction mode No Yes No The transaction mode on this input node determines

whether the rest of the nodes in the flow are executed

under sync point. Valid options are:

v No

v Yes.

The Instances properties of the TCPIPServerInput node are described in the

following table. For a full description of these properties, see “Configurable

message flow properties” on page 1372.

1168 Message Flows

||||||

|||||
|

|

|

|

|||||
|

|||||
|

|||||
|
|
|

|
|

|

||||||

|||||
|

|

|

|

|||||
|

|

|

|

|
|

|
|

||||||

|||||
|
|

|

|
|

|
|
|

Property M C Default Description

Additional instances

pool

No Yes Use Pool

Associated

with

Message

Flow

The pool from which additional instances are obtained.

v If you select Use Pool Associated with Message Flow,

additional instances are obtained from the message

flow pool.

v If you select Use Pool Associated with Node,

additional instances are allocated from the node’s

additional instances based on the number specified

in the Additional instances property.

Additional instances No Yes 0 The number of additional instances that the node can

start if the Additional instances pool property is set to

Use Pool Associated with Node.

TCPIPServerOutput node

Use the TCPIPServerOutput node to create a server connection to a raw TCP/IP

socket, and to send data over that connection to an external application.

This topic contains the following sections:

v “Purpose”

v “Using the TCPIPServerOutput node in a message flow” on page 1171

v “Configuring the TCPIPServerOutput node” on page 1171

v “Terminals and properties” on page 1174

Purpose

The TCPIPServerOutput listens on a TCP/IP port and waits for a client node to

connect to the port. When the client node connects to the port, the server node

creates a new connection for the client. The connections are not made directly by

the node but are obtained from a connection pool managed by the message broker

execution group.

The execution group uses the default TCPIPServer configurable service to

determine which attributes are used for the socket connection. However, if the

configurable service is set on the node, the configurable service is used for all the

properties, including the host and port number.

When the connection has been established, the data is sent. If the data has not be

sent successfully within the time limit specified by the node’s Timeout sending a

data record property, an exception is thrown.

Properties in the local environment can override the TCP/IP connection used by

the node:

 Table 41. Input local environment properties

Location in local environment Description

$LocalEnvironment/Destination/TCPIP/
Output/Hostname

The hostname used to make a connection

$LocalEnvironment/Destination/TCPIP/
Output/Port

The port number used to make a connection

$LocalEnvironment/Destination/TCPIP/
Output/Id

The ID of the socket being used. This is an

internal identifier used by message broker to

uniquely identify a connection.

Message flows 1169

||||||

|
|
|||
|
|
|
|

|

|
|
|

|
|
|
|

|||||
|
|
|

|

|
|

|
|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|

|
|

||

||

|
|
|

|
|
|

|
|
|
|
|

Table 41. Input local environment properties (continued)

Location in local environment Description

$LocalEnvironment/Destination/TCPIP/
Output/ReplyId

The Reply ID that has been stored on this

connection. It can be any text string.

These properties allow the connection details (hostname and port number) and the

connection used (ID) to be chosen dynamically. The Reply ID can also be set on the

connection. This enables a string to be stored in the connection and to appear in

the local environment. This can be used to store Reply IDs from other TCP/IP

nodes or from other transports such WebSphere MQ.

The output of the node contains the same information as the input, plus any fields

that were missing from the input are updated with details from the connection

used. For example, if the Id property is not provided as input (because you want

to create a new connection or reuse a pool connection), the output local

environment will contain the ID of the connection that is used.

 Table 42. Output local environment properties

Location in local environment Description

$LocalEnvironment/WrittenDestination/
TCPIP/Output/ConnectionDetails/
Hostname

The hostname used to make a connection

$LocalEnvironment/WrittenDestination/
TCPIP/Output/ConnectionDetails/Port

The port number used to make a connection

$LocalEnvironment/WrittenDestination/
TCPIP/Output/ConnectionDetails/
OpenTimestamp

The timestamp when the connection was

first opened

$LocalEnvironment/WrittenDestination/
TCPIP/Output/ConnectionDetails/
CloseTimestamp

The timestamp when the connection was

closed (null if not yet closed)

$LocalEnvironment/WrittenDestination/
TCPIP/Output/ConnectionDetails/
SequenceNumber

The sequence number of the message

received on this connection. The first record

has a sequencing number 1. The second

record 2, and so on.

$LocalEnvironment/WrittenDestination/
TCPIP/Output/ConnectionDetails/Id

The ID of the socket being used. This is an

internal identifier used by message broker to

uniquely identify a connection.

$LocalEnvironment/WrittenDestination/
TCPIP/Output/ConnectionDetails/ReplyId

The Reply ID that has been stored on this

connection. It can be any text string.

If the connection closes (or any other type of exception occurs) while using the

TCP/IP transport, an exception is thrown. This goes to the failure terminal if it is

connected, otherwise the exception goes back down the flow.

The node also has a Close input terminal. If a message is sent to this terminal, the

connection is closed using a combination of the details provided in the node and

the local environment.

The TCPIPServerOutput node is contained in the TCPIP drawer of the palette and

is represented in the workbench by the following icon:

1170 Message Flows

|

||

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

||

||

|
|
|

|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|

|

Using the TCPIPServerOutput node in a message flow

The TCPIPServerOutput node can be used in any message flow that needs to send

data to an external application. Look at the following samples to see how to use it:

v TCPIP Client Nodes sample

v TCPIP Handshake sample.

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Configuring the TCPIPServerOutput node

When you have put an instance of the TCPIPServerOutput node into a message

flow, you can configure it. The properties of the node are displayed in the

Properties view. All mandatory properties for which you must enter a value (those

that do not have a default value defined) are marked with an asterisk in that view.

To configure the TCPIPServerOutput node:

1. Optional: On the Description tab, enter a short description, a long description,

or both. You can also rename the node on this tab.

2. On the Basic tab, set the properties that determine how the TCP/IP connection

is controlled.

v Use the Connection details property to specify either the hostname and port

number to be used, or the name of a configurable service. This property is

mandatory. The following formats are supported:

– Configurable service name. This is used to look up the port and hostname

in configurable services. For example, TCPIPProfile1.

– <Hostname>:<Port>. This is the hostname followed by the port number

(separated by a colon). For example, tcpip.server.com:1111

– <Port>. This is the port number. In this case the hostname is assumed to

be localhost.
v Use the Timeout sending a data record (seconds) property to specify how

long the node will wait when trying to send data. You can specify any length

of time in seconds. When the specified time has been exceeded, all available

data is sent to the failure terminal. The default is 60 seconds.
3. On the Advanced tab, set the properties that determine how the data stream is

controlled.

v Use the Send to: property to specify whether the data is to be sent to one

connection or to all available connections:

– Select One connection to send the message to only one connection, as

specified by the node properties and message overrides. This is the

default.

– Select All available connections to send the data to all available

connections.
v Use the Close connection property to specify when and how to close the

connection.

– Select No to leave the connection open. This is the default.

– Select After timeout to close the connection when a timeout occurs.

– Select After data has been sent to close the connection when the end of

the record has been sent.

Message flows 1171

|

|
|

|

|

|
|

|

|
|
|
|

|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|

|
|

|
|

|

|

|
|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.tcpipclientnodes.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.tcpiphandshake.doc/doc/overview.htm

v Select Close output stream after a record has been sent to close the output

stream as soon as the data has been sent. This property is not selected by

default.

v Use the Output Stream Modification property to specify whether to reserve

or release the output stream. These options are available only if you have not

selected the Close output stream after a record has been sent property.

– Select Leave unchanged to leave the output stream as it was when it

entered the node. This is selected by default.

– Select Release output stream to specify that this output stream is returned

to the pool and is available for use by any output node.

– Select Reserve output stream (for use by future TCP/IP output nodes) to

specify that this output stream can be used only by this node and by other

output nodes that request it by specifying the connection ID. When the

connection input stream is reserved no other nodes can use it without

specifying the correct connection ID.

– Select Reserve output stream (for use by future TCP/IP output nodes)

then release after propagate to specify that this output stream can be used

only by this node and output nodes that request it by specifying the

correct connection ID. After the message has been propagated, this output

stream is returned to the pool and becomes available for use by any

output node.
v Use the Input Stream Modification property to specify whether to reserve the

input stream for use only by input and receive nodes that specify the

connection ID, and, if so, whether to release it at the end of the flow.

– Select Leave unchanged to leave the input stream as it was when it

entered the node. This is selected by default.

– Select Release input stream to specify that this input stream is returned to

the pool and is available for use by any input or receive node.

– Select Reserve input stream (for use by future TCP/IP input and receive

nodes) to specify that this input stream can be used only by this node and

by other input or receive nodes that request it by specifying the

connection ID. When the connection input stream is reserved no other

nodes can use it without specifying the correct connection ID.

– Select Reserve input stream (for use by future TCP/IP input and receive

nodes) then release after propagate to specify that this input stream can be

used only by this node and receive nodes that request it by specifying the

correct connection ID. After the message has been propagated, this input

stream is returned to the pool and becomes available for use by any input

or receive node.
4. On the Request tab, specify the location of the data to be written. You can

specify the properties on this tab as XPath or ESQL expressions. Content-assist

is available in the properties pane and also in the XPath Expression Builder,

which you can invoke by using the Edit... button to the right of each property.

a. In Data location, specify the input data location. This is the location in the

input message tree that contains the record to be written. The default value

is $Body, which is the entire message body ($InputRoot.Body).

When you are specifying this property and the data in the message tree that

it identifies is owned by a model-driven parser, such as the MRM parser or

XMLNSC parser, be aware of the following considerations:

v If you are using MRM CWF format, ensure that the identified message

tree exists as a message definition. If this is defined as a global element

only, exceptions BIP5180 and BIP5167 are generated.

1172 Message Flows

|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

v If you are using MRM TDS format, the serialization of the identified

message is successful if the element is defined as a global element or

message. However, if the identified field is not found as a global element

or message, note that:

– If this is a leaf field in the message tree, the field is written as

self-defining. No validation occurs even if validation is enabled.

– If this is a complex element, an internal exception is generated,

BIP5522, indicating that the logical type cannot be converted to a

string.
v If you are using MRM XML, the events are similar as for the MRM TDS

format except that, if the field is a complex element, it is written as

self-defining.

v If you use the XMLNSC parser, no validation occurs even if validation is

enabled.
b. In Port location, specify the location of the value to override the Port set in

the Connection details property of the Basic tab. If you do not specify a

location, the default value is $LocalEnvironment/Destination/TCPIP/
Output/Port.

c. In ID location, specify the location of the Id of the socket being used. This

internal identifier is used by Message Broker to uniquely identify a

connection. If you do not specify a location, the default value is

$LocalEnvironment/Destination/TCPIP/Output/Id.

d. In Reply ID location, specify the location of the Reply ID that is stored on

the connection being used. The Reply ID can be used when data is returned

in an input node. If you do not specify a location, the default value is

$LocalEnvironment/Destination/TCPIP/Output/ReplyId.
5. Use the Records and Elements tab to specify how the TCPIPServerOutput

node writes the record derived from the message.

v In Record definition, choose from:

– Record is Unmodified Data to specify that records are left unchanged. This

is the default.

– Record is Fixed Length Data to specify that records are padded to a given

length if necessary. You specify this length in the Length property. If the

record is longer than the value specified in Length, the node generates an

exception. Use the Padding byte property to specify the byte to be used

for padding the message to the required length.

– Record is Delimited Data to specify that records are separated by a

delimiter and accumulated by concatenation. The delimiter is specified by

the Delimiter, Custom delimiter, and Delimiter type properties. The file is

finished only when a message is received on the Finish File terminal.
v In Length, specify the length (in bytes) of records when Record is Fixed

Length Data is specified in Record definition. Records longer than this value

cause an exception to be thrown. This must be a value between 1 byte and

100 MB. The default is 80 bytes.

v When Record is Fixed Length Data is specified in Record definition, use

Padding byte to specify the byte to be used when padding records to the

specified length if they are shorter than this length. Specify this as 2

hexadecimal digits. The default value is X’20’.

v In Delimiter, specify the delimiter to be used if you specify Record is

Delimited Data in Record definition. Choose from:

– Broker System Line End to specify that a line end sequence of bytes is

used as the delimiter as appropriate for the file system on which the

Message flows 1173

|
|
|
|

|
|

|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

broker is to run. This is the default. For example, on Windows systems,

this is a ’carriage-return, line-feed’ pair (X’0D0A’); on UNIX systems, this

is a single ’line-feed’ byte (X’0A’); on z/OS systems, it is a ’newline’ byte

(X’15’).

– Custom Delimiter to specify that the explicit delimiter sequence defined in

the Custom delimiter property is to be used to delimit records.
v In Custom delimiter, specify the delimiter sequence of bytes to be used to be

used to delimit records when Custom Delimiter is specified in the Delimiter

property. Specify this as an even-numbered string of hexadecimal digits. The

default is X’0A’ and the maximum length of the string is 16 bytes.

v If you specified Record is Delimited Data in Record definition, use Delimiter

type to specify how the delimiter is to separate records. Choose from:

– Postfix to specify that the delimiter is added after each record that is

written. This is the default.

– Infix to specify that the delimiter is only inserted between any two

adjacent records.
6. On the Validation tab, specify the parser validation properties of the node. For

more information about validation, see “Validating messages” on page 164. For

information on how to fill in this tab, see “Validation tab properties” on page

1360.

Terminals and properties

The TCPIPServerOutput node terminals are described in the following table.

 Terminal Type Description

In Input data The input terminal that accepts a message for processing by the

node.

Close Input control The input terminal to which a message is routed when the

connection given in the local environment is closed.

Out Output data The output terminal to which the message is routed if it is

successfully sent to an external resource. The message received on

the In terminal is propagated to the Out terminal and is left

unchanged except for the addition of status information.

Close Output control The output terminal to which a message propagated from the Close

input terminal is routed.

Failure Output data The output terminal to which the message is routed if a failure is

detected in the node.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Description properties of the TCPIPServerOutput node are described in the

following table:

 Property M C Default Description

Node name No No TCPIPServerOutput The name of the node.

Short Description No No A brief description of the node.

1174 Message Flows

|
|
|
|

|
|

|
|
|
|

|
|

|
|

|
|

|
|
|
|

|

|

||||

|||
|

|||
|

|||
|
|
|

|||
|

|||
|
|

|
|
|
|
|

|
|

||||||

|||||

|||||

Property M C Default Description

Long Description No No Text that describes the purpose of the node in the message

flow.

The Basic properties of the TCPIPServerOutput node are described in the following

table:

 Property M C Default Description

Connection details Yes Yes Node

properties

A string containing either the hostname and port

number to be used, or the name of a configurable

service.

Timeout sending a data

record (seconds)

Yes Yes 60 Specifies how long the node will wait when trying to

send data. You can specify any length of time in

seconds.

The Advanced properties of the TCPIPServerOutput node are described in the

following table.

 Property M C Default Description

Send to: Yes No One

connection

Valid options are:

v One connection

v All available connections.

Close connection Yes No No Controls when the connection is closed, or if it remains

open. Valid options are:

v No

v After data has been sent

v After timeout.

Close output stream

after a record has been

sent

Yes No False Specifies whether to close the output stream as soon as

the data has been sent. This property is not selected by

default.

Output stream

modification

No No Leave

unchanged

Specifies whether to reserve this output stream or

release it and return it to the pool for use by any

output node. Valid options are:

v Leave unchanged

v Release output stream

v Reserve output stream (for use by future TCP/IP

output nodes)

v Reserve output stream (for use by future TCP/IP

output nodes) then release after propagate.

Message flows 1175

|||||

|||||
|
|

|
|

||||||

||||
|
|
|
|

|
|
||||
|
|
|

|
|

||||||

||||
|
|

|

|

|||||
|

|

|

|

|
|
|

||||
|
|

|
|
|||
|
|
|
|

|

|

|
|

|
|

Property M C Default Description

Input stream

modification

No No Leave

unchanged

Specifies whether to reserve the input stream for use

only by input and receive nodes that specify the

connection ID, and, if so, whether to release it at the

end of the flow. Valid options are:

v Leave unchanged

v Release input stream

v Reserve input stream (for use by future TCP/IP

input and receive nodes)

v Reserve input stream (for use by future TCP/IP

input and receive nodes) then release after

propagate.

When the connection input stream is reserved no other

nodes can use it without specifying the correct

connection ID. If the input stream is released after the

message has been propagated, it is returned to the pool

and becomes available for use by any input or receive

node.

The Request properties of the TCPIPServerOutput node are described in the

following table:

 Property M C Default Description

Data location Yes No $Body The location in

the input message

tree containing

the record to be

written.

Port location Yes No $LocalEnvironment/Destination/TCPIP/Output/
Port

The message

element location

containing the

port.

Id Yes No $LocalEnvironment/Destination/TCPIP/
Output/Id

The message

element location

containing the ID.

ReplyId Yes No $LocalEnvironment/Destination/TCPIP/Output/
ReplyId

The message

element location

containing the

Reply ID.

The Records and Elements properties of the TCPIPServerOutput node are

described in the following table:

 Property M C Default Description

Record definition Yes No Record is

Unmodified

data

This property controls how the records derived from

the message are written. Valid options are:

v Record is Unmodified Data

v Record is Fixed Length Data

v Record is Delimited Data.

Length Yes No 80 The required length of the output record. This

property applies only when Record is Fixed Length

Data is specified in Record definition.

1176 Message Flows

|||||

|
|
|||
|
|
|
|
|

|

|

|
|

|
|
|

|
|
|
|
|
|
|

|
|

||||||

|||||
|
|
|
|

||||
|
|
|
|
|

||||
|
|
|
|

||||
|
|
|
|
|
|

|
|

||||||

||||
|
|

|
|

|

|

|

|||||
|
|

Property M C Default Description

Padding byte Yes No X’20’ The 2-digit hexadecimal byte to be used to pad short

messages when Record is Fixed Length Data is

specified in Record definition.

Delimiter Yes No Broker

System Line

End

The delimiter to be used when Record is Delimited

Data is specified in Record definition. Valid options

are:

v Broker System Line End

v Custom Delimiter.

Custom delimiter No No None The delimiter byte sequence to be used when Record is

Delimited Data is specified in the Record definition

property and Custom Delimiter is specified in the

Delimiter property.

Delimiter type Yes No Postfix This property specifies the way in which the delimiters

are to be inserted between records when Record is

Delimited Data is specified in Record definition. Valid

options are:

v Postfix

v Infix.

The Validation properties of the TCPIPServerOutput node are described in the

following table.

For a full description of these properties, see “Validation properties” on page 1359.

 Property M C Default Description

Validate No Yes Inherit This property controls whether validation takes place.

Valid values are:

v None

v Content and Value

v Content

v Inherit.

Failure action No No Exception This property controls what happens if validation fails.

You can set this property only if you set Validate to

Content or Content and Value. Valid values are:

v User Trace

v Local Error Log

v Exception

v Exception List.

TCPIPServerReceive node

Use the TCPIPServerReceive node to receive data over a server TCP/IP connection.

This topic contains the following sections:

v “Purpose” on page 1178

v “Using the TCPIPServerReceive node in a message flow” on page 1179

v “Configuring the TCPIPServerReceive node” on page 1180

v “Terminals and properties” on page 1184

Message flows 1177

|||||

|||||
|
|

||||
|
|

|
|
|

|

|

|||||
|
|
|

|||||
|
|
|

|

|
|

|
|

|

||||||

|||||
|

|

|

|

|

|||||
|
|

|

|

|

|
|

|

|

|
|
|
|
|

Purpose

The TCPIPServerReceive node waits for data to be received on a TCP/IP

connection, and retrieves the data. If the connection is closed, an exception is

thrown.

When a connection is established, the data is sent to the TCPIPServerReceive node.

If the TCPIPServerReceive node fails to receive all of the data within the time

specified in the Timeout waiting for a data record property, the message is sent to

the Timeout terminal; if no Timeout terminal is connected, an exception is thrown.

Properties in the local environment can override the TCP/IP connection used by

the node:

 Table 43. Input local environment properties

Location in local environment for input to

node Description

$LocalEnvironment//TCPIP/Receive/
Hostname

The hostname used to make a connection

$LocalEnvironment//TCPIP/Receive/Port The port number used to make a connection

$LocalEnvironment/TCPIP/Receive/Id The ID of the socket being used. This is an

internal identifier used by message broker to

uniquely identify a connection.

$LocalEnvironment/TCPIP/Receive/ReplyId The Reply ID to be stored on this

connection. This can then be used when data

is returned on an input node. The Reply ID

can be any text string.

These properties allow the connection details (hostname and port number) and the

connection used (ID) to be chosen dynamically. The Reply ID can also be set on the

connection, which enables a string to be stored in the connection and to appear in

the local environment. In this way, you can store Reply IDs from other TCP/IP

nodes or from other transports such as WebSphere MQ.

When a record has been retrieved, the ConnectionDetails field in the

LocalEnvironment tree is populated with the details of the connection that is being

used.

 Table 44. Output local environment properties

Location in local environment for output

from node Description

$LocalEnvironment/TCPIP/Receive/
ConnectionDetails/Type

Server

$LocalEnvironment/TCPIP/Receive/
ConnectionDetails/Hostname

The hostname used to make a connection

$LocalEnvironment/TCPIP/Receive/
ConnectionDetails/Port

The port number used to make a connection

$LocalEnvironment/TCPIP/Receive/
ConnectionDetails/OpenTimestamp

The timestamp when the connection was

first opened

$LocalEnvironment/TCPIP/Receive/
ConnectionDetails/CloseTimestamp

The timestamp when the connection was

closed (null if not yet closed)

1178 Message Flows

|

|
|
|

|
|
|
|

|
|

||

|
||

|
|
|

||

||
|
|

||
|
|
|
|

|
|
|
|
|

|
|
|

||

|
||

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

Table 44. Output local environment properties (continued)

Location in local environment for output

from node Description

$LocalEnvironment/TCPIP/Receive/
ConnectionDetails/SequenceNumber/
InputRecord

The sequence number of the message

received on this connection. The first record

has a sequencing number of 1. The second

record is 2, and so on.

$LocalEnvironment/TCPIP/Receive/
ConnectionDetails/SequenceNumber/
OutputRecord

The sequence number of the message sent

on this connection. The first record has a

sequencing number of 1. The second record

is 2, and so on.

$LocalEnvironment/TCPIP/Receive/
ConnectionDetails/Id

The ID of the socket being used. This is an

internal identifier used by message broker to

uniquely identify a connection.

$LocalEnvironment/TCPIP/Receive/
ConnectionDetails/ReplyId

The Reply ID that has been stored on this

connection. It can be any text string.

The TCPIPServerReceive node is contained in the TCPIP drawer of the palette, and

is represented in the workbench by the following icon:

Message structure

The TCPIPServerReceive node handles messages in the following message

domains:

v MRM

v XMLNSC

v DataObject

v XMLNS

v JMSMap

v JMSStream

v MIME

v BLOB

v XML (this domain is deprecated; use XMLNSC)

v IDOC (this domain is deprecated; use MRM)

Using the TCPIPServerReceive node in a message flow

Look at the following samples to see how to use the TCPIPServerReceive node:

v TCPIP Client Nodes sample

v TCPIP Handshake sample.

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Message flows 1179

|

|
||

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.tcpipclientnodes.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.tcpiphandshake.doc/doc/overview.htm

Configuring the TCPIPServerReceive node

When you have put an instance of the TCPIPServerReceive node into a message

flow, you can configure it; see “Configuring a message flow node” on page 235.

The properties of the node are displayed in the Properties view.

All mandatory properties that do not have a default value defined are marked

with an asterisk.

Configure the TCPIPServerReceive node:

1. Optional: On the Description tab, enter a Short description, a Long description,

or both. You can also rename the node on this tab.

2. On the Basic tab, set the properties that determine how the TCP/IP connection

is controlled.

v Use the Connection details property to specify either the hostname and port

number to be used, or the name of a configurable service. This property is

mandatory. The following formats are supported:

– Configurable service name. This is used to look up the port and hostname

in configurable services. For example, TCPIPProfile1.

– <Hostname>:<Port>. This is the hostname followed by the port number

(separated by a colon). For example, tcpip.server.com:1111

– <Port>. This is the port number. In this case the hostname is assumed to

be localhost.
v Use the Timeout waiting for a data record (seconds) property to specify how

long the node will listen on a connection for more data after the first byte of

data has arrived. You can specify any length of time in seconds. A value of -1

specifies that there is no time limit (wait forever). The default is 60 seconds.

When the specified time has been exceeded, all available data is sent to the

failure terminal.
3. On the Advanced tab, set the properties that determine how the data stream is

controlled.

v Use the Close connection property to specify when and how to close the

connection.

– Select No to leave the connection open. This is the default.

– Select After timeout to close the connection when a timeout occurs.

– Select After data has been received to close the connection when the end

of the record is found.
v Select Close input stream after a record has been received to close the input

stream as soon as the data has been retrieved. This property is not selected

by default. When the connection input stream is reserved no other node can

use it without knowing the ID.

v Use the Input Stream Modification property to specify whether to reserve the

input stream for use only by input and receive nodes that specify the

connection ID, and, if so, whether to release it at the end of the flow.

– Select Leave unchanged to leave the input stream as it was when it

entered the node. This is selected by default.

– Select Release input stream to specify that this input stream is returned to

the pool and is available for use by any input or receive node.

– Select Reserve input stream (for use by future TCP/IP input and receive

nodes) to specify that this input stream can be used only by this node and

by other input or receive nodes that request it by specifying the

1180 Message Flows

|

|
|
|

|
|

|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|

|
|

|
|

|

|

|
|

|
|
|
|

|
|
|

|
|

|
|

|
|
|

connection ID. When the connection input stream is reserved no other

nodes can use it without specifying the correct connection ID.

– Select Reserve input stream (for use by future TCP/IP input and receive

nodes) then release after propagate to specify that this input stream can be

used only by this node and receive nodes that request it by specifying the

correct connection ID. After the message has been propagated, this input

stream is returned to the pool and becomes available for use by any input

or receive node.
v Use the Output Stream Modification property to specify whether to reserve

or release the output stream. These options are available only if you have not

selected the Close output stream after a record has been sent property.

– Select Leave unchanged to leave the output stream as it was when it

entered the node. This is selected by default.

– Select Release output stream to specify that this output stream is returned

to the pool and is available for use by any output node.

– Select Reserve output stream (for use by future TCP/IP output nodes) to

specify that this output stream can be used only by this node and by other

output nodes that request it by specifying the connection ID. When the

connection input stream is reserved no other nodes can use it without

specifying the correct connection ID.

– Select Reserve output stream (for use by future TCP/IP output nodes)

then release after propagate to specify that this output stream can be used

only by this node and output nodes that request it by specifying the

correct connection ID. After the message has been propagated, this output

stream is returned to the pool and becomes available for use by any

output node.
4. On the Request tab, specify the location of the data to be written. You can

specify the properties on this tab as XPath or ESQL expressions. Content-assist

is available in the properties pane and also in the XPath Expression Builder,

which you can run by clicking Edit to the right of each property.

v In Data location, specify the input data location. This is the location in the

input message tree that contains the record to be written. The default value

is $Body, which is the entire message body ($InputRoot.Body).

When you are specifying this property and the data in the message tree that

it identifies is owned by a model-driven parser, such as the MRM parser or

XMLNSC parser, be aware of the following considerations:

– If you are using MRM CWF format, ensure that the identified message

tree exists as a message definition. If this is defined as a global element

only, exceptions BIP5180 and BIP5167 are generated.

– If you are using MRM TDS format, the serialization of the identified

message is successful if the element is defined as a global element or

message. However, if the identified field is not found as a global element

or message, note that:

- If this is a leaf field in the message tree, the field is written as

self-defining. No validation occurs even if validation is enabled.

- If this is a complex element, an internal exception is generated, BIP5522,

indicating that the logical type cannot be converted to a string.
– If you are using MRM XML, the events are similar to those for the MRM

TDS format except that, if the field is a complex element, it is written as

self-defining.

– If you use the XMLNSC parser, no validation occurs even if validation is

enabled.

Message flows 1181

|
|

|
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|

|
|

v In Port location, specify the location of the value to override the Port set in

the Connection details property of the Basic tab. If you do not specify a

location, the default value is $LocalEnvironment/TCPIP/Receive/Port.

v In ID location, specify the location of the Id of the socket being used. This

internal identifier is used by Message Broker to uniquely identify a

connection. If you do not specify a location, the default value is

$LocalEnvironment/TCPIP/Receive/Id.

v In Reply ID location, specify the location of the Reply ID that is stored on the

connection being used. The Reply ID can be used when data is returned in

an input node. If you do not specify a location, the default value is

$LocalEnvironment/TCPIP/Receive/ReplyId.
5. On the Result tab, set values for the properties that determine where the reply

is to be stored.

v Use the Output data location property to specify the start location within the

output message tree where the parsed elements from the bit string of the

message are stored. The default value is $Root.

v Use the Copy local environment property to specify whether or not the

LocalEnvironment is copied to the output message.

– If Copy local environment is selected, a new copy of the

LocalEnvironment is created in the tree, and it is populated with the

contents of the LocalEnvironment from the preceding node. This means

that if a node changes the LocalEnvironment, the upstream nodes are not

affected by those changes because they have their own copies. This is the

default.

– If Copy local environment is not selected, the node does not generate its

own copy of the LocalEnvironment, but uses the LocalEnvironment

passed to it by the preceding node. This means that if a node changes the

LocalEnvironment, the changes are reflected by the upstream nodes.
6. On the Input Message Parsing tab, set values for the properties that the node

uses to determine how to parse the incoming message.

If the incoming message has an MQRFH2 header, you do not need to set values

for the Input Message Parsing properties because the values are derived from

the <mcd> folder in the MQRFH2 header; for example:

<mcd><Msd>MRM</Msd><Set>DHM4UO906S001</Set><Type>receiptmsg1</Type>

<Fmt>XML</Fmt></mcd>

If you set values, and those values differ from those in the MQRFH2 header,

the values in the MQRFH2 header take precedence.

v In Message domain, select the name of the parser that you are using from

the list. The default is BLOB. You can choose from the following options:

– MRM

– XMLNSC

– DataObject

– XMLNS

– JMSMap

– JMSStream

– MIME

– BLOB

– XML (this domain is deprecated; use XMLNSC)

– IDOC (this domain is deprecated; use MRM)

You can also specify a user-defined parser, if appropriate.

1182 Message Flows

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

v If you are using the MRM or IDOC parser, or the XMLNSC parser in

validating mode, select the Message set that you want to use. The list

contains the message sets that are available when you select MRM,

XMLNSC, or IDOC as the domain.

v If you are using the MRM parser, select the correct message type from the

list in Message type. This list is populated with available message types

when you select the MRM parser.

v If you are using the MRM or IDOC parser, select the correct message format

from the list in Message format. This list is populated with available message

formats when you select the MRM or IDOC parser.

v Specify the message coded character set ID in Message coded character set

ID.

v Select the message encoding from the list in Message encoding or specify a

numeric encoding value. For more information about encoding, see

“Converting data with message flows” on page 128.
7. On the Parser Options sub-tab:

v Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed. To cause the message to be parsed immediately, see

“Parsing on demand” on page 1363.

v If you are using the XMLNSC parser, set values for the properties that

determine how the XMLNSC parser operates. For more information, see

“Manipulating messages in the XMLNSC domain” on page 364.
8. Use the Records and Elements tab to specify how the data is interpreted as

records:

v Use the Record detection property to determine how the data is split into

records, each of which generates a single message. Choose from the

following options:

– Connection closed specifies that all of the data sent during a connection is

a single record.

– Fixed Length specifies that each record is a fixed number of bytes in

length. Each record should contain the number of bytes specified in the

Length property, except possibly a shorter final record in the file.

– Select Delimited, if the records you are processing are separated, or

terminated, by a DOS or UNIX line end or by a sequence of user-defined

delimiter bytes. Specify the delimiter and delimiter type in the Delimiter,

and Delimiter type properties.

– Select Parsed Record Sequence if the data contains a sequence of one or

more records that are serially recognized by the parser specified in

Message domain. The node propagates each recognized record as a

separate message. If you select this Record detection option, the parser

specified in Message domain must be either XMLNSC or MRM (either

CWF or TDS physical format).
v If you specified Fixed Length in Record detection, use Length to specify the

required length of the output record. This value must be between 1 byte and

100 MB. The default is 80 bytes.

If you specify Connection closed, Fixed Length, or Delimited in Record

detection, a limit of 100 MB applies to the length of the records. If you

specify Parsed Record Sequence in Record detection, the TCPIPServerReceive

node does not determine or limit the length of a record. Nodes that are

downstream in the message flow might try to determine the record length or

process a very long record. If you intend to process large records in this way,

Message flows 1183

|
|
|
|

|
|
|

|
|
|

|
|

|
|
|

|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

ensure that your broker has sufficient memory. You might need to apply flow

techniques described in the Large Messaging sample to best use the available

memory.

v If you specified Delimited in Record detection, use Delimiter to specify the

delimiter to be used. Choose from:

– DOS or UNIX Line End, which, on UNIX systems, specifies the line feed

character (<LF>, X’0A’), and, on Windows systems, specifies a carriage

return character followed by a line feed character (<CR><LF>, X’0D0A’).

The node treats both of these strings as delimiters, irrespective of the

system on which the broker is running. If they both appear in the same

record, the node recognizes both as delimiters. The node does not

recognize X’15’ which, on z/OS systems, is the ’newline’ byte; specify a

value of Custom Delimiter in this property and a value of 15 in the

Custom delimiter property if your input file is coded using EBCDIC new

lines, such as EBCDIC files from a z/OS system.

– Custom Delimiter (hexadecimal), which permits a sequence of bytes to be

specified in Custom delimiter (hexadecimal)
v In Custom delimiter (hexadecimal), specify the delimiter byte or bytes to be

used when Custom delimiter (hexadecimal) is set in the Delimiter property.

Specify this value as an even-numbered string of hexadecimal digits. The

default is X’0A’ and the maximum length of the string is 16 bytes

(represented by 32 hexadecimal digits).

v If you specified Delimited in Record detection, use Delimiter type to specify

the type of delimiter. Permitted values are:

– Infix. If you select this value, each delimiter separates records. If the data

ends with a delimiter the (zero length) data following the final delimiter is

still propagated although it contains no data.

– Postfix. If you specify this value, each delimiter terminates records. If the

data ends with a delimiter, no empty record is propagated after the

delimiter. If the data does not end with a delimiter, it is processed as if a

delimiter follows the final bytes of the data. Postfix is the default value.
v The TCPIPServerReceive node considers each occurrence of the delimiter in

the input as either separating (infix) or terminating (postfix) each record. If

the data begins with a delimiter, the node treats the (zero length) contents

preceding that delimiter as a record and propagates an empty record to the

flow. The delimiter is never included in the propagated message.
9. Use the Validation tab to provide validation based on the message set for

predefined messages. For more information about validation, see “Validating

messages” on page 164. For information about how to complete this tab, see

“Validation tab properties” on page 1360.

Terminals and properties

The terminals of the TCPIPServerReceive node are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Out The output terminal to which the message is routed if it is successfully retrieved from

an external resource. If no errors occur within the input node, a message received

from an external resource is always sent to the Out terminal first.

Timeout The terminal to which a message is sent when the time specified in the Timeout

waiting for a data record property has been exceeded. The message text is “Timeout

value is exceeded”.

1184 Message Flows

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|

|

|||

||

||
|
|

||
|
|

Terminal Description

Failure The output terminal to which the message is routed if an error occurs. This includes

failures caused by retry processing. Even if the Validation property is set, messages

propagated to this terminal are not validated.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Description properties of the TCPIPServerReceive node are described in the

following table.

 Property M C Default Description

Node name No No TCPIPServerReceive The name of the node.

Short

description

No No None A brief description of the node.

Long

description

No No None Text that describes the purpose of the node in the message

flow.

The Basic properties of the TCPIPServerReceive node are described in the

following table.

 Property M C Default Description

Connection details Yes Yes Node

properties

A string containing either the hostname and port

number to be used, or the name of a configurable

service.

Timeout waiting for a

data record (seconds)

Yes Yes 60 Specifies how long the node will listen on a connection

for more data after the first byte of data has arrived.

You can specify any length of time in seconds. A value

of -1 specifies that there is no time limit (wait forever).

The Advanced properties of the TCPIPServerReceive node are described in the

following table.

 Property M C Default Description

Close connection Yes No No Controls when the connection is closed, or if it remains

open. Valid options are:

v No

v After data has been received

v After timeout.

Close input stream

after a record has been

received

Yes No False Specifies whether to close the input stream as soon as

the data has been retrieved. When the connection input

stream is reserved no other node can use it without

knowing the ID. This property is not selected by

default.

Message flows 1185

||

||
|
|
|

|
|
|
|
|

|
|

||||||

|||||

|
|
||||

|
|
||||
|
|

|
|

||||||

||||
|
|
|
|

|
|
||||
|
|
|
|

|
|

||||||

|||||
|

|

|

|

|
|
|

||||
|
|
|
|

Property M C Default Description

Input stream

modification

No No Leave

unchanged

Specifies whether to reserve the input stream for use

only by input and receive nodes that specify the

connection ID, and, if so, whether to release it at the

end of the flow. Valid options are:

v Leave unchanged

v Release input stream

v Reserve input stream (for use by future TCP/IP

input and receive nodes)

v Reserve input stream (for use by future TCP/IP

input and receive nodes) then release after

propagate.

When the connection input stream is reserved no other

nodes can use it without specifying the correct

connection ID. If the input stream is released after the

message has been propagated, it is returned to the pool

and becomes available for use by any input or receive

node.

Output stream

modification

No No Leave

unchanged

Specifies whether to reserve this output stream or

release it and return it to the pool for use by any

output node. Valid options are:

v Leave unchanged

v Release output stream

v Reserve output stream (for use by future TCP/IP

output nodes)

v Reserve output stream (for use by future TCP/IP

output nodes) then release after propagate.

The Request properties of the TCPIPServerReceive node are described in the

following table:

 Property M C Default Description

Data location Yes No $Body The location in

the input message

tree containing

the record to be

written.

Port location Yes No $LocalEnvironment/TCPIP/Receive/Port The message

element location

containing the

Port.

ID location Yes No $LocalEnvironment/TCPIP/Receive/Id The message

element location

containing the ID.

Reply ID location Yes No $LocalEnvironment/TCPIP/Receive/ReplyId The message

element location

containing the

Reply ID.

The Result properties of the TCPIPServerReceive node are described in the

following table:

1186 Message Flows

|||||

|
|
|||
|
|
|
|
|

|

|

|
|

|
|
|

|
|
|
|
|
|

|
|
|||
|
|
|
|

|

|

|
|

|
|
|

|
|

||||||

|||||
|
|
|
|

|||||
|
|
|

|||||
|
|

|||||
|
|
|
|

|
|

Property M C Default Description

Output data location No No $Root The start location

within the output

message tree

where the parsed

elements from the

bit string of the

message are

stored.

Copy local

environment

No No True Specifies whether

or not the

LocalEnvironment

is copied to the

output message.

The Input Message Parsing properties of the TCPIPServerReceive node are

described in the following table.

 Property M C Default Description

Message Domain No No The domain that is used to parse the incoming

message.

Message Set No No The name or identifier of the message set in which the

incoming message is defined.

If you set this property, then subsequently update the

project dependencies to remove this message set

reference, a warning is issued. Either update the

Message Set property, or restore the reference to this

message set project.

Message Type No No The name of the incoming message.

Message Format No No The name of the physical format of the incoming

message.

Message coded

character set ID

Yes No Broker

System

Default

The ID of the coded character set used to interpret the

data being read.

Message encoding Yes No Broker

System

Default

The encoding scheme for numbers and large characters

used to interpret the data being read. Valid values are

Broker System Determined or a numeric encoding

value. For more information about encoding, see

“Converting data with message flows” on page 128.

The Parser Options properties of the TCPIPServerReceive node are described in the

following table.

 Property M C Default Description

Parse timing No No On Demand This property controls when an input message is

parsed. Valid values are:

v On Demand

v Immediate

v Complete.

For a full description of this property, see “Parsing on

demand” on page 1363.

Message flows 1187

||||||

|||||
|
|
|
|
|
|
|

|
|
||||
|
|
|
|
|

|
|

||||||

|||||
|

|||||
|

|
|
|
|
|

|||||

|||||
|

|
|
|||
|
|

|
|

||||
|
|

|
|
|
|
|
|

|
|

||||||

|||||
|

|

|

|

|
|

Property M C Default Description

Build tree using XML

schema data types

No No Cleared This property controls whether the syntax elements in

the message tree have data types taken from the XML

Schema.

Use XMLNSC compact

parser for XMLNS

domain

No No Cleared This property controls whether the XMLNSC Compact

Parser is used for messages in the XMLNS Domain. If

you set this property, the message data appears under

XMLNSC in nodes that are connected to the output

terminal when the input MQRFH2 header or Input

Message Parsing property, Message Domain, is

XMLNS.

Retain mixed content No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

mixed text in an input message. If you select the check

box, elements are created for mixed text. If you clear

the check box, mixed text is ignored and no elements

are created.

Retain comments No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

comments in an input message. If you select the check

box, elements are created for comments. If you clear

the check box, comments are ignored and no elements

are created.

Retain processing

instructions

No No Cleared This property controls whether the XMLNSC parser

creates elements in the message tree when it encounters

processing instructions in an input message. If you

select the check box, elements are created for

processing instructions. If you clear the check box,

processing instructions are ignored and no elements are

created.

Opaque elements No No Blank This property is used to specify a list of elements in the

input message that are to be opaquely parsed by the

XMLNSC parser.

The Records and Elements properties of the TCPIPServerReceive node are

described in the following table:

 Property M C Default Description

Record detection Yes No Connection

closed

The mechanism used to identify records in the input

data. Valid options are:

v Connection closed

v Fixed Length

v Delimited

v Parsed Record Sequence.

Length Yes No 80 The length of each record, in bytes, when Fixed Length

record detection is selected.

Delimiter Yes No DOS or

UNIX Line

End

The type of delimiter bytes that separate, or terminate,

each record when Delimited record detection is

selected. Valid options are:

v DOS or UNIX Line End

v Custom Delimiter.

1188 Message Flows

|||||

|
|
||||
|
|

|
|
|

||||
|
|
|
|
|
|

|||||
|
|
|
|
|

|||||
|
|
|
|
|

|
|
||||
|
|
|
|
|
|

|||||
|
|
|

|
|

||||||

||||
|
|
|

|

|

|

|

|||||
|

||||
|
|

|
|
|

|

|

Property M C Default Description

Custom delimiter No No The delimiter bytes, expressed in hexadecimal, when

Delimited record detection and Custom Delimiter are

selected. This property is mandatory only if the

Delimiter property is set to Custom Delimiter.

Delimiter type Yes No Postfix The position of the delimiter when Delimited record

detection and Custom Delimiter are selected. Valid

options are:

v Postfix

v Infix.

This property is ignored unless the Delimiter property

is set to Custom Delimiter.

The Validation properties of the TCPIPServerReceive node are described in the

following table.

For a full description of these properties, see “Validation properties” on page 1359.

 Property M C Default Description

Validate No Yes Inherit This property controls whether validation takes place.

Valid values are

v None

v Content and Value

v Content

v Inherit.

Failure action No No Exception This property controls what happens if validation fails.

You can set this property only if you set Validate to

Content or Content and Value. Valid values are:

v User Trace

v Local Error Log

v Exception

v Exception List.

Throw node

Use the Throw node to throw an exception within a message flow.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 1190

v “Terminals and properties” on page 1190

Purpose

An exception can be caught and processed by:

v A preceding TryCatch node

v The message flow input node (the built-in nodes, for example HTTPInput and

MQInput, have Catch terminals)

v A preceding AggregateReply node

Message flows 1189

|||||

|||||
|
|
|

|||||
|
|

|

|

|
|
|

|
|

|

||||||

|||||
|

|

|

|

|

|||||
|
|

|

|

|

|
|

|

Include a Throw node to force an error path through the message flow if the

content of the message contains unexpected data. For example, to back out a

message that does not contain a particular field, you can check (using a Filter

node) that the field exists; if the field does not exist, the message can be passed to

a Throw node that records details about the exception in the ExceptionList subtree

within the message.

The Throw node is contained in the Construction drawer of the palette, and is

represented in the workbench by the following icon:

Using this node in a message flow

Look at the following samples to see how to use this node:

v Airline Reservations sample

v Error Handler sample

v Large Messaging sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Include a Throw node with a TryCatch node in your message flow to alert the

systems administrator of a potential error situation; for example, if you have a

Compute node that calculates a number, test the result of this calculation and

throw an exception if the result exceeds a certain amount. The TryCatch node

catches this exception and propagates the message to a sequence of nodes that

process the error.

Terminals and properties

When you have put an instance of the Throw node into a message flow, you can

configure it; see “Configuring a message flow node” on page 235. The properties of

the node are displayed in the Properties view. All mandatory properties for which

you must enter a value (those that do not have a default value defined) are

marked with an asterisk.

The Throw node terminal is described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Throw node Description properties are described in the following table.

 Property M C Default Description

Node name No No The node type: Throw The name of the node.

1190 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.largemessaging.doc/doc/overview.htm

Property M C Default Description

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message

flow.

The Throw node Basic properties are described in the following table.

 Property M C Default Description

Message

Catalog

No No The name of the message catalog from which the error text for the error number

of the exception is extracted. Enter the fully-qualified path and file name of the

message catalog that contains the message source. This file can be your own

message catalog, or the default message catalog that is supplied with WebSphere

Message Broker. To use the default supplied catalog, leave this property blank.

Message

Number

No No 3001 The error number of the exception that is being thrown.

v If you have created your own message catalog, enter the number for the

message in the catalog that you want to use when this exception is thrown.

v If you are using the default message catalog, specify a number between 3001

(the default) and 3049. These numbers are reserved in the default catalog for

your use. The text of each of these messages in the default message catalog is

identical, but you can use a different number within this range for each

situation in which you throw an exception; use the number to identify the

exact cause of the error.

Message

Text

No No Additional text that explains the cause of the error. Enter any additional free

format text that contains information that you want to include with the message

when it is written to the local error log; for example, if you have checked for the

existence of a particular field in a message and thrown an exception when that

field is not found, you might include the text:

The message did not contain the required field: Branch number

If you are using the default message catalog, this text is inserted as &1 in the

message text.

TimeoutControl node

Use the TimeoutControl node to process an input message that contains a timeout

request.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 1192

v “Terminals and properties” on page 1192

Purpose

The TimeoutControl node validates the timeout request message, stores the

message, and propagates the message (unchanged) to the next node in the message

flow. For more information, see “Sending timeout request messages” on page 603.

The TimeoutControl node is contained in the Timer drawer of the palette, and is

represented in the workbench by the following icon:

Message flows 1191

Using this node in a message flow

Use a TimeoutControl node and a TimeoutNotification node together in a message

flow for an application that requires events to occur at particular times, or at

regular intervals.

These examples show when you must use the timeout nodes in a message flow:

v You need to run a batch job every day at midnight.

v You want information about currency exchange rates to be sent to banks at

hourly intervals.

v You want to confirm that important transactions are processed within a certain

time period and perform some other specified actions to warn when a

transaction has not been processed in that time period.

You can use more than one TimeoutControl node with a TimeoutNotification node.

Timeout requests that are initiated by those TimeoutControl nodes are all processed

by the same TimeoutNotification node if the same Unique identifier is used for the

TimeoutNotification node and each of the TimeoutControl nodes.

Look at the following sample for more details about how to use the timeout

processing nodes:

v Timeout Processing sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Terminals and properties

When you have put an instance of the TimeoutControl node into a message flow,

you can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The TimeoutControl node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message tree for processing (which includes validating the timeout

request specified in the message tree at Request location) and adds it to the control queue.

Failure The output terminal to which the input message is propagated if a failure is detected during processing in

this node. If this terminal is not connected to another node, error information is passed back to the

previous node in the message flow.

Out The output terminal to which incoming messages are propagated, unchanged, after successful timeout

request processing. If this terminal is not connected to another node, no propagation occurs. If

propagation of the message fails, the message is propagated to the Failure terminal.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Description properties of the TimeoutControl node are described in the

following table.

1192 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.timeout.doc/doc/overview.htm

Property M C Default Description

Node

name

No No The node type,

TimeoutControl

The name of the node.

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message flow.

The Basic properties of the TimeoutControl node are described in the following

table.

 Property M C Default Description

Unique

identifier

Yes Yes None This is the only mandatory property for the node. Its value must be

unique within the broker. The equivalent property of the

TimeoutNotification node with which it is paired must have the same

value. The maximum length of this identifier is 12 characters.

Request

location

No No None This property describes where to find the timeout request information

in the incoming message. This value can be any valid location in the

input message tree and is validated at run time. If you do not specify a

request location, InputLocalEnvironment.TimeoutRequest is assumed.

For more information about the timeout request message, see “Sending

timeout request messages” on page 603.

Request

persistence

No No Automatic This property controls whether an incoming timeout request survives a

restart of either the broker or the message flow that contains the

TimeoutNotification node that is paired with this TimeoutControl node.

Select Yes if you want the incoming request to persist; select No if you

do not. If you select Automatic (the default), the Persistence setting in

the Properties folder of the incoming message is used.

The Message properties of the TimeoutControl node are described in the following

table.

 Property M C Default Description

Stored

message

location

No No None This property identifies the location of the part of the request message that

you want to store for propagation by the TimeoutNotification node with

which this node is paired. If you do not specify a value, the entire message is

stored. You can specify any valid location in the message tree. If you choose

to store the entire message, you do not need to specify any values in Message

domain, Message set, Message type, or Message format.

Message flows 1193

Property M C Default Description

Message

domain

No No BLOB The domain that is used to parse the stored timeout request message by the

TimeoutNotification node. If you do not specify a value and the message

location is stored, the default value is BLOB.

Select the name of the parser that you are using. This value, and the three

corresponding values in Message set, Message type, and Message format, are

used by the TimeoutNotification node with which it is paired when it

rebuilds the stored message for propagation. If you have stored the entire

request message (by leaving Stored message location blank), do not specify

any values here. If you choose to store part of the request message, specify

values here that reflect the stored request message fragment as if it were the

entire message, which is the case when it is processed by the

TimeoutNotification node. Choose from the following parsers:

v MRM

v XMLNSC

v XMLNS

v BLOB

v XML (this domain is deprecated; use XMLNSC)

You can also specify a user-defined parser, if appropriate.

Message

set

No No None The name or identifier of the message set in which the stored timeout request

message is defined. If you are using the MRM parser, or the XMLNSC parser

in validating mode, select the Message set that you want to use from the list.

If you set this property, then subsequently update the project dependencies to

remove this message set reference, a warning is issued. Either update the

Message set property, or restore the reference to this message set project.

Message

type

No No None The name of the stored timeout request message. If you are using the MRM

parser, select the correct message from the list in Message type. This list is

populated with messages that are defined in the Message set that you have

selected.

Message

format

No No None The name of the physical format of the stored timeout request message. If

you are using the MRM parser, select the format of the message from the list

in Message format. This list includes all the physical formats that you have

defined for this Message set.

TimeoutNotification node

Use the TimeoutNotification node to manage timeout-dependent message flows,

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 1195

v “Terminals and properties” on page 1195

Purpose

The TimeoutNotification node is an input node that you can use in two ways:

v A TimeoutNotification node can be paired with one or more TimeoutControl

nodes.

The TimeoutNotification node processes timeout request messages that are sent

by the TimeoutControl nodes with which it is paired, and propagates copies of

the messages (or selected fragments of the messages) to the next node in the

message flow.

v A TimeoutNotification node can be used as a stand-alone node.

1194 Message Flows

|

|
|
|

Generated messages are propagated to the next node in the message flow at

time intervals that are specified in the configuration of this node.

The TimeoutNotification node is contained in the Timer drawer of the palette, and

is represented in the workbench by the following icon:

Using this node in a message flow

Use a TimeoutControl node and a TimeoutNotification node together in a message

flow for an application that requires events to occur at a particular time, or at

regular intervals; for example, when you want a batch job to run every day at

midnight, or you want information about currency exchange rates to be sent to

banks at hourly intervals.

You can use more than one TimeoutControl node with a TimeoutNotification node.

Timeout requests that are initiated by those TimeoutControl nodes are all processed

by the same TimeoutNotification node if the same Unique Identifier is used for the

TimeoutNotification node and each of the TimeoutControl nodes. However, do not

use the same Unique Identifier for more than one TimeoutNotification node.

When a TimeoutNotification node is started as a result of the broker starting, or by

the message flow that contains the node starting, it scans its internal timeout store

and purges any non-persistent timeout requests. Notifications are issued for any

persistent timeout requests that are now past and that have the IgnoreMissed

property set to False.

If you use a TimeoutNotification node to generate a WebSphere MQ message to an

output node, such as theMQOutput node, provide a valid MQMD. You must also

provide a valid MQMD if the TimeoutNotification node is running in automatic

mode (as a stand-alone node). If the TimeoutNotification node is running in

controlled mode (that is, it is paired with one or more TimeoutControl nodes), you

must provide a valid MQMD only if the stored messages do not already have an

MQMD. The following ESQL shows how to provide a valid MQMD:

CREATE NEXTSIBLING OF OutputRoot.Properties DOMAIN ’MQMD’;

SET OutputRoot.MQMD.Version = MQMD_CURRENT_VERSION;

SET OutputRoot.MQMD.Format = ’XML’;

Look at the following sample for more details about how to use the timeout

processing nodes:

v Timeout Processing sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Terminals and properties

When you have put an instance of the TimeoutNotification node into a message

flow, you can configure it; see “Configuring a message flow node” on page 235.

The properties of the node are displayed in the Properties view. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The terminals of the TimeoutNotification node are described in the following table.

Message flows 1195

|
|
|
|
|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.timeout.doc/doc/overview.htm

Terminal Description

Failure The output terminal to which the message is propagated if a failure is detected during processing in this

node. Nodes can be connected to this terminal to process these failures. If this terminal is not connected

to another node, messages are not propagated and no logging or safe storage of data occurs.

Out The output terminal to which messages are propagated after timeouts expire.

v If the TimeoutNotification node is running in Automatic mode (that is, there are no TimeoutControl

nodes paired with this node), the propagated messages contain only a Properties folder and a

LocalEnvironment that is populated with the timeout information.

v If the TimeoutNotification node is running in Controlled mode (that is, TimeoutControl nodes that are

paired with this node store timeout requests), the propagated messages contain what was stored by the

TimeoutControl nodes, which might be entire request messages or fragments of them.

If the TimeoutNotification node is used as the input node to a message flow that generates a WebSphere

MQ message (for example, by using an MQOutput node), the message flow must create the necessary

MQ headers and data (for example, MQMD).

Catch The output terminal to which the message is propagated if an exception is thrown downstream. If this

terminal is not connected to another node, the following events occur:

1. The TimeoutNotification node writes the error to the local error log.

2. The TimeoutNotification node repeatedly tries to process the request until the problem that caused

the exception is resolved.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Description properties of the TimeoutNotification node are described in the

following table.

 Property M C Default Description

Node name No No The node type:

TimeoutNotification

The name of the node.

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message

flow.

The Basic properties of the TimeoutNotification node are described in the following

table.

 Property M C Default Description

Unique

Identifier

Yes Yes None This property specifies a value that is unique within the broker and

that is the same as the identifier that is specified for the

TimeoutControl nodes with which this node is paired (if there are

any). The maximum length of this identifier is 12 characters.

Do not use the same Unique Identifier for more than one

TimeoutNotification node.

1196 Message Flows

|
|

Property M C Default Description

Transaction

Mode

No No Yes The transaction mode for the node. If the transaction mode is

Automatic, a transaction is based on the persistence of the stored

messages, which is controlled by the Request Persistence property of

the TimeoutControl node with which it is paired. You can set this

property to one of the following values:

v Select Yes, if you want a transaction to be started.

v Select No, if you do not want a transaction to be started.

v Select Automatic, only if you have set Operation Mode to

Controlled. Whether a transaction is started depends on the

persistence of the stored timeout requests, which is controlled by

the value of Request Persistence in the TimeoutControl node with

which it is paired.

Operation

Mode

No No Automatic This property indicates whether this node is paired with any paired

TimeoutControl nodes. Valid values are:

v If you select Automatic, the node is not paired with any

TimeoutControl nodes. The node generates timeout requests with

an interval that is controlled by the setting of the Timeout Value

property, which must be a positive integer.

v If you select Controlled, the node processes all timeout requests

that have been stored by the TimeoutControl nodes with which it is

paired.

Timeout

Interval

No No 1 The interval (in seconds) between timeout requests. This property is

relevant only if Operation Mode is set to Automatic.

The value of this property must be a positive integer.

The properties of the Parser Options for the TimeoutNotification node are

described in the following table.

 Property M C Default Description

Parse Timing No No On

Demand

This property controls when the timeout message is parsed. Valid

values are On Demand, Immediate, and Complete.

By default, this property is set to On Demand, which causes parsing of

the message to be delayed. To cause the message to be parsed

immediately, see “Parsing on demand” on page 1363.

Build tree using

XML schema data

types

No No Cleared This property controls whether the XMLNSC parser creates syntax

elements in the message tree with data types taken from the XML

Schema. You can select this property only if you set the Validate

property on the Validation tab to Content or Content and Value.

Use MQRFH2C

Compact Parser

for MQRFH2

Domain

No No Cleared This property controls whether the MQRFH2C Compact Parser, instead

of the MQRFH2 parser, is used for MQRFH2 headers.

Use XMLNSC

Compact Parser

for XMLNS

Domain

No No Cleared This property controls whether the XMLNSC Compact Parser is used

for messages in the XMLNS Domain. If you set this property, the

message data appears under XMLNSC in nodes that are connected to

the output terminal when the input RFH2 header or default properties

Domain is XMLNS.

Retain Mixed

Content

No No None This property controls whether the XMLNSC parser creates elements in

the message tree when it encounters mixed text in a timeout message.

If you select the check box, elements are created for mixed text. If you

clear the check box, mixed text is ignored and no elements are created.

Message flows 1197

|

|

Property M C Default Description

Retain Comments No No None This property controls whether the XMLNSC parser creates elements in

the message tree when it encounters comments in a timeout message.

If you select the check box, elements are created for comments. If you

clear the check box, comments are ignored and no elements are

created.

Retain Processing

Instructions

No No None This property controls whether the XMLNSC parser creates elements in

the message tree when it encounters processing instructions in a

timeout message. If you select the check box, elements are created for

processing instructions. If you clear the check box, processing

instructions are ignored and no elements are created.

Opaque elements No No Blank This property is used to specify a list of elements in the timeout

message that are to be opaquely parsed by the XMLNSC parser.

Opaque parsing is performed only if validation is not enabled (that is,

if Validate is None); entries that are specified in Opaque Elements are

ignored if validation is enabled.

The Validation properties of the TimeoutNotification node are described in the

following table.

If a message is propagated to the Failure terminal of the node, it is not validated.

For more information, see “Validating messages” on page 164 and “Validation

properties” on page 1359.

 Property M C Default Description

Validate No Yes None This property controls whether validation takes place. Valid values are None,

Content, and Content And Value.

Failure

Action

No No Exception This property controls what happens if validation fails. You can set this

property only if you set Validate to Content or Content and Value. Valid

values are User Trace, Local Error Log, Exception, and Exception List.

Trace node

Use the Trace node to generate trace records that you can use to monitor the

behavior of a message flow.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 1199

v “Terminals and properties” on page 1199

Purpose

Trace records can incorporate text, message content, and date and time

information, to help you to monitor the behavior of the message flow.

You can choose to write the records to the user trace file, another file, or the local

error log (which contains error and information messages written by all other

WebSphere Message Broker components). If you write traces to the local error log,

you can issue a message from the default message catalog that is supplied with

WebSphere Message Broker, or you can create your own message catalog.

1198 Message Flows

The operation of the Trace node is independent of the setting of user tracing for

the message flow that contains it. In particular, records that are written by the

Trace node to the user trace log are written even if user trace is not currently active

for the message flow.

The Trace node is contained in the Construction drawer of the palette, and is

represented in the workbench by the following icon:

Using this node in a message flow

Look at the following samples to see how to use this node:

v Airline Reservations sample

v Aggregation sample

v Timeout Processing sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Include a Trace node to help diagnose errors in your message flow. By tracing the

contents of the message at various points in the flow, you can determine the

sequence of processing. You can configure the Trace node to record the content of a

message, and to check the action of a specific node on the message. For example,

you can include a Trace node immediately after a Compute node to check that the

output message has the expected format.

You can also use the Trace node to provide information in error handling within

your message flows. For example, you can use this node to record failures in

processing due to errors in the content or format of a message.

When you have tested the message flow and proved that its operation is correct,

remove Trace nodes from your message flow, or switch them off.

Terminals and properties

When you have put an instance of the Trace node into a message flow, you can

configure it; see “Configuring a message flow node” on page 235. The properties of

the node are displayed in the Properties view. All mandatory properties for which

you must enter a value (those that do not have a default value defined) are

marked with an asterisk.

The terminals of the Trace node are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Out The output terminal through which the message is propagated.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

Message flows 1199

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.aggregation.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.timeout.doc/doc/overview.htm

The Description properties of the Trace node are described in the following table.

 Property M C Default Description

Node

name

No No The node type: Trace The name of the node.

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message flow.

The Basic properties of the Trace node are described in the following table.

1200 Message Flows

Property M C Default Description

Destination Yes No User

Trace

The destination of the trace record that is written by the node. The Destination

refers to the computer that hosts the broker on which the Trace node is

deployed:

v To write the trace record to the local system error log, select Local Error Log.

The information that you include in the trace record is written to one of the

following locations:

–

Windows

On Windows, data is written to the Event log (Application

View)

–

Linux

UNIX

On Linux and UNIX, data is written to the syslog

–

z/OS

On z/OS, data is written to the operator console

If you select Local Error Log, indicate the number of the trace message that

is to be written, and the message catalog in which the message is defined.

– If you leave Message Catalog blank, the default message catalog is used

as the source of the message that is to be written.

You must also enter the error number of the record in Message Number.

Numbers 3051 to 3099 are reserved in the default catalog for this use. The

text of each of these messages in the default message catalog is identical,

but if you use a different number within this range for each situation that

you trace, you can identify the exact cause of the error. The default

message number is 3051.

– If you create your own message catalog, enter the fully-qualified file

name for your catalog in Message Catalog.

You must also enter the appropriate number for the message in the

catalog that you want to write to the local error log in Message Number.

On some systems, message numbers that end 00 are reserved for system

use; do not include messages with numbers like 3100 in your message

catalog.
v To write the trace record to the system-generated user trace log, select User

Trace.

These records are written regardless of the setting of the User Trace property

for the deployed message flow.

The user trace is written to the \log subdirectory of the root directory (for

example, the default path on Windows is C:\Documents and Settings\All

Users\Application Data\IBM\MQSI\common\log). The file name is made

up of the broker name, the broker UUID, and a suffix of userTrace.bin (for

example, broker.e51906cb-dd00-0000-0080-b10e69a5d551.userTrace.bin.0). Use

the mqsireadlog and mqsiformatlog commands before you view the user

trace log.

v To write the trace record to a file of your choice, select File.

If you select this option, you must also set File Path to the fully-qualified

path name for the trace. If you do not set the path, the location of the file

depends on the system; for example, on z/OS, the file is created within the

home directory of the broker service ID.

You can use any name for the trace file; for example, c:\user\trace\trace.log

If you specify a file that does not exist already, the file is created. However,

directories are not created by this process, so the full path must already

exist.

The file is written as text, in the format specified by the Pattern property.

You do not need to run the mqsireadlog or mqsiformatlog commands

against the file.

v If you do not want to write any trace records, select None. You can also

switch Trace nodes off.

File Path No Yes The fully-qualified file name of the file to which to write records. This property

is valid only if Destination is set to File.

Message flows 1201

Property M C Default Description

Pattern No No The data that is to be included in the trace record. Create an ESQL pattern to

specify what information to write. If you write the trace record to the local

error log, the pattern governs the information that is written in the text of the

message number that is selected. If you use the default message catalog, and a

number between 3051 and 3099, the pattern information is inserted as &1 in the

message text.

v You can write plain text, which is copied into the trace record exactly as you

have entered it.

v You can identify parts of the message to write to the trace record, specifying

the full field identifiers enclosed within the characters ${ and }. To record

the entire message, specify ${Root}.

v Use the ESQL functions to provide additional information; for example, use

the ESQL function CURRENT_DATE to record the date, time, or both, at

which the trace record is written.

The pattern below illustrates some of the options that are available. The

pattern writes an initial line of text, records two elements of the current

message, and adds a simple timestamp:

Message passed through with the following fields:

Store name is ${Body.storedetailselement.storename}

Total sales are ${Body.totalselement.totalsales}

Time is: ${EXTRACT(HOUR FROM CURRENT_TIMESTAMP)}

 :${EXTRACT(MINUTE FROM CURRENT_TIMESTAMP)}

The resulting trace record is:

Message passed through with the following fields:

Store name is ’SRUCorporation’

Total sales are ’34.98’

Time is: 11:19

A pattern that contains syntax errors does not prevent a message flow that

contains the Trace node from deploying, but the node writes no trace records.

Message

Catalog

No No The name of the message catalog from which the error text for the error

number of the exception is extracted. The default value (blank) indicates that

the message is taken from the message catalog that is supplied with

WebSphere Message Broker. See Creating message catalogs for more

information.

Message

Number

No No 3051 The error number of the message that is written.

TryCatch node

Use the TryCatch node to provide a special handler for exception processing.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 1203

v “Connecting the terminals” on page 1203

v “Terminals and properties” on page 1203

Purpose

Initially, the input message is routed on the Try terminal, which you must connect

to the remaining non-error processing nodes of the message flow. If a downstream

node (which can be a Throw node) throws an exception, the TryCatch node catches

it and routes the original message to its Catch terminal. Connect the Catch

terminal to further nodes to provide error processing for the message after an

1202 Message Flows

|
|

exception. If the Catch terminal is connected, the message is propagated to it. If the

Catch terminal is not connected, the message is discarded.

The TryCatch node is contained in the Construction drawer of the palette, and is

represented in the workbench by the following icon:

Using this node in a message flow

Look at the following sample to see how to use this node:

v Error Handler sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Use the Throw and TryCatch nodes when you use the Compute node to calculate a

total. You can create a message that is sent to your system administrator when the

total that is calculated exceeds the maximum value for the Total field.

Connecting the terminals

The TryCatch node has no configurable properties that affect its operation. You

determine how it operates by connecting the output terminals to subsequent nodes

in your message flow.

1. Connect the Try terminal to the first node in the sequence of nodes that

provides the normal (non-error) phase of processing of this message. This

sequence can contain one or more nodes that perform any valid processing.

The sequence of nodes can optionally conclude with an output node.

2. Connect the Catch terminal to the first node in the sequence of nodes that

provides the error processing for this message flow. This sequence can contain

one or more nodes that perform any valid processing. The sequence of nodes

can optionally conclude with an output node.

When an exception is thrown in the message flow, either by the explicit use of

the Throw node or the ESQL THROW statement, or by the broker raising an

implicit exception when it detects an error that the message flow is not

programmed to handle, control returns to the TryCatch node.

The message is propagated through the Catch terminal and the error handling

that you have designed is executed. The message that is propagated through

this terminal has the content that it had at the point at which the exception was

thrown, including the full description of the exception in the ExceptionList.

Terminals and properties

When you have put an instance of the TryCatch node into a message flow, you can

configure it; see “Configuring a message flow node” on page 235. The properties of

the node are displayed in the Properties view.

The TryCatch node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Message flows 1203

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.doc/doc/overview.htm

Terminal Description

Catch The output terminal to which the message is propagated if an exception is thrown downstream and

caught by this node.

Try The output terminal to which the message is propagated if it is not caught.

The following table describes the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The TryCatch node Description properties are described in the following table.

 Property M C Default Description

Node name No No The node type:

TryCatch

The name of the node.

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message

flow.

TwineballInput node

Use the TwineballInput node to find out how the WebSphere Adapters nodes

work.

This topic contains the following sections:

v “Purpose”

v “Terminals and properties” on page 1205

Purpose

The TwineballInput node is provided for educational purposes and helps you to

see how the WebSphere Adapters nodes work. The TwineballInput node is a

sample node with its own sample EIS. You cannot use the TwineBall nodes to

connect to the external SAP, Siebel, and PeopleSoft EIS systems. Do not use this

node in production.

The TwineballInput node is contained in the WebSphere Adapters drawer of the

message flow node palette, and is represented in the workbench by the following

icon:

You can use the mqsisetdbparms command in the following format to configure an

account name with a user name and password for the Twineball adapter.

mqsisetdbparms broker name -n adapter name -u user name -p password

For example:

mqsisetdbparms BRK1 -n TwineballInbound.inadapter -u mqbroker -p ********

1204 Message Flows

Look at the Twineball Example EIS Adapter sample to see how to use this node.

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Terminals and properties

When you have put an instance of the TwineballInput node into a message flow,

you can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. If you double-click a

TwineballInput node, you open the Adapter Connection wizard. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The TwineballInput node terminals are described in the following table.

 Terminal Description

Out Business object events from the adapter are sent to the Out terminal.

Failure If an error happens in the TwineballInput node, the message is propagated to the Failure terminal.

Information about the error, and business object events can also be propagated to the Failure terminal.

Catch Business object events are sent to the Catch terminal if they cause an uncaught exception in the

message flow. If the Catch terminal is not connected, the retry process is activated to handle the

business object.

The following table describes the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The TwineballInput node Description properties are described in the following

table.

 Property M C Default Description

Node name No No The node type,

TwineballInput.

The name of the node.

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message flow.

The TwineballInput node Basic properties are described in the following table.

 Property M C Default Description

Adapter

component

Yes Yes The name of the adapter component that contains configuration properties

for the adapter. Either enter a name of an adapter file or click Browse to

select an adapter file from the list of files that are available in referenced

message set projects.

The TwineballInput node Routing properties are described in the following table.

Message flows 1205

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.twineball.doc/doc/overview.htm

Property M C Default Description

Set

destination

list

No No Selected This property specifies whether to add the method binding name to the route

to label destination list. If you select this check box, the method binding name

is added so that you can use a RouteToLabel node in the message flow after

the TwineballInput node.

Label

prefix

No No The prefix to add to the method name when routing to label. Add a label

prefix to avoid a clash of corresponding label nodes when you include multiple

WebSphere Adapters input nodes in the same message flow. By default, there is

no label prefix, so the method name and label name are identical.

The TwineballInput node Input Message Parsing properties are described in the

following table.

 Property M C Default Description

Message

domain

No No DataObject The domain that is used to parse the incoming message. By default,

the message that is propagated from the TwineballInput node is in the

DataObject domain. You cannot specify a different domain.

Message set Yes No Set

automatically

The name of the message set in which the incoming message is

defined. This field is set automatically from the Adapter component

property.

If you set this property, then subsequently update the project

dependencies to remove this message set reference, a warning is

issued. Either update the Message set property, or restore the

reference to this message set project.

Message type No No The name of the incoming message. The node detects the message

type automatically. You cannot set this property.

Message

format

No No The name of the physical format of the incoming message. You cannot

set this property.

The TwineballInput node Transactionality properties are described in the following

table.

 Property M C Default Description

Transaction

mode

No No Yes This property specifies how updates are handled. If you select Yes, updates are

performed in a single transaction. If you select No, updates are performed

independently.

The Instances properties of the TwineballInput node are described in the following

table. For a full description of these properties, refer to “Configurable message

flow properties” on page 1372.

 Property M C Default Description

Additional

instances

pool

No Yes Use Pool

Associated

with

Message

Flow

The pool from which additional instances are obtained.

v If you select Use Pool Associated with Message Flow, additional

instances are obtained from the message flow value.

v If you select Use Pool Associated with Node, additional instances are

allocated from the node’s additional instances based on the number

specified in the Additional instances property.

Additional

instances

No Yes 0 The number of additional instances that the node can start if the

Additional instances pool property is set to Use Pool Associated with

Node. By default, no additional instances are given to the node.

1206 Message Flows

|
|
|
|

The TwineballInput node Retry properties are described in the following table.

 Property M C Default Description

Retry

mechanism

No No Failure This property specifies how retry processing is handled when a failure is

rolled back to the TwineballInput node.

v If you select Failure, retry processing is not performed so you cannot set

the remaining properties.

v If you select Short and long retry, retry processing is performed first at

the interval that is specified by the Short retry interval property, and if

that is unsuccessful, it is then performed at the interval that is specified

by the Long retry interval property.

Retry

threshold

No Yes 0 The maximum number of times that retry processing is performed for short

retry.

Short retry

interval

No Yes 0 The interval between short retry attempts.

Long retry

interval

No Yes 0 The interval between long retry attempts.

TwineballRequest node

Use the TwineballRequest node to find out how WebSphere Adapters nodes work.

This topic contains the following sections:

v “Purpose”

v “Terminals and properties” on page 1208

Purpose

The TwineballRequest node is provided for educational purposes and helps you to

see how the WebSphere Adapters nodes work. The TwineballRequest node is a

sample node with its own sample EIS. You cannot use the TwineBall nodes to

connect to the external SAP, Siebel, and PeopleSoft EIS systems. Do not use this

node in production.

The TwineballRequest node is contained in the WebSphere Adapters drawer of the

message flow node palette, and is represented in the workbench by the following

icon:

You can use the mqsisetdbparms command in the following format to configure an

account name with a user name and password for the Twineball adapter.

mqsisetdbparms broker name -n adapter name -u user name -p password

For example:

mqsisetdbparms BRK1 -n TwineballOutbound.outadapter -u mqbroker -p ********

Look at the Twineball Example EIS Adapter sample to see how to use this node.

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Message flows 1207

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.twineball.doc/doc/overview.htm

Terminals and properties

When you have put an instance of the TwineballRequest node into a message flow,

you can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view. If you double-click a

TwineballRequest node, you open the Adapter Connection wizard. All mandatory

properties for which you must enter a value (those that do not have a default

value defined) are marked with an asterisk.

The TwineballRequest node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts the request business object.

Out The output terminal to which the response business object is sent if it represents successful completion

of the request, and if further processing is required within this message flow.

Failure If an error happens in the TwineballRequest node, the message is propagated to the Failure terminal.

Information about the error, and business object events can also be propagated to the Failure terminal.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk on the panel if you

must enter a value when no default is defined); the column headed C indicates

whether the property is configurable (you can change the value when you add the

message flow to the bar file to deploy it).

The TwineballRequest node Description properties are described in the following

table.

 Property M C Default Description

Node name No No The node type, e.g.

TwineballRequest

The name of the node.

Short

Description

No No A brief description of the node.

Long

Description

No No Text that describes the purpose of the node in the message

flow.

The TwineballRequest node Basic properties are described in the following table.

 Property M C Default Description

Adapter

component

Yes No The name of the adapter component that contains configuration properties

for the adapter. Either enter a name of an adapter file, or click Browse to

select an adapter file from the list of files that are available in referenced

message set projects.

Default

method

Yes Yes The default method binding to use.

The TwineballRequest node Response Message Parsing properties are described in

the following table.

 Property M C Default Description

Message

domain

No No DataObject The domain that is used to parse the response message. By default, the

response message that is propagated from the TwineballRequest node is in

the DataObject domain. You cannot specify a different domain.

1208 Message Flows

Property M C Default Description

Message set Yes No Set

automatically

The name of the message set in which the incoming message is defined.

This field is set automatically from the Adapter component property.

If you set this property, then subsequently update the project

dependencies to remove this message set reference, a warning is issued.

Either update the Message set property, or restore the reference to this

message set project.

Message type No No The name of the response message. The node detects the message type

automatically. You cannot set this property.

Message

format

No No The name of the physical format of the response message. You cannot set

this property.

The TwineballRequest node Transactionality properties are described in the

following table.

 Property M C Default Description

Transaction

mode

No No Automatic This property specifies how updates are handled. If you select Yes, updates

are performed in a single transaction. If you select No, updates are

performed independently.

The TwineballRequest node Request properties are described in the following table.

 Property M C Default Description

Method

Location

Yes No $LocalEnvironment/
Adapter/MethodName

The business method that is used to trigger the

TwineballRequest node to perform an action on the external

system. For example:

v createPurchaseOrder causes the TwineballRequest node to

create a purchase order in the EIS.

v deletePurchaseOrder causes the TwineballRequest node to

delete a purchase order in the EIS.

Data

Location

Yes No $Body The location in the incoming message tree from which data is

retrieved to form the request that is sent from the

TwineballRequest node to the EIS.

The TwineballRequest node Result properties are described in the following table.

 Property M C Default Description

Output data

location

No No $OutputRoot The message tree location to which the TwineballRequest node sends

output.

Copy local

environment

No No Selected This property controls how the local environment is copied to the

output message. If you select the check box, at each node in the message

flow, a new copy of the local environment is created in the tree, and it is

populated with the contents of the local environment from the preceding

node. So if a node changes the local environment, the upstream nodes

do not see those changes because they have their own copies. This

behavior might be an issue if you are using a FlowOrder node, or if you

use the propagate command on a Compute node.

If you clear the check box, each node does not generate its own copy of

the local environment, but it uses the local environment that is passed to

it by the previous node. So if a node changes the local environment,

those changes are seen by the upstream nodes.

Message flows 1209

|
|
|
|

Validate node

Use the Validate node to check that the message that arrives on its input terminal

is as expected. You can use this node to check that the message has the expected

message template properties (the message domain, message set, and message type)

and to check that the content of the message is correct by selecting message

validation.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 1211

v “Terminals and properties” on page 1211

Purpose

The checks that you can perform depend on the domain of the message.

 Check Domain

Check message domain All domains

Check message set XMLNSC, MRM, and IDOC only

Check message type MRM only

Validate message body XMLNSC, MRM and IDOC only

You can check the message against one or more of message domain, message set,

or message type. The property is checked only if you select its corresponding

check box, which means that a property that contains an empty string can be

compared.

You can check the content of the message by giving a value to the Validate

property. Validation takes place if the Validate property is set to a value other than

None, which is the default value.

For validation failures to be returned to the Validate node from the parser, set the

Failure Action property to either Exception or Exception List. Otherwise, validation

failures are just logged.

If all the specified checks pass, the message is propagated to the Match terminal of

the node.

If any of the checks fail, the message is propagated to the Failure terminal. If the

Failure terminal is not connected to some failure handling processing, an exception

is generated.

The Validate node replaces the Check node, which is deprecated in WebSphere

Message Broker Version 6.0 and subsequent releases. The Validate node works in

the same way as the Check node, but it has additional Validation properties to

allow the validation of message content by parsers that support that capability.

The Validate node is contained in the Validation drawer of the palette, and is

represented in the workbench by the following icon:

1210 Message Flows

Using this node in a message flow

Use the Validate node to confirm that a message has the correct message template

properties, and has valid content, before propagating the message to the rest of the

flow. Subsequent nodes can then rely on the message being correct, without doing

their own error checking.

You can also use the Validate node to ensure that the message is routed

appropriately through the message flow. For example, configure the node to direct

a message that requests stock purchases through a different route from that

required for a message that requests stock sales.

Another routing example is the receipt of electronic messages from your staff at

your head office. These messages are used for multiple purposes (for example, to

request technical support or stationery, or to advise you about new customer

leads). These messages can be processed automatically because your staff complete

a standard form. If you want these messages to be processed separately from other

messages that are received, use the Validate node to ensure that only staff

messages that have a specific message type are processed by this message flow.

Terminals and properties

When you have put an instance of the Validate node into a message flow, you can

configure it. For more information, see “Configuring a message flow node” on

page 235. The properties of the node are displayed in the Properties view. All

mandatory properties for which you must enter a value (those that do not have a

default value defined) are marked with an asterisk.

The terminals of the Validate node are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if the incoming message does not match the specified

properties.

Match The output terminal to which the message is routed if the incoming message matches the specified

properties.

The following tables describe the properties of the node. The column headed M

indicates whether the property is mandatory (marked with an asterisk if you must

enter a value when no default is defined); the column headed C indicates whether

the property is configurable (you can change the value when you add the message

flow to the bar file to deploy it).

The Description properties of the Validate node are described in the following

table.

 Property M C Default Description

Node name No No Validate The name of the node.

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message flow.

Message flows 1211

The Validate node Basic properties are described in the following table.

 Property M C Default Description

Domain No No The name of the domain. Select one of the following values from the list of the

Domain property:

v MRM

v SOAP

v XMLNSC

v DataObject

v XMLNS

v JMSMap

v JMSStream

v MIME

v BLOB

v XML (deprecated - use XMLNSC)

v IDOC (deprecated - use MRM)

You can also specify a user-defined parser, if appropriate.

Check

domain

Yes No Cleared If you select this check box, the incoming message is checked against the

Domain property.

Set No No The name or identifier of the message set to which the incoming message

belongs. If you are using the XMLNSC, MRM, or IDOC parser and want to

check that the incoming message belongs to a particular message set, select

Check set and select one of the values from the list of the Set property. This list

is populated when you select XMLNSC, MRM, or IDOC as the message

domain.

Leave Set clear for the other parsers.

If you set this property, then subsequently update the project dependencies to

remove this message set reference, a warning is issued. Either update the Set

property, or restore the reference to this message set project.

Check set Yes No Cleared If you select the check box, the incoming message is checked against the Set

property. If you are using the XMLNSC, MRM, or IDOC parser and want to

check that the incoming message belongs to a particular message set, select

Check set and select one of the values from the list of the Set property.

Type No No The message name. If you are using the MRM parser and want to check that

the incoming message is a particular message type, select Check type and enter

the name of the message in the Type property.

Leave Type clear for the other parsers.

Check

type

Yes No Cleared If you select the check box, the incoming message is checked against the Type

property. If you are using the MRM parser and want to check that the

incoming message is a particular message type, select Check type and enter the

name of the message in the Type property.

The Validation properties of the Validate node are described in the following table.

If you are using the XMLNSC, MRM, or IDOC parser and want to validate the

body of messages against the message set, select the required validation properties

on the Validation tab. For more details, see “Validating messages” on page 164 and

“Validation properties” on page 1359.

 Property M C Default Description

Validate No Yes None This property controls whether validation takes place. Valid values are None,

Content and Value, Content, and Inherit.

1212 Message Flows

|

|

|
|
|

Property M C Default Description

Failure

Action

No No Exception This property controls what happens if validation fails. You can set this

property only if you set Validate to Content or Content and Value. Valid

values are User Trace, Local Error Log, Exception, and Exception List.

Warehouse node

Use the Warehouse node to interact with a database in the specified ODBC data

source.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow”

v “Terminals and properties” on page 1214

Purpose

The Warehouse node is a specialized form of the Database node that stores the

entire message, parts of the message, or both, in a table within the database. You

define what is stored by creating mappings that use the data from the input

message to identify the action that is required.

You can use the Warehouse node:

v To maintain an audit trail of messages that are passing through the broker

v For offline or batch processing of messages that have passed through the broker

(data mining)

v As a source from which to reprocess selected messages in the broker

Use standard database query and mining techniques to retrieve messages that you

have stored in the warehouse. (No explicit support is provided by WebSphere

Message Broker.)

You must have created or identified the following items:

v Input data in the form of a message set and message

v An ODBC connection to the database

v A database and database table to store the message

v At least two columns in the table: one for the binary object (the message), and

one for the timestamp

The Warehouse node is contained in the Database drawer of the palette, and is

represented in the workbench by the following icon:

Using this node in a message flow

When you use the Warehouse node, you can choose to store the following

elements in the database that is associated with the node:

v The entire message, optionally with an associated timestamp. The message is

stored as a binary object, with the timestamp in a separate column. This option

has two advantages:

Message flows 1213

– You do not need to decide beforehand how you will use the warehoused

data; because you have stored it all, you can retrieve all the data and apply

data mining tools to it later.

– You do not need to define a specific database schema for every type of

message that might pass through the broker. In a complex system, many

different message types might be processed, and the overhead of defining a

unique schema for each message type can become prohibitive. You can

precede each Warehouse node with a Compute node that converts each

message into a canonical warehouse format with a common schema, or you

can store the whole message as a binary object.
v Selected parts of the message, optionally with an associated timestamp, which

requires a defined database schema for that message type. The message is

mapped to true type so, for example, a character string in the message is stored

as a character string in the database.

Terminals and properties

When you have put an instance of the Warehouse node into a message flow, you

can configure it. For more information, see “Configuring a message flow node” on

page 235. The properties of the node are displayed in the Properties view. (If you

double-click a Warehouse node, you open the New Message Map dialog box.) All

mandatory properties for which you must enter a value (those that do not have a

default value defined) are marked with an asterisk.

The terminals of the Warehouse node are described in the following table.

 Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the input message is propagated if a failure is detected during the

computation. If you have selected Treat warnings as errors, the node propagates the message to this

terminal even if the processing completes successfully.

Out The output terminal that outputs the message following the execution of the database statement.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The Warehouse node Description properties are described in the following table.

 Property M C Default Description

Node

name

No No Warehouse The name of the node.

Short

description

No No A brief description of the node.

Long

description

No No Text that describes the purpose of the node in the message flow.

The Warehouse node Basic properties are described in the following table.

1214 Message Flows

Property M C Default Description

Data

source

No Yes The ODBC data source name of the database that contains the tables to

which you refer in the mappings that are associated with this node

(identified by the Field mapping property). The name identifies the

appropriate database on the system on which this message flow is to run.

The broker connects to this database with user ID and password

information that you have specified on the mqsicreatebroker,

mqsichangebroker, or mqsisetdbparms command.

z/OS

On z/OS systems, the broker uses the broker started task ID, or

the user ID and password that are specified on the mqsisetdbparms

command JCL, BIPSDBP in the customization data set <hlq>.SBIPPROC.

Field

mapping

Yes No Warehouse The name of the mapping routine that contains the statements that are to be

executed against the database or the message tree.

By default, the name that is assigned to the mapping routine is identical to

the name of the mappings file in which the routine is defined, and the

default name for the file is the name of the message flow concatenated with

the name of the node when you include it in the message flow (for

example, MFlow1_Warehouse.msgmap for the first Warehouse node in

message flow MFlow1). You cannot specify a value that includes spaces.

If you click Browse next to this entry field, a dialog box is displayed that

lists all available mapping routines that can be accessed by this node. Select

the routine that you want and click OK; the routine name is set in Field

mapping.

To work with the mapping routine that is associated with this node,

double-click the node, or right-click the node and select Open Mappings. If

the mapping routine does not exist, it is created for you with the default

name in the default file. If the file exists already, you can also open file

flow_name_node_name.msgmap in the Broker Development view.

The content of the mapping routine determines what is stored in the

database, and in what format. You can, for example, store all or just a part

of each message. You can also store the data as binary data, or store each

field in the same format as it is in the message (for example, a character

field in the message is stored as character in the database).

A mapping routine is specific to the type of node with which it is

associated; you cannot use a mapping routine that you have developed for

a Warehouse node with any other node that uses mappings (for example, a

DataInsert node). If you create a mapping routine, you cannot call it from

any other mapping routine, although you can call it from an ESQL routine.

For more information about working with mapping files, and defining their

content, see “Developing message mappings” on page 472.

Transaction Yes No Automatic The transaction mode for the node. Select the value that you require:

v If you select Automatic (the default), the message flow, of which the

Warehouse node is a part, is committed if it is successful; that is, the

actions that you define in the mappings are taken and the message

continues through the message flow. If the message flow fails, it is rolled

back. Therefore, selecting Automatic means that the ability to commit or

roll back the action of the Warehouse node on the database depends on

the success or failure of the entire message flow.

v If you select Commit, any uncommitted actions that are taken in this

message flow are committed on the database that is connected to this

node, irrespective of the success or failure of the message flow as a

whole. The changes to the database are committed even if the message

flow itself fails.

Message flows 1215

Property M C Default Description

Treat

warnings

as errors

Yes No Cleared For database warning messages to be treated as errors, and the node to

propagate the output message to the Failure terminal, select Treat warnings

as errors. The check box is cleared by default.

When you select the check box, the node handles all positive return codes

from the database as errors and generates exceptions in the same way as it

does for the negative, or more serious, errors.

If you do not select the check box, the node treats warnings as typical

return codes, and does not raise any exceptions. The most significant

warning raised is not found, which can be handled as a typical return code

safely in most circumstances.

Throw

exception

on

database

error

Yes No Selected For the broker to generate an exception when a database error is detected,

select Throw exception on database errors. The check box is selected by

default.

If you clear the check box, you must handle the error in the message flow

to ensure the integrity of the broker and the database; the error is ignored if

you do not handle it through your own processing, because you have

chosen not to invoke the default error handling by the broker; for example,

you can connect the Failure terminal to an error processing subroutine.

XSLTransform node

Use the XSLTransform node to transform an XML message to another form of

message, according to the rules provided by an XSL (Extensible Stylesheet

Language) style sheet, and to set the Message domain, Message set, Message type,

and Message format for the generated message.

This node was formerly known as the XMLTransformation node.

This topic contains the following sections:

v “Purpose”

v “Using this node in a message flow” on page 1217

v “Deployed and non-deployed style sheets” on page 1219

v “Configuring the XSLTransform node” on page 1220

v “Terminals and properties” on page 1223

Purpose

You can specify the location of the style sheet to apply to this transformation in

three ways:

v Use the content of the XML data within the message itself to transform the

message according to a style sheet that the message itself defines.

v Set a value within the LocalEnvironment folder. You must set this value in a

node that precedes the XSLTransform node (for example, a Compute node). You

can therefore use a variety of inputs to determine which style sheet to use for

this message, such as the content of the message data, or a value in a database.

v Use node properties to ensure that the transformation that is defined by this

single style sheet is applied to every message that is processed by this node.

An XSLT (Extensible Stylesheet Language for Transformations) compiler is used for

the transformation if the style sheet is not embedded within the message, and the

1216 Message Flows

node cache level (node property Stylesheet Cache Level) is greater than zero. If the

XSLT is cached, the performance is improved because the XSLT is not parsed every

time it is used.

If the prologue of the input message body contains an XML encoding declaration,

the XSLTransform node ignores the encoding, and always uses the CodedCharSetId

in the message property folder to decode the message.

The XSLTransform node is contained in the Transformation drawer of the palette,

and is represented in the workbench by the following icon:

Using this node in a message flow

For an example of how to use this node, consider two news organizations that

exchange information on a regular basis. One might be a television station, the

other a newspaper. Although the information is similar, the vocabulary that is used

by the two is different. This node can transform one format to the other by

applying the rules of the specified style sheet. If you specify the style sheet in the

message (either the XML data or the LocalEnvironment), the same node can

perform both transformations.

You cannot use relative path external entities that are defined in the DTD of input

messages (for example, <!DOCTYPE note [<!ENTITY chap1 SYSTEM "chap1.xml">]>).

Use an absolute path definition.

Look at the following sample for more details about how to use the XSLTransform

node:

v XSL Transform sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

Using LocalEnvironment variables to set properties

This node supports a number of LocalEnvironment message tree variables, which

you can use to dynamically alter the values that are set in the node’s properties.

The following table lists each LocalEnvironment variable against the name of the

node property that it overrides:

 Local environment variable name Node property name

XSL.StyleSheetName Stylesheet name

XSL.MessageDomain Message domain

XSL.MessageSet Message set

XSL.MessageType Message type

XSL.MessageFormat Message format

XSL.OutputCharSet Character set

This node searches for the name of the style sheet to be used by interrogating, in

the following order:

Message flows 1217

|
|
|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.xmlt.doc/doc/overview.htm

1. The input message. The node searches the message XML data for information

about the location of the style sheet. For example, the XML data might contain:

<?xml-stylesheet type="text/xsl" href="foo.xsl"?>

and ″foo.xsl″ is then used as the name of the style sheet.

2. The LocalEnvironment. If no style sheet name is found in the input message,

the node searches the LocalEnvironment that is associated with the current

message for style sheet information stored in an element called

XSL.StyleSheetName.

This node was available in Version 5.0 and Version 6.0, and element

ComIbmXslXmltStylesheetname was used for the name of the style sheet,

therefore the current node checks both elements. If both are present, the value

in XSL.StyleSheetName takes precedence.

3. The node’s properties. If no style sheet name is found in the input message or

LocalEnvironment, the node uses the Stylesheet name and Stylesheet directory

properties to determine the correct values.

The node searches for the message domain, message set, message type, and

message format to use for the output message by interrogating, in the following

order:

1. The LocalEnvironment. The node searches the LocalEnvironment that is

associated with the current message for message domain, message set, message

type, and message format information stored, respectively, in elements called

XSL.MessageDomain, XSL.MessageSet, XSL.MessageType, and

XSL.MessageFormat.

2. The node’s properties. If no message domain, message set, message type, or

message format information is found in these LocalEnvironment variables, the

node uses, respectively, the Message domain, Message set, Message type, and

Message format properties to determine the correct values.

If the node cannot determine the message domain from either XSL.MessageDomain

or the Message domain property, the default value of BLOB is used. There are no

default values for message set, message type, and message format.

The node searches for the character set to use for the output message by

interrogating, in the following order:

1. The LocalEnvironment. The node searches the LocalEnvironment that is

associated with the current message for character set information stored in an

element called XSL.OutputCharSet; for example, to encode the output of the

transformation as UTF-8, enter the value 1208 as a string in this element.

This node was available in Version 5.0 and Version 6.0, and element

ComIbmXslXmltOutputcharset was used for the output character set, therefore

the current node checks both elements. If both are present, the value in

XSL.OutputCharSet takes precedence.

2. The node’s properties. If no character set information is found in the

LocalEnvironment, the node uses the Character set property to determine the

correct value.

If you set a value for Character set, the value that you enter must be numeric;

for example, to encode the output of the transformation as UTF-16, enter 1200.

If the node cannot determine the output character set from either of these two

sources, because either no value is set or the selection priorities are set to zero, the

default value of 1208 (UTF-8) is used.

1218 Message Flows

You should be aware of certain considerations if the input to the XSLTransform

node is generated from the XMLNSC parser or the MRM parser. The XMLNSC

parser discards certain information in XML documents, such as processing

instructions and comments, if you do not set properties to retain this information

in a preceding node. To ensure that the XSLTransform node transforms the

message correctly, set the Retain mixed content, Retain comments, and Retain

processing instructions properties correctly on the preceding node (for example, an

MQInput node). The MRM parser also discards this information, but you cannot

retain information for this parser, therefore avoid using the MRM domain if such

information is vital to your transformation.

Deployed and non-deployed style sheets

You can use style sheets in two different ways with the XSLTransform node:

Deployed style sheets

Deployed style sheets are style sheets that you import into a broker archive

(bar) file and deploy to target systems. Deployed style sheets are managed

by the broker. A principal style sheet is the root style sheet that is referenced

in a message flow; for example, a reference to a principal style sheet in the

Eclipse workspace, C:\\project1\a\b.xsl must be specified as a/b.xsl (or

./a/b.xsl). A principal style sheet can reference (include or import) its

descendent style sheets.

Non-deployed style sheets

Non-deployed style sheets are style sheets that you store in a location

where the XSLTransform node can access them. Non-deployed style sheets

are not managed by the broker.

For more information, see Migrating style sheets and XML files from Version 5.0.

Deployment of deployed style sheets or XML files

Before you can configure the XSLTransform node, you must understand how to

work with style sheets. A style sheet can refer to both another XML file and a style

sheet. To use deployed style sheets or XML files:

1. Make sure that the files have the correct file name extensions.

Style sheets that are to be deployed must have either .xsl or .xslt as their file

extension, and XML files to be deployed must have .xml as their file extension.

2. Import the files into the Eclipse workspace.

Import into an Eclipse workspace project all style sheets and XML files that are

to be deployed. Put location-dependent descendant style sheets, or XML files

that are to be deployed, in the correct directory structure relative to their parent

style sheets. Do not put in the Eclipse workspace location-dependent

descendants that you do not want to deploy.

3. Make sure that all references to the files are relative.

Typically, all references to a deployed style sheet must be made relative, no

matter where they are displayed. A reference to a principal style sheet must be

made relative to the root of the relevant Eclipse workspace project.

The only exception is when you specify a principal style sheet as the Stylesheet

name property on an XSLTransform node; you can use an absolute path that

points to the correct directory structure in the Eclipse workspace. If the

principal style sheet is found, the system resets the node property automatically

to the correct relative value.

Message flows 1219

The system also performs an automatic deployment of the principal style sheet,

together with all of its location-dependent descendant style sheets that are

available in the relevant Eclipse workspace project. All references to the

location-dependent descendant style sheets (or XML files) of a principal style

sheet must be made relative to the location of their parent style sheets. For

example, if style sheet //project1/a/b.xsl references style sheet

//project1/a/c/d.xsl, the reference must be changed to c/d.xsl (or ./c/d.xsl).

4. Handle non-deployed child style sheets or XML files.

Style sheets can refer to other style sheets. If you have a relatively-referenced

child style sheet (or XML file) that is not to be deployed, yet its parent is, make

sure that the child style sheet is placed in the correct location under

workpath/XSL/external (workpath/XML/external), where workpath is the full

path to the working directory of the broker.

A broker automatically associates the execution group deployed storage tree,

workpath/XSL/external, and workpath/XML/external tree, together. Therefore if,

for example, the document b/c.xml is not found in the broker’s deployed

storage, the broker automatically searches for a reference to it in the

workpath/XML/external/a/b directory in the deployed principal style sheet

a/style.xsl. Relative path references must also be used for files that have been

deployed but which are not available in the workspace.

5. Deploy the files.

Deploy manually only those style sheets or XML files that are not picked up by

the system (the Message Broker Toolkit provides warnings about these files). If

you click Browse for the node, or provide the full path of the location of the

style sheet in the Eclipse workspace, the style sheet is included automatically in

the bar file.

To deploy manually, add the files to be deployed to a broker archive. For more

information, see “Adding files to a broker archive” on page 759 and “Adding

keywords to XSL style sheets” on page 1225.

For every execution group that uses the XSLTransform node, perform one of

the following actions:

v Include the style sheet in the workpath/XSL/external directory on the broker;

do not include the style sheet in the bar file.

If a style sheet in the workpath/XSL/external directory shares the same path

and name with a deployed style sheet, the deployed style sheet is used.

v Include the style sheet in the bar file and deploy the bar file. If multiple bar

files include the same style sheet name, the style sheet from the last bar file

that was deployed is used.

v Deploy the style sheet in its own bar file. If the bar files use XSLTransform

nodes, but do not include the style sheet, the Message Broker Toolkit issues

warning messages.

Configuring the XSLTransform node

When you have put an instance of the XSLTransform node into a message flow,

you can configure it; see “Configuring a message flow node” on page 235. The

properties of the node are displayed in the Properties view.

All mandatory properties for which you must enter a value (those that do not have

a default value defined) are marked with an asterisk.

Configure the XSLTransform node:

1220 Message Flows

1. Optional: On the Description tab, enter a Short description, a Long description,

or both. You can also rename the node on this tab.

2. On the Stylesheet tab, to specify a style sheet using node properties, enter the

required value for Stylesheet name.

Specify a principal style sheet using one of the following methods:

v Click Browse next to Stylesheet name. The identified principal style sheet

and all its relatively-referenced descendant style sheets are added

automatically to the bar file when you add a message flow to a bar file (if

both they and their parent style sheets are available).

v To identify an already deployed, or ready to be deployed, style sheet, use the

Stylesheet name property, and leave the Stylesheet directory property blank.

v In the Message Flow editor, drag an .xslt file onto the XSLTransform node;

the Stylesheet name is set automatically.
3. On the Advanced sub-tab:

a. If the style sheet identification is fully qualified, Stylesheet directory is

ignored; otherwise, the value that you set in this property is added to the

beginning of the specification, regardless of where it is found.

b. In Stylesheet cache level, specify the number of compiled or parsed style

sheets that are stored in this instance of the node; the default value is 5. The

style sheet cache is retained for the life of the node, and is cleared when the

node is deleted from the flow, when the flow is deleted, or when the

execution group is stopped.

If you change a cached style sheet (by redeploying or replacing the file in

the file system), the XSLTransform node that is holding the cache replaces

the cached version with the modified (latest) version before a new message

is processed. However, if you are changing several style sheets, stop

relevant message flows before you make any changes. If you do not stop

the relevant message flows before you make the changes, the order of the

changes cannot be guaranteed by running message flows, which might

cause an incompatibility between the style sheets that are changed. Use the

mqsireload command to reload a style sheet; however, this command does

not prevent incompatibility.
4. On the Output Message Parsing tab:

a. To associate a specific parser with the output message, specify the new

domain in Message domain. The default value is BLOB. This domain is

applied to the output message. Alternatively, use Inherit to associate the

parser that owned the input message.

v MRM

v XMLNSC

v XMLNS

v JMSMap

v JMSStream

v MIME

v BLOB

v XML (deprecated - use XMLNSC)

v Inherit

You can also specify a user-defined parser if appropriate.

b. If you are using the MRM parser, or the XMLNSC parser in validating

mode, select the Message set that you want to use. This list is populated

with available message sets when you select MRM or XMLNSC as the

domain.

Message flows 1221

c. If you are using the MRM parser, select the correct message from the list in

Message type. This list is populated with messages that are defined in the

Message set that you have selected.

d. If you are using the MRM parser, select the XML physical format for the

output message from the list in Message format. This list includes all the

physical formats that you have defined for this Message set.

e. To specify a character set for the output message using node properties,

specify the required value for Character set. The value that you specify

must be numeric; for example, specify 1200 to encode the output message

as UTF-16.
5. On the Parser Options sub-tab:

a. Parse timing is, by default, set to On Demand, which causes parsing of the

message to be delayed. To cause the message to be parsed immediately, see

“Parsing on demand” on page 1363.

b. If you are using the XMLNSC parser, set values for the properties that

determine how the XMLNSC parser operates. For more information, see

“Manipulating messages in the XMLNSC domain” on page 364.
6. On the Validation tab, set the validation properties for the parser to validate

the body of messages against the Message set. (If a message is propagated to

the Failure terminal of the node, it is not validated.)

For more details, see “Validating messages” on page 164 and “Validation

properties” on page 1359.

7. On the Detail Trace tab, set the Trace setting property to trace the actions of the

XSLTransform node. The default value is Off. To activate trace, set the property

to On.

The trace information is written to a trace file XMLTTrace.log:

v

z/OS

On z/OS systems, the file is located in install_dir/output, where

install_dir is the directory in which you have installed the broker.

v

Windows

On Windows systems, the file is located in workpath\log if you

have specified the -w option of the mqsicreatebroker command. If you have

not specified the broker workpath, data is written to C:\Documents and

Settings\All Users\Application Data\IBM\MQSI\common\log.

v

Linux

UNIX

On Linux and UNIX systems, the file is located in

/var/mqsi/common/log.

If you set Trace setting to On for one XSLTransform node, it is on for all of the

nodes in the execution group.

This property is now deprecated. Any relevant trace now goes into the user

trace, provided that user debug trace is enabled. The setting of Trace setting in

the XSLTransform node does not affect any user trace.

If you have large XML messages and receive an out of memory error, use the

mqsireportproperties command to see the current value of the Java Heap size for

the XSLT engine:

mqsireportproperties brokerName -e executionGroupLabel

 -o ComIbmJVMManager -n jvmMaxHeapSize

Use the mqsichangeproperties command to increase the Java Heap size:

mqsichangeproperties brokerName -e executionGroupLabel

 -o ComIbmJVMManager -n jvmMaxHeapSize -v newSize

In the previous examples, replace brokerName, executionGroupLabel, and newSize with

the appropriate values.

1222 Message Flows

The value that you choose for newSize depends on the amount of physical memory

that your computer has, and how much you are using Java. A value in the range

512 MB (536870912) to 1 GB (1073741824) is typically sufficient.

Terminals and properties

The XSLTransform node terminals are described in the following table.

 Terminal Description

In The input terminal that accepts the message for processing by the node.

Failure The output terminal to which the original message is routed if an error is detected

during transformation.

Out The output terminal to which the successfully transformed message is routed.

The following tables describe the node properties. The column headed M indicates

whether the property is mandatory (marked with an asterisk if you must enter a

value when no default is defined); the column headed C indicates whether the

property is configurable (you can change the value when you add the message flow

to the bar file to deploy it).

The XSLTransform node Description properties are described in the following table.

 Property M C Default Description

Node name No No The node

type

The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the

message flow.

The XSLTransform node Stylesheet properties are described in the following table.

 Property M C Default Description

Stylesheet name No Yes The name of the style sheet, used if the style sheet

specification is searched for in node properties.

The XSLTransform node Advanced properties are described in the following table.

 Property M C Default Description

Stylesheet directory No Yes The path where the style sheet is located. This path is

used by all location methods.

Stylesheet cache level No No 5 The number of compiled or parsed style sheets that are

stored in this instance of the node.

The XSLTransform node Output Message Parsing properties are described in the

following table.

 Property M C Default Description

Message domain No No BLOB The message domain that is associated with the output

message.

Message flows 1223

Property M C Default Description

Message set No No The message set that is associated with the output

message.

If you set this property, then subsequently update the

project dependencies to remove this message set

reference, a warning is issued. Either update the

Message set property, or restore the reference to this

message set project.

Message type No No The message type that is associated with the output

message.

Message format No No The message format that is associated with the output

message.

Character set No No The numeric value of the character set for the output

message.

The XSLTransform node Parser Options are described in the following table.

 Property M C Default Description

Parse timing No No On Demand This property controls when an output message is

parsed. Valid values are On Demand, Immediate, and

Complete.

For a full description of parsing on demand, see

“Parsing on demand” on page 1363.

Build tree using XML

schema data types

No No Cleared This property controls whether the XMLNSC parser

creates syntax elements in the message tree with data

types taken from the XML Schema. You can select this

property only if you set the Validate property to Content

or Content and Value.

Use XMLNSC

compact parser for

XMLNS domain

No No No This property controls whether the XMLNSC Compact

Parser is used for output messages in the XMLNS

Domain. If you set this property, the message data

appears under XMLNSC in nodes that are connected to

the output terminal when the input MQRFH2 header or

Domain is XMLNS.

The XSLTransform node Validation properties are described in the following table.

For a full description of Validation properties, see “Validation properties” on page

1359.

 Property M C Default Description

Validate No Yes None This property controls whether validation takes place

of the output message. Valid values are None, Content,

Content and Value, and Inherit.

Failure action No No Exception This property controls what happens if validation of

the output message fails. You can set this property only

if you set Validate to Content and Value or Content.

Valid values are User Trace, Local Error Log, Exception,

and Exception List.

The XSLTransform node Detail Trace properties are described in the following

table.

1224 Message Flows

|
|
|
|
|

Property M C Default Description

Trace setting Yes No Off This property controls whether tracing is on or off. If

tracing is on, low level tracing is recorded in a file.

Adding keywords to XSL style sheets

Keywords can be embedded at any place in an XSL style sheet. The keyword can

be added as an XML comment.

XML comments must have the following format:

$MQSI keyword = value MQSI$

The example shows how to add the keyword of author with the value John to an

XML style sheet:

<?xml version="1.0" encoding="UTF-8">

<!-- $MQSI author = John MQSI$>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="text" encoding="UTF-8"/>

<xsl:template match="/">

<xsl:value-of select="message"/>

</xsl:template>

</xsl:stylesheet>

The Configuration Manager does not extract version="1.0" from this example,

because the value is not bounded by the $MQSI and MQSI$ keywords.

Restrictions within keywords

Do not use the following characters within keywords, because they might cause

unpredictable behavior:

^$.|\<>?+*=&[]

You can use these characters in the values that are associated with keywords, for

example:

v $MQSI RCSVER=$id$ MQSI$ is acceptable

v $MQSI $name=Fred MQSI$ is not acceptable

User-defined nodes

You can define your own nodes to use in WebSphere Message Broker message

flows.

User-defined nodes add to the function that is provided by the WebSphere

Message Broker supplied nodes. You can also use nodes that are created and

supplied by independent software vendors and other companies.

Follow the instructions in Adding help to the node that describe how to provide

help information for user-defined nodes, and how to include that help in this

section of the information center.

WebSphere Adapters properties

Reference information about the properties that you set for WebSphere Adapters

nodes.

Message flows 1225

See the properties for the Enterprise Information System (EIS) to which you want

to connect:

v “WebSphere Adapter for SAP properties”

v “WebSphere Adapter for Siebel properties” on page 1287

v “WebSphere Adapter for PeopleSoft properties” on page 1309

WebSphere Adapter for SAP properties

Reference information to which to refer when you connect to an SAP application.

v “Business object information”

v “Supported data operations”

v “Naming conventions” on page 1230

v “Configuration properties for the WebSphere Adapter for SAP Software” on

page 1234

Business object information

A business object contains application-specific information (metadata) about how

the adapter processes the business object, and about the operation to be performed

on the business object.

The name of the business object is generated by the Adapter Connection wizard in

accordance with the naming convention for the adapter.

For more information, see the following topics:

v “Supported data operations”

v “Naming conventions” on page 1230

Supported data operations:

For outbound processing, an operation is the name of the action that is

implemented by the adapter so that the client application component can perform

the operation on the SAP server.

 The adapter uses the application-specific information (ASI) inside the business

object definition to implement the operation. The name of the operation typically

indicates the type of action to be implemented, such as create or update. For

inbound processing, adapters implement an operation by delivering events to their

endpoints. For inbound processing, the action that is associated with the event

varies depending on the interface (ALE or Advanced event processing). When the

interface is ALE, the action is pushed to the adapter and the adapter delivers the

event to an endpoint. When the interface is Advanced event processing, the event

status is polled by the adapter and processed accordingly.

For more information, see the following topics:

v “Supported data operations on BAPI business objects”

v “Supported data operations on ALE business objects” on page 1227

v “Supported data operations of Query interface for SAP Software business

objects” on page 1228

v “Supported data operations on Advanced event processing business objects” on

page 1229

Supported data operations on BAPI business objects:

1226 Message Flows

The operations that are supported by BAPI business objects are the same as those

supported by BAPI work units. BAPI result sets support only the RetrieveAll

operation.

 For BAPI outbound processing, the operation of a BAPI business object is the name

of the BAPI call that an adapter issues on the SAP server. The BAPI method

determines the operation that is associated with it. The adapter uses the

application-specific information (ASI) inside the business object definition to

implement the operation. Operations of a business object are called by the

component that makes calls to SAP through the adapter. The SAP JCo APIs are

used to make the call to the SAP system.

BAPIs and BAPI unit of work

The following table defines operations that the adapter supports for BAPIs and

BAPI work units. The definitions in the table are the expected uses for the

operations. The action that is taken in the SAP application is based on the meaning

of the BAPI itself.

 Table 45. Supported operations: BAPI business objects

Operation Definition

Create The top-level business object and all contained children are created.

Update The top-level business object is modified. This operation can include

adding and deleting child objects.

Delete The top-level business object and any contained children are deleted.

Retrieve The top-level business object and any contained children are

retrieved.

For an operation that is not supported, the adapter logs the appropriate error and

produces a ResourceException.

Result sets

The following table defines the operation that the adapter supports for BAPI result

sets.

 Table 46. Supported operation: BAPI result sets

Operation Definition

RetrieveAll All the matching records for the BAPI result set are retrieved.

Supported data operations on ALE business objects:

The operations that are supported by ALE business objects vary, depending on

whether the business object is an outbound or inbound object. The adapter uses

the application-specific information (ASI) inside the business object definition to

implement the operation.

 Business objects that are generated with the ALE pass-through IDoc interface are

not associated with an operation.

Message flows 1227

|
|

Outbound business objects

The operation of an ALE outbound business object is called by the application

component that makes calls to SAP through the adapter. The adapter supports the

following outbound operation:

 Table 47. Supported operation: ALE outbound business objects

Operation Definition

Execute This operation posts the IDoc business object to the SAP

application. This operation is one-way and asynchronous.

For the CWYAP_SAPAdapter_TX.rar version of the

adapter, the transaction ID is returned.

Inbound business objects

For ALE inbound business objects, the application-specific information of an

operation contains the message type, message code, and message function for an

IDoc type. The adapter supports the following inbound operations:

 Table 48. Supported operations: ALE inbound business objects

Operation Definition

Create The top-level business object and all contained children

are created.

Update The top-level business object is modified. This operation

can include adding and deleting child objects.

Delete The top-level business object and any contained children

are deleted.

The adapter uses the IDoc control record field data to determine the operation that

is set on the business object before sending it to the endpoint. The following fields

in the control record are used to determine the operation:

v Logical_message_type (MESTYP)

v Logical_message_code (MESCOD)

v Logical_message_function(MESFCT)

Supported data operations of Query interface for SAP Software business objects:

The SAP Query interface supports the RetrieveAll operation, with which you can

have the results of an SAP table returned to you, and the Exists operation, which

you use to determine whether data can be found in the SAP table. The adapter

uses the application-specific information (ASI) inside the business object definition

to implement the operation.

 The supported operations for the Query interface for SAP Software are listed in the

following table.

1228 Message Flows

|
|
|

|

|

|

Table 49. Supported operations: Query interface for SAP Software business objects

Operation Description

RetrieveAll This operation returns a result set in the form of a container of

SAP query business objects, which represent the data for each row

that is retrieved from the table. If a table business object is sent to

the SAP server (instead of a container business object), the rows

are returned one at a time.

Exists This operation provides a means to check for the existence of any

records in SAP for a defined search criteria. The Exists operation

does not return any data; it indicates whether the data exists in

SAP. If no data is found, the adapter generates an exception.

Supported data operations on Advanced event processing business objects:

The operations that are supported by Advanced event processing business objects

vary, depending on whether the business object is an outbound or inbound object.

The adapter uses the application-specific information (ASI) inside the business

object definition to implement the operation.

 Outbound business objects

The operation of an Advanced event processing outbound business object is

invoked by the client application that makes calls to SAP through the adapter. The

adapter supports the following outbound operation.

 Table 50. Supported operation: Advanced event processing outbound business objects

Operation Definition

Create The top-level business object and all contained children

are created.

Update The top-level business object is modified. This operation

can include adding and deleting child objects.

Delete The top-level business object and any contained children

are deleted.

Retrieve The top-level business object and any contained children

are retrieved.

Inbound business objects

For Advanced event processing inbound business objects, the application-specific

information of an operation contains the message type, message code, and message

function for an IDoc type. The adapter supports the following inbound operations.

 Table 51. Supported operations: Advanced event processing inbound business objects

Operation Definition

Create The top-level business object and all contained children

are created.

Update The top-level business object is modified. This operation

can include adding and deleting child objects.

Delete The top-level business object and any contained children

are deleted.

Message flows 1229

Naming conventions:

When the Adapter Connection wizard generates a business object, it provides a

name for the business object that is based on the name of the corresponding

business function in the SAP server.

 The convention that is applied by the SAP server when naming a business object

varies depending on whether the name is for a BAPI business object, an ALE

business object, an Advanced event processing business object, or a Query interface

for SAP Software business object.

For more information, see the following topics:

v “Naming conventions for BAPI business objects”

v “Naming conventions for ALE business objects” on page 1231

v “Naming conventions for Query interface for SAP Software business objects” on

page 1232

v “Naming conventions for Advanced event processing business objects” on page

1233

Naming conventions for BAPI business objects:

The Adapter Connection wizard provides names for the business objects for BAPIs,

BAPI work units, and BAPI result sets. At its core, the business object name reflects

the structure of the business function on the SAP server.

 BAPIs

When it names business objects for BAPIs, the Adapter Connection wizard adds a

prefix of Sap. The wizard also converts the name of the business function to mixed

case, removing any separators such as spaces or underscores, capitalizes the first

letter of each word, and it can add an element-specific suffix (for example, Wrapper

for a top-level business object).

The following table describes the convention that is applied by the Adapter

Connection wizard when it names BAPI business objects.

 Table 52. Naming conventions for BAPI business objects

Element Naming convention

Name of the top-level

business object

Sap + Name of the wrapper object that you specify in the

Adapter Connection wizard + Wrapper

For example: SapSalesOrderWrapper

Name of the BAPI

business object

Sap + Name of the BAPI interface

For example: SapBapiSalesOrderCreateFromDat1

The top-level object can contain more than one BAPI object.

Name of the child object Sap + Name of the Structure/Table

For example: SapReturn

If structures with the same name exist in different BAPIs, or exist within a BAPI

(for example, one at the export level and one at the table level), the Adapter

Connection wizard adds a unique suffix to differentiate the structures. The first

structure is assigned a name (for example, SapReturn) and the second structure is

1230 Message Flows

assigned a name such as SapReturn619647890, where 619647890 is the unique

identifier that is appended to the name by the wizard.

BAPI work units

The following table describes the convention that is applied by the Adapter

Connection wizard when it names a BAPI work unit business object.

 Table 53. Naming conventions for BAPI unit of work business objects

Element Naming convention

Name of the top-level

business object

Sap + Name of the wrapper object that you specify in the

Adapter Connection wizard + Txn

For example: SapCustomerTxn

Name of the BAPI

business object

Sap + Name of the BAPI interface

For example: SapCustomer

Name of the child object Sap + Name of the Structure/Table

For example: SapReturn

If structures with the same name exist in different BAPIs, or exist within a BAPI

(for example, one at the export level and one at the table level), the Adapter

Connection wizard adds a unique suffix to differentiate the structures. The first

structure is assigned a name (for example, SapReturn) and the second structure is

assigned a name such as SapReturn619647890, where 619647890 is the unique

identifier that is appended to the name by the wizard.

BAPI result sets

The following table describes the convention that is applied by the Adapter

Connection wizard when it names a BAPI result sets business object.

 Table 54. Naming conventions for BAPI result sets

Element Naming convention

Name of the result set

BAPI business object

Sap + Name of the BAPI interface

For example: SapBapiCustomerGetDetail

Name of the child object Sap + Name of the Structure/Table

For example: SapReturn

Name of the query

business object

Sap + Formatted name of the query BAPI interface

For example: SapBapiCustomerGetList

If structures with the same name exist in different BAPIs, or exist within a BAPI

(for example, one at the export level and one at the table level), the Adapter

Connection wizard adds a unique suffix to differentiate the structures. The first

structure is assigned a name (for example, SapReturn) and the second structure is

assigned a name such as SapReturn619647890, where 619647890 is the unique

identifier that is appended to the name by the wizard.

Naming conventions for ALE business objects:

Message flows 1231

The Adapter Connection wizard provides names for the ALE business graph,

top-level business object, and the business object itself. At its core, the business

object name reflects the structure of the business function on the SAP server.

 If you are using the ALE pass-through IDoc interface, the following naming

conventions apply:

v When you select Generic IDoc from the Object Discovery and Selection window,

the Adapter Connection wizard creates a business object named

SapGenericIDocObject. The naming convention described in the following

sections does not apply to generic IDocs.

v When you discover an IDoc from the system or from a file, the object is named

according to the naming convention for top-level wrapper objects, as described

in Table 55. No other objects are generated.

When it names business objects for ALE, the Adapter Connection wizard adds a

prefix of Sap. The wizard also converts the name of the IDoc and extension to

mixed case, removing any separators such as spaces or underscores, capitalizes the

first letter of each word, and it can add an element-specific suffix (for example, BG

for business graph).

The following table describes the conventions that are applied by the Adapter

Connection wizard when it names ALE business objects. The [Name of Extension

type IDoc] in the Naming convention column represents an optional entry. It is

included in the name only if the selected IDoc is an Extension Type IDoc.

 Table 55. Naming conventions for ALE business objects

Element Naming convention

Name of the top-level

wrapper object

Sap + Name of IDoc + [Name of Extension type IDoc]

For example: SapAlereq01

Name of the IDoc

business object for basic

IDocs

Sap + Name of IDoc + BO

For example, the business object for the IDoc MATMAS03 is:

SapMatmas03BO

Name of the IDoc

business object for

extension type IDocs

Sap + Name of IDoc + Name of Extension type IDoc

For example, the business object for the IDoc DELVRY03 and

extension SD_DESADV_PDC is: SapDelvry03SdDesadvPdc

In the case of an IDoc duplicate name, the Adapter Connection wizard adds a

unique suffix to differentiate the business object. If an IDoc packet has two

segments with the same name (for example, segOrder), the first business object is

assigned the name SapSegOrder and the second business object is assigned a name

such as SapSegOrder619647890, where 619647890 is the unique identifier that the

Adapter Connection wizard appends to the name.

Naming conventions for Query interface for SAP Software business objects:

The Adapter Connection wizard provides names for the Query interface for SAP

Software container, business graph, top-level business object, table object, and

query object. At its core, the business object name reflects the structure of the

business function on the SAP server

 When it names business objects for the Query interface for SAP Software,

theAdapter Connection wizard adds a prefix of Sap. The wizard also converts the

1232 Message Flows

|
|

|
|
|
|

|
|
|

name of the business function or SAP table to mixed case, removing any separators

such as spaces or underscores, capitalizes the first letter of each word, and it can

add an element-specific suffix (for example, Container for a container).

The following table describes the convention that is applied by the Adapter

Connection wizard when it names a Query interface for SAP Software business

object.

 Table 56. Naming convention for a Query interface for SAP Software business object

Element Naming convention

Name of the container Sap + Name of the object that you specify in the wizard + Container

For example: SapCustomerContainer

Name of the table object Sap + Name of the SAP table

For example: SapKna1

Name of the query

object

Sap + Name of the SAP table + Querybo

For example: SapKna1Querybo

Naming conventions for Advanced event processing business objects:

The Adapter Connection wizard provides names for the Advanced event

processing business graph, top-level business object, and the business object itself.

At its core, the business object name reflects the structure of the business function

on the SAP server.

 When it names business objects for the Advanced event processing interface,

theAdapter Connection wizard adds a prefix of Sap. The wizard also converts the

name of the IDoc and extension to mixed case, removing any separators such as

spaces or underscores, capitalizes the first letter of each word, and it might add an

element-specific suffix.

The following table describes the convention that is applied by the Adapter

Connection wizard when it names Advanced event processing business objects.

The [Name of Extension type IDoc] in the Naming convention column represents an

optional entry; it is included in the name only if the selected IDoc is an Extension

Type IDoc.

 Table 57. Naming convention for advanced event processing business objects

Element Naming convention

Name of the top-level

wrapper object

Sap + Name of IDoc + [Name of Extension type IDoc]

For example: SapAepreq01

Name of the IDoc

business object for basic

IDocs

Sap + Name of IDoc + BO

For example, the business object for the IDoc MATMAS03 is:

SapMatmas03BO

Name of the IDoc

business object for

extension type IDocs

Sap + Name of IDoc + Name of Extension type IDoc

For example, the business object for the IDoc DELVRY03 and

extension SD_DESADV_PDC is: SapDelvry03SdDesadvPdc

In the case of an IDoc duplicate name, the Adapter Connection wizard adds a

unique suffix to differentiate the business object. If an IDoc packet has two

Message flows 1233

segments with the same name (for example, segOrder), the first business object is

assigned the name SapSegOrder and the second business object is assigned a name

such as SapSegOrder619647890, where 619647890 is the unique identifier that is

appended to the name by the Adapter Connection wizard.

Configuration properties for the WebSphere Adapter for SAP

Software

The WebSphere Adapter for SAP Software has several categories of configuration

properties, which you set with the Adapter Connection wizard when you generate

or create objects and services.

You can change the resource adapter, managed connection factory, and activation

specification properties in WebSphere Message Broker.

For more information, see the following topics:

v “SAP connection properties for the Adapter Connection wizard”

v “Resource adapter properties” on page 1243

v “Managed connection factory properties” on page 1244

v “Activation specification properties for ALE inbound processing” on page 1253

v “Activation specification properties for Advanced event processing” on page

1271

v “Interaction specification properties” on page 1283

SAP connection properties for the Adapter Connection wizard:

Connection properties establish a connection between the Adapter Connection

wizard, a tool that is used to create business objects, and the SAP server. The

properties that you configure in the Adapter Connection wizard specify such

things as connection configuration, and tracing and logging options.

 After you have established a connection between the Adapter Connection wizard

and the SAP server, the wizard can access the metadata that it needs from the SAP

server to create business objects.

Some of the properties that you set in the Adapter Connection wizard are used as

the initial values for resource adapter, managed connection factory, and activation

specification properties that you can specify at a later time in the wizard.

The connection properties and their purpose are described in the following table. A

complete description of each property is provided in the sections that follow the

table. If you set any of these connection properties using bidirectional script, you

must set values that identify the format of the bidirectional script that is entered

for that property.

 Table 58. Connection properties for the Adapter for SAP Software

Property name Description

“Bidi direction ” on page 1235 The orientation component of the bidi format specification.

“Bidi ordering schema” on page 1236 The ordering schema of the bidi format specification.

“Bidi numeric shaping” on page 1236 The numeric shaping component of the bidi format specification.

“Bidi shaping” on page 1237 The shaping component of the bidi format specification.

“Bidi symmetric swapping” on page 1237 The symmetric swapping component of the bidi format specification.

“Client” on page 1237 The client number of the SAP system to which the adapter connects.

1234 Message Flows

Table 58. Connection properties for the Adapter for SAP Software (continued)

Property name Description

“Codepage number” on page 1238 The numeric identifier of the code page.

“Folder for RFC trace files” on page 1238 The fully qualified local path to the folder into which the RFC trace files

are written.

“Host name” on page 1239 The IP address or the name of the application server host to which the

adapter logs on.

“Language code” on page 1239 The language in which the adapter logs on.

“Log file output location property” on

page 1239

The location of the log file for enterprise metadata discovery.

“Logging level property” on page 1240 The type error for which logging occurs during enterprise metadata

discovery.

“Password” on page 1240 The password of the user account of the adapter on the SAP application

server.

“RFC trace level” on page 1241 The global trace level.

“RFC trace on” on page 1241 Specifies whether to generate a text file that details the RFC activity for

each event listener.

“SAP interface name” on page 1242 The SAP interface to be used.

“System number” on page 1243 The system number of the SAP application server.

“User name” on page 1243 The user account for the adapter on the SAP server.

The Adapter Connection wizard uses the bidirectional connection properties to

apply the proper bidirectional transformation on the data that is passed to the SAP

server.

The bidi properties specify the bidirectional format for data coming from an

external application into the adapter in the form of any business object that is

supported by this adapter.

Accept the default values for the bidirectional formatting properties on the Adapter

Connection wizard that provides SAP server bidirectional format specification.

When combined, these bidirectional properties define one single bidirectional

format.

The default values for bidirectional formatting properties listed below are based on

Windows bidirectional formatting. If the Enterprise Information System supports a

bidirectional format other than the Windows standard bidirectional format, you

must make appropriate changes to the bidi properties that are listed in the

following sections.

Bidi direction

This property specifies the orientation component of the bidi format specification.

 Table 59. Bidi direction details

Required No

Message flows 1235

Table 59. Bidi direction details (continued)

Possible values Possible values include:

v LTR

The orientation is left-to-right.

v RTL

The orientation is right-to-left.

v contextualLTR

The orientation is left-to-right because of the context. A character that is not categorized as

LTR, and hat is located between two strong characters with a different writing direction,

inherits the main context’s writing direction (in a LTR document the character becomes LTR).

v contextualRTL

The orientation is right-to-left because of the context. A character that is not categorized as

RTL, and is located between two strong characters with a different writing direction, inherits

the main context’s writing direction (in a RTL document the character becomes RTL).

Default LTR

Property type String

Usage Specifies the orientation component of the bidi format specification.

Globalized Yes

Bidi supported No

Bidi ordering schema

This property specifies the ordering schema of the bidi format specification.

 Table 60. Bidi ordering schema details

Required No

Possible values Implicit

Visual

Default Implicit

Property type String

Usage Specifies the ordering schema of the bidi format specification.

Globalized Yes

Bidi supported No

Bidi numeric shaping

This property specifies the numeric shaping component of the bidi format

specification.

 Table 61. Bidi numeric details

Required No

Possible values Nominal

National

Contextual

Default Nominal

Property type String

Usage Specifies the numeric shaping component of the bidi format specification.

1236 Message Flows

Table 61. Bidi numeric details (continued)

Globalized Yes

Bidi supported No

Bidi shaping

This property specifies the shaping component of the bidi format specification.

 Table 62. Bidi shaping details

Required No

Possible values Nominal

Shaped

Initial

Middle

Final

Isolated

Default Nominal

Property type String

Usage Specifies the shaping component of the bidi format specification.

Globalized Yes

Bidi supported No

Bidi symmetric swapping

This property specifies the symmetric swapping component of the bidi format

specification.

 Table 63. Bidi symmetric swapping details

Required No

Possible values True

False

Default True

Property type Boolean

Usage This property specifies the symmetric swapping component of the bidi format specification.

Globalized Yes

Bidi supported No

Client

This property is the client number of the SAP system to which the adapter

connects.

 Table 64. Client details

Required Yes

Possible values You can enter a range of values from 000 to 999.

Default 100

Property type Integer

Message flows 1237

Table 64. Client details (continued)

Usage When an application attempts to log on to the SAP server, the application must have a Client

number associated with it. The Client property value identifies the client (the adapter) that is

attempting to log on to the SAP server

Globalized No

Bidi supported No

Codepage number

This property is the numeric identifier of the code page.

 Table 65. Codepage number details

Required No

Possible values You can enter a range of values from 0000 to 9999.

For a full listing of languages and associated code page numbers that are supported by SAP,

see SAP Note 7360.

Default The default value for this property is conditionally determined by the value that is set for the

Language code property.

Property type Integer

Usage The value that is assigned to the Codepage number property defines the code page to be used,

and has a one-to-one relationship with the value that is set for the Language code property. The

code page number establishes a connection to the appropriate language.

Each language code value has a code page number value associated with it. For example, the

language code for English is EN. If you select EN (English) as your language code, the code

page number is automatically set to the numeric value that is associated with EN (English). The

SAP code page number for EN (English) is 1100.

Example If Language code is set to JA (Japanese), Codepage number is set to 8000.

Globalized No

Bidi supported No

Folder for RFC trace files

This property sets the fully qualified local path to the folder in which to write RFC

trace files.

 Table 66. Folder for RFC trace files details

Required No

Default No default value

Property type String

Usage Identifies the fully qualified local path into which RFC trace files are written.

If RFC trace on is set to False (not selected), you cannot set a value in the Folder for RFC trace

files property.

Example c:\temp\rfcTraceDir

Globalized Yes

Bidi supported No

1238 Message Flows

Host name

The IP address or the name of the application server host to which the adapter

logs on.

 Table 67. Host name details

Required Yes (when load balancing is not used).

Default No default value

Property type String

Usage When the adapter is configured to run without load balancing, this property specifies the IP

address or the name of the application server that the adapter logs on to.

Example sapServer

Globalized No

Bidi supported No

Language code

This property specifies the SAP logon language code.

 Table 68. Language code details

Required Yes

Possible values Each of the supported languages is preceded by a two-character language code. The language

itself displays in parentheses.

The language codes in the list represent the SAP default set of 41 languages for non Unicode

systems plus Arabic.

For a full listing of supported language codes and languages, see the SAP documentation.

Default The default language code is your current locale. If your current locale is not listed as one of

the supported language codes, a default language code of EN (English) is used.

Property type String

Usage If you enter a language code manually, you do not need to enter the language in parenthesis.

Example If the system locale is English, the value for this property is EN (English)

Globalized No

Bidi supported No

Log file output location property

This property specifies the location of the log file for external metadata discovery.

 Table 69. Log file output location details

Required Yes

Default The .metadata directory of the workspace

Property type String

Usage Use this directory to hold the log file that lists the errors that occur during the discovery

process.

The type of discovery errors for which logging occurs is controlled by the Logging level

property

Example C:\IBM\wmbt61\workspace\.metadata\SAPMetadataDiscovery.log

Message flows 1239

Table 69. Log file output location details (continued)

Globalized Yes

Bidi supported No

Logging level property

This property specifies the type error for which logging occurs during enterprise

metadata discovery.

 Table 70. Logging level details

Required No

Possible values FATAL

SEVERE

WARNING

AUDIT

INFO

CONFIG

DETAIL

Default SEVERE

Property type String

Usage Use this property to tailor tracing capabilities. When you specify an error type, you indicate

that trace operations occur only for errors of the specified type.

Example If you accept the default value of SEVERE, trace information is provided on errors that fall into

the SEVERE category. Severe errors mean that an operation cannot continue, although the

adapter can still function. Severe errors also include error conditions that indicate an

impending fatal error, that is, reporting on situations that strongly suggest that resources are on

the verge of being depleted.

Other error descriptions are listed here:

v Fatal

Adapter cannot continue. Adapter cannot function

v Warning

Potential error or impending error, including conditions that indicate a progressive failure

(for example, the potential leaking of resources).

v Audit

Significant event affecting adapter state or resources

v Info

General information outlining overall operation progress.

v Config

Configuration change or status.

v Detail

General information detailing operation progress

Globalized Yes

Bidi supported No

Password

This property is the password of the user account of the adapter on the SAP

server.

1240 Message Flows

Table 71. Password details

Required Yes

Default No default value

Property type String

Usage The restrictions on the password depend on the version of SAP Web Application Server.

v For SAP Web Application Server version 6.40 or earlier, the password:

– Must be uppercase

– Must be 8 characters in length

v For versions of SAP Web Application Server later than 6.40, the password:

– Is not case-sensitive

– Can be up to 40 characters in length

Globalized No

Bidi supported Yes

RFC trace level

This property specifies the global trace level.

 Table 72. RFC trace level details

Required No

Possible values 1: SAP JCo Java API logging occurs (default)

3: SAP JCo JNI API logging occurs

5: Error diagnostic logging occurs

Default 1

Property type Integer

Usage If RFC trace on is set to False (not selected), you cannot set a value in the RFC trace level

property.

Globalized No

Bidi supported No

RFC trace on

This property specifies whether to generate a text file that describes the RFC

activity for each event listener.

 Table 73. RFC trace on details

Required No

Possible values True

False

Default False

Property type Boolean

Message flows 1241

Table 73. RFC trace on details (continued)

Usage A value of True activates tracing, which generates a text file.

This file is created in the directory in which the adapter process was started. The file has a

prefix of rfx and a file type of .trc (for example, rfc03912_02220.trc).

Use this text file in a development environment only, because the files can grow rapidly.

If RFC trace on is set to False (not selected), you cannot set values in the Folder for RFC trace

files or RFC trace level properties.

Example Examples of the information in the file are RfcCall FUNCTION BAPI_CUSTOMER_GETLIST,

followed by the information for the parameters in the interface, or RFC Info rfctable, followed

by the data from one of the interface tables.

The trace file is created in the directory where the adapter process has been started. The trace

file has a .trc file extension and the file name starts with the letters rfc followed by a unique

identifier. For example, rfc03912_02220.trc.

Globalized No

Bidi supported No

SAP interface name

This property indicates whether you are creating business objects for the ALE,

BAPI, Advanced event processing, or Query interface for SAP Software.

 Table 74. SAP interface name details

Required Yes

Possible values For outbound:

 Advanced event processing (AEP)

 ALE

 ALE pass-through IDoc

 BAPI

 BAPI work unit

 BAPI result set

 Query interface for SAP Software (QSS)

For inbound:

 Advanced event processing (AEP)

 ALE

 ALE pass-through IDoc

Default For outbound: BAPI

For inbound:ALE

Property type String

Usage Specifies the interface used by the adapter.

The adapter interacts with the interface to support outbound or inbound processing by

enabling the exchange of data in the form of business objects.

Globalized No

Bidi supported No

1242 Message Flows

System number

This property is the system number of the application server.

 Table 75. System number details

Required Yes

Possible values You can enter a range of values from 00 to 99

Default 00

Property type Integer

Usage The system number further identifies the Gateway service.

Globalized No

Bidi supported No

User name

This property is the user account for the adapter on the SAP server.

 Table 76. User name details

Required Yes

Default No default value

Property type String

Usage This property has a maximum length of 12 characters. The user name is not case sensitive.

Set up a CPIC user account in the SAP application and give this account the necessary

privileges to manipulate the data that is required by the business objects that are supported by

the adapter. For example, if the adapter must perform certain SAP business transactions, the

adapter’s account in the SAP application must have the correct permissions to perform these

transactions.

Example SapUser

Globalized Yes

Bidi supported Yes

Resource adapter properties:

The resource adapter properties control the general operation of the adapter. Use

the Adapter Connection wizard to set the resource adapter properties when you

configure the adapter.

 Adapter ID to use for logging and tracing (AdapterID)

This property identifies a specific deployment, or instance, of the adapter.

 Table 77. Adapter ID to use for logging and tracing details

Required Yes

Default CWYMY_Adapter
Without local transaction support: CWYAP_SAPAdapter

With local transaction support: CWYAP_SAPAdapter_Tx

Property type String

Message flows 1243

Table 77. Adapter ID to use for logging and tracing details (continued)

Usage Use this property to identify the adapter instance for PMI events. If you are deploying multiple

instances of an adapter, set this property to a unique value for each adapter instance.

For inbound processing, this property is retrieved from the resource adapter properties. For

outbound processing, it is retrieved form the managed connection factory properties.

Globalized Yes

Bidi supported No

Managed connection factory properties:

The adapter uses the managed connection factory properties at run time to create

an outbound connection instance with the SAP server.

 Use the Adapter Connection wizard to set the managed connection factory

properties.

The following table lists and describes the managed connection factory properties.

A more detailed description of each property is provided in the sections that

follow the table.

 Table 78. Managed connection factory properties forAdapter for SAP Software

Property name Description

ABAPDebug ABAP debugger property.

Client The client number of the SAP system to which the

adapter connects.

Codepage The numeric identifier of the code page.

SncMode Indicates whether secure network connection mode is

used.

RfcTracePath The fully qualified local path to the folder into which the

RFC trace files are written.

GatewayHost The host name of the SAP gateway.

GatewayService The identifier of the gateway on the gateway host that

carries out the RFC services.

ApplicationServerHost The IP address or the name of the application server host

to which the adapter logs on.

Language code The Language code in which the adapter logs on to SAP.

MessageServerHost The name of the host on which the message server is

running.

PartnerCharset The PartnerCharset encoding.

Password The password of the user account of the adapter on the

SAP application server.

RfcTraceLevel The global trace level.

RfcTraceOn Specifies whether to generate a text file that details the

RFC activity for each event listener.

SAPSystemID The system ID of the SAP system for which logon load

balancing is allowed.

SncLib Specifies the path to the library that provides the secure

network connection service.

1244 Message Flows

Table 78. Managed connection factory properties forAdapter for SAP Software (continued)

Property name Description

SncMyname Specifies the name of the secure network connection.

SncPartnername Specifies the name of the secure network connection

partner.

SncQop Specifies the level of security for the secure network

connection.

SystemNumber The system number of the SAP application server.

userName The user account for the adapter on the SAP server.

X509cert Specifies the X509 certificate to be used as the logon

ticket.

ABAP debug

This property specifies whether the adapter invokes the ABAP Debugger for the

appropriate function module when the adapter starts to process a business object.

 Table 79. ABAP debug details

Required No

Possible values True

False

Default False

Property type Boolean

Usage When the property is set to True, the adapter opens the SAP GUI in debug mode.

You must have proper authorization to use the debugger. Create a dialog user ID because a

CPI-C user ID cannot open an SAP GUI session. You need authorization to run in debug mode

as well as any authorizations that are required by the ABAP code that is being debugged. For

example, if a BAPI_CUSTOMER_CREATEFROMDATA1 is being debugged, you need

authorization to create customers.

You can add breakpoints only after the debugger opens.

Always set this property to False in a production environment.

This property is supported on Windows systems only.

Globalized No

Bidi supported No

Client

This property is the client number of the SAP system to which the adapter

connects.

 Table 80. Client details

Required Yes

Possible values You can enter a range of values from 000 to 999.

Default 100

Property type Integer

Message flows 1245

Table 80. Client details (continued)

Usage When an application attempts to log on to the SAP server, the application must have a Client

number associated with it. The Client property value identifies the client (the adapter) that is

attempting to log on to the SAP server

Globalized No

Bidi supported No

Codepage number

This property is the numeric identifier of the code page.

 Table 81. Codepage number details

Required No

Possible values You can enter a range of values from 0000 to 9999.

For a full listing of languages and associated code page numbers that are supported by SAP,

see SAP Note 7360.

Default The default value for this property is conditionally determined by the value that is set for the

Language code property.

Property type Integer

Usage The value that is assigned to the Codepage number property defines the code page to be used,

and has a one-to-one relationship with the value that is set for the Language code property. The

code page number establishes a connection to the appropriate language.

Each language code value has a code page number value associated with it. For example, the

language code for English is EN. If you select EN (English) as your language code, the code

page number is automatically set to the numeric value that is associated with EN (English). The

SAP code page number for EN (English) is 1100.

Example If Language code is set to JA (Japanese), Codepage number is set to 8000.

Globalized No

Bidi supported No

Enable Secure Network Connection

This property indicates whether secure network connection mode is enabled.

 Table 82. Enable Secure Network Connection details

Required No

Possible values 0 (off)

1 (on)

Default 0

Property type String

Usage Set the value to 1 (on) if you want to use secure network connection.

If you set this value to 1, you must also set following properties:

v “Secure Network Connection library path” on page 1251

v “Secure Network Connection name” on page 1251

v “Secure Network Connection partner” on page 1251

v “Secure Network Connection security level” on page 1252

Globalized No

1246 Message Flows

Table 82. Enable Secure Network Connection details (continued)

Bidi supported No

Folder for RFC trace files

This property sets the fully qualified local path to the folder in which to write RFC

trace files.

 Table 83. Folder for RFC trace files details

Required No

Default No default value

Property type String

Usage Identifies the fully qualified local path into which RFC trace files are written.

If RFC trace on is set to False (not selected), you cannot set a value in the Folder for RFC trace

files property.

Example c:\temp\rfcTraceDir

Globalized Yes

Bidi supported No

Gateway host

This property is the Gateway host name. Enter either the IP address or the name of

the Gateway host. Consult your SAP administrator for information on the Gateway

host name.

 Table 84. Gateway host details

Required Yes

Default No default value

Property type String

Usage This property is the host name of the SAP gateway. The gateway enables communication

between work processes on the SAP system and external programs.

The host that you identify is used as the gateway for the resource adapter.

The name can have a maximum length of 20 characters. If the computer name is longer than 20

characters, define a symbolic name in the THOSTS table.

Globalized No

Bidi supported No

Gateway service

This property is the identifier of the gateway on the gateway host that carries out

the RFC services.

 Table 85. Gateway service details

Required Yes

Default sapgw00

Property type String

Message flows 1247

Table 85. Gateway service details (continued)

Usage These services enable communication between work processes on the SAP server and external

programs. The service typically has the format of sapgw00, where 00 is the SAP system number.

The name can have a maximum of 20 characters.

Globalized No

Bidi supported No

Host name

The IP address or the name of the application server host to which the adapter

logs on.

 Table 86. Host name details

Required Yes (when load balancing is not used).

Default No default value

Property type String

Usage When the adapter is configured to run without load balancing, this property specifies the IP

address or the name of the application server that the adapter logs on to.

Example sapServer

Globalized No

Bidi supported No

Language code

This property specifies the Language code in which the adapter logs on.

 Table 87. Language code details

Required Yes

Possible values For a full listing of languages and associated code page numbers that are supported by SAP,

access SAP Note 7360.

Default The default value for the Language code property is based on the system locale.

Property type String

Usage Each of the supported languages is preceded by a two-character language code. The language

itself displays in parentheses.

If you enter a language code manually, you do not need to enter the language in parenthesis.

The language codes in the list represent the SAP default set of 41 languages for non-Unicode

systems plus Arabic.

The value that you select determines the value of the Codepage number property.

Example If the system locale is English, the value for this property is EN (English).

Globalized No

Bidi supported No

Message server host

This property specifies the name of the host on which the message server is

running.

1248 Message Flows

Table 88. Message server host details

Required Yes (if load balancing is used)

Default No default value

Property type String

Usage This property specifies the name of the host that informs all the servers (instances) that belong

to this SAP system of the existence of the other servers to be used for load balancing.

The message server host contains the information about load balancing for RFC clients so that

an RFC client can be directed to an appropriate application server.

Example SAPERP05

Globalized No

Bidi supported No

Partner character set

This property specifies the partner character set encoding.

 Table 89. Partner character set details

Required No

Default UTF-8

Property type String

Usage When an encoding is specified, it is used; otherwise, the default encoding is used.

Globalized No

Bidi supported No

Password

This property is the password of the user account of the adapter on the SAP

server.

 Table 90. Password details

Required Yes

Default No default value

Property type String

Usage The restrictions on the password depend on the version of SAP Web Application Server.

v For SAP Web Application Server version 6.40 or earlier, the password:

– Must be uppercase

– Must be 8 characters in length

v For versions of SAP Web Application Server later than 6.40, the password:

– Is not case-sensitive

– Can be up to 40 characters in length

Globalized No

Bidi supported Yes

RFC trace level

This property specifies the global trace level.

Message flows 1249

Table 91. RFC trace level details

Required No

Possible values 1: SAP JCo Java API logging occurs (default)

3: SAP JCo JNI API logging occurs

5: Error diagnostic logging occurs

Default 1

Property type Integer

Usage If RFC trace on is set to False (not selected), you cannot set a value in the RFC trace level

property.

Globalized No

Bidi supported No

RFC trace on

This property specifies whether to generate a text file that describes the RFC

activity for each event listener.

 Table 92. RFC trace on details

Required No

Possible values True

False

Default False

Property type Boolean

Usage A value of True activates tracing, which generates a text file.

This file is created in the directory in which the adapter process was started. The file has a

prefix of rfx and a file type of .trc (for example, rfc03912_02220.trc).

Use this text file in a development environment only, because the files can grow rapidly.

If RFC trace on is set to False (not selected), you cannot set values in the Folder for RFC trace

files or RFC trace level properties.

Example Examples of the information in the file are RfcCall FUNCTION BAPI_CUSTOMER_GETLIST,

followed by the information for the parameters in the interface, or RFC Info rfctable, followed

by the data from one of the interface tables.

The trace file is created in the directory where the adapter process has been started. The trace

file has a .trc file extension and the file name starts with the letters rfc followed by a unique

identifier. For example, rfc03912_02220.trc.

Globalized No

Bidi supported No

SAP system ID

This property specifies the system ID of the SAP system for which logon load

balancing is allowed.

 Table 93. SAP system ID details

Required Yes (when load balancing is used)

Default No default value

Property type String

1250 Message Flows

Table 93. SAP system ID details (continued)

Usage This value must be three characters

Example DYL

Globalized No

Bidi supported No

Secure Network Connection library path

This property specifies the path to the library that provides the secure network

connection service.

 Table 94. Secure Network Connection library path details

Required Yes, if SncMode is set to 1; otherwise, no.

Default No default value

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),

specify the path to the library that provides the service.

Example /WINDOWS/system32/gssapi32.dll

Globalized No

Bidi supported No

Secure Network Connection name

This property specifies the name of the secure network connection.

 Table 95. Secure Network Connection name details

Required Yes, if SncMode is set to 1; otherwise, no.

Default No default value

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),

specify a name for the connection.

Example DOMAINNAME/USERNAME

Globalized No

Bidi supported No

Secure Network Connection partner

This property specifies the name of the secure network connection partner.

 Table 96. Secure Network Connection partner details

Required Yes, if SncMode is set to 1; otherwise, no.

Default No default value

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),

specify a name for the connection partner.

Example CN=sap00.saperpdev, OU=Adapter, O=IBM, C=US

Message flows 1251

Table 96. Secure Network Connection partner details (continued)

Globalized No

Bidi supported No

Secure Network Connection security level

This property specifies the level of security for the secure network connection.

 Table 97. Secure Network Connection security level details

Required Yes, if SncMode is set to 1; otherwise, no.

Possible values

 1 (Authentication only)

 2 (Integrity protection)

 3 (Privacy protection)

 8 (Use the value from snc/data_protection/use on the application server)

 9 (Use the value from snc/data_protection/max on the application server)

Default 3 (Privacy protection)

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),

specify a value to indicate the level of security for the connection.

Globalized No

Bidi supported No

System number

This property is the system number of the application server.

 Table 98. System number details

Required Yes

Possible values You can enter a range of values from 00 to 99

Default 00

Property type Integer

Usage The system number further identifies the Gateway service.

Globalized No

Bidi supported No

User name

This property is the user account for the adapter on the SAP server.

 Table 99. User name details

Required Yes

Default No default value

Property type String

1252 Message Flows

Table 99. User name details (continued)

Usage This property has a maximum length of 12 characters. The user name is not case sensitive.

Set up a CPIC user account in the SAP application and give this account the necessary

privileges to manipulate the data that is required by the business objects that are supported by

the adapter. For example, if the adapter must perform certain SAP business transactions, the

adapter’s account in the SAP application must have the correct permissions to perform these

transactions.

Example SapUser

Globalized Yes

Bidi supported Yes

X509 certificate

This property specifies the X509 certificate to be used as the logon ticket.

 Table 100. X509 certificate details

Required No.

Default No default value

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),

you can provide a value for the X509 certificate.

Globalized No

Bidi supported No

Activation specification properties for ALE inbound processing:

Activation specification properties hold the inbound event processing configuration

information for a message endpoint. Use the Adapter Connection wizard to set

activation specification properties.

 Activation specification properties are used during endpoint activation to notify

the adapter of eligible event listeners. During inbound processing, the adapter uses

these event listeners to receive events before it forwards them to the endpoint.

The following table describes the activation specification properties for ALE

inbound processing. A more detailed description of each property is provided in

the sections that follow the table.

 Table 101. Activation specification properties for ALE inbound processing

Property name Description

AleFailureCode The status code for dispatch failure.

AleFailureText The descriptive text for dispatch failure.

AleSelectiveUpdate The IDoc Type and MessageType combinations that are

to be updated when the adapter is configured to update

a standard SAP status code.

AleStatusMsgCode If required, the message code to use when the adapter

posts the ALEAUD Message IDoc (ALEAUD01).

AleSuccessCode The success status code for Application Document

Posted.

Message flows 1253

Table 101. Activation specification properties for ALE inbound processing (continued)

Property name Description

AleSuccessText The descriptive text for successful Application Document

Posted.

AleUpdateStatus Specifies whether an audit trail is required for all

message types.

AssuredOnceDelivery Specifies whether to provide assured once-only delivery

for inbound events.

EP_CreateTable Specifies whether the adapter should create the event

recovery table automatically if it does not already exist.

Client The client number of the SAP system to which the

adapter connects.

Codepage The numeric identifier of the code page.

EP_SchemaName The schema that is used for automatically creating the

event recovery table.

SncMode Indicates whether secure network connection mode is

used.

EP_DataSource_JNDIName The JNDI name of the data source that is configured for

event recovery.

EP_TableName The name of the event recovery table.

RfcTracePath The fully qualified local path to the folder into which the

RFC trace files are written.

GatewayHost The host name of the SAP gateway.

GatewayService The identifier of the gateway on the gateway host that

carries out the RFC services.

ApplicationServerHost The IP address or the name of the application server host

to which the adapter logs on.

IgnoreIDocPacketErrors Specifies what the adapter does when it encounters an

error while processing the IDoc packet.

Language code The Language code in which the adapter logs on to SAP.

Group An identifier for the name of the group of application

server instances that have been defined in transaction

SMLG and linked together for logon load balancing.

retryLimit The number of times that the adapter tries to restart the

event listeners.

MessageServerHost The name of the host on which the message server is

running.

NumberOfListeners The number of event listeners that are to be started

PartnerCharset The PartnerCharset encoding.

Password The password of the user account of the adapter on the

SAP application server.

EP_Password The user password for connecting to the database.

RfcProgramID The remote function call identifier under which the

adapter registers in the SAP gateway.

RfcTraceLevel The global trace level.

RfcTraceOn Specifies whether to generate a text file that details the

RFC activity for each event listener.

1254 Message Flows

Table 101. Activation specification properties for ALE inbound processing (continued)

Property name Description

SAPSystemID The system ID of the SAP system for which logon load

balancing is allowed.

SncLib Specifies the path to the library that provides the secure

network connection service.

SncMyname Specifies the name of the secure network connection.

SncPartnername Specifies the name of the secure network connection

partner.

SncQop Specifies the level of security for the secure network

connection.

SystemNumber The system number of the SAP application server.

retryInterval The time interval between attempts to restart the event

listeners.

userName The user account for the adapter on the SAP server.

EP_UserName The user name for connecting to the database.

X509cert Specifies the X509 certificate to be used as the logon

ticket.

ALE failure code

This property determines how the adapter updates the SAP failure status code

after the ALE module has retrieved an IDoc object for event processing.

 Table 102. ALE failure code details

Required Yes if AleUpdateStatus is set to True; otherwise, no.

Possible values 68

58

Default No default value.

Property type Integer

Usage Set a value for this property only if you set the value for AleUpdateStatus to True.

Specify a value of 68 for this property to cause the adapter to update the SAP failure status

code after the ALE module has retrieved an IDoc object for event processing. SAP converts this

value to 40 (Application Document not created in receiving system).

When you set the AleUpdateStatus property to True, the adapter updates a standard SAP status

code after the adapter retrieves an IDoc object for event processing. An IDoc that is not sent

successfully to the endpoint is considered to be a failure. Use the ALE failure code property to

specify the code that is used to signify this failure.

Globalized No

Bidi supported No

ALE failure text

The property specifies the text that appears in the event that an IDoc is not sent

successfully to the endpoint.

 Table 103. ALE failure text details

Required Yes if AleUpdateStatus is set to True; otherwise, no.

Message flows 1255

Table 103. ALE failure text details (continued)

Default No default value.

Property type String

Usage Use this property only if you set the AleUpdateStatus property to True.

The length of the text string cannot exceed 70 characters.

When you set the AleUpdateStatus property to True, the adapter updates a standard SAP status

code after the adapter retrieves an IDoc object for event processing. An IDoc that is not sent

successfully to the endpoint is considered to be a failure. Use the ALE failure text property to

specify the descriptive text that is used to signify this failure.

Example ALE Dispatch Failed

Globalized Yes

Bidi supported No

ALE selective update

This property specifies which IDoc Type and MessageType combinations are to be

updated.

 Table 104. ALE selective update details

Required No

Default No default value

Property type String

Usage You can set values for this property only if AleUpdateStatus is set to True.

When you set the AleUpdateStatus property to True, the adapter updates a standard SAP status

code after the adapter retrieves an IDoc object for event processing. Use the ALE selective

update property to specify which IDoc Type and MessageType combinations are to be updated.

The syntax for this property is: IDocType: MessageType [;IDocType: MessageType [;...]]

where a slash (/) delimiter separates each IDoc Type and MessageType, and a semicolon (;)

delimiter separates entries in a set.

Example The following example illustrates two sets. In the example, MATMAS03 and DEBMAS03 are

the IDocs, and MATMAS and DEBMAS are the message types:

MATMAS03/MATMAS;DEBMAS03/DEBMAS

Globalized No

Bidi supported No

ALE status message code

This property specifies the message code to use when the adapter posts the

ALEAUD01 IDoc with message type ALEAUD.

 Table 105. ALE status message code details

Required No

Possible values For a list of available codes, refer to the SAP table TEDS1.

Default No default value.

Property type String

1256 Message Flows

Table 105. ALE status message code details (continued)

Usage You can set a value for this property only if AleUpdateStatus has been set to True.

You must configure this message code in the receiving partner profile on SAP.

Globalized No

Bidi supported No

ALE success code

This property specifies the ALE success code for the successful posting of an IDoc.

 Table 106. ALE success code details

Required Yes if AleUpdateStatus is set to True; otherwise, no.

Possible values 52

53

Default No default value.

Property type String

Usage Use this property only if you set the AleUpdateStatus property to True.

When you set the AleUpdateStatus property to True, the adapter updates a standard SAP status

code after the adapter retrieves an IDoc object for event processing. Use the ALE success code

property to specify the code for IDoc posted as 53.

After the IDoc is sent to the endpoint, the IDoc status remains as 03 (IDoc posted to port) in

SAP. After posting the IDoc, the adapter posts the audit IDoc with the current IDoc number

and status as 53. SAP converts the current IDoc status to 41 (Application Document Created in

Receiving System).

Globalized No

Bidi supported No

ALE success text

This property specifies the text that appears when an application document is

posted successfully.

 Table 107. ALE success text details

Required Yes if AleUpdateStatus is set to True; otherwise, no.

Default No default value.

Property type String

Usage Use this property only if you set the AleUpdateStatus property to True.

When you set the AleUpdateStatus property to True, the adapter updates a standard SAP status

code after the adapter retrieves an IDoc object for event processing. Use the ALE success text

property to specify the descriptive text that is used to signify Application Document Posted.

Example ALE Dispatch OK

Globalized Yes

Bidi supported No

Message flows 1257

ALE update status

This property specifies whether an audit trail is required for all message types.

 Table 108. ALE update status details

Required Yes

Possible values True

False

Default False

Property type Boolean

Usage Set this property to True if you want the adapter to update a standard SAP status code after

the ALE module has retrieved an IDoc object for event processing.

If you set this value to True, you must also set following properties:

v AleFailureCode

v AleSuccessCode

v AleFailureText

v AleSuccessText.

Globalized No

Bidi supported No

Assured once-only delivery (AssuredOnceDelivery)

This property specifies whether to provide assured once-only delivery for inbound

events.

 Table 109. Assured once-only delivery details

Required Yes

Possible values True

False

Default False

Property type Boolean

Usage When this property is set to True, the adapter provides assured once-only event delivery, so

that each event is delivered only once. A value of False does not provide assured once-only

event delivery, but provides better performance.

When this property is set to True, the adapter attempts to store transaction (XID) information in

the event store. If it is set to False, the adapter does not attempt to store the information.

This property is used only if the export component is transactional. If the export component is

not transactional, no transaction can be used, regardless of the value of this property.

Globalized No

Bidi supported No

Auto create event table

This property determines if the event table is created automatically.

 Table 110. Auto create event table details

Required Yes if Assured once-only event delivery is set to True; otherwise, no.

1258 Message Flows

Table 110. Auto create event table details (continued)

Possible values True

False

Default True

Property type Boolean

Usage This property indicates whether the adapter should create the event recovery table

automatically if it does not already exist.

If you specify a value of True to automatically create the table, you must specify information

about the event table (such as the event recovery table name).

The value that is provided in Event recovery table name property is used to create the table.

Globalized No

Bidi supported No

Client

This property is the client number of the SAP system to which the adapter

connects.

 Table 111. Client details

Required Yes

Possible values You can enter a range of values from 000 to 999.

Default 100

Property type Integer

Usage When an application attempts to log on to the SAP server, the application must have a Client

number associated with it. The Client property value identifies the client (the adapter) that is

attempting to log on to the SAP server

Globalized No

Bidi supported No

Codepage number

This property is the numeric identifier of the code page.

 Table 112. Codepage number details

Required No

Possible values You can enter a range of values from 0000 to 9999.

For a full listing of languages and associated code page numbers that are supported by SAP,

see SAP Note 7360.

Default The default value for this property is conditionally determined by the value that is set for the

Language code property.

Property type Integer

Message flows 1259

Table 112. Codepage number details (continued)

Usage The value that is assigned to the Codepage number property defines the code page to be used,

and has a one-to-one relationship with the value that is set for the Language code property. The

code page number establishes a connection to the appropriate language.

Each language code value has a code page number value associated with it. For example, the

language code for English is EN. If you select EN (English) as your language code, the code

page number is automatically set to the numeric value that is associated with EN (English). The

SAP code page number for EN (English) is 1100.

Example If Language code is set to JA (Japanese), Codepage number is set to 8000.

Globalized No

Bidi supported No

Database schema name

This property is the schema that is used to create the event recovery table

automatically.

 Table 113. Database schema name details

Required No

Default No default value.

Property type String

Usage Specifies the schema name for the database used by the adapter’s event persistence feature.

Example ALE_SCHEMA

Globalized Yes

Bidi supported No

Enable Secure Network Connection

This property indicates whether secure network connection mode is enabled.

 Table 114. Enable Secure Network Connection details

Required No

Possible values 0 (off)

1 (on)

Default 0

Property type String

Usage Set the value to 1 (on) if you want to use secure network connection.

If you set this value to 1, you must also set following properties:

v “Secure Network Connection library path” on page 1268

v “Secure Network Connection name” on page 1268

v “Secure Network Connection partner” on page 1268

v “Secure Network Connection security level” on page 1269.

Globalized No

Bidi supported No

1260 Message Flows

Event recovery data source (JNDI) name

This property is the JNDI name of the data source that is configured for event

recovery.

 Table 115. Event recovery data source (JNDI) name details

Required Yes

Default No default value.

Property type String

Usage Used in event recovery processing. The data source must be created in WebSphere Message

Broker. The adapter uses the data source for persisting the event state.

Example jdbc/DB2

Globalized No

Bidi supported No

Event recovery table name

This property is the name of the event recovery table.

 Table 116. Event recovery table name details

Required Yes

Default No default value.

Property type String

Usage Used in event recovery processing. Consult database documentation for information on naming

conventions.

Configure a separate event recovery table for each endpoint. The same data source can be used

to hold all of the event recovery tables.

Example EVENT_TABLE

Globalized No

Bidi supported No

Folder for RFC trace files

This property sets the fully qualified local path to the folder in which to write RFC

trace files.

 Table 117. Folder for RFC trace files details

Required No

Default No default value

Property type String

Usage Identifies the fully qualified local path into which RFC trace files are written.

If RFC trace on is set to False (not selected), you cannot set a value in the Folder for RFC trace

files property.

Example c:\temp\rfcTraceDir

Globalized Yes

Bidi supported No

Message flows 1261

Gateway host

This property is the Gateway host name. Enter either the IP address or the name of

the Gateway host. Consult your SAP administrator for information on the Gateway

host name.

 Table 118. Gateway host details

Required Yes

Default No default value

Property type String

Usage This property is the host name of the SAP gateway. The gateway enables communication

between work processes on the SAP system and external programs.

The host that you identify is used as the gateway for the resource adapter.

The name can have a maximum length of 20 characters. If the computer name is longer than 20

characters, define a symbolic name in the THOSTS table.

Globalized No

Bidi supported No

Gateway service

This property is the identifier of the gateway on the gateway host that carries out

the RFC services.

 Table 119. Gateway service details

Required Yes

Default sapgw00

Property type String

Usage These services enable communication between work processes on the SAP server and external

programs. The service typically has the format of sapgw00, where 00 is the SAP system number.

The name can have a maximum of 20 characters.

Globalized No

Bidi supported No

Host name

The IP address or the name of the application server host to which the adapter

logs on.

 Table 120. Host name details

Required Yes (when load balancing is not used).

Default No default value

Property type String

Usage When the adapter is configured to run without load balancing, this property specifies the IP

address or the name of the application server that the adapter logs on to.

Example sapServer

Globalized No

Bidi supported No

1262 Message Flows

Ignore IDoc packet errors

This property determines whether or not IDoc packet errors are to be ignored.

 Table 121. Ignore IDOC packet errors details

Required No

Possible values True

False

Default False

Property type Boolean

Usage If the adapter encounters an error while processing the IDoc packet, it can behave in two

different ways.

v When this property is set to False, the adapter stops processing further IDocs in that packet

and reports an error to the SAP system.

v When this property is set to True, the adapter logs an error and continues to process the rest

of the IDocs in that packet.

The status of the transaction is marked as INPROGRESS. The adapter log would display the

IDoc numbers that failed and you need to resubmit those individual IDocs separately. You

need to manually maintain these records in the event recovery table.

This property is not used for single IDocs and for non-split IDoc packets.

Globalized No

Bidi supported No

Language code

This property specifies the Language code in which the adapter logs on.

 Table 122. Language code details

Required Yes

Possible values For a full listing of languages and associated code page numbers that are supported by SAP,

access SAP Note 7360.

Default The default value for the Language code property is based on the system locale.

Property type String

Usage Each of the supported languages is preceded by a two-character language code. The language

itself displays in parentheses.

If you enter a language code manually, you do not need to enter the language in parenthesis.

The language codes in the list represent the SAP default set of 41 languages for non-Unicode

systems plus Arabic.

The value that you select determines the value of the Codepage number property.

Example If the system locale is English, the value for this property is EN (English).

Globalized No

Bidi supported No

Logon group name

This property is an identifier for the name of the group of application server

instances that have been defined in transaction SMLG and linked together for

logon load balancing.

Message flows 1263

Table 123. Logon group details

Required Yes (if load balancing is used)

Possible values Consult SAP documentation for information on creating Logon groups and on calling

transaction SMLG.

Default No default value

Property type String

Usage When the adapter is configured for load balancing, this property represents the name of the

group of application server instances that have been defined in transaction SMLG and linked

together for logon load balancing.

Logon load balancing allows for the dynamic distribution of logon connections to application

server instances.

This identifier can have a maximum of 20 characters. On most SAP systems, the SPACE logon

group is reserved by SAP.

Globalized No

Bidi supported No

Maximum number of retries in case of system connection failure

This property specifies the number of times that the adapter tries to restart the

event listeners.

 Table 124. Maximum number of retries in case of system failure details

Required Yes

Default 0

Property type Integer

Usage When the adapter encounters an error that is related to the inbound connection, this property

specifies the number of times that the adapter tries to restart the event listeners. A value of 0

indicates an infinite number of retries.

Configure the Time between retries in case of system connection failure (milliseconds)

appropriately when retrying infinitely.

For each retry attempt, the adapter waits for the time interval that is specified in the Time

between retries in case of system connection failure (milliseconds).

If all the retry attempts fail, the adapter logs relevant messages and CEI events and stops

attempting to recover the event listener. If you reach this point, you might have to restart the

application manually.

Globalized No

Bidi supported No

Message server host

This property specifies the name of the host on which the message server is

running.

 Table 125. Message server host details

Required Yes (if load balancing is used)

Default No default value

Property type String

1264 Message Flows

Table 125. Message server host details (continued)

Usage This property specifies the name of the host that informs all the servers (instances) that belong

to this SAP system of the existence of the other servers to be used for load balancing.

The message server host contains the information about load balancing for RFC clients so that

an RFC client can be directed to an appropriate application server.

Example SAPERP05

Globalized No

Bidi supported No

Number of listeners

This property specifies the number of listeners that are started by an event.

 Table 126. Number of listeners details

Required No

Default 1

Property type Integer

Usage For event sequencing, set this property to 1.

To improve adapter performance you can increase the number of listeners.

Globalized No

Bidi supported No

Partner character set

This property specifies the partner character set encoding.

 Table 127. Partner character set details

Required No

Default UTF-8

Property type String

Usage When an encoding is specified, it is used; otherwise, the default encoding is used.

Globalized No

Bidi supported No

Password

This property is the password of the user account of the adapter on the SAP

server.

 Table 128. Password details

Required Yes

Default No default value

Property type String

Message flows 1265

Table 128. Password details (continued)

Usage The restrictions on the password depend on the version of SAP Web Application Server.

v For SAP Web Application Server version 6.40 or earlier, the password:

– Must be uppercase

– Must be 8 characters in length

v For versions of SAP Web Application Server later than 6.40, the password:

– Is not case-sensitive

– Can be up to 40 characters in length

Globalized No

Bidi supported Yes

Password used to connect to event data source

This property is the user password for connecting to the database.

 Table 129. Password to connect to event data source details

Required Yes

Default No default value.

Property type String

Usage This property specifies the password used by event-persistence processing to obtain the

database connection from the data source.

Globalized Yes

Bidi supported No

RFC program ID

This property is the program identifier under which the adapter registers in the

SAP gateway.

 Table 130. RFC program ID details

Required Yes

Possible values Use the SAP transaction SM59 (Display and Maintain RFC Destinations) to see a list of

available RFC program IDs.

Default No default value.

Property type String

Usage The adapter registers with the gateway so that listener threads can process events from

RFC-enabled functions. This value must match the program ID that is registered in the SAP

application.

The maximum length is 64 characters.

Globalized No

Bidi supported No

RFC trace level

This property specifies the global trace level.

1266 Message Flows

Table 131. RFC trace level details

Required No

Possible values 1: SAP JCo Java API logging occurs (default)

3: SAP JCo JNI API logging occurs

5: Error diagnostic logging occurs

Default 1

Property type Integer

Usage If RFC trace on is set to False (not selected), you cannot set a value in the RFC trace level

property.

Globalized No

Bidi supported No

RFC trace on

This property specifies whether to generate a text file that describes the RFC

activity for each event listener.

 Table 132. RFC trace on details

Required No

Possible values True

False

Default False

Property type Boolean

Usage A value of True activates tracing, which generates a text file.

This file is created in the directory in which the adapter process was started. The file has a

prefix of rfx and a file type of .trc (for example, rfc03912_02220.trc).

Use this text file in a development environment only, because the files can grow rapidly.

If RFC trace on is set to False (not selected), you cannot set values in the Folder for RFC trace

files or RFC trace level properties.

Example Examples of the information in the file are RfcCall FUNCTION BAPI_CUSTOMER_GETLIST,

followed by the information for the parameters in the interface, or RFC Info rfctable, followed

by the data from one of the interface tables.

The trace file is created in the directory where the adapter process has been started. The trace

file has a .trc file extension and the file name starts with the letters rfc followed by a unique

identifier. For example, rfc03912_02220.trc.

Globalized No

Bidi supported No

SAP system ID

This property specifies the system ID of the SAP system for which logon load

balancing is allowed.

 Table 133. SAP system ID details

Required Yes (when load balancing is used)

Default No default value

Property type String

Message flows 1267

Table 133. SAP system ID details (continued)

Usage This value must be three characters

Example DYL

Globalized No

Bidi supported No

Secure Network Connection library path

This property specifies the path to the library that provides the secure network

connection service.

 Table 134. Secure Network Connection library path details

Required Yes, if SncMode is set to 1; otherwise, no.

Default No default value

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),

specify the path to the library that provides the service.

Example /WINDOWS/system32/gssapi32.dll

Globalized No

Bidi supported No

Secure Network Connection name

This property specifies the name of the secure network connection.

 Table 135. Secure Network Connection name details

Required Yes, if SncMode is set to 1; otherwise, no.

Default No default value

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),

specify a name for the connection.

Example DOMAINNAME/USERNAME

Globalized No

Bidi supported No

Secure Network Connection partner

This property specifies the name of the secure network connection partner.

 Table 136. Secure Network Connection partner details

Required Yes, if SncMode is set to 1; otherwise, no.

Default No default value

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),

specify a name for the connection partner.

Example CN=sap00.saperpdev, OU=Adapter, O=IBM, C=US

1268 Message Flows

Table 136. Secure Network Connection partner details (continued)

Globalized No

Bidi supported No

Secure Network Connection security level

This property specifies the level of security for the secure network connection.

 Table 137. Secure Network Connection security level details

Required Yes, if SncMode is set to 1; otherwise, no.

Possible values

 1 (Authentication only)

 2 (Integrity protection)

 3 (Privacy protection)

 8 (Use the value from snc/data_protection/use on the application server)

 9 (Use the value from snc/data_protection/max on the application server)

Default 3 (Privacy protection)

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),

specify a value to indicate the level of security for the connection.

Globalized No

Bidi supported No

System number

This property is the system number of the application server.

 Table 138. System number details

Required Yes

Possible values You can enter a range of values from 00 to 99

Default 00

Property type Integer

Usage The system number further identifies the Gateway service.

Globalized No

Bidi supported No

Time between retries in case of system connection failure (milliseconds)

This property specifies the time interval between attempts to restart the event

listeners.

 Table 139. Time between retries in case of system connection failure details

Required Yes

Default 60000

Unit of measure Milliseconds

Property type Integer

Message flows 1269

Table 139. Time between retries in case of system connection failure details (continued)

Usage When the adapter encounters an error that is related to the inbound connection, this property

specifies the time interval that the adapter waits between attempts to restart the event listeners.

Globalized No

Bidi supported No

User name

This property is the user account for the adapter on the SAP server.

 Table 140. User name details

Required Yes

Default No default value

Property type String

Usage This property has a maximum length of 12 characters. The user name is not case sensitive.

Set up a CPIC user account in the SAP application and give this account the necessary

privileges to manipulate the data that is required by the business objects that are supported by

the adapter. For example, if the adapter must perform certain SAP business transactions, the

adapter’s account in the SAP application must have the correct permissions to perform these

transactions.

Example SapUser

Globalized Yes

Bidi supported Yes

User name used to connect to event data source

This property is the user name for connecting to the database.

 Table 141. User name to connect to event data source details

Required Yes

Default No default value.

Property type String

Usage User name used by event persistence for getting the database connection from the data source.

Consult database documentation for information on naming conventions.

Globalized Yes

Bidi supported No

X509 certificate

This property specifies the X509 certificate to be used as the logon ticket.

 Table 142. X509 certificate details

Required No.

Default No default value

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),

you can provide a value for the X509 certificate.

1270 Message Flows

Table 142. X509 certificate details (continued)

Globalized No

Bidi supported No

Activation specification properties for Advanced event processing:

Activation specification properties are properties that hold the inbound

event-processing configuration information for a message endpoint. Use the

Adapter Connection wizard to set activation specification properties.

 Activation specification properties are used during endpoint activation to notify

the adapter of eligible event listeners. During inbound processing, the adapter uses

these event listeners to receive events before it forwards them to the endpoint.

The following table lists the activation specification properties for Advanced event

inbound processing. A complete description of each property is provided in the

sections that follow the table.

 Table 143. Activation specification properties for Advanced event processing

Property name Description

AssuredOnceDelivery Specifies whether to provide assured once-only delivery

for inbound events.

Client The client number of the SAP system to which the

adapter connects.

Codepage The numeric identifier of the code page.

SncMode Indicates whether secure network connection mode is

used.

DeliveryType Determines the order in which events are delivered by

the adapter to the export

“Event type filter” on page 1274 A delimited list of event types that the WebSphere

Adapter for SAP Software should deliver.

RfcTracePath The fully qualified local path to the folder into which the

RFC trace files are written.

GatewayHost The host name of the SAP gateway.

GatewayService The identifier of the gateway on the gateway host that

carries out the RFC services.

ApplicationServerHost The IP address or the name of the application server host

to which the adapter logs on.

Language code The Language code in which the adapter logs on to SAP.

Group An identifier for the name of the group of application

server instances that have been defined in transaction

SMLG and linked together for logon load balancing.

PollQuantity The number of events that the adapter delivers to the

export during each poll period.

RetryLimit The number of times that the adapter tries to reestablish

an inbound connection after an error.

MessageServerHost The name of the host on which the message server is

running.

PartnerCharset The PartnerCharset encoding.

Message flows 1271

Table 143. Activation specification properties for Advanced event processing (continued)

Property name Description

Password The password of the user account of the adapter on the

SAP application server.

RfcTraceLevel The global trace level.

RfcTraceOn Specifies whether to generate a text file that details the

RFC activity for each event listener.

SAPSystemID The system ID of the SAP system for which logon load

balancing is allowed.

SncLib Specifies the path to the library that provides the secure

network connection service.

SncMyname Specifies the name of the secure network connection.

SncPartnername Specifies the name of the secure network connection

partner.

SncQop Specifies the level of security for the secure network

connection.

StopPollingOnError Specifies whether the adapter stops polling for events

when it encounters an error during polling.

SystemNumber The system number of the SAP application server.

PollPeriod The length of time that the adapter waits between

polling periods.

RetryInterval The length of time that the adapter waits between

attempts to establish a new connection after an error

during inbound operations.

userName The user account for the adapter on the SAP server.

X509cert Specifies the X509 certificate to be used as the logon

ticket.

Assured once-only delivery (AssuredOnceDelivery)

This property specifies whether to provide assured once-only delivery for inbound

events.

 Table 144. Assured once-only delivery details

Required Yes

Possible values True

False

Default False

Property type Boolean

Usage When this property is set to True, the adapter provides assured once-only event delivery, so

that each event is delivered only once. A value of False does not provide assured once-only

event delivery, but provides better performance.

When this property is set to True, the adapter attempts to store transaction (XID) information in

the event store. If it is set to False, the adapter does not attempt to store the information.

This property is used only if the export component is transactional. If the export component is

not transactional, no transaction can be used, regardless of the value of this property.

Globalized No

Bidi supported No

1272 Message Flows

Client

This property is the client number of the SAP system to which the adapter

connects.

 Table 145. Client details

Required Yes

Possible values You can enter a range of values from 000 to 999.

Default 100

Property type Integer

Usage When an application attempts to log on to the SAP server, the application must have a Client

number associated with it. The Client property value identifies the client (the adapter) that is

attempting to log on to the SAP server

Globalized No

Bidi supported No

Codepage number

This property is the numeric identifier of the code page.

 Table 146. Codepage number details

Required No

Possible values You can enter a range of values from 0000 to 9999.

For a full listing of languages and associated code page numbers that are supported by SAP,

see SAP Note 7360.

Default The default value for this property is conditionally determined by the value that is set for the

Language code property.

Property type Integer

Usage The value that is assigned to the Codepage number property defines the code page to be used,

and has a one-to-one relationship with the value that is set for the Language code property. The

code page number establishes a connection to the appropriate language.

Each language code value has a code page number value associated with it. For example, the

language code for English is EN. If you select EN (English) as your language code, the code

page number is automatically set to the numeric value that is associated with EN (English). The

SAP code page number for EN (English) is 1100.

Example If Language code is set to JA (Japanese), Codepage number is set to 8000.

Globalized No

Bidi supported No

Delivery type (DeliveryType)

This property specifies the order in which events are delivered by the adapter to

the export.

 Table 147. Delivery type details

Required No

Message flows 1273

Table 147. Delivery type details (continued)

Possible values ORDERED

UNORDERED

Default ORDERED

Property type String

Usage The following values are supported:

v ORDERED: The adapter delivers events to the export one at a time.

v UNORDERED: The adapter delivers all events to the export at once.

Globalized No

Bidi supported No

Enable Secure Network Connection

This property indicates whether secure network connection mode is enabled.

 Table 148. Enable Secure Network Connection details

Required No

Possible values 0 (off)

1 (on)

Default 0

Property type String

Usage Set the value to 1 (on) if you want to use secure network connection.

If you set this value to 1, you must also set following properties:

v “Secure Network Connection library path” on page 1280

v “Secure Network Connection name” on page 1280

v “Secure Network Connection partner” on page 1280

v “Secure Network Connection security level” on page 1281

Globalized No

Bidi supported No

Event type filter

This property provides a delimited list of business object types for which the

adapter should deliver events.

 Table 149. Event type filter details

Required No

Default Null

Property type String

Usage The adapter uses the delimited list as a filter, delivering events for only those business object

types that are contained in the list. If the list is empty (null), the adapter does not apply

filtering, and delivers events for all business object types.

Globalized No

Bidi supported No

1274 Message Flows

Folder for RFC trace files

This property sets the fully qualified local path to the folder in which to write RFC

trace files.

 Table 150. Folder for RFC trace files details

Required No

Default No default value

Property type String

Usage Identifies the fully qualified local path into which RFC trace files are written.

If RFC trace on is set to False (not selected), you cannot set a value in the Folder for RFC trace

files property.

Example c:\temp\rfcTraceDir

Globalized Yes

Bidi supported No

Gateway host

This property is the Gateway host name. Enter either the IP address or the name of

the Gateway host. Consult your SAP administrator for information on the Gateway

host name.

 Table 151. Gateway host details

Required Yes

Default No default value

Property type String

Usage This property is the host name of the SAP gateway. The gateway enables communication

between work processes on the SAP system and external programs.

The host that you identify is used as the gateway for the resource adapter.

The name can have a maximum length of 20 characters. If the computer name is longer than 20

characters, define a symbolic name in the THOSTS table.

Globalized No

Bidi supported No

Gateway service

This property is the identifier of the gateway on the gateway host that carries out

the RFC services.

 Table 152. Gateway service details

Required Yes

Default sapgw00

Property type String

Usage These services enable communication between work processes on the SAP server and external

programs. The service typically has the format of sapgw00, where 00 is the SAP system number.

The name can have a maximum of 20 characters.

Globalized No

Message flows 1275

Table 152. Gateway service details (continued)

Bidi supported No

Host name

The IP address or the name of the application server host to which the adapter

logs on.

 Table 153. Host name details

Required Yes (when load balancing is not used).

Default No default value

Property type String

Usage When the adapter is configured to run without load balancing, this property specifies the IP

address or the name of the application server that the adapter logs on to.

Example sapServer

Globalized No

Bidi supported No

Language code

This property specifies the Language code in which the adapter logs on.

 Table 154. Language code details

Required Yes

Possible values For a full listing of languages and associated code page numbers that are supported by SAP,

access SAP Note 7360.

Default The default value for the Language code property is based on the system locale.

Property type String

Usage Each of the supported languages is preceded by a two-character language code. The language

itself displays in parentheses.

If you enter a language code manually, you do not need to enter the language in parenthesis.

The language codes in the list represent the SAP default set of 41 languages for non-Unicode

systems plus Arabic.

The value that you select determines the value of the Codepage number property.

Example If the system locale is English, the value for this property is EN (English).

Globalized No

Bidi supported No

Logon group name

This property is an identifier for the name of the group of application server

instances that have been defined in transaction SMLG and linked together for

logon load balancing.

 Table 155. Logon group details

Required Yes (if load balancing is used)

1276 Message Flows

Table 155. Logon group details (continued)

Possible values Consult SAP documentation for information on creating Logon groups and on calling

transaction SMLG.

Default No default value

Property type String

Usage When the adapter is configured for load balancing, this property represents the name of the

group of application server instances that have been defined in transaction SMLG and linked

together for logon load balancing.

Logon load balancing allows for the dynamic distribution of logon connections to application

server instances.

This identifier can have a maximum of 20 characters. On most SAP systems, the SPACE logon

group is reserved by SAP.

Globalized No

Bidi supported No

Maximum number of events collected during each poll

This property specifies the number of events that the adapter delivers to the export

during each poll period.

 Table 156. Maximum number of events collected during each poll details

Required Yes

Default 10

Property type Integer

Usage This value must be greater than 0

Globalized No

Bidi supported No

Maximum number of retries in case of system connection failure

This property specifies the number of times that the adapter tries to reestablish an

inbound connection.

 Table 157. Maximum number of retries in case of system connection failure details

Required No

Possible values Positive integers

Default 0

Property type Integer

Usage Only positive values are valid.

When the adapter encounters an error that is related to the inbound connection, this property

specifies the number of times that the adapter tries to restart the connection. A value of 0

indicates an infinite number of retries.

Globalized No

Bidi supported No

Message flows 1277

Message server host

This property specifies the name of the host on which the message server is

running.

 Table 158. Message server host details

Required Yes (if load balancing is used)

Default No default value

Property type String

Usage This property specifies the name of the host that informs all the servers (instances) that belong

to this SAP system of the existence of the other servers to be used for load balancing.

The message server host contains the information about load balancing for RFC clients so that

an RFC client can be directed to an appropriate application server.

Example SAPERP05

Globalized No

Bidi supported No

Partner character set

This property specifies the partner character set encoding.

 Table 159. Partner character set details

Required No

Default UTF-8

Property type String

Usage When an encoding is specified, it is used; otherwise, the default encoding is used.

Globalized No

Bidi supported No

Password

This property is the password of the user account of the adapter on the SAP

server.

 Table 160. Password details

Required Yes

Default No default value

Property type String

Usage The restrictions on the password depend on the version of SAP Web Application Server.

v For SAP Web Application Server version 6.40 or earlier, the password:

– Must be uppercase

– Must be 8 characters in length

v For versions of SAP Web Application Server later than 6.40, the password:

– Is not case-sensitive

– Can be up to 40 characters in length

Globalized No

Bidi supported Yes

1278 Message Flows

RFC trace level

This property specifies the global trace level.

 Table 161. RFC trace level details

Required No

Possible values 1: SAP JCo Java API logging occurs (default)

3: SAP JCo JNI API logging occurs

5: Error diagnostic logging occurs

Default 1

Property type Integer

Usage If RFC trace on is set to False (not selected), you cannot set a value in the RFC trace level

property.

Globalized No

Bidi supported No

RFC trace on

This property specifies whether to generate a text file that describes the RFC

activity for each event listener.

 Table 162. RFC trace on details

Required No

Possible values True

False

Default False

Property type Boolean

Usage A value of True activates tracing, which generates a text file.

This file is created in the directory in which the adapter process was started. The file has a

prefix of rfx and a file type of .trc (for example, rfc03912_02220.trc).

Use this text file in a development environment only, because the files can grow rapidly.

If RFC trace on is set to False (not selected), you cannot set values in the Folder for RFC trace

files or RFC trace level properties.

Example Examples of the information in the file are RfcCall FUNCTION BAPI_CUSTOMER_GETLIST,

followed by the information for the parameters in the interface, or RFC Info rfctable, followed

by the data from one of the interface tables.

The trace file is created in the directory where the adapter process has been started. The trace

file has a .trc file extension and the file name starts with the letters rfc followed by a unique

identifier. For example, rfc03912_02220.trc.

Globalized No

Bidi supported No

SAP system ID

This property specifies the system ID of the SAP system for which logon load

balancing is allowed.

Message flows 1279

Table 163. SAP system ID details

Required Yes (when load balancing is used)

Default No default value

Property type String

Usage This value must be three characters

Example DYL

Globalized No

Bidi supported No

Secure Network Connection library path

This property specifies the path to the library that provides the secure network

connection service.

 Table 164. Secure Network Connection library path details

Required Yes, if SncMode is set to 1; otherwise, no.

Default No default value

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),

specify the path to the library that provides the service.

Example /WINDOWS/system32/gssapi32.dll

Globalized No

Bidi supported No

Secure Network Connection name

This property specifies the name of the secure network connection.

 Table 165. Secure Network Connection name details

Required Yes, if SncMode is set to 1; otherwise, no.

Default No default value

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),

specify a name for the connection.

Example DOMAINNAME/USERNAME

Globalized No

Bidi supported No

Secure Network Connection partner

This property specifies the name of the secure network connection partner.

 Table 166. Secure Network Connection partner details

Required Yes, if SncMode is set to 1; otherwise, no.

Default No default value

Property type String

1280 Message Flows

Table 166. Secure Network Connection partner details (continued)

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),

specify a name for the connection partner.

Example CN=sap00.saperpdev, OU=Adapter, O=IBM, C=US

Globalized No

Bidi supported No

Secure Network Connection security level

This property specifies the level of security for the secure network connection.

 Table 167. Secure Network Connection security level details

Required Yes, if SncMode is set to 1; otherwise, no.

Possible values

 1 (Authentication only)

 2 (Integrity protection)

 3 (Privacy protection)

 8 (Use the value from snc/data_protection/use on the application server)

 9 (Use the value from snc/data_protection/max on the application server)

Default 3 (Privacy protection)

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),

specify a value to indicate the level of security for the connection.

Globalized No

Bidi supported No

Stop the adapter when an error is encountered while polling

(StopPollingOnError)

This property specifies whether the adapter stops polling for events when it

encounters an error during polling.

 Table 168. Stop the adapter when an error is encountered while polling details

Required No

Possible values True

False

Default False

Property type Boolean

Usage If this property is set to True, the adapter stops polling when it encounters an error.

If this property is set to False, the adapter logs an exception when it encounters an error

during polling and continues polling.

Globalized No

Bidi supported No

System number

This property is the system number of the application server.

Message flows 1281

Table 169. System number details

Required Yes

Possible values You can enter a range of values from 00 to 99

Default 00

Property type Integer

Usage The system number further identifies the Gateway service.

Globalized No

Bidi supported No

Time between polling for events (milliseconds)

This property specifies the length of time that the adapter waits between polling

periods.

 Table 170. Time between polling for events (milliseconds)

Required Yes

Possible values Integers greater than or equal to 0.

Default 2000

Unit of measure Milliseconds

Property type Integer

Usage The time interval between polling events is established at a fixed rate, which means that if

running the poll cycle is delayed for any reason (for example, if a prior poll cycle takes longer

than expected to complete), the next poll cycle occurs immediately to make up for the time that

is lost because of the delay.

Globalized No

Bidi supported No

Time between retries in case of system connection failure (milliseconds)

This property specifies the time interval between attempts to reestablish an

inbound connection.

 Table 171. Time between retries in case of system connection failure details

Required Yes

Default 60000

Unit of measure Milliseconds

Property type Integer

Usage When the adapter encounters an error that is related to the inbound connection, this property

specifies the time interval that the adapter waits in between attempts to reestablish an inbound

connection.

Globalized No

Bidi supported No

User name

This property is the user account for the adapter on the SAP server.

1282 Message Flows

Table 172. User name details

Required Yes

Default No default value

Property type String

Usage This property has a maximum length of 12 characters. The user name is not case sensitive.

Set up a CPIC user account in the SAP application and give this account the necessary

privileges to manipulate the data that is required by the business objects that are supported by

the adapter. For example, if the adapter must perform certain SAP business transactions, the

adapter’s account in the SAP application must have the correct permissions to perform these

transactions.

Example SapUser

Globalized Yes

Bidi supported Yes

X509 certificate

This property specifies the X509 certificate to be used as the logon ticket.

 Table 173. X509 certificate details

Required No.

Default No default value

Property type String

Usage If the SncMode property is set to 1 (indicating that you are using a secure network connection),

you can provide a value for the X509 certificate.

Globalized No

Bidi supported No

Interaction specification properties:

An interaction is an operation. Interaction specification properties control how the

operation is run.

 The Adapter Connection wizard sets the interaction specification properties when

you configure the adapter. Typically, you do not need to change these properties.

However, you can change some properties for outbound operations. For example,

you can increase the value of the interaction specification property that specifies

the maximum number of hits for the discovery to be returned by a RetrieveAll

operation, if your RetrieveAll operations do not return complete information.

The following table lists the interaction specification properties that you can set.

 Table 174. Interaction specification properties for Adapter for SAP Software

Property name Description

“Custom retrieve function name” on page 1284 The name of a custom function to be used by the Query

interface to SAP Software to retrieve data from an SAP

table.

Function name The function name for a specific SAP interface.

Ignore errors in BAPI return Specifies if errors in BAPI return are ignored.

Message flows 1283

Table 174. Interaction specification properties for Adapter for SAP Software (continued)

Property name Description

“Maximum number of hits for the discovery” on page

1286

The maximum number of result sets to return during a

RetrieveAll operation.

“Select the queue name” on page 1286 The name of a customer-defined queue on the SAP

server.

Custom retrieve function name

For the Query interface for SAP Software, this property specifies the name of a

custom function that must be used to retrieve data from an SAP table.

 Table 175. Custom retrieve function name details

Required No

Default No default value

Property type String

Usage This property applies to Query interface for SAP Software only.

On non-Unicode systems, the default function used to retrieve data from SAP tables

(RFC_READ_TABLE) might produce an exception. To avoid the problem, you can create

another function on the SAP server and indicate, during configuration, that the adapter must

use this custom function to retrieve data. This property specifies the name of the custom

function.

You must create the function on the SAP server before you specify this property on the Adapter

Connection wizard. Follow the steps listed in SAP note 758278 to make a copy of

RFC_READ_TABLE and modify the copy in line with the note.

Globalized No

Bidi supported No

Function name

The functionName interaction specification property controls the interaction by

associating operations with the proper interface.

 Table 176. Function name details

Required Yes

Possible values True

False

Default Null

Property type String

1284 Message Flows

|

|
|

||

||

||

||

||

|
|
|
|
|

|
|
|

||

||
|

|

Table 176. Function name details (continued)

Usage The BAPI/RFC supports the following values for the functionName interaction specification

property:
WBIInteractionSpec.CREATE

WBIInteractionSpec.UPDATE

WBIInteractionSpec.RETRIEVE

WBIInteractionSpec.DELETE

The BAPI result set supports the following value for the functionName interaction specification

property:

 WBIInteractionSpec.RETRIEVEALL

The ALE outbound interface supports the following value:

 WBIInteractionSpec.EXECUTE

The ALE inbound interface supports the following values for the functionName interaction

specification property:

 WBIInteractionSpec.CREATE

WBIInteractionSpec.UPDATE

WBIInteractionSpec.RETRIEVE

WBIInteractionSpec.DELETE

The Query interface for SAP software (QISS) interface supports the following values for the

functionName interaction specification property:

v WBIInteractionSpec.EXISTS

Throws the exceptions NotExistsException and QISSQueryFailedException

v WBIInteractionSpec.RETRIEVEALL

Throws the exceptions QISSQueryFailedException

The Advanced event processing interface for inbound processing supports the following values

for the functionName interaction specification property:

 WBIInteractionSpec.CREATE

WBIInteractionSpec.UPDATE

WBIInteractionSpec.DELETE

The Advanced event processing interface for outbound processing supports the following

values for the functionName interaction specification property:

 WBIInteractionSpec.CREATE

WBIInteractionSpec.UPDATE

WBIInteractionSpec.RETRIEVE

WBIInteractionSpec.DELETE

Globalized No

Bidi supported No

Ignore errors in BAPI return

This property indicates whether to ignore errors that are specified in a BAPI return

operation. The return structure can be data or a table.

 Table 177. Ignore errors in BAPI return details

Required No

Message flows 1285

Table 177. Ignore errors in BAPI return details (continued)

Possible values True

False

Default False

Property type Boolean

Usage This property applies to BAPI outbound synchronous RFC processing only.

When you set this property to True, the Adapter for SAP Software ignores the checking of error

codes in the BAPI RETURN structure after BAPI has run, and returns this structure to the user

as it is. The RETURN structure is part of every BAPI and contains the status of the BAPI

execution.

If you accept the default value of False, the Adapter for SAP Software processes the RETURN

structure and throws an exception if an error code is found.

Globalized No

Bidi supported No

Maximum number of hits for the discovery

For the Query interface for SAP Software, this property specifies the maximum

number of result sets, which represents data for each row that is retrieved from a

table through a RetrieveAll operation.

 Table 178. Result set limit details

Required Yes

Default 100

Property type Integer

Usage This property applies to Query interface for SAP Software only.

If the number of hits in the table on the SAP server exceeds the value of the ResultSetLimit

property, the adapter returns the error: MatchesExceededLimitException. The adapter uses this

property to help avoid out-of-memory issues.

Globalized No

Bidi supported No

Select the queue name

For BAPI outbound processing, when Asynchronous queued RFC is selected, this

property specifies the name of a queue on the SAP server to which BAPIs will be

delivered.

 Table 179. Select the queue name details

Required No

Default The first queue defined on the SAP server. If no queue is defined on the SAP server, no default

value exists.

Property type String

Usage This property applies to BAPI outbound asynchronous queued RFC processing only.

When you want to deliver BAPI calls to a queue on the SAP server, you must specify the name

of the queue. During configuration, you select an existing queue from a drop-down list. If no

queues exist on the SAP server, you can type the name of a queue.

1286 Message Flows

|

|
|
|

||

||

||
|

||

||

|
|
|

Table 179. Select the queue name details (continued)

Globalized No

Bidi supported No

WebSphere Adapter for Siebel properties

Reference information to refer to when you connect to a Siebel application.

v “Business object information”

v “Supported data operations”

v “Naming conventions for business objects representing Siebel business services”

on page 1288

v “Adding external software dependencies for Siebel” on page 250

v “Configuration properties for the WebSphere Adapter for Siebel Business

Applications” on page 1291

v “Siebel connection properties for the Adapter Connection wizard” on page 1291

v “Resource adapter properties” on page 1298

v “Managed connection factory properties” on page 1299

v “Activation specification properties” on page 1302

Business object information

A business object is a structure that contains application-specific information

(metadata) about how the adapter should process the business object as well as the

operation to be performed on the business object.

The name of the business object is generated by the Adapter Connection wizard in

accordance with the naming convention for the adapter.

The Siebel business objects are created with long names by default. To generate

business objects with shorter names, select Generate business objects with shorter

names on the Configure Objects screen of the Adapter Connection wizard.

For more information about business objects, see the following topics.

v “Naming conventions for business objects representing Siebel business services”

on page 1288

v “Supported data operations”

Supported data operations:

An operation is the action that an adapter can perform on the Siebel server during

outbound processing. The name of the operation typically indicates the type of

action that the adapter takes, such as create or update.

 Table 180. Supported operations of business objects

Operation Definition

Create Creates the business component

Delete Deletes the business component and its children

Exists Checks for the existence of incoming business objects

Retrieve Retrieves the values of the business component

Retrieve all Retrieves multiple instances of the same business

component

Message flows 1287

|

||

||
|

|

|
|

|
|
|

|

|
|

|

Table 180. Supported operations of business objects (continued)

Operation Definition

Update Updates the Siebel application with the incoming object

Naming conventions for business objects representing Siebel business services:

When the Adapter Connection wizard generates a business object, it provides a

name for the business object based on the name of the object in the Siebel

application that it uses to build the business object.

 Naming conventions for business objects that represent Siebel business services

and integration components

The naming conventions for business objects that represent Siebel business services

are the same for both inbound and outbound processing. The names comprise the

concatenation of several words, including prefix, business service name, integration

object, and method name.

The following table describes the naming conventions that the Adapter Connection

wizard uses to name business objects that represent Siebel business services and

integration components.

 Table 181. Business object naming conventions for Siebel business services and integration components

Element Naming convention

Name of the business graph <Top Level business object Name> +″BG″

A ″Prefix″ is used only for top-level business objects that are

generated against business service methods.

Name of the top-level business object <Prefix><Business Service Name><Method Name><Names of all the

integration objects selected for the Input and InputOutput complex type

arguments>

v If no Input or InputOutput arguments exist, the names of all

the output arguments are: <Prefix><Business Service

Name><Method Name><Names of all the integration objects selected

for the output complex type arguments>

v If the method contains no complex arguments in the method,

the naming convention is: <Prefix><Business Service

Name><Method Name>

Name of the inbound object that is generated

against integration components

’IO’ + <Name of Integration Object> + ’IC’ + <Name of integration

component> + ’BG’

The top-level business graph has the suffix BG added to the

business object name, as shown in this example:

IOAccountInterfaceICAccountBG

Name of the outbound object that is generated

against integration components

’IO’ + <Name of Integration Object> + ’IC’ + <Name of integration

component>

The name of an account interface integration object with the

integration component account looks like this:

IOAccountInterfaceICAccount

1288 Message Flows

Optional: Shorter naming conventions for business objects that are generated

against Siebel business services and integration components

The naming conventions for business objects that are generated against Siebel

business services and integration components are valid if the optional property,

’Generate business objects with shorter names’ is specified on the configuration

objects pane in the Adapter Connection wizard.

If this optional property is used, you should set the ’Folder’ property with a

unique value to avoid overwriting existing xsds that were previously generated.

For example, if you select ’EAI Siebel Adapter’, and click Query in two different

Adapter Connection wizard runs for the integration objects, ’Account (PRM ANI)’

and ’ATP Check Interface’, the top-level object is named EAISiebelAdapter.xsd.

The name comprises the concatenation of several words, including prefix, business

service name, and integration component name.

The following table describes the naming conventions that the Adapter Connection

wizard uses to name business objects that are generated against Siebel business

services and integration components.

 Table 182. Shorter business object naming conventions for business objects that are generated against Siebel

business services and integration components

Element Naming convention

Name of the inbound and outbound child business

objects that are generated against integration components

<Prefix>+<Name of the Siebel Integration Component>

The Siebel business object and integration component

names are stripped of all non-alphanumeric characters

before being added to the business object name. If the

resulting names are not unique, a counter is added to the

end of the names.

Name of the inbound top-level business object that is

generated against business services and integration

components

<Prefix>+<Name of the Siebel Integration Component> +BG

(with business graph specified) and <Prefix>+<Name of

the Siebel Integration Component> (without business graph

specified)

The Siebel business object and integration component

names are stripped of all non-alphanumeric characters

before being added to the business object name. If the

resulting names are not unique, a counter is added to the

end of the names.

Name of the outbound top-level business object that is

generated against business services and integration

components

<Prefix>+<Name of the Siebel Business Service> +BG (with

business graph specified) and <Prefix>+<Name of the

Siebel Business Service> (without business graph specified)

The Siebel business object and integration component

names are stripped of all non-alphanumeric characters

before being added to the business object name. If the

resulting names are not unique, a counter is added to the

end of the names.

Naming conventions for business objects that represent Siebel business objects

The naming conventions for business objects that represent Siebel business objects

are the same for both inbound and outbound processing. The name comprises the

concatenation of several words, including prefix, business object name, and

business component name.

Message flows 1289

The following table describes the naming conventions that are used by the Adapter

Connection wizard to name business objects that represent Siebel business objects.

 Table 183. Business object naming conventions for Siebel business objects

Element Naming convention

Name of the business object <Prefix>+<BO>+<Business Object Name>+<BC>+<Business

Component Name>.

The Siebel business object and component names are

stripped of all non-alphanumeric characters before being

added to the business object name. If the resulting names

are not unique, a counter is added to the end of the

names. For example, if two business objects have the

name, SiebelBOAccountBCBusinessAddress, a counter is

added as a suffix to make them unique, as shown in this

example:

SiebelBOAccountBCAddress1 and SiebelBOAccountBCAddress2

Name of the container business object that is generated

for the Exists operation

<SiebelExistsResult>

A business graph is not generated for the

″SiebelExistsResult″ business object.

Name of the container business object that is generated

for the Retrieve All operation

<Prefix>+BO+<Business Object Name>+<BC>+<Business

Component Name>+Container

Name of the top-level business object <Prefix>+<BO>+<Business Object Name>+<BC>+<Business

Component Name>+BG

The top-level business object does have a business graph

generated.

Optional: Shorter naming conventions for business objects that are generated

against Siebel business components

The naming conventions for business objects that are generated against Siebel

business components are valid if the optional property, ’Generate business objects

with shorter names’ is specified on the configuration objects pane of the Adapter

Connection wizard.

If this optional property is used, set the ’Folder’ property with a unique value to

avoid overwriting existing xsds that were previously generated. For example,

Siebel business object -> Siebel business component combination of Account-ESP ->

Account and Account (as the top-level object) is named Account.xsd.

The name comprises the concatenation of several words, including prefix and

business component name.

The following table describes the naming conventions that the Adapter Connection

wizard uses to name business objects that are generated against Siebel business

components.

1290 Message Flows

Table 184. Shorter business object naming conventions for business objects that are generated against Siebel

business components

Element Naming convention

Name of the top-level business object that is generated

against business components

<Prefix>+<Name of the Siebel Business Component> +BG

(with business graph specified) and <Prefix>+<Name of

the Siebel Business Component> (without business graph

specified)

The Siebel business object and integration component

names are stripped of all non-alphanumeric characters

before being added to the business object name. If the

resulting names are not unique, a counter is added to the

end of the names.

Configuration properties for the WebSphere Adapter for Siebel

Business Applications

WebSphere Adapter for Siebel Business Applications has several categories of

configuration properties, which you set with the Adapter Connection wizard when

you generate or create objects and services.

You can change the resource adapter, managed connection factory, and activation

specification properties in WebSphere Message Broker.

For more information, see the following topics.

v “Siebel connection properties for the Adapter Connection wizard”

v “Resource adapter properties” on page 1298

v “Managed connection factory properties” on page 1299

v “Activation specification properties” on page 1302

Siebel connection properties for the Adapter Connection wizard:

Set Adapter Connection wizard properties to establish a connection between the

wizard, a tool that is used to create business objects, and the Siebel server. The

properties that you configure in the Adapter Connection wizard specify such

things as connection configuration, and logging and tracing options.

 After you have established a connection between the Adapter Connection wizard

and the Siebel server, the Adapter Connection wizard is able to access the

metadata that it needs from the Siebel server to create business objects.

Some of the properties that you set in the Adapter Connection wizard are used as

the initial value for resource adapter, managed connection factory, and activation

specification properties that you can specify at a later time in the wizard.

The following table describes the Adapter Connection wizard properties and their

purpose. A complete description of each property is provided in the sections that

follow the table.

If you set any of these connection properties using bidirectional script, you must

set values that identify the format of the bidirectional script that is entered for that

property.

Message flows 1291

Table 185. Adapter Connection wizard properties

Property name in the wizard Description

Adapter style The service type that is associated with the adapter

module

Connection URL The connection URL that you need to connect to the

Siebel application

Delimiter for keys in the event store Specifies that the delimiter that is used between two

name value pairs contains the object key name and value

Folder The location of the generated business object

Generate business objects with shorter names Ensures that the adapter generates shorter business

object names, which are based on the Siebel integration

components, business services, and business components

rather than the concatenation of several words (which is

the default)

Language code The language code that is used to log on to the Siebel

server

Method name The name of the business service method to be

implemented

Password The password for the corresponding user name

Prefix for business object names The prefix for the business object name

Siebel repository name The name of the Siebel repository from which the objects

are to be discovered

Siebel server view mode Specifies the Siebel server mode and controls the kind of

data to be retrieved and what actions can be performed

Type of Siebel objects to discover The type of Siebel objects (business objects or business

services) that need to be discovered and listed

Use resonate support for load balancing on Siebel server Specifies that if resonate support is installed on the

Siebel server, and the value is set to True, the adapter

takes advantage of the load balancing feature to connect

to the Siebel server more efficiently

User name The user name that is used to log into the Siebel

application

Adapter style (AdapterStyle)

This property specifies the service type that is associated with the adapter module.

 Table 186. Service type details

Required Yes

Default Outbound

Property type List of values

Possible values Outbound

Inbound

Usage Specifies the service type associated with the adapter module

Globalized No

Bidi supported No

1292 Message Flows

Business object namespace (BusinessObjectNameSpace)

This property specifies that the namepsace value has been added as a prefix to the

business object name to keep the business object schemas separated.

 Table 187. Business object namespace details

Required Yes

Default http://www.ibm.com/xmlns/prod/wbi/j2ca/siebel

Property type String

Usage The namespace value is added as a prefix to the business object name to keep the business

object schemas separated.

Example http://www.ibm.com/xmlns/prod/wbi/j2ca/siebel/IBMSiebelAccountInsertAccount

Globalized No

Bidi supported No

Connection URL (ConnectionURL)

This property specifies the connection URL that is needed to connect to the Siebel

application.

 Table 188. Connection URL details

Required Yes

Default No default value

Property type String

Usage The connection URLs for all versions of Siebel follow this format: Protocol://
machinename:port/enterprisename/object manager/server name. . The default port number is

2320. For Siebel version 7.5x and earlier versions, the port number (2320) and server name are

specified. For Siebel version 7.8, the port and server name are not specified. If you do not select

the default port, then you can specify another port number (for example, 2321).

Examples The following sample connection URLs are for different versions of Siebel:

v For Siebel 7.5: siebel://<IP_address>:2320/siebel/SSEObjMgr_ENU/sebldevl.

v For Siebel 7.8: siebel://<IP_address>/Sieb78/SSEObjMgr_enu.

v For Siebel 8: siebel://<IP_address>:2321/SBA_80/SSEObjMgr_enu.

Globalized Yes

Bidi supported Yes

Delimiter for keys in the event store (DelimiterForKeysInTheEventStore)

 Table 189. Delimiter for keys in the event store details

Required Yes

Default ;

Property type String

Usage This is the delimiter that is used between two name value pairs that contain the object key

name and value.

Examples You can change the default value for this property. However, if you remove the default value

and do not set it again, the default value (;) is used. If the event table key field has values, such

as AccountId=1-314:Id=1-325, the event delimiter is the colon (:) . The object key names are

AccountId and Id. The values are 1-314 and 1-325.

Globalized Yes

Message flows 1293

Table 189. Delimiter for keys in the event store details (continued)

Bidi supported Yes

Folder (Folder)

This property specifies the location of the generated business objects.

 Table 190. Folder details

Required No

Default No default value

Property type String

Usage The generated business objects are copied into this folder.

Example inboundartifacts and outboundartifacts

Globalized No

Bidi supported No

Generate business objects with shorter names

(GenerateBusinessObjectsWithShorterNames)

This property ensures that the adapter generates shorter business object names,

which are based on the Siebel integration components, business services, and

business components rather than the concatenation of several words (which is the

default).

 Table 191. Generate business objects with shorter names details

Required No

Default No default value

Property type Boolean

Usage This property ensures that the adapter generates shorter business object names. The shorter

business object names are based on the Siebel integration components, business services, and

business components. The prefix is also attached to the shorter names.

The adapter removes special characters from the shorter business object names. Alphanumeric

characters (a-z, A-Z, and 1-9) are supported, and a counter (1-9) is added to the end of business

object names to avoid duplication of names.

Example If ’Account’ is the name of the Siebel business component, and ’Siebel’ is the prefix, the shorter

name is ’Siebel_Account’.

Globalized No

Bidi supported No

Language code (LanguageCode)

This property specifies the language code that is used to log on to the Siebel

server.

 Table 192. Language code details

Required Yes

Default ENU

Property type String

1294 Message Flows

Table 192. Language code details (continued)

Usage If the system locale is English, the value for this property is ENU (English). This is used to log

on to the Siebel server.

Globalized No

Bidi supported No

Method name (MethodName)

This property specifies the name of the business service method to be

implemented.

 Table 193. Method name details

Required Yes

Default Query

Property type String

Usage The default is Query.

Example Query, QueryByExample, QueryById, and so on.

Globalized Yes

Bidi supported Yes

Password (Password)

This property specifies the password for the corresponding user name.

 Table 194. Password details

Required Yes

Default No default value

Property type String

Usage If a J2C Authentication Alias is used, then a password is not required.

Example 1-XYZ

Globalized Yes

Bidi supported Yes

Prefix for business object names (PrefixForBusinessObjectNames)

This property specifies the prefix for the business object name.

 Table 195. Prefix details

Required No

Default No default value

Property type String

Usage The prefix string is attached to the front of the business object name that was generated.

Message flows 1295

Table 195. Prefix details (continued)

Example For example, you use the prefix, IBM, and generate a business object for the EAI Siebel Adapter

and the Insert method. Then you choose the Account Interface and Business Address Interface

integration object against an Input and InputOutput method argument. The corresponding

business object that is generated is:

IBMEAISiebelAdapterInsertAccountInterfacBusinessAddressInterface

.

Globalized Yes

Bidi supported Yes

Siebel business object name for event store

(SiebelBusinessObjectNameForEventStore)

This property specifies the name of the business object in the event store where

events are stored for inbound processing.

 Table 196. Siebel business object name for event store details

Required Yes

Default IBM_EVENT

Property type String

Usage After you click Advanced on the connection properties pane of the Adapter Connection wizard,

this property displays on the Event configuration tab. The two values that are listed are

IBM_EVENT and IBM2. If you create a custom event component name, you can specify the value

for it in the list box.

Globalized Yes

Bidi supported No

Siebel repository name (SiebelRepositoryName)

This property specifies the name of the Siebel repository from which the objects are

discovered.

 Table 197. Siebel repository name details

Required Yes

Default Siebel repository

Property type String

Usage This default value is Siebel Repository. Although this is a required field, it is optional on the

Adapter Connection wizard. You can edit this value to point to other repositories if needed.

Globalized No

Bidi supported No

Siebel server view mode (SiebelServerViewMode)

This property specifies the Siebel server view mode and controls the data that can

be retrieved and what actions can be performed on it.

 Table 198. Siebel server view mode details

Required Yes

1296 Message Flows

Table 198. Siebel server view mode details (continued)

Default 3

Property type Integer

Usage This property displays when you click Advanced on the connection properties pane of the

Adapter Connection wizard. This mode, when set to ″Type of Siebel objects to discover″ applies

only to Siebel business objects, not to Siebel business services. The values that are

supported by Siebel are 1 to 9.

Globalized No

Type of Siebel objects to discover (TypeOfSiebelObjectsToDiscover)

This property specifies the type of Siebel object that needs to be discovered and

listed.

 Table 199. Type of Siebel objects to discover details

Required Yes

Possible values Siebel business objects and Siebel business services

Default Siebel business objects

Property type String

Usage Although the default is Siebel business objects, you can select Siebel business services.

Based on your selection, the Adapter Connection wizard retrieves either the business objects or

the business services.

Globalized No

Bidi supported No

Use resonate support for load balancing on Siebel server

(UseResonateSupportForLoadBalancingOnSiebelServer)

This property indicates whether the Siebel server uses resonate support.

 Table 200. Use resonate support for load balancing on Siebel server details

Required No

Possible values True

False

Default True

Property type Boolean

Usage This property displays after you click Advanced on the connection properties pane of the

Adapter Connection wizard. If you select the check box, the property is set to True and the

adapter takes advantage of the load balancing feature to connect to the Siebel server more

efficiently. If you clear the check box, the property is set to False.

Globalized No

User name (UserName)

This property specifies the user name that is used to log into the Siebel application.

 Table 201. User name details

Required Yes

Default No default value

Message flows 1297

Table 201. User name details (continued)

Property type String

Usage If a J2C Authentication Alias is used, then a user name is not required.

Globalized Yes

Bidi supported Yes

Resource adapter properties:

The resource adapter properties control the general operation of the adapter. You

set the resource adapter properties using the Adapter Connection wizard when

you configure the adapter.

 The following table lists and describes the resource adapter properties. A more

detailed description of each property is provided in the sections that follow the

table.

 Table 202. Resource adapter properties

Property name Description

Adapter ID property The adapter instance for CEI and PMI events with

respect to logging and tracing.

Event delimiter Specifies whether the delimiter that is used between two

name value pairs contains the object key name and value

Resonate support Specifies that if resonate support is installed on the

Siebel server, and the value is set to True, the adapter

takes advantage of the load balancing feature to connect

to the Siebel server more efficiently

Siebel server view mode Specifies the Siebel view mode and controls the kind of

data to be retrieved and what actions can be performed

Adapter ID to use for logging and tracing (AdapterID)

This property identifies a specific deployment, or instance, of the adapter.

 Table 203. Adapter ID to use for logging and tracing details

Required Yes

Default CWYMY_Adapter
Without local transaction support: CWYAP_SAPAdapter

With local transaction support: CWYAP_SAPAdapter_Tx

Property type String

Usage Use this property to identify the adapter instance for PMI events. If you are deploying multiple

instances of an adapter, set this property to a unique value for each adapter instance.

For inbound processing, this property is retrieved from the resource adapter properties. For

outbound processing, it is retrieved form the managed connection factory properties.

Globalized Yes

Bidi supported No

1298 Message Flows

Event delimiter (EventDelimiter)

This property indicates that the delimiter that is used between two name value

pairs contains the object key name and value.

 Table 204. Event delimiter details

Required Yes

Default ;

Property type String

Usage If multiple value pairs are set against the object key in the event component, they are used for

the delimiter.

Globalized No

Resonate support (ResonateSupport)

This property indicates whether the Siebel server uses resonate support.

 Table 205. Resonate support details

Required No

Possible values True

False

Default True

Property type Boolean

Usage If you select the check box, the value for Resonate Support is set to True, and the adapter takes

advantage of the load balancing feature to connect to the Siebel server more efficiently. If you

clear the check box, the value for Resonate Support is set to False.

Globalized No

Siebel server view mode (SiebelServerViewMode)

This property specifies the Siebel view mode and controls the data that can be

retrieved and what actions can be performed on it.

 Table 206. View mode details

Required Yes

Default 3

Property type Integer

Usage The View mode property applies only to Siebel business objects and not to Siebel business

services.

Globalized No

Managed connection factory properties:

The adapter uses managed connection factory properties at run time to create an

outbound connection instance with the Siebel application.

 Use the Adapter Connection wizard to set the managed connection factory

properties.

Message flows 1299

The following table lists the managed connection factory properties for inbound

communication. A complete description of each property is provided in the

sections that follow the table.

 Table 207. Managed connection factory properties

Property name Description

Connection URL The connection URL that is needed to connect to the

Siebel application

Language code The language code that is used to log on to the Siebel

server

Password The password for the corresponding user name

Prefix The prefix for the business object name

Resonate support Specifies that if resonate support is installed on the

Siebel server, and the value is set to True, the adapter

takes advantage of the load balancing feature to connect

to the Siebel server more efficiently

User name The user name that is used to log into the Siebel

application

View mode Specifies the Siebel view mode and controls the data that

can be retrieved and what actions can be performed on it

Connection URL (ConnectionURL)

This property specifies the connection URL that is needed to connect to the Siebel

application.

 Table 208. Connection URL details

Required Yes

Default No default value

Property type String

Usage Protocol://machinename:port/enterprisename/object manager/server name

 For Siebel 7.0.5 to 7.5x : siebel://<IP ADDRESS>/siebel/SSEObjMgr_ENU/sebldev1

For Siebel 7.8 : siebel://<IP ADDRESS>:2321/Sieb78/SSEObjMgr_enu

For Siebel 8 : siebel://<IP ADDRESS>:2321/SBA_80/SSEObjMgr_enu

The default port number is 2320. In the examples above (for Siebel versions 7.8 and 8) another

port (2321) has been specified.

Globalized Yes

Bidi supported Yes

Language code (LanguageCode)

This property specifies the language code that is used to log on to the Siebel

server.

 Table 209. Language code details

Required Yes

Possible values None

Default ENU

1300 Message Flows

Table 209. Language code details (continued)

Property type String

Usage If the system locale is English, the value for this property is ENU (English). This value is used to

log on to the Siebel server.

Globalized No

Bidi supported No

Password (Password)

This property specifies the password for the corresponding user name.

 Table 210. Password details

Required Yes

Default No default value

Property type String

Example sadmin

Usage This property displays after you click Advanced on the connection properties pane of the

external service wizard. The password is saved in .import and .export files so that the adapter

can connect to the Siebel application after it has been deployed. If a J2C Authentication Alias is

used, a password is not required.

Globalized Yes

Bidi supported Yes

Prefix (Prefix)

This property specifies the prefix for the business object name.

 Table 211. Prefix details

Required No

Default No default value

Property type String

Usage The prefix string is attached to the front of the business object name.

Example If you use the prefix IBM, generate a business object for the EAI Siebel Adapter and the Insert

method, and choose the integration object, Account (PRM ANI), the corresponding business

object generated is:

IBMEAISiebelAdapterInsertAccountU40PRMANIU41

where U40 and U41 are the unicode value replacements of (and).

Globalized Yes

Bidi supported Yes

Resonate support (ResonateSupport)

This property indicates whether the Siebel server uses resonate support.

 Table 212. Resonate support details

Required No

Message flows 1301

Table 212. Resonate support details (continued)

Possible values True

False

Default True

Property type Boolean

Usage If you select the check box, the property is set to True, and the adapter takes advantage of the

load balancing feature to connect to the Siebel server more efficiently. If you clear the check

box, the property is set to False.

Globalized No

User name (UserName)

This property specifies the user name that is used to log into the Siebel application.

 Table 213. User name details

Required Yes

Possible values None

Default No default value

Property type String

Usage This property displays after you click Advanced on the connection properties pane of the

Adapter Connection wizard. The user name is saved in .import and .export files so that the

adapter can connect to the Siebel application after it has been deployed. If a J2C Authentication

Alias is used, a password is not required.

Globalized Yes

Bidi supported Yes

View mode (ViewMode)

This property specifies the Siebel view mode and controls the data that can be

retrieved and what actions can be performed on it.

 Table 214. View mode details

Required Yes

Default Although the adapter supports values 1 to 9, the default value is 3.

Property type Integer

Usage The View mode property applies only to Siebel business objects and not to Siebel business

services. When this property is used for Siebel business objects, the default value is 3.

Example The adapter supports values 1 to 9. For example, 1 is Manager View, 2 is Personal View, and 3

is All View.

Globalized No

Activation specification properties:

Activation specification properties hold the inbound event processing configuration

information for a message endpoint. Use the Adapter Connection wizard to set

activation specification properties.

1302 Message Flows

Activation specification properties are used during endpoint activation to notify

the adapter of eligible event listeners. During inbound processing, the adapter uses

these event listeners to receive events before it forwards them to the endpoint.

The following table lists the activation specification properties for inbound

processing that you set using the Adapter Connection wizard. A more detailed

description of each property is provided in the sections that follow the table.

 Table 215. Activation specification properties

Property name Description

Connection URL The connection URL that is needed to connect to the

Siebel application

Delivery type Determines the order in which events are delivered by

the adapter to the export

Do not process events that have a timestamp in the

future

Specifies whether the adapter filters out future events by

comparing the timestamp on each event with the system

time

Ensure once-only event delivery Specifies whether the adapter provides assured once

delivery of events

Event component name The name of the Siebel component for the event table

Event types to process A delimited list of event types that indicates to the

adapter which events it should deliver

Interval between polling periods The length of time that the adapter waits between

polling periods

Language code The language code that is used to log on to the Siebel

server

Maximum connections The maximum number of connections that the adapter

can use for inbound event delivery

Maximum events in polling period The number of events that the adapter delivers to the

export during each poll period

Minimum connections The minimum number of connections that the adapter

can use for inbound event delivery

Number of times to retry the system connection The number of times that the adapter tries to re-establish

an inbound connection after an error occurs.

Password The password for the corresponding user name

Retry interval The length of time that the adapter waits between

attempts to establish a new connection after an error

occurs during inbound operations

Stop the adapter when an error is encountered while

polling

Specifies whether the adapter stops polling for events

when it encounters an error during polling.

User name The user name that is used to log on to the Siebel

application

Connection URL (ConnectionURL)

This property specifies the connection URL that is needed to connect to the Siebel

application.

 Table 216. Connection URL details

Required Yes

Default No default value

Message flows 1303

Table 216. Connection URL details (continued)

Property type String

Usage Protocol://machinename:port/enterprisename/object manager/server name

 For Siebel 7.0.5 to 7.5x : siebel://<IP ADDRESS>/siebel/SSEObjMgr_ENU/sebldev1

For Siebel 7.8 : siebel://<IP ADDRESS>:2321/Sieb78/SSEObjMgr_enu

For Siebel 8 : siebel://<IP ADDRESS>:2321/SBA_80/SSEObjMgr_enu

The default port number is 2320. In the examples above (for Siebel versions

7.8 and 8), another port (2321) has been specified.

Globalized Yes

Bidi supported Yes

Delivery type (DeliveryType)

This property specifies the order in which events are delivered by the adapter to

the export.

 Table 217. Delivery type details

Required No

Possible values ORDERED

UNORDERED

Default ORDERED

Property type String

Usage The following values are supported:

v ORDERED: The adapter delivers events to the export one at a time.

v UNORDERED: The adapter delivers all events to the export at once.

Globalized No

Bidi supported No

Do not process events that have a timestamp in the future (FilterFutureEvents)

This property specifies whether the adapter filters out future events by comparing

the timestamp on each event with the system time.

 Table 218. Do not process events that have a timestamp in the future details

Required Yes

Possible values True

False

Default False

Property type Boolean

Usage If set to True, the adapter compares the time of each event to the system time. If the event time

is later than the system time, the event is not be delivered.

If set to False, the adapter delivers all events.

Globalized No

Bidi supported No

1304 Message Flows

Ensure once-only event delivery (AssuredOnceDelivery)

This property specifies whether to provide ensured once-only event delivery for

inbound events.

 Table 219. Ensure once-only event delivery details

Required Yes

Possible values True

False

Default True

Property type Boolean

Usage When this property is set to True, the adapter provides assured once event delivery. This means

that each event will be delivered once and only once. A value of False does not provide

assured once event delivery, but provides better performance.

When this property is set to True, the adapter attempts to store transaction (XID) information in

the event store. If it is set to False, the adapter does not attempt to store the information.

This property is used only if the export component is transactional. If it is not, no transaction

can be used, regardless of the value of this property.

Globalized No

Bidi supported No

Event component name (EventComponentName)

This property specifies the name of the event store where events are stored for

inbound processing.

 Table 220. Event component name details

Required Yes

Default IBM2 (for Siebel version 7.x) and IBM Event (for Siebel version 8)

Property type String

Usage The default value is IBM2 for Siebel version 7.x, and IBM Event for Siebel version 8. If you select

one of these default values to configure the event business component on the Siebel server, it is

the name of the Siebel event business component that was created. You can also select a value

from the list of values provided by the adapter. You can edit the list of values. If you create

your own Siebel event business component, you can edit the list to include the name of that

event business component.

Globalized Yes

Bidi supported Yes

Event types to process (EventTypeFilter)

This property contains a delimited list of event types that indicates to the adapter

which events it should deliver.

 Table 221. Event types to process details

Required No

Possible values A comma-delimited (,) list of business object types

Default null

Property type String

Message flows 1305

Table 221. Event types to process details (continued)

Usage Events are filtered by business object type. If the property is set, the adapter delivers only those

events that are in the list. A value of null indicates that no filter will be applied and that all

events will be delivered to the export.

Example To receive only events that relate to the Customer and Order business objects, specify this

value:

Customer,Order

Globalized No

Bidi supported No

Interval between polling periods (PollPeriod)

This property specifies the length of time that the adapter waits between polling

periods.

 Table 222. Interval between polling periods details

Required Yes

Possible values Integers greater than or equal to 0.

Default 2000

Unit of measure Milliseconds

Property type Integer

Usage The poll period is established at a fixed rate, which means that if running the poll cycle is

delayed for any reason (for example, if a prior poll cycle takes longer than expected to

complete) the next poll cycle occurs immediately to make up for the lost time that was caused

by the delay.

Globalized No

Bidi supported No

Language code (LanguageCode)

This property specifies the language code that is used to log on to the Siebel

server.

 Table 223. Language code details

Required Yes

Default ENU

Property type String

Usage If the system locale is English, the value for this property is ENU (English), which is used to log

on to the Siebel server.

Globalized No

Bidi supported No

Maximum connections (MaximumConnections)

This property specifies the maximum number of connections that the adapter can

use for inbound event delivery.

1306 Message Flows

Table 224. Maximum connections details

Required No

Default 1

Property type Integer

Usage Only positive values are valid. The adapter considers any positive entry less than 1 to be equal

to 1. Typing a negative value or 1 for this property may result in run time errors.

Globalized No

Bidi supported No

Maximum events in polling period (PollQuantity)

This property specifies the number of events that the adapter delivers to the export

during each poll period.

 Table 225. Maximum events in polling period details

Required Yes

Default 10

Property type Integer

Usage The value must be greater than 0. If this value is increased, more events are processed per

polling period, and the adapter might perform less efficiently. If this value is decreased, less

events are processed per polling period, and the adapter’s performance might improve slightly.

Globalized No

Bidi supported No

Minimum connections (MinimumConnections)

This property specifies the minimum number of connections that the adapter can

use for inbound event delivery.

 Table 226. Minimum connections details

Required No

Default 1

Property type Integer

Usage Only positive values are valid. Any value less than 1 is treated as 1 by the adapter. Typing a

negative value or 1 for this property may result in run time errors.

Globalized No

Bidi supported No

Number of times to retry the system connection (RetryLimit)

This property specifies the number of times that the adapter tries to re-establish an

inbound connection.

 Table 227. Number of times to retry the system connection details

Required No

Possible values Positive integers

Default 0

Message flows 1307

Table 227. Number of times to retry the system connection details (continued)

Property type Integer

Usage Only positive values are valid.

When the adapter encounters an error that is related to the inbound connection, this property

specifies the number of times that the adapter tries to restart the connection. A value of 0

indicates an infinite number of retries.

Globalized Yes

Bidi supported No

Password (Password)

This property specifies the password for the corresponding user name.

 Table 228. Password details

Required Yes

Default No default value

Property type String

Usage This property displays after you click Advanced on the connection properties pane of the

Adapter Connection wizard. The password is saved in .import and .export files so that the

adapter can connect to the Siebel application after it has been deployed. If a J2C Authentication

Alias is used, a password is not required.

Example sadmin

Globalized Yes

Bidi supported Yes

Retry interval if connection fails (RetryInterval)

When the adapter encounters an error that is related to the inbound connection,

this property specifies the length of time that the adapter waits before trying to

establish a new connection.

 Table 229. Retry interval details

Required Yes

Default 2000

Unit of measure Milliseconds

Property type Integer

Usage Only positive values are valid. When the adapter encounters an error that is related to the

inbound connection, this property specifies the length of time that the adapter waits before

trying to establish a new connection.

Globalized Yes

Bidi supported No

Stop the adapter when an error is encountered while polling

(StopPollingOnError)

This property specifies whether the adapter stops polling for events when it

encounters an error during polling.

1308 Message Flows

Table 230. Stop the adapter when an error is encountered while polling details

Required No

Possible values True

False

Default False

Property type Boolean

Usage If this property is set to True, the adapter stops polling when it encounters an error.

If this property is set to False, the adapter logs an exception when it encounters an error

during polling and continues polling.

Globalized No

Bidi supported No

User name (UserName)

This property specifies the user name that is used to log into the Siebel application.

 Table 231. User name details

Required Yes

Default No default value

Property type String

Usage This property displays after you click Advanced on the connection properties pane of the

Adapter Connection wizard. The user name is saved in .import and .export files so that the

adapter can connect to the Siebel application after it has been deployed. If a J2C Authentication

Alias is used, a password is not required.

Globalized Yes

Bidi supported Yes

WebSphere Adapter for PeopleSoft properties

Reference information to refer to when you connect to a PeopleSoft application.

v “Business object information”

v “Supported operations” on page 1310

v “PeopleCode for a custom event project” on page 1311

v “Configuration properties for the WebSphere Adapter for PeopleSoft Enterprise”

on page 1315

v “PeopleSoft connection properties for the Adapter Connection wizard” on page

1315

v “Resource adapter properties” on page 1318

v “Managed connection factory properties” on page 1320

v “Activation specification properties” on page 1323

v “Interaction specification properties” on page 1328

Business object information

Information about the content of a business object is located primarily inside the

business object definition file, a file that is generated by the Adapter Connection

wizard when it creates business objects.

Message flows 1309

The business object definition file contains application-specific information (ASI),

which the adapter uses to perform operations, such as creating or updating. You

can also find information about the content of a business object in the name of the

business object. Although business object names have no semantic value, they

often contain clues about what the business object contains and what operation it

allows the adapter to perform on the PeopleSoft Enterprise server. For example, a

business object named UpdateAddress is probably going to allow the adapter to

update an address in the PeopleSoft Enterprise server.

For more information, see “Supported operations.”

Supported operations:

An operation is the action that an adapter can perform on the PeopleSoft

Enterprise server during outbound processing. The name of the operation typically

indicates the type of action that the adapter takes, such as create or update.

 The following table defines the operations that the adapter supports.

 Table 232. Supported operations of business objects

Operation Definition

Create The adapter accesses the PeopleSoft component and retrieves values from the attributes

that have the primary key application-specific information set. The adapter then

instantiates the corresponding component interface using the value that is provided for

the ObjectName application-specific information. It sets the attribute values on the

corresponding Create Keys in the component interface. An empty Component Interface

is created, and the adapter maps all the business object data to the created component

interface. When mapping the data, the adapter sends all data for simple attributes in the

hierarchy, and it creates items that match each of the child objects in the hierarchy,

including effective-dated and effective-sequenced child records.

Retrieve The adapter accesses the PeopleSoft component and retrieves values from the attributes

that have the primary key application-specific information set. The adapter then

instantiates the corresponding component interface using the value that is provided for

the ObjectName application-specific information. It sets the attribute values on the

corresponding Get Keys in the component interface. The adapter then maps the

component data onto the business object hierarchy. Child objects are included in the data

mapping.

RetrieveAll This operation performs in the same way as the Retrieve operation, except that it allows

retrieval of multiple instances of the same PeopleSoft component.

Update The adapter retrieves an object from PeopleSoft and compares it to the target business

object. When the comparison reveals extra child objects in PeopleSoft, the adapter

deletes children. When the comparison reveals missing children in PeopleSoft, the

adapter creates children. When the comparison reveals child objects that have been

updated in PeopleSoft, the adapter updates them.

Exists The adapter processes an exist operation in the same way that it processes a retrieve

operation, except that it does not populate the business object with retrieved data; it

checks for the existence of an object in PeopleSoft.

Delete Based on the values that are set for the application-specific metadata elements

StatusColumnName and StatusValue, the adapter updates a business object to inactive.

A delete operation can be performed only on a top level object. PeopleSoft does not

allow an object to be physically deleted, so the inactive object remains in the PeopleSoft

database.

Apply Changes This operation updates the PeopleSoft component based on the operation that was

performed on it. The supported operations are create, update, and delete.

1310 Message Flows

PeopleCode for a custom event project

Two PeopleCode functions are required to support inbound processing. If you

create a custom event project in PeopleTools for inbound support, add the

PeopleCode functions to the project.

The following PeopleCode contains the IBMPublishEvent and

IBMPublishFutureDatedEvent functions that are used to publish events to the

event table. Calls to these functions are made from the SavePostChange

PeopleCode function in the PeopleSoft component of interest.

/* IBM event notification */

Component string &KEYSTRING;

Component string &KEYNAME;

Component array of string &KEYARRAY;

Component string &KEYDELIM;

Component string &IBMVERB;

Local Record &IBMREC;

Function IBMPublishFutureDatedEvent(&BO, &KEYS, &EFFDATE)

; /* == create a new record object for cw_event_tbl == */

 &IBMREC = CreateRecord(Record.IBM_EVENT_TBL);

 /* =============== KEYS ================ */

/* composing keys and values in name value format */

 &KEYSTRING = "";

 &KEYDELIM = ":";

 &KEYARRAY = Split(&KEYS, &KEYDELIM);

 &LEN = &KEYARRAY.Len;

 For &I = 1 To &LEN;

/* get keys and values */

/* get rid of record name */

 &POS1 = Find(".", &KEYARRAY [&I]);

 &L1 = Len(&KEYARRAY [&I]);

 &POS2 = &L1 - &POS1;

 &KEYNAME = Right(&KEYARRAY [&I], &POS2);

/****The code below will remove special characters and****/

/****adjust the characters’ case to ensure it is same as the****/

/****attribute name in the business object definition***/

/****Start****/

 &lLen = Len(&KEYNAME);

 &sOrigString = &KEYNAME;

 &sNewString = "";

 &lCtr2 = 1;

 &isSpecialChar = "true";

 For &lCtr = 1 To &lLen;

 &sChar = Substring(&sOrigString, &lCtr, 1);

 If (&sChar = "A" Or

 &sChar = "a" Or

 &sChar = "B" Or

 &sChar = "b" Or

 &sChar = "C" Or

 &sChar = "c" Or

 &sChar = "D" Or

 &sChar = "d" Or

 &sChar = "E" Or

 &sChar = "e" Or

 &sChar = "F" Or

 &sChar = "f" Or

 &sChar = "G" Or

 &sChar = "g" Or

 &sChar = "H" Or

 &sChar = "h" Or

 &sChar = "I" Or

 &sChar = "i" Or

 &sChar = "J" Or

 &sChar = "j" Or

 &sChar = "K" Or

 &sChar = "k" Or

 &sChar = "L" Or

 &sChar = "l" Or

 &sChar = "M" Or

 &sChar = "m" Or

 &sChar = "N" Or

 &sChar = "n" Or

 &sChar = "O" Or

 &sChar = "o" Or

 &sChar = "P" Or

 &sChar = "p" Or

 &sChar = "Q" Or

 &sChar = "q" Or

 &sChar = "R" Or

 &sChar = "r" Or

 &sChar = "S" Or

 &sChar = "s" Or

 &sChar = "T" Or

 &sChar = "t" Or

 &sChar = "U" Or

Message flows 1311

&sChar = "u" Or

 &sChar = "V" Or

 &sChar = "v" Or

 &sChar = "W" Or

 &sChar = "w" Or

 &sChar = "X" Or

 &sChar = "x" Or

 &sChar = "Y" Or

 &sChar = "y" Or

 &sChar = "Z" Or

 &sChar = "z" Or

 &sChar = "1" Or

 &sChar = "2" Or

 &sChar = "3" Or

 &sChar = "4" Or

 &sChar = "5" Or

 &sChar = "6" Or

 &sChar = "7" Or

 &sChar = "8" Or

 &sChar = "9" Or

 &sChar = "0") Then

 If (&isSpecialChar = "true") Then

 &sNewString = &sNewString | Upper(&sChar);

 &isSpecialChar = "false";

 Else

 &sNewString = &sNewString | Lower(&sChar);

 End-If;

 Else

 &isSpecialChar = "true";

 End-If;

 End-For;

 &KEYNAME = &sNewString;

/*********End*********/

 &KEYSTRING = &KEYSTRING | &KEYNAME | "=" | @&KEYARRAY [&I] | &KEYDELIM

 End-For;

 &KEYSTRING = RTrim(&KEYSTRING, ":");

 &IBMREC.IBM_OBJECT_KEYS.Value = &KEYSTRING;

/*============== VERB =========================*/

/* verb determination uses variable &IBMVERB */

 Evaluate %Mode

 When = "A"

 &IBMVERB = "Create";

 Break;

 When = "U"

 &IBMVERB = "Update";

 Break;

 When = "L"

 &IBMVERB = "Update";

 Break;

 When = "C"

 &IBMVERB = "Update";

 Break;

 When-Other

 &IBMVERB = "Retrieve";

 End-Evaluate;

 &IBMREC.IBM_OBJECT_VERB.Value = &IBMVERB;

/* ====================== EVENT_ID GEN ==================================== */

/* create event_id */

 &NEWNUM = GetNextNumber(IBM_FETCH_ID.IBM_NEXT_EVENT_ID, 99999);

/* only use newnum if no error generating next number */

 If &NEWNUM > 0 Then

 &IBMREC.IBM_EVENT_ID.Value = &NEWNUM;

 Else

 &IBMREC.IBM_EVENT_ID.Value = %Datetime;

 End-If; /*Support for Future Effective Date - The adapter will poll such events when the date arrives*/

 If &EFFDATE > %Datetime Then

 &IBMREC.IBM_EVENT_DTTM.Value = &EFFDATE;

 &IBMREC.IBM_EVENT_STATUS.Value = "99";

 Else

 &IBMREC.IBM_EVENT_DTTM.Value = %Datetime;

 &IBMREC.IBM_EVENT_STATUS.Value = "0";

 End-If; /*================ INSERT EVENT INTO IBM_EVENT_TBL ============*/

/* insert row into table using record object*/

 &IBMREC.IBM_OBJECT_NAME.Value = &BO;

 &IBMREC.Insert();

End-Function;

Function IBMPublishEvent(&BO, &KEYS);

 /* == create a new record object for cw_event_tbl == */

 &IBMREC = CreateRecord(Record.IBM_EVENT_TBL);

 /* =============== KEYS ================ */

 /* composing keys and values in name value format */

 &KEYSTRING = "";

 &KEYDELIM = ":";

 &KEYARRAY = Split(&KEYS, &KEYDELIM);

1312 Message Flows

&LEN = &KEYARRAY.Len;

 For &I = 1 To &LEN;

 /* get keys and values */

 /* get rid of record name */

 &POS1 = Find(".", &KEYARRAY [&I]);

 &L1 = Len(&KEYARRAY [&I]);

 &POS2 = &L1 - &POS1;

 &KEYNAME = Right(&KEYARRAY [&I], &POS2);

 /****The code below will remove special characters and

 /****adjust the characters’ case to ensure it is same as the

 /****attribute name in the business object definition***/

 /****Start****/

 &lLen = Len(&KEYNAME);

 &sOrigString = &KEYNAME;

 &sNewString = "";

 &lCtr2 = 1;

 &isSpecialChar = "true";

 For &lCtr = 1 To &lLen;

 &sChar = Substring(&sOrigString, &lCtr, 1);

 If (&sChar = "A" Or

 &sChar = "a" Or

 &sChar = "B" Or

 &sChar = "b" Or

 &sChar = "C" Or

 &sChar = "c" Or

 &sChar = "D" Or

 &sChar = "d" Or

 &sChar = "E" Or

 &sChar = "e" Or

 &sChar = "F" Or

 &sChar = "f" Or

 &sChar = "G" Or

 &sChar = "g" Or

 &sChar = "H" Or

 &sChar = "h" Or

 &sChar = "I" Or

 &sChar = "i" Or

 &sChar = "J" Or

 &sChar = "j" Or

 &sChar = "K" Or

 &sChar = "k" Or

 &sChar = "L" Or

 &sChar = "l" Or

 &sChar = "M" Or

 &sChar = "m" Or

 &sChar = "N" Or

 &sChar = "n" Or

 &sChar = "O" Or

 &sChar = "o" Or

 &sChar = "P" Or

 &sChar = "p" Or

 &sChar = "Q" Or

 &sChar = "q" Or

 &sChar = "R" Or

 &sChar = "r" Or

 &sChar = "S" Or

 &sChar = "s" Or

 &sChar = "T" Or

 &sChar = "t" Or

 &sChar = "U" Or

 &sChar = "u" Or

 &sChar = "V" Or

Message flows 1313

&sChar = "v" Or

 &sChar = "W" Or

 &sChar = "w" Or

 &sChar = "X" Or

 &sChar = "x" Or

 &sChar = "Y" Or

 &sChar = "y" Or

 &sChar = "Z" Or

 &sChar = "z" Or

 &sChar = "1" Or

 &sChar = "2" Or

 &sChar = "3" Or

 &sChar = "4" Or

 &sChar = "5" Or

 &sChar = "6" Or

 &sChar = "7" Or

 &sChar = "8" Or

 &sChar = "9" Or

 &sChar = "0") Then

 If (&isSpecialChar = "true") Then

 &sNewString = &sNewString | Upper(&sChar);

 &isSpecialChar = "false";

 Else

 &sNewString = &sNewString | Lower(&sChar);

 End-If;

 Else

 &isSpecialChar = "true";

 End-If;

 End-For;

 &KEYNAME = &sNewString;

 /*********End*********/

 &KEYSTRING = &KEYSTRING | &KEYNAME | "=" | @&KEYARRAY [&I] | &KEYDELIM

 End-For;

 &KEYSTRING = RTrim(&KEYSTRING, ":");

 &IBMREC.IBM_OBJECT_KEYS.Value = &KEYSTRING;

 /*============== VERB =========================*/

 /* verb determination uses variable &IBMVERB */

 Evaluate %Mode

 When = "A"

 &IBMVERB = "Create";

 Break;

 When = "U"

 &IBMVERB = "Update";

 Break;

 When = "L"

 &IBMVERB = "Update";

 Break;

 When = "C"

 &IBMVERB = "Update";

 Break;

 When-Other

 &IBMVERB = "Retrieve";

 End-Evaluate;

 &IBMREC.IBM_OBJECT_VERB.Value = &IBMVERB;

 /* ====================== EVENT_ID GEN ============================= */

 /* create event_id */

 &NEWNUM = GetNextNumber(IBM_FETCH_ID.IBM_NEXT_EVENT_ID, 99999);

1314 Message Flows

/* only use newnum if no error generating next number */

 If &NEWNUM > 0 Then

 &IBMREC.IBM_EVENT_ID.Value = &NEWNUM;

 Else

 &IBMREC.IBM_EVENT_ID.Value = %Datetime;

 End-If;

 &IBMREC.IBM_EVENT_DTTM.Value = %Datetime;

 /* ============== EVENT_STATUS =================*/

 /* Validate and set event status &IBMSTATUS - list values if date is ok*/

 &IBMREC.IBM_EVENT_STATUS.Value = "0";

 /*================ INSERT EVENT INTO IBM_EVENT_TBL ============*/

 /* insert row into table using record object*/

 &IBMREC.IBM_OBJECT_NAME.Value = &BO;

 &IBMREC.Insert();

End-Function;

Configuration properties for the WebSphere Adapter for

PeopleSoft Enterprise

WebSphere Adapter for PeopleSoft Enterprise has several categories of

configuration properties, which you set with the Adapter Connection wizard when

it generates or creates objects and services.

You can change the resource adapter, managed connection factory, and activation

specification properties in WebSphere Message Broker.

For more information, see the following topics.

v “PeopleSoft connection properties for the Adapter Connection wizard”

v “Resource adapter properties” on page 1318

v “Managed connection factory properties” on page 1320

v “Activation specification properties” on page 1323

v “Interaction specification properties” on page 1328

PeopleSoft connection properties for the Adapter Connection wizard:

Connection properties for the Adapter Connection wizard are used to establish a

connection between the Adapter Connection wizard and the application from

which the wizard obtains metadata. These properties specify such things as

connection configuration, and logging options.

 If you set any of these connection properties using bidirectional script, you must

set values that identify the format of the bidirectional script entered for that

property.

The connection properties and their purpose are described in the following table. A

complete description of each property is provided in the sections that follow the

table.

Message flows 1315

Table 233. Connection properties

Property name Description

“Component interface jar file” The PeopleSoft Enterprise component interface that the adapter uses to

establish a connection to the PeopleSoft components that are targets of

integration transactions

“Host name ” The name or address of the server that hosts PeopleSoft Enterprise

“Password ” on page 1317 The password of the user account of the adapter on the PeopleSoft

Enterprise server

“Port number” on page 1317 The port number at which PeopleSoft Enterprise is configured to listen for

client requests.

“Prefix for business object names” on

page 1317

A prefix to be added to generated business objects

“User name” on page 1317 The name of the user account that the adapter uses on the PeopleSoft

Enterprise server

Component interface jar file

This property specifies the PeopleSoft Enterprise component interface that the

adapter uses to establish a connection to the PeopleSoft components that are

targets of integration transactions.

 Table 234. Component interface jar file details

Required Yes

Default No default

Property type String

Usage The name of the JAR file that the adapter uses to connect to the PeopleSoft Enterprise

components of interest

Example CWYES_PeopleSoft\connectorModule\WbiEvent.jar

Globalized No

Bidi supported No

Host name

This property specifies the name or address of the server that hosts PeopleSoft

Enterprise.

 Table 235. Host name details

Required Yes

Default No default value

Property type String

Usage Identifies the server, either by name or IP address, that hosts PeopleSoft Enterprise

Example 9.26.248.202

Globalized No

Bidi supported No

1316 Message Flows

Password

This property specifies the password of the user account of the adapter on the

PeopleSoft Enterprise server.

 Table 236. Password details

Required Yes

Default No default value

Property type String

Usage The restrictions (case, length, and character) are determined by the PeopleSoft Enterprise

version.

Globalized Yes

Bidi supported Yes

Port number

This property specifies the port number at which PeopleSoft Enterprise is

configured to listen for client requests.

 Table 237. Port number details

Required Yes

Default The port number that is entered when you run the Adapter Connection wizard

Property type Integer

Example 9000

Globalized No

Bidi supported No

Prefix for business object names

This property specifies a prefix to be added to generated business objects.

 Table 238. Prefix details

Required No

Default No default

Property type String

Usage Use this property to distinguish between different business objects that are generated against

the same PeopleSoft component interface.

Example If you use IB as a prefix, all business objects that are generated by this service are named using

this prefix.

Globalized Yes

Bidi supported No

User name

This property specifies the name of the user account that the adapter uses on the

PeopleSoft Enterprise server.

Message flows 1317

Table 239. User name details

Required Yes

Default No default value

Property type String

Usage The restrictions (case, length, and character) are determined by the PeopleSoft Enterprise

version.

Example DV1

Globalized Yes

Bidi supported Yes

Resource adapter properties:

The resource adapter properties control the general operation of the adapter, such

as specifying the namespace for business objects. You set the resource adapter

properties using the Adapter Connection wizard when you configure the adapter.

 The following table lists the resource adapter properties and their purpose. A

complete description of each property is provided in the sections that follow the

table.

 Table 240. Resource adapter properties for the Adapter for PeopleSoft Enterprise

Property Description

Adapter ID to use for logging and tracing The adapter instance for CEI and PMI events with

respect to logging and tracing.

LogFileMaxSize Supported for compatibility with earlier versions

LogFilename Supported for compatibility with earlier versions

LogNumberOfFiles Supported for compatibility with earlier versions

TraceFileMaxSize Supported for compatibility with earlier versions

TraceFileName Supported for compatibility with earlier versions

TraceNumberOfFiles Supported for compatibility with earlier versions

Adapter ID to use for logging and tracing (AdapterID)

This property identifies a specific deployment, or instance, of the adapter.

 Table 241. Adapter ID to use for logging and tracing details

Required Yes

Default CWYMY_Adapter
Without local transaction support: CWYAP_SAPAdapter

With local transaction support: CWYAP_SAPAdapter_Tx

Property type String

Usage Use this property to identify the adapter instance for PMI events. If you are deploying multiple

instances of an adapter, set this property to a unique value for each adapter instance.

For inbound processing, this property is retrieved from the resource adapter properties. For

outbound processing, it is retrieved form the managed connection factory properties.

Globalized Yes

Bidi supported No

1318 Message Flows

Log file maximum size (LogFileMaxSize)

This property specifies the size of the log files in kilobytes.

 Table 242. Log file maximum size details

Required No

Default 0

Property type Integer

Usage When the log file reaches it maximum size, the adapter starts to use a new log file. If the file

size is specified as 0, or no maximum size is specified, the file does not have a maximum size.

Globalized Yes

Bidi supported No

Log file name (LogFilename)

This property specifies the full path name of the log file.

 Table 243. Log file name details

Required No

Default No default value

Property type String

Usage This property is deprecated.

Globalized Yes

Bidi supported Yes

Log number of files (LogNumberOfFiles)

This property specifies the number of log files.

 Table 244. Log number of files details

Required No

Default 1

Property type Integer

Usage When a log file reaches its maximum size, the adapter starts to use another log file. If no value

is specified, the adapter creates a single log file.

Globalized Yes

Bidi supported No

Trace file maximum size (TraceFileMaxSize)

This property specifies the size of the trace files in kilobytes.

 Table 245. Trace file maximum size details

Required No

Default 0

Property type Integer

Usage If no value is specified, the trace file has no maximum size.

Message flows 1319

Table 245. Trace file maximum size details (continued)

Globalized Yes

Bidi supported No

Trace file name (TraceFilename)

This property specifies the full path of the trace file.

 Table 246. Trace file name details

Required No

Default No default value

Unit of measure Kilobytes

Property type String

Usage This property is deprecated.

Globalized Yes

Bidi supported Yes

Trace number of files (TraceNumberOfFiles)

This property specifies the number of trace files to use. When a trace file reaches

its maximum size, the adapter starts to use another trace file.

 Table 247. Trace number of files details

Required No

Default 1

Property type Integer

Usage If no value is specified, the adapter uses a single trace file.

Globalized Yes

Bidi supported No

Managed connection factory properties:

The adapter uses managed connection factory properties at run time to create an

outbound connection instance with the PeopleSoft Enterprise server.

 The following table lists and describes the managed connection factory properties

for outbound communication. You set the managed connection factory properties

using the Adapter Connection wizard.

A more detailed description of each property is provided in the sections that

follow the table.

 Table 248. Managed connection factory properties

Property Description

Component interface for testing failed

connection

The component interface that the adapter uses to validate a connection to

the PeopleSoft Enterprise server

Host name The name or address of the server that hosts PeopleSoft Enterprise

1320 Message Flows

Table 248. Managed connection factory properties (continued)

Property Description

“Language (Language)” The language code that the adapter uses to log on to the PeopleSoft

Enterprise server

“Password (Password)” on page 1322 The password of the user account of the adapter on the PeopleSoft

Enterprise server

“Port number (Port)” on page 1322 The port number that the adapter uses to access the PeopleSoft Enterprise

server

“User name (UserName)” on page 1322 The name of the user account that the adapter uses on the PeopleSoft

Enterprise server

Component interface for testing failed connection (PingCompInterface)

This property specifies the name of the PeopleSoft Enterprise component interface

that the adapter uses to validate a connection to the PeopleSoft Enterprise server.

 Table 249. Component interface for testing failed connection details

Required Yes

Default The name of the first component interface in the list

Property type String

Usage Specify a component interface name that already exists within your PeopleSoft Enterprise

applications.

Example WBI_CUSTOMER_CI

Globalized No

Bidi supported No

Host name (HostName)

This property specifies the name or address of the server that hosts PeopleSoft

Enterprise.

 Table 250. Host name details

Required Yes

Default No default value

Property type String

Usage Identifies, either by name or IP address, the server that hosts PeopleSoft Enterprise

Example 9.26.248.202

Globalized No

Bidi supported No

Language (Language)

This property specifies the language code that the adapter uses to log on to the

PeopleSoft Enterprise server.

 Table 251. Language details

Required Yes

Default The default value for the Language property is based on the system locale.

Message flows 1321

Table 251. Language details (continued)

Property type String

Usage Each of the supported languages is preceded by a three-character language code. The language

itself is presented in parentheses.

Example If the system locale is English, the value for this property is ENG (English).

Globalized No

Bidi supported No

Password (Password)

This property specifies the password of the user account of the adapter on the

PeopleSoft Enterprise server.

 Table 252. Password details

Required Yes

Default No default value

Property type String

Usage The restrictions (case, length, and character) are determined by the PeopleSoft Enterprise

version.

Globalized No

Bidi supported No

Port number (Port)

This property specifies the port number that the adapter uses to access the

PeopleSoft Enterprise server.

 Table 253. Port number details

Required Yes

Default The port number that is entered when you use the Adapter Connection wizard to discover

objects and services

Property type Integer

Example 9000

Globalized No

Bidi supported No

User name (UserName)

This property specifies the name of the user account that the adapter uses on the

PeopleSoft Enterprise server.

 Table 254. User name details

Required Yes

Default No default value

Property type String

Usage The restrictions (case, length, and character) are determined by the PeopleSoft Enterprise

version.

1322 Message Flows

Table 254. User name details (continued)

Example DV1

Globalized No

Bidi supported No

Activation specification properties:

Activation specification properties hold the inbound event processing configuration

information for an export. You set activation specification properties using the

Adapter Connection wizard.

 The following table lists the activation specification properties for inbound

communication. A more detailed description of each property is provided in the

sections that follow the table.

 Table 255. Activation specification properties

Property name Purpose

AssuredOnceDelivery Specifies whether the adapter provides assured once delivery of events

PingCompIntfc The component interface that the adapter uses to validate a connection to

the PeopleSoft Enterprise server

EventCIName The component interface that the adapter uses for event notification

DeliveryType Determines the order in which events are delivered by the adapter to the

export

EventKeyDelimiter The name and value for an object key in the event table

EventTypeFilter A delimited list of event types that indicates to the adapter which events it

should deliver

DateFormat The format that is used to create the event timestamp

MaximumConnections The maximum number of connections that the adapter can use for inbound

event delivery

MinimumConnections The minimum number of connections that the adapter can use for inbound

event delivery

PollPeriod The length of time that the adapter waits between polling periods

PollQuantity The number of events that the adapter delivers to the export during each

poll period

RetryInterval The length of time that the adapter waits between attempts to establish a

new connection after an error occurs during inbound operations

RetryLimit The number of times that the adapter tries to re-establish an inbound

connection after an error occurs.

StopPollingOnError Specifies whether the adapter stops polling for events when it encounters

an error during polling.

Ensure once-only event delivery (AssuredOnceDelivery)

This property specifies whether to provide ensured once-only event delivery for

inbound events.

 Table 256. Ensure once-only event delivery details

Required Yes

Message flows 1323

Table 256. Ensure once-only event delivery details (continued)

Possible values True

False

Default True

Property type Boolean

Usage When this property is set to True, the adapter provides assured once event delivery. This means

that each event will be delivered once and only once. A value of False does not provide

assured once event delivery, but provides better performance.

When this property is set to True, the adapter attempts to store transaction (XID) information in

the event store. If it is set to False, the adapter does not attempt to store the information.

This property is used only if the export component is transactional. If it is not, no transaction

can be used, regardless of the value of this property.

Globalized No

Bidi supported No

Component interface for testing failed connection (PingCompInterface)

This property specifies the name of the PeopleSoft Enterprise component interface

that the adapter uses to validate a connection to the PeopleSoft Enterprise server.

 Table 257. Component interface for testing failed connection details

Row Explanation

Required Yes

Default The name of the first component interface in the list

Property type String

Usage The name of the component interface that the adapter uses to test connectivity to the

PeopleSoft Enterprise server. Specify a component interface name that already exists in your

PeopleSoft Enterprise applications.

Globalized No

Bidi supported No

Component interface name for event notification (EventCIName)

This property specifies the name of the PeopleSoft Enterprise component interface

that the adapter uses to for inbound processing.

 Table 258. Component interface name for event notification details

Row Explanation

Required Yes

Default IBM_EVENT_CI

Property type String

Usage The name of the component interface that the adapter uses for inbound processing. To use

inbound processing, create a component interface specifically for event notification in

PeopleSoft Enterprise.

Globalized No

Bidi supported No

1324 Message Flows

Delivery type (DeliveryType)

This property specifies the order in which events are delivered by the adapter to

the export.

 Table 259. Delivery type details

Required No

Possible values ORDERED

UNORDERED

Default ORDERED

Property type String

Usage The following values are supported:

v ORDERED: The adapter delivers events to the export one at a time.

v UNORDERED: The adapter delivers all events to the export at once.

Globalized No

Bidi supported No

Delimiter for keys in the event store (EventKeyDelimiter)

This property specifies the delimiter for the object key name-value pair in the

event table.

 Table 260. Delimiter for keys in the event store details

Row Explanation

Required No

Default =:

Property type String

Usage Use this property to specify an object name and value to be used as an object key in the event

store.

Example CustomerID=2001

Globalized No

Bidi supported No

Event types to process (EventTypeFilter)

This property contains a delimited list of event types that indicates to the adapter

which events it should deliver.

 Table 261. Event types to process details

Required No

Possible values A comma-delimited (,) list of business object types

Default null

Property type String

Usage Events are filtered by business object type. If the property is set, the adapter delivers only those

events that are in the list. A value of null indicates that no filter will be applied and that all

events will be delivered to the export.

Message flows 1325

Table 261. Event types to process details (continued)

Example To receive only events that relate to the Customer and Order business objects, specify this

value:

Customer,Order

Globalized No

Bidi supported No

Java date format for event timestamp (DateFormat)

This property specifies the format that is used for the event timestamp.

 Table 262. Java date format for event timestamp details

Row Explanation

Required Yes

Default MM/dd/yy

Property type String

Usage This property is used to format the date values from the PeopleSoft Enterprise server.

Globalized No

Bidi supported No

Maximum connections (MaximumConnections)

This property specifies the maximum number of connections that the adapter can

use for inbound event delivery.

 Table 263. Maximum connections details

Required No

Default 1

Property type Integer

Usage Only positive values are valid. The adapter considers any positive entry less than 1 to be equal

to 1. Typing a negative value or 1 for this property may result in run time errors.

Globalized No

Bidi supported No

Minimum connections (MinimumConnections)

This property specifies the minimum number of connections that the adapter can

use for inbound event delivery.

 Table 264. Minimum connections details

Required No

Default 1

Property type Integer

Usage Only positive values are valid. Any value less than 1 is treated as 1 by the adapter. Typing a

negative value or 1 for this property may result in run time errors.

Globalized No

1326 Message Flows

Table 264. Minimum connections details (continued)

Bidi supported No

Interval between polling periods (PollPeriod)

This property specifies the length of time that the adapter waits between polling

periods.

 Table 265. Interval between polling periods details

Required Yes

Possible values Integers greater than or equal to 0.

Default 2000

Unit of measure Milliseconds

Property type Integer

Usage The poll period is established at a fixed rate, which means that if running the poll cycle is

delayed for any reason (for example, if a prior poll cycle takes longer than expected to

complete) the next poll cycle occurs immediately to make up for the lost time that was caused

by the delay.

Globalized No

Bidi supported No

Maximum events in polling period (PollQuantity)

This property specifies the number of events that the adapter delivers to the export

during each poll period.

 Table 266. Maximum events in polling period details

Required Yes

Default 10

Property type Integer

Usage The value must be greater than 0. If this value is increased, more events are processed per

polling period, and the adapter might perform less efficiently. If this value is decreased, less

events are processed per polling period, and the adapter’s performance might improve slightly.

Globalized No

Bidi supported No

Retry interval if connection fails (RetryInterval)

When the adapter encounters an error that is related to the inbound connection,

this property specifies the length of time that the adapter waits before trying to

establish a new connection.

 Table 267. Retry interval details

Required Yes

Default 2000

Unit of measure Milliseconds

Property type Integer

Message flows 1327

Table 267. Retry interval details (continued)

Usage Only positive values are valid. When the adapter encounters an error that is related to the

inbound connection, this property specifies the length of time that the adapter waits before

trying to establish a new connection.

Globalized Yes

Bidi supported No

Number of times to retry the system connection (RetryLimit)

This property specifies the number of times that the adapter tries to re-establish an

inbound connection.

 Table 268. Number of times to retry the system connection details

Required No

Possible values Positive integers

Default 0

Property type Integer

Usage Only positive values are valid.

When the adapter encounters an error that is related to the inbound connection, this property

specifies the number of times that the adapter tries to restart the connection. A value of 0

indicates an infinite number of retries.

Globalized Yes

Bidi supported No

Stop the adapter when an error is encountered while polling

(StopPollingOnError)

This property specifies whether the adapter stops polling for events when it

encounters an error during polling.

 Table 269. Stop the adapter when an error is encountered while polling details

Required No

Possible values True

False

Default False

Property type Boolean

Usage If this property is set to True, the adapter stops polling when it encounters an error.

If this property is set to False, the adapter logs an exception when it encounters an error

during polling and continues polling.

Globalized No

Bidi supported No

Interaction specification properties:

Interaction specification properties control the interaction for an operation. The

Adapter Connection wizard sets the interaction specification properties when you

configure the adapter.

1328 Message Flows

Typically, you do not need to change these properties. However, you can change

some properties for outbound operations. For example, you might increase the

value of the interaction specification property that specifies the maximum number

of records to be returned by a RetrieveAll operation, if your RetrieveAll operations

do not return complete information.

The following table lists and describes the interaction specification property that

you set.

 Table 270. Interaction specification property for the Adapter for PeopleSoft Enterprise

Property name Description

Maximum number of records for RetrieveAll operation The maximum number of records to return during a

RetrieveAll operation

Maximum number of records for RetrieveAll operation (MaxRecords)

This property specifies the maximum number of records to return during a

RetrieveAll operation.

 Table 271. Maximum number of records for RetrieveAll operation details

Required Yes

Default 100

Usage If the number of hits in PeopleSoft Enterprise exceeds the value of the Maximum number of

records for the RetrieveAll operation property, the adapter returns an error. The adapter uses

this property to help avoid out-of-memory issues.

Property type Integer

Globalized No

Bidi supported No

Supported code pages

Application messages must conform to supported code pages.

The message flows that you create, configure, and deploy to a broker can process

and construct application messages in any code page that is listed in the table. You

can also generate a new code page converter.

This behavior might be affected by the use of other products with WebSphere

Message Broker. Check the documentation for other products, including any

databases that you use, for further code page support information.

If you experience code page translation problems on HP-UX, check the

WebSphere MQ queue manager attribute CodedCharSetID (CCSID). The default

value for this attribute is 1051. Change this to 819 for queue managers that host

WebSphere Message Broker components.

For detailed information about Chinese code page GB18030 support, see “Chinese

code page GB18030” on page 1357.

By default, WebSphere Message Broker supports the code pages that are given in

the following tables. To find a code page for a specific CCSID, search for an

internal converter name in the form ibm-ccsid, where ccsid is the CCSID for which

you are looking.

Message flows 1329

v Unicode converters

v European and American language converters

v Asian language converters

v Windows US and European converters

v MAC-related converters

v Hebrew, Cyrillic and ECMA language converters

v Indian language converters

v EBCDIC converters

Unicode converters

 Internal converter name Aliases

UTF-8

 UTF-8

 ibm-1208

 ibm-1209

 ibm-5304

 ibm-5305

 windows-65001

 cp1208

UTF-16

 UTF-16

 ISO-10646-UCS-2

 unicode

 csUnicode

 ucs-2

UTF-16BE

 UTF-16BE

 x-utf-16be

 ibm-1200

 ibm-1201

 ibm-5297

 ibm-13488

 ibm-17584

 windows-1201

 cp1200

 cp1201

 UTF16_BigEndian

UTF-16LE

 UTF-16LE

 x-utf-16le

 ibm-1202

 ibm-13490

 ibm-17586

 UTF16_LittleEndian

 windows-1200

UTF-32

 UTF-32

 ISO-10646-UCS-4

 csUCS4

 ucs-4

1330 Message Flows

Internal converter name Aliases

UTF-32BE

 UTF-32BE

 UTF32_BigEndian

 ibm-1232

 ibm-1233

UTF-32LE

 UTF-32LE

 UTF32_LittleEndian

 ibm-1234

UTF16_PlatformEndian

 UTF16_PlatformEndian

UTF16_OppositeEndian

 UTF16_OppositeEndian

UTF32_PlatformEndian

 UTF32_PlatformEndian

UTF32_OppositeEndian

 UTF32_OppositeEndian

UTF-7

 UTF-7

 windows-65000

IMAP-mailbox-name

 IMAP-mailbox-name

SCSU

 SCSU

BOCU-1

 BOCU-1

 csBOCU-1

CESU-8

 CESU-8

European and American language converters

 Internal converter name Aliases

ISO-8859-1

 ISO-8859-1

 ibm-819

 IBM819

 cp819

 latin1

 8859_1

 csISOLatin1 iso-ir-100

 ISO_8859-1:1987 l1 819

Message flows 1331

Internal converter name Aliases

US-ASCII

 US-ASCII

 ASCII

 ANSI_X3.4-1968

 ANSI_X3.4-1986

 ISO_646.irv:1991

 iso_646.irv:1983

 ISO646-US

 us

 csASCII

 iso-ir-6

 cp367

 ascii7

 646

 windows-20127

gb18030

 gb18030

 ibm-1392

 windows-54936

ibm-367_P100-1995

 ibm-367_P100-1995

 ibm-367 IBM367

ibm-912_P100-1995

 ibm-912_P100-1995

 ibm-912

 iso-8859-2

 ISO_8859-2:1987

 latin2

 csISOLatin2

 iso-ir-101

 l2

 8859_2

 cp912 912

 windows-28592

ibm-913_P100-2000

 ibm-913_P100-2000

 ibm-913

 iso-8859-3

 ISO_8859-3:1988

 latin3

 csISOLatin3

 iso-ir-109

 l3

 8859_3

 cp913

 913

 windows-28593

1332 Message Flows

Internal converter name Aliases

ibm-914_P100-1995

 ibm-914_P100-1995

 ibm-914

 iso-8859-4

 latin4

 csISOLatin4

 iso-ir-110

 ISO_8859-4:1988

 l4

 8859_4

 cp914

 914

 windows-28594

ibm-915_P100-1995

 ibm-915_P100-1995

 ibm-915

 iso-8859-5

 cyrillic

 csISOLatinCyrillic

 iso-ir-144

 ISO_8859-5:1988

 8859_5

 cp915

 915

 windows-28595

ibm-1089_P100-1995

 ibm-1089_P100-1995

 ibm-1089

 iso-8859-6

 arabic

 csISOLatinArabic

 iso-ir-127

 ISO_8859-6:1987

 ECMA-114

 ASMO-708

 8859_6

 cp1089

 1089

 windows-28596

 ISO-8859-6-I

 ISO-8859-6-E

Message flows 1333

Internal converter name Aliases

ibm-813_P100-1995

 ibm-813_P100-1995

 ibm-813

 iso-8859-7

 greek

 greek8

 ELOT_928

 ECMA-118

 csISOLatinGreek

 iso-ir-126

 ISO_8859-7:1987

 8859_7

 cp813

 813

 windows-28597

ibm-916_P100-1995

 ibm-916_P100-1995

 ibm-916 iso-8859-8

 hebrew

 csISOLatinHebrew

 iso-ir-138

 ISO_8859-8:1988

 ISO-8859-8-I ISO-8859-8-E

 8859_8

 cp916

 916

 windows-28598

ibm-920_P100-1995

 ibm-920_P100-1995

 ibm-920

 iso-8859-9

 latin5

 csISOLatin5

 iso-ir-148

 ISO_8859-9:1989

 l5

 8859_9

 cp920

 920

 windows-28599

 ECMA-128

ibm-921_P100-1995

 ibm-921_P100-1995

 ibm-921

 iso-8859-13

 8859_13

 cp921

 921

1334 Message Flows

Internal converter name Aliases

ibm-923_P100-1998

 ibm-923_P100-1998

 ibm-923

 iso-8859-15

 Latin-9

 l9

 8859_15

 latin0

 csisolatin0

 csisolatin9

 iso8859_15_fdis

 cp923

 923

 windows-28605

Asian language converters

 Internal converter name Aliases

ibm-942_P12A-1999

 ibm-942_P12A-1999

 ibm-942

 ibm-932

 cp932

 shift_jis78

 sjis78 ibm-942_VSUB_VPUA

 ibm-932_VSUB_VPUA

ibm-943_P15A-2003

 ibm-943_P15A-2003

 ibm-943

 Shift_JIS

 MS_Kanji

 csShiftJIS

 windows-31j

 csWindows31J

 x-sjis

 x-ms-cp932

 cp932

 windows-932

 cp943c

 IBM-943C

 ms932

 pck

 sjis

 ibm-943_VSUB_VPUA

Message flows 1335

Internal converter name Aliases

ibm-943_P130-1999

 ibm-943_P130-1999

 ibm-943

 Shift_JIS

 cp943

 943

 ibm-943_VASCII_VSUB_VPUA

ibm-33722_P12A-1999

 ibm-33722_P12A-1999

 ibm-33722

 ibm-5050

 EUC-JP

 Extended_UNIX_Code_Packed_Format_for_Japanese

 csEUCPkdFmtJapanese

 X-EUC-JP

 eucjis

 windows-51932

 ibm-33722_VPUA

 IBM-eucJP

ibm-33722_P120-1999

 ibm-33722_P120-1999

 ibm-33722

 ibm-5050

 cp33722

 33722

 ibm-33722_VASCII_VPUA

ibm-954_P101-2000

 ibm-954_P101-2000

 ibm-954

 EUC-JP

ibm-1373_P100-2002

 ibm-1373_P100-2002

 ibm-1373

 windows-950

windows-950-2000

 windows-950-2000

 Big5

 csBig5

 windows-950 x-big5

ibm-950_P110-1999

 ibm-950_P110-1999

 ibm-950

 cp950

 950

macos-2566-10.2

 macos-2566-10.2

 Big5-HKSCS

 big5hk

 HKSCS-BIG5

1336 Message Flows

Internal converter name Aliases

ibm-1375_P100-2003

 ibm-1375_P100-2003

 ibm-1375

 Big5-HKSCS

ibm-1386_P100-2002

 ibm-1386_P100-2002

 ibm-1386

 cp1386

 windows-936

 ibm-1386_VSUB_VPUA

windows-936-2000

 windows-936-2000

 GBK

 CP936

 MS936

 windows-936

ibm-1383_P110-1999

 ibm-1383_P110-1999

 ibm-1383

 GB2312

 csGB2312

 EUC-CN

 ibm-eucCN

 hp15CN

 cp1383

 1383

 ibm-1383_VPUA

ibm-5478_P100-1995

 ibm-5478_P100-1995

 ibm-5478

 GB_2312-80

 chinese

 iso-ir-58

 csISO58GB231280

 gb2312-1980

 GB2312.1980-0

ibm-964_P110-1999

 ibm-964_P110-1999

 ibm-964

 EUC-TW

 ibm-eucTW

 cns11643

 cp964

 964

 ibm-964_VPUA

ibm-949_P110-1999

 ibm-949_P110-1999

 ibm-949

 cp949

 949

 ibm-949_VASCII_VSUB_VPUA

Message flows 1337

Internal converter name Aliases

ibm-949_P11A-1999

 ibm-949_P11A-1999

 ibm-949

 cp949c

 ibm-949_VSUB_VPUA

ibm-970_P110-1995

 ibm-970_P110-1995

 ibm-970 EUC-KR

 KS_C_5601-1987

 windows-51949

 csEUCKR

 ibm-eucKR

 KSC_5601

 5601

 ibm-970_VPUA

ibm-971_P100-1995

 ibm-971_P100-1995

 ibm-971

 ibm-971_VPUA

ibm-1363_P11B-1998

 ibm-1363_P11B-1998

 ibm-1363

 KS_C_5601-1987

 KS_C_5601-1989

 KSC_5601

 csKSC56011987

 korean

 iso-ir-149

 5601

 cp1363

 ksc

 windows-949

 ibm-1363_VSUB_VPUA

ibm-1363_P110-1997

 ibm-1363_P110-1997

 ibm-1363

 ibm-1363_VASCII_VSUB_VPUA

windows-949-2000

 windows-949-2000

 windows-949

 KS_C_5601-1987

 KS_C_5601-1989

 KSC_5601

 csKSC56011987

 korean

 iso-ir-149

 ms949

ibm-1162_P100-1999

 ibm-1162_P100-1999

 ibm-1162

1338 Message Flows

Internal converter name Aliases

ibm-874_P100-1995

 ibm-874_P100-1995

 ibm-874

 ibm-9066

 cp874

 TIS-620

 tis620.2533

 eucTH

 cp9066

windows-874-2000

 windows-874-2000

 TIS-620

 windows-874

 MS874

Windows US and European converters

 Internal converter name Aliases

ibm-437_P100-1995

 ibm-437_P100-1995

 ibm-437

 IBM437

 cp437

 437

 csPC8CodePage437

 windows-437

ibm-850_P100-1995

 ibm-850_P100-1995

 ibm-850 IBM850

 cp850

 850

 csPC850Multilingual

 windows-850

ibm-851_P100-1995

 ibm-851_P100-1995

 ibm-851

 IBM851

 cp851

 851

 csPC851

ibm-852_P100-1995

 ibm-852_P100-1995

 ibm-852

 IBM852

 cp852

 852

 csPCp852

 windows-852

Message flows 1339

Internal converter name Aliases

ibm-855_P100-1995

 ibm-855_P100-1995

 ibm-855

 IBM855

 cp855

 855

 csIBM855

 csPCp855

ibm-856_P100-1995

 ibm-856_P100-1995

 ibm-856

 cp856

 856

ibm-857_P100-1995

 ibm-857_P100-1995

 ibm-857

 IBM857

 cp857

 857

 csIBM857

 windows-857

ibm-858_P100-1997

 ibm-858_P100-1997

 ibm-858

 IBM00858

 CCSID00858

 CP00858

 PC-Multilingual-850+euro cp858

ibm-860_P100-1995

 ibm-860_P100-1995

 ibm-860

 IBM860

 cp860

 860

 csIBM860

ibm-861_P100-1995

 ibm-861_P100-1995

 ibm-861

 IBM861

 cp861

 861

 cp-is

 csIBM861

 windows-861

1340 Message Flows

Internal converter name Aliases

ibm-862_P100-1995

 ibm-862_P100-1995

 ibm-862

 IBM862

 cp862

 862

 csPC862LatinHebrew

 DOS-862

 windows-862

ibm-863_P100-1995

 ibm-863_P100-1995

 ibm-863

 IBM863

 cp863

 863

 csIBM863

ibm-864_X110-1999

 ibm-864_X110-1999

 ibm-864

 IBM864

 cp864

 csIBM864

ibm-865_P100-1995

 ibm-865_P100-1995

 ibm-865

 IBM865

 cp865

 865

 csIBM865

ibm-866_P100-1995

 ibm-866_P100-1995

 ibm-866

 IBM866

 cp866

 866

 csIBM866

 windows-866

ibm-867_P100-1998

 ibm-867_P100-1998

 ibm-867

 cp867

ibm-868_P100-1995

 ibm-868_P100-1995

 ibm-868

 IBM868

 cp868

 868

 csIBM868

 cp-ar

Message flows 1341

Internal converter name Aliases

ibm-869_P100-1995

 ibm-869_P100-1995

 ibm-869

 IBM869

 cp869

 869

 cp-gr

 csIBM869

 windows-869

ibm-878_P100-1996

 ibm-878_P100-1996

 ibm-878

 KOI8-R

 koi8

 csKOI8R

 cp878

ibm-901_P100-1999

 ibm-901_P100-1999

 ibm-901_P100-1999

 ibm-901

ibm-902_P100-1999

 ibm-902_P100-1999

 ibm-902

ibm-922_P100-1999

 ibm-922_P100-1999

 ibm-922

 cp922

 922

ibm-4909_P100-1999

 ibm-4909_P100-1999

 ibm-4909

ibm-5346_P100-1998

 ibm-5346_P100-1998

 ibm-5346

 windows-1250

 cp1250

ibm-5347_P100-1998

 ibm-5347_P100-1998

 ibm-5347

 windows-1251

 cp1251

ibm-5348_P100-1997

 ibm-5348_P100-1997

 ibm-5348

 windows-1252

 cp1252

ibm-5349_P100-1998

 ibm-5349_P100-1998

 ibm-5349

 windows-1253

 cp1253

1342 Message Flows

Internal converter name Aliases

ibm-5350_P100-1998

 ibm-5350_P100-1998

 ibm-5350

 windows-1254

 cp1254

ibm-9447_P100-2002

 ibm-9447_P100-2002

 ibm-9447

 windows-1255

 cp1255

windows-1256-2000

 windows-1256-2000

 windows-1256

 cp1256

ibm-9449_P100-2002

 ibm-9449_P100-2002

 ibm-9449

 windows-1257

 cp1257

ibm-5354_P100-1998

 ibm-5354_P100-1998

 ibm-5354

 windows-1258

 cp1258

ibm-1250_P100-1995

 ibm-1250_P100-1995

 ibm-1250

 windows-1250

ibm-1251_P100-1995

 ibm-1251_P100-1995

 ibm-1251

 windows-1251

ibm-1252_P100-2000

 ibm-1252_P100-2000

 ibm-1252

 windows-1252

ibm-1253_P100-1995

 ibm-1253_P100-1995

 ibm-1253

 windows-1253

ibm-1254_P100-1995

 ibm-1254_P100-1995

 ibm-1254

 windows-1254

ibm-1255_P100-1995

 ibm-1255_P100-1995

 ibm-1255

ibm-5351_P100-1998

 ibm-5351_P100-1998

 ibm-5351

 windows-1255

ibm-1256_P110-1997

 ibm-1256_P110-1997

 ibm-1256

Message flows 1343

Internal converter name Aliases

ibm-5352_P100-1998

 ibm-5352_P100-1998

 ibm-5352

 windows-1256

ibm-1257_P100-1995

 ibm-1257_P100-1995

 ibm-1257

ibm-5353_P100-1998

 ibm-5353_P100-1998

 ibm-5353

 windows-1257

ibm-1258_P100-1997

 ibm-1258_P100-1997

 ibm-1258

 windows-1258

MAC-related converters

 Internal converter name Aliases

macos-0_2-10.2

 macos-0_2-10.2

 macintosh

 mac

 csMacintosh

 windows-10000

macos-6-10.2

 macos-6-10.2

 x-mac-greek

 windows-10006

 macgr

macos-7_3-10.2

 macos-7_3-10.2

 x-mac-cyrillic

 windows-10007

 maccy

macos-29-10.2

 macos-29-10.2

 x-mac-centraleurroman

 windows-10029

 x-mac-ce macce

macos-35-10.2

 macos-35-10.2

 x-mac-turkish

 windows-10081

 mactr

ibm-1051_P100-1995

 ibm-1051_P100-1995

 ibm-1051

 hp-roman8

 roman8

 r8

 csHPRoman8

1344 Message Flows

Internal converter name Aliases

ibm-1276_P100-1995

 ibm-1276_P100-1995

 ibm-1276

 Adobe-Standard-Encoding

 csAdobeStandardEncoding

ibm-1277_P100-1995

 ibm-1277_P100-1995

 ibm-1277

 Adobe-Latin1-Encoding

Hebrew, Cyrillic, and ECMA language converters

 Internal converter name Aliases

ibm-1006_P100-1995

 ibm-1006_P100-1995

 ibm-1006

 cp1006

 1006

ibm-1098_P100-1995

 ibm-1098_P100-1995

 ibm-1098

 cp1098

 1098

ibm-1124_P100-1996

 ibm-1124_P100-1996

 ibm-1124

 cp1124

 1124

ibm-1125_P100-1997

 ibm-1125_P100-1997

 ibm-1125 cp1125

ibm-1129_P100-1997

 ibm-1129_P100-1997

 ibm-1129

ibm-1131_P100-1997

 ibm-1131_P100-1997

 ibm-1131

 cp1131

ibm-1133_P100-1997

 ibm-1133_P100-1997

 ibm-1133

ibm-1381_P110-1999

 ibm-1381_P110-1999

 ibm-1381

 cp1381

 1381

ISO_2022,locale=ja,version=0

 ISO_2022,locale=ja,version=0

 ISO-2022-JP

 csISO2022JP

Message flows 1345

Internal converter name Aliases

ISO_2022,locale=ja,version=1

 ISO_2022,locale=ja,version=1

 ISO-2022-JP-1

 JIS

 JIS_Encoding

ISO_2022,locale=ja,version=2

 ISO_2022,locale=ja,version=2

 ISO-2022-JP-2

 csISO2022JP2

ISO_2022,locale=ja,version=3

 ISO_2022,locale=ja,version=3

 JIS7

 csJISEncoding

ISO_2022,locale=ja,version=4

 ISO_2022,locale=ja,version=4

 JIS8

ISO_2022,locale=ko,version=0

 ISO_2022,locale=ko,version=0

 ISO-2022-KR

 csISO2022KR

ISO_2022,locale=ko,version=1

 ISO_2022,locale=ko,version=1

 ibm-25546

ISO_2022,locale=zh,version=0

 ISO_2022,locale=zh,version=0

 ISO-2022-CN

ISO_2022,locale=zh,version=1

 ISO_2022,locale=zh,version=1

 ISO-2022-CN-EXT

HZ

 HZ

 HZ-GB-2312

ibm-897_P100-1995

 ibm-897_P100-1995

 ibm-897

 JIS_X0201

 X0201

 csHalfWidthKatakana

Indian language converters

 Internal converter name Aliases

ISCII,version=0 ISCII,version=0

 x-iscii-de

 windows-57002

 iscii-dev

ISCII,version=1 ISCII,version=1

 x-iscii-be

 windows-57003

 iscii-bng

 windows-57006

 x-iscii-as

1346 Message Flows

Internal converter name Aliases

ISCII,version=2 ISCII,version=2

 x-iscii-pa

 windows-57011

 iscii-gur

ISCII,version=3 ISCII,version=3

 x-iscii-gu

 windows-57010

 iscii-guj

ISCII,version=4 ISCII,version=4

 x-iscii-or

 windows-57007

 iscii-ori

ISCII,version=5 ISCII,version=5

 x-iscii-ta

 windows-57004

 iscii-tml

ISCII,version=6 ISCII,version=6

 x-iscii-te

 windows-57005

 iscii-tlg

ISCII,version=7 ISCII,version=7

 x-iscii-ka

 windows-57008

 iscii-knd

ISCII,version=8 ISCII,version=8

 x-iscii-ma

 windows-57009

 iscii-mlm

EBCDIC converters

 Internal converter name Aliases

LMBCS-1

 LMBCS-1

 lmbcs

LMBCS-2

 LMBCS-2

LMBCS-3

 LMBCS-3

LMBCS-4

 LMBCS-4

LMBCS-5

 LMBCS-5

LMBCS-6

 LMBCS-6

LMBCS-8

 LMBCS-8

LMBCS-11

 LMBCS-11

LMBCS-16

 LMBCS-16

LMBCS-17

 LMBCS-17

LMBCS-18

 LMBCS-18

LMBCS-19

 LMBCS-19

Message flows 1347

Internal converter name Aliases

ibm-37_P100-1995

 ibm-37_P100-1995

 ibm-37

 IBM037

 ibm-037

 ebcdic-cp-us

 ebcdic-cp-ca

 ebcdic-cp-wt

 ebcdic-cp-nl

 csIBM037

 cp037

 037

 cpibm37

 cp37

ibm-273_P100-1995

 ibm-273_P100-1995

 ibm-273

 IBM273

 CP273

 csIBM273

 ebcdic-de

 cpibm273

 273

ibm-277_P100-1995

 ibm-277_P100-1995

 ibm-277

 IBM277

 cp277

 EBCDIC-CP-DK

 EBCDIC-CP-NO

 csIBM277

 ebcdic-dk

 cpibm277

 277

ibm-278_P100-1995

 ibm-278_P100-1995

 ibm-278

 IBM278

 cp278

 ebcdic-cp-fi

 ebcdic-cp-se

 csIBM278

 ebcdic-sv

 cpibm278

 278

1348 Message Flows

Internal converter name Aliases

ibm-280_P100-1995

 ibm-280_P100-1995

 ibm-280

 IBM280

 CP280

 ebcdic-cp-it

 csIBM280

 cpibm280

 280

ibm-284_P100-1995

 ibm-284_P100-1995

 ibm-284

 IBM284

 CP284

 ebcdic-cp-es

 csIBM284

 cpibm284

 284

ibm-285_P100-1995

 ibm-285_P100-1995

 ibm-285

 IBM285

 CP285

 ebcdic-cp-gb

 csIBM285

 ebcdic-gb

 cpibm285

 285

ibm-290_P100-1995

 ibm-290_P100-1995

 ibm-290

 IBM290

 cp290

 EBCDIC-JP-kana

 csIBM290

ibm-297_P100-1995

 ibm-297_P100-1995

 ibm-297

 IBM297

 cp297

 ebcdic-cp-fr

 csIBM297

 cpibm297

 297

ibm-420_X120-1999

 ibm-420_X120-1999

 IBM420

 cp420

 ebcdic-cp-ar1

 csIBM420 420

Message flows 1349

Internal converter name Aliases

ibm-424_P100-1995

 ibm-424_P100-1995

 ibm-424

 IBM424

 cp424

 ebcdic-cp-he

 csIBM424

 424

ibm-500_P100-1995

 ibm-500_P100-1995

 ibm-500

 IBM500

 CP500

 ebcdic-cp-be

 csIBM500

 ebcdic-cp-ch

 cpibm500

 500

ibm-803_P100-1999

 ibm-803_P100-1999

 ibm-803

 cp803

ibm-838_P100-1995

 ibm-838_P100-1995

 ibm-838

 IBM-Thai

 csIBMThai

 cp838

 838

 ibm-9030

ibm-870_P100-1995

 ibm-870_P100-1995

 ibm-870

 IBM870

 CP870

 ebcdic-cp-roece

 ebcdic-cp-yu

 csIBM870

ibm-871_P100-1995

 ibm-871_P100-1995

 ibm-871

 IBM871

 ebcdic-cp-is

 csIBM871

 CP871

 ebcdic-is

 cpibm871

 871

1350 Message Flows

Internal converter name Aliases

ibm-875_P100-1995

 ibm-875_P100-1995

 ibm-875

 IBM875

 cp875

 875

ibm-918_P100-1995

 ibm-918_P100-1995

 ibm-918

 IBM918

 CP918

 ebcdic-cp-ar2

 csIBM918

ibm-930_P120-1999

 ibm-930_P120-1999

 ibm-930

 ibm-5026

 cp930

 cpibm930

 930

ibm-933_P110-1995

 ibm-933_P110-1995

 ibm-933

 cp933

 cpibm933

 933

ibm-935_P110-1999

 ibm-935_P110-1999

 ibm-935

 cp935

 cpibm935

 935

ibm-937_P110-1999

 ibm-937_P110-1999

 ibm-937

 cp937

 cpibm937

 937

ibm-939_P120-1999

 ibm-939_P120-1999

 ibm-939

 ibm-931

 ibm-5035

 cp939

 939

ibm-1025_P100-1995

 ibm-1025_P100-1995

 ibm-1025

 cp1025

 1025

Message flows 1351

Internal converter name Aliases

ibm-1026_P100-1995

 ibm-1026_P100-1995

 ibm-1026

 IBM1026

 CP1026

 csIBM1026

 1026

ibm-1047_P100-1995

 ibm-1047_P100-1995

 ibm-1047

 IBM1047

 cpibm1047

ibm-1097_P100-1995

 ibm-1097_P100-1995

 ibm-1097

 cp1097

 1097

ibm-1112_P100-1995

 ibm-1112_P100-1995

 ibm-1112

 cp1112

 1112

ibm-1122_P100-1999

 ibm-1122_P100-1999

 ibm-1122

 cp1122

 1122

ibm-1123_P100-1995

 ibm-1123_P100-1995

 ibm-1123

 cp1123

 1123

 cpibm1123

ibm-1130_P100-1997

 ibm-1130_P100-1997

 ibm-1130

ibm-1132_P100-1998

 ibm-1132_P100-1998

 ibm-1132

ibm-1140_P100-1997

 ibm-1140_P100-1997

 ibm-1140

 IBM01140

 CCSID01140

 CP01140

 cp1140

 cpibm1140

 ebcdic-us-37+euro

1352 Message Flows

Internal converter name Aliases

ibm-1141_P100-1997

 ibm-1141_P100-1997

 ibm-1141

 IBM01141

 CCSID01141

 CP01141

 cp1141

 cpibm1141

 ebcdic-de-273+euro

ibm-1142_P100-1997

 ibm-1142_P100-1997

 ibm-1142

 IBM01142

 CCSID01142

 CP01142

 cp1142

 cpibm1142

 ebcdic-dk-277+euro

 ebcdic-no-277+euro

ibm-1143_P100-1997

 ibm-1143_P100-1997

 ibm-1143

 IBM01143

 CCSID01143

 CP01143

 cp1143

 cpibm1143

 ebcdic-fi-278+euro

 ebcdic-se-278+euro

ibm-1144_P100-1997

 ibm-1144_P100-1997

 ibm-1144

 IBM01144

 CCSID01144

 CP01144

 cp1144

 cpibm1144

 ebcdic-it-280+euro

ibm-1145_P100-1997

 ibm-1145_P100-1997

 ibm-1145

 IBM01145

 CCSID01145

 CP01145

 cp1145

 cpibm1145

 ebcdic-es-284+euro

Message flows 1353

Internal converter name Aliases

ibm-1146_P100-1997

 ibm-1146_P100-1997

 ibm-1146

 IBM01146

 CCSID01146

 CP01146

 cp1146

 cpibm1146

 ebcdic-gb-285+euro

ibm-1147_P100-1997

 ibm-1147_P100-1997

 ibm-1147

 IBM01147

 CCSID01147

 CP01147

 cp1147

 cpibm1147

 ebcdic-fr-297+euro

ibm-1148_P100-1997

 ibm-1148_P100-1997

 ibm-1148

 IBM01148

 CCSID01148

 CP01148

 cp1148

 cpibm1148

 ebcdic-international-500+euro

ibm-1149_P100-1997

 ibm-1149_P100-1997

 ibm-1149

 IBM01149

 CCSID01149

 CP01149

 cp1149

 cpibm1149

 ebcdic-is-871+euro

ibm-1153_P100-1999

 ibm-1153_P100-1999

 ibm-1153

 cpibm1153

ibm-1154_P100-1999

 ibm-1154_P100-1999

 ibm-1154

 cpibm1154

ibm-1155_P100-1999

 ibm-1155_P100-1999

 ibm-1155

 cpibm1155

ibm-1156_P100-1999

 ibm-1156_P100-1999

 ibm-1156

 cpibm1156

1354 Message Flows

Internal converter name Aliases

ibm-1157_P100-1999

 ibm-1157_P100-1999

 ibm-1157

 cpibm1157

ibm-1158_P100-1999

 ibm-1158_P100-1999

 ibm-1158

 cpibm1158

ibm-1160_P100-1999

 ibm-1160_P100-1999

 ibm-1160

 cpibm1160

ibm-1164_P100-1999

 ibm-1164_P100-1999

 ibm-1164

 cpibm1164

ibm-1364_P110-1997

 ibm-1364_P110-1997

 ibm-1364

 cp1364

ibm-1371_P100-1999

 ibm-1371_P100-1999

 ibm-1371

 cpibm1371

ibm-1388_P103-2001

 ibm-1388_P103-2001

 ibm-1388

 ibm-9580

ibm-1390_P110-2003

 ibm-1390_P110-2003

 ibm-1390

 cpibm1390

ibm-1399_P110-2003

 ibm-1399_P110-2003

 ibm-1399

ibm-16684_P110-2003

 ibm-16684_P110-2003

 ibm-16684

ibm-4899_P100-1998

 ibm-4899_P100-1998

 ibm-4899

 cpibm4899

ibm-4971_P100-1999

 ibm-4971_P100-1999

 ibm-4971

 cpibm4971

ibm-12712_P100-1998

 ibm-12712_P100-1998

 ibm-12712

 cpibm12712

 ebcdic-he

Message flows 1355

Internal converter name Aliases

ibm-16804_X110-1999

 ibm-16804_X110-1999

 ibm-16804

 cpibm16804

 ebcdic-ar

ibm-1137_P100-1999

 ibm-1137_P100-1999

 ibm-1137

ibm-5123_P100-1999

 ibm-5123_P100-1999

 ibm-5123

ibm-8482_P100-1999

 ibm-8482_P100-1999

 ibm-8482

ibm-37_P100-1995,swaplfnl

 ibm-37_P100-1995,swaplfnl

 ibm-37-s390

 ibm037-s390

ibm-1047_P100-1995,swaplfnl

 ibm-1047_P100-1995,swaplfnl

 ibm-1047-s390

ibm-1140_P100-1997,swaplfnl

 ibm-1140_P100-1997,swaplfnl

 ibm-1140-s390

ibm-1142_P100-1997,swaplfnl

 ibm-1142_P100-1997,swaplfnl

 ibm-1142-s390

ibm-1143_P100-1997,swaplfnl

 ibm-1143_P100-1997,swaplfnl

 ibm-1143-s390

ibm-1144_P100-1997,swaplfnl

 ibm-1144_P100-1997,swaplfnl

 ibm-1144-s390

ibm-1145_P100-1997,swaplfnl

 ibm-1145_P100-1997,swaplfnl

 ibm-1145-s390

ibm-1146_P100-1997,swaplfnl

 ibm-1146_P100-1997,swaplfnl

 ibm-1146-s390

ibm-1147_P100-1997,swaplfnl

 ibm-1147_P100-1997,swaplfnl

 ibm-1147-s390

ibm-1148_P100-1997,swaplfnl

 ibm-1148_P100-1997,swaplfnl

 ibm-1148-s390

ibm-1149_P100-1997,swaplfnl

 ibm-1149_P100-1997,swaplfnl

 ibm-1149-s390

ibm-1153_P100-1999,swaplfnl

 ibm-1153_P100-1999,swaplfnl

 ibm-1153-s390

ibm-12712_P100-1998,swaplfnl

 ibm-12712_P100-1998,swaplfnl

 ibm-12712-s390

ibm-16804_X110-1999,swaplfnl

 ibm-16804_X110-1999,swaplfnl

 ibm-16804-s390

ebcdic-xml-us

 ebcdic-xml-us

1356 Message Flows

Chinese code page GB18030

If you are working with messages in Chinese code page GB18030,

There are some restrictions.

The broker can input, manipulate, and output application messages encoded in

code page IBM-5488 (GB18030 support) with the following restrictions:

v If you configure a message flow to store GB18030 data in character form in a user

database, ensure that the database manager that you are using supports GB18030.

v To enable support for GB18030 in the workbench and Configuration Manager:

– If you run a workbench or Configuration Manager that requires GB18030

support on a Windows 2003 system, apply the GB18030 patch supplied by

Microsoft®. This support is included in Windows XP.

– Change the text font preference in the workbench to use GB18030:

- Select Preferences in the Window menu.

- Expand the Workbench item in the left pane of the Preferences dialog (click

the plus sign) and select Fonts.

- In the Fonts window, select Text Font. Click Change, and select the correct

values in the Fonts selection dialog.

- Click OK to confirm the selection and close the dialog.

- Click Apply to apply the change, then OK to close the Preference dialog.

WebSphere MQ connections

The number of WebSphere MQ connections a broker requires to its queue manager

depends on the actions of the message flows that access the MQ resource. For each

broker flow that accesses a queue, one connection is required for every message

flow thread. If a different node on the same thread uses the same queue manager,

the same connection is used.

The number of queue handles required also depends on the behavior of the flow.

For each flow that accesses queues, one queue handle is required for each unique

queue name for every message flow thread. Nodes accessing the same queue name

in the same flow use the same queue handle.

When you start a broker, and while it is running, it opens WebSphere MQ queue

handles. The broker caches these queue handles. For example, when a message

flow node initiates access to the first MQ resource it uses, it opens a connection for

the queue manager and opens the queue. This is done the first time that a message

is processed by that message flow node. For MQInput nodes this occurs when the

flow is started. This queue handle remains open until:

 The message flow becomes idle and has not been used for one minute

 The execution group is stopped

 The broker is stopped

The queue handle for the input node is not released when the flow is idle. The

queue handle is released only when you stop the message flow.

A thread performing WebSphere MQ work becomes idle when it has not received

any messages on its input queue for one minute. The allowed idle time starts from

Message flows 1357

when the input queue being read becomes empty. If a message flow gets a

message from the input queue, the timer is reset.

When a message flow is idle, the execution group periodically releases WebSphere

MQ queue handles. Therefore, connections held by the broker reflect the broker’s

current use of these resources.

Listing database connections that the broker holds

The broker does not have any functionality to list the connections it has to a

database, instead use the facilities that your database supplies to list connections.

Refer to the documentation for your database to find out about these.

Quiescing a database

This topic illustrates the behavior that WebSphere Message Broker expects when a

database is quiesced. A database administrator issues the quiesce instruction on a

database; it is not a function of the broker.

This topic assumes three things about the database being quiesced:

v The database can be quiesced

v New connections to the database are blocked by the database when it is

quiescing

v Message flows using the database eventually become idle

The following list shows the behavior expected while a database is quiescing:

1. Tell the database to quiesce. As soon as you tell the database to quiesce, the

connections that are in use remain in use, but no new connections to the

database are allowed.

2. Processing messages. Messages that are using existing connections to the

database continue to use their connections until the connections become idle.

This can take a long time if messages continue to be processed. To ensure that

messages are no longer processed, stop the message flow. Stopping the message

flow stops messages being processed and releases the database connections that

the flow was using. This ensures that the database connections that the flow

holds become idle.

3. Database connections for the message flow become idle. This causes the broker

to release the connections to the user databases that the message flow is using.

When all connections to the database from the broker and from any other

applications using the database are released, the database can complete its

quiesce function.

Support for UNICODE and DBCS data in databases

The broker does not support DBCS-only columns within tables defined in

databases. The broker does not, therefore, support certain data types, including the

following types:

v DB2: GRAPHIC, VARGRAPHIC, LONGVARGRAPHIC, DBCLOB

v Oracle: NCHAR, NVARCHAR, NVARCHAR2, NCLOB

v Sybase: NCHAR, NVARCHAR, NTEXT, UNICHAR, UNIVARCHAR

v SQL Server: NCHAR, NVARCHAR, NTEXT

v Informix: NCHAR, NVARCHAR

1358 Message Flows

It is possible to manipulate UNICODE data in suitably configured databases but

there are restrictions associated with this function; refer to the readme.html file

available on the product readmes Web page.

Data integrity within message flows

Code pages in which data is manipulated must be compatible between brokers and

databases.

Subscription data retrieved from client applications (for example, topics from

publishers and subscribers, and content filters from subscribers) and the character

data entered through the workbench (for example, message flow names) are stored

in the configuration repository. This data is translated from its originating code

page to the code page of the process in which the broker or Configuration

Manager is running, and then by the database manager to the code page in which

the database or databases were created.

To preserve data consistency and integrity, ensure that all this subscription data

and workbench character data is originated in a compatible code page to the two

code pages to which it is translated. If you do not do so, you might get

unpredictable results and lose data.

Data stored in the broker database is not affected in this way.

The restrictions described above do not apply to user data in messages. Ensure

that any data in messages generated by your applications is compatible with the

code page of any database you access from your message flows.

SQL statements generated as a result of explicit reference to databases within

message processing nodes can contain character data that has a variety of sources.

For example, the data might have been entered through the workbench, derived

from message content, or read from another database. All this data is translated

from its originating code page to the code page in which the broker was created,

and then by the database manager to the code page in which the database was

created. Ensure that these three code pages are compatible to avoid data

conversion problems.

Validation properties

You can control validation by setting properties on the Validate and Parser Options

tabs for the nodes that are listed in the following table.

 Node type Nodes with validation options

Input node MQInput, SCADAInput, HTTPInput, JMSInput, TimeoutNotification,

SOAPInput, FileInput

Output node MQOutput, MQReply, SCADAOutput, HTTPReply, JMSOutput,

JMSReply, FileOutput, SOAPReply

Other nodes Compute, Mapping, JavaCompute, Validate, ResetContentDescriptor,

MQGet, HTTPRequest, XSLTransform, DatabaseRetrieve, SOAPRequest,

SOAPAsyncResponse

For an overview of message validation in the broker, refer to “Validating

messages” on page 164.

Message flows 1359

http://www.ibm.com/support/docview.wss?uid=swg27006913

You can set the properties that are shown in the following table.

 Tab Properties that affect validation

Validation Validate, Failure Action

Parser Options Parse Timing

Validation tab properties

Validate

 Sets whether validation is required. All nodes provide the following

options:

None The default value. No validation is performed.

Content

Indicates that you want to perform content checks, such as Content

validation and Composition.

Content and Value

Indicates that you want to perform content checks, such as Content

validation and Composition, and value checks, such as whether the

value conforms to data type, length, range, and enumeration.

Note: Even if Content is selected, the SOAP and XMLNSC domains

always perform Content and Value validation.

Some nodes also provide the following option:

Inherit

Instructs the node to use all the validation options that are

provided with the input message tree in preference to any supplied

on the node. Inherit therefore resolves to None, Content, or

Content And Value. If Inherit is selected, the other validation

properties on the tab are not available.

Failure Action

 The action that you want to be taken when a validation failure occurs. You

can set it to the following values:

Exception

The default value. An exception is thrown on the first validation

failure encountered. The resulting exception list is shown below.

The failure is also logged in the user trace if you have asked for

user tracing of the message flow, and validation stops. Use this

setting if you want processing of the message to halt as soon as a

failure is encountered.

1360 Message Flows

MRM and IDOC

Parse

ExceptionList

BIP5285

BIPnnnn

BIP5902

ExceptionList

BIP5286

BIPnnnn

BIP2230

Write

XMLNSC and SOAP

Parse

ExceptionList

BIP5025

BIP5902

ExceptionList

BIP5010

BIP5026

BIP2230

Write

Exception List

Throws an exception if validation failures are encountered, but

only when the current parsing or writing operation has completed.

The resulting exception list is shown below. Each failure is also

logged in the user trace if you have asked for user tracing of the

message flow, and validation stops. Use this setting if you want

processing of the message to halt if a validation failure occurs, but

you want to see the full list of failures encountered. This property

is affected by the Parse Timing property; when partial parsing is

selected the current parsing operation parses only a portion of an

input message, so only the validation failures in that portion of the

message are reported.

Message flows 1361

MRM and IDOC

Parse

ExceptionList

BIP5285

BIP5393

BIP5902

ExceptionList

BIP5286

BIP5393

BIPnnnnBIPnnnn BIPnnnnBIPnnnn

BIP2230

Write

XMLNSC and SOAP

Parse

ExceptionList

BIP5393

BIP5902

ExceptionList

BIP5010

BIP5393

BIP5026BIP5025 BIP5026BIP5025

BIP2230

Write

... ...

User Trace

Logs all validation failures to the user trace, even if you have not

asked for user tracing of the message flow. Use this setting if you

want processing of the message to continue regardless of validation

failures.

Local Error Log

Logs all validation failures to the error log (for example, the Event

Log on Windows). Use this setting if you want processing of the

message to continue regardless of validation failures.

Parser Options tab properties

Parse Timing

1362 Message Flows

The Parse Timing property determines whether on demand parsing is to be

used when parsing a message. It also gives you control over the timing of

input message validation:

v If you select a Parse Timing value of On Demand, validation of a field in

the message is delayed until it is parsed by on demand parsing.

v If you select a Parse Timing value of Immediate, on demand parsing is

overridden, and everything in the message is parsed and validated

except, if the message domain is MRM, those complex types with a

Composition of Choice or Message that can not be resolved at the time

v If you select a Parse Timing value of Complete, on demand parsing is

overridden, and everything is parsed and validated. If the message

domain is MRM, complex types with a Composition of Choice or

Message that can not be resolved at the time cause a validation failure.

If you enable message validation, and you select On Demand or Immediate

for Parse Timing, validation errors might not be detected until later in the

processing of a message by a message flow, or might never be detected if a

portion of the message is never parsed. To make sure that all fields in a

message are validated, either select Complete or, if the message domain is

MRM, select Immediate and make sure that you resolve all unresolved

types with a Composition of Choice or Message at the start of your

message flow.

The Parse Timing property has no effect on the validation of output

messages.

Parsing on demand

On demand parsing, referred to as partial parsing, is used to parse an input

message bit stream only as far as is necessary to satisfy the current reference. The

parsers that are capable of performing partial parsing of input messages are the

MRM, XML, XMLNS, and XMLNSC parsers.

An input message can be of any length. To improve performance of message flows,

a message is parsed only when necessary to resolve the reference to a particular

part of its content. If none of the message content is referenced within the message

flow (for example, the entire message is stored in a database by the DataUpdate

node, but no manipulation of the message content takes place), the message body

is not parsed.

If a parser is capable of parsing an input bit stream on demand, instead of

immediately parsing the entire bit stream, the Parse Timing property of a message

flow node controls the on demand behavior of the parser.

You can set the Parse Timing property to On Demand (the default), Immediate, or

Complete.

On Demand causes partial parsing to occur. When fields in the message are

referenced, as much of the message is parsed as is necessary to completely resolve

the reference. Therefore, fields might not be parsed until late in the message flow,

or never. This restriction applies to both the message body and the message

headers.

Immediate and Complete both override partial parsing and parse the entire

message, including any message headers, except when the MRM parser encounters

an element with a complex type with Composition set to Choice or Message that

Message flows 1363

cannot be resolved at the time; for example, the content needs to be resolved by

the user in ESQL. If Composition is set to Choice, the data is added to the message

tree as an unresolved item, and parsing continues with the next element. If

Composition is set to Message, parsing terminates at that point. The only

difference in behavior between Immediate and Complete occurs when MRM

validation is enabled.

The Parse Timing property also gives you control over how MRM message

validation interacts with partial parsing. Refer to “Validation properties” on page

1359 for a full description.

The Parse Timing property has no effect on the serialization of output messages.

Exception list structure

The following figure shows one way in which to construct an exception list.

1364 Message Flows

Notes:

1. The first exception description 1 is a child of the root. This identifies

error number 2230, indicating that an exception has been thrown. The

node that has thrown the exception is also identified (mf1.Compute1).

2. Exception description 2 is a child of the first exception description 1.

This identifies error number 2439.

3. Exception description 3 is a child of the second exception description 2.

This identifies error number 2450, which indicates that the node has

attempted to divide by zero.

The following topics provide examples of exception lists that have been written to

the trace output destination (by the Trace node):

ExceptionList {

 RecoverableException = { 1

 File = ’f:/build/argo/src/DataFlowEngine/ImbDataFlowNode.cpp’

 Line = 538

 Function = ’ImbDataFlowNode::createExceptionList’

 Type = ’ComIbmComputeNode’

 Name = ’0e416632-de00-0000-0080-bdb4d59524d5’

 Label = ’mf1.Compute1’

 Text = ’Node throwing exception’

 Catalog = ’WebSphere Message Broker2’

 Severity = 3

 Number = 2230

 RecoverableException = { 2

 File = ’f:/build/argo/src/DataFlowEngine/ImbRdlBinaryExpression.cpp’

 Line = 231

 Function = ’ImbRdlBinaryExpression::scalarEvaluate’

 Type = ’ComIbmComputeNode’

 Name = ’0e416632-de00-0000-0080-bdb4d59524d5’

 Label = ’mf1.Compute1’

 Text = ’error evaluating expression’

 Catalog = ’WebSphere Message Broker2’

 Severity = 2

 Number = 2439

 Insert = {

 Type = 2

 Text = ’2’

 }

 Insert = {

 Type = 2

 Text = ’30’

 }

 RecoverableException = { 3

 File = ’f:/build/argo/src/DataFlowEngine/ImbRdlValueOperations.cpp’

 Line = 257

 Function = ’intDivideInt’

 Type = ’ComIbmComputeNode’

 Name = ’0e416632-de00-0000-0080-bdb4d59524d5’

 Label = ’mf1.Compute1’

 Text = ’Divide by zero calculating ’%1 / %2’’

 Catalog = ’WebSphere Message Broker2’

 Severity = 2

 Number = 2450

 Insert = }

 Type = 5

 Text = ’100 / 0’

 }

 }

 }

 }

}

Message flows 1365

v “Database exception trace output”

v “Conversion exception trace output” on page 1368

v “Parser exception trace output” on page 1370

v “User exception trace output” on page 1370

Database exception trace output

The following figure shows an extract of the output that might be generated by a

Trace node that has its property Pattern set to a value that represents a structure

that includes the ExceptionList tree.

The exception shown occurred when a database exception was detected

1366 Message Flows

ExceptionList = (

 (0x1000000)RecoverableException = (

 (0x3000000)File = ’F:\build\S000_D\src\DataFlowEngine\ImbComputeNode.cpp’

 (0x3000000)Line = 402

 (0x3000000)Function = ’ImbComputeNode::evaluate’

 (0x3000000)Type = ’ComIbmComputeNode’

 (0x3000000)Name = ’acd8f35d-e700-0000-0080-b78796c5e70d’

 (0x3000000)Label = ’esql_13485_check_defect.Compute1’

 (0x3000000)Text = ’Caught exception and rethrowing’

 (0x3000000)Catalog = ’WMQIv210’

 (0x3000000)Severity = 3

 (0x3000000)Number = 2230

 (0x1000000)RecoverableException = (

 (0x3000000)File = ’F:\build\S000_D\src\DataFlowEngine\ImbRdl\ImbRdlExternalDb.cpp’

 (0x3000000)Line = 278

 (0x3000000)Function = ’SqlExternalDbStmt::executeStmt’

 (0x3000000)Type = ’ComIbmComputeNode’

 (0x3000000)Name = ’acd8f35d-e700-0000-0080-b78796c5e70d’

 (0x3000000)Label = ’esql_13485_check_defect.Compute1’

 (0x3000000)Text = ’The following error occurred execution SQL statement &3. inserts where &4’

 (0x3000000)Catalog = ’WMQIv210’

 (0x3000000)Severity = 3

 (0x3000000)Number = 2519

 (0x1000000)Insert = (

 (0x3000000)Type = 2

 (0x3000000)Text = ’1’

)

 (0x1000000)Insert = (

 (0x3000000)Type = 2

 (0x3000000)Text = ’1’

)

 (0x1000000)Insert = (

 (0x3000000)Type = 5

 (0x3000000)Text = ’USERDB’

)

 (0x1000000)Insert = (

 (0x3000000)Type = 5

 (0x3000000)Text = ’DELETE FROM DB2ADMIN.STOCK WHERE (STOCK_ID)=(?)’

)

 (0x1000000)Insert = (

 (0x3000000)Type = 5

 (0x3000000)Text = ’500027, ’

)

 (0x1000000)DatabaseException = (

 (0x3000000)File = ’F:\build\S000_D\src\DataFlowEngine\ImbOdbc.cpp’

 (0x3000000)Line = 153

 (0x3000000)Function = ’ImbOdbcHandle::checkRcInner’

 (0x3000000)Type = ’’

 (0x3000000)Name = ’’

 (0x3000000)Label = ’’

 (0x3000000)Text = ’Root SQL exception’

 (0x3000000)Catalog = ’WMQIv210’

 (0x3000000)Severity = 3

 (0x3000000)Number = 2321

 (0x1000000)Insert = (

 (0x3000000)Type = 2

 (0x3000000)Text = ’100’

)

)

)

)

)

Message flows 1367

Conversion exception trace output

The following figure shows an extract of the output that might be generated by a

Trace node that has its property Pattern set to a value that represents a structure

that includes the ExceptionList tree.

The exception shown occurred when a conversion (CAST) exception was detected.

1368 Message Flows

ExceptionList = (

 (0x1000000)RecoverableException = (

 (0x3000000)File = ’F:\build\S000_D\src\DataFlowEngine\ImbComputeNode.cpp’

 (0x3000000)Line = 402

 (0x3000000)Function = ’ImbComputeNode::evaluate’

 (0x3000000)Type = ’ComIbmComputeNode’

 (0x3000000)Name = ’acd8f35d-e700-0000-0080-b78796c5e70d’

 (0x3000000)Label = ’esql_13485_check_defect.Compute1’

 (0x3000000)Text = ’Caught exception and rethrowing’

 (0x3000000)Catalog = ’WMQIv210’

 (0x3000000)Severity = 3

 (0x3000000)Number = 2230

 (0x1000000)RecoverableException = (

 (0x3000000)File = ’F:\build\S000_D\src\DataFlowEngine\ImbRdl\ImbRdlTypeCast.cpp’

 (0x3000000)Line = 163

 (0x3000000)Function = ’SqlTypeCast::evaluate’

 (0x3000000)Type = ’’

 (0x3000000)Name = ’’

 (0x3000000)Label = ’’

 (0x3000000)Text = ’Error casting from %3 to %4’

 (0x3000000)Catalog = ’WMQIv210’

 (0x3000000)Severity = 3

 (0x3000000)Number = 2521

 (0x1000000)Insert = (

 (0x3000000)Type = 2

 (0x3000000)Text = ’12’

)

 (0x1000000)Insert = (

 (0x3000000)Type = 2

 (0x3000000)Text = ’28’

)

 (0x1000000)Insert = (

 (0x3000000)Type = 5

 (0x3000000)Text = ’CHARACTER’

)

 (0x1000000)Insert = (

 (0x3000000)Type = 5

 (0x3000000)Text = ’INTEGER’

)

 (0x1000000)ConversionException = (

 (0x3000000)File = ’F:\build\S000_D\src\CommonServices\ImbUtility.cpp’

 (0x3000000)Line = 195

 (0x3000000)Function = ’imbWcsToInt64’

 (0x3000000)Type = ’’

 (0x3000000)Name = ’’

 (0x3000000)Label = ’’

 (0x3000000)Text = ’Invalid characters’

 (0x3000000)Catalog = ’WMQIv210’

 (0x3000000)Severity = 3

 (0x3000000)Number = 2595

 (0x1000000)Insert = (

 (0x3000000)Type = 5

 (0x3000000)Text = ’fred’

)

)

)

)

)

Message flows 1369

Parser exception trace output

The following figure shows an extract of the output that might be generated by a

Trace node that has its property Pattern set to a value that represents a structure

that includes the ExceptionList tree.

The exception shown occurred when the message parser was invoked.

User exception trace output

The following figure shows an extract of the output that might be generated by a

Trace node that has its property Pattern set to a value that represents a structure

that includes the ExceptionList tree.

The exception shown occurred when a user exception was generated (with the

ESQL THROW statement).

ExceptionList = (

 (0x1000000)RecoverableException = (

 (0x3000000)File = ’F:\build\S000_D\src\DataFlowEngine\ImbMqOutputNode.cpp’

 (0x3000000)Line = 1444

 (0x3000000)Function = ’ImbMqOutputNode::evaluate’

 (0x3000000)Type = ’ComIbmMQOutputNode’

 (0x3000000)Name = ’c76eb6cd-e600-0000-0080-b78796c5e70d’

 (0x3000000)Label = ’esql_13485_check_defect.OUT’

 (0x3000000)Text = ’Caught exception and rethrowing’

 (0x3000000)Catalog = ’WMQIv210’

 (0x3000000)Severity = 3

 (0x3000000)Number = 2230

 (0x1000000)ParserException = (

 (0x3000000)File = ’F:\build\S000_D\src\MTI\MTIforBroker\GenXmlParser2\XmlImbParser.cpp’

 (0x3000000)Line = 210

 (0x3000000)Function = ’XmlImbParser::refreshBitStreamFromElements’

 (0x3000000)Type = ’ComIbmMQInputNode’

 (0x3000000)Name = ’ce64b6cd-e600-0000-0080-b78796c5e70d’

 (0x3000000)Label = ’esql_13485_check_defect.IN’

 (0x3000000)Text = ’XML Writing Errors have occurred’

 (0x3000000)Catalog = ’WMQIv210’

 (0x3000000)Severity = 3

 (0x3000000)Number = 5010

 (0x1000000)ParserException = (

 (0x3000000)File = ’F:\build\S000_D\src\MTI\MTIforBroker\GenXmlParser2\XmlImbParser.cpp’

 (0x3000000)Line = 551

 (0x3000000)Function = ’XmlImbParser::checkForBodyElement’

 (0x3000000)Type = ’’

 (0x3000000)Name = ’’

 (0x3000000)Label = ’’

 (0x3000000)Text = ’No valid body of the document could be found.’

 (0x3000000)Catalog = ’WMQIv210’

 (0x3000000)Severity = 3

 (0x3000000)Number = 5005

)

)

)

)

1370 Message Flows

ExceptionList = (

 (0x1000000)RecoverableException = (

 (0x3000000)File = ’F:\build\S000_D\src\DataFlowEngine\ImbComputeNode.cpp’

 (0x3000000)Line = 402

 (0x3000000)Function = ’ImbComputeNode::evaluate’

 (0x3000000)Type = ’ComIbmComputeNode’

 (0x3000000)Name = ’acd8f35d-e700-0000-0080-b78796c5e70d’

 (0x3000000)Label = ’esql_13485_check_defect.Compute1’

 (0x3000000)Text = ’Caught exception and rethrowing’

 (0x3000000)Catalog = ’WMQIv210’

 (0x3000000)Severity = 3

 (0x3000000)Number = 2230

 (0x1000000)UserException = (

 (0x3000000)File = ’F:\build\S000_D\src\DataFlowEngine\ImbRdl\ImbRdlThrowExceptionStatements.cpp’

 (0x3000000)Line = 148

 (0x3000000)Function = ’SqlThrowExceptionStatement::execute’

 (0x3000000)Type = ’ComIbmComputeNode’

 (0x3000000)Name = ’acd8f35d-e700-0000-0080-b78796c5e70d’

 (0x3000000)Label = ’esql_13485_check_defect.Compute1’

 (0x3000000)Text = ’User Generated SQL ’USER’ exception’

 (0x3000000)Catalog = ’WMQIv210’

 (0x3000000)Severity = 1

 (0x3000000)Number = 2949

 (0x1000000)Insert = (

 (0x3000000)Type = 5

 (0x3000000)Text = ’USER’

)

 (0x1000000)Insert = (

 (0x3000000)Type = 5

 (0x3000000)Text = ’Insert1’

)

 (0x1000000)Insert = (

 (0x3000000)Type = 5

 (0x3000000)Text = ’Insert2’

)

 (0x1000000)Insert = (

 (0x3000000)Type = 5

 (0x3000000)Text = ’etc’

)

 (0x1000000)Insert = (

 (0x3000000)Type = 5

 (0x3000000)Text = ’’

)

 (0x1000000)Insert = (

 (0x3000000)Type = 5

 (0x3000000)Text = ’’

)

 (0x1000000)Insert = (

 (0x3000000)Type = 5

 (0x3000000)Text = ’’

)

 (0x1000000)Insert = (

 (0x3000000)Type = 5

 (0x3000000)Text = ’’

)

 (0x1000000)Insert = (

 (0x3000000)Type = 5

 (0x3000000)Text = ’’

)

)

)

)

Message flows 1371

Configurable message flow properties

When you add a message flow to a broker archive (bar) file in preparation for

deploying it to a broker, you can set additional properties that influence its

runtime operation. These properties are available for review and update when you

select the Configure tab for the broker archive file.

Additional Instances

Specifies the number of additional threads that the broker can use to

service the message flow. These additional threads are created only if there

are sufficient input messages. You can use up to 256 threads. The default

value is 0. Additional threads can increase the throughput of a message

flow but you should consider the potential impact on message order.

 If the message flow processes WebSphere MQ messages, you can configure

the message flow to control the message order. Set the Order Mode

property on the MQInput node accordingly. You might also need to set the

Commit by Message Group and Logical Order properties.

The broker opens the input queue as shared (using the

MQOO_INPUT_SHARED option), therefore you must ensure that the input

queue has been defined with the SHARE property to enable multiple

broker threads to read from the same input queue.

If you have multiple input nodes in your message flow, the available

additional threads might not be allocated evenly between the different

input nodes. In an extreme case, all the threads might be allocated to a

single input node, and only one aspect of the message flow’s throughput is

improved. To avoid this problem, you can use the Additional Instances

Pool property, together with the Additional Instances property, to allocate a

pool of additional instance threads for each input node.

Additional Instances Pool

Specifies whether additional instance threads for an input node are

allocated from a thread pool for the whole message flow, or from a thread

pool for use by that node only. The value of the Additional Instances

property that is specified for the node controls the number of instances in

the pool.

 If your message flow contains multiple input nodes, use the Additional

Instances Pool and Additional Instances properties to ensure that each of

the input nodes is allocated the required number of additional instances.

Setting these properties allows you to fine tune your message flow

operation, therefore if you know that one input node will receive twice as

much input as another node, you can give it twice the number of

additional threads.

v To request additional instance allocation from the message flow thread

pool, set Additional Instances Pool to Use pool associated with message

flow.

v To request additional instance allocation from the node’s own thread

pool, set Additional Instances Pool to Use pool associated with node.

If the Additional Instances Pool property is not available for a node, the

behavior is the same as if Additional Instances Pool is set to Use pool

associated with message flow. You can set this property on the MQInput

node, FileInput node, WebSphere Adapters input nodes, and Web Services

input nodes.

1372 Message Flows

Commit Count

For WebSphere MQ messages, specifies how many input messages are

processed by a message flow before a syncpoint is taken (by issuing an

MQCMIT).

 The default value of 1 is also the minimum permitted value. Change this

property to avoid frequent MQCMIT calls when messages are being

processed quickly and the lack of an immediate commit can be tolerated

by the receiving application.

Use the Commit Interval to ensure that a commit is performed periodically

when not enough messages are received to fulfill the Commit Count.

This property has no effect if the message flow does not process

WebSphere MQ messages.

Commit Interval

For WebSphere MQ messages, specifies a time interval at which a commit

is taken when the Commit Count property is greater than 1 (that is, where

the message flow is batching messages), but the number of messages

processed has not reached the value of the Commit Count property. It

ensures that a commit is performed periodically when not enough

messages are received to fulfill the Commit Count.

 The time interval is specified in seconds , as a decimal number with a

maximum of 3 decimal places (millisecond granularity). The value must be

in the range 0.000 through 60.000. The default value is 0.

This property has no effect if the message flow does not process

WebSphere MQ messages.

Coordinated Transaction

Controls whether the message flow is processed as a global transaction,

coordinated by WebSphere MQ. Such a message flow is said to be fully

globally-coordinated. The default value is No.

 Use coordinated transactions only where you need to process the message

and any database updates that are performed by the message flow in a

single unit-of-work, using a two-phase commit protocol. In this case, both

the message is read and the database updates are performed, or neither is

done.

If you change this value, ensure that the broker’s queue manager is

configured correctly. If you do not set up the queue manager correctly, the

broker generates a message when the message flow receives a message to

indicate that, although the message flow is to be globally coordinated, the

queue manager configuration does not support this.

See Supported databases for information about which databases are

supported as participants in a global transaction, and the System

Administration section of the WebSphere MQ Version 6 information center

online for how to configure WebSphere MQ and the database managers.

This property has no effect if the message flow does not process

WebSphere MQ messages.

User-defined properties

The initial value of a user-defined property (UDP) can be modified at

design time by the Message Flow editor, or overridden at deployment time

by the Broker Archive editor. The advantage of UDPs is that their values

can be changed by operational staff at deployment time. If, for example,

you use UDPs to hold configuration data, you can configure a message

Message flows 1373

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

flow for a particular computer, task, or environment at deployment time,

without having to change the code at the node level. You can also query

and set the values of user-defined properties at run time by using the

Configuration Manager Proxy (CMP) API. For example, a systems

monitoring tool could use the CMP API to modify the value of a

user-defined property at run time to change the behavior of the message

flow.

 For introductory information about UDPs and dynamic UDPs, see

“User-defined properties in ESQL” on page 261 and “User-defined

properties” on page 111.

For information about configuring UDPs at deployment time, see

“Configuring a message flow at deployment time using UDPs” on page

410.

For information about configuring UDPs at run time, see Setting

user-defined properties dynamically at run time.

You can view and update other configurable properties for the message flow. The

properties that are displayed depend on the nodes within the message flow; some

have no configurable properties to display. The node properties that are

configurable are predominantly system-related properties that are likely to change

for each broker to which the message flow is deployed. These properties include

data source names and the names of WebSphere MQ queues and queue managers.

For full details of configurable properties for a node, see the appropriate node

description.

Message flow porting considerations

If you have configured a message flow that runs on a broker on a distributed

system, and you now want to deploy it to a broker that runs on z/OS, you might

have to take additional actions to port the flow successfully.

Consider the following resources and attributes:

WebSphere MQ queue manager and queue names

WebSphere MQ imposes some restrictions for resource names on z/OS:

v The queue manager name cannot be greater than four characters.

v All queue names must be in uppercase. Although using quotation marks

preserves the case, certain WebSphere MQ activities on z/OS cannot

find the queue names being referenced.

For more information about configuring on z/OS, refer to the Concepts and

Planning Guide section of the WebSphere MQ Version 6 information center

online

File system references

File system references must reflect a UNIX file path. If you deploy a

message flow to z/OS that you have previously run on Windows, you

might have to make changes. If you have previously deployed the message

flow to a UNIX system (AIX®, Linux, Solaris, or HP-UX), you do not have

to make any changes.

Databases

If the message flow accesses one or more databases, it might be subject to

some restrictions based on the system on which the database is defined.

These restrictions are described in Database locations.

1374 Message Flows

|
|
|
|
|
|

|
|

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

Monitoring profile

You can create a monitoring profile to configure the monitoring options for your

message flow.

Purpose

A monitoring profile has the following properties which can be set using an XML

file:

Event identity XPath query

This property overrides the default value of eventPointData/eventData/
eventIdentity/@eventName. If this query is not supplied, @eventName is set to

transactionStart transactionEnd transactionRollback. You can specify a field in

your message body that contains a more specific value. Example values for fields

in the message:

$Properties/messageType

$InputBody/soapenv:Header/

localTransactionId XPath query

This property overrides the default value of eventPointData/eventData/
eventCorrelation/@localTransactionId. If this query is not supplied,

@localTransactionId is set to a unique message identifier for the transport. You

can specify a field in your message that contains a more specific value. Example

values for fields in the message:

$InputBody/soapenv:Header/wsa:messageID

parentTransactionId XPath query

This property supplies a value for eventPointData/eventData/eventCorrelation/
@parentTransactionId. If this query is not supplied, @parentTransactionId is

omitted from the event. You can specify a field in your message that populates this

field in your events.

globalTransactionId XPath query

This property supplies a value for eventPointData/eventData/eventCorrelation/
@globalTransactionId. If this query is not supplied, @globalTransactionId is

omitted from the event. You can specify a field in your message that populates this

field in your events.

Sequence field XPath query

This property overrides the default value of eventPointData/eventData/
eventSequence/@value. If this query is not supplied, eventSequene/@value is

populated with the creation time of the event. You can use this to get proper

sequencing of fields, but missed events cannot be detected. You can specify a field

in your message that populates this field in your events.

sequence data type

Specifies the data type of the field identified by the sequence field query.

Supplying the data type of the field is useful when constructing a

monitoring model in WebSphere Business Monitor.

 Valid values are dateTime, integer and string.

Message flows 1375

Sequence field name

Specifies the name of the sequence data field. Supplying a name for the

field is helpful when constructing a monitoring model in WebSphere

Business Monitor.

Simple content XPath queries

You can use these queries to extract simple fields from your message and put them

into the ApplicationData/simpleContent section of the event. If no simple content

queries are specified, the event does not contain any fields from the message, and

the entire ApplicationData/simpleContent element is omitted from the event.

Simple content name

The name of the simple element that is selected by this query

Simple content namespace [optional]

The namespace of the simple element that is selected by this query

Simple content data type

The data type of the simple element being selected by this query. Valid

values are:

v boolean

v date

v dateTime

v decimal

v duration

v integer

v string

v time

Default content of monitoring events

When monitoring is enabled for a message flow, the fields in the generated events

are populated with default values. These default values are described in the

following table. Some of these fields can be populated by a monitoring profile. Any

field which is not explicitly overridden using a monitoring profile is given the

default values as shown in the table.

 Table 272. Default values for monitoring events

Field in event Default Value Example

event/eventPointData/eventData/
@eventSchemaVersion

6.1.0.2

event/eventPointData/eventData/
@productVersion

6102

event/eventPointData/eventData/
eventIdentity/@eventName

One of the following event

types:

v transactionStart

v transactionEnd

v transactionRollback

event/eventPointData/eventData/
eventSequence/@creationTime

The date and time when

the event was created.

2007-12-31T23:59:59.999

1376 Message Flows

|
|
|

|

|

|

|

|

|

|

|

Table 272. Default values for monitoring events (continued)

Field in event Default Value Example

event/eventPointData/eventData/
eventCorrelation/
@localTransactionId

A default value based on

the transport used:

v MQ

v JMS

v SOAP

v HTTP

InputRoot.MQMD.MsgId

InputRoot.JMSTransport.Transport_Folders.

Header_Values.JMSMessageId

InputLocalEnvironment.Destination.SOAP.Reply.

ReplyIdentifier

InputLocalEnvironment.Destination.HTTP.

RequestIdentifier

event/eventPointData/
messageFlowData/broker/@name

The name of the broker.

event/eventPointData/
messageFlowData/broker/@UUID

The UUID of the broker.

event/eventPointData/
messageFlowData/
executionGroup/@name

The name of the execution

group.

event/eventPointData/
messageFlowData/
executionGroup/@UUID

The UUID of the execution

group.

event/eventPointData/
messageFlowData/messageFlow/
@name

The name of the message

flow.

event/eventPointData/
messageFlowData/messageFlow/
@UUID

The UUID of the message

flow.

event/eventPointData/
messageFlowData/messageFlow/
@uniqueFlowName

A string composed of the

names of the broker,

execution group and flow

in the form:

[brokerName].[execution

GroupName].[flowName]

myBroker.myEG.messageFlow1

event/eventPointData/
messageFlowData/messageFlow/
@threadId

The thread id of the

message flow. The format is

platform dependent.

event/eventPointData/
messageFlowData/node/
@nodeLabel

The label of the node that

emitted the event.

event/eventPointData/
messageFlowData/node/
@nodeType

The type of the node that

emitted the event.

event/eventPointData/
messageFlowData/node/
@nodeDetail

Optional information about

the node.

In an MQInput node, this field contains the name

of the input queue.

event/bitstreamData/bitstream/
@encoding

base64Binary

event/bitstreamData/bitstream A base64 representation of

the entire input bitstream.

Message flows 1377

Monitoring profile examples

The following XML documents conform to the monitoring profile schema

Monitoring profile 1 : Supply an alternative localTransactionId

<?xml version="1.0" encoding="UTF-8"?>

<wmb:monitoringProfile

 xmlns:wmb="http://www.ibm.com/xmlns/prod/websphere/messagebroker/6.1.0/monitoring/profile"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.ibm.com/xmlns/prod/websphere/messagebroker

/6.1.0/monitoring/profile MonitoringProfile.xsd ">

 <wmb:eventPointDataQuery>

 <wmb:eventCorrelation>

 <wmb:localTransactionId wmb:queryText="$Body/soapenv:Header/wsa:messageID" >

 <wmb:prefixMapping wmb:prefix="soapenv" wmb:URI="http://www.w3.org/2003/05/soap-envelope" />

 <wmb:prefixMapping wmb:prefix="wsa" wmb:URI="http://www.w3.org/2005/08/addressing" />

 </wmb:localTransactionId>

 </wmb:eventCorrelation>

 </wmb:eventPointDataQuery>

</wmb:monitoringProfile>

Monitoring profile 2 : Supply an alternative sequence field

<?xml version="1.0" encoding="UTF-8"?>

<wmb:monitoringProfile

 xmlns:wmb="http://www.ibm.com/xmlns/prod/websphere/messagebroker/6.1.0/monitoring/profile"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.ibm.com/xmlns/prod/websphere/messagebroker

/6.1.0/monitoring/profile MonitoringProfile.xsd ">

 <wmb:eventPointDataQuery>

 <wmb:eventSequence wmb:dataType="integer" wmb:name="InvoiceNumber">

 <wmb:value wmb:queryText="$InputBody/invoice/InvoiceNo"/>

 </wmb:eventSequence>

 </wmb:eventPointDataQuery>

</wmb:monitoringProfile>

Monitoring profile 3 : Add simple content

<?xml version="1.0" encoding="UTF-8"?>

<wmb:monitoringProfile

 xmlns:wmb="http://www.ibm.com/xmlns/prod/websphere/messagebroker/6.1.0/monitoring/profile"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.ibm.com/xmlns/prod/websphere/messagebroker

/6.1.0/monitoring/profile MonitoringProfile.xsd ">

 <wmb:applicationDataQuery>

 <wmb:simpleContent wmb:dataType="integer" wmb:name="InvoiceNumber">

 <wmb:valueQuery wmb:queryText="$InputBody/invoice/InvoiceNo" />

 </wmb:simpleContent>

 <wmb:simpleContent wmb:dataType="string" wmb:name="batchID">

 <wmb:valueQuery wmb:queryText="$InputBody/batch/batchNo"/>

 </wmb:simpleContent>

 </wmb:applicationDataQuery>

</wmb:monitoringProfile>

Monitoring profile 4 : Change the bitstream encoding to CDATA

By default, bitstreams are encoded in base64Binary format. The following

monitoring profile changes the encoding to CDATA. CDATA encoding is not

suitable for all types of data. You must not use CDATA if your message bitstreams

can contain characters that are illegal in XML (see http://www.w3.org/TR/2006/
REC-xml-20060816/#charsets).

<?xml version="1.0" encoding="UTF-8"?>

<wmb:monitoringProfile

 xmlns:wmb="http://www.ibm.com/xmlns/prod/websphere/messagebroker/6.1.0/monitoring/profile"

1378 Message Flows

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.ibm.com/xmlns/prod/websphere/messagebroker

/6.1.0/monitoring/profile MonitoringProfile.xsd ">

 <wmb:bitstreamDataQuery wmb:encoding="CDATA" wmb:bitstreamContent="all"/>

</wmb:monitoringProfile>

Monitoring profile 5 : The default monitoring profile

<?xml version="1.0" encoding="UTF-8"?>

<wmb:monitoringProfile

 xmlns:wmb="http://www.ibm.com/xmlns/prod/websphere/messagebroker/6.1.0/monitoring/profile"

 <wmb:bitstreamDataQuery wmb:encoding="base64Binary">

 <wmb:bitstream queryText="$Root" />

 </wmb:bitstreamDataQuery>

</wmb:monitoringProfile>

Monitoring profile schema

You can create an XML file containing the properties to use for your monitoring

profile. The XML files with the properties must conform to this monitoring profile

schema.

The schema below defines the content of the monitoring profiles used to generate

events in message flows.

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.ibm.com/xmlns/prod/websphere/messagebroker

/6.1.0/monitoring/profile" xmlns:wmb="http://www.ibm.com/xmlns/prod/websphere/messagebroker

/6.1.0/monitoring/profile" elementFormDefault="qualified" attributeFormDefault="qualified"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!-- A monitoring profile configures the event sources in a message flow -->

 <xsd:element name="monitoringProfile" type="wmb:monitoringProfileType"/>

 <xsd:complexType name="monitoringProfileType">

 <xsd:sequence>

 <xsd:element ref="wmb:eventPointDataQuery" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="wmb:applicationDataQuery" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="wmb:bitstreamDataQuery" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="eventPointDataQuery">

 <xsd:complexType>

 <xsd:sequence>

 <!-- This query populates the eventPointData/eventData/eventIdentity/@eventName attribute -->

 <xsd:element name="eventIdentity" minOccurs="0" maxOccurs="1">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="eventName" type="wmb:queryType" minOccurs="1" maxOccurs="1">

</xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <!-- Information for eventPointData/eventData/eventSequence/@* -->

 <xsd:element name="eventSequence" minOccurs="0" maxOccurs="1">

 <xsd:complexType>

 <xsd:sequence>

 <!-- Overrides the default value of eventPointData/eventData/eventSequence/@value -->

 <xsd:element name="value" type="wmb:queryType"></xsd:element>

 </xsd:sequence>

 <!-- A user-supplied name for this query’s result -->

 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="dataType" type="wmb:sequenceDataType"/>

 </xsd:complexType>

 </xsd:element>

 <!-- These queries supply values for eventPointData/eventData/eventCorrelation/@*transactionId -->

Message flows 1379

|
|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<xsd:element name="eventCorrelation" minOccurs="0" maxOccurs="1">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="localTransactionId" type="wmb:queryType" minOccurs="0" maxOccurs="1">

</xsd:element>

 <xsd:element name="parentTransactionId" type="wmb:queryType" minOccurs="0" maxOccurs="1">

</xsd:element>

 <xsd:element name="globalTransactionId" type="wmb:queryType" minOccurs="0" maxOccurs="1">

</xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <!-- A query and associated metadata which populates applicationData/simpleContent or applicationData/complexContent

-->

 <xsd:element name="applicationDataQuery">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="simpleContent" minOccurs="0" maxOccurs="unbounded">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="valueQuery" type="wmb:queryType" minOccurs="1" maxOccurs="1"></xsd:element>

 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 <xsd:attribute name="dataType" type="wmb:simpleContentDataType" use="required"/>

 <xsd:attribute name="targetNamespace" type="xsd:string" use="optional"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="complexContent" minOccurs="0" maxOccurs="unbounded">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="payloadQuery" type="wmb:queryType"></xsd:element>

 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 <xsd:attribute name="targetNamespace" type="xsd:string" use="optional"/>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <!-- This query populates the bitstreamData/bitstream element -->

 <xsd:element name="bitstreamDataQuery">

 <xsd:complexType>

 <!-- Overrides the default value of attribute bitstreamData/bitstream/@encoding -->

 <xsd:attribute name="encoding" type="wmb:encodingType"/>

 <xsd:attribute name="bitstreamContent" type="wmb:bitstreamContentType"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:complexType name="queryType">

 <xsd:sequence>

 <xsd:element name="prefixMapping" minOccurs="0" maxOccurs="unbounded">

 <xsd:complexType>

 <xsd:attribute name="prefix" type="xsd:string" use="required"/>

 <xsd:attribute name="URI" type="xsd:string" use="required"/>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="queryText" type="xsd:string"/>

 </xsd:complexType>

1380 Message Flows

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<xsd:simpleType name="bitstreamContentType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="none"/>

 <xsd:enumeration value="headers"/>

 <xsd:enumeration value="body"/>

 <xsd:enumeration value="all"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name="encodingType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="none"/>

 <xsd:enumeration value="CDATA"/>

 <xsd:enumeration value="hexBinary"/>

 <xsd:enumeration value="base64Binary"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name="sequenceDataType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="dateTime"/>

 <xsd:enumeration value="integer"/>

 <xsd:enumeration value="string"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name="simpleContentDataType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="boolean"/>

 <xsd:enumeration value="date"/>

 <xsd:enumeration value="dateTime"/>

 <xsd:enumeration value="decimal"/>

 <xsd:enumeration value="duration"/>

 <xsd:enumeration value="integer"/>

 <xsd:enumeration value="string"/>

 <xsd:enumeration value="time"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

Message flow accounting and statistics data

This section provides information for message flow accounting and statistics data.

Details of the information that is collected, and the output formats in which it can

be recorded, are provided:

v Statistics details

v Data formats

v Example output

You can also find information on how to use accounting and statistics data to

improve the performance of a message flow in this developerWorks article on

message flow performance.

Message flow accounting and statistics details

This topic identifies the statistics that are collected for message flows.

The details that are available are:

Message flows 1381

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html

Message flow statistics

One record is created for each message flow in an execution group. Each

record contains the following details:

v Message flow name and UUID

v Execution group name and UUID

v Broker name and UUID

v Start and end times for data collection

v Type of data collected (snapshot or archive)

v CPU and elapsed time spent processing messages

v CPU and elapsed time spent waiting for input

v Number of messages processed

v Minimum, maximum, and average message sizes

v Number of threads available and maximum assigned at any time

v Number of messages committed and backed out

v Accounting origin

Thread statistics

One record is created for each thread assigned to the message flow. Each

record contains the following details:

v Thread number (this has no significance and is for identification only)

v CPU and elapsed time spent processing messages

v CPU and elapsed time spent waiting for input

v Number of messages processed

v Minimum, maximum, and average message sizes

Node statistics

One record is created for each node in the message flow. Each record

contains the following details:

v Node name

v Node type (for example MQInput)

v CPU time spent processing messages

v Elapsed time spent processing messages

v Number of times that the node is invoked

v Number of messages processed

v Minimum, maximum, and average message sizes

Terminal statistics

One record is created for each terminal on a node. Each record contains the

following details:

v Terminal name

v Terminal type (input or output)

v Number of times that a message is propagated through this terminal

For further details about specific output formats, see the following topics:

v “User trace entries for message flow accounting and statistics data” on page

1386

v “XML publication for message flow accounting and statistics data” on page 1383

v “z/OS SMF records for message flow accounting and statistics data” on page

1390

Message flow accounting and statistics output formats

The message flow accounting and statistics data is written in one of three formats:

v User trace entries

v XML publication

v z/OS SMF records

1382 Message Flows

XML publication for message flow accounting and statistics data

This topic describe the information that is written to the XML publication for

message flow accounting and statistics data. The data is created within the folder

WMQIStatisticsAccounting, which contains subfolders that provide more detailed

information. All folders are present within the publication even if you set current

data collection parameters to specify that the relevant data is not collected.

Snapshot data is used for performance analysis, and is published as retained and

non-persistent. Archive data is used for accounting where an audit trail might be

required, and is published as retained and persistent. All publications are global

and can be collected by a subscriber that has registered anywhere in the network.

They can also be collected by more than one subscriber.

One XML publication is generated for each message flow that is producing data

for the time period you have chosen. For example, if MessageFlowA and

MessageFlowB, are both producing archive data over a period of 60 minutes, both

MessageFlowA and MessageFlowB will produce an XML publication every 60

minutes.

If you are concerned about the safe delivery of these messages, for example for

charging purposes, use a secure delivery mechanism such as WebSphere MQ.

The folders and subfolders in the XML publication have the following identifiers:

v WMQIStatisticsAccounting

v MessageFlow

v Threads

v ThreadStatistics

v Nodes

v NodesStatistics

v TerminalStatistics

The tables provided here describe the contents of each of these folders in the order

listed above.

The table below describes the general accounting and statistics information, created

in folder WMQIStatisticsAccounting.

 Field Data type Details

RecordType Character Type of output, one of:

v Archive

v Snapshot

RecordCode Character Reason for output, one of:

v MajorInterval

v Snapshot

v Shutdown

v ReDeploy

v StatsSettingsModified

The table below describes the message flow statistics information, created in folder

MessageFlow.

 Field Data type Details

BrokerLabel Character

(maximum 32)

Broker name

Message flows 1383

Field Data type Details

BrokerUUID Character

(maximum 32)

Broker universal unique

identifier

ExecutionGroupName Character

(maximum 32)

Execution group name

ExecutionGroupUUID Character

(maximum 32)

Execution group universal

unique identifier

MessageFlowName Character

(maximum 32)

Message flow name

StartDate Character Interval start date

(YYYY-MM-DD)

StartTime Character Interval start time

(HH:MM:SS:NNNNNN)

EndDate Character Interval end date

(YYYY-MM-DD)

EndTime Character Interval end time

(HH:MM:SS:NNNNNN)

TotalElapsedTime Numeric Total elapsed time spent

processing input messages

(microseconds)

MaximumElapsedTime Numeric Maximum elapsed time spent

processing an input message

(microseconds)

MinimumElapsedTime Numeric Minimum elapsed time spent

processing an input message

(microseconds)

TotalCPUTime Numeric Total CPU time spent

processing input messages

(microseconds)

MaximumCPUTime Numeric Maximum CPU time spent

processing an input message

(microseconds)

MinimumCPUTime Numeric Minimum CPU time spent

processing an input message

(microseconds)

CPUTimeWaitingForInputMessage Numeric Total CPU time spent waiting

for input messages

(microseconds)

ElapsedTimeWaitingForInputMessage Numeric Total elapsed time spent

waiting for input messages

(microseconds)

TotalInputMessages Numeric Total number of messages

processed

TotalSizeOfInputMessages Numeric Total size of input messages

(bytes)

MaximumSizeOfInputMessages Numeric Maximum input message

size (bytes)

MinimumSizeOfInputMessages Numeric Minimum message input size

(bytes)

NumberOfThreadsInPool Numeric Number of threads in pool

1384 Message Flows

Field Data type Details

TimesMaximumNumberofThreadsReached Numeric Number of times the

maximum number of threads

is reached

TotalNumberOfMQErrors1 Numeric Number of MQGET errors

(MQInput node) or Web

services errors (HTTPInput

node)

TotalNumberOfMessagesWithErrors2 Numeric Number of messages that

contain errors

TotalNumberOfErrorsProcessingMessages Numeric Number of errors processing

a message

TotalNumberOfTimeOutsWaitingForRepliesToAggregateMessages Numeric Number of timeouts

processing a message

(AggregateReply node only)

TotalNumberOfCommits Numeric Number of transaction

commits

TotalNumberOfBackouts Numeric Number of transaction

backouts

AccountingOrigin Character

(maximum 32)

Accounting origin

Notes:

1. For example, a conversion error occurs when the message is got from the queue.

2. These include exceptions that are thrown downstream of the input node, and errors detected by the input node

after it has successfully retrieved the message from the queue but before it has propagated it to the out terminal

(for example, a format error).

The table below describes the thread statistics information, created in folder

Threads.

 Field Data type Details

Number Numeric Number of thread statistics subfolders within Threads

folder

The table below describes the thread statistics information for each individual

thread, created in folder ThreadStatistics, a subfolder of Threads.

 Field Data type Details

Number Numeric Relative thread number in pool

TotalNumberOfInputMessages Numeric Total number of messages processed by

thread

TotalElapsedTime Numeric Total elapsed time spent processing input

messages (microseconds)

TotalCUPTime Numeric Total CPU time spent processing input

messages (microseconds)

CPUTimeWaitingForInputMessage Numeric Total CPU time spent waiting for input

messages (microseconds)

ElapsedTimeWaitingForInputMessage Numeric Total elapsed time spent waiting for input

messages (microseconds)

TotalSizeOfInputMessages Numeric Total size of input messages (bytes)

Message flows 1385

Field Data type Details

MaximumSizeOfInputMessages Numeric Maximum size of input messages (bytes)

MinimumSizeOfInputMessages Numeric Minimum size of input messages (bytes)

The table below describes the node statistics information, created in folder Nodes.

 Field Data type Details

Number Numeric Number of node statistics subfolders within Nodes

folder

The table below describes the node statistics information for each individual node,

created in folder NodesStatistics, a subfolder of Nodes.

 Field Data type Details

Label Character Name of node (Label)

Type Character Type of node

TotalElapsedTime Numeric Total elapsed time spent processing input

messages (microseconds)

MaximumElapsedTime Numeric Maximum elapsed time spent processing input

messages (microseconds)

MinimumElapsedTime Numeric Minimum elapsed time spent processing input

messages (microseconds)

TotalCPUTime Numeric Total CPU time spent processing input messages

(microseconds)

MaximumCPUTime Numeric Maximum CPU time spent processing input

messages (microseconds)

MinimumCPUTime Numeric Minimum CPU time spent processing input

messages (microseconds)

CountOfInvocations Numeric Total number of messages processed by this node

NumberOfInputTerminals Numeric Number of input terminals

NumberOfOutputTerminals Numeric Number of output terminals

The table below describes the terminal statistics information, created in folder

TerminalStatistics.

 Field Data type Details

Label Character Name of terminal

Type Character Type of terminal, one of:

v Input

v Output

CountOfInvocations Numeric Total number of invocations

User trace entries for message flow accounting and statistics

data

This topic describes the information that is written to the user trace log for

message flow accounting and statistics data.

1386 Message Flows

The data records are identified by the following message numbers:

v BIP2380I

v BIP2381I

v BIP2382I

v BIP2383I

The inserts for each message are described in the following tables, in the order

shown above.

The following table describes the inserts in message BIP2380I. One message is

written for the message flow.

 Field Data type Details

ProcessID Numeric Process ID

Key Numeric Key used to associate related

accounting and statistics BIP

messages

Type Character Type of output, one of:

v Archive

v Snapshot

Reason Character Reason for output, one of:

v MajorInterval

v Snapshot

v Shutdown

v ReDeploy

v StatsSettingsModified

BrokerLabel Character

(maximum 32)

Broker name

BrokerUUID Character

(maximum 32)

Broker universal unique

identifier

ExecutionGroupName Character

(maximum 32)

Execution group name

ExecutionGroupUUID Character

(maximum 32)

Execution group universal

unique identifier

MessageFlowName Character

(maximum 32)

Message flow name

StartDate Character Interval start date

(YYYY-MM-DD)

StartTime Character Interval start time

(HH:MM:SS:NNNNNN)

EndDate Character Interval end date

(YYYY-MM-DD)

EndTime Character Interval end time

(HH:MM:SS:NNNNNN)

TotalElapsedTime Numeric Total elapsed time spent

processing input messages

(microseconds)

MaximumElapsedTime Numeric Maximum elapsed time spent

processing an input message

(microseconds)

Message flows 1387

Field Data type Details

MinimumElapsedTime Numeric Minimum elapsed time spent

processing an input message

(microseconds)

TotalCPUTime Numeric Total CPU time spent

processing input messages

(microseconds)

MaximumCPUTime Numeric Maximum CPU time spent

processing an input message

(microseconds)

MinimumCPUTime Numeric Minimum CPU time spent

processing an input message

(microseconds)

CPUTimeWaitingForInputMessage Numeric Total CPU time spent waiting

for input messages

(microseconds)

ElapsedTimeWaitingForInputMessage Numeric Total elapsed time spent

waiting for input messages

(microseconds)

TotalInputMessages Numeric Total number of messages

processed

TotalSizeOfInputMessages Numeric Total size of input messages

(bytes)

MaximumSizeOfInputMessages Numeric Maximum input message

size (bytes)

MinimumSizeOfInputMessages Numeric Minimum input message size

(bytes)

NumberOfThreadsInPool Numeric Number of threads in pool

TimesMaximumNumberofThreadsReached Numeric Number of times the

maximum number of threads

is reached

TotalNumberOfMQErrors1 Numeric Number of MQGET errors

(MQInput node) or Web

services errors (HTTPInput

node)

TotalNumberOfMessagesWithErrors2 Numeric Number of messages that

contain errors

TotalNumberOfErrorsProcessingMessages Numeric Number of errors processing

a message

TotalNumberOfTimeOutsWaitingForRepliesToAggregateMessages Numeric Number of timeouts

processing a message

(AggregateReply node only)

TotalNumberOfCommits Numeric Number of transaction

commits

TotalNumberOfBackouts Numeric Number of transaction

backouts

AccountingOrigin Character

(maximum 32)

Accounting origin

1388 Message Flows

Field Data type Details

Notes:

1. For example, a conversion error occurs when the message is got from the queue.

2. These include exceptions that are thrown downstream of the input node, and errors detected by the input node

after it has successfully retrieved the message from the queue (for example, a format error).

The following table describes the inserts in message BIP2381I. One message is

written for each thread.

 Field Data type Details

ProcessID Numeric Process ID

Key Numeric Key used to associate related accounting and

statistics BIP messages

Number Numeric Relative thread number in pool

TotalNumberOfInputMessages Numeric Total number of messages processed by

thread

TotalElapsedTime Numeric Total elapsed time spent processing input

messages (microseconds)

TotalCUPTime Numeric Total CPU time spent processing input

messages (microseconds)

CPUTimeWaitingForInputMessage Numeric Total CPU time spent waiting for input

messages (microseconds)

ElapsedTimeWaitingForInputMessage Numeric Total elapsed time spent waiting for input

messages (microseconds)

TotalSizeOfInputMessages Numeric Total size of input messages (bytes)

MaximumSizeOfInputMessages Numeric Maximum size of input messages (bytes)

MinimumSizeOfInputMessages Numeric Minimum size of input messages (bytes)

The following table describes the inserts in message BIP2382I. One message is

written for each node.

 Field Data type Details

ProcessID Numeric Process ID

Key Numeric Key used to associate related accounting and

statistics BIP messages

Label Character Name of node (Label)

Type Character Type of node

TotalElapsedTime Numeric Total elapsed time spent processing input

messages (microseconds)

MaximumElapsedTime Numeric Maximum elapsed time spent processing input

messages (microseconds)

MinimumElapsedTime Numeric Minimum elapsed time spent processing input

messages (microseconds)

TotalCPUTime Numeric Total CPU time spent processing input messages

(microseconds)

MaximumCPUTime Numeric Maximum CPU time spent processing input

messages (microseconds)

Message flows 1389

Field Data type Details

MinimumCPUTime Numeric Minimum CPU time spent processing input

messages (microseconds)

CountOfInvocations Numeric Total number of messages processed by this node

NumberOfInputTerminals Numeric Number of input terminals

NumberOfOutputTerminals Numeric Number of output terminals

The following table describes the inserts in message BIP2383I. One message is

written for each terminal on each node.

 Field Data type Details

ProcessID Numeric Process ID

Key Numeric Key used to associate related accounting and

statistics BIP messages

Label Character Name of terminal

Type Character Type of terminal, one of:

v Input

v Output

CountOfInvocations Numeric Total number of invocations

z/OS SMF records for message flow accounting and statistics

data

This topic describes the information that is written to z/OS SMF records for

message flow accounting and statistics data.

The data records are type 117 records with the following identifiers:

v BipSMFDate

v BipSMFRecordHdr

v BipSMFTriplet

v BipSMFMessageFlow

v BipSMFThread

v BipSMFNode

v BipSMFTerminal

The following tables describe the contents of each of these records in the order

listed above.

The following table describes the contents of the BipSMFDate record.

 Field Data type Details

YYYY signed short int 2 byte year

MM char 1 byte month

DD char 1 byte day

The following table describes the contents of the BipSMFRecordHdr record.

 Field Data type Details

SM117LEN unsigned short int SMF record length

1390 Message Flows

Field Data type Details

SM117SEG unsigned short int System reserved

SM117FLG char System indicator

SM117RTY char Record type 117 (x’75’)

SM117TME unsigned int Time when SMF moved the record (time since

midnight in hundredths of a second)

SM117DTE unsigned int Date when SMF moved the record in packed decimal

form 0cyydddF where:

 c is 0 (19xx) or 1 (20xx)

yy is the current year (0-99)

ddd is the current day (1-366)

F is the sign

SM117SID unsigned int System ID

SM117SSI unsigned int Subsystem ID

SM117STY unsigned short int Record subtype, one of :

v 1 (only message flow or threads data is being

collected)

v 2 (node data is being collected)1

SM117TCT unsigned int Count of triplets

SM117SRT unsigned char Record type, one of:

v Archive

v Snapshot

SM117SRC unsigned char Record code, one of:

v 00 = None

v 01 = Major Interval

v 02 = Snapshot

v 03 = Shutdown

v 04 = Redeploy

v 05 = Stats Settings Modified

SM117RSQ unsigned short int Sequence number of the record when multiple records

are written for a collection interval.

SM117NOR unsigned short int Total number of related records in a collection interval.

Note:

1. When only nodes data is being collected, a single subtype 2 record is written. If nodes and terminals data is

being collected, multiple subtype 2 records are written.

The following table describes the contents of the BipSMFTriplet record.

 Field Data type Details

TRPLTOSE signed int Offset of record from start of SMF record

TRPLTDLE signed short int Length of data type

TRPLTNDR signed short int Number of data types in SMF record

The following table describes the contents of the BipSMFMessageFlow record.

 Field Data type Details

IMFLID short int Control block hex ID (BipSMFMessageFlow_ID)

IMFLLEN short int Length of control block

Message flows 1391

Field Data type Details

IMFLEYE char[4] Eyecatcher (IMFL)

IMFLVER int Version number (BipSMFRecordVersion)

IMFLBKNM char32] Broker name

IMFLBKID char[36] Broker universal unique identifier

IMFLEXNM char[32] Execution group name

IMFLEXID char[36] Execution group universal unique identifier

IMFLMFNM char[32] Message flow name

IMFLSTDT BipSMFDate Interval start date

IMFLSTTM unsigned int Interval start time (format as for SM117TME)

IMFLENDT BipSMFDate Interval end date

IMFLENTM unsigned int Interval end time (format as for SM117TME)

IMFLTPTM long long int Total elapsed time spent processing input messages (8

bytes binary, microseconds)

IMFLMXTM long long int Maximum elapsed time spent processing an input

message (8 bytes binary, microseconds)

IMFLMNTM long long int Minimum elapsed time spent processing an input

message (8 bytes binary, microseconds)

IMFLTPCP long long int Total CPU time spent processing input messages (8

bytes binary, microseconds)

IMFLMXCP long long int Maximum CPU time spent processing an input

message (8 bytes binary, microseconds)

IMFLMNCP long long int Minimum CPU time spent processing an input message

(8 bytes binary, microseconds)

IMFLWTCP long long int Total CPU time spent waiting for input messages (8

bytes binary, microseconds)

IMFLWTIN long long int Total elapsed time spent waiting for input messages (8

bytes binary, microseconds)

IMFLTPMG unsigned int Total number of messages processed

IMFLTSMG long long int Total size of input messages (bytes)

IMFLMXMG long long int Maximum input message size (bytes)

IMFLMNMG long long int Minimum input message size (bytes)

IMFLTHDP unsigned int Number of threads in pool

IMFLTHDM unsigned int Number of times the maximum number of threads is

reached

IMFLERMQ1 unsigned int Number of MQGET errors (MQInput node) or Web

services errors (HTTPInput node)

IMFLERMG2 unsigned int Number of messages that contain errors

IMFLERPR unsigned int Number of errors processing a message

IMFLTMOU unsigned int Number of timeouts processing a message

(AggregateReply node only)

IMFLCMIT unsigned int Number of transaction commits

IMFLBKOU unsigned int Number of transaction backouts

IMFLACCT char[32] Accounting origin

1392 Message Flows

Field Data type Details

Notes:

1. For example, a conversion error occurs when the message is got from the queue.

2. These include exceptions that are thrown downstream of the input node, and errors detected by the input node

after it has successfully retrieved the message from the queue (for example, a format error).

The following table describes the contents of the BipSMFThread record.

 Field Data type Details

ITHDID short int Control block hex ID (BipSMFThread_ID)

ITHDLEN short int Length of control block

ITHDEYE char[4] Eyecatcher (ITHD)

ITHDVER int Version number (BipSMFRecordVersion)

ITHDNBR unsigned int Relative thread number in pool

ITHDTPMG unsigned int Total number of messages processed by thread

ITHDTPTM long long int Total elapsed time spent processing input messages (8 bytes

binary, microseconds)

ITHDTPCP long long int Total CPU time spent processing input messages (8 bytes

binary, microseconds)

ITHDWTCP long long int Total CPU time spent waiting for input messages (8 bytes

binary, microseconds)

ITHDWTIN long long int Total elapsed time spent waiting for input messages (8

bytes binary, microseconds)

ITHDTSMG long long int Total size of input messages (bytes)

ITHDMXMG long long int Maximum size of input messages (bytes)

ITHDMNMG long long int Minimum size of input messages (bytes)

The following table describes the contents of the BipSMFNode record.

 Field Data type Details

INODID short int Control block hex ID (BipSMFNode_ID)

INODLEN short int Length of control block

INODEYE char[4] Eyecatcher (INOD)

INODVER int Version number (BipSMFRecordVersion)

INODNDNM char[32] Name of node (Label)

INODTYPE char[32] Type of node

INODTPTM long long int Total elapsed time spent processing input messages (8

bytes binary, microseconds)

INODMXTM long long int Maximum elapsed time spent processing input messages

(8 bytes binary, microseconds)

INODMNTM long long int Minimum elapsed time spent processing input messages

(8 bytes binary, microseconds)

INODTPCP long long int Total CPU time spent processing input messages (8 bytes

binary, microseconds)

INODMXCP long long int Maximum CPU time spent processing input messages (8

bytes binary, microseconds)

Message flows 1393

Field Data type Details

INODMNCP long long int Minimum CPU time spent processing input messages (8

bytes binary, microseconds)

INODTPMG unsigned int Total number of messages processed by this node

INODNITL unsigned int Number of input terminals

INODNOTL unsigned int Number of output terminals

The following table describes the contents of the BipSMFTerminal record.

 Field Data type Details

ITRMID short int Control block hex ID (BipSMFTerminal_ID)

ITRMLEN short int Length of control block

ITRMEYE char[4] Eyecatcher (ITRM)

ITRMVER int Version number (BipSMFRecordVersion)

ITRMTLNM char[32] Name of terminal

ITRMTYPE char[8] Type of terminal, one of:

v Input

v Output

ITRMTINV unsigned int Total number of invocations

Example message flow accounting and statistics data

The following topics give example output in two formats:

v XML publication

v User trace entries

An example is not provided for z/OS SMF records, because these contain

hexadecimal data and are not easily viewed in that form. To view SMF records, use

any available utility program that processes SMF records. For example, you can

download WebSphere MQ SupportPac IS11, which generates formatted SMF

records that are very similar to formatted user trace entries.

Example of an XML publication for message flow accounting and

statistics

This example shows an XML publication that contains message flow accounting

and statistics data.

The following example shows what is generated for a snapshot report. The content

of this publication message shows that the message flow is called XMLflow, and

that it is running in an execution group named default on broker MQ02BRK. The

message flow contains the following nodes:

v An MQInput node called INQueue3

v An MQOutput node called OUTQueue

v An MQOutput node called FAILQueue

The MQInput node’s Out terminal is connected to the OUTQueue node. The

MQInput node’s Failure terminal is connected to the FAILQueue node.

During the interval for which statistics have been collected, this message flow

processed no messages.

1394 Message Flows

A publication that is generated for this data always includes the appropriate

folders, even if there is no current data.

The following command has been issued to achieve these results:

mqsichangeflowstats MQ02BRK -s -c active -e default -f XMLFlow -n advanced -t basic -b basic -o xml

Blank lines have been added between folders to improve readability.

The broker takes information about statistics and accounting from the operating

system. On some operating systems, such as Windows, UNIX, and Linux, rounding

can occur because the system calls that are used to determine the CPU times are

not sufficiently granular. This rounding might affect the accuracy of the data.

The following example is the subscription message. The <psc> and <mcd> elements

are part of the RFH header.

<psc>

 <Command>Publish</Command>

 <PubOpt>RetainPub</PubOpt>

 <Topic>$SYS/Broker/MQ02BRK/StatisticsAccounting/SnapShot/default/XMLflow

 </Topic>

</psc>

<mcd>

 <Msd>xml</Msd>

</mcd>

The following example is the publication that the broker generates:

<WMQIStatisticsAccounting RecordType="SnapShot" RecordCode="Snapshot">

<MessageFlow BrokerLabel="MQ02BRK"

 BrokerUUID="7d951e31-f200-0000-0080-efe1b9d849dc"

 ExecutionGroupName="default"

 ExecutionGroupUUID="77cf1e31-f200-0000-0080-efe1b9d849dc"

 MessageFlowName="XMLflow" StartDate="2003-01-17"

 StartTime="14:44:34.581320" EndDate="2003-01-17" EndTime="14:44:44.582926"

 TotalElapsedTime="0"

 MaximumElapsedTime="0" MinimumElapsedTime="0" TotalCPUTime="0"

 MaximumCPUTime="0"MinimumCPUTime="0" CPUTimeWaitingForInputMessage="685"

 ElapsedTimeWaitingForInputMessage="10001425" TotalInputMessages="0"

 TotalSizeOfInputMessages="0" MaximumSizeOfInputMessages="0"

 MinimumSizeOfInputMessages="0" NumberOfThreadsInPool="1"

 TimesMaximumNumberOfThreadsReached="0" TotalNumberOfMQErrors="0"

 TotalNumberOfMessagesWithErrors="0" TotalNumberOfErrorsProcessingMessages="0"

 TotalNumberOfTimeOutsWaitingForRepliesToAggregateMessages="0"

 TotalNumberOfCommits="0" TotalNumberOfBackouts="0" AccoutingOrigin="DEPT1"/>

<Threads Number="1">

<ThreadStatistics Number="5" TotalNumberOfInputMessages="0"

TotalElapsedTime="0" TotalCPUTime="0" CPUTimeWaitingForInputMessage="685"

ElapsedTimeWaitingForInputMessage="10001425" TotalSizeOfInputMessages="0"

MaximumSizeOfInputMessages="0" MinimumSizeOfInputMessages="0"/>

</Threads>

<Nodes Number="3">

 <NodeStatistics Label="FAILQueue" Type="MQOutput" TotalElapsedTime="0"

 MaximumElapsedTime="0" MinimumElapsedTime="0" TotalCPUTime="0"

 MaximumCPUTime="0" MinimumCPUTime="0" CountOfInvocations="0"

 NumberOfInputTerminals="1" NumberOfOutputTerminals="2">

Message flows 1395

<TerminalStatistics Label="failure" Type="Output" CountOfInvocations="0"/>

 <TerminalStatistics Label="in" Type="Input" CountOfInvocations="0"/>

 <TerminalStatistics Label="out" Type="Output" CountOfInvocations="0"/>

 </NodeStatistics>

 <NodeStatistics Label="INQueue3" Type="MQInput" TotalElapsedTime="0"

 MaximumElapsedTime="0" MinimumElapsedTime="0" TotalCPUTime="0"

 MaximumCPUTime="0" MinimumCPUTime="0"CountOfInvocations="0"

 NumberOfInputTerminals="0" NumberOfOutputTerminals="3">

 <TerminalStatistics Label="catch" Type="Output" CountOfInvocations="0"/>

 <TerminalStatistics Label="failure" Type="Output" CountOfInvocations="0"/>

 <TerminalStatistics Label="out" Type="Output" CountOfInvocations="0"/>

 </NodeStatistics>

 <NodeStatistics Label="OUTQueue" Type="MQOutput" TotalElapsedTime="0"

 MaximumElapsedTime="0" MinimumElapsedTime="0" TotalCPUTime="0"

 MaximumCPUTime="0" MinimumCPUTime="0" CountOfInvocations="0"

 NumberOfInputTerminals="1" NumberOfOutputTerminals="2">

 <TerminalStatistics Label="failure" Type="Output" CountOfInvocations="0"/>

 <TerminalStatistics Label="in" Type="Input" CountOfInvocations="0"/>

 <TerminalStatistics Label="out" Type="Output" CountOfInvocations="0"/>

 </NodeStatistics>

 </Nodes>

</WMQIStatisticsAccounting>

Example of user trace entries for message flow accounting and

statistics

This example shows a user trace that contains message flow accounting and

statistics data.

The following example shows what is generated for a snapshot report. The

messages that are written to the trace show that the message flow is called

myExampleFlow, and that it is running in an execution group named default on

broker MQ01BRK. The message flow contains the following nodes:

v An MQInput node called inNode

v A Compute node called First1

v An MQOutput node called outNode

The nodes are connected together (Out terminal to In terminal for each

connection).

During the interval for which statistics have been collected, this message flow

processed 150 input messages.

The records show that two threads are assigned to this message flow. One thread is

assigned when the message flow is deployed (the default number); an additional

thread (thread 0) listens on the input queue. The listening thread starts additional

threads to process input messages that are dependent on the number of instances

that you have configured for the message flow, and on the rate of arrival of the

input messages on the input queue.

The following command has been issued to achieve these results:

mqsichangeflowstats MQ01BRK -s -c active -e default -f myExampleFlow -n advanced -t basic -b basic

1396 Message Flows

The trace entries have been retrieved with the mqsireadlog command and

formatted using the mqsiformatlog command. The output from mqsiformatlog is

shown below. Line breaks have been added to aid readability.

The broker takes information about statistics and accounting from the operating

system. On some operating systems, such as Windows, UNIX, and Linux, rounding

can occur because the system calls that are used to determine the CPU times are

not sufficiently granular. This rounding might affect the accuracy of the data.

BIP2380I: WMQI message flow statistics. ProcessID=’328467’, Key=’6’, Type=’SnapShot’, Reason=’Snapshot’,

BrokerLabel=’MQ01BRK’, BrokerUUID=’18792e66-e100-0000-0080-f197e5ed81bd’,

ExecutionGroupName=’default’, ExecutionGroupUUID=’15d4314a-3607-11d4-8000-09140f7b0000’,

MessageFlowName=’myExampleFlow’,

StartDate=’2003-05-20’, StartTime=’13:44:31.885862’,

EndDate=’2003-05-20’, EndTime=’13:44:51.310080’,

TotalElapsedTime=’9414843’, MaximumElapsedTime=’1143442’, MinimumElapsedTime=’35154’,

TotalCPUTime=’760147’, MaximumCPUTime=’70729’, MinimumCPUTime=’3124’,

CPUTimeWaitingForInputMessage=’45501’, ElapsedTimeWaitingForInputMessage=’11106438’,

TotalInputMessages=’150’, TotalSizeOfInputMessages=’437250’,

MaximumSizeOfInputMessages=’2915’, MinimumSizeOfInputMessages=’2915’,

NumberOfThreadsInPool=’1’, TimesMaximumNumberOfThreadsReached=’150’,

TotalNumberOfMQErrors=’0’, TotalNumberOfMessagesWithErrors=’0’,

TotalNumberOfErrorsProcessingMessages=’0’, TotalNumberOfTimeOuts=’0’,

TotalNumberOfCommits=’150’, TotalNumberOfBackouts=’0’, AccountingOrigin="DEPT2".

Statistical information for message flow ’myExampleFlow’ in broker ’MQ01BRK’.

This is an information message produced by WMQI statistics.

BIP2381I: WMQI thread statistics. ProcessID=’328467’, Key=’6’, Number=’0’,

TotalNumberOfInputMessages=’0’,

TotalElapsedTime=’0’, TotalCPUTime=’0’, CPUTimeWaitingForInputMessage=’110’,

ElapsedTimeWaitingForInputMessage=’5000529’, TotalSizeOfInputMessages=’0’,

MaximumSizeOfInputMessages=’0’, MinimumSizeOfInputMessages=’0’.

Statistical information for thread ’0’.

This is an information message produced by WMQI statistics.

BIP2381I: WMQI thread statistics. ProcessID=’328467’, Key=’6’, Number=’18’,

TotalNumberOfInputMessages=’150’,

TotalElapsedTime=’9414843’, TotalCPUTime=’760147’, CPUTimeWaitingForInputMessage=’45391’,

ElapsedTimeWaitingForInputMessage=’6105909’, TotalSizeOfInputMessages=’437250’,

MaximumSizeOfInputMessages=’2915’, MinimumSizeOfInputMessages=’2915’.

Statistical information for thread ’18’.

This is an information message produced by WMQI statistics.

BIP2382I: WMQI node statistics. ProcessID=’328467’, Key=’6’,

Label=’First1’, Type=’ComputeNode’,

TotalElapsedTime=’6428815’, MaximumElapsedTime=’138261’, MinimumElapsedTime=’28367’,

TotalCPUTime=’604060’, MaximumCPUTime=’69645’, MinimumCPUTime=’2115’,

CountOfInvocations=’150’, NumberOfInputTerminals=’1’, NumberOfOutputTerminals=’2’.

Statistical information for node ’First1’.

This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID=’328467’, Key=’6’,

Label=’failure’, Type=’Output’, CountOfInvocations=’0’,

Statistical information for terminal ’failure’.

This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID=’328467’, Key=’6’,

Label=’in’, Type=’Input’, CountOfInvocations=’150’,

Statistical information for terminal ’in’.

This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID=’328467’, Key=’6’,

Label=’out’, Type=’Output’, CountOfInvocations=’150’,

Statistical information for terminal ’out’.

This is an information message produced by WMQI statistics.

Message flows 1397

BIP2382I: WMQI node statistics. ProcessID=’328467’, Key=’6’,

Label=’inNode’, Type=’MQInputNode’,

TotalElapsedTime=’1813446’, MaximumElapsedTime=’1040209’, MinimumElapsedTime=’1767’,

TotalCPUTime=’70565’, MaximumCPUTime=’686’, MinimumCPUTime=’451’,

CountOfInvocations=’150’, NumberOfInputTerminals=’0’, NumberOfOutputTerminals=’3’.

Statistical information for node ’inNode’.

This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID=’328467’, Key=’6’,

Label=’catch’, Type=’Output’, CountOfInvocations=’0’,

Statistical information for terminal ’catch’.

This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID=’328467’, Key=’6’,

Label=’failure’, Type=’Output’, CountOfInvocations=’0’,

Statistical information for terminal ’failure’.

This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID=’328467’, Key=’6’,

Label=’out’, Type=’Output’, CountOfInvocations=’150’,

Statistical information for terminal ’out’.

This is an information message produced by WMQI statistics.

BIP2382I: WMQI node statistics. ProcessID=’328467’, Key=’6’,

Label=’outNode’, Type=’MQOutputNode’,

TotalElapsedTime=’1172582’, MaximumElapsedTime=’177516’, MinimumElapsedTime=’3339’,

TotalCPUTime=’85522’, MaximumCPUTime=’762’, MinimumCPUTime=’536’,

CountOfInvocations=’150’, NumberOfInputTerminals=’1’, NumberOfOutputTerminals=’2’.

Statistical information for node ’outNode’.

This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID=’328467’, Key=’6’,

Label=’failure’, Type=’Output’, CountOfInvocations=’0’,

Statistical information for terminal ’failure’.

This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID=’328467’, Key=’6’,

Label=’in’, Type=’Input’, CountOfInvocations=’150’,

Statistical information for terminal ’in’.

This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID=’328467’, Key=’6’,

Label=’out’, Type=’Output’, CountOfInvocations=’0’,

Statistical information for terminal ’out’.

This is an information message produced by WMQI statistics.

Coordinated message flows

The following topics provide reference information for database use in coordinated

message flows:

v “Database connections for coordinated message flows”

v “Database support for coordinated message flows” on page 1399

Database connections for coordinated message flows

When you configure a message flow to access a database, the broker establishes a

connection to that database based on the ODBC DSN. To coordinate the database

updates with other updates (determined by the configuration you have set for each

node that accesses a database), the broker makes a connection for each transaction

mode for each DSN accessed on each message flow thread.

1398 Message Flows

Therefore if you set the Transaction Mode property for one node in the message

flow to Automatic and for another node to Commit, the broker establishes two

separate connections to this DSN from the same thread. Take this into account

when you calculate the number of connections required between a broker and a

specific DSN.

For further information about connections made by the broker to user databases,

see User database connections.

Connections to user databases are in addition to the runtime connections that are

required by the broker (to the DB2, Oracle, Sybase, or SQL Server database that is

defined to hold its internal information). For details of these connections, refer to

Enabling ODBC connections to the databases.

Database support for coordinated message flows

If the message flow processing includes interaction with an external database, the

transaction can be coordinated using XA technology.

This ensures that all participants update or return to a consistent state. This

external coordination support is provided by the underlying WebSphere MQ

facilities on distributed systems, and by Resource Recovery Services (RRS) on

z/OS.

The following databases provide the correct level of XA support for coordinating

message flows on distributed systems:

v DB2

Globally coordinated message flows that involve a DB2 resource manager are

supported on DB2 Universal Database V8.

v Oracle

v Sybase

On z/OS, database support for coordinated message flows is provided by DB2

only.

Element definitions for message parsers

The topics in this section discuss data types for the WebSphere MQ headers, and

define the element names, types, and attributes for each of the supported headers:

v “Data types of fields and elements” on page 1400

v “The MQCFH parser” on page 1403

v “The MQCIH parser” on page 1403

v “The MQDLH parser” on page 1404

v “The MQIIH parser” on page 1405

v “The MQMD parser” on page 1405

v “The MQMDE parser” on page 1406

v “The MQRFH parser” on page 1407

v “The MQRFH2 and MQRFH2C parsers” on page 1407

v “The MQRMH parser” on page 1408

v “The MQSAPH parser” on page 1408

v “The MQWIH parser” on page 1409

v “The SMQ_BMH parser” on page 1409

For each parser, the following terms are defined:

Message flows 1399

v Root element name: the name of the syntax element created by the parser at the

root of its own part of the tree.

v Class name: the name by which the parser defines itself to WebSphere Message

Broker.

Data types of fields and elements

The fields within WebSphere MQ headers and other subtrees built from the

message are of a particular data type. When you manipulate the messages and

their headers using ESQL in the message flow nodes, be aware of type information

in field references:

v “Data types of the fields in the WebSphere MQ headers”

v “Data types for elements in the Properties subtree”

v “Data types for elements in the DestinationData subtree” on page 1401

v Data types for elements in an MRM message

v “Data types for an unstructured (BLOB) message” on page 1403

v Field names of the IDOC parser structures

Data types of the fields in the WebSphere MQ headers

The fields in the WebSphere MQ headers have specific data types. Parsers are

supplied for the WebSphere MQ headers listed below. The parsers determine the

data type of each field in the header:

v “The MQCFH parser” on page 1403

v “The MQCIH parser” on page 1403

v “The MQDLH parser” on page 1404

v “The MQIIH parser” on page 1405

v “The MQMD parser” on page 1405

v “The MQMDE parser” on page 1406

v “The MQRFH parser” on page 1407

v “The MQRFH2 and MQRFH2C parsers” on page 1407

v “The MQRMH parser” on page 1408

v “The MQSAPH parser” on page 1408

v “The MQWIH parser” on page 1409

v “The SMQ_BMH parser” on page 1409

The mapping of the WebSphere MQ data types to the data types used in the

broker is shown in the table below:

 Data type of the field Represented as

MQLONG INTEGER

MQCHAR, MQCHAR4 CHARACTER

MQBYTE, MQBYTEn BLOB

Data types for elements in the Properties subtree

A parser is supplied for the Properties subtree; it associates each field with a

specific data type.

The fields and data type of each field are shown in the table below:

 Data type of the element Represented as

CodedCharSetId INTEGER

1400 Message Flows

Data type of the element Represented as

CreationTime TIMESTAMP

ContentType CHARACTER

Encoding INTEGER

ExpirationTime TIMESTAMP

MessageFormat CHARACTER

IdentityMappedIssuedBy CHARACTER

IdentityMappedPassword CHARACTER

IdentityMappedToken CHARACTER

IdentityMappedType CHARACTER

IdentitySourceIssuedBy CHARACTER

IdentitySourcePassword CHARACTER

IdentitySourceToken CHARACTER

IdentitySourceType CHARACTER

MessageSet CHARACTER

MessageType CHARACTER

Persistence BOOLEAN

Priority INTEGER

ReplyIdentifier CHARACTER

ReplyProtocol CHARACTER

Topic (this field contains a list) CHARACTER

Transactional BOOLEAN

Data types for elements in the DestinationData subtree

The DestinationData subtree is part of the Destination subtree in the

LocalEnvironment. LocalEnvironment trees are created by input nodes when they

receive a message and, optionally, by compute nodes. When created, they are

empty but you can create data in them by using ESQL statements coded in any of

the SQL nodes.

The Destination subtree consists of subtrees for zero or more protocols, for

example WebSphere MQ and WebSphere MQ Everyplace, or a subtree for routing

destinations (RouterList), or both.

The protocol tree has two children:

v Defaults is the first element. There can be only one.

v DestinationData is the following element, and can be repeated any number of

times, to represent each destination to which a message is sent.

“Local environment tree structure” on page 64 includes a picture of a typical tree,

showing a Destination tree that has both protocol and RouterList subtrees.

The structure of data within the DestinationData folder is the same as that in

Defaults for the same protocol, and can be used to override the default values in

Defaults. You can therefore set up Defaults to contain values that are common to

all destinations, and set only the unique values in each DestinationData subtree. If

Message flows 1401

||

||

||

||

||

||

||

||

a value is set neither in DestinationData, nor in Defaults, the value that you have

set for the corresponding node property is used.

The fields, data type, and valid values for each element of Defaults and

DestinationData subtrees for WebSphere MQ are shown in the following table.

“MQOutput node” on page 1023 describes the corresponding node properties.

Refer to “Accessing the LocalEnvironment tree” on page 308 for information about

using DestinationData.

 Data type of the

element

Represented as Corresponding node

property

Valid values

queueManagerName CHARACTER Queue Manager

Name

queueName CHARACTER Queue Name

transactionMode CHARACTER Transaction Mode no, yes, automatic

persistenceMode CHARACTER Persistence Mode no, yes, automatic,

asQdef

newMsgId CHARACTER New Message ID no, yes

newCorrelId CHARACTER New Correlation ID no, yes

segmentationAllowed CHARACTER Segmentation

Allowed

no, yes

alternateUserAuthority CHARACTER Alternate User

Authority

no, yes

replyToQMgr CHARACTER Reply-to queue

manager

replyToQ CHARACTER Reply-to queue

Case-sensitivity for data types and values

When you create these fields in the DestinationData folder, you need to enter the

data type and value exactly as shown in the table . If any variations in spelling or

case are used then these fields or values are ignored in the DestinationData records

and the next available value is used.

For example, the following ESQL samples could result in unexpected output:

SET OutputLocalEnvironment.Destination.MQ.DestinationData[1].persistenceMode = ’YES’;

SET OutputLocalEnvironment.Destination.MQ.DestinationData[2].PersistenceMode = ’yes’;

In each case the DestinationData folder might not write a persistent message for

these destinations. In the first example the persistenceMode field has been given a

value of ’YES’, which is not one of the valid values listed in the table above and

this value is ignored. In the second example, the field named ’PersistenceMode’ is

specified incorrectly and is ignored. Either the persistenceMode value of the

Defaults folder, or the value of the associated attribute on the MQOutput node will

be used. If this causes a value of ’no’ or ’automatic’ to be used, a persistent

message will not be written.

If a DestinationData folder is producing unexpected output, you should check that

you have used the correct case and spelling in the fields and values used.

1402 Message Flows

Data types for an unstructured (BLOB) message

A parser is supplied for the body of a message in the BLOB domain; it associates

each field with a specific data type.

An unstructured (BLOB) message has the data types shown in the following table.

 Data type of the element Represented as

BLOB BLOB

UnknownParserName CHARACTER

If the broker cannot find a parser that corresponds to the domain that is requested

by the user, the message is assigned to the BLOB parser, and the requested domain

is preserved in the UnknownParserName field.

This information is used by the header integrity routine (described in “Parsers” on

page 74) to ensure that the semantic meaning of the message is preserved.

The MQCFH parser

The root name for this parser is MQPCF. The class name is MQPCF.

The table below lists the elements native to the MQCFH header:

 Element Name Element Data Type Element Attributes

Type INTEGER Name Value

StrucLength INTEGER Name Value

Version INTEGER Name Value

Command INTEGER Name Value

MsgSeqNumber INTEGER Name Value

Control INTEGER Name Value

CompCode INTEGER Name Value

Reason INTEGER Name Value

ParameterCount INTEGER Name Value

For further information about this header and its contents, see the WebSphere MQ

Programmable Command Formats and Administration Interface book.

The MQCIH parser

The root name for this parser is MQCIH. The class name is MQCICS.

The table below lists the elements native to the MQCIH header:

 Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Message flows 1403

Element Name Element Data Type Element Attributes

Flags INTEGER Name Value

ReturnCode INTEGER Name Value

CompCode INTEGER Name Value

Reason INTEGER Name Value

UOWControl INTEGER Name Value

GetWaitInterval INTEGER Name Value

LinkType INTEGER Name Value

OutputDataLength INTEGER Name Value

FacilityKeepTime INTEGER Name Value

ADSDescriptor INTEGER Name Value

ConversationalTask INTEGER Name Value

TaskEndStatus INTEGER Name Value

Facility BLOB Name Value

Function CHARACTER Name Value

AbendCode CHARACTER Name Value

Authenticator CHARACTER Name Value

Reserved1 CHARACTER Name Value

ReplyToFormat CHARACTER Name Value

RemoteSysId CHARACTER Name Value

RemoteTransId CHARACTER Name Value

TransactionId CHARACTER Name Value

FacilityLike CHARACTER Name Value

AttentionId CHARACTER Name Value

StartCode CHARACTER Name Value

CancelCode CHARACTER Name Value

NextTransactionId CHARACTER Name Value

Reserved2 CHARACTER Name Value

Reserved3 CHARACTER Name Value

CursorPosition INTEGER Name Value

ErrorOffset INTEGER Name Value

InputItem INTEGER Name Value

Reserved4 INTEGER Name Value

The MQDLH parser

The root name for this parser is MQDLH. The class name is MQDEAD.

The table below lists the elements native to the MQDLH header:

 Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

1404 Message Flows

Element Name Element Data Type Element Attributes

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Reason INTEGER Name Value

DestQName CHARACTER Name Value

DestQMgrName CHARACTER Name Value

PutApplType INTEGER Name Value

PutApplName CHARACTER Name Value

PutDate TIMESTAMP/CHARACTER Name Value

PutTime TIMESTAMP/CHARACTER Name Value

The MQIIH parser

The root name for this parser is MQIIH. The class name is MQIMS.

The table below lists the elements native to the MQIIH header:

 Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

LTermOverride CHARACTER Name Value

MFSMapName CHARACTER Name Value

ReplyToFormat CHARACTER Name Value

Authenticator CHARACTER Name Value

TranInstanceId BLOB Name Value

TranState CHARACTER Name Value

CommitMode CHARACTER Name Value

SecurityScope CHARACTER Name Value

Reserved CHARACTER Name Value

The MQMD parser

The root name for this parser is MQMD. The class name is MQHMD.

The table below lists the orphan elements adopted by the MQMD header:

 Element Name Element Data Type Element Attributes

SourceQueue CHARACTER Name Value

Transactional BOOLEAN Name Value

Message flows 1405

The table below lists the elements native to the MQMD header:

 Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Report INTEGER Name Value

MsgType INTEGER Name Value

Expiry1 INTEGER/GMTTIMESTAMP Name Value

Feedback INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Priority INTEGER Name Value

Persistence INTEGER Name Value

MsgId BLOB Name Value

CorrelId BLOB Name Value

BackoutCount INTEGER Name Value

ReplyToQ CHARACTER Name Value

ReplyToQMgr CHARACTER Name Value

UserIdentifier CHARACTER Name Value

AccountingToken BLOB Name Value

ApplIdentityData CHARACTER Name Value

PutApplType INTEGER Name Value

PutApplName CHARACTER Name Value

PutDate TIMESTAMP/CHARACTER Name Value

PutTime TIMESTAMP/CHARACTER Name Value

ApplOriginData CHARACTER Name Value

GroupId BLOB Name Value

MsgSeqNumber INTEGER Name Value

Offset INTEGER Name Value

MsgFlags INTEGER Name Value

OriginalLength INTEGER Name Value

Note:

1. The Expiry field in the MQMD is a special case:

v An INTEGER value represents an expiry interval in tenths of a second. If the Expiry

field is set to -1, it represents an unlimited expiry interval (that is, the message never

expires) If the Expiry field is a positive INTEGER, it represents an expiry interval of

that number of tenths of a second (for example, if it is set to 4, it represents 4 tenths

of a second, if it is set to 15, it represents one and a half seconds).

v A GMTTIMESTAMP value represents a specific expiration time.

If Expiry contains a GMTTIMESTAMP in the past, or an INTEGER of less than 1

(excluding -1), it is set to the value 1 (one tenth of a second, the minimum value).

The MQMDE parser

The root name for this parser is MQMDE. The class name is MQHMDE.

1406 Message Flows

The table below lists the elements native to the MQMDE header:

 Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

GroupId BLOB Name Value

MsgSeqNumber INTEGER Name Value

Offset INTEGER Name Value

MsgFlags INTEGER Name Value

OriginalLength INTEGER Name Value

The MQRFH parser

The root name for this parser is MQRFH. The class name is MQHRF.

The table below lists the elements native to the MQRFH header:

 Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

Other name value elements might be present that contain information as parsed

from or destined for the option buffer. The MQSeries Publish/Subscribe User’s Guide

provides further information about the MQRFH header.

The MQRFH2 and MQRFH2C parsers

The MQRFH2 header can be parsed using either the MQRFH2 parser or the

MQRFH2C compact parser.

The root names for these parsers are MQRFH2 and MQRFH2C. The class names

are MQHRF2 and MQHRF2C.

The following table lists the elements that are required for the MQRFH2 header:

 Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

NameValueCCSID INTEGER Name Value

Message flows 1407

Other name and child name value elements might be present that contain

information that is parsed from, or destined for, the option buffer. See MQRFH2

header for further information about this header.

The MQRMH parser

The root name for this parser is MQRMH. The class name is MQHREF.

The table below lists the elements native to the MQRMH header:

 Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

ObjectType CHARACTER Name Value

ObjectInstanceId BLOB Name Value

SrcEnv CHARACTER1 Name Value

SrcName CHARACTER2 Name Value

DestEnv CHARACTER3 Name Value

DestName CHARACTER4 Name Value

DataLogicalLength INTEGER Name Value

DataLogicalOffset INTEGER Name Value

DataLogicalOffset2 INTEGER Name Value

Notes:

1. This field represents both SrcEnvLength and Offset

2. This field represents both SrcNameLength and Offset

3. This field represents both DestEnvLength and Offset

4. This field represents both DestNameLength and Offset

The MQSAPH parser

The root name for this parser is MQSAPH. The class name is MQHSAP.

The table below lists the elements native to the MQSAPH header:

 Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

Client CHARACTER Name Value

Language CHARACTER Name Value

1408 Message Flows

Element Name Element Data Type Element Attributes

HostName CHARACTER Name Value

UserId CHARACTER Name Value

Password CHARACTER Name Value

SystemNumber CHARACTER Name Value

Reserved BLOB Name Value

The MQWIH parser

The root name for this parser is MQWIH. The class name is MQHWIH.

The table below lists the elements native to the MQWIH header:

 Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

Flags INTEGER Name Value

ServiceName CHARACTER Name Value

ServiceStep CHARACTER Name Value

MsgToken BLOB Name Value

Reserved CHARACTER Name Value

The SMQ_BMH parser

The root name for this parser is SMQ_BMH. The class name is SMQBAD.

The table below lists the elements native to the SMQ_BMH header:

 Element Name Element Data Type Element Attributes

Format CHARACTER Name Value

Version INTEGER Name Value

Encoding INTEGER Name Value

CodedCharSetId INTEGER Name Value

ErrorType INTEGER Name Value

Reason INTEGER Name Value

PutApplType INTEGER Name Value

PutApplName CHARACTER Name Value

PutDate TIMESTAMP/CHARACTER Name Value

PutTime TIMESTAMP/CHARACTER Name Value

Message flows 1409

Message mappings

This section contains topics that provide reference information about message

mapping:

v “Message Mapping editor”

– Source pane

– Target pane

– Edit pane

– Spreadsheet pane
v “Mapping node” on page 1420

– Syntax

– Functions

– Casts
v “Migrating message mappings from Version 5.0” on page 1428

– Migration restrictions

Message Mapping editor

You configure a message mapping using the Message Mapping editor, which you

use to set values for:

v the message destination

v message headers

v message content

Here is an example of the Message Mapping editor. There are separate panes for

working with sources, targets and expressions, as well as a spreadsheet view.

 1. Source pane: displays a source message or database table

2. Target pane: displays a target message

1 2

3

4

1410 Message Flows

3. Edit pane: displays the expression to be used to derive the target element value

4. Spreadsheet pane: displays a summary of the mappings in spreadsheet

columns (each target field and its value)

Use the Message Mapping editor to perform various mapping tasks.

Wizards and dialog boxes are provided for tasks such as adding mappable

elements, working with ESQL, and working with submaps. Mappings that are

created with the Message Mapping editor are automatically validated and

compiled, ready for adding to a broker archive (bar) file, and subsequent

deployment to WebSphere Message Broker.

Message Mapping editor Source pane

The following example shows the “Message Mapping editor” on page 1410. The

pane that is labelled as 1 in the example is the Source pane:

 The following list describes the elements that are present in the Source pane:

v A source message is identified by $source.

v A source database is identified by $db:select.

v A mapped entry is indicated by a blue triangle alongside the element. In this

example, Customer_ID and Order_Date are mapped.

v Square brackets contain minimum and maximum occurrences of an element.

v An optional field is indicated by [0,1]. In this example, First_Class is optional.

v A repeating field is indicated by [minoccurs, maxoccurs].

v A choice field is indicated by a choice line; under the choice line are the possible

choices. In this example, First_Class, Second_Class, and Airmail are choices of

Delivery_Method.

v The type of each element is indicated in round brackets after the element name.

1 2

3

4

Message flows 1411

v If the message schema uses namespaces, the namespace prefix is shown before

the element name, separated by a colon.

Use the Source pane to invoke a number of actions, a list of which is displayed

when you right-click within the Source pane. The following table describes the

available actions.

 Action Description Related tasks

Undo Undo previous action

Redo Redo previous action

Revert Discard

Open Declaration (message) Display the element

definition from the message

set.

For this action to be

available, select any source

message element except

LocalEnvironment or

Headers.

Open Declaration (database) Display the database,

schema, or table definition

from the database.

For this action to be

available, select any source

database object.

Show Derived Types Hide or display derived

types for an element in the

source or target pane.

For this action to be

available, select a target

element displayed as a

specialization folder in the

source pane.

Show Substituting elements Hide or display the

substituting elements of the

head element in the source

or target pane.

For this action to be

available, select a target

element displayed as a

substitutions folder in the

source pane.

Add Sources and Targets Add a message definition or

a database table to a source.

For this action to be

available, select any source

object.

“Adding messages or

message components to the

source or target” on page

492, “Adding a database as a

source or target” on page 492

Go To For this action to be

available, select any source

object.

1412 Message Flows

||
|
|
|

|
|
|
|
|

|

Action Description Related tasks

Delete (message) Remove a message and any

existing maps from the

source.

For this action to be

available, select the source

message root ($source).

Delete (database) Remove a database and any

existing maps from the

source.

For this action to be

available, select the source

database root ($db:select).

Map from Source Create a map between the

focus source element and the

focus target element.

For this action to be

available, select compatible

source and target elements.

“Mapping a target element

from source message

elements” on page 481,

“Mapping from source: by

selection” on page 480

Map by Name Create a map between the

focus source element and the

focus target element.

For this action to be

available, select compatible

source and target elements.

“Mapping a target element

from source message

elements” on page 481,

“Mapping from source: by

name” on page 480

Accumulate If the source and target fields

contain numeric data types,

this action maps all

occurrences of a repeating

source field to a

non-repeating target,

resulting in the sum of all

the source elements.

For this action to be

available, select the source

and target element.

“Configuring a repeating

source and a non-repeating

target” on page 488

Create New Submap For this action to be

available, select source and

target elements that are

either elements of complex

types or wildcard elements.

“Creating and calling

submaps and subroutines”

on page 502, “Creating a

new submap” on page 503,

“Creating a new submap for

a wildcard source” on page

504

Call Existing Submap Call an existing submap “Creating and calling

submaps and subroutines”

on page 502, “Calling a

submap” on page 506

Call ESQL Routine Call an ESQL routine “Creating and calling

submaps and subroutines”

on page 502, “Calling an

ESQL routine” on page 508

Save Save the .msgmap file

Message flows 1413

Message Mapping editor Target pane

The following example shows the “Message Mapping editor” on page 1410. The

pane that is labelled as 2 in the example is the Target pane:

 The following list describes the elements that are present in the Target pane:

v A target message is identified by $target.

v A mapped entry is indicated by a yellow triangle alongside the element. In this

example, Customer_ID, Order_Number, and Order_Date are mapped.

v Square brackets contain minimum and maximum occurrences of an element.

v An optional field is indicated by [0,1]. In this example, First_Class is optional.

v A repeating field is indicated by [minoccurs, maxoccurs].

v A choice field is indicated by a choice line; under the choice line are the possible

choices. In this example, First_Class, Second_Class, and Airmail are choices of

Delivery_Method.

v The type of each element is indicated in round brackets after the element name.

v If the message schema uses namespaces, the namespace prefix is shown before

the element name, separated by a colon.

Use the Target pane to invoke a number of actions, a list of which is displayed

when you right-click within the Target pane. The following table describes the

available actions.

 Action Description Related tasks

Undo Undo previous action

Redo Redo previous action

Revert Discard

1 2

3

4

1414 Message Flows

Action Description Related tasks

Open Declaration (message) Display the element

definition from the message

set.

For this action to be

available, select any target

message element except

LocalEnvironment or

Headers.

Open Declaration (database) Display the database,

schema, or table definition

from the database.

For this action to be

available, select any target

database object.

Show Derived Types Hide or display derived

types for an element in the

source or target pane.

For this action to be

available, select a target

element displayed as a

specialization folder in the

target pane.

Show Substituting elements Hide or display the

substituting elements of the

head element in the source

or target pane.

For this action to be

available, select a target

element displayed as a

substitutions folder in the

target pane.

Add Sources and Targets Add a message definition or

a database table to a source.

For this action to be

available, select any target

object.

“Adding messages or

message components to the

source or target” on page

492, “Adding a database as a

source or target” on page 492

Go To For this action to be

available, select any target

object.

Delete (message) Remove a message and any

existing maps from the

source.

For this action to be

available, select the target

message root ($target).

Message flows 1415

||
|
|

|
|
|
|
|

|

||
|
|
|

|
|
|
|
|

|

Action Description Related tasks

Map from Source Create a map between the

focus source element and the

focus target element.

For this action to be

available, select compatible

source and target elements.

“Mapping a target element

from source message

elements” on page 481,

“Mapping from source: by

selection” on page 480

Map by Name Create a map between the

focus source element and the

focus target element.

For this action to be

available, select compatible

source and target elements.

“Mapping a target element

from source message

elements” on page 481,

“Mapping from source: by

name” on page 480

Enter Expression For this action to be

available, select any target

object except $target

“Setting the value of a target

element to a constant” on

page 483, “Setting the value

of a target element using an

expression or function” on

page 485

Accumulate If the source and target fields

contain numeric data types,

this action maps all

occurrences of a repeating

source field to a

non-repeating target,

resulting in the sum of all

the source elements.

For this action to be

available, select the source

and target element.

“Configuring a repeating

source and a non-repeating

target” on page 488

Create New Submap For this action to be

available, select source and

target elements that are

either elements of complex

types or wildcard elements.

“Creating and calling

submaps and subroutines”

on page 502, “Creating a

new submap” on page 503,

“Creating a new submap for

a wildcard source” on page

504

Call Existing Submap Call an existing submap “Creating and calling

submaps and subroutines”

on page 502, “Calling a

submap” on page 506

Call ESQL Routine Call an existing ESQL routine “Creating and calling

submaps and subroutines”

on page 502, “Calling an

ESQL routine” on page 508

Save Save the .msgmap file

Message Mapping editor Edit pane

The following example shows the “Message Mapping editor” on page 1410. The

pane that is labelled as 3 in the example is the Edit pane:

1416 Message Flows

When you have selected a source or target element, use the Edit pane to enter an

expression. Right-click inside the Edit pane to invoke a list of available actions,

most of which are standard Windows functions, such as cut, copy, and paste. Click

Edit → Content Assist (or press Ctrl+Space) to access ESQL Content Assist, which

provides a drop-down list of functions that are available in a Mapping node.

To display the definition associated with a selected element or database object,

right-click in the Edit pane, and click Open Declaration. The appropriate editor

opens to display the definition associated with the element or database definition.

Message Mapping editor Spreadsheet pane

The following example shows the “Message Mapping editor” on page 1410. The

pane that is labelled as 4 in the example is the Spreadsheet pane:

1 2

3

4

Message flows 1417

Use the Spreadsheet pane to invoke a number of actions, a list of which is

displayed when you right-click within the Spreadsheet pane. The following table

describes the available actions.

 Action Description Related tasks

Undo Undo previous action

Redo Redo previous action

Revert Discard

Open Declaration (message) Display the element

definition from the message

set.

For this action to be

available, select any message

element except

LocalEnvironment or

Headers.

Open Declaration (database) Display the database,

schema, or table definition

from the database.

For this action to be

available, select any database

object.

Add Sources and Targets Add a message definition to

a target.

“Adding messages or

message components to the

source or target” on page

492, “Adding a database as a

source or target” on page 492

Copy Copy the selected item to the

clipboard.

1 2

3

4

1418 Message Flows

Action Description Related tasks

Paste Paste the item from the

clipboard.

Delete Remove a row from the

Spreadsheet.

For Define a repeating condition. “Configuring a repeating

source and a non-repeating

target” on page 488,

“Configuring a repeating

source and a repeating

target” on page 489

If Placeholder for a new

Condition block, to contain

one or more Conditions.

“Configuring a repeating

source and a non-repeating

target” on page 488,

“Configuring conditional

mappings” on page 487

Condition Define what must evaluate to

’true’ to execute subsequent

mappings.

“Configuring a repeating

source and a non-repeating

target” on page 488,

“Configuring conditional

mappings” on page 487

Else Placeholder to execute

subsequent mappings if

previous Condition does not

evaluate to ’true’.

“Configuring conditional

mappings” on page 487

Select Data Source Define a database to be used

in the mapping.

Populate Expand a structure so that

each of its children have a

row in the spreadsheet.

Insert After Create a number of new

rows in the spreadsheet to

set the values of specific

instances of a repeating field.

Can also be used to insert

any non-repeating element,

attribute or database column

if valid at the selected

location.

“Configuring a non-repeating

source and a repeating

target” on page 489

Insert Before Create a number of new

rows in the spreadsheet to

set the values of specific

instances of a repeating field.

Can also be used to insert

any non-repeating element,

attribute or database column

if valid at the selected

location.

“Configuring a non-repeating

source and a repeating

target” on page 489

Replace Substitute an element,

attribute or database column

in the spreadsheet with a

similar item, retaining the

mapping expression and any

child mapping statements.

Save Save the .msgmap file.

Message flows 1419

Mapping node

The Mapping node has one or more mappings that are stored in message map files

(with a .msgmap file extension). These files are configured using the “Message

Mapping editor” on page 1410.

A Mapping node must contain the following inputs and outputs:

v Zero or one source (input) messages

v Zero or more source (input) databases

v One or more target (output) messages

You must define, in message definition files in a message set, the source and target

messages that are to be mapped. You can specify the parser of the source message

at run time (for example, in an MQRFH2 header), but the target message is built

using the runtime parser that is specified by the Message Domain property of the

message set.

If a message mapping is between elements of different types, you might need to

include casts in your mapping definitions, depending on which runtime parser is

specified by the Message Domain property of your message set.

The Mapping node uses a language to manipulate messages that are based on

XPath.

To develop message mappings for a Mapping node, use the Message Mapping

editor, which provides separate panes for working with sources, targets and

expressions.

Mapping node syntax

In a Mapping node, the source message, if present, is identified in the “Message

Mapping editor” on page 1410 by $source.

The message tree is represented in XPath format. For example, if you have an

element called Body within a source message called Envelope, this is represented

in the Mapping node as:

 $source/soap11:Envelope/soap11:Body

Where soap11 is a namespace prefix.

The first target message is identified by $target; additional target messages are

identified by $target_1, $target_2, etc.

The first source database is identified by $db:select; additional source databases are

identified by $db:select_1, $db:select_2, etc.

The database element is represented in the following format:

 $db:select.DB.SCH.TAB.COL1

where:

 DB is the database name

 SCH is the database schema name

 TAB is the table name

 COL1 is the column name

1420 Message Flows

You can also use the Mapping node to:

v make comparisons

v perform arithmetic

v create complex conditions

The comparison operators are:

 = equals

 != not equals

 > greater than

 >= greater than or equals

 < less than

 <= less than or equals

The arithmetic operators are:

 + plus

 - minus

 * multiply

 div divide

Conditional operators ‘or’ and ‘and’ are supported (these are case-sensitive).

The following objects can be mapped:

v Local Environment

– Destination

– WrittenDestination

– File

– SOAP

– TCPIP

– ServiceRegistry

– Adapter

– Wildcard

– Variables
v Message headers (optional)

– MQ Headers

– HTTP Headers

– JMSTransport

– Email Headers
v Message elements

v Database columns

Naming restrictions for database objects

The names of objects in Oracle databases can contain certain characters, such as the

dollar sign ($) and number sign (#), which the Mapping node cannot process

correctly. Database table names, table column names, stored procedure parameter

names, and column names in stored procedure result sets, must not contain any of

the following characters:

~ ! @ # $ % ^ & * () + = - ` { } | \] ["

: ’ ; ? > < , . /

Message flows 1421

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|

|
|

Mapping node functions

You can configure your message mappings using a variety of predefined and

user-defined functions.

The following predefined functions are available to use in your message maps:

v ESQL - prefixed esql:

v XPath - prefixed fn:

v Mapping - prefixed msgmap:

v Schema casts - prefixed xs:

Not all ESQL functions can be used in a Mapping node. For information about

which functions are supported, and for a description of how to achieve equivalent

processing for ESQL functions that are not supported, see the ESQL topics. For

information about the predefined ESQL functions, see “Predefined ESQL mapping

functions.”

The fn:true() function (that always returns true) and the fn:false() function (that

always returns false) are examples of XPath functions. You can get more

information about the other XPath functions and XPath syntax from the online

W3C XML Path Language document. For information about the predefined XPath

functions, see “Predefined XPath mapping functions” on page 1425.

For information about the predefined mapping functions, see “Predefined mapping

functions” on page 1426. See “Mapping node casts” on page 1427 for a list of the

schema casts.

The mapping node can also:

v Set the value of a target to a WebSphere MQ constant. The expression to set the

value looks similar to a function with $mq: used as the prefix.

v Call a Java method directly. The expression to set the value looks similar to a

function with java: used as a prefix.

Predefined ESQL mapping functions:

A table of predefined ESQL functions for use with message maps.

 This table details the predefined ESQL mapping functions that are available to use

with message maps:

 Name ESQL equivalent Notes

Numeric functions: abs

absval acos asin atan atan2

bitand bitnot bitor bitxor ceil

ceiling cos cosh cot degrees

exp floor in log log10 mod

power radians rand sign sin

sinh sqrt tan tanh truncate

ESQL function of the name same name such as ABS and

ABSVAL.

The same parameters apply as for ESQL.

String functions: left length

lower lcase ltrim replace

replicate right rtrim space

translate upper ucase

ESQL function of the same name such as LEFT and

LENGTH.

The same parameters apply as for ESQL.

Field functions: bitstream

fieldname fieldnamespace

fieldtype fieldvalue lastmove

samefield

ESQL function of the same name such as BITSTREAM

and FIELDNAME.

The same parameters apply as for ESQL.

1422 Message Flows

|

http://www.w3.org/TR/xpath

Name ESQL equivalent Notes

asbitstream These signatures are supported:

 ASBITSTREAM(FieldRef)

ASBITSTREAM(FieldRef, typeExp, setExp, formatExp)

ASBITSTREAM(FieldRef, typeExp, setExp, formatExp,

 encodingExp, ccsidExp)

ASBITSTREAM(FieldRef, typeExp, setExp, formatExp,

 encodingExp, ccsidExp, options)

FieldRef is a source field reference such as

$source/po:PurchaseOrder

typeExp is a string literal of the name of the message

body, such as purchaseOrder, optionally qualified with a

namespace URI, such as {http://
www.ibm.com}:purchaseOrder

setExp is a string literal of the name of the message set,

such as PurchaseOrder

formatExp is a string literal of the wire format of the

message, such as XML1

encodingExp and ccsidExp evaluate to integers with values

corresponding to ESQL ENCODING and CCSID

constants.

options is an ESQL constant or bit-or of ESQL constant

that evaluates to an integer.

cardinality CARDINALITY The same parameters apply as for ESQL.

coalesce COALESCE The same parameters apply as for ESQL.

current-date CURRENT_DATE No parameters apply.

current-gmtdate CURRENT_GMTDATE No parameters apply.

current-gmttime CURRENT_GMTTIME No parameters apply.

current-gmttimestamp CURRENT_ GMTTIMESTAMP No parameters apply.

current-time CURRENT_TIME No parameters apply.

current-timestamp CURRENT_TIMESTAMP No parameters apply.

date DATE

for FOR (expression) Optional parameters are not supported.

gmttime GMTTIME

gmttimestamp GMTTIMESTAMP

interval-year INTERVAL YEAR The same parameters apply as for ESQL. Some examples:

 esql:interval-minute(’90’)

esql:interval-year-to-month(’1-06’)

interval-year-to-month INTERVAL YEAR TO MONTH

interval-month INTERVAL MONTH

interval-day INTERVAL DAY

interval-day-to-hour INTERVAL DAY TO HOUR

interval-day-to-minute INTERVAL DAY TO MINUTE

interval-day-to-second INTERVAL DAY TO SECOND

interval-hour INTERVAL HOUR

interval-hour-to-minute INTERVAL HOUR TO MINUTE

interval-hour-to-second INTERVAL HOUR TO SECOND

interval-minute INTERVAL MINUTE

interval-minute-to-second INTERVAL MINUTE TO SECOND

interval-second INTERVAL SECOND

is-null Operand IS NULL Some examples:

 esql:is-null($source/po:purchaseOrder/po:comment)

esql:is-null

($db:select.ACME.PARTS.INVENTORY.LAST_TRANSACTION)

like source LIKE pattern For example:

 esql:like

($source/po:purchaseOrder/shipTo/first_name,’Fred’)

source LIKE pattern ESCAPE EscapeChar For example:

 esql:like

($source/po:purchaseOrder/shipTo

/zip,’L6F$_1C7’,’$’)

local-timezone LOCAL_TIMEZONE

Message flows 1423

||

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|

|
|
|

|
|

Name ESQL equivalent Notes

nullif NULLIF The same parameters apply as for ESQL.

overlay OVERLAY Str1 PLACING Str2 FROM Start For example:

 esql:overlay

($source/po:purchaseOrder/shipTo/city,’abc’,2)

OVERLAY Str1 PLACING Str2 FROM Start For Length For example:

 esql:overlay

($source/po:purchaseOrder/shipTo/city,’abcde’,2,3)

position POSITION searchExp IN SourceExp For example:

 esql:position

(’aet’,$source/po:purchaseOrder/shipTo/first_name)

POSITION searchExp IN SourceExp FROM FromExp For example:

 esql:position

(’do’,$source/po:purchaseOrder/shipTo/last_name,1)

POSITION searchExp IN SourceExp FROM FromExp

REPEAT RepeatExp

For example:

 esql:position

(’a’,$source/po:purchaseOrder/billTo

/first_name,1,2)

round ROUND Optional parameters are not supported.

sqlcode SQLCODE No parameters apply.

sqlerrortext SQLERRORTEXT

sqlnativeerror SQLNATIVEERROR

sqlstate SQLSTATE

time TIME

timestamp TIMESTAMP The same parameters apply as for ESQL. For example:

 esql:gmttimestamp

(’1999-12-31 23:59:59.999999’)

trim-leading TRIM LEADING FROM Source For example:

 esql:trim-leading

($source/po:purchaseOrder/shipTo/state)

TRIM LEADING Singleton FROM Source For example:

 esql:trim-leading

(’G’,$source/po:purchaseOrder/shipTo/zip)

trim-trailing TRIM TRAILING FROM Source For example:

 esql:trim-trailing

($source/po:purchaseOrder/billTo/last_name)

TRIM TRAILING Singleton FROM Source For example:

 esql:trim-trailing

(’e’,$source/po:purchaseOrder/billTo/street)

trim-both TRIM BOTH FROM Source For example:

 esql:trim-both

($source/po:purchaseOrder/shipTo/city)

TRIM BOTH Singleton FROM Source For example:

 esql:trim-both

(",$source/po:purchaseOrder/shipTo/city)

1424 Message Flows

Name ESQL equivalent Notes

trim TRIM Source For example:

 esql:trim

($source/po:purchaseOrder/shipTo/city)

TRIM Singleton FROM Source For example:

 esql:trim

(",$source/po:purchaseOrder/shipTo/city)

uuidasblob UUIDASBLOB Takes zero or more parameters as in ESQL.

uuidaschar UUIDASCHAR

Predefined XPath mapping functions:

A table of predefined XPath functions for use with message maps.

 This table details the predefined XPath functions that are available to use with

message maps. You can get more information about XPath functions and XPath

syntax from the online W3C XML Path Language document.

 Name Parameters Notes

true

false

sum Source field from the

message or database.

Source has to be a numeric type and repeats.

avg

max

min

count Source field from the

message or database.

concat Two, or more, strings. You cannot use fn:concat($source/myElem) to

concatenate instances of ’myElem’.

not 1- Expression resolved to a

Boolean value.

exists Source field from the

message or database. empty

substring 1- String

2- Zero-bases starting

 index

3- Length

For example:

 fn:substring

($source/po:purchaseOrder/billTo/street, 3, 5)

year-from-dateTime 1- xs:dateTime For example:

 fn:month-from-dateTime

(xs:dateTime($source/po:purchaseOrder

/shipTo/datetime))

where $source/po:purchaseOrder/shipTo/datetime is

xs:string.

month-from-dateTime

day-from-dateTime

hours-from-dateTime

minutes-from-dateTime

seconds-from-dateTime

Message flows 1425

http://www.w3.org/TR/xpath

Name Parameters Notes

year-from-date 1-xs:date For example:

 fn:year-from-date(xs:date

($source/po:purchaseOrder/billTo/date))

where $source/po:purchaseOrder/billTo/date is

xs:string.

month-from-date

day-from-date

hours-from-time 1- xs:time Some examples:

 fn:hours-from-time(xs:time("13:20:10:5"))

fn:hours-from-time(xs:time

($source/po:purchaseOrder/shipTo/time))

minutes-from-time

seconds-from-time

years-from-duration 1- xdt:dayTimeDuration For example:

 fn:minutes-from-duration

(xdt:dayTimeDuration(PT47H30M))

months-from-duration

days-from-duration

hours-from-duration

minutes-from-duration

seconds-from-duration

Predefined mapping functions:

A table of predefined mapping functions for use with message maps.

 This table details the predefined mapping functions that are available to use with

message maps:

 Name Parameters Return Notes

cdata-
element

One string Nothing Create an XML element with CData content in the

following target message domains:

v XMLNSC

v SOAP

v XMLNS

v XML

v JMSMap

v JMSStream

For example:

 msgmap:cdata-element(’<date><month>05</month>

<day>11</day><year>2008</year></date>’)

occurrence Source field from the message or database Source field as selected

from a group of repeating

fields.

Often used in a condition statement when source

repeats to execute specific statements for a specific

occurrence. For example:

 msgmap:occurrence

($source/po:purchaseOrder

/items)=2

means the second field, po:purchaseOrder

exact-type 1- Source field from the

 message or database

2- Namespace prefix

3- Name of the type

True if the source is of the

specified type in the

specified namespace.

Often used in a condition to execute specific

statements for a specific source type. For example:

 msgmap:exact-type

($source/tn1:msg2,’tn1’,

’extendedMsgType’)

1426 Message Flows

|
|
|||
|
|
|
|
|
|
|

|

|
|

Name Parameters Return Notes

empty-
element()

None Nothing Creates an XML element with an empty tag. For

example, if an element is named MyElement and the

mapping expression for MyElement is set to

msgmap:empty-element(), the output message will

contain an element with no content:

<MyElement/>

Call this function only for an XML element.

element-
from-
bitstream

These signatures are supported:

 msgmap:element-from-bitstream(StreamRef)

msgmap:element-from-bitstream(StreamRef, typeExp,

 setExp, formatExp)

msgmap:element-from-bitstream(StreamRef, typeExp,

 setExp, formatExp, encodingExp, ccsidExp)

msgmap:element-from-bitstream(StreamRef, typeExp,

 setExp, formatExp, encodingExp, ccsidExp, options)

Nothing Used to parse a bitstream. This function can be called

only for a message element target. The parsed bit

stream is placed in the target message tree as the

target element.

StreamRef is a reference to a BLOB of stream, such as

’$source/BLOB’ or

’$db:select.dsn.schema.table.column’

typeExp is a string literal of the name of the message

body, such as ’purchaseOrder’, optionally qualified

with a namespace URI, such as ’{http://
www.ibm.com}:purchaseOrder’

setExp is a string literal of the name of the message

set, such as ’PurchaseOrder’

formatExp is a string literal of the wire format of the

message, such as ’XML1’

encodingExp and ccsidExp evaluate to integers with

values corresponding to ESQL ENCODING and

CCSID constants

options is an ESQL constant or bit-or of ESQL

constants that evaluate to an integer.

Mapping node casts

Source and target elements can be of different types in a Mapping node,

Depending on which runtime parsers are used, automatic casting cannot be done.

In these cases, use one of the following cast functions:

v xs:boolean

v xs:date

v xs:dateTime

v xs:dayTimeDuration

v xs:decimal

v xs:duration

v xs:double

v xs:hexBinary

v xs:int

v xs:integer

v xs:string

v xs:long

v xs:time

v xs:yearMonthDuration

Headers and Mapping node

This topic lists the headers that can be manipulated by the Mapping node.

You can map these headers:

Message flows 1427

|
|
|||
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

||
|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|

|
|

|
|

|

v MQ Headers

 MQMD

 MQCFH header with root element MQPCF

 MQCIH

 MQDLH

 MQIIH

 MQMDE

 MQRFH

 MQRFH header with MQRFH2 or MQRFH2C parser

 MQRMH

 MQSAPH

 MQWIH

 SMQ_BMH
v Email Headers

 EmailOutputHeader
v HTTP Headers

 HTTPInputHeader

 HTTPReplyHeader

 HTTPRequestHeader

 HTTPResponseHeader
v JMSTransport

Migrating message mappings from Version 5.0

Use the mqsimigratemfmaps command to migrate message mappings to the

Version 6.1 format.

The mqsimigratemfmaps command creates Version 6.1 mapping files (.msgmap)

from your Version 5.0 mapping files (.mfmap).

When you migrate message mappings from Version 5.0, read the restrictions that

apply.

The following table lists the mapping functions that are supported in Version 5.0

but not supported in Version 6.1, and shows the error messages that you might

see. Mappings that contain these Version 5.0 functions cannot be migrated to

Version 6.1; you must re-create and redeploy these mappings using another node,

such as a JavaCompute node. Alternatively, migrate as much of the mapping as

possible using the migration command, view the error report to see details of the

functions that could not be migrated, and create a new node that can execute those

functions that were not migrated.

 Supported in Version 5.0 Migration utility error message

Expressions that involve multiple instances

of a repeating source element, for example:

src_msg.e[1] + src_msg.e[2] ->

tgt_msg.e

Error:102: Unexpected index ’2’ encountered for target mappable

’e’. The expected index is ’1’. Migration currently provides no

support for expressions involving more than one instance of the

same repeating-element.

1428 Message Flows

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Supported in Version 5.0 Migration utility error message

ESQL field references that contain the

asterisk wildcard character ″*″. For

example:

src_msg.e.* or src_msg.e.*[]

Error:130: ESQL field-reference ’src_msg.e.*’ cannot be migrated.

Migration currently provides no support for field-references

containing ’*’.

Dynamic ESQL field references. For

example:

src_msg.e.{’a’ || ’b’}

Error:131: ESQL field-reference ’src_msg.e.{’a’ || ’b’}’ cannot be

migrated. Migration currently provides no support for dynamic

field-references.

ESQL expressions that contain a reference

to the temporary index-variable ″#I″. For

example:

src_msg_e || "#I" -> tgt_msg.e

Error:128: ESQL expressions containing the variable ’#I’ anywhere

other than the index of a repeating-element cannot be handled by

the migration.

Expressions within an index of a repeating

element. For example:

src_msg.e[src_msg.a] or src_msg.e["#I"

+5] or src_msg.e[< 3]

Error:116: ESQL field-reference ’src_msg.e[< 3]’ cannot be

migrated. Migration currently provides no support for indexes

other than the variable ’#I’ and plain integer indexes.

Aggregation functions MIN, MAX, and

COUNT, used with the ESQL SELECT

expression. For example:

SELECT MAX("#T".FIRSTNAME) FROM

Database.CUSTOMER AS "#T" WHERE

"#T".CUSTOMERID = 7

Error:135: The ESQL expression ’SELECT MAX(″#T″.FIRSTNAME) FROM

Database.CUSTOMER AS ″#T″ WHERE ″#T″.CUSTOMERID = 7’ could not be

migrated. The expression contains syntax which has no direct

equivalent in the new map-script language.

ESQL IN operator. For example:

src_msg.e IN (1, 2, 3)

Error:135: The ESQL expression ’SELECT MAX(″#T″.FIRSTNAME) FROM

Database.CUSTOMER AS ″#T″ WHERE ″#T″.CUSTOMERID = 7’ could not be

migrated.

Restrictions on migrating message mappings

In certain scenarios, restrictions apply to the migration of .mfmap files from

Version 5.0.

This topic explains why migration is not automatic in these situations, and

provides instructions for how to complete a successful migration. This topic also

provides information about restrictions that apply when you migrate submaps.

The programming model for message maps is different between Version 5.0 (where

the file format is .mfmap) and Version 6.1 (where the format is .msgmap). Version

5.0 message maps have a procedural programming model, which is essentially an

alternative ESQL, where you describe all the steps that are required to perform a

transformation. Version 6.1 uses a declarative programming model, where you

describe the result of the transformation, and the tools determine how to achieve

that result.

Most migration failures result from message maps that contain too much

information about the steps that perform the transformation, and not enough

information about the desired result. For these message maps, migration is enabled

by changing the .mfmap file so that specific ″how to″ sections are separated into an

ESQL function or procedure that can be called by the message map. The .mfmap

file calls the ESQL function instead of containing it as an expression. The

mqsimigratemfmaps command then migrates the .mfmap file, but calls the ESQL

function instead of logging a migration error.

Message flows 1429

A limitation is that ESQL (the run time for .mfmap and .msgmap files) cannot

define functions that return complex element (or REFERENCE) values. The

following procedure explains how to work around this complex element target

limitation; in many cases, you must rewrite the map as an ESQL function. For

more examples and information about calling ESQL from maps, refer to the

following sample:

v Message Map sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

1. Determine whether you can define an ESQL function for the .mfmap file.

a. When the target value is a complex element, or in ESQL terms a

REFERENCE, the individual mapping must be rewritten in the .msgmap

file. Delete the mapping from the .mfmap file, and proceed to Step 4.

b. Use a function for all other cases: CHAR string, numbers, date, and time.

Proceed to Step 2.
2. Determine the source parameters and returns type for your function.

a. For each source path in the mapping, there must be one parameter in the

function or procedure. For a function, all parameters are unchangeable. The

type of the parameter must match the source data type.

b. The function return type is the ESQL data type identified above.
3. Update the .mfmap file to enable migration. Change the .mfmap file to invoke

the function in the mapping, passing the source parameters to the function in

the order in which they were listed in step 2a.

4. Re-run the mqsimigratemfmaps command to migrate the modified .mfmap file.

5. Repeat Steps 1 to 4 until no errors are reported in the migration log.

6. Start the Version 6.1 Message Broker Toolkit and open the migrated .msgmap

file.

a. For ESQL that is migrated as functions, there should be no errors.

b. For complex element targets, rewrite the mapping using the Version 6.1

features.

The following examples illustrate migration of .mfmap files to .msgmap files.

v To migrate a multiple reference to a repeating source expression:

src_msg.e[1] + src_msg.e[2]

compute the result in an ESQL function like:

CREATE FUNCTION addOneAndTwo(IN src_msg)

BEGIN

 RETURN src_msg.e[1] + src_msg.e[2];

END;

In the .msgmap file, call the ESQL function addOneAndTwo using the parent

element src_msg as a parameter.

v An expression that does not use element names:

src_msg.*

or

src_msg.*[]

can be processed using a function that takes the parent of the repeating field:

1430 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.map.doc/doc/overview.htm

CREATE FUNCTION processAny(IN src_msg)

BEGIN

 DECLARE nodeRef REFERENCE TO src_msg.e.*;

 DECLARE result <dataType> <initialValue>;

 WHILE LASTMOVE nodeRef DO

 --expression goes here

 SET result = result;

 END WHILE;

 RETURN RESULT;

END;

In the .msgmap file, call the ESQL function processAny using the parent element

src_msg as a parameter.

v Expressions that dynamically compute element names:

src_msg.{’a’ || ’b’}

can be processed by ESQL functions that process the parent of the repeating

field:

CREATE FUNCTION processDynamicName(IN src_msg)

BEGIN

 RETURN src_msg.{’a’ || ’b’};

END;

In the .msgmap file, call the ESQL function processDynamicName using the

parent element src_msg as a parameter.

v Expressions that use the select MIN, MAX, and COUNT functions:

SELECT MAX("#T".FIRSTNAME)

 FROM Database.CUSTOMER AS "#T"

 WHERE "#T".CUSTOMERID = custId

can be processed by ESQL functions that process the parent of the repeating

field:

CREATE FUNCTION processMAX(IN custId)

BEGIN

 RETURN

 SELECT MAX("#T".FIRSTNAME)

 FROM Database.CUSTOMER AS "#T"

 WHERE "#T".CUSTOMERID = custId

END;

In the .msgmap file, call the ESQL function processMAX using the element

custId as a parameter.

v .mfmap files that use mfmap index variables in expressions:

e || "#I"

must be rewritten entirely in ESQL. By definition, there must be a complex

repeating parent element, and this is not supported by ESQL functions.

v Expressions that use source expressions to compute values:

src_msg.e[src_msg.a]

must be rewritten using if rows, msgmap:occurrence() functions, and ESQL

functions:

for src_msg.e

 if

 condition msgmap:occurrence(src_msg/e) = src_msg/a

v For expressions that use index expressions to compute values:

Message flows 1431

src_msg.e["#I" +5]

src_msg.e[< 3]

the entire .msgmap file must be rewritten in ESQL, because the .msgmap files do

not support indexed access to repeating fields.

v .mfmap files that use ROW expressions to compute values:

src_msg.e IN (1, 2, 3)

must be rewritten in ESQL, because .msgmap files do not support ESQL ROW

expressions.

Restrictions on migrating maps that call ESQL

If there is a mismatch between the case that has been in the ESQL call in the

message map, and the name of the routine defined in the ESQL file, an error is

produced during migration of the message map. To prevent an error occurring

during migration, ensure that the ESQL call in the message map uses the same

case as the ESQL defined in the routines in the ESQL file. Alternatively you can

manually edit the message map after migration to call the ESQL routine with

matching case.

Restrictions on migrating submaps

In Version 5.0 message maps, any complex element type can be a root of a

submap. However, in Version 6.1, only a global element or a global attribute can be

the root of a submap. When a Version 5.0 message map with a call to a submap

with a non-global element as the map root is migrated, the submap is not migrated

as a standalone submap. Instead, the call to the submap in the main message map

is replaced by the migrated content of the submap. Alternatively, if the submap has

a global element as the map root, the submap is migrated to a standalone Version

6.1 submap instead.

For Version 6.1, you must define reusable schema structures as global elements and

types. If you have Version 5.0 submaps that use local elements, you must change

the schema to add definitions of global elements for the local elements, and then

use the new schema after migration. If the new global elements have the same

name and type as the local elements, the Version 5.0 submaps do not need to be

changed.

You must qualify a local element in a Version 5.0 submap with a namespace to

ensure its successful migration to Version 6.1, because the global element that

replaces it after migration must be qualified by the namespace. If your submap

contains local elements, you must re-create the submap and re-create the call to the

submap from the main message map.

The following table shows differences between the features that are supported in a

submap for Version 5.0 and Version 6.1.

1432 Message Flows

Version Supported feature

Version 5.0 global elements and global attributes as map

source

global elements and global attributes as map

target

local elements and local attributes as map

source

local elements and local attributes as map

target

Version 6.1 global elements, global attributes, and global

types as map source

global elements and global attributes as map

target

XML constructs

A self-defining XML message carries the information about its content and

structure within the message in the form of a document that adheres to the XML

specification. Its definition is not held anywhere else.

When the broker receives an XML message, it interprets the message using the

generic XML parser, and created an internal message tree structure according to the

XML definitions contained within that message.

A self-defining message is also known as a generic XML message. It does not have

a recorded format.

The information provided with WebSphere Message Broker does not provide a full

definition or description of XML terminology, concepts, and message constructs: it

is a summary that highlights aspects that are important when you use XML

messages with brokers and message flows.

For further information about XML, see the developerWorks Web site.

Example XML message

The name elements used in this description (for example, XmlDecl) are provided

by WebSphere Message Broker, and are referred to as field type constants. They are

available for symbolic use within the ESQL that defines the processing of message

content performed by the nodes, such as a Filter node, within a message flow.

They are not part of the XML specification.

A simple XML message might take the form:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">

<s1>.........</s1>

The corresponding syntax element tree (top level elements only) is shown below.

ElementWhiteSpaceDocTypeDeclWhiteSpaceXmlDecl

Message flows 1433

http://www.ibm.com/developerworks

The WhiteSpace elements within the tree are there because of the line breaks in the

original XML document, and have no business meaning. White space is used in

XML for readability; if you process XML messages that contain line breaks (as

shown above), blanks lines, or spaces between tags, these all appear as elements in

the message tree.

WhiteSpace within an XML element (between start and end tags) has business

meaning and is represented using the Content syntax element. See “XML

WhiteSpace and DocTypeWhiteSpace” on page 1445 for more information.

The field type constants for XML name elements (for example, Element and

XmlDecl) equate to a constant value of the form 0x01000000. You can see these

constants in the output created by the Trace node when a message, or a portion of

the message, is traced.

The XML declaration

The beginning of an XML message can contain an XML declaration.

An example of a declaration is shown below.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">

<s1>.........</s1>

The XML declaration includes the following field type constants:

v “XML encoding”

v “XML standalone”

v “XML version” on page 1435

v “XMLDecl” on page 1435

“XML declaration example” on page 1435 includes another example of an XML

declaration and the tree structure it forms.

XML encoding

The encoding element is a value element and is always a child of the XmlDecl

element.

The value of the encoding element is a string that corresponds to the value of the

encoding string in the declaration. In the example shown below, the encoding

element has a value of UTF-8.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">

<s1>.........</s1>

You cannot specify WebSphere MQ encodings in this element.

XML standalone

The XML standalone element defines the existence of an externally-defined DTD.

It is a value element and stores the data corresponding to the value of the

standalone string in the declaration. It is always a child of the XmlDecl element.

Valid values for the standalone element are yes and no. An example is shown

below:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">

<s1>.........</s1>

1434 Message Flows

A value of no indicates that this XML document is not standalone and depends on

an externally-defined DTD. A value of yes indicates that the XML document is

self-contained. However, the current release of WebSphere Message Broker does

not resolve externally-defined DTDs, so the setting of standalone is irrelevant and

is ignored.

XML version

The XML version element is a value element and stores the data corresponding to

the version string in the declaration.

It is always a child of the XmlDecl element. In the example below, the version

element contains the string value 1.0:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">

<s1>.........</s1>

XMLDecl

XMLDecl is a name element that corresponds to the XML declaration itself.

The XmlDecl element is a child of the XML parser and is written first to a bit

stream. Although the XMLDecl element is a named element, its name has no

relevance. An example is shown below:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">

<s1>.........</s1>

XML declaration example

The following example shows an XML declaration in an XML document.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

The following figure shows the tree structure that is created from the declaration:

XmlDecl

Version
value="1.0"

Standalone
value="yes"

Encoding
value="UTF-8"

The XML message body

Every XML message must have a body. The body comprises a top-level XML

element that contains all the message data.

The body contains complex XML markup, which translates to many syntax

element types in the parsed tree. Each syntax element type is introduced here, with

a series of example XML fragments.

The following common element types are discussed:

v “XML element” on page 1438

v “XML attribute” on page 1436

v “XML content” on page 1438

Message flows 1435

“XML message body example: elements, attributes, and content” on page 1439

provides an example of an XML message body and the tree structure that is

created from it using the syntax elements types listed above.

More complex XML messages might use some of the following syntax element

types:

v “XML CDataSection” on page 1437

v “XML EntityReferenceStart and EntityReferenceEnd” on page 1438

v “XML comment” on page 1437

v “XML ProcessingInstruction” on page 1439

v “XML AsIsElementContent”

v “XML BitStream” on page 1437

XML AsIsElementContent

The AsIsElementContent syntax element is a special value element. It is used to

precisely control the XML generated in an output message without the safeguards

of the Element, Attribute, and Content syntax elements. If you use

AsisElementContent, you must ensure that the output message is well-formed

XML.

You might choose to use this syntax element if, for example, you want to suppress

the normal behavior in which occurrences of ampersand (&), less than (<), greater

than (>), quotation mark (″), and apostrophe (’) are replaced by the predefined

XML entities &, <, >, ", and '.

The following example illustrates the use of AsisElementContent. The statement:

Set OutputRoot.XMLNS.(XML.Element)Message.(XML.Content) = ’<rawMarkup>’;

generates the following XML in an output message:

<Message><rawMarkup></Message>

However, the statement

Set OutputRoot.XMLNS.(XML.Element)Message.(XML.AsisElementContent) = ’<rawMarkup>’;

generates the following output message:

<Message><rawMarkup></Message>

This shows that the value of an AsisElementContent syntax element is not

modified before it is written to the output message.

XML attribute

This syntax element is the default name-value element supported by the XML

parser. Use it to represent the attributes that are associated with its parent element.

The name and value of the syntax element correspond to the name and value of

the attribute that is being represented. Attribute elements have no children, and

must always be children of an element.

When attributes are written to a message, occurrences of ampersand (&), less than

(<), greater than (>), double quotation mark (″), and apostrophe (’) within the

attribute value are replaced by the predefined XML entities &, <, >,

", and '.

The attr element is also supported for compatibility with earlier versions of the

product.

1436 Message Flows

XML BitStream

This syntax element is a name-value element. When writing an XML message, the

value of the BitStream element is written directly into the message, and the name

is not important. The BitStream element might be the only element in the message

tree.

The value of the element must be of type BLOB; any other data type generates an

error while writing the element. Ensure that the content of the element is

appropriate for use in the output message.

Use of the BitStream element is similar to the AsisElementContent element, except

that the AsisElementContent type converts its value into a string, whereas the

BitStream element uses its BLOB value directly. This is a specialized element

designed to aid processing of very large messages.

The following ESQL excerpts demonstrate a typical use for this element. First,

declare the element:

DECLARE StatementBitStream BLOB

Initialize the contents of StatementBitStream from an appropriate source, such as

an input message. If the source field is not of type BLOB, use the CAST statement

to convert the contents to BLOB. Then create the new field in the output message,

for example:

CREATE LASTCHILD OF resultCursor

 Type XML.BitStream

 NAME ’StatementBitStream’

 VALUE StatementBitstream;

XML CDataSection

CData sections in the XML message are represented by the CDataSection value

element. The content of the CDataSection element is the value of the CDataSection

element without the <![CDATA[that marks its beginning and the]]> that marks its

end.

For example, the following Cdata section:

 <![CDATA[<greeting>Hello, world!</greeting>]]>

is represented by a CDataSection element with a string value of:

 "<greeting>Hello, world!</greeting>"

Unlike Content, occurrences of <,>, &, ″, and ’ are not translated to their escape

sequences when the CDataSection is written out to a serialized message (bit

stream).

XML comment

An XML comment encountered outside the document type declaration is

represented by the Comment value syntax element. The value of the element is the

comment text from the XML message.

If the value of the element contains the character sequence -->, the sequence is

replaced with the text -->. This ensures that the contents of the comment

cannot prematurely terminate the comment. Occurrences of <, >, &, ″, and ’ are not

translated to their escape sequences.

Message flows 1437

Examples of the XML comment in an XML document and in tree structure form

are shown below:

<example><!-- This is a comment --></example>

Element
- name="example"

Comment
- value=" This is a comment "

XML content

This syntax element is the default value element supported by the XML parser. Use

content to represent character data (including white space characters) that is part of

the element content. There might be many content elements as children of a single

element, in which case they are separated by other syntax element types such as

nested elements or attributes.

When content is written to a message, occurrences of ampersand (&), less than (<),

greater than (>), double quotation mark (″), and apostrophe (’) are replaced by the

predefined XML entities &, <, >, ", and '.

The pcdata element is also supported for compatibility with earlier versions of the

product.

XML element

This syntax element is the default name element supported by the XML parser, and

is one of the most common elements. The name of the syntax element corresponds

to the name of the XML element in the message. This element can have many

children, including attributes, elements, and content.

The tag element is also supported for backward compatibility.

XML EntityReferenceStart and EntityReferenceEnd

When an entity reference is encountered in the XML message, both the expanded

form and the original entity name are stored in the syntax element tree. The name

of the entity is stored as the value of the EntityReferenceStart and

EntityReferenceEnd syntax elements, and any syntax elements between contain the

entity expansion.

Examples of the XML entity references in an XML document and in tree structure

form are shown below:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE example [<!ENTITY entityName "eValue">]>

<example>Test: &entityName;</example>

1438 Message Flows

EntityReferenceEnd
- value="entityName"

Content
- value="eValue"

Element
- name="example"

Content
- value="Test: "

EntityReferenceStart
- value="entityName"

The XML declaration and the document type declaration are not shown here. Refer

to “The XML declaration” on page 1434 and “XML document type declaration” on

page 1440 for details of those sections of the syntax element tree.

XML message body example: elements, attributes, and content

Examples of an XML message body in an XML document and in tree structure

form are shown below. The XML document contains elements, attributes, and

content, and these items are shown in the tree structure.

 <Person age="32" height="172cm">

 <Name>Cormac Keogh</Name>

 </Person>

Attribute
- name="age"
- value="32"

Element
- name="Name"

Content
- value="\n"

Attribute
- name="height"
- value="172cm"

Content
- value="\n"

Element
- name="person"

Content
- value="Cormac Keogh"

XML ProcessingInstruction

An XML processing instruction encountered outside the document type declaration

is represented by the ProcessingInstruction syntax element. This is a name-value

element; the name of the syntax element is the processing instruction target name,

and the value of the syntax element is the character data of the processing

instruction. The value of the syntax element must not be empty. The name cannot

be XML in either uppercase or lowercase.

If the value of the element contains the character sequence ?>, the sequence is

replaced with the text ?>. This ensures that the content of the processing

instruction cannot prematurely terminate the processing instruction. Occurrences of

<,>, &, ″, and ’ are not translated to their escape sequences.

Examples of the XML ProcessingInstruction in an XML document and in tree

structure form are shown below:

<example><?target This is a PI.?></example>

Message flows 1439

Element
- name="example"

ProcessingInstruction
- name="target"
- value="This is a PI."

XML document type declaration

The document type declaration (DTD) of an XML message is represented by a

syntax element of type DocTypeDecl and its children and descendants. These

comprise the DOCTYPE construct.

Only internal (inline) DTD subsets are represented in the syntax element tree. An

inline DTD is a DTD that is declared within the XML document itself. It can be a

complete DTD definition, or can extend the definition in an external DTD.

External DTD subsets (identified by the SystemID or PublicId elements described

below) can be referenced in the message, but those referenced are not resolved by

the broker.

Field type constants are defined by WebSphere Message Broker:

v DocTypeDecl

v NotationDecl

v Entities

v ElementDef

v AttributeList

v AttributeDef

v DocTypePI

v WhiteSpace and DocTypeWhiteSpace

v DocTypeComment

DTD example is an example of an XML DTD.

XML DocTypeDecl

DocTypeDecl is a named element and is a child of the XML parser. DocTypeDecl is

written to the bit stream before the element that represents the body of the

document during serialization. The following attributes can be specified within this

element:

v IntSubset

v PublicId

v SystemId

The example below is included in DTD example:

<!DOCTYPE test PUBLIC "//this/is/a/URI/test" "test.dtd" [

...

...

]>

XML IntSubset:

1440 Message Flows

IntSubset is a named element that groups all those elements that represent the

DTD constructs contained in the internal subset of the message. Although the

IntSubset element is a named element, its name is not relevant.

XML PublicId:

PublicId is an element that represents a public identifier in an XML message. It can

be part of a DocTypeDecl, NotationDecl, or UnparsedEntityDecl element. The value

of the PublicId element is typically a URL. A public identifier of the form PUBLIC

"//this/is/a/URI/test" has a string value of //this/is/a/URI/test.

XML SystemId:

SystemId is a value element that represents a system identifier in an XML message.

It can be part of a DocTypeDecl, NotationDecl, or UnparsedEntityDecl element.

The value of the SystemId is a URI, and is typically a URL or the name of a file on

the current system. A system identifier of the form SYSTEM "Note.dtd" has a string

value of Note.dtd.

XML NotationDecl

The NotationDecl element represents a notation declaration in an XML message.

NotationDecl is a name element whose name corresponds to the name given with

the notation declaration. It must have a SystemId as a child and it can optionally

have a child element of type PublicId. For example:

<!NOTATION gif SYSTEM "image.gif">

The name of the NotationDecl is gif.

XML entities

Entities in the DTD are represented by one of six named element types described

below:

v EntityDecl

v EntityDeclValue

v ExternalParameterEntityDecl

v ExternalEntityDecl

v ParameterEntityDecl

v UnparsedEntityDecl

XML EntityDecl:

The EntityDecl element represents a general entity and is declared in the internal

subset of the DTD. It is a named element and has a single child element, which is

of type EntityDeclValue.

An entity declaration of the form:

 <!ENTITY bookTitle "User Guide">

has an EntityDecl element of name bookTitle and a child element of type

EntityDeclValue with a string value of User Guide.

XML EntityDeclValue:

Message flows 1441

The EntityDeclValue element represents the value of an EntityDecl or

ParameterEntityDecl defined internally in the DOCTYPE construct. It is always a

child of an element of one of those types, and is a value element. For the following

entity:

 <!ENTITY bookTitle "User Guide">

the EntityDeclValue element has the string value User Guide.

XML ExternalParameterEntityDecl:

The ExternalParameterEntityDecl element represents a parameter entity definition

where the entity definition is contained externally to the current message. It is a

named element and has a child of type SystemId. It can also have a child of type

PublicId. The name of the entity does not include the percent sign %. In XML an

external parameter entity declaration takes the form:

 <!ENTITY % bookDef SYSTEM "BOOKDEF.DTD">

This represents an ExternalParameterEntityDecl element of name bookDef with a

single child of type SystemId with a string value of BOOKDEF.DTD.

XML ExternalEntityDecl:

The ExternalEntityDecl element represents a general entity where the entity

definition is contained externally to the current message. It is a named element and

has a child of type SystemId. It can also have a child of type PublicId.

An external entity declaration of the form:

 <!ENTITY bookAppendix SYSTEM "appendix.txt">

has an EntityDecl element of name bookAppendix and a child element of type

SystemId with a string value of appendix.txt.

XML ParameterEntityDecl:

The ParameterEntityDecl represents a parameter entity definition in the internal

subset of the DTD. It is a named element and has a single child element that is of

type EntityDeclValue. For parameter entities, the name of the entity does not

include the percent sign %. In XML a parameter entity declaration takes the form:

 <!ENTITY % inline "#PCDATA | emphasis | link">

XML UnparsedEntityDecl:

An unparsed entity is an external entity whose external reference is not parsed by

an XML processor. This means that you can include data in an XML document that

is not well-formed XML, such as a graphic file. The UnparsedEntityDecl is named

element and a child of type SystemId that identifies the URI for the entity (a URL

or a local file location). UnparsedEntityDecl can optionally have a child of type

PublicId.

UnparsedEntityDecl can also have a child of type NotationReference, a value

element that represents a reference to a notation declaration elsewhere in the XML

document. It defines the type of data of the unparsed entity.

An unparsed entity declaration takes the form:

 <!ENTITY pic SYSTEM "scheme.gif" NDATA gif>

1442 Message Flows

In this example, the SystemId has a string value of scheme.gif. The value of

NotationReference is gif. It refers to a NOTATION defined within the XML

document:

 <!NOTATION gif SYSTEM "image/gif">

The next entity is included in the DTD example:

<!ENTITY unpsd PUBLIC "//this/is/a/URI/me.gif" "me.gif" NDATA TeX>

This shows the optional PublicId element, which has the string value of

//this/is/a/URI/me.gif.

XML ElementDef

The ElementDef element represents the <!ELEMENT construct in a DTD. It is a child

of the DOCTYPE element. The name of the element that is defined corresponds to

the name of the syntax element. The value corresponds to the element definition.

This example is included in the DTD example:

<!ELEMENT subel2 (#PCDATA)>

The name of the element is subel2 and the value is (#PCDATA).

XML AttributeList

The AttributeList name element represents the <!ATTLIST construct in a DTD. The

name of the AttributeList element corresponds to the name of the element for

which the list of attributes is being defined. Its content represents one or more

AttributeDef elements.

This example is included in the DTD example:

<!ATTLIST el5 el5satt CDATA #IMPLIED>

This example shows an AttributeList that defines one AttributeDef, and its content

is explained in AttributeDef.

XML AttributeDef

The AttributeDef name element describes the definition of an attribute within an

<!ATTLIST construct. It is always a child of the AttributeList element. The name of

the syntax element is the name of the attribute being defined. It can have three

children:

v AttributeDefValue

v AttributeDefType

v AttributeDefDefaultType

This example is included in the DTD example:

<!ATTLIST el5 el5satt CDATA #IMPLIED>

The name of the AttributeDef is el5satt and it is a child of AttributeList el5. The

name of the AttributeDefType is CDATA, and the value of the

AttributeDefDefaultType is IMPLIED.

XML AttributeDefValue:

Message flows 1443

For attributes of type CDATA (see “XML AttributeDefType”), or defined by an

enumerated list, the AttributeDefValue gives the default value of the attribute.

For an example of AtrtibuteDefValue, see DTD example.

XML AttributeDefType:

The AttributeDefType syntax element is a name-value element whose name

corresponds to the attribute type found in the attribute definition. Possible values

for the name are:

v CDATA

v ID

v IDREF

v IDREFS

v ENTITY

v ENTITIES

v NMTOKEN

v NMTOKENS

v NOTATION

If there is an enumeration present for the attribute definition, the entire

enumeration string is held as a string in the value member of the name-value

syntax element. In this case, the name member of the name-value syntax element is

empty. The value string starts with an open parenthesis (and ends with a close

parenthesis). Each entry in the enumeration string is separated by a vertical bar |

character. If the Attribute value is not defined by an enumerated list, the value

member of the syntax element is empty.

An example is included in AttributeDef.

XML AttributeDefDefaultType:

The AttributeDefDefaultType syntax element is a value element that represents the

attribute default as defined under the attribute definition. The value can be one of

the following strings:

v #REQUIRED

v #IMPLIED

v #FIXED

An example is included in AttributeDef.

XML DocTypeComment

Comments in the XML DTD are represented by the DocTypeComment element. It

is a value element for which the value string contains the comment text. This

element follows the same processing rules as the Comment element. See “XML

comment” on page 1437.

XML DocTypePI

The DocTypePI element represents a processing instruction found within the DTD.

The ProcessingInstruction element represents a processing instruction found in the

XML message body.

This element is a name-value element. The name of the element is used to store the

processing instruction target name, and the value contains the character data of the

1444 Message Flows

processing instruction. The value of the element can be empty. The name cannot be

the string XML in either uppercase or lowercase form. This element follows the

same processing rules as the ProcessingInstruction element. See “XML

ProcessingInstruction” on page 1439.

XML WhiteSpace and DocTypeWhiteSpace

The WhiteSpace element represents any white space characters outside the message

body and DTD that are not represented by any other element. For example, white

space within the body of the message (within elements) is reported as element

content using the Content element type, but white space characters between the

XML declaration and the beginning of the message body are represented by the

WhiteSpace element.

 <?xml version="1.0"?> <BODY>....</BODY>

The characters between "1.0"?> and <BODY> are represented by the WhiteSpace

element.

White space is used in XML for readability and has no business meaning. Input

XML messages can include line breaks, blanks lines, and spaces between tags (all

shown below). If you process XML messages that contain any of these spaces, they

are represented as elements in the message tree. Therefore they appear when you

view the message in the debugger, and in any trace output.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE s1 PUBLIC "http://www.ibm.com/example.dtd" "example.dtd">

<s1>.........

<s2>abc</s2> <s2>def</s2>

<s3>123</s3>

</s1>

If you do not want white space elements in your message trees, you must present

the input message as a single line, or use the XMLNSC compact parser in its

default mode

The DocTypeWhiteSpace element represents white space that is found inside the

DTD that is not represented by any other element. White space characters found

within a DocType between two definitions are represented by the

DocTypeWhiteSpace element.

 <!ENTITY % bookDef SYSTEM "BOOKDEF.DTD"> <!ENTITY bookTitle "User Guide">

The characters between DTD"> and <!ENTITY are represented by the

DocTypeWhiteSpace element.

XML DTD example

This example shows an XML DTD in an XML document and the tree structure

form of that document:

<!DOCTYPE test PUBLIC "//this/is/a/URI/test" "test.dtd" [

<!NOTATION TeX PUBLIC "//this/is/a/URI/TexID" "//TexID">

<!ENTITY ent1 "this is an entity">

<!ENTITY % ent2 "#PCDATA | subel2">

<!ENTITY % extent1 PUBLIC "//this/is/a/URI/extent1" "more.txt">

<!ENTITY extent2 PUBLIC "//this/is/a/URI/extent2" "more.txt">

<!ENTITY unpsd PUBLIC "//this/is/a/URI/me.gif" "me.gif" NDATA TeX>

<?test Do this?>

<!--this is a comment-->

<!ELEMENT subel2 (#PCDATA)>

Message flows 1445

<!ELEMENT subel1 (subel2 | el4)+>

<!ELEMENT el1 (#PCDATA)>

<!ELEMENT el2 (#PCDATA | subel2)*>

<!ELEMENT el3 (#PCDATA | subel2)*>

<!ELEMENT el4 (#PCDATA)>

<!ELEMENT el5 (#PCDATA | subel1)*>

<!ELEMENT el6 (#PCDATA)>

<!ATTLIST subel1

 size (big | small) "big"

 shape (round | square) #REQUIRED>

<!ATTLIST el5

 el5satt CDATA #IMPLIED>

]>

When a message is parsed by the generic XML parser, the relevant part of the

message tree looks like this (assuming that there are no carriage returns or white

space between tags):

IntSubset

XML

DocTypeDecl
- name="test"

SystemId
- value="test.dtd"

PublicId
- value="//this/is/a/URI/test"

The IntSubset structure contains the following structures at the next level of

nesting: the tree structure for each of these is shown in the tree structures below.

NotationDecl
- name="teX"

SystemId
- value="//TexID"

PublicId
- value="//this/is/a/URI/TexID"

EntityDecl
- name="ent1"

EntityDeclValue
- value="this is a entity"

ParameterEntityDecl
- name="ent2"

EntityDeclValue
- value="#PCDATA | subel2"

1446 Message Flows

ExternalParameterEntityDecl
- name="extent1"

SystemId
- value="more.txt"

PublicId
- value="//this/is/a/URI/extent2"

ExternalEntityDecl
- name="extent2"

SystemId
- value="more.txt"

PublicId
- value="//this/is/a/URI/extent2"

UnparsedEntityDecl
- name="unpsd"

SystemId
- value="me.gif"

PublicId
- value="//this/is/a/URI/me.gif"

NotationReference
- value="TeX"

DocTypeWhiteSpace
- value=" "

DocTypePI
- name="test"
- value="Do this"

DocTypeComment
- value="this is a comment"

ElementDef
- name="subel2"
- value="(#PCDATA)"

ElementDef
- name="subel1"
- value="Subel2 | el4"

ElementDef
- name="el1"
- value="(#PCDATA)"

ElementDef
- name="el2"
- value="(#PCDATA | Subel2)*"

Message flows 1447

ElementDef
- name="el3"
- value="(#PCDATA | Subel2)*"

ElementDef
- name="el4"
- value="(#PCDATA)"

ElementDef
- name="el5"
- value="(#PCDATA | Subel1)*"

ElementDef
- name="el6"
- value="(#PCDATA)"

AttributeList
- name="Subel1"

AttributeDef
- name="size"

AttributeDefType
- value="(big | small)"

AttributeDef
- name="shape"

AttributeDefValue
- value="big"

AttributeDefDefaultType
- value="REQUIRED"

AttributeDefType
- value="(round | square)"

AttributeList
- name="el5"

AttributeDef
- name="el5satt"

AttributeDefType
- name="CDATA"

AttributeDefDefaultType
- value="IMPLIED"

Data sources on z/OS

The Data Source name in the Compute and Database nodes identifies the location

of the table referred to in the respective node’s ESQL. Data sources on z/OS

correspond to DB2 subsystems rather than DB2 databases. The DB2 owning region

for a particular database table is identified using a combination of the DSNAOINI

file and DB2 subsystem configuration.

1448 Message Flows

The MVSDEFAULTSSID parameter in the DSNAOINI file identifies the local DB2

subsystem to which the broker is connected. This subsystem is used to locate the

data source which is either a local or remote DB2. The mapping between a

particular data source and DB2 subsystem is shown in the DSNTIPR installation

panel of the default DB2 subsystem and SYSIBM.LOCATIONS table.

When you access remote DB2 subsystems, ensure that the DBRMs for ODBC are

bound at the remote subsystem. For more information, refer to the ’Programming

for ODBC’ topics in the DB2 Information Management Software Information

Center for z/OS Solutions .

If you need to access databases that are not on DB2 on z/OS, you can use DB2’s

Distributed Data Facility (DDF) and Distributed Relational Architecture (DRDA) to

incorporate a remote unit of work within a message flow.

Message flows 1449

http://publib.boulder.ibm.com/infocenter/dzichelp/index.jsp
http://publib.boulder.ibm.com/infocenter/dzichelp/index.jsp

1450 Message Flows

ESQL reference

SQL is the industry standard language for accessing and updating database data

and ESQL is a language derived from SQL Version 3, particularly suited to

manipulating both database and message data.

This section covers the following topics:

“Syntax diagrams: available types” on page 1452

This describes the formats that are available for viewing ESQL syntax

diagrams.

“ESQL data types in message flows” on page 1452

This describes the valid data types for ESQL.

“ESQL field references” on page 1465

This topic describes the syntax of field references.

“Special characters, case sensitivity, and comments in ESQL” on page 1666

This describes the special characters you use when writing ESQL

statements.

“ESQL operators” on page 1472

This describes the operators that are available.

“ESQL reserved keywords” on page 1668

This lists the reserved keywords which you cannot use for variable names.

“ESQL non-reserved keywords” on page 1668

This lists the keywords that are not reserved, as well as those reserved for

future releases, which you can use if you choose.

“ESQL functions: reference material, organized by function type” on page 1564

This topic lists the functions available in ESQL, and what they do.

“ESQL constants” on page 1662

This topic lists the constants available in ESQL, and what they do.

“ESQL statements” on page 1478

This topic lists the different statement types available in ESQL, and what

they do.

“Calling ESQL functions” on page 1567

This topic describes all the ESQL functions in detail.

“ESQL variables” on page 1465

This topic describes the types of ESQL variable and their lifetimes.

“Broker properties that are accessible from ESQL and Java” on page 1663

This topic lists the broker attributes that can be accessed from ESQL code.

An XML format message that is used in many of the ESQL examples in these

topics is shown in “Example message” on page 1671.

For information about how you can use ESQL statements and functions to

configure Compute, Database, and Filter nodes, see “Writing ESQL” on page 280.

© Copyright IBM Corp. 2000, 2008 1451

|
|

Syntax diagrams: available types

The syntax for commands and ESQL statements and functions is presented in the

form of a diagram. The diagram tells you what you can do with the command,

statement, or function and indicates relationships between different options and,

sometimes, different values of an option. There are two types of syntax diagrams:

railroad diagrams and dotted decimal diagrams. Railroad diagrams are a visual

format suitable for sighted users. Dotted decimal diagrams are text-based diagrams

that are more helpful for blind or partially-sighted users.

To select which type of syntax diagram you use, click the appropriate button above

the syntax diagram in the topic that you are viewing.

The following topics describe how to interpret each type of diagram:

v How to read railroad diagrams

v How to read dotted decimal diagrams

ESQL data types in message flows

All data that is referred to in message flows must be one of the defined types:

v “ESQL BOOLEAN data type”

v “ESQL datetime data types”

v “ESQL NULL data type” on page 1457

v “ESQL numeric data types” on page 1458

v “ESQL REFERENCE data type” on page 1460

v “ESQL ROW data type” on page 1460

v “ESQL string data types” on page 1461

ESQL BOOLEAN data type

The BOOLEAN data type holds a Boolean value which can have the values:

v TRUE

v FALSE

v UNKNOWN

Boolean literals consist of the keywords TRUE, FALSE, and UNKNOWN. The

literals can appear in uppercase or lowercase. For further information about

UNKNOWN, see the “IF statement” on page 1537.

ESQL datetime data types

ESQL supports several data types that handle datetime values. The following data

types are collectively known as datetime data types:

v “ESQL DATE data type” on page 1453

v “ESQL TIME data type” on page 1453

v “ESQL GMTTIME data type” on page 1453

v “ESQL TIMESTAMP data type” on page 1453

v “ESQL GMTTIMESTAMP data type” on page 1454

v “ESQL INTERVAL data type” on page 1454

For information about datetime functions see “ESQL datetime functions” on page

1572.

1452 Message Flows

ESQL DATE data type

The DATE data type holds a Gregorian calendar date (year, month, and day). The

format of a DATE literal is the word DATE followed by a space, followed by a date in

single quotation marks in the form ’yyyy-mm-dd’. For example:

DECLARE MyDate DATE;

SET MyDate = DATE ’2000-02-29’;

Do not omit leading zeroes from the year, month, and day.

ESQL TIME data type

The TIME data type holds a time of day in hours, minutes, seconds, and fractions of

a second. The format of a TIME literal is the word TIME followed by a space,

followed by a time in single quotation marks in the form ’hh:mm:ss.ffffff’. For

example:

DECLARE MyTime TIME;

SET MyTime = TIME ’11:49:23.656’;

Each of the hour, minute, and second fields in a TIME literal must always be two

digits; the optional fractional seconds field can be up to 6 digits in length.

The PutTime reported by WebSphere MQ on z/OS and other times or timestamps

can be inconsistent if the CVT field is not set correctly. For details about when this

problem can occur, and how to solve it, see The PutTime that is reported by

WebSphere MQ on z/OS, and other times or timestamps are inconsistent.

ESQL GMTTIME data type

The GMTTIME data type is similar to the TIME data type, except that its values are

interpreted as values in Greenwich Mean Time. GMTTIME literals are defined in a

similar way to TIME values. For example:

DECLARE MyGetGmttime GMTTIME;

SET MyGetGmttime = GMTTIME ’12:00:00’;

The PutTime reported by WebSphere MQ on z/OS and other times or timestamps

can be inconsistent if the CVT field is not set correctly. For details about when this

problem can occur, and how to solve it, see The PutTime that is reported by

WebSphere MQ on z/OS, and other times or timestamps are inconsistent.

ESQL TIMESTAMP data type

The TIMESTAMP data type holds a DATE and a TIME in years, months, days, hours,

minutes, seconds, and fractions of a second. The format of a TIMESTAMP literal is the

word TIMESTAMP followed by a space, followed by a time stamp in single quotation

marks in the form ’yyyy-MM-dd HH:mm:ss.SSSSSS’. For example:

DECLARE MyTimeStamp TIMESTAMP;

SET MyTimeStamp = TIMESTAMP ’1999-12-31 23:59:59’;

The year field must always be four digits in length. The month, day, hour, and

minute fields must always be two digits. (Do not omit leading zeros.) The optional

fractional seconds field can be 0 - 6 digits long.

For a description of the characters used when formatting a time stamp in the ESQL

CAST function, see “Formatting and parsing dateTimes as strings” on page 1626

ESQL reference 1453

The PutTime reported by WebSphere MQ on z/OS and other times or time stamps

can be inconsistent if the CVT field is not set correctly. For details about when this

problem can occur, and how to solve it, see The PutTime that is reported by

WebSphere MQ on z/OS, and other times or timestamps are inconsistent.

ESQL GMTTIMESTAMP data type

The GMTTIMESTAMP data type is similar to the TIMESTAMP data type, except that the

values are interpreted as values in Greenwich Mean Time. GMTTIMESTAMP values are

defined in a similar way to TIMESTAMP values, for example:

DECLARE MyGetGMTTimeStamp GMTTIMESTAMP;

SET MyGetGMTTimeStamp = GMTTIMESTAMP ’1999-12-31 23:59:59.999999’;

The PutTime reported by WebSphere MQ on z/OS and other times or timestamps

can be inconsistent if the CVT field is not set correctly. For details about when this

problem can occur, and how to solve it, see The PutTime that is reported by

WebSphere MQ on z/OS, and other times or timestamps are inconsistent.

ESQL INTERVAL data type

The INTERVAL data type holds an interval of time. It has a number of subtypes:

v YEAR

v YEAR TO MONTH

v MONTH

v DAY

v DAY TO HOUR

v DAY TO MINUTE

v DAY TO SECOND

v HOUR

v HOUR TO MINUTE

v HOUR TO SECOND

v MINUTE

v MINUTE TO SECOND

v SECOND

All these subtypes describe intervals of time and all can take part in the full range

of operations of the INTERVAL type; for example, addition and subtraction

operations with values of type DATE, TIME, or TIMESTAMP.

Use the CAST function to convert from one subtype to another, except for intervals

described in years and months, or months, which cannot be converted to those

described in days, hours, minutes, and seconds.

The split between months and days arises because the number of days in each

month varies. An interval of one month and a day is not meaningful, and cannot

be sensibly converted into an equivalent interval in numbers of days only.

An interval literal is defined by the syntax:

INTERVAL <interval string> <interval qualifier>

The format of interval string and interval qualifier are defined by the table below.

 Interval qualifier Interval string format Example

YEAR ’<year>’ or ’<sign> <year>’ ’10’ or ’-10’

YEAR TO MONTH ’<year>-<month>’ or ’<sign> <year>-<month>’ ’2-06’ or ’- 2-06’

1454 Message Flows

Interval qualifier Interval string format Example

MONTH ’<month>’ or ’<sign> <month>’ ’18’ or ’-18’

DAY ’<day>’ or ’<sign> <day>’ ’30’ or ’-30’

DAY TO HOUR ’<day> <hour>’ or ’<sign> <day> <hour>’ ’1 02’ or ’-1 02’

DAY TO MINUTE ’<day> <hour>:<minute>’ or ’<sign> <day>

<hour>:<minute>’

’1 02:30’ or ’-1 02:30’

DAY TO SECOND ’<day> <hour>:<minute>:<second>’ or ’<sign>

<day> <hour>:<minute>:<second>’

’1 02:30:15’ or ’-1 02:30:15.333’

HOUR ’<hour>’ or ’<sign> <hour>’ ’24’ or ’-24’

HOUR TO MINUTE ’<hour>:<minute>’ or ’<sign>

<hour>:<minute>’

’1:30’ or ’-1:30’

HOUR TO SECOND ’<hour>:<minute>:<second>’ or ’<sign>

<hour>:<minute>:<second>’

’1:29:59’ or ’-1:29:59.333’

MINUTE ’<minute>’ or ’<sign> <minute>’ ’90’ or ’-90’

MINUTE TO SECOND ’<minute>:<second>’ or ’<sign>

<minute>:<second>’

’89:59’ or ’-89:59’

SECOND ’<second>’ or ’<sign> <second>’ ’15’ or ’-15.7’

Where an interval contains both a year and a month value, a hyphen is used

between the two values. In this instance, the month value must be within the

range [0, 11]. If an interval contains a month value and no year value, the month

value is unconstrained.

A space is used to separate days from the rest of the interval.

If an interval contains more than one of HOUR, MINUTE, and SECOND, a colon is

needed to separate the values and all except the leftmost are constrained as

follows:

HOUR

0-23

MINUTE

0-59

SECOND

0-59.999...

The largest value of the left-most value in an interval is +/- 2147483647.

Some examples of valid interval values are:

v 72 hours

v 3 days: 23 hours

v 3600 seconds

v 90 minutes: 5 seconds

Some examples of invalid interval values are:

v 3 days: 36 hours

A day field is specified, so the hours field is constrained to [0,23].

v 1 hour: 90 minutes

An hour field is specified, so minutes are constrained to [0,59].

Here are some examples of interval literals:

ESQL reference 1455

INTERVAL ’1’ HOUR

INTERVAL ’90’ MINUTE

INTERVAL ’1-06’ YEAR TO MONTH

Representation of ESQL datetime data types

When your application sends a message to a broker, the way in which the message

data is interpreted depends on the content of the message itself and the

configuration of the message flow. If your application sends a message to be

interpreted either by the generic XML parser, or the MRM parser, that is tailored

by an XML physical format, the application can include date or time data that is

represented by any of the XML Schema primitive datetime data types.

The XML Schema data type of each piece of data is converted to an ESQL data

type, and the element that is created in the logical message tree is of the converted

type. If the datetime data in an input message does not match the rules of the

chosen schema data type, the values that the parser writes to the logical message

tree are modified even if the message is in the MRM domain and you have

configured the message flow to validate the input message. (Validation is not

available for generic XML messages.)

This has the following effect on the subfields of the input datetime data:

v If any of the subfields of the input message are missing, a default value is

written to the logical message tree. This default is substituted from the full

timestamp that refers to the beginning of the current epoch: 1970-01-01 00:00:00.

v If the input message contains information for subfields that are not present in

the schema, the additional data is discarded. If this occurs, no exception is

raised, even if a message in the MRM domain is validated.

v After the data is parsed, it is cast to one of three ESQL datetime data types.

These are DATE, TIME, and TIMESTAMP.

– If a datetime value contains only date subfields, it is cast to an ESQL DATE.

– If a datetime value contains only time subfields, it is cast to an ESQL TIME.

– If a datetime value contains both date and time subfields, it is cast to an

ESQL TIMESTAMP.

The following examples illustrate these points.

 Input data XML Schema

data type

Schema rules Input value in the bit

stream

Value written to the logical

tree (ESQL data type in

brackets)

xsd:dateTime CCYY-MM-DDThh:mm:ss 2002-12-31T23:59:59 2002-12-31 23:59:59

(TIMESTAMP)

--24 1970-01-24 (DATE)

23:59:59 23:59:59 (TIME)

xsd:date CCYY-MM-DD 2002-12-31 2002-12-31 (DATE)

2002-12-31T23:59:59 2002-12-31 (DATE)

-06-24 1970-06-24 (DATE)

xsd:time hh:mm:ss 14:15:16 14:15:16 (TIME)

xsd:gDay ---DD ---24 1970-01-24 (DATE)

xsd:gMonth --MM --12 1970-12-01 (DATE)

xsd:gMonthDay --MM-DD --12-31 1970-12-31 (DATE)

xsd:gYear CCYY 2002 2002-01-01 (DATE)

1456 Message Flows

Input data XML Schema

data type

Schema rules Input value in the bit

stream

Value written to the logical

tree (ESQL data type in

brackets)

xsd:gYearMonth CCYY-MM 2002-12 2002-12-01 (DATE)

Validation with missing subfields: When you consider which schema datetime

data type to use, bear in mind that, if the message is in the MRM domain, and you

configure the message flow to validate messages, missing subfields can cause

validation exceptions.

The schema data types Gday, gMonth, gMonthDay, gYear, and gYearMonth are

used to record particular recurring periods of time. There is potential confusion

when validation is turned on, because the recurring periods of time that are used

in these schema data types are stored by ESQL as specific points in time.

For example, when the 24th of the month, which is a gDay (a monthly day) type,

is written to the logical tree, the missing month and year subfields are supplied

from the epoch (January 1970) to provide the specific date 1970-01-24. If you code

ESQL to manipulate this date, for example by adding an interval of 10 days, and

then generate an output message that is validated, an exception is raised. This is

because the result of the calculation is 1970-02-03 which is invalid because the

month subfield of the date no longer matches the epoch date.

ESQL NULL data type

All ESQL data types (except REFERENCE) support the concept of the null value. A

value of null means that the value is unknown, undefined, or uninitialized. Null

values can arise when you refer to message fields that do not exist, access database

columns for which no data has been supplied, or use the keyword NULL, which

supplies a null literal value.

Null is a distinct state and is not the same as any other value. In particular, for

integers it is not the same thing as the value 0 and for character variables it is not

the same thing as a string of zero characters. The rules of ESQL arithmetic take

null values into account, and you are typically unaware of their existence.

Generally, but not always, these rules mean that, if any operand is null, the result

is null.

If an expression returns a null value its data type is not, in general, known. All

null values, whatever their origin, are therefore treated equally.

This can be regarded as their belonging to the data type NULL , which is a data

type that can have just one value, null.

An expression always returns NULL if any of its elements are NULL.

Testing for null values

To test whether a field contains a null value, use the IS operator described in

Operator=.

The effect of setting a field to NULL

Take care when assigning a null value to a field. For example, the following

command deletes the Name field:

ESQL reference 1457

SET OutputRoot.XMLNS.Msg.Data.Name = NULL; -- this deletes the field

The correct way to assign a null value to a field is as follows:

SET OutputRoot.XMLNS.Msg.Data.Name VALUE = NULL;

-- this assigns a NULL value to a field without deleting it

ESQL numeric data types

ESQL supports several data types that handle numeric values.

The following data types are collectively known as numeric data types:

v “ESQL DECIMAL data type”

v “ESQL FLOAT data type” on page 1459

v “ESQL INTEGER data type” on page 1460

Notes:

1. INTEGER and DECIMAL types are represented exactly inside the

broker; FLOAT types are inherently subject to rounding error without

warning. Do not use FLOAT if you need absolute accuracy, for example,

to represent money.

2. Various casts are possible between different numeric types. These can

result in loss of precision, if exact types are cast into FLOAT.

For information about numeric functions see “ESQL numeric functions” on page

1577.

ESQL DECIMAL data type

The DECIMAL data type holds an exact representation of a decimal number.

Decimals have precision, scale, and rounding. Precision is the total number of

digits of a number:

v The minimum precision is 1

v The maximum precision is 34

Scale is the number of digits to the right of the decimal point:

v The minimum scale (-exponent) is -999,999,999

v The maximum scale (-exponent) is +999,999,999

You cannot define precision and scale when declaring a DECIMAL, because they

are assigned automatically. It is only possible to specify precision and scale when

casting to a DECIMAL.

Scale, precision, and rounding:

The following scale, precision, and rounding rules apply:

v Unless rounding is required to keep within the maximum precision, the scale of

the result of an addition or subtraction is the greater of the scales of the two

operands.

v Unless rounding is required to keep within the maximum precision, the scale of

the result of a multiplication is the sum of the scales of the two operands.

v The precision of the result of a division is the smaller of the number of digits

needed to represent the result exactly and the maximum precision.

v All addition, subtraction, multiplication, and division calculations round the

least significant digits, as necessary, to stay within the maximum precision

1458 Message Flows

v All automatic rounding is banker’s or half even symmetric rounding. The rules of

this are:

– When the first dropped digit is 4 or less, the first retained digit is unchanged

– When the first dropped digit is 6 or more, the first retained digit is

incremented

– When the first dropped digit is 5, the first retained digit is incremented if it is

odd, and unchanged if it is even. Therefore, both 1.5 and 2.5 round to 2 while

3.5 and 4.5 both round to 4

– Negative numbers are rounded according to the same rule

Decimal literals:

Decimal literals that consist of an unquoted string of digits only, that is, that

contain neither a decimal point nor an exponent (for example 12345) are of type

INTEGER if they are small enough to be represented as integers. Otherwise they

are of type DECIMAL.

Decimal literals that consist of an unquoted string of digits, optionally a decimal

point, and an exponent (for example 123e1), are of type FLOAT if they are small

enough to be represented as floats. Otherwise they are of type DECIMAL.

Decimal literals that consist of the keyword DECIMAL and a quoted string of

digits, with or without a decimal point and with or without an exponent, are of

type DECIMAL, for example, DECIMAL ’42’, DECIMAL ’1.2346789e+203’.

The strings in this type of literal can also have the values:

v ’NAN’, not a number

v ’INF’, ’INFINITY’

v ’+INF’, ’+INFINITY’

v ’-INF’, ’-INFINITY’

v ’MAX’

v ’MIN’

(in any mixture of case) to denote the corresponding values.

Note, if you do not specify sufficient precision digits, that INF is returned, as

shown in the following example:

 SET VAL [equals char] CAST(’123456’ AS DECIMAL(3,0))

ESQL FLOAT data type

The FLOAT data type holds a 64-bit, base 2, fraction and exponent approximation

to a real number. This gives a range of values between +-1.7E–308 and +- 1.7E+308.

Float literals consist of an unquoted string of digits and either a decimal point (for

example 123.4) or an exponent (for example 123e4) or both (for example 123.4e5) .

They are of type FLOAT if they are small enough to be represented as floats.

Otherwise they are of type DECIMAL

Rounding:

When you CAST a FLOAT to an INTEGER, either implicitly or explicitly, the

FLOAT is truncated; that is, the numbers after the decimal point are removed and

no rounding occurs.

ESQL reference 1459

ESQL INTEGER data type

The INTEGER data type holds an integer number in 64-bit two’s complement

form. This gives a range of values between -9223372036854775808 and

+9223372036854775807.

Integer literals consist of an unquoted string of digits only; that is, they contain

neither a decimal point nor an exponent; for example, 12345. They are of type

INTEGER if they are small enough to be represented as integers. Otherwise they

are of type DECIMAL.

In addition to this format, you can write integer literals in hexadecimal notation;

for example, 0x1234abcd. You can write the hexadecimal letters A to F, and the “x”

after the initial zero, in uppercase or lowercase. If you use hexadecimal format, the

number must be small enough to fit into an integer. (That is, it cannot be a

decimal.)

ESQL REFERENCE data type

The REFERENCE data type holds the location of a field in a message. It cannot

hold the location of a constant, a database table, a database column, or another

reference.

Note: For compatibility with earlier versions, reference variables can also point at

scalar variables

A reference literal is an hierarchic path name, consisting of a list of path elements

separated by periods. The first element in the list is known as the correlation

name, and identifies a reference, row, or scalar variable. Any subsequent elements

apply to references to message trees only, and identify field types, names, and

indexes within the message tree relative to the field pointed to by the correlation

name.

For example:

InputRoot.MQMD.Priority

is a field reference literal that refers to the Priority field contained within an

MQMD structure within an input message.

ESQL ROW data type

The ROW data type holds a tree structure. A row in a database is a particular type

of tree structure, but the ROW data type is not restricted to holding data from

database rows.

In a database, a row is a fixed, ordered, set of scalar values.

Note: A scalar is a single entity value or a string.

A database table is an unordered set of rows and is thus a two dimensional ″array″

of scalar values, in which one dimension is fixed and the other is variable. In

ESQL, a row is an open-ended, ordered, set of named values in which each value

can be scalar or another row. That is, a row is an open-ended tree structure with

no restrictions on dimensions or regularity. Consider the following diagram:

1460 Message Flows

Root

 Row

 PartNumber = 1

 Description = ’Chocolate bar’

 Price = 0.30

 Row

 PartNumber = 2

 Description = ’Biscuit’

 Price = 0.35

 Row

 PartNumber = 3

 Description = ’Fruit’

 Price = 0.42

In the example, Root contains three elements all named “Row”. Each of these in

turn contains three elements with different names and values. This diagram

equally describes an instance of an ESQL row data type (that is, a tree structure) or

the contents of a database table.

ROW and LIST

The ROW data type is a normal data type. You can use the DECLARE statement to

create ROW variables in the same way as you create INTEGER or CHARACTER

variables. There is also a more general concept of a ROW data type. In the

previous example, Root is the root element of a ROW variable. Each of the

elements called “Row”, while not the root element of ROW variables, are the root

elements of sub-structures. Many ESQL operations (and particularly the SELECT

function) work with the general concept of ROW and will operate equally on

whole trees or parts of them.

There is also a general concept of a LIST data type. The set of elements called

“Row” can be regarded as a list. Some ESQL operations (particularly SELECT)

work with the general concept of list.

InputRoot, OutputRoot (and so on) are examples of ROW variables that are

automatically declared and connected into the broker’s structure, ready for use.

ESQL string data types

ESQL supports several data types that handle string values. The following data

types are collectively known as string data types:

v “ESQL BIT data type”

v “ESQL BLOB data type” on page 1462

v “ESQL CHARACTER data type” on page 1462

For information about string functions, see “ESQL string manipulation functions”

on page 1592.

ESQL BIT data type

The BIT data type holds a variable length string of binary digits. It is commonly

used to represent arbitrary binary data that does not contain an exact number of

bytes. A bit string literal consists of the letter B, followed by a string of binary

digits enclosed in single quotation marks, as in the following example:

B’0100101001’

Any number of digits, which must be either 0 or 1, can be specified. The initial B

can be specified in uppercase or lowercase.

ESQL reference 1461

ESQL BLOB data type

The BLOB data type holds a variable length string of 8-bit bytes. It is commonly

used to represent arbitrary binary data. A BLOB literal consists of the letter X,

followed by a string of hexadecimal digits enclosed in single quotation marks, as

in the following example:

X’0123456789ABCDEF’

There must be an even number of digits in the string, because two digits are

required to define each byte. Each digit can be one of the hexadecimal digits 0-9

and A-F. Both the initial X and the hexadecimal letters can be specified in

uppercase or lowercase.

ESQL CHARACTER data type

The character data type holds a variable length string of Unicode characters. A

character string literal consists of any number of characters in single quotation

marks. If you want to include a single quotation mark within a character string

literal, use another single quotation mark as an escape character.

For example, the assignment SET X=’he’’was’’’ puts the value he’was’ into X.

ESQL-to-Java data-type mapping table

Table summarizing the mappings from ESQL to Java.

The following table summarizes the mappings from ESQL to Java.

Notes:

v Only the Java scalar wrappers are passed to Java.

v The ESQL scalar types are mapped to Java data types as object wrappers,

or object wrapper arrays, depending upon the direction of the procedure

parameter. Each wrapper array contains exactly one element.

v Scalar object wrappers are used to allow NULL values to be passed to

and from Java methods.

 ESQL data types

1 Java IN data types Java INOUT and OUT data types

INTEGER, INT java.lang.Long java.lang.Long []

FLOAT java.lang.Double java.lang.Double[]

DECIMAL java.math.BigDecimal java.math.BigDecimal[]

CHARACTER, CHAR java.lang.String java.lang.String[]

BLOB byte[] byte[][]

BIT java.util.BitSet java.util.BitSet[]

DATE com.ibm.broker.plugin.MbDate com.ibm.broker.plugin.MbDate[]

TIME

2 com.ibm.broker.plugin.MbTime com.ibm.broker.plugin.MbTime[]

GMTTIME

2 com.ibm.broker.plugin.MbTime com.ibm.broker.plugin.MbTime[]

TIMESTAMP

2 com.ibm.broker.plugin.MbTimestamp com.ibm.broker.plugin.MbTimestamp[]

GMTTIMESTAMP

2 com.ibm.broker.plugin.MbTimestamp com.ibm.broker.plugin.MbTimestamp[]

INTERVAL Not supported Not supported

BOOLEAN java.lang.Boolean java.lang.Boolean[]

1462 Message Flows

REFERENCE (to a message tree)

3 4

5 6

com.ibm.broker.plugin.MbElement com.ibm.broker.plugin.MbElement[]

(Supported for INOUT. Not

supported for OUT)

ROW Not supported Not supported

LIST Not supported Not supported

1. Variables that are declared to be CONSTANT (or references to variables that are

declared to be CONSTANT) are not allowed to have the direction INOUT or

OUT.

2. The time zone set in the Java variable is not important; you obtain the required

time zone in the output ESQL.

3. The reference parameter cannot be NULL when passed into a Java method.

4. The reference cannot have the direction OUT when passed into a Java method.

5. If an MbElement is passed back from Java to ESQL as an INOUT parameter, it

must point to a location in the same message tree as that pointed to by the

MbElement that was passed into the called Java method.

For example, if an ESQL reference to OutputRoot.XML.Test is passed into a Java

method as an INOUT MbElement, but a different MbElement is passed back to

ESQL when the call returns, the different element must also point to

somewhere in the OutputRoot tree.

6. An MbElement cannot be returned from a Java method with the RETURNS

clause, because no ESQL routine can return a reference. However, an MbElement

can be returned as an INOUT direction parameter, subject to the conditions

described in point 5.

A REFERENCE to a scalar variable can be used in the CALL of a Java method,

provided that the data type of the variable to which the reference refers matches

the corresponding data type in the Java program signature.

ESQL-to-XPath mapping table

The following table summarizes the mappings from ESQL to XPath.

 ESQL XPath 1.0 XPath 1.0 usage notes

BOOLEAN data types

 True

 False

 Unknown

 True()

 False()

 No equivalent

 Equivalent to Boolean ″1″ or ″True″

 Equivalent to Boolean ″0″ or

″False″

Date Time data types No equivalent

NULL data type No equivalent

Numeric data types

 DECIMAL

 FLOAT

 INTEGER

 12678967.543233 with or without

quotation marks

 1.7976931348623158 with or

without quotation marks

 9223372036854775807 with or

without quotation marks

 Cannot express an exponent or a

leading plus sign.

 Cannot express an exponent or a

leading plus sign.

 Cannot express an exponent or a

leading plus sign.

REFERENCE data type FilterExpression ’/’

RelativeLocationPath

 For example, $InputRoot/MQMD/
Priority

ESQL reference 1463

String data types

 BIT

 BLOB

 CHARACTER

 No equivalent

 No equivalent

 Literal

 For example ’a "b"’ or "a ’b’"

NAME $NAME Can assign such a variable any

valid value, of type Boolean,

number, or string.

Simple comparison operators

 >

 <

 >=

 ’=’

 <>

 >

 <

 >=

 ’=’

 !=

Complex comparison operators No equivalent

Logical operators

 AND

 OR

 NOT

 and

 or

 not (operand)

 The not function returns true if its

argument is false, and false

otherwise.

Numeric operators

 Unary -

 +

 -

 *

 /

 - Unary expression

 +

 -

 *

 div

 Multiplication operator

String operator No equivalent

Date time functions No equivalent

Numeric functions

 FLOOR

 CEIL and CEILING

 ROUND

 floor (number)

 ceiling (number)

 No equivalent

String manipulation functions

 SUBSTRING

 TRANSLATE

 substring(string, number, number)

 translate(string, string, string)

XPath property editors

The XPath files are supplied in three property editors located in the

com.ibm.etools.mft.ibmnodes plugin . The property editors are:

Read only

Located in

com.ibm.etools.mft.ibmnodes.editors.xpath.XPathReadOnlyPropertyEditor

Read write

Located in

com.ibm.etools.mft.ibmnodes.editors.xpath.XPathReadWritePropertyEditor

Expression

Located in

com.ibm.etools.mft.ibmnodes.editors.xpath.XPathPropertyEditor

For information on adding a property editor to your workspace, see Adding a

property editor or compiler.

1464 Message Flows

ESQL variables

ESQL variables can be described as external, normal, or shared; their use is defined

in the DECLARE statement.

Types of variable

External

External variables (defined with the EXTERNAL keyword) are also known

as user-defined properties (see “User-defined properties in ESQL” on page

261). They exist for the entire lifetime of a message flow and are visible to

all messages that pass through the flow. You can define external variables

only at the module and schema level. You can modify their initial values

(optionally set by the DECLARE statement) by using the Message Flow

editor, or at deployment time, by using the BAR editor. You can query and

set the values of user-defined properties at run time by using the

Configuration Manager Proxy (CMP) API. For more information, see

Setting user-defined properties dynamically at run time.

Normal

“Normal” variables have a lifetime of just one message passing through a

node. They are visible to that message only. To define a “normal” variable,

omit both the EXTERNAL and SHARED keywords.

Shared

Shared variables (defined with the SHARED keyword) can be used to

implement an in-memory cache in the message flow (see “Optimizing

message flow response times” on page 158). Shared variables have a long

lifetime and are visible to multiple messages that pass through the flow

(see “Long-lived variables” on page 261). They exist for the lifetime of the

execution group process, the lifetime of the flow or node, or the lifetime of

the node’s SQL that declares the variable (whichever is the shortest). They

are initialized when the first message passes through the flow or node after

each broker startup.

 See also the ATOMIC option of the “BEGIN ... END statement” on page

1482. The BEGIN ATOMIC construct is useful when a number of changes

need to be made to a shared variable and when it is important to prevent

other instances seeing the intermediate states of the data.

ESQL field references

This topic describes how to use ESQL field references to form paths to message

body elements.

The full syntax for field references is as shown below:

ESQL reference 1465

|
|
|
|

�� CorrelationName

�

.

PathElement

 ��

PathElement:

(

Type

)
 �

� - Name

:

{

NameExpression

}

Namespace

*

{

NamespaceExpression

}

*

 �

�
[

]

Index

<

Index

>

Index

<

A field reference consists of a correlation name, followed by zero or more Path

Elements separated by periods (.). The correlation name identifies a well-known

starting point and must be the name of a constant, a declared variable (scalar, row

or reference), or one of the predefined start points; for example, InputRoot. The

path Fields define a path from the start point to the desired field.

See:

v “Namespace” on page 1467 for the meaning of the different combinations of

namespace and name

v “Target field references” on page 1470 for the meaning of the different

combinations of field references

v “Index” on page 1468 for the meaning of the different combinations of index

clauses

v “Type” on page 1468 for the meaning of the different combinations of types

For example:

InputRoot.XMLNS.Data.Invoice

starts the broker at the location InputRoot (that is, the root of the input message to

a Compute node) and then performs a sequence of navigations. First, it navigates

from root to the first child field called XMLNS, then to the first child field of the

XMLNS field called Data. Finally, the broker navigates to the first child field of the

Data field called Invoice. Whenever this field reference occurs in an ESQL

program, the invoice field is accessed.

This form of field reference is simple, convenient, and is the most commonly used.

However, it does have two limitations:

1466 Message Flows

v Because the names used must be valid ESQL identifiers, you can use only names

that conform to the rules of ESQL. That is, the names can contain only

alphanumeric characters including underscore, the first character cannot be

numeric, and names must be at least one character long. You can avoid these

limitations by enclosing names not conforming to these rules in double

quotation marks. For example:

InputRoot.XMLNS."Customer Data".Invoice

If you need to refer to fields that contain quotation marks, use two pairs of

quotation marks around the reference. For example:

Body.Message."""hello"""

Some identifiers are reserved as keywords but, with the exception of the

correlation name, you can use them in field references without the use of double

quotation marks

v Because the names of the fields appear in the ESQL program, they must be

known when the program is written. This limitation can be avoided by using the

alternative syntax that uses braces ({ ... }). This syntax allows you to use any

expression that returns a non-null value of type character.

For example:

InputRoot.XMLNS."Customer Data".{’Customer-’ ||

 CurrentCustomer}.Invoice

in which the invoices are contained in a folder with a name is formed by

concatenating the character literal Customer- with the value in CurrentCustomer

(which in this example must be a declared variable of type character).

You can use the asterisk (*) wildcard character in a path element to match any

name. You can also use “*” to specify a partial name. For example, Prefix*

matches any name that begins with “Prefix”.

Note that enclosing anything in double quotation marks in ESQL makes it an

identifier; enclosing anything in single quotation marks makes it a character literal.

You must enclose all character strings in single quotation marks.

Namespace

Field names can belong to namespaces. Field references provide support for

namespaces as follows:

v Each field of each field reference that contains a name clause can also contain a

namespace clause defining the namespace to which the specified name belongs.

v Each namespace name can be defined by either a simple identifier or by an

expression (enclosed in curly braces). If an identifier is the name of a declared

namespace constant, the value of the constant is used. If an expression is used, it

must return a non-null value of type character.

v A namespace clause of * explicitly states that namespace information is to be

ignored when locating Fields in a tree.

v A namespace clause consisting of only : explicitly targets the notarget

namespace. The clause has no identifier, expression or wildcard (*).

For example:

DECLARE sp1 NAMESPACE ’http://www.ibm.com/space1’;

/* Namespace declaration to associate prefix ’space1’ with the namespace */

ESQL reference 1467

SET OutputRoot.XMLNS.TestCase.(XML.NamespaceDecl)xmlns:space1 = ’http://www.ibm.com/space1’;

SET OutputRoot.XMLNS.TestCase.{sp1}:data1 = ’Hello!’;

generates:

<TestCase xmlns:space1="http://www.ibm.com/space1">

<space1:data1>Hello!</space1:data1>

</TestCase>

Index

Each field of a field reference can contain an index clause. This clause is denoted

by brackets ([...]) and accepts any expression that returns a non-null value of

type integer. This clause identifies which of several fields with the same name is to

be selected. Fields are numbered from the first, starting at one. If this clause is not

present, it is assumed that the first field is required. Thus, the two examples below

have exactly the same meaning:

InputRoot.XMLNS.Data[1].Invoice

InputRoot.XMLNS.Data.Invoice[1]

This construct is most commonly used with an index variable, so that a loop steps

though all such fields in sequence. For example:

WHILE count < 32 DO

 SET TOTAL = TOTAL + InputRoot.XMLNS.Data.Invoice[count].Amount;

 SET COUNT = COUNT + 1

END WHILE;

Use this kind of construct with care, because it implies that the broker must count

the fields from the beginning each time round the loop. If the repeat count is large,

performance will be poor. In such cases, a better alternative is to use a field

reference variable.

Index expressions can optionally be preceded by a less-than sign (<), indicating

that the required field is to be indexed from the last field, not the first. In this case,

the index 1 refers to the last field and the index 2 refers to the penultimate field.

For completeness, you can use a greater-than sign to indicate counting from the

first field. The example below shows ESQL code that handles indexes where there

are four fields called Invoice.

InputRoot.XMLNS.Data.Invoice -- Selects the first

InputRoot.XMLNS.Data.Invoice[1] -- Selects the first

InputRoot.XMLNS.Data.Invoice[>] -- Selects the first

InputRoot.XMLNS.Data.Invoice[>1] -- Selects the first

InputRoot.XMLNS.Data.Invoice[>2] -- Selects the second

InputRoot.XMLNS.Data.Invoice[<] -- Selects the fourth

InputRoot.XMLNS.Data.Invoice[<1] -- Selects the fourth

InputRoot.XMLNS.Data.Invoice[<2] -- Selects the third

InputRoot.XMLNS.Data.Invoice[<3] -- Selects the second

An index clause can also consist of an empty pair of brackets ([]). This selects all

fields with matching names. Use this construct with functions and statements that

expect lists (for example, the SELECT, CARDINALITY, SINGULAR, and EXISTS

functions, or the SET statement) .

Type

Each field of a field reference can contain a type clause. These are denoted by

parentheses (()), and accept any expression that returns a non-null value of type

1468 Message Flows

integer. The presence of a type expression restricts the fields that are selected to

those of the matching type. This construct is most commonly used with generic

XML, where there are many field types and it is possible for one XML field to

contain both attributes and further XML Fields with the same name.

For example:

<Item Value = ’1234’>

 <Value>5678</Value>

</Item>

Here, the XML field Item has two child Fields, both called “Value”. The child

Fields can be distinguished by using type clauses:

Item.(<Domain>.Attribute)Value to select the attribute, and

Item.(XML.Element)Value to select the field, where <Domain> is one of XML,

XMLNS, or XMLNSC, as determined by the message domain of the source.

Type constraints

A type constraint checks the data type returned by a field reference.

��
 (1)

(

FieldReference

)

ScalarDataTypeName

��

Notes:

1 ScalarDataTypeName can be any one of BOOLEAN, INTEGER, INT, FLOAT,

DECIMAL, DEC, DATE, TIME, TIMESTAMP, GMTTIME,

GMTTIMESTAMP, INTERVAL, CHARACTER, CHAR, BLOB, BIT.

Typically, a type constraint causes the scalar value of the reference to be extracted

(in a similar way to the FIELDVALUE function) and an exception to be thrown if

the reference is not of the correct type. By definition, an exception will be thrown

for all nonexistent fields, because these evaluate to NULL. This provides a

convenient and fast way of causing exceptions if essential fields are missing from

messages.

However, when type constraints occur in expressions that are candidates for being

passed to a database (for example, they are in a WHERE clause), the information is

used to determine whether the expression can be given to the database. This can

be important if a WHERE clause contains a CAST operating on a database table

column. In the absence of a type constraint, such expressions cannot be given to

the database because the broker cannot tell whether the database is capable of

performing the required conversion. Note, however, that you should always

exercise caution when using casts operating on column values, because some

databases have exceedingly limited data conversion capabilities.

Field references summary

*, *[..], (..)*, (..)*[..]

None of these forms specifies a name or namespace. The target field can

have any name, in any namespace or in no namespace. It is located solely

by its type, its index, or its type and index, as appropriate.

ESQL reference 1469

Name, Name[..], (..)Name, (..)Name[..]

All these forms specify a name but no namespace. The target field is

located by namespace and name, and also by type and index where

appropriate.

 The namespace is taken to be the only namespace in the namespace path

containing this name. The only namespace that can be in the path is the

notarget namespace.

These forms all existed before namespaces were introduced. Although their

behavior has changed in that they now compare both name and

namespace, existing transforms should see no change in their behavior

because all existing transforms create their Fields in the notarget

namespace.

:*, :*[..], (..):*, (..):*[..]

All these forms specify the notarget namespace but no name. The target

field is located by its namespace and also by type and index where

appropriate.

:Name, :Name[..], (..):Name, (..):Name[..]

All these forms specify a name and the notarget namespace. The target

field is located by namespace and name and also by type and index where

appropriate.

:, *:*[..], (..)*:*, (..)*:*[..]

None of these forms specifies a name or a namespace. Note that “*:*” is

equivalent to “*”, and matches no namespace as well as any namespace.

The target field can have any name, in any namespace or in no namespace.

It is located solely by its type, its index, or its type and index, as

appropriate.

*:Name, *:Name[..], (..)*:Name, (..)*:Name[..]

All these forms specify a name but no namespace. The target field is

located by name and also by type and index where appropriate.

Namespace:*, Namespace:*[..], (..)Namespace:*, (..)Namespace:*[..]

All these forms specify a namespace but no name. The target field is

located by namespace and also by type and index where appropriate.

Namespace:Name, Namespace:Name[..], (..)Namespace:Name,

(..)Namespace:Name[..]

All these forms specify a namespace and name. The target field is located

by namespace and name and also by type and index where appropriate.

In all the preceding cases a name, or namespace, provided by an expression

contained in braces ({}) is equivalent to a name provided as an identifier.

By definition, the name of the notarget namespace is the empty string. The empty

string can be selected by expressions which evaluate to the empty string, the

empty identifier ″″, or by reference to a namespace constant defined as the empty

string.

Target field references

The use of field references usually implies searching for an existing field. However,

if the required field does not exist, as is usually the case for field references that

are the targets of SET statements and those in the AS clauses of SELECT functions,

it is created.

1470 Message Flows

In these situations, there are a variety of circumstances in which the broker cannot

tell what the required name or namespace is, and in these situations the following

general principles apply :

v If the name clause is absent or does not specify a name, and the namespace

clause is absent or does not specify or imply a namespace (that is, there is no

name or namespace available), one of the following conditions applies:

– If the assignment algorithm does not copy the name from some existing field,

the new field has both its name and namespace set to the empty string and

its name flag is not set automatically.

In the absence of a type specification, the field’s type is not Name or

NameValue, which effectively indicates that the new field is nameless.

– Otherwise, if the assignment algorithm chooses to copy the name from some

existing field, the new field has both its name and namespace copied from the

existing field and its Name flag is set automatically
v If the name clause is present and specifies a name, but the namespace clause is

absent or does not specify or imply a namespace (that is, a name is available but

a namespace is not), the new field has its:

– Name set to the given value

– Namespace set to the empty string

– Name flag set automatically
v If the name clause is absent or does not specify a name, but the namespace

clause is present and specifies or implies a namespace (that is, a namespace is

available but a name is not), the new field has its:

– Namespace set to the given value

– Name set to the empty string

– Name flag set automatically
v If the name clause is present and specifies a name, and the namespace clause is

present and specifies or implies a namespace, the new field has its:

– Name set to the given value

– Namespace set to the given value

– Name flag set automatically

There are also cases where the broker creates Fields in addition to those referenced

by field references:

v Tree copy: new Fields are created by an algorithm that uses a source tree as a

template. If the algorithm copies the name of a source field to a new field, its

namespace is copied as well.

v Anonymous select expressions: SELECT clauses are not obliged to have AS

clauses; those that do not have them, set the names of the newly created Fields

to default values (see “SELECT function” on page 1632).

These defaults can be derived from field names, column names or can simply be

manufactured sequence names. If the name is an field name, this is effectively a

tree copy, and the namespace name is copied as above.

Otherwise, the namespace of the newly-created field is derived by searching the

path, that is, the name is be treated as the NameId syntax of a field reference.

The effect of setting a field to NULL

Take care when assigning a null value to a field. For example, the following

command deletes the Name field:

ESQL reference 1471

SET OutputRoot.XMLNS.Msg.Data.Name = NULL; -- this deletes the field

The correct way to assign a null value to a field is as follows:

SET OutputRoot.XMLNS.Msg.Data.Name VALUE = NULL;

-- this assigns a NULL value to a field without deleting it

Note: to users on compatibility with earlier versions

For compatibility with earlier versions, the LAST keyword is still supported,

but its use is deprecated. LAST cannot be used as part of an index

expression: [LAST] is valid, and is equivalent to [<], but [LAST3] is not

valid.

The LAST keyword has been replaced by the following arrow syntax, which

allows both a direction of search and index to be specified:

 Field [>] -- The first field, equivalent to [1]

 Field [> (a + b) * 2]

 Field [<] -- The last field, equivalent to [LAST]

 Field [< 1] -- The last field, equivalent to [LAST]

 Field [< 2] -- The last but one field

 Field [< (a + b) / 3]

ESQL operators

This section provides reference information for the following groups of operators,

and for the rules for precedence:

v Simple comparison operators

v Complex comparison operators

v Logical operators

v Numeric operators

v String operator

v Rules for operator precedence

ESQL simple comparison operators

This topic describes ESQL’s simple comparison operators. For information about

ESQL’s complex comparison operators, see “ESQL complex comparison operators”

on page 1473.

ESQL provides a full set of comparison operators (predicates). Each compares two

scalar values and returns a Boolean. If either operand is null the result is null.

Otherwise the result is true if the condition is satisfied and false if it is not.

Comparison operators can be applied to all scalar data types. However, if the two

operands are of different types, special rules apply. These are described in “Implicit

casts” on page 1652.

Some comparison operators also support the comparison of rows and lists. These

are noted below.

Operator>

The first operand is greater than the second.

Operator <

The first operand is less than the second.

1472 Message Flows

Operator>=

The first operand is greater than or equal to the second.

Operator <=

The first operand is less than or equal to the second.

Operator =

The first operand is equal to that of the second.

 This operator can also compare rows and lists. See “ROW and LIST

comparisons” on page 1642 for a description of list and row comparison.

Operator <>

The first operand is not equal to the second.

 This operator can also compare rows and lists. See “ROW and LIST

comparisons” on page 1642 for a description of list and row comparison.

The meanings of “equal”, “less”, and “greater” in this context are as follows:

v For the numeric types (INTEGER, FLOAT, DECIMAL) the numeric values are

compared. Thus 4.2 is greater than 2.4 and -2.4 is greater than -4.2.

v For the date/time types (DATE, TIME, TIMESTAMP, GMTTIME,

GMTTIMESTAMP but not INTERVAL) a later point in time is regarded as being

greater than an earlier point in time. Thus the date 2004-03-31 is greater than the

date 1947-10-24.

v For the INTERVAL type, a larger interval of time is regarded as being greater

than a smaller interval of time.

For the string types (CHARACTER, BLOB, BIT) the comparison is lexicographic.

Starting from the left, the individual elements (each character, byte or bit) are

compared. If no difference is found, the strings are equal. If a difference is found,

the values are greater if the first different element in the first operand is greater

than the corresponding element in the second and less if they are less. In the

special case where two strings are of unequal length but equal as far as they go,

the longer string is regarded as being greater than the shorter. Thus:

’ABD’ is greater than ’ABC’

’ABC’ is greater than ’AB’

Trailing blanks are regarded as insignificant in character comparisons. Thus if you

want to ensure that two strings are truly equal you need to compare both the

strings themselves and their lengths. For example:

’ABC ’ is equal to ’ABC’

Note that comparing strings with a length of one is equivalent to comparing

individual characters, bytes, or bits. Because ESQL has no single character, byte, or

bit data types, it is standard practice to use strings of length one to compare single

characters, bytes, or bits.

ESQL complex comparison operators

This topic describes ESQL’s complex comparison operators (predicates). For

information about ESQL’s simple comparison operators, see “ESQL simple

comparison operators” on page 1472.

Operator BETWEEN

The operator BETWEEN allows you to test whether a value lies between

two boundary values.

ESQL reference 1473

BETWEEN operator

��

expression

NOT

BETWEEN
 ASYMMETRIC

SYMMETRIC

�

� endpoint_1 AND endpoint_2 ��

This operator exists in two forms, SYMMETRIC and ASYMMETRIC (which

is the default if neither is specified). The SYMMETRIC form is equivalent

to:

(source>= boundary1 AND source <= boundary2) OR

(source>= boundary2 AND source <= boundary1)

The ASYMMETRIC form is equivalent to:

source>= boundary1 AND source <= boundary2

The ASYMMETRIC form is simpler but returns only the result that you

expect when the first boundary value has a smaller value than the second

boundary. It is only useful when the boundary condition expressions are

literals.

If the operands are of different types, special rules apply. These are described in

“Implicit casts” on page 1652.

Operator EXISTS

EXISTS operator

�� Operand (ListExpression) ��

The operator EXISTS returns a Boolean value indicating whether a SELECT

function returned one or more values (TRUE) or none (FALSE).

EXISTS(SELECT * FROM something WHERE predicate)

Operator IN

The operator IN allows you to test whether a value is equal to one of a list

of values.

IN operator

��

operand_1

NOT

IN

(

�

 ,

operand_2

)

��

1474 Message Flows

The result is TRUE if the left operand is not NULL and is equal to one of

the right operands. The result is FALSE if the left operand is not NULL

and is not equal to any of the right operands, none of which have NULL

values. Otherwise the result is UNKNOWN. If the operands are of

different types, special rules apply. These are described in “Implicit casts”

on page 1652.

Operator IS

The operator IS allows you to test whether an expression has returned a

special value.

IS operator

��

Operand

IS

NOT

 TRUE

FALSE

INF

+INF

-INF

INFINITY

+INFINITY

-INFINITY

NAN

NULL

NUM

NUMBER

UNKNOWN

��

The primary purpose of the operator IS is to test whether a value is NULL.

The comparison operator (=) does not allow this because the result of

comparing anything with NULL is NULL.

IS also allows you to test for the Boolean values TRUE and FALSE, and the

testing of decimal values for special values. These are denoted by INF,

+INF, -INF, NAN (not a number), and NUM (a valid number) in any

mixture of case. The alternative forms +INFINITY, -INFINITY, and

NUMBER are also accepted.

If applied to non-numeric types, the result is FALSE.

Operator LIKE

The operator LIKE searches for strings that match a certain pattern.

LIKE operator

�� source

NOT
 LIKE pattern

ESCAPE

EscapeChar
 ��

The result is TRUE if none of the operands is NULL and the source

operand matches the pattern operand. The result is FALSE if none of the

operands is NULL and the source operand does not match the pattern

operand. Otherwise the result is UNKNOWN.

ESQL reference 1475

The pattern is specified by a string in which the percent (%) and

underscore (_) characters have a special meaning:

v The underscore character _ matches any single character.

For example, the following finds matches for IBM and for IGI, but not

for International Business Machines or IBM Corp:

Body.Trade.Company LIKE ’I__’

v The percent character % matches a string of zero or more characters.

For example, the following finds matches for IBM, IGI, International

Business Machines, and IBM Corp:

Body.Trade.Company LIKE ’I%’

To use the percent and underscore characters within the expressions that

are to be matched, precede the characters with an ESCAPE character,

which defaults to the backslash (\) character.

For example, the following predicate finds a match for IBM_Corp.

Body.Trade.Company LIKE ’IBM_Corp’

You can specify a different escape character by using the ESCAPE clause.

For example, you could also specify the previous example like this:

Body.Trade.Company LIKE ’IBM$_Corp’ ESCAPE ’$’

Operator SINGULAR

SINGULAR operator

�� Operand (ListExpression) ��

The operator SINGULAR returns a Boolean value of TRUE if the list has

exactly one element, otherwise it returns FALSE.

ESQL logical operators

ESQL provides the following logical operators:

Operator AND

The result is the logical AND of the two operands. Both operands must be

Boolean values.

Operator OR

The result is the logical OR of the two operands. Both operands must be

Boolean values.

Operator NOT

The result is the logical NOT of the operand, which must be a Boolean

value.

NULL and UNKNOWN values are treated as special values by these operators.

The principles are:

v NULL and UNKNOWN are treated the same.

v If an operand is NULL the result is NULL unless the operation result is already

dictated by the other parameter.

1476 Message Flows

The result of AND and OR operations is defined by the following table.

 Value of P Value of Q Result of P AND Q Result of P OR Q

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

TRUE UNKNOWN UNKNOWN TRUE

FALSE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE

FALSE UNKNOWN FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN TRUE

UNKNOWN FALSE FALSE UNKNOWN

UNKNOWN UNKNOWN UNKNOWN UNKNOWN

The result of NOT operations is defined by the following table.

 Operand Result of NOT

TRUE FALSE

FALSE TRUE

UNKNOWN UNKNOWN

ESQL numeric operators

ESQL provides the following numeric operators:

Unary Operator -

The result is the negation of the operand (that is, it has the same

magnitude as the operand but the opposite sign). You can negate numeric

values (INTEGER, DECIMAL and FLOAT) and intervals (INTERVAL).

Operator +

The result is the sum of the two operands. You can add two numeric

values, two intervals, and an interval to a datetime value (DATE, TIME,

TIMESTAMP, GMTTIME, and GMTTIMESTAMP).

Operator -

The result is the difference between the two operands. It is possible to:

v Subtract one numeric value from another.

v Subtract one date-time from another. The result is an interval.

v Subtract one interval from another. The result is an interval.

v Subtract an interval from a datetime value. The result is a date-time.

When subtracting one date-time from another, you must indicate the type

of interval required. You do this by using a qualifier consisting of

parentheses enclosing the expression, followed by an interval qualifier. For

example:

SET OutputRoot.XMLNS.Data.Age =

 (DATE ’2005-03-31’ - DATE ’1947-10-24’) YEAR TO MONTH;

Operator *

The result is the product of the two operands. You can multiply numeric

values and multiply an interval by a numeric value.

ESQL reference 1477

Operator /

The result is the dividend of the two operands. You can divide numeric

values and divide an interval by a numeric value.

Operator ||

The result is the concatenation of the two operands. You can concatenate

string values (CHARACTER, BIT, and BLOB).

In all cases, if either operand is NULL, the result is NULL. If the operands are of

different types, special rules apply. These are described in “Implicit casts” on page

1652.

For examples of how you can use these operators to manipulate datetime values,

see “Using numeric operators with datetime values” on page 295.

ESQL string operator

ESQL provides the following string operator:

Operator ||

The result is the concatenation of the two operands. You can concatenate

string values (CHARACTER, BIT, and BLOB).

If either operand is NULL, the result is NULL.

Rules for ESQL operator precedence

When an expression involves more than one operator, the order in which the

expression is evaluated might affect the result. Consider the following example:

Under ESQL’s precedence rules, c is multiplied by d and the result is added to b.

This rule states that multiplication takes precedence over addition, so reordering

the expression as follows:

makes no difference. ESQL’s precedence rules are set out below but it is generally

considered good practice to use parentheses to make the meaning clear. The order

of precedence is:

1. Parentheses

2. Unary operators including unary - and NOT

3. Multiplication and division

4. Concatenation

5. Addition and subtraction

Operations at the same level are evaluated from left to right.

ESQL statements

The following table summarizes the ESQL statements and what they do.

 Statement type Description

Basic statements:

SET a = b + c * d;

SET a = c * d + b;

1478 Message Flows

Statement type Description

“BEGIN ... END statement” on page 1482 Gives the statements defined within the

BEGIN and END keywords the status of a

single statement.

“CALL statement” on page 1487 Invokes a user-written routine that has been

defined using a CREATE FUNCTION or

CREATE PROCEDURE statement.

“CASE statement” on page 1490 Uses rules defined in WHEN clauses to

select a block of statements to execute.

“CREATE FUNCTION statement” on page

1500

Like CREATE PROCEDURE, CREATE

FUNCTION defines a user-written routine.

(The few differences between CREATE

FUNCTION and CREATE ROUTINE are

described in the reference material.)

“CREATE MODULE statement” on page

1509

Creates a module (a named container

associated with a node).

“CREATE PROCEDURE statement” on page

1511

Like CREATE FUNCTION, CREATE

PROCEDURE defines a user-written routine.

(The few differences between CREATE

FUNCTION and CREATE ROUTINE are

described in the reference material.)

“DECLARE statement” on page 1525 Declares one or more variables that can be

used to store temporary values.

“IF statement” on page 1537 Processes a set of statements based on the

result of evaluating condition expressions.

“ITERATE statement” on page 1541 Abandons processing the current iteration of

the containing WHILE, REPEAT, LOOP, or

BEGIN statement, and might start the next

iteration.

“LEAVE statement” on page 1542 Abandons processing the current iteration of

the containing WHILE, REPEAT, LOOP or

BEGIN statement, and stops looping.

“LOOP statement” on page 1544 Processes a sequence of statements

repeatedly and unconditionally.

“REPEAT statement” on page 1553 Processes a sequence of statements and then

evaluates a condition expression. If the

expression evaluates to TRUE, executes the

statements again.

“RETURN statement” on page 1554 Stops processing the current function or

procedure and passes control back to the

caller.

“SET statement” on page 1557 Evaluates a source expression, and assigns

the result to the target entity.

“THROW statement” on page 1559 Generates a user exception.

“WHILE statement” on page 1563 Evaluates a condition expression, and if it is

TRUE executes a sequence of statements.

Message tree manipulation statements:

“ATTACH statement” on page 1480 Attaches a portion of a message tree into a

new position in the message hierarchy.

“CREATE statement” on page 1492 Creates a new message field.

ESQL reference 1479

Statement type Description

“DELETE statement” on page 1534 Detaches and destroys a portion of a

message tree, allowing its memory to be

reused.

“DETACH statement” on page 1534 Detaches a portion of a message tree

without deleting it.

“FOR statement” on page 1536 Iterates through a list (for example, a

message array).

“MOVE statement” on page 1545 Changes the field pointed to by a target

reference variable.

Database update statements:

“DELETE FROM statement” on page 1531 Deletes rows from a table in an external

database based on a search condition.

“INSERT statement” on page 1538 Adds a new row to an external database.

“PASSTHRU statement” on page 1547 Takes a character value and passes it as an

SQL statement to an external database.

“UPDATE statement” on page 1560 Updates the values of specified rows and

columns in a table in an external database.

Node interaction statements:

“PROPAGATE statement” on page 1550 Propagates a message to the downstream

nodes within the message flow.

Other statements:

“BROKER SCHEMA statement” on page

1484

This statement is optional and is used in an

ESQL file to explicitly identify the schema

that contains the file.

“DECLARE HANDLER statement” on page

1530

Declares an error handler.

“EVAL statement” on page 1535 Takes a character value, interprets it as an

SQL statement, and executes it.

“LOG statement” on page 1543 Writes a record to the event or user trace

log.

“RESIGNAL statement” on page 1554 Re-throws the current exception (if any).

This is used by an error handler, when it

cannot handle an exception, to give an error

handler in higher scope the opportunity of

handling the exception.

ATTACH statement

The ATTACH statement attaches a portion of a message tree into a new position in

the message hierarchy.

1480 Message Flows

Syntax

�� ATTACH dynamic reference TO field reference AS FIRSTCHILD

LASTCHILD

PREVIOUSSIBLING

NEXTSIBLING

 ��

The following example illustrates how to use the ATTACH statement, together

with the DETACH statement described in “DETACH statement” on page 1534, to

modify a message structure. The dynamic reference supplied to the DETACH

statement must point to a modifiable message tree such as Environment,

LocalEnvironment, OutputRoot, OutputExceptionList, or InputLocalEnvironment.

There are some limitations on the use of ATTACH. In general, elements detached

from the output trees of a Compute node are not attached to the environment or to

input trees.

For example, if you take the following message:

<Data>

 <Order>

 <Item>cheese

 <Type>stilton</Type>

 </Item>

 <Item>bread</Item>

 </Order>

 <Order>

 <Item>garlic</Item>

 <Item>wine</Item>

 </Order>

 </Data>

the following ESQL statements:

SET OutputRoot = InputRoot;

DECLARE ref1 REFERENCE TO OutputRoot.XMLNSC.Data.Order[1].Item[1];

DETACH ref1;

ATTACH ref1 TO OutputRoot.XMLNSC.Data.Order[2] AS LASTCHILD;

result in the following new message structure:

<Data>

 <Order>

 <Item>bread</Item>

 </Order>

 <Order>

 <Item>garlic</Item>

 <Item>wine</Item>

 <Item>cheese

 <Type>stilton</Type>

 </Item>

 </Order>

 </Data>

For information about dynamic references see “Creating dynamic field references”

on page 291.

ESQL reference 1481

BEGIN ... END statement

The BEGIN ... END statement gives the statements defined within the BEGIN and

END keywords the status of a single statement.

This allows the contained statements to:

v Be the body of a function or a procedure

v Have their exceptions handled by a handler

v Have their execution discontinued by a LEAVE statement

Syntax

�� BEGIN Statements END

Label

:

ATOMIC

Label

NOT

 ��

The second Label can be present only if the first Label is present. If both labels are

present, they must be identical. Two or more labeled statements at the same level

can have the same label, but this partly negates the advantage of the second label.

The advantage is that the labels unambiguously and accurately match each END

with its BEGIN. However, a labeled statement nested within Statements cannot

have the same label, because this makes the behavior of the ITERATE and LEAVE

statements ambiguous.

Scope of variables

A new local variable scope is opened immediately after the opening BEGIN and,

therefore, any variables declared within this statement go out of scope when the

terminating END is reached. If a local variable has the same name as an existing

variable, any references to that name that occur after the declaration access the

local variable. For example:

DECLARE Variable1 CHAR ’Existing variable’;

-- A reference to Variable1 here returns ’Existing variable’

BEGIN

 -- A reference to Variable1 here returns ’Existing variable’

 DECLARE Variable1 CHAR ’Local variable’; -- Perfectly legal even though

the name is the same

 -- A reference to Variable1 here returns ’Local variable’

END;

ATOMIC

If ATOMIC is specified, only one instance of a message flow (that is, one thread) is

allowed to execute the statements of a specific BEGIN ATOMIC... END statement

(identified by its schema and label), at any one time. If no label is present, the

behavior is as if a zero length label had been specified.

1482 Message Flows

The BEGIN ATOMIC construct is useful when a number of changes need to be

made to a shared variable and it is important to prevent other instances seeing the

intermediate states of the data. Consider the following code example:

CREATE PROCEDURE WtiteSharedVariable1(IN NewValue CHARACTER)

SharedVariableMutex1 : BEGIN ATOMIC

 -- Set new value into shared variable

END;

CREATE FUNCTION ReadSharedVariable1() RETURNS CHARACTER

SharedVariableMutex1 : BEGIN ATOMIC

 DECLARE Value CHARACTER;

 -- Get value from shared variable

 RETURN Value;

END;

The last example assumes that the procedure WriteSharedVariable1 and the

function ReadSharedVariable1 are in the same schema and are used by nodes

within the same flow. However, it does not matter whether or not the procedure

and function are contained within modules, or whether they are used within the

same or different nodes. The broker ensures that, at any particular time, only one

thread is executing any of the statements within the atomic sections. This ensures

that, for example, two simultaneous writes or a simultaneous read and write are

executed serially. Note that:

v The serialization is limited to the flow. Two flows which use BEGIN ATOMIC...

END statements with the same schema and label can be executed

simultaneously. In this respect, multiple instances within a flow and multiple

copies of a flow are not equivalent.

v The serialization is limited by the schema and label. Atomic BEGIN ... END

statements specified in different schemas or with different labels do not interact

with each other.

Note: You can look at this in a different way, if you prefer. For each combination

of message flow, schema, and label, the broker has a mutex that prevents

simultaneous access to the statements associated with that mutex.

Do not nest BEGIN ATOMIC... END statements, either directly or indirectly, because

this could lead to “deadly embraces”. For this reason, do not use a PROPAGATE

statement from within an atomic block.

It is not necessary to use the BEGIN ATOMIC construct in flows that will never be

deployed with more than one instance (but it might be unwise to leave this to

chance). It is also unnecessary to use the BEGIN ATOMIC construct on reads and

writes to shared variables. The broker always safely writes a new value to, and

safely reads the latest value from, a shared variable. ATOMIC is only required

when the application is sensitive to seeing intermediate results.

Consider the following example:

DECLARE LastOrderDate SHARED DATE;

...

SET LastOrderDate = CURRENT_DATE;

...

SET OutputRoot.XMLNSC.Data.Orders.Order[1].Date = LastOrderDate;

Here we assume that one thread is periodically updating LastOrderDate and

another is periodically reading it. There is no need to use ATOMIC, because the

second SET statement always reads a valid value. If the updating and reading

ESQL reference 1483

occur very closely in time, whether the old or new value is read is indeterminate,

but it is always one or the other. The result will never be garbage.

But now consider the following example:

DECLARE Count SHARED INT;

...

SET Count = Count + 1;

Here we assume that several threads are periodically executing the SET statement.

In this case you do need to use ATOMIC, because two threads might read Count in

almost the same instant, and get the same value. Both threads perform the

addition and both store the same value back. The end result is thus N+1 and not

N+2.

The broker does not automatically provide higher-level locking than this (for

example, locking covering the whole SET statement), because such locking is liable

to cause “deadly embraces”.

Hint

You can consider the BEGIN ... END statement to be a looping construct, which

always loops just once. The effect of an ITERATE or LEAVE statement nested

within a BEGIN ... END statement is then as you would expect: control is

transferred to the statement following the END. Using ITERATE or LEAVE within

a BEGIN ... END statement is useful in cases where there is a long series of

computations that needs to be abandoned, either because a definite result has been

achieved or because an error has occurred.

BROKER SCHEMA statement

The BROKER SCHEMA statement is optional; use it in an ESQL file to explicitly

identify the schema that contains the file.

1484 Message Flows

Syntax

�� esqlContents

BROKER SCHEMA

schemaName

PATH

schemaPathList
 ��

schemaName:

�

 < . <

identifier

schemaPathList:

�

 < , <

SchemaName

esqlContents:

�

 <<

createFunctionStatement

createModuleStatement

createProcedureStatement

DeclareStatement

An ESQL schema is a named container for functions, procedures, modules, and

variables. ESQL schema is similar to the namespace concept of C++ and XML, and

to the package concept of Java.

In the absence of a BROKER SCHEMA statement, all functions, procedures,

modules, and constants belong to the default schema. The default schema is

similar to the default namespace in C++, the no-target namespace in XML Schema,

and the default package in Java.

Note: The concept of BROKER SCHEMA in ESQL language is equivalent to

package in Java. The BROKER SCHEMA is not in the broker ESQL.

PATH clause

The PATH clause specifies a list of additional schemas to be searched when

matching function and procedure calls to their implementations. The schema in

which the call lies is implicitly included in the PATH clause.

The PATH clause is used to resolve unqualified function and procedure names in

the tools according to the following algorithm.

A single function or procedure must match the unqualified name, or the tools

report an error. You can correct the error by qualifying the function or procedure

name with a schemaId:

1. The current MODULE (if any) is searched for a matching function or

procedure. MODULE-scope functions or procedures are visible only within

ESQL reference 1485

their containing MODULE. If functions or procedures with the same name are

found in the current MODULE and schema, then MODULE-scope functions or

procedures take precedence over schema scoped functions or procedures.

2. The <node schema> (but none of its contained MODULEs) and the

<SQL-broker schema> or schemas identified by the PATH clause are searched

for a matching function or procedure.

Note: The schemaId must be a fully qualified schema name.

When you start a function or procedure, the name you use must be qualified by

the schema name. The behavior depends on the circumstances:

For a module routine:

v If the schema is specified, the named schema routine is started. The scalar

built-in functions, excluding CAST, EXTRACT, and the special registers, are

considered to be defined within an implicitly declared schema called SQL.

v If the schema is not specified, and the calling statement is in a module routine,

and a routine of the given name exists in the local module, then that local

routine is started.

v If the schema is not specified, and the calling statement is in a module routine,

and a routine of the given name does not exist in the local module, all of the

schemas in the schema path are searched for a routine of the same name.

If a matching function exists in one schema, it is used. If a matching function

exists in more than one schema then a compile time error occurs. If there is no

matching function, then the schema SQL is searched.

Note: This rule and the preceding rule imply that a local module routine takes

priority over a built-in routine of the same name.

For a schema routine:

v If the schema is specified, the named schema routine is started. The scalar

built-in functions, excluding CAST, EXTRACT, and the special registers, are

considered to be defined within an implicitly declared schema called SQL.

v If the schema is not specified, and the caller is a schema routine, and a routine

of the given name exists in the local schema, then that local routine is started.

v If the schema is not specified, and the calling statement is in a schema routine,

and a routine of the given name does not exist in the local schema, then all of

the schemas in the schema path are searched for a routine of the same name.

If a matching function exists in one schema, it is used. If a matching function

exists in more than one schema then a compile time error occurs. If there is no

matching function, the schema SQL is searched.

Note: This rule and the preceding rule imply that a local schema routine takes

priority over a built-in routine of the same name.

The <node schema> is defined as the schema containing the node’s message flow.

The <node schema> is specified in this manner to provide compatibility with

earlier versions of WebSphere Message Broker.

When the <node schema> is the only schema referenced, the broker XML message

does not include the extra features contained in WebSphere Message Broker V6.1.

1486 Message Flows

Brokers in previous versions of WebSphere Message Broker do not support

multiple schemas, for example, subroutine libraries for reuse. To deploy to a broker

in a previous version of the product, put all of the ESQL subroutines into the same

schema as the message flow and node that start the ESQL subroutines.

Eclipse tooling uses WebSphere Message Broker V6.1 ESQL syntax in content assist

and source code validation.

The broker schema of the message flow must contain, at the schema level, any of

the following in its ESQL files:

v A schema level function

v A schema level procedure

v A schema level constant

v A module level constant

v A module level variable

Without the presence of any of the preceding items, the Eclipse tooling generates

broker ESQL without MODULE and FUNCTION Main wrappers.

Function and procedure names must be unique within their SCHEMA or

MODULE.

Examples

The following example adds a path to a schema called CommonUtils:

BROKER SCHEMA CommonUtils

PATH SpecialUtils;

MODULE

The next example adds a path to the default schema:

PATH CommonUtils, SpecialUtils;

MODULE

CALL statement

The CALL statement calls (invokes) a routine.

ESQL reference 1487

Syntax

�� CALL RoutineName (ParameterList)

BrokerSchemaName

.
 �

�
Qualifiers

INTO

target
 ��

BrokerSchemaName:

�

 .

Identifier

ParameterList:

�

 ,

Expression

Qualifiers:

 IN DatabaseSchemaReference

EXTERNAL

SCHEMA

DatabaseSchemaName

DatabaseSchemaReference:

 Database . SchemaClause

.

DatabaseSourceClause

DatabaseSourceClause:

 DatabaseSourceName

{

DatabaseSourceExpr

}

SchemaClause:

 SchemaName

{

SchemaExpr

}

Using the CALL statement

The CALL statement invokes a routine. A routine is a user-defined function or

procedure that has been defined by one of the following:

v A CREATE FUNCTION statement

v A CREATE PROCEDURE statement

1488 Message Flows

Note: As well as standard user-defined functions and procedures, you can also use

CALL to invoke built-in (broker-provided) functions and user-defined SQL

functions. However, the usual way of invoking these types of function is

simply to include their names in expressions.

The called routine must be invoked in a way that matches its definition. For

example, if a routine has been defined with three parameters, the first two of type

integer and the third of type character, the CALL statement must pass three

variables to the routine, each of a data-type that matches the definition. This is

called exact signature matching, which means that the signature provided by the

CALL statement must match the signature provided by the routine’s definition.

Exact signature matching applies to a routine’s return value as well. If the

RETURNS clause is specified on the CREATE FUNCTION statement, or the routine

is a built-in function, the INTO clause must be specified on the CALL statement. A

return value from a routine cannot be ignored. Conversely, if the RETURNS clause

is not specified on the CREATE FUNCTION statement, the INTO clause must not

be specified, because there is no return value from the routine.

You can use the CALL statement to invoke a routine that has been implemented in

any of the following ways:

v ESQL.

v Java.

v As a stored procedure in a database.

v As a built-in (broker-provided) function. (But see the note above about calling

built-in functions.)

This variety of implementation means that some of the clauses in the CALL syntax

diagram are not applicable (or allowed) for all types of routine. It also allows the

CALL statement to invoke any type of routine, irrespective of how the routine has

been defined.

When the optional BrokerSchemaName parameter is not specified, the broker SQL

parser searches for the named procedure using the algorithm described in the

PATH statement (see the “PATH clause” on page 1485 of the BROKER SCHEMA

statement).

When the BrokerSchemaName parameter is specified, the broker SQL parser invokes

the named procedure in the specified schema without first searching the path.

However, if a procedure reference is ambiguous (that is, there are two procedures

with the same name in different broker schemas) and the reference is not qualified

by the optional BrokerSchemaName, the Eclipse toolset generates a “Tasks view

error” that you must correct to deploy the ambiguous code.

The broker-provided built-in functions are automatically placed in a predefined

broker schema called SQL. The SQL schema is always searched last for a routine

that has not been matched to a user-defined routine. Therefore, a user-defined

module takes precedence over a built-in routine of the same name.

Each broker schema provides a unique symbol or namespace for a routine, so a

routine name is unique when it is qualified by the name of the schema to which it

belongs.

The INTO clause is used to store the return value from a routine that has been

defined with a RETURNS clause, or from a built-in function. The target can be an

ESQL reference 1489

ESQL variable of a data type that matches the data type on the RETURNS clause,

or a dot-separated message reference. For example, both of the following ESQL

statements are valid:

 CALL myProc1() INTO cursor;

 CALL myProc1() INTO OutputRoot.XMLNS.TestValue1;

The CALL statement passes the parameters into the procedure in the order given

to it. Parameters that have been defined as IN or INOUT on the routine’s

definition are evaluated before the CALL is made, but parameters defined as OUT

are always passed in as NULL parameters of the correct type. When the procedure

has completed, any parameters declared as OUT or INOUT are updated to reflect

any changes made to them during the procedure’s execution. Parameters defined

as IN are never changed during the cause of a procedure’s execution.

Routine overloading is not supported. This means that you cannot create two

routines of the same name in the same broker schema. If the broker detects that a

routine has been overloaded, it raises an exception. Similarly, you cannot invoke a

database stored procedure that has been overloaded. A database stored procedure

is overloaded if another procedure of the same name exists in the same database

schema. However, you can invoke an overloaded Java method, as long as you

create a separate ESQL definition for each overloaded method you want to call,

and give each ESQL definition a unique routine name.

CASE statement

The CASE statement uses rules defined in WHEN clauses to select a block of

statements to process.

There are two forms of the CASE statement: the simple form and the searched

form.

Syntax

Simple CASE statement

��

CASE

MainExpression

�

 <

WHEN

Expression

THEN

Statements

�

�
ELSE

statements
 END CASE ��

1490 Message Flows

Searched CASE statement

��

CASE

�

 <

WHEN

Expression

THEN

Statements

ELSE

statements

�

� END CASE ��

In the simple form, the main expression is evaluated first. Each WHEN clause

expression is evaluated in turn until the result is equal to the main expression’s

result. That WHEN clause’s statements are then processed. If no match is found

and the optional ELSE clause is present, the ELSE clause’s statements are executed

instead. The test values do not have to be literals. The only requirement is that the

main expression and the WHEN clause expressions evaluate to types that can be

compared.

In the searched form, each WHEN clause expression is evaluated in turn until one

evaluates to TRUE. That WHEN clause’s statements are then executed. If none of

the expressions evaluates to TRUE and the optional ELSE clause is present, the

ELSE clause’s statements are executed. There does not have to be any similarity

between the expressions in each CASE clause. The only requirement is that they all

evaluate to a Boolean value.

The ESQL language has both a CASE statement and a CASE function (see “CASE

function” on page 1616 for details of the CASE function). The CASE statement

chooses one of a set of statements to execute. The CASE function chooses one of a

set of expressions to evaluate and returns as its value the return value of the

chosen expression.

Examples

Simple CASE statement:

CASE size

 WHEN minimum + 0 THEN

 SET description = ’small’;

 WHEN minimum + 1 THEN

 SET description = ’medium’;

 WHEN minimum + 2 THEN

 SET description = ’large’;

 CALL handleLargeObject();

 ELSE

 SET description = ’unknown’;

 CALL handleError();

END CASE;

Searched CASE statement:

CASE

 WHEN i <> 0 THEN

 CALL handleI(i);

 WHEN j> 1 THEN

ESQL reference 1491

CALL handleIZeroAndPositiveJ(j);

 ELSE

 CALL handleAllOtherCases(j);

END CASE;

CREATE statement

The CREATE statement creates a new message field.

1492 Message Flows

Syntax

�� CREATE Qualifier Target

AsClause

(1)

DomainClause

(2)

RepeatClauses

ValuesClauses

FromClause

(3)

ParseClause

 ��

Qualifier:

 FIELD

PREVIOUSSIBLING

OF

NEXTSIBLING

FIRSTCHILD

LASTCHILD

AsClause:

 AS AliasFieldReferenceVariable

DomainClause:

 DOMAIN expression

RepeatClauses:

 REPEAT

VALUE

-expression

Values clauses:

NamesClauses

VALUE

expression

NamesClauses:

TYPE

Expression

NAMESPACE

Expression

NAME

Expression

IDENTITY

PathElement

FromClause:

 FROM SourceFieldReference

Parse clause:

�

 PARSE (BitStreamExpression)

<<

ENCODING

expression

CCSID

expression

SET

expression

TYPE

expression

FORMAT

expression

Options

NameValueOptions

ESQL reference 1493

Options:

�

 <<-,-<<

OPTIONS

expression

NameValueOptions:

�

 <<-,-<<

NAMEVALUEOPTIONS

expression

Notes:

1 Do not use the DomainClause and ParseClause with the FIELD qualifier.

2 Use the RepeatClause only with the PREVIOUSSIBLING and

NEXTSIBLING qualifiers

3 Each subclause within the ParseClause can occur once only.

The new message field is positioned either at a given location (CREATE FIELD) or

relative to a currently-existing location (CREATE ... OF...). New fields can be

created only when the target field reference points to a modifiable message, for

example Environment, InputLocalEnvironment, OutputLocalEnvironment,

OutputRoot, or OutputExceptionList.

If you include a FIELD clause, the field specified by target is navigated to (creating

the fields if necessary) and any values clause or from clause is executed. This form

of CREATE statement does not necessarily create any fields at all; it ensures only

that the given fields do exist.

If you use array indices in the target field reference, only one instance of a

particular field can be created. Thus, if you write a SET statement starting:

 SET OutputRoot.XMLNS.Message.Structure[2].Field = ...

at least one instance of Structure must already exist in the message. That is, the

only fields in the tree that are created are ones on a direct path from the root to the

field identified by the field reference.

If you include a PREVIOUSSIBLING, NEXTSIBLING, FIRSTCHILD, or

LASTCHILD clause, the field specified by target is navigated to (creating the fields

if necessary) in exactly the same way as for the FIELD clause. A new field is then

created and attached in the specified position (for example as PREVIOUSSIBLING

or FIRSTCHILD). This form of CREATE statement always creates a new field and

places it in the specified position.

If you use two CREATE FIRSTCHILD OF target statements that specify the same

target, the second statement creates a new field as the first child of the target, and

displaces the previously-created first child to the right in the message tree (so it is

no longer the first child). Similarly, CREATE LASTCHILD OF target navigates to

the target field and adds a new field as its rightmost child, displacing the previous

last child to the left.

1494 Message Flows

CREATE PREVIOUSSIBLING OF target creates a field to the immediate left of the

field specified by target (so the depth of the tree is not changed); similarly,

CREATE NEXTSIBLING OF target creates a field to the immediate right of the

field specified by target. When creating PREVIOUSSIBLING or NEXTSIBLING, you

can use the REPEAT keyword to copy the type and name of the new field from the

current field.

AS clause:

If present, the AS clause moves the named reference variable to point at the

newly-created field. This is useful because you probably want to involve the new

field in some further processing.

DOMAIN clause:

If present, the DOMAIN clause associates the new field with a new parser of the

specified type. This clause expects a root field name (for example, XMLNS or

MQRFH2). If the DOMAIN clause is present, but the value supplied is a

zero-length character string, a new parser of the same type as the parser that owns

the field specified by target is created. An exception is thrown if the supplied

domain name is not CHARACTER data type or its value is NULL. Do not specify

the DOMAIN clause with the FIELD clause; it is not certain that a new field is

created.

REPEAT clause:

Use the REPEAT clause to copy the new field’s type and name from the target

field. Alternatively, the new field’s type, name, and value can be:

v Copied from any existing field (using the FROM clause)

v Specified explicitly (using the VALUES clause)

v Defined by parsing a bit stream (using the PARSE clause)

In the case of the FROM and PARSE clauses, you can also create children of the

new field.

VALUES clause:

For the VALUES clause, the type, name, and value (or any subset of these) can be

specified by any expression that returns a suitable data type (INTEGER for type,

CHARACTER for name, and any scalar type for value). An exception is thrown if

the value supplied for a type or name is NULL.

NAMES clause:

The NAMES clause takes any expression that returns a non-null value of type

character. The meaning depends on the presence of NAME and NAMESPACE

clauses as follows:

 NAMESPACE NAME Element named as follows

No No The element is nameless (name flag not

automatically set)

No Yes The element is given the name in the default

namespace

Yes No The element is given the empty name in the

given namespace

ESQL reference 1495

NAMESPACE NAME Element named as follows

Yes Yes The element is given the given name in the

given namespace

The IDENTITY operand takes a single path element in place of the TYPE and

NAME clauses, where a path element contains (at most) a type, a namespace, a

name, and an index. These specify the type, namespace, name, and index of the

element to be created and follow all the rules described in the topic for field

references (see “ESQL field references” on page 1465). For example:

 IDENTITY (XMLNS.attribute)Space1:Name1[42]

See the Examples section below for how to use the IDENTITY operand.

FROM clause:

For the FROM clause, the new field’s type, name, and value are taken from the

field pointed to by SourceFieldReference. Any existing child fields of the target are

detached (the field could already exist in the case of a FIELD clause), and the new

field is given copies of the source field’s children, grandchildren, and so on.

PARSE clause:

If a PARSE clause is present, a subtree is built under the newly-created field from

the supplied bit stream. The algorithm for doing this varies from parser to parser

and according to the options specified. All parsers support the mode

RootBitStream, in which the tree creation algorithm is the same as that used by an

input node.

Some parsers also support a second mode, FolderBitStream, which generates a

sub-tree from a bit stream created by the ASBITSTREAM function (see

“ASBITSTREAM function” on page 1603) using that mode.

When you use the PARSE clause, specify a scalar value containing the bitstream to

be parsed for BitStreamExpression. If you use a message tree field reference you

must ensure it contains a scalar value that contains the bitstream. An existing

message body folder such as InputRoot.XMLNSC does not contain a bitstream and

therefore you cannot use this to serialize the XMLNS folder. If you pass a value other

than a scalar containing the bitstream to the PARSE clause for BitStreamExpression,

then the message flow produces a BIP2906 error message. Instead, you must first

call the ASBITSTREAM function to serialize the existing message tree folder. The

result of the ASBITSTREAM function can then be passed as the BitStreamExpression

to the PARSE clause.

The following example shows how to serialize the XMLNSC folder and then use

the result of the ASBITSTREAM in the PARSE clause.

DECLARE inCCSID INT InputProperties.CodedCharSetId;

DECLARE inEncoding INT InputProperties.Encoding;

DECLARE inBitstream BLOB ASBITSTREAM(InputRoot.XMLNSC, inEncoding, inCCSID);

CREATE LASTCHILD OF OutputRoot DOMAIN(’MRM’)

 PARSE(inBitStream, inEncoding, inCCSID, ’DP3UK14002001’,

 ’TestCase’, ’XML1’, options);

When the PARSE statement is processed, any PARSE clause expressions are

evaluated. An exception is thrown if any of the following expressions do not result

in a non-null value of the appropriate type:

1496 Message Flows

Clause Type Default value

ENCODING Integer 0

CCSID Integer 0

SET Character Zero length string

TYPE Character Zero length string

FORMAT Character Zero length string

The ENCODING clause accepts any expression that returns a value of type integer.

However, it is only meaningful to generate option values from the list of supplied

constants:

 MQENC_INTEGER_NORMAL

 MQENC_INTEGER_REVERSED

 MQENC_DECIMAL_NORMAL

 MQENC_DECIMAL_REVERSED

 MQENC_FLOAT_IEEE_NORMAL

 MQENC_FLOAT_IEEE_REVERSED

 MQENC_FLOAT_S390

The values used for the CCSID clause follow the normal numbering system. For

example, 1200 = UCS-2, 1208 = UTF-8.

For absent clauses, the given default values are used. Use the CCSID and encoding

default values because these take their values from the queue manager’s encoding

and CCSID settings.

Similarly, using the default values for each of the message set, type, and format

options is useful, because many parsers do not require message set, type, or format

information, and so any valid value is sufficient.

When any expressions have been evaluated, a bit stream is parsed using the results

of the expressions.

Note: Because this function has a large number of clauses, an alternative syntax is

supported, in which the parameters are supplied as a comma-separated list

rather than by named clauses. In this case the expressions must be in the

order:

ENCODING -> CCSID -> SET -> TYPE -> FORMAT -> OPTIONS

The list can be truncated at any point and an entirely empty expression can

be used in any clauses where you do not supply a value.

For details of the syntax of the TYPE clause, refer to Specifying namespaces in the

Message Type property.

OPTIONS subclause:

The value of the OPTIONS subclause can be either a single integer expression or a

list of comma-separated integer expressions. When a list of integer expressions is

supplied, the values of all the integer expressions are combined into a single

integer using the logical OR operator.

NAMEVALUEOPTIONS subclause:

ESQL reference 1497

The NAMEVALUEOPTIONS subclause specifies a comma-separated list of named

options and their values. Each item in the list must be a string expreesion of the

form ’optionName=value’. There are two valid option names:

XMLNSC.OpaqueElement and XMLNSC.OpaqueElementLiteral.

Note:

Examples of how to use the CREATE statement

1. The following example creates the specified field:

CREATE FIELD OutputRoot.XMLNS.Data;

2. The following example creates a field with no name, type, or value as the first

child of ref1:

CREATE FIRSTCHILD OF ref1;

3. The following example creates a field using the specified type, name, and

value:

CREATE NEXTSIBLING OF ref1 TYPE NameValue NAME ’Price’ VALUE 92.3;

4. The following example creates a field with a type and name, but no value; the

field is added before the sibling indicated by the dynamic reference (ref1):

CREATE PREVIOUSSIBLING OF ref1 TYPE Name NAME ’Quantity’;

5. The following example creates a field named Component, and moves the

reference variable targetCursor to point at it:

CREATE FIRSTCHILD OF targetCursor AS targetCursor NAME ’Component’;

6. The following example creates a new field as the right sibling of the field

pointed to by the reference variable targetCursor having the same type and

name as that field. The statement then moves targetCursor to point at the new

field:

CREATE NEXTSIBLING OF targetCursor AS targetCursor REPEAT;

7. The following example shows how to use the PARSE clause:

DECLARE bodyBlob BLOB ASBITSTREAM(InputRoot.XMLNS, InputProperties.Encoding,

 InputProperties.CodedCharSetId);

DECLARE creationPtr REFERENCE TO OutputRoot;

CREATE LASTCHILD OF creationPtr DOMAIN(’XMLNS’) PARSE(bodyBlob,

 InputProperties.Encoding,

 InputProperties.CodedCharSetId);

This example can be extended to show the serializing and parsing of a field or

folder:

DECLARE bodyBlob BLOB ASBITSTREAM(InputRoot.XMLNS.TestCase.myFolder,

 InputProperties.Encoding,

InputProperties.CodedCharSetId,",",",FolderBitStream);

DECLARE creationPtr REFERENCE TO OutputRoot;

CREATE LASTCHILD OF creationPtr DOMAIN(’XMLNS’) PARSE(bodyBlob,

 InputProperties.Encoding,

InputProperties.CodedCharSetId,",",",FolderBitStream);

8. The following example shows how to use the IDENTITY operand:

CREATE FIELD OutputRoot.XMLNS.TestCase.Root IDENTITY (XML.ParserRoot)Root;

CREATE FIELD OutputRoot.XMLNS.TestCase.Root.Attribute

 IDENTITY (XML.Attribute)NSpace1:Attribute VALUE ’Attrib Value’;

CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Root

 IDENTITY (XML.Element)NSpace1:Element1[1] VALUE ’Element 1 Value’;

CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Root

 IDENTITY (XML.Element)NSpace1:Element1[2] VALUE ’Element 2 Value’;

This sequence of statements produces the following output message:

1498 Message Flows

<TestCase>

 <Root xmlns:NS1="NSpace1" NS1:Attribute="Attrib Value">

 <NS1:Element1>Element 1 Value</NS1:Element1>

 <NS1:Element1>Element 2 Value</NS1:Element1>

 </Root>

</TestCase>

9. The following example shows how you can use the DOMAIN clause to avoid

losing information unique to the XMLNS parser when an unlike parser copy

occurs:

DECLARE bodyBlob BLOB ASBITSTREAM(InputRoot.XMLNS, InputProperties.Encoding,

InputProperties.CodedCharSetId);

CREATE FIELD Environment.Variables.myXMLTree;

DECLARE creationPtr REFERENCE TO Environment.Variables.myXMLTree;

CREATE FIRSTCHILD OF creationPtr DOMAIN(’XMLNS’) PARSE(bodyBlob,

 InputProperties.Encoding,

InputProperties.CodedCharSetId);

An example of a CREATE statement

This example provides sample ESQL and an input message, which together

produce the output message at the end of the example.

CREATE COMPUTE MODULE CreateStatement_Compute

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 CALL CopyMessageHeaders();

 CREATE FIELD OutputRoot.XMLNS.TestCase.description TYPE NameValue VALUE ’This is my TestCase’ ;

 DECLARE cursor REFERENCE TO OutputRoot.XMLNS.TestCase;

 CREATE FIRSTCHILD OF cursor Domain(’XMLNS’)

 NAME ’Identifier’ VALUE InputRoot.XMLNS.TestCase.Identifier;

 CREATE LASTCHILD OF cursor Domain(’XMLNS’) NAME ’Sport’ VALUE InputRoot.XMLNS.TestCase.Sport;

 CREATE LASTCHILD OF cursor Domain(’XMLNS’) NAME ’Date’ VALUE InputRoot.XMLNS.TestCase.Date;

 CREATE LASTCHILD OF cursor Domain(’XMLNS’) NAME ’Type’ VALUE InputRoot.XMLNS.TestCase.Type;

 CREATE FIELD cursor.Division[1].Number TYPE NameValue VALUE ’Premiership’;

 CREATE FIELD cursor.Division[1].Result[1].Number TYPE NameValue VALUE ’1’ ;

 CREATE FIELD cursor.Division[1].Result[1].Home TYPE Name;

 CREATE LASTCHILD OF cursor.Division[1].Result[1].Home NAME ’Team’ VALUE ’Liverpool’ ;

 CREATE LASTCHILD OF cursor.Division[1].Result[1].Home NAME ’Score’ VALUE ’4’;

 CREATE FIELD cursor.Division[1].Result[1].Away TYPE Name;

 CREATE LASTCHILD OF cursor.Division[1].Result[1].Away NAME ’Team’ VALUE ’Everton’;

 CREATE LASTCHILD OF cursor.Division[1].Result[1].Away NAME ’Score’ VALUE ’0’;

 CREATE FIELD cursor.Division[1].Result[2].Number TYPE NameValue VALUE ’2’;

 CREATE FIELD cursor.Division[1].Result[2].Home TYPE Name;

 CREATE LASTCHILD OF cursor.Division[1].Result[2].Home NAME ’Team’ VALUE ’Manchester United’;

 CREATE LASTCHILD OF cursor.Division[1].Result[2].Home NAME ’Score’ VALUE ’2’;

 CREATE FIELD cursor.Division[1].Result[2].Away TYPE Name;

 CREATE LASTCHILD OF cursor.Division[1].Result[2].Away NAME ’Team’ VALUE ’Arsenal’;

 CREATE LASTCHILD OF cursor.Division[1].Result[2].Away NAME ’Score’ VALUE ’3’;

 CREATE FIELD cursor.Division[2].Number TYPE NameValue VALUE ’2’;

 CREATE FIELD cursor.Division[2].Result[1].Number TYPE NameValue VALUE ’1’;

 CREATE FIELD cursor.Division[2].Result[1].Home TYPE Name;

 CREATE LASTCHILD OF cursor.Division[2].Result[1].Home NAME ’Team’ VALUE ’Port Vale’;

 CREATE LASTCHILD OF cursor.Division[2].Result[1].Home NAME ’Score’ VALUE ’9’ ;

 CREATE FIELD cursor.Division[2].Result[1].Away TYPE Name;

 CREATE LASTCHILD OF cursor.Division[2].Result[1].Away NAME ’Team’ VALUE ’Brentford’;

 CREATE LASTCHILD OF cursor.Division[2].Result[1].Away NAME ’Score’ VALUE ’5’;

 END;

 CREATE PROCEDURE CopyMessageHeaders() BEGIN

 DECLARE I INTEGER 1;

 DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

 WHILE I < J DO

 SET OutputRoot.*[I] = InputRoot.*[I];

ESQL reference 1499

SET I = I + 1;

 END WHILE;

 END;

END MODULE;

CREATE FUNCTION statement

The CREATE FUNCTION statement defines a callable function or procedure.

You can also use the CREATE PROCEDURE statement to define a callable function

or procedure, also known as a routine.

1500 Message Flows

Syntax

�� CREATE RoutineType RoutineName (ParameterList) �

�
ReturnType

Language

ResultSet
 RoutineBody ��

RoutineType:

 FUNCTION

PROCEDURE

ParameterList:

�

 ,

Parameter

Parameter:

 (1)

IN

OUT

INOUT

ParameterName

DataType

CONSTANT

(2)

NAMESPACE

NAME

ReturnType:

 RETURNS DataType

Language:

 LANGUAGE ESQL

(3)

DATABASE

JAVA

ResultSet:

 DYNAMIC RESULT SETS integer

RoutineBody:

 Statement

EXTERNAL

NAME

ExternalRoutineName

Notes:

1 If the routine type is FUNCTION, the direction indicator (IN, OUT, or

ESQL reference 1501

|

INOUT) is optional for each parameter. However, for documentation

purposes, it is good programming practice to specify a direction indicator

for all new routines; if you do not specify the direction, a default value of

IN is used.

2 When the NAMESPACE or NAME clause is used, its value is implicitly

CONSTANT and of type CHARACTER. For information about the use of

CONSTANT variables, see the “DECLARE statement” on page 1525.

3 If the routine type is FUNCTION, you cannot specify a LANGUAGE of

DATABASE.

Overview

The CREATE FUNCTION and CREATE PROCEDURE statements define a callable

function or procedure, also known as a routine.

In previous versions of this product, CREATE FUNCTION and CREATE

PROCEDURE had different uses and different capabilities. Subsequent

enhancements have resulted in the differences listed previously in notes 1 and 3.

Routines are useful for creating reusable blocks of code that can be run

independently many times. You can implement them as a series of ESQL

statements, a Java method, or a database stored procedure. This flexibility means

that some of the clauses in the syntax diagram are not applicable (or allowed) for

all types of routine.

Each routine has a name, which must be unique within the schema to which it

belongs. Routine names therefore cannot be overloaded; if the broker detects that a

routine name has been overloaded, it raises an exception.

The LANGUAGE clause specifies the language in which the routine’s body is

written. The options are:

DATABASE

The procedure is called as a database stored procedure.

ESQL

The procedure is called as an ESQL routine.

JAVA

The procedure is called as a static method in a Java class.

Unspecified

If you do not specify the LANGUAGE clause, the default language is ESQL

unless you specify the EXTERNAL NAME clause (in which case, the default

language is DATABASE).

Restrictions on the use of the LANGUAGE clause exist. You cannot use:

v The ESQL option with an EXTERNAL NAME clause

v The DATABASE or JAVA options without an EXTERNAL NAME clause

v The DATABASE option with a routine type of FUNCTION

Specify the routine’s name using the RoutineName clause, and the routine’s

parameters using the ParameterList clause. If the LANGUAGE clause specifies

ESQL, implement the routine using a single ESQL statement. This statement is

1502 Message Flows

|
|
|
|

most useful if it is a compound statement (BEGIN ... END), because it can then

contain as many ESQL statements as necessary to fulfil its function.

Alternatively, instead of providing an ESQL body for the routine, you can specify a

LANGUAGE clause other than ESQL. You can then use the EXTERNAL NAME

clause to provide a reference to the actual body of the routine, wherever it is

located externally to the broker. For more information about using the EXTERNAL

NAME clause, see “Invoking stored procedures” on page 332 and Calling a Java

routine.

Routines of any LANGUAGE type can have IN, OUT, and INOUT parameters. The

caller can pass several values into the routine, and receive back several updated

values. These returned parameters are in addition to any RETURNS clause that

you have defined for the routine. The RETURNS clause defines the value that the

routine returns to the caller.

Routines that are implemented in different languages have their own restrictions

on which data types can be passed in or returned; these restrictions are

documented later in this section. The data type of the returned value must match

the data type of the value that is defined to be returned from the routine. Also, if a

routine is defined to have a return value, the caller of the routine cannot ignore it.

For more information see “CALL statement” on page 1487.

Routines can be defined in either a module or a schema. Routines that are defined

in a module are local in scope to the current node, which means that only code

belonging to that same module (or node) can invoke them. Routines that are

defined in a schema, however, can be invoked by using either of the following

options:

v Code in the same schema

v Code in any other schema, if either of the following conditions applies:

– The other schema’s PATH clause contains the path to the called routine

– The called routine is invoked using its fully qualified name (which is its

name, prefixed by its schema name, separated by a period)

Thus, if you need to invoke the same routine in more than one node, define it in a

schema.

For any language or routine type, the method of invocation of the routine must

match the manner of declaration of the routine. If the routine has a RETURNS

clause, use either the FUNCTION invocation syntax or a CALL statement with an

INTO clause. Conversely, if a routine has no RETURNS clause, you must use a

CALL statement without an INTO clause.

Parameter directions

Parameters that are passed to routines always have a direction associated with

them, which is one of the following types:

IN The value of the parameter cannot be changed by the routine. A NULL value

for the parameter is allowed, and can be passed to the routine.

OUT

When it is received by the called routine, the parameter that is passed into the

routine always has a NULL value of the correct data type. This value is set

irrespective of its value before the routine is called. The routine is allowed to

change the value of the parameter.

ESQL reference 1503

INOUT

INOUT is both an IN and an OUT parameter. It passes a value into the

routine, and the value that is passed in can be changed by the routine. A

NULL value for the parameter is allowed, and can be passed both into and out

of the routine.

If the routine type is FUNCTION, the direction indicator (IN, OUT, INOUT) is

optional for each parameter. However, it is good programming practice to specify a

direction indicator for all new routines of any type for documentation purposes.

ESQL variables that are declared to be CONSTANT (or references to variables

declared to be CONSTANT) are not allowed to have the direction OUT or INOUT.

ESQL routines

ESQL routines are written in ESQL, and have a LANGUAGE clause of ESQL. The

body of an ESQL routine is typically a compound statement of the form BEGIN ...

END, that contains multiple statements for processing the parameters that are

passed to the routine.

ESQL example 1

The following example shows the same procedure as in “Database routine example

1” on page 1522, but is implemented as an ESQL routine and not as a stored

procedure. The CALL syntax and results of this routine are the same as those in

“Restrictions on Java routines” on page 1508.

CREATE PROCEDURE swapParms (

 IN parm1 CHARACTER,

 OUT parm2 CHARACTER,

 INOUT parm3 CHARACTER)

BEGIN

 SET parm2 = parm3;

 SET parm3 = parm1;

 END;

ESQL example 2

This example procedure shows the recursive use of an ESQL routine. It parses a

tree, visiting all places at and below the specified starting point, and reports what

it has found:

SET OutputRoot.MQMD = InputRoot.MQMD;

 DECLARE answer CHARACTER;

 SET answer = ’’;

 CALL navigate(InputRoot.XMLNS, answer);

 SET OutputRoot.XMLNS.Data.FieldNames = answer;

 CREATE PROCEDURE navigate (IN root REFERENCE, INOUT answer CHARACTER)

 BEGIN

 SET answer = answer || ’Reached Field... Type:’

 || CAST(FIELDTYPE(root) AS CHAR)||

 ’: Name:’ || FIELDNAME(root) || ’: Value :’ || root || ’: ’;

 DECLARE cursor REFERENCE TO root;

 MOVE cursor FIRSTCHILD;

 IF LASTMOVE(cursor) THEN

 SET answer = answer || ’Field has children... drilling down ’;

 ELSE

1504 Message Flows

SET answer = answer || ’Listing siblings... ’;

 END IF;

 WHILE LASTMOVE(cursor) DO

 CALL navigate(cursor, answer);

 MOVE cursor NEXTSIBLING;

 END WHILE;

 SET answer = answer || ’Finished siblings... Popping up ’;

 END;

When given the following input message:

<Person>

 <Name>John Smith</Name>

 <Salary period=’monthly’ taxable=’yes’>-1200</Salary>

</Person>

the procedure produces the following output, which has been manually formatted:

 Reached Field... Type:16777232: Name:XML: Value :: Field has children...

 drilling down

 Reached Field... Type:16777216: Name:Person: Value :: Field has children...

 drilling down

 Reached Field... Type:16777216: Name:Name:

 Value :John Smith: Field has children... drilling down

 Reached Field... Type:33554432: Name::

 Value :John Smith: Listing siblings... Finished siblings... Popping up

 Finished siblings... Popping up

 Reached Field... Type:16777216: Name:Salary:

 Value :-1200: Field has children... drilling down

 Reached Field... Type:50331648: Name:period:

 Value :monthly: Listing siblings... Finished siblings... Popping up

 Reached Field... Type:50331648: Name:taxable:

 Value :yes: Listing siblings... Finished siblings... Popping up

 Reached Field... Type:33554432: Name::

 Value :-1200: Listing siblings... Finished siblings... Popping up

 Finished siblings... Popping up

 Finished siblings... Popping up

 Finished siblings... Popping up

Java routines

A Java routine is implemented as a Java method, and has a LANGUAGE clause of

JAVA. For Java routines, the ExternalRoutineName must contain the class name and

method name of the Java method to be called. Specify the ExternalRoutineName like

this:

>>--"-- className---.---methodName--"--------------><

where className identifies the class that contains the method and methodName

identifies the method to invoke. If the class is part of a package, the class identifier

part must include the complete package prefix; for example,

“com.ibm.broker.test.MyClass.myMethod”.

To find the Java class, the broker uses the search method that is described in

“Deploying Java classes” on page 1508.

Any Java method that you want to invoke must have the following basic signature:

public static <return-type> <method-name> (< 0 - N parameters>)

where <return-type> must be in the list of Java IN data types in the table in

“ESQL to Java data type mapping” on page 1507 (excluding the REFERENCE type,

which is not permitted as a return value), or the Java void data type. The

ESQL reference 1505

parameter data types must also be in the “ESQL to Java data type mapping” on

page 1507 table. In addition, the Java method is not allowed to have an exception

throws clause in its signature.

The Java method’s signature must match the ESQL routine’s declaration of the

method. You must also observe the following rules:

v Ensure that the Java method name, including the class name and any package

qualifiers, matches the procedure’s EXTERNAL NAME.

v If the Java return type is void, do not put a RETURNS clause on the ESQL

routine’s definition. Conversely, if the Java return type is not void, you must put

a RETURNS clause on the ESQL routine’s definition.

v Ensure that every parameter’s type and direction matches the ESQL declaration,

according to the rules listed in the table in “ESQL to Java data type mapping”

on page 1507.

v Ensure that the method’s return type matches the data type of the RETURNS

clause.

v Enclose EXTERNAL NAME in quotation marks because it must contain at least

″class.method″.

v If you want to invoke an overloaded Java method, you must create a separate

ESQL definition for each overloaded method and give each ESQL definition a

unique routine name.

You can use the Java user-defined node API in your Java method, provided that

you observe the restrictions documented in “Restrictions on Java routines” on page

1508. For more information about using the Java API, see Compiling a Java

user-defined node.

Java routine example 1

This routine contains three parameters of varying directions, and returns an

integer, which maps to a Java return type of java.lang.Long.

CREATE FUNCTION myProc1(IN P1 INTEGER, OUT P2 INTEGER, INOUT P3 INTEGER)

 RETURNS INTEGER

 LANGUAGE JAVA

 EXTERNAL NAME "com.ibm.broker.test.MyClass.myMethod1";

You can use the following ESQL to invoke myProc1:

CALL myProc1(intVar1, intVar2, intVar3) INTO intReturnVar3;

-- or

SET intReturnVar3 = myProc1(intVar1, intVar2, intVar3);

Java routine example 2

This routine contains three parameters of varying directions and has a Java return

type of void.

CREATE PROCEDURE myProc2(IN P1 INTEGER, OUT P2 INTEGER, INOUT P3 INTEGER)

 LANGUAGE JAVA

 EXTERNAL NAME "com.ibm.broker.test.MyClass.myMethod2";

You must use the following ESQL to invoke myProc2:

CALL myProc2(intVar1, intVar2, intVar3);

The following Java class provides a method for each of the preceding Java

examples:

1506 Message Flows

package com.ibm.broker.test;

class MyClass {

public static Long myMethod1(Long P1, Long[] P2 Long[] P3) { ... }

public static void myMethod2(Long P2, Long[] P2 Long[] P3) { ... }

 /* When either of these methods is called:

 P1 may or may not be NULL (depending on the value of intVar1).

 P2[0] is always NULL (whatever the value of intVar2).

 P3[0] may or may not be NULL (depending on the value of intVar3).

 This is the same as with LANGUAGE ESQL routines.

 When these methods return:

 intVar1 is unchanged

 intVar2 may still be NULL or may have been changed

 intVar3 may contain the same value or may have been changed.

 This is the same as with LANGUAGE ESQL routines.

 When myMethod1 returns: intReturnVar3 is either NULL (if the

 method returns NULL) or it contains the value returned by the

 method.

 */

}

ESQL to Java data type mapping

The following table summarizes the mappings from ESQL to Java.

Notes:

v Only the Java scalar wrappers are passed to Java.

v The ESQL scalar types are mapped to Java data types as object wrappers,

or object wrapper arrays, depending upon the direction of the procedure

parameter. Each wrapper array contains exactly one element.

v Scalar object wrappers are used to allow NULL values to be passed to

and from Java methods.

 ESQL data types

1 Java IN data types Java INOUT and OUT data types

INTEGER, INT java.lang.Long java.lang.Long []

FLOAT java.lang.Double java.lang.Double[]

DECIMAL java.math.BigDecimal java.math.BigDecimal[]

CHARACTER, CHAR java.lang.String java.lang.String[]

BLOB byte[] byte[][]

BIT java.util.BitSet java.util.BitSet[]

DATE com.ibm.broker.plugin.MbDate com.ibm.broker.plugin.MbDate[]

TIME

2 com.ibm.broker.plugin.MbTime com.ibm.broker.plugin.MbTime[]

GMTTIME

2 com.ibm.broker.plugin.MbTime com.ibm.broker.plugin.MbTime[]

TIMESTAMP

2 com.ibm.broker.plugin.MbTimestamp com.ibm.broker.plugin.MbTimestamp[]

GMTTIMESTAMP

2 com.ibm.broker.plugin.MbTimestamp com.ibm.broker.plugin.MbTimestamp[]

INTERVAL Not supported Not supported

BOOLEAN java.lang.Boolean java.lang.Boolean[]

REFERENCE (to a message tree)

3 4

5 6

com.ibm.broker.plugin.MbElement com.ibm.broker.plugin.MbElement[]

(Supported for INOUT. Not

supported for OUT)

ROW Not supported Not supported

ESQL reference 1507

LIST Not supported Not supported

1. Variables that are declared to be CONSTANT (or references to variables that are

declared to be CONSTANT) are not allowed to have the direction INOUT or

OUT.

2. The time zone set in the Java variable is not important; you obtain the required

time zone in the output ESQL.

3. The reference parameter cannot be NULL when passed into a Java method.

4. The reference cannot have the direction OUT when passed into a Java method.

5. If an MbElement is passed back from Java to ESQL as an INOUT parameter, it

must point to a location in the same message tree as that pointed to by the

MbElement that was passed into the called Java method.

For example, if an ESQL reference to OutputRoot.XML.Test is passed into a Java

method as an INOUT MbElement, but a different MbElement is passed back to

ESQL when the call returns, the different element must also point to

somewhere in the OutputRoot tree.

6. An MbElement cannot be returned from a Java method with the RETURNS

clause, because no ESQL routine can return a reference. However, an MbElement

can be returned as an INOUT direction parameter, subject to the conditions

described in point 5.

A REFERENCE to a scalar variable can be used in the CALL of a Java method,

provided that the data type of the variable to which the reference refers matches

the corresponding data type in the Java program signature.

Restrictions on Java routines

The following restrictions apply to Java routines that are called from ESQL:

v The Java method must be threadsafe (reentrant).

v Database connections must be JDBC type 2 or type 4. Furthermore, database

operations are not part of a broker transaction and therefore cannot be controlled

by an external resource coordinator (as is the case in an XA environment).

v The Java user-defined node API must be used only by the same thread that

invoked the Java method.

You can create threads inside your method. However, created threads must not

use the Java APIs, and you must return control back to the broker.

All restrictions that apply to the usage of the Java API also apply to Java

methods that are called from ESQL.

v Java methods that are called from ESQL must not use the MbNode class.

Therefore, they cannot create objects of type MbNode, or call any of the methods

on an existing MbNode object.

v WebSphere MQ or JMS work done inside a Java method that is called from

ESQL must be done in accordance with the guidelines for performing

WebSphere MQ and JMS work in a user-defined node. See Planning user-defined

input nodes.

Deploying Java classes

You can deploy your Java classes to a broker within a Java Archive (JAR) file,

using one of the following two methods:

1. Add the JAR file to the broker archive (bar) file

1508 Message Flows

|
|

The most efficient and flexible method of deploying to the broker is to add

your JAR file to the bar file. You can do this manually or automatically using

the workbench.

If the workbench finds the correct Java class inside a referenced Java project

open in the workspace, it automatically compiles the Java class into a JAR file

and adds it to the bar file. This procedure is the same procedure that you

follow to deploy a JavaCompute node inside a JAR, as described in

User-defined node classloading.

When you deploy a JAR file from the workbench, the flow that has been

redeployed reloads the JAR file contained in the bar file.

The files are also reloaded if the message flow that references a Java class is

stopped and restarted. Ensure that you stop and restart (or redeploy) all flows

that reference the JAR file that you want to update. This action avoids the

problem of some flows running with the old version of the JAR file and other

flows running with the new version.

The workbench deploys only JAR files; it does not deploy standalone Java class

files.

2. Store the JAR file in either of the following locations:

a. The workpath/shared-classes/ folder on the machine running the broker

b. The CLASSPATH environment variable on the computer running the broker
You must complete this action manually; you cannot use the workbench.

In this method, redeploying the message flow does not reload the referenced

Java classes; neither does stopping and restarting the message flow. The only

way to reload the classes in this case is to stop and restart the broker itself.

To enable the broker to find a Java class, ensure that it is in one of the preceding

locations. If the broker cannot find the specified class, it generates an exception.

Although you have the choices shown previously when you deploy the JAR file,

using the workbench to deploy the bar file provides the greatest flexibility when

redeploying the JAR file.

Database routines

CREATE FUNCTION does not support database routines. Use CREATE

PROCEDURE to define a database routine.

CREATE MODULE statement

The CREATE MODULE statement creates a module, which is a named container

associated with a node.

ESQL reference 1509

Syntax

��

CREATE

COMPUTE

DATABASE

FILTER

MODULE
 (1)

ModuleName

�

�

�

<<---;---<<

ModuleStatement

 END MODULE ��

Notes:

1 ModuleName must be a valid identifier

A module in the Eclipse tools is referred to from a message processing node by

name. The module must be in the <node schema>.

Module names occupy the same symbol space as functions and procedures defined

in the schema. That is, modules, functions, and procedures contained by a schema

must all have unique names.

Note: You are warned if there is no module associated with an ESQL node. You

cannot deploy a flow containing a node in which a module is missing.

The modules for the Compute node, Database node, and Filter node must all

contain exactly one function called Main. This function should return a Boolean. It

is the entry point used by a message flow node when processing a message.

 Correlation name Compute module Filter module Database module

Database × × ×

Environment × × ×

Root × ×

Body × ×

Properties × ×

ExceptionList × ×

LocalEnvironment × ×

InputRoot ×

InputBody ×

InputProperties ×

InputExceptionList ×

InputLocalEnvironment ×

OutputRoot ×

OutputExceptionList ×

OutputLocalEnvironment ×

DestinationList Deprecated synonym for LocalEnvironment

1510 Message Flows

Correlation name Compute module Filter module Database module

InputDestinationList Deprecated synonym for InputLocalEnvironment

OutputDestinationList Deprecated synonym for OutputLocalEnvironment

CREATE PROCEDURE statement

The CREATE PROCEDURE statement defines a callable function or procedure.

You can also use the CREATE FUNCTION statement to define a callable function

or procedure, also known as a routine.

ESQL reference 1511

Syntax

�� CREATE RoutineType RoutineName (ParameterList) �

�
ReturnType

Language

ResultSet
 RoutineBody ��

RoutineType:

 FUNCTION

PROCEDURE

ParameterList:

�

 ,

Parameter

Parameter:

 (1)

IN

OUT

INOUT

ParameterName

DataType

CONSTANT

(2)

NAMESPACE

NAME

ReturnType:

 RETURNS DataType

Language:

 LANGUAGE ESQL

(3)

DATABASE

JAVA

ResultSet:

 DYNAMIC RESULT SETS integer

RoutineBody:

 Statement

EXTERNAL

NAME

ExternalRoutineName

Notes:

1 If the routine type is FUNCTION, the direction indicator (IN, OUT, or

1512 Message Flows

|

INOUT) is optional for each parameter. However, for documentation

purposes, it is good programming practice to specify a direction indicator

for all new routines; if you do not specify the direction, a default value of

IN is used.

2 When the NAMESPACE or NAME clause is used, its value is implicitly

CONSTANT and of type CHARACTER. For information about the use of

CONSTANT variables, see the “DECLARE statement” on page 1525.

3 If the routine type is FUNCTION, you cannot specify a LANGUAGE of

DATABASE.

Overview

The CREATE FUNCTION and CREATE PROCEDURE statements define a callable

function or procedure, also known as a routine.

In previous versions of this product, CREATE FUNCTION and CREATE

PROCEDURE had different uses and different capabilities. Subsequent

enhancements have resulted in the differences listed previously in notes 1 and 3.

Routines are useful for creating reusable blocks of code that can be run

independently many times. You can implement them as a series of ESQL

statements, a Java method, or a database stored procedure. This flexibility means

that some of the clauses in the syntax diagram are not applicable (or allowed) for

all types of routine.

Each routine has a name, which must be unique within the schema to which it

belongs. Routine names therefore cannot be overloaded; if the broker detects that a

routine name has been overloaded, it raises an exception.

The LANGUAGE clause specifies the language in which the routine’s body is

written. The options are:

DATABASE

The procedure is called as a database stored procedure.

ESQL

The procedure is called as an ESQL routine.

JAVA

The procedure is called as a static method in a Java class.

Unspecified

If you do not specify the LANGUAGE clause, the default language is ESQL

unless you specify the EXTERNAL NAME clause (in which case, the default

language is DATABASE).

Restrictions on the use of the LANGUAGE clause exist. You cannot use:

v The ESQL option with an EXTERNAL NAME clause

v The DATABASE or JAVA options without an EXTERNAL NAME clause

v The DATABASE option with a routine type of FUNCTION

Specify the routine’s name using the RoutineName clause, and the routine’s

parameters using the ParameterList clause. If the LANGUAGE clause specifies

ESQL, implement the routine using a single ESQL statement. This statement is

ESQL reference 1513

|
|
|
|

most useful if it is a compound statement (BEGIN ... END), because it can then

contain as many ESQL statements as necessary to fulfil its function.

Alternatively, instead of providing an ESQL body for the routine, you can specify a

LANGUAGE clause other than ESQL. You can then use the EXTERNAL NAME

clause to provide a reference to the actual body of the routine, wherever it is

located externally to the broker. For more information about using the EXTERNAL

NAME clause, see “Invoking stored procedures” on page 332 and Calling a Java

routine.

Routines of any LANGUAGE type can have IN, OUT, and INOUT parameters. The

caller can pass several values into the routine, and receive back several updated

values. These returned parameters are in addition to any RETURNS clause that

you have defined for the routine. The RETURNS clause defines the value that the

routine returns to the caller.

Routines that are implemented in different languages have their own restrictions

on which data types can be passed in or returned; these restrictions are

documented later in this section. The data type of the returned value must match

the data type of the value that is defined to be returned from the routine. Also, if a

routine is defined to have a return value, the caller of the routine cannot ignore it.

For more information see “CALL statement” on page 1487.

Routines can be defined in either a module or a schema. Routines that are defined

in a module are local in scope to the current node, which means that only code

belonging to that same module (or node) can invoke them. Routines that are

defined in a schema, however, can be invoked by using either of the following

options:

v Code in the same schema

v Code in any other schema, if either of the following conditions applies:

– The other schema’s PATH clause contains the path to the called routine

– The called routine is invoked using its fully qualified name (which is its

name, prefixed by its schema name, separated by a period)

Thus, if you need to invoke the same routine in more than one node, define it in a

schema.

For any language or routine type, the method of invocation of the routine must

match the manner of declaration of the routine. If the routine has a RETURNS

clause, use either the FUNCTION invocation syntax or a CALL statement with an

INTO clause. Conversely, if a routine has no RETURNS clause, you must use a

CALL statement without an INTO clause.

Parameter directions

Parameters that are passed to routines always have a direction associated with

them, which is one of the following types:

IN The value of the parameter cannot be changed by the routine. A NULL value

for the parameter is allowed, and can be passed to the routine.

OUT

When it is received by the called routine, the parameter that is passed into the

routine always has a NULL value of the correct data type. This value is set

irrespective of its value before the routine is called. The routine is allowed to

change the value of the parameter.

1514 Message Flows

INOUT

INOUT is both an IN and an OUT parameter. It passes a value into the

routine, and the value that is passed in can be changed by the routine. A

NULL value for the parameter is allowed, and can be passed both into and out

of the routine.

If the routine type is FUNCTION, the direction indicator (IN, OUT, INOUT) is

optional for each parameter. However, it is good programming practice to specify a

direction indicator for all new routines of any type for documentation purposes.

ESQL variables that are declared to be CONSTANT (or references to variables

declared to be CONSTANT) are not allowed to have the direction OUT or INOUT.

ESQL routines

ESQL routines are written in ESQL, and have a LANGUAGE clause of ESQL. The

body of an ESQL routine is typically a compound statement of the form BEGIN ...

END, that contains multiple statements for processing the parameters that are

passed to the routine.

ESQL example 1

The following example shows the same procedure as in “Database routine example

1” on page 1522, but is implemented as an ESQL routine and not as a stored

procedure. The CALL syntax and results of this routine are the same as those in

“Restrictions on Java routines” on page 1508.

CREATE PROCEDURE swapParms (

 IN parm1 CHARACTER,

 OUT parm2 CHARACTER,

 INOUT parm3 CHARACTER)

BEGIN

 SET parm2 = parm3;

 SET parm3 = parm1;

 END;

ESQL example 2

This example procedure shows the recursive use of an ESQL routine. It parses a

tree, visiting all places at and below the specified starting point, and reports what

it has found:

SET OutputRoot.MQMD = InputRoot.MQMD;

 DECLARE answer CHARACTER;

 SET answer = ’’;

 CALL navigate(InputRoot.XMLNS, answer);

 SET OutputRoot.XMLNS.Data.FieldNames = answer;

 CREATE PROCEDURE navigate (IN root REFERENCE, INOUT answer CHARACTER)

 BEGIN

 SET answer = answer || ’Reached Field... Type:’

 || CAST(FIELDTYPE(root) AS CHAR)||

 ’: Name:’ || FIELDNAME(root) || ’: Value :’ || root || ’: ’;

 DECLARE cursor REFERENCE TO root;

 MOVE cursor FIRSTCHILD;

 IF LASTMOVE(cursor) THEN

 SET answer = answer || ’Field has children... drilling down ’;

 ELSE

ESQL reference 1515

SET answer = answer || ’Listing siblings... ’;

 END IF;

 WHILE LASTMOVE(cursor) DO

 CALL navigate(cursor, answer);

 MOVE cursor NEXTSIBLING;

 END WHILE;

 SET answer = answer || ’Finished siblings... Popping up ’;

 END;

When given the following input message:

<Person>

 <Name>John Smith</Name>

 <Salary period=’monthly’ taxable=’yes’>-1200</Salary>

</Person>

the procedure produces the following output, which has been manually formatted:

 Reached Field... Type:16777232: Name:XML: Value :: Field has children...

 drilling down

 Reached Field... Type:16777216: Name:Person: Value :: Field has children...

 drilling down

 Reached Field... Type:16777216: Name:Name:

 Value :John Smith: Field has children... drilling down

 Reached Field... Type:33554432: Name::

 Value :John Smith: Listing siblings... Finished siblings... Popping up

 Finished siblings... Popping up

 Reached Field... Type:16777216: Name:Salary:

 Value :-1200: Field has children... drilling down

 Reached Field... Type:50331648: Name:period:

 Value :monthly: Listing siblings... Finished siblings... Popping up

 Reached Field... Type:50331648: Name:taxable:

 Value :yes: Listing siblings... Finished siblings... Popping up

 Reached Field... Type:33554432: Name::

 Value :-1200: Listing siblings... Finished siblings... Popping up

 Finished siblings... Popping up

 Finished siblings... Popping up

 Finished siblings... Popping up

Java routines

A Java routine is implemented as a Java method, and has a LANGUAGE clause of

JAVA. For Java routines, the ExternalRoutineName must contain the class name and

method name of the Java method to be called. Specify the ExternalRoutineName like

this:

>>--"-- className---.---methodName--"--------------><

where className identifies the class that contains the method and methodName

identifies the method to invoke. If the class is part of a package, the class identifier

part must include the complete package prefix; for example,

“com.ibm.broker.test.MyClass.myMethod”.

To find the Java class, the broker uses the search method that is described in

“Deploying Java classes” on page 1508.

Any Java method that you want to invoke must have the following basic signature:

public static <return-type> <method-name> (< 0 - N parameters>)

where <return-type> must be in the list of Java IN data types in the table in

“ESQL to Java data type mapping” on page 1507 (excluding the REFERENCE type,

which is not permitted as a return value), or the Java void data type. The

1516 Message Flows

parameter data types must also be in the “ESQL to Java data type mapping” on

page 1507 table. In addition, the Java method is not allowed to have an exception

throws clause in its signature.

The Java method’s signature must match the ESQL routine’s declaration of the

method. You must also observe the following rules:

v Ensure that the Java method name, including the class name and any package

qualifiers, matches the procedure’s EXTERNAL NAME.

v If the Java return type is void, do not put a RETURNS clause on the ESQL

routine’s definition. Conversely, if the Java return type is not void, you must put

a RETURNS clause on the ESQL routine’s definition.

v Ensure that every parameter’s type and direction matches the ESQL declaration,

according to the rules listed in the table in “ESQL to Java data type mapping”

on page 1507.

v Ensure that the method’s return type matches the data type of the RETURNS

clause.

v Enclose EXTERNAL NAME in quotation marks because it must contain at least

″class.method″.

v If you want to invoke an overloaded Java method, you must create a separate

ESQL definition for each overloaded method and give each ESQL definition a

unique routine name.

You can use the Java user-defined node API in your Java method, provided that

you observe the restrictions documented in “Restrictions on Java routines” on page

1508. For more information about using the Java API, see Compiling a Java

user-defined node.

Java routine example 1

This routine contains three parameters of varying directions, and returns an

integer, which maps to a Java return type of java.lang.Long.

CREATE FUNCTION myProc1(IN P1 INTEGER, OUT P2 INTEGER, INOUT P3 INTEGER)

 RETURNS INTEGER

 LANGUAGE JAVA

 EXTERNAL NAME "com.ibm.broker.test.MyClass.myMethod1";

You can use the following ESQL to invoke myProc1:

CALL myProc1(intVar1, intVar2, intVar3) INTO intReturnVar3;

-- or

SET intReturnVar3 = myProc1(intVar1, intVar2, intVar3);

Java routine example 2

This routine contains three parameters of varying directions and has a Java return

type of void.

CREATE PROCEDURE myProc2(IN P1 INTEGER, OUT P2 INTEGER, INOUT P3 INTEGER)

 LANGUAGE JAVA

 EXTERNAL NAME "com.ibm.broker.test.MyClass.myMethod2";

You must use the following ESQL to invoke myProc2:

CALL myProc2(intVar1, intVar2, intVar3);

The following Java class provides a method for each of the preceding Java

examples:

ESQL reference 1517

package com.ibm.broker.test;

class MyClass {

public static Long myMethod1(Long P1, Long[] P2 Long[] P3) { ... }

public static void myMethod2(Long P2, Long[] P2 Long[] P3) { ... }

 /* When either of these methods is called:

 P1 may or may not be NULL (depending on the value of intVar1).

 P2[0] is always NULL (whatever the value of intVar2).

 P3[0] may or may not be NULL (depending on the value of intVar3).

 This is the same as with LANGUAGE ESQL routines.

 When these methods return:

 intVar1 is unchanged

 intVar2 may still be NULL or may have been changed

 intVar3 may contain the same value or may have been changed.

 This is the same as with LANGUAGE ESQL routines.

 When myMethod1 returns: intReturnVar3 is either NULL (if the

 method returns NULL) or it contains the value returned by the

 method.

 */

}

ESQL to Java data type mapping

The following table summarizes the mappings from ESQL to Java.

Notes:

v Only the Java scalar wrappers are passed to Java.

v The ESQL scalar types are mapped to Java data types as object wrappers,

or object wrapper arrays, depending upon the direction of the procedure

parameter. Each wrapper array contains exactly one element.

v Scalar object wrappers are used to allow NULL values to be passed to

and from Java methods.

 ESQL data types

1 Java IN data types Java INOUT and OUT data types

INTEGER, INT java.lang.Long java.lang.Long []

FLOAT java.lang.Double java.lang.Double[]

DECIMAL java.math.BigDecimal java.math.BigDecimal[]

CHARACTER, CHAR java.lang.String java.lang.String[]

BLOB byte[] byte[][]

BIT java.util.BitSet java.util.BitSet[]

DATE com.ibm.broker.plugin.MbDate com.ibm.broker.plugin.MbDate[]

TIME

2 com.ibm.broker.plugin.MbTime com.ibm.broker.plugin.MbTime[]

GMTTIME

2 com.ibm.broker.plugin.MbTime com.ibm.broker.plugin.MbTime[]

TIMESTAMP

2 com.ibm.broker.plugin.MbTimestamp com.ibm.broker.plugin.MbTimestamp[]

GMTTIMESTAMP

2 com.ibm.broker.plugin.MbTimestamp com.ibm.broker.plugin.MbTimestamp[]

INTERVAL Not supported Not supported

BOOLEAN java.lang.Boolean java.lang.Boolean[]

REFERENCE (to a message tree)

3 4

5 6

com.ibm.broker.plugin.MbElement com.ibm.broker.plugin.MbElement[]

(Supported for INOUT. Not

supported for OUT)

ROW Not supported Not supported

1518 Message Flows

LIST Not supported Not supported

1. Variables that are declared to be CONSTANT (or references to variables that are

declared to be CONSTANT) are not allowed to have the direction INOUT or

OUT.

2. The time zone set in the Java variable is not important; you obtain the required

time zone in the output ESQL.

3. The reference parameter cannot be NULL when passed into a Java method.

4. The reference cannot have the direction OUT when passed into a Java method.

5. If an MbElement is passed back from Java to ESQL as an INOUT parameter, it

must point to a location in the same message tree as that pointed to by the

MbElement that was passed into the called Java method.

For example, if an ESQL reference to OutputRoot.XML.Test is passed into a Java

method as an INOUT MbElement, but a different MbElement is passed back to

ESQL when the call returns, the different element must also point to

somewhere in the OutputRoot tree.

6. An MbElement cannot be returned from a Java method with the RETURNS

clause, because no ESQL routine can return a reference. However, an MbElement

can be returned as an INOUT direction parameter, subject to the conditions

described in point 5.

A REFERENCE to a scalar variable can be used in the CALL of a Java method,

provided that the data type of the variable to which the reference refers matches

the corresponding data type in the Java program signature.

Restrictions on Java routines

The following restrictions apply to Java routines that are called from ESQL:

v The Java method must be threadsafe (reentrant).

v Database connections must be JDBC type 2 or type 4. Furthermore, database

operations are not part of a broker transaction and therefore cannot be controlled

by an external resource coordinator (as is the case in an XA environment).

v The Java user-defined node API must be used only by the same thread that

invoked the Java method.

You can create threads inside your method. However, created threads must not

use the Java APIs, and you must return control back to the broker.

All restrictions that apply to the usage of the Java API also apply to Java

methods that are called from ESQL.

v Java methods that are called from ESQL must not use the MbNode class.

Therefore, they cannot create objects of type MbNode, or call any of the methods

on an existing MbNode object.

v WebSphere MQ or JMS work done inside a Java method that is called from

ESQL must be done in accordance with the guidelines for performing

WebSphere MQ and JMS work in a user-defined node. See Planning user-defined

input nodes.

Deploying Java classes

You can deploy your Java classes to a broker within a Java Archive (JAR) file,

using one of the following two methods:

1. Add the JAR file to the broker archive (bar) file

ESQL reference 1519

|
|

The most efficient and flexible method of deploying to the broker is to add

your JAR file to the bar file. You can do this manually or automatically using

the workbench.

If the workbench finds the correct Java class inside a referenced Java project

open in the workspace, it automatically compiles the Java class into a JAR file

and adds it to the bar file. This procedure is the same procedure that you

follow to deploy a JavaCompute node inside a JAR, as described in

User-defined node classloading.

When you deploy a JAR file from the workbench, the flow that has been

redeployed reloads the JAR file contained in the bar file.

The files are also reloaded if the message flow that references a Java class is

stopped and restarted. Ensure that you stop and restart (or redeploy) all flows

that reference the JAR file that you want to update. This action avoids the

problem of some flows running with the old version of the JAR file and other

flows running with the new version.

The workbench deploys only JAR files; it does not deploy standalone Java class

files.

2. Store the JAR file in either of the following locations:

a. The workpath/shared-classes/ folder on the machine running the broker

b. The CLASSPATH environment variable on the computer running the broker
You must complete this action manually; you cannot use the workbench.

In this method, redeploying the message flow does not reload the referenced

Java classes; neither does stopping and restarting the message flow. The only

way to reload the classes in this case is to stop and restart the broker itself.

To enable the broker to find a Java class, ensure that it is in one of the preceding

locations. If the broker cannot find the specified class, it generates an exception.

Although you have the choices shown previously when you deploy the JAR file,

using the workbench to deploy the bar file provides the greatest flexibility when

redeploying the JAR file.

Database routines

Database routines are implemented as database stored procedures. Database

routines have a LANGUAGE clause of DATABASE, and must have a routine type

of PROCEDURE.

When writing stored procedures in languages like C, you must use NULL

indicators to ensure that your procedure can process the data correctly.

Although the database definitions of a stored procedure vary between the

databases, the ESQL used to invoke them does not. The names given to parameters

in the ESQL do not have to match the names they are given on the database side.

However, the external name of the routine, including any package or container

specifications, must match its defined name in the database.

The DYNAMIC RESULT SETS clause is allowed only for database routines. It is

required only if a stored procedure returns one or more result sets. The integer

parameter to this clause must be 0 (zero) or more, and specifies the number of

result sets to be returned.

The optional RETURNS clause is required if a stored procedure returns a single

scalar value.

1520 Message Flows

The EXTERNAL NAME clause specifies the name by which the database knows

the routine. This can be either a qualified or an unqualified name, where the

qualifier is the name of the database schema in which the procedure is defined. If

you do not provide a schema name, the database connection user name is used as

the schema in which to locate the procedure. If the required procedure does not

exist in this schema, you must provide an explicit schema name, either on the

routine definition or on the CALL to the routine at runtime. For more information

about dynamically choosing the schema that contains the routine, see the “CALL

statement” on page 1487. When a qualified name is used, the name must be in

quotation marks.

A fully qualified routine typically takes the form:

 EXTERNAL NAME "mySchema.myProc";

However, if the procedure belongs to an Oracle package, the package is treated as

part of the procedure’s name. Therefore you must provide a schema name and the

package name, in the form:

EXTERNAL NAME "mySchema.myPackage.myProc";

This form allows the schema, but not the package name, to be chosen dynamically

in the CALL statement.

If the name of the procedure contains SQL wildcards (which are the percent (%)

character and the underscore (_) character), the procedure name is modified by the

broker to include the database escape character immediately before each wildcard

character. This technique ensures that the database receives the wildcards as literal

characters. For example, assuming that the database escape character is a

backslash, the following clause is modified by the broker so that

“mySchema.Proc_” is passed to the database.

EXTERNAL NAME "mySchema.Proc_";

All external procedures have the following restrictions:

v A stored procedure cannot be overloaded on the database side. A stored

procedure is considered overloaded if there is more than one procedure of the

same name in the same database schema. If the broker detects that a procedure

has been overloaded, it raises an exception.

v Parameters cannot be of the ESQL REFERENCE, ROW, LIST, or INTERVAL data

types.

v User-defined types cannot be used as parameters or as return values.

For LANGUAGE routines, the ExternalRoutineName is optional and contains the

schema name, package name and procedure name of the routine to be called.

Specify the ExternalRoutineName like this:

>>--"schemaName---.---packageName---,---procedureName--"--------------><

where:

v schemaName is optional.

v packageName is optional and applies only to Oracle data sources. If you supply a

packageName you must supply a schemaName.

v procedureName is optional.

ESQL reference 1521

|
|
|

|

|

|

|
|

|

Database routine example 1

The following example shows an ESQL definition of a stored procedure that

returns a single scalar value and an OUT parameter:

CREATE PROCEDURE myProc1(IN P1 INT, OUT P2 INT)

 LANGUAGE DATABASE

 RETURNS INTEGER

 EXTERNAL NAME "myschema.myproc";

Use this ESQL to invoke the myProc1 routine:

/*using CALL statement invocation syntax*/

CALL myProc1(intVar1, intVar2) INTO intReturnVar3;

/*or using function invocation syntax*/

SET intReturnVar3 = myProc1(intVar1, intVar2);

Database routine example 2

The following ESQL code demonstrates how to define and call DB2 stored

procedures:

ESQL Definition:

DECLARE inputParm CHARACTER;

DECLARE outputParm CHARACTER;

DECLARE inputOutputParm CHARACTER;

SET inputParm = ’Hello’;

SET inputOutputParm = ’World’;

CALL swapParms(inputParm, outputParm, inputOutputParm);

CREATE PROCEDURE swapParms (

 IN parm1 CHARACTER,

 OUT parm2 CHARACTER,

 INOUT parm3 CHARACTER

) EXTERNAL NAME dbSwapParms;

To register this stored procedure with DB2, copy the following script to a file (for

example, test1.sql)

-- DB2 Example Stored Procedure

DROP PROCEDURE dbSwapParms @

CREATE PROCEDURE dbSwapParms

(IN in_param CHAR(32),

 OUT out_param CHAR(32),

 INOUT inout_param CHAR(32))

LANGUAGE SQL

BEGIN

SET out_param = inout_param;

 SET inout_param = in_param;

END @

Now run it from the DB2 command prompt:

db2 -td@ -vf test1.sql

Expect the following results from running this code:

v The value of the IN parameter does not (and cannot, by definition) change.

v The value of the OUT parameter becomes “World”.

v The value of the INOUT parameter changes to “Hello”.

1522 Message Flows

Database routine example 3

The following ESQL code demonstrates how to define and call Oracle stored

procedures:

ESQL Definition:

DECLARE inputParm CHARACTER;

DECLARE outputParm CHARACTER;

DECLARE inputOutputParm CHARACTER;

SET inputParm = ’Hello’;

SET inputOutputParm = ’World’;

CALL swapParms(inputParm, outputParm, inputOutputParm);

CREATE PROCEDURE swapParms (

 IN parm1 CHARACTER,

 OUT parm2 CHARACTER,

 INOUT parm3 CHARACTER

) EXTERNAL NAME dbSwapParms;

To register this stored procedure with Oracle, copy the following script to a file (for

example, test1.sql)

CREATE OR REPLACE PROCEDURE dbSwapParms

(in_param IN VARCHAR2,

 out_param OUT VARCHAR2,

 inout_param IN OUT VARCHAR2)

AS

BEGIN

 out_param := inout_param;

 inout_param := in_param;

END;

/

Now run it:

sqlplus userID/password @test1.sql

Expect the following results from running this code:

v The value of the IN parameter does not (and cannot, by definition) change.

v The value of the OUT parameter becomes “World”.

v The value of the INOUT parameter changes to “Hello”.

Database routine example 4

The following ESQL code demonstrates how to define and call SQL Server stored

procedures:

ESQL Definition:

DECLARE inputParm CHARACTER;

DECLARE outputParm CHARACTER;

DECLARE inputOutputParm CHARACTER;

SET inputParm = ’Hello’;

SET inputOutputParm = ’World’;

CALL swapParms(inputParm, outputParm, inputOutputParm);

CREATE PROCEDURE swapParms (

 IN parm1 CHARACTER,

 INOUT parm2 CHARACTER,

 INOUT parm3 CHARACTER

) EXTERNAL NAME dbSwapParms;

To register this stored procedure with SQL Server, copy the following script to a

file (for example, test1.sql)

ESQL reference 1523

-- SQLServer Example Stored Procedure

DROP PROCEDURE dbSwapParms

go

CREATE PROCEDURE dbSwapParms

 @in_param CHAR(32),

 @out_param CHAR(32) OUT,

 @inout_param CHAR(32) OUT

AS

 SET NOCOUNT ON

 SET @out_param = @inout_param

 SET @inout_param = @in_param

go

Now run it:

isql -UuserID -Ppassword -Sserver -ddatasource -itest1.sql

SQL Server considers OUTPUT parameters from stored procedures as INPUT/OUTPUT

parameters. If you declare these as OUT parameters in your ESQL you encounter a

type mismatch error at run time. To avoid that mismatch you must declare SQL

Server OUTPUT parameters as INOUT in your ESQL.

Use the SET NOCOUNT ON option, as shown in the preceding example, with SQL

stored procedures for the following reasons:

1. To limit the amount of data returned from SQL Server to the broker.

2. To allow result sets to be returned correctly.

Expect the following results from running this code:

v The value of the IN parameter does not (and cannot, by definition) change.

v The value of the OUT parameter becomes “World”.

v The value of the INOUT parameter changes to “Hello”.

Database routine example 5

The following ESQL code demonstrates how to define and call Sybase stored

procedures:

ESQL Definition:

DECLARE inputParm CHARACTER;

DECLARE outputParm CHARACTER;

DECLARE inputOutputParm CHARACTER;

SET inputParm = ’Hello’;

SET inputOutputParm = ’World’;

CALL swapParms(inputParm, outputParm, inputOutputParm);

CREATE PROCEDURE swapParms (

 IN parm1 CHARACTER,

 INOUT parm2 CHARACTER,

 INOUT parm3 CHARACTER

) EXTERNAL NAME dbSwapParms;

To register this stored procedure with Sybase, copy the following script to a file

(for example, test1.sql)

-- SYBASE Example Stored Procedure

DROP PROCEDURE dbSwapParms

go

CREATE PROCEDURE dbSwapParms

 @in_param CHAR(32),

 @out_param CHAR(32) OUT,

 @inout_param CHAR(32) OUT

1524 Message Flows

AS

 SET @out_param = @inout_param

 SET @inout_param = @in_param

go

Now run it:

isql -U<userID> -P<password> -S<server> -D<datasource> -itest1.sql

Sybase considers OUTPUT parameters from stored procedures as INPUT/OUTPUT

parameters. If you declare these as OUT parameters in your ESQL, you encounter a

type mismatch error at run time. To avoid that mismatch, declare Sybase OUTPUT

parameters as INOUT in your ESQL.

Expect the following results from running this code:

v The value of the IN parameter does not (and cannot, by definition) change.

v The value of the OUT parameter becomes “World”.

v The value of the INOUT parameter changes to “Hello”.

Database routine example 6

This example shows how to call a stored procedure that returns two result sets, in

addition to an out parameter:

CREATE PROCEDURE myProc1 (IN P1 INT, OUT P2 INT)

 LANGUAGE DATABASE

 DYNAMIC RESULT SETS 2

 EXTERNAL NAME "myschema.myproc";

Use the following ESQL to invoke myProc1:

/* using a field reference */

CALL myProc1(intVar1, intVar2, Environment.RetVal[], OutputRoot.XMLNS.A[])

/* using a reference variable*/

CALL myProc1(intVar1, intVar2, myReferenceVariable.RetVal[], myRef2.B[])

DECLARE statement

The DECLARE statement defines a variable, the data type of the variable and,

optionally, its initial value.

The three types of variable you can define with the DECLARE statement are:

v External

v Normal

v Shared

See “ESQL variables” on page 1465 for further information.

ESQL reference 1525

|

|

|

|

|

Syntax

��

�

 <<-,-<<

DECLARE

-Name

SHARED (1) (2)

EXTERNAL (3) (4)

�

� DataType (5)

CONSTANT

InitialValueExpression

NAMESPACE (6)

NAME

 ��

Notes:

1. The SHARED keyword is not valid within a function or procedure.

2. You cannot specify SHARED with a DataType of REFERENCE TO. (To store a

message tree in a shared variable, use the ROW data type.)

3. EXTERNAL variables are implicitly constant.

4. It is good programming practice to give an EXTERNAL variable an initial

value.

5. If you specify a DataType of REFERENCE TO, you must specify an initial value

(of either a variable or a tree) in InitialValueExpression.

6. When you use the NAMESPACE and NAME clauses, their values are

implicitly constant and of type CHARACTER.

CONSTANT

Use CONSTANT to define a constant. You can declare constants within schemas,

modules, routines, or compound statements (both implicit and explicit). The

behavior of these cases is shown in the following list:

v Within a compound statement, constants and variables occupy the same

namespace.

v Within expressions, a constant or variable that is declared within a compound

statement overlays all constants and variables of the same name that are

declared in containing compound statements, modules and schemas.

v Within field reference namespace fields, a namespace constant that is declared

within a compound statement overlays all namespace constants of the same

name that are declared in containing compound statements.

A constant or variable that is declared within a routine overlays any parameters of

the same name, and all constants and variables of the same name that are declared

in a containing module or schema.

DataType

The possible values that you can specify for DataType are:

v BOOL

v BOOLEAN

v INT

1526 Message Flows

v INTEGER

v FLOAT

v DEC

v DECIMAL

v DATE

v TIME

v TIMESTAMP

v GMTTIME

v GMTTIMESTAMP

v INTERVAL. This does not apply to external variables (EXTERNAL option

specified)

v CHAR

v CHARACTER

v BLOB

v BIT

v ROW. This does not apply to external variables (EXTERNAL option specified)

v REF. This does not apply to external or shared variables (EXTERNAL or

SHARED option specified)

v REFERENCE TO. This does not apply to external or shared variables

(EXTERNAL or SHARED option specified)

EXTERNAL

Use EXTERNAL to denote a user-defined property (UDP). A UDP is a user-defined

constant whose initial value (optionally set by the DECLARE statement) can be

modified, at design time, by the Message Flow editor, see Message Flow editor, or

overridden, at deployment time, by the Broker Archive editor, see Broker Archive

editor. Its value cannot be modified by ESQL.

When a UDP is given an initial value on the DECLARE statement, this becomes its

default. However, any value that you specify in the Message Flow editor at design

time, or in the BAR editor at deployment time (even a zero length string) overrides

any initial value coded on the DECLARE statement.

For example, if you code:

 DECLARE deployEnvironment EXTERNAL CHARACTER ’Dev’;

you have defined a UDP variable of deployEnvironment with an initial value Dev.

Add the UDP to the message flow by using the UDP tab in the message flow

editor. When you add the flow to the bar file, the UDP is there as an attribute of

the flow; you must name the attribute to be the same as the ESQL variable in the

DECLARE statement (in this case deployEnvironment) to ensure that the initial

value you set is unchanged.

All UDPs in a message flow must have a value, given either on the DECLARE

statement or by the Message Flow or BAR editor; otherwise a deployment-time

error occurs. At run time, after the UDP has been declared its value can be queried

by subsequent ESQL statements, but cannot be modified.

The advantage of UDPs is that their values can be changed at deployment time. If,

for example, you use the UDPs to hold configuration data, it means that you can

configure a message flow for a particular computer, task, or environment at

deployment time, without having to change the code at the node level.

ESQL reference 1527

|

|

|

|
|
|
|
|

You can declare UDPs only in modules or schemas, this means that you can use

the DECLARE statement with the EXTERNAL keyword only at the MODULE or

SCHEMA level. If you use a DECLARE statement with the EXTERNAL keyword

within a PROCEDURE or FUNCTION, a BIP2402E exception is produced when

you deploy the message flow.

The following types of broker node are capable of accessing UDPs:

v Compute node

v Database node

v Filter node

v Nodes derived from these node-types

Take care when specifying the data type of a UDP, because a CAST is used to

change the value to the requested DataType.

For an overview of UDPs, see “User-defined properties in ESQL” on page 261.

Example 1

DECLARE mycolour EXTERNAL CHARACTER ’blue’;

Example 2

DECLARE TODAYSCOLOR EXTERNAL CHARACTER;

SET COLOR = TODAYSCOLOR;

where TODAYSCOLOR is a user-defined property that has a TYPE of CHARACTER and a

VALUE set by the Message Flow Editor.

NAME

Use NAME to define an alias (an alternative name) by which a variable can be

known.

Example 1

-- The following statement gives Schema1 an alias of ’Joe’.

DECLARE Schema1 NAME ’Joe’;

-- The following statement produces a field called ’Joe’.

SET OutputRoot.XMLNS.Data.Schema1 = 42;

-- The following statement inserts a value into a table called Table1

-- in the schema called ’Joe’.

INSERT INTO Database.Schema1.Table1 (Answer) VALUES 42;

Example 2

DECLARE Schema1 EXTERNAL NAME;

CREATE FIRSTCHILD OF OutputRoot.XMLNS.TestCase.Schema1 Domain(’XMLNS’)

 NAME ’Node1’ VALUE ’1’;

-- If Schema1 has been given the value ’red’, the result would be:

<xml version="1.0"?>

<TestCase>

 <red>

 <Node1>1</Node1>

 </red>

1528 Message Flows

NAMESPACE

Use NAMESPACE to define an alias (an alternative name) by which a namespace

can be known.

Example

This example illustrates a namespace declaration, its use as a SpaceId in a path, and

its use as a character constant in a namespace expression:

 DECLARE prefixOne NAMESPACE ’http://www.example.com/PO1’;

 -- On the right hand side of the assignment a namespace constant

 -- is being used as such while, on the left hand side, one is

 -- being used as an ordinary constant (that is, in an expression).

 SET OutputRoot.XMLNS.{prefixOne}:{’PurchaseOrder’} =

 InputRoot.XMLNS.prefixOne:PurchaseOrder;

SHARED

Use SHARED to define a shared variable. Shared variables are private to the flow

(if declared within a schema) or node (if declared within a module), but are shared

between instances of the flow (threads). No type of variable is visible beyond the

flow level; for example you cannot share variables across execution groups.

You can use shared variables to implement an in-memory cache in the message

flow, see “Optimizing message flow response times” on page 158. Shared variables

have a long lifetime and are visible to multiple messages passing through a flow,

see “Long-lived variables” on page 261. They exist for the lifetime of the execution

group process, the lifetime of the flow or node, or the lifetime of the node’s SQL

that declares the variable (whichever is the shortest). They are initialized when the

first message passes through the flow or node after each broker startup.

You cannot define a shared variable within a function or procedure.

The advantages of shared variables, relative to databases, are that:

v Write access is very much faster.

v Read access to small data structures is faster.

v Access is direct; that is, there is no need to use a special function (SELECT) to

get data, or special statements (INSERT, UPDATE, or DELETE) to modify data.

You can refer to the data directly in expressions.

The advantages of databases, relative to shared variables, are that:

v The data is persistent.

v The data is changed transactionally.

These read-write variables are ideal for users prepared to sacrifice the persistence

and transactional advantages of databases in order to obtain better performance,

because they have a longer life than only one message and perform better than a

database.

Because flow-shared variables can be updated by multiple instances and multiple

flows, ensure that your flows or instances do not make changes to shared variables

that might cause unexpected results in other flows and instances, for example if

ESQL reference 1529

the variable is being used as a counter. You can prevent other instances seeing the

intermediate stages of the data by using a BEGIN ATOMIC construct, see “BEGIN

... END statement” on page 1482.

Your user program can make an efficient read, or write, copy of an input node’s

message using shared-row variables. This is generally useful and, in particular,

simplifies the technique for handling large messages.

There is a restriction that subtrees cannot be copied directly from one shared row

variable to another shared row variable. Subtrees can be copied indirectly by using

a non-shared row variable. Scalar values extracted from one shared row variable

(using the FIELDVALUE function) can be copied to another shared row variable.

Example

The following sample shows how to use both shared and external variables:

v Message Routing sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

DECLARE HANDLER statement

The DECLARE HANDLER statement creates an error handler for handling

exceptions.

Syntax

�� DECLARE CONTINUE

EXIT
 HANDLER FOR State Stmt ��

State:

�

 <<-- , --<<

SQLSTATE

’ Text ’

VALUE

LIKE

’ Text ’

ESCAPE

’ Text ’

You can declare handlers in both explicitly declared (BEGIN...END) scopes and

implicitly declared scopes (for example, the ELSE clause of an IF statement).

However, all handler declarations must be together at the top of the scope, before

any other statements.

If there are no exceptions, the presence of handlers has no effect on the behavior or

performance of an SQL program. If an exception occurs, WebSphere Message

Broker compares the SQL state of the exception with the SQL states associated with

any relevant handlers, until either the exception leaves the node (just as it would if

there were no handlers) or a matching handler is found. Within any one scope,

handlers are searched in the order they are declared; that is, first to last. Scopes are

searched from the innermost to outermost.

1530 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.routing.doc/doc/overview.htm

The SQL state values provided in DECLARE... HANDLER... statements can be

compared directly with the SQL state of the exception or can be compared using

wild card characters. To compare the state values directly, specify either VALUE or

no condition operator. To make a wild card comparison, use the underscore and

percent characters to represent single and multiple character wild cards,

respectively, and specify the LIKE operator. The wild card method allows all

exceptions of a general type to be handled without having to list them

exhaustively.

If a matching handler is found, the SQLSTATE and other special registers are

updated (according to the rules described below) and the handler’s statement is

processed.

As the handler’s statement must be a single statement, it is typically a compound

statement (such as BEGIN...END) that contains multiple other statements. There is

no special behavior associated with these inner statements and there are no special

restrictions. They can, for example, include RETURN, ITERATE, or LEAVE; these

affect their containing routines and looping constructs in the same way as if they

were contained in the scope itself.

Handlers can contain handlers for exceptions occurring within the handler itself

If processing of the handler’s code completes without throwing further unhandled

exceptions, execution of the normal code is resumed as follows:

v For EXIT handlers, the next statement processed is the first statement after the

handler’s scope.

v For CONTINUE handlers, it is the first directly-contained statement after the one

that produced the exception.

Each handler has its own SQLCODE, SQLSTATE, SQLNATIVEERROR, and

SQLERRORTEXT special registers. These come into scope and their values are set

just before the handler’s first statement is executed. They remain valid until the

handler’s last statement has been executed. Because there is no carry over of

SQLSTATE values from one handler to another, handlers can be written

independently.

Handlers absorb exceptions, preventing their reaching the input node and thus

causing the transaction to be committed rather than rolled back. A handler can use

a RESIGNAL or THROW statement to prevent this.

Example

-- Drop the tables so that they can be recreated with the latest definition.

-- If the program has never been run before, errors will occur because you

-- can’t drop tables that don’t exist. We ignore these.

 BEGIN

 DECLARE CONTINUE HANDLER FOR SQLSTATE LIKE’%’ BEGIN END;

 PASSTHRU ’DROP TABLE Shop.Customers’ TO Database.DSN1;

 PASSTHRU ’DROP TABLE Shop.Invoices’ TO Database.DSN1;

 PASSTHRU ’DROP TABLE Shop.Sales’ TO Database.DSN1;

 PASSTHRU ’DROP TABLE Shop.Parts’ TO Database.DSN1;

 END;

DELETE FROM statement

The DELETE FROM statement deletes rows from a table in an external database,

based on a search condition.

ESQL reference 1531

Syntax

�� DELETE FROM TableReference

AS

CorrelationName
 �

�
WHERE

Expression
 ��

WHERE:

 TableReference = Database �

�
.

SchemaClause

.

DataSourceClause

 . TableClause

 DataSourceClause = DataSourceName

{

DataSourceExpression

}

 SchemaClause = SchemaName

{

SchemaExpression

}

 TableClause = TableName

{

TableExpression

}

All rows for which the WHERE clause expression evaluates to TRUE are deleted

from the table identified by TableReference.

Each row is examined in turn and a variable is set to point to the current row.

Typically, the WHERE clause expression uses this variable to access column values

and thus cause rows to be retained or deleted according to their contents. The

variable is referred to by CorrelationName or, in the absence of an AS clause, by

TableName.

Table reference

A table reference is a special case of the field references that are used to refer to

message trees. It always starts with the word “Database” and may contain any of

the following:

v A table name only

v A schema name and a table name

v A data source name (that is, the name of a database instance), a schema name,

and a table name

In each case, the name may be specified directly or by an expression enclosed in

braces ({...}). A directly-specified data source, schema, or table name is subject to

name substitution. That is, if the name used has been declared to be a known

name, the value of the declared name is used rather than the name itself (see

“DECLARE statement” on page 1525).

1532 Message Flows

If a schema name is not specified, the default schema for the broker’s database

user is used.

If a data source name is not specified, the database pointed to by the node’s data

source attribute is used.

The WHERE clause

The WHERE clause expression can use any of the broker’s operators and functions

in any combination. It can refer to table columns, message fields, and any declared

variables or constants.

However, be aware that the broker treats the WHERE clause expression by

examining the expression and deciding whether the whole expression can be

evaluated by the database. If it can, it is given to the database. In order to be

evaluated by the database, it must use only those functions and operators

supported by the database.

The WHERE clause can, however, refer to message fields, correlation names

declared by containing SELECT functions, and to any other declared variables or

constants within scope.

If the whole expression cannot be evaluated by the database, the broker looks for

top-level AND operators and examines each sub-expression separately. It then

attempts to give the database those sub-expressions that it can evaluate, leaving

the broker to evaluate the rest. You need to be aware of this situation for two

reasons:

1. Apparently trivial changes to WHERE clause expressions can have large effects

on performance. You can determine how much of the expression was given to

the database by examining a user trace.

2. Some databases’ functions exhibit subtle differences of behavior from those of

the broker.

Handling errors

It is possible for errors to occur during delete operations. For example, the

database may not be operational. In these cases, an exception is thrown (unless the

node has its throw exception on database error property set to FALSE). These

exceptions set appropriate SQL code, state, native error, and error text values and

can be dealt with by error handlers (see the DECLARE HANDLER statement).

For further information about handling database errors, see “Capturing database

state” on page 339.

Examples

The following example assumes that the dataSource property has been configured

and that the database it identifies has a table called SHAREHOLDINGS, with a

column called ACCOUNTNO.

DELETE FROM Database.SHAREHOLDINGS AS S

 WHERE S.ACCOUNTNO = InputBody.AccountNumber;

This removes all the rows from the SHAREHOLDINGS table where the value in

the ACCOUNTNO column (in the table) is equal to that in the AccountNumber field

in the message. This may delete zero, one, or more rows from the table.

ESQL reference 1533

The next example shows the use of calculated data source, schema, and table

names:

-- Declare variables to hold the data source, schema, and table names and

-- set their default values

DECLARE Source CHARACTER ’Production’;

DECLARE Schema CHARACTER ’db2admin’;

DECLARE Table CHARACTER ’DynamicTable1’;

-- Code which calculates their actual values comes here

-- Delete rows from the table

DELETE FROM Database.{Source}.{Schema}.{Table} As R WHERE R.Name = ’Joe’;

DELETE statement

The DELETE statement detaches and destroys a portion of a message tree,

allowing its memory to be reused. This statement is particularly useful when

handling very large messages.

Syntax

�� DELETE FIELD

FIRSTCHILD

OF

LASTCHILD

PREVIOUSSIBLING

NEXTSIBLING

 FieldReference ��

If the target field does not exist, the statement does nothing and normal processing

continues. If any reference variables point into the deleted portion, they are

disconnected from the tree so that no action involving them has any effect, and the

LASTMOVE function returns FALSE. Disconnected reference variables can be

reconnected by using a MOVE... TO... statement.

Example

DELETE FIELD OutputRoot.XMLNS.Data.Folder1.Folder12;

DELETE LASTCHILD OF Cursor;

DETACH statement

The DETACH statement detaches a portion of a message tree without deleting it. This

portion can be reattached using the ATTACH statement.

Syntax

�� DETACH dynamic_reference ��

For information about dynamic references, see “Creating dynamic field references”

on page 291.

1534 Message Flows

For an example of DETACH, see the example in “ATTACH statement” on page

1480.

EVAL statement

The EVAL statement takes a character value, interprets it as an SQL statement, and

processes it.

The EVAL function (also described here) takes a character value, but interprets it as

an ESQL expression that returns a value.

Note: User defined functions and procedures cannot be defined within an EVAL

statement or EVAL function.

Syntax

�� EVAL (SQL_character_value) ��

EVAL takes one parameter in the form of an expression, evaluates this expression,

and casts the resulting value to a character string if it is not one already. The

expression that is passed to EVAL must therefore be able to be represented as a

character string.

After this first stage evaluation is complete, the behavior of EVAL depends on

whether it is being used as a complete ESQL statement, or in place of an

expression that forms part of an ESQL statement:

v If it is a complete ESQL statement, the character string derived from the first

stage evaluation is executed as if it were an ESQL statement.

v If it is an expression that forms part of an ESQL statement, the character string is

evaluated as if it were an ESQL expression and EVAL returns the result.

In the following examples, A and B are integer scalar variables, and scalarVar1 and

OperatorAsString are character string scalar variables.

The following examples are valid uses of EVAL:

v SET OutputRoot.XMLNS.Data.Result = EVAL(A+B);

The expression A+B is acceptable because, although it returns an integer value,

integer values are representable as character strings, and the necessary cast is

performed before EVAL continues with its second stage of evaluation.

v SET OutputRoot.XMLNS.Data.Result = EVAL(’A’ || operatorAsString ||

’B’);

v EVAL(’SET ’ || scalarVar1 || ’ = 2;’);

The semicolon included at the end of the final string literal is necessary, because

if EVAL is being used in place of an ESQL statement, its first stage evaluation

must return a string that represents a valid ESQL statement, including the

terminating semicolon.

Variables declared within an EVAL statement do not exist outside that EVAL

statement. In this way EVAL is similar to a function, in which locally-declared

variables are local only, and go out of scope when the function is exited.

ESQL reference 1535

The real power of EVAL is that it allows you to dynamically construct ESQL

statements or expressions. In the second and third examples above, the value of

scalarVar1 or operatorAsString can be set according to the value of an incoming

message field, or other dynamic value, allowing you to effectively control what

ESQL is executed without requiring a potentially lengthy IF THEN ladder.

However, consider the performance implications in using EVAL. Dynamic

construction and execution of statements or expressions is necessarily more

time-consuming than simply executing pre-constructed ones. If performance is

vital, you might prefer to write more specific, but faster, ESQL.

The following are not valid uses of EVAL:

v SET EVAL(scalarVar1) = 2;

In this example, EVAL is being used to replace a field reference, not an

expression.

v SET OutputRoot.XMLNS.Data.Result[] = EVAL((SELECT T.x FROM Database.y AS

T));

In this example, the (SELECT T.x FROM Database.y) passed to EVAL returns a

list, which is not representable as a character string.

The following example is acceptable because (SELECT T.x FROM Database.y AS T)

is a character string literal, not an expression in itself, and therefore is

representable as a character string.

SET OutputRoot.XMLNS.Data.Result[]

 = EVAL(’(SELECT T.x FROM Database.y AS T)’);

FOR statement

The FOR statement iterates through a list (for example, a message array).

Syntax

�� FOR correlation_name AS field_reference DO statements END FOR ��

For each iteration, the FOR statement makes the correlation variable

(correlation_name in the syntax diagram) equal to the current member of the list

(field_reference) and then executes the block of statements. The advantage of the

FOR statement is that it iterates through a list without your having to write any

sort of loop construct (and eliminates the possibility of infinite loops).

For example the following ESQL:

SET OutputRoot.MQMD=InputRoot.MQMD;

SET Environment.SourceData.Folder[1].Field1 = ’Field11Value’;

SET Environment.SourceData.Folder[1].Field2 = ’Field12Value’;

SET Environment.SourceData.Folder[2].Field1 = ’Field21Value’;

SET Environment.SourceData.Folder[2].Field2 = ’Field22Value’;

DECLARE i INTEGER 1;

FOR source AS Environment.SourceData.Folder[] DO

 CREATE LASTCHILD OF OutputRoot.XMLNSC.Data.ResultData.MessageArrayTest.Folder[i]

 NAME ’FieldA’ VALUE ’\’ || source.Field1 || ’\’ || CAST(i AS CHAR);

1536 Message Flows

|
|
|
|
|
|
|
|
|
|
|

CREATE LASTCHILD OF OutputRoot.XMLNSC.Data.ResultData.MessageArrayTest.Folder[i]

 NAME ’FieldB’ VALUE ’\’ || source.Field2 || ’\’ || CAST(i AS CHAR);

 SET i = i + 1;

END FOR;

generates the output message:

<Data>

 <ResultData>

 <MessageArrayTest>

 <Folder>

 <FieldA>Field11Value\1</FieldA>

 <FieldB>Field12Value\1</FieldB>

 </Folder>

 <Folder>

 <FieldA>Field21Value\2</FieldA>

 <FieldB>Field22Value\2</FieldB>

 </Folder>

 </MessageArrayTest>

 </ResultData>

</Data>

IF statement

The IF statement executes one set of statements based on the result of evaluating

condition expressions.

Syntax

��

IF

�

 ELSEIF

expression

THEN

statements

ELSE

statements

END IF

��

Each expression is evaluated in turn until one results in TRUE; the corresponding

set of statements is then executed. If none of the expressions returns TRUE, and

the optional ELSE clause is present, the ELSE clause’s statements are executed.

UNKNOWN and FALSE are treated the same: the next condition expression is

evaluated. ELSEIF is one word with no space between the ELSE and the IF.

However, you can nest an IF statement within an ELSE clause: if you do, you can

terminate both statements with END IF.

Example

IF i = 0 THEN

 SET size = ’small’;

ELSEIF i = 1 THEN

 SET size = ’medium’;

ELSEIF j = 4 THEN

 SET size = ’large’;

ELSE

 SET size = ’unknown’;

END IF;

ESQL reference 1537

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

IF J> MAX THEN

 SET J = MAX;

 SET Limit = TRUE;

END IF;

INSERT statement

The INSERT statement inserts a row into a database table.

Syntax

�� INSERT INTO TableReference

�

,

(

ColumnName

)

 �

�

�

 ,

VALUES

(

Expression

)

��

WHERE:

 TableReference = Database �

�
.

SchemaClause

.

DataSourceClause

 . TableClause

 DataSourceClause = DataSourceName

{

DataSourceExpression

}

 SchemaClause = SchemaName

{

SchemaExpression

}

 TableClause = TableName

{

TableExpression

}

A single row is inserted into the table identified by TableReference. The ColumnName

list identifies those columns in the target table that are to be given specific values.

These values are determined by the expressions within the VALUES clause (the

first expression gives the value of the first named column, and so on). The number

of expressions in the VALUES clause must be the same as the number of named

columns. Any columns present in the table but not mentioned in the list are given

their default values.

1538 Message Flows

Table reference

A table reference is a special case of the field references that are used to refer to

message trees. It always starts with the word “Database” and may contain any of

the following:

v A table name only

v A schema name and a table name

v A data source name (that is, the name of a database instance), a schema name,

and a table name

In each case, the name may be specified directly or by an expression enclosed in

braces ({...}). A directly-specified data source, schema, or table name is subject to

name substitution. That is, if the name used has been declared to be a known

name, the value of the declared name is used rather than the name itself (see

“DECLARE statement” on page 1525).

If a schema name is not specified, the default schema for the broker’s database

user is used.

If a data source name is not specified, the database pointed to by the node’s data

source attribute is used.

Handling errors

It is possible for errors to occur during insert operations. For example, the database

may not be operational, or the table may have constraints defined that the new

row would violate. In these cases, an exception is thrown (unless the node has its

throw exception on database error property set to FALSE). These exceptions set

appropriate values for:

v SQL code

v state

v native error

v error text

and can be dealt with by error handlers (see the DECLARE HANDLER statement).

For further information about handling database errors, see “Capturing database

state” on page 339.

Examples

The following example assumes that the data source property of the Database

node has been configured, and that the database it identifies has a table called

TABLE1 with columns A, B, and C.

Given a message with the following generic XML body:

<A>

 1

 <C>2</C>

 <D>3</D>

The following INSERT statement inserts a new row into the table with the values

1, 2, and 3 for the columns A, B, and C:

INSERT INTO Database.TABLE1(A, B, C) VALUES (Body.A.B, Body.A.C, Body.A.D);

ESQL reference 1539

The next example shows the use of calculated data source, schema, and table

names:

-- Declare variables to hold the data source, schema, and table names

-- and set their default values

DECLARE Source CHARACTER ’Production’;

DECLARE Schema CHARACTER ’db2admin’;

DECLARE Table CHARACTER ’DynamicTable1’;

-- Code which calculates their actual values comes here

-- Insert the data into the table

INSERT INTO Database.{Source}.{Schema}.{Table} (Name, Value) values (’Joe’, 12.34);

Inserting a bitstream into a database

If the database column into which you want to insert data is set to a binary data

type such as BLOB, the input message must be represented in bitstream form. If

the input message is in the BLOB domain, use the following ESQL code:

DECLARE msgBitStream BLOB InputRoot.BLOB.BLOB;

INSERT INTO Database.TABLE1(MSGDATA) VALUES (msgBitStream);

Alternatively, if the input message is in an XML domain such as XMLNS, then the

message tree must be serialized before the INSERT statement. To serialize the

message tree and insert the contents into the database, use the following ESQL

code:

DECLARE propRef REFERENCE TO InputRoot.Properties;

DECLARE msgBitStream BLOB ASBITSTREAM(InputRoot.XMLNS, propRef.Encoding, propRef.CodedCharSetId);

INSERT INTO Database.TABLE1(MSGDATA) VALUES (msgBitStream);

If the input messages received by your message flow come from different code

pages, the CodedCharSetID and Encoding information is lost if you use the previous

example. To capture CodedCharSetID and Encoding information, you can extend the

table with two numeric columns to store the CodedCharSetID and Encoding data. To

do this modify the ESQL from the previous example to insert the CodedCharSetID

and Encoding data into separate database columns:

DECLARE propRef REFERENCE TO InputRoot.Properties;

DECLARE inCCSID INT propRef.CodedCharSetId;

DECLARE inEncoding INT propRef.Encoding;

DECLARE msgBitStream BLOB ASBITSTREAM(InputRoot.XMLNS, inEncoding, inCCSID);

INSERT INTO Database.TABLE1(MSGDATA, MSGENCODING, MSGCCSID) VALUES

(msgBitStream, inEncoding, inCCSID);

As an extension to the above example, if you require the entire message to be

stored along with its MQMD header, and use it later for reconstructing the entire

message in another message flow on a different platform using a different

codepage and encoding, the database table can be extended to hold all the numeric

fields of MQMD header.

For example, a message flow running on AIX inserts a message bitstream into the

database table and another message flow running on Windows retrieves it and

attempts to reconstruct the message along with the stored MQMD header.

The set of numeric fields in the MQMD header is listed below:

 BackoutCount (MQLONG)

 CodedCharSetId (MQLONG)

 Encoding (MQLONG)

 Expiry (MQLONG)

 Feedback (MQLONG)

 MsgFlags (MQLONG)

1540 Message Flows

|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

MsgSeqNumber (MQLONG)

 MsgType (MQLONG)

 Offset (MQLONG)

 OriginalLength (MQLONG)

 Persistence (MQLONG)

 Priority (MQLONG)

 PutApplType (MQLONG)

 Report (MQLONG)

 Version (MQLONG)

The following example uses CodedCharSetID, Encoding, Priority, and

MsgSeqNumber:.

 DECLARE propRef REFERENCE TO InputRoot.Properties;

 DECLARE mqmdRef REFERENCE TO InputRoot.MQMD;

 DECLARE inCCSID INT propRef.CodedCharSetId;

 DECLARE inEncoding INT propRef.Encoding;

 DECLARE inPriority INT mqmdRef.Priority;

 DECLARE inMsgSeqNumber INT mqmdRef.MsgSeqNumber;

 DECLARE msgBitStream BLOB ASBITSTREAM(InputRoot, inEncoding, inCCSID);

 INSERT INTO Database.TABLE1(MSGDATA, MSGENCODING, MSGCCSID, MSGPRIORITY,MSGSEQNUMBER)

 VALUES (msgBitStream, inEncoding, inCCSID, inPriority, inMsgSeqNumber);

If you want to insert an XML message into a database column that has a CHAR or

VARCHAR data type, the ESQL must be modified to convert the input message to

the CHAR data type before the INSERT statement. In the following example a CAST

is used to transform the serialized message to the CHAR data type. The

CodedCharSetID and Encoding data are inserted into separate database columns.

DECLARE propRef REFERENCE TO InputRoot.Properties;

DECLARE inCCSID INT propRef.CodedCharSetId;

DECLARE inEncoding INT propRef.Encoding;

DECLARE msgBitStream BLOB ASBITSTREAM(InputRoot.XMLNS, inEncoding, inCCSID);

DECLARE msgChar CHAR CAST(msgBitStream AS CHAR CCSID inCCSID);

INSERT INTO Database.TABLE1(MSGDATA, MSGENCODING, MSGCCSID) VALUES (msgChar, inEncoding, inCCSID);

For examples of how to extract a message bitstream from a database, based on the

two previous examples, see “Selecting bitstream data from a database” on page

327.

ITERATE statement

The ITERATE statement stops the current iteration of the containing WHILE,

REPEAT, LOOP, or BEGIN statement identified by Label.

The containing statement evaluates its loop condition (if any), and either starts the

next iteration or stops looping, as the condition dictates.

Syntax

�� ITERATE Label ��

ESQL reference 1541

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

Example

In the following example, the loop iterates four times; that is the line identified by

the comment Some statements 1 is passed through four times. However, the line

identified by the comment Some statements 2 is passed through twice only because

of the action of the IF and ITERATE statements. The ITERATE statement does not

bypass testing the loop condition. Take particular care that the action of the

ITERATE does not bypass the logic that makes the loop advance and eventually

terminate. The loop count is incremented at the start of the loop in this example:

DECLARE i INTEGER;

SET i = 0;

X : REPEAT

 SET i = i + 1;

 -- Some statements 1

 IF i IN(2, 3) THEN

 ITERATE X;

 END IF;

 -- Some statements 2

UNTIL

 i>= 4

END REPEAT X;

ITERATE statements do not have to be directly contained by their labelled

statement, making ITERATE statements particularly powerful.

LEAVE statement

The LEAVE statement stops the current iteration of the containing WHILE,

REPEAT, LOOP, or BEGIN statement identified by Label.

The containing statement’s evaluation of its loop condition (if any) is bypassed and

looping stops.

Syntax

�� LEAVE Label ��

Examples

In the following example, the loop iterates four times:

DECLARE i INTEGER;

SET i = 1;

X : REPEAT

 ...

 IF i>= 4 THEN

 LEAVE X;

 END IF;

 SET i = i + 1;

UNTIL

 FALSE

END REPEAT;

1542 Message Flows

LEAVE statements do not have to be directly contained by their labelled statement,

making LEAVE statements particularly powerful.

DECLARE i INTEGER;

SET i = 0;

X : REPEAT -- Outer loop

 ...

 DECLARE j INTEGER;

 SET j = 0;

 REPEAT -- Inner loop

 ...

 IF i>= 2 AND j = 1 THEN

 LEAVE X; -- Outer loop left from within inner loop

 END IF;

 ...

 SET j = j + 1;

 UNTIL

 j>= 3

 END REPEAT;

 SET i = i + 1;

UNTIL

 i>= 3

END REPEAT X;

 -- Execution resumes here after the leave

LOG statement

Use the LOG statement to write a record to the event log or to the user trace.

Syntax

��

�

 LOG EVENT

USER

TRACE

EXCEPTION

Options

,

FULL

VALUES

(

Expression

)

 ��

WHERE:

 Options =

SEVERITY

Expression

CATALOG

Expression

MESSAGE

Expression

CATALOG

CATALOG is an optional clause; if you omit it, CATALOG defaults to the

WebSphere Message Broker current version catalog. To use the current version

message catalog explicitly, use BIPv610 on all operating systems.

EVENT

A record is written to the event log, and also to the user trace, if user tracing is

enabled.

EXCEPTION

The current exception, if any, is logged.

 For more information on exceptions, see Errors and exception handling.

FULL

The complete nested exception report is logged, just as if the exception had

reached the input node. If FULL is not specified, any wrapping exceptions are

ignored, and only the original exception is logged. Therefore, you can have

either a full report or simply the actual error report without the extra

ESQL reference 1543

information regarding what was going on at the time. A current exception only

exists within handler blocks (see “Handling errors in message flows” on page

203).

MESSAGE

The number of the message to be used. If specified, the MESSAGE clause can

contain any expression that returns a non-NULL, integer, value.

 If you omit MESSAGE, its value defaults to the first message number (2951) in

a block of messages that is provided for use by the LOG and THROW

statements in the WebSphere Message Broker catalog. If you specify a message

number, you can use message numbers 2951 through 2999. Alternatively, you

can generate your own catalog.

SEVERITY

The severity associated with the message. If specified, the SEVERITY clause

can contain any expression that returns a non-NULL, integer, value. If you

omit the clause, its value defaults to 1.

USER TRACE

A record is written to the user trace, whether user trace is enabled or not.

VALUES

Use the optional VALUES clause to provide values for the data inserts in your

message. You can insert any number of pieces of information, but the messages

supplied (2951 - 2999) cater for a maximum of ten data inserts.

Note the general similarity of the LOG statement to the THROW statement.

 -- Write a message to the event log specifying the severity, catalog and message

 -- number. Four inserts are provided

 LOG EVENT SEVERITY 1 CATALOG ’BIPv610’ MESSAGE 2951 VALUES(1,2,3,4);

 -- Write to the trace log whenever a divide by zero occurs

 BEGIN

 DECLARE a INT 42;

 DECLARE b INT 0;

 DECLARE r INT;

 BEGIN

 DECLARE EXIT HANDLER FOR SQLSTATE LIKE ’S22012’ BEGIN

 LOG USER TRACE EXCEPTION VALUES(SQLSTATE, ’DivideByZero’);

 SET r = 0x7FFFFFFFFFFFFFFFF;

 END;

 SET r = a / b;

 END;

 SET OutputRoot.XMLNS.Data.Result = r;

 END;

LOOP statement

The LOOP statement executes the sequence of statements repeatedly and

unconditionally.

Ensure that the logic of the program provides some means of terminating the loop.

You can use either LEAVE or RETURN statements.

1544 Message Flows

Syntax

�� LOOP statements END LOOP

Label

:

LOOP

statements

END

LOOP

Label
 ��

If present, Label gives the statement a name. This has no effect on the behavior of

the LOOP statement, but allows statements to include ITERATE and LEAVE

statements or other labelled statements, which in turn include ITERATE and

LEAVE. The second Label can be present only if the first Label is present and, if it

is, the labels must be identical.

Two or more labelled statements at the same level can have the same Label but this

partly negates the advantage of the second Label. The advantage is that it

unambiguously and accurately matches each END with its LOOP. However, a

labelled statement within statements cannot have the same label, because this

makes the behavior of the ITERATE and LEAVE statements ambiguous.

The LOOP statement is useful in cases where the required logic dictates that a loop

is always exited part way through. This is because, in these cases, the testing of a

loop condition that occurs in REPEAT or WHILE statements is both unnecessary

and wasteful.

Example

DECLARE i INTEGER;

SET i = 1;

X : LOOP

 ...

 IF i>= 4 THEN

 LEAVE X;

 END IF;

 SET i = i + 1;

END LOOP X;

MOVE statement

The MOVE statement changes the field to which the Target reference variable

points.

ESQL reference 1545

Syntax

�� MOVE Target TO SourceFieldReference

PARENT

FIRSTCHILD

NAME

clauses

LASTCHILD

PREVIOUSSIBLING

NEXTSIBLING

 ��

NAME clauses:

TYPE

Expression

NAMESPACE

Expression

NAME

Expression

*

IDENTITY

PathElement

(1)

REPEAT

TYPE

NAME

TYPE-NAME

Notes:

1 The RepeatClause can be used only with the PREVIOUSSIBLING and

NEXTSIBLING qualifiers.

If you include a TO clause, this clause changes the target reference to point to the

same entity as that pointed to by source; this can either be a message field or a

declared variable.

If you include a PARENT, PREVIOUSSIBLING, NEXTSIBLING, FIRSTCHILD, or

LASTCHILD clause, the MOVE statement attempts to move the target reference

variable in the direction specified relative to its current position. If any field exists

in the given direction, the move succeeds. If there is no such field, the move fails;

that is the reference variable continues to point to the same field or variable as

before, and the LASTMOVE function returns false. You can use the LASTMOVE

function to determine the success or failure of a move.

If a TYPE clause, NAME clause, or both are present, the target is again moved in

the direction specified (PREVIOUSSIBLING or NEXTSIBLING, or FIRSTCHILD or

LASTCHILD) but to a field with the given type, name, or both. This is particularly

useful when the name or type (or both) of the target field is known, because this

reduces the number of MOVE statements required to navigate to a field. This is

because fields that do not match the criteria are skipped over; this can also include

unexpected message tree fields, for example, those representing whitespace.

If the specified move cannot be made (that is, a field with the given type or name

does not exist), the target remains unchanged and the LASTMOVE function returns

false. The TYPE clause, NAME clause, or both clauses can contain any expression

that returns a value of a suitable data type (INTEGER for type and CHARACTER

for name). An exception is thrown if the value supplied is NULL.

Two further clauses, NAMESPACE and IDENTITY enhance the functionality of the

NAME clause.

1546 Message Flows

The NAMESPACE clause takes any expression that returns a non-null value of

type character. It also takes an * indicating any namespace. Note that this cannot

be confused with an expression because * is not a unary operator in ESQL.

The meaning depends on the presence of NAME and NAMESPACE clauses as

follows:

 NAMESPACE NAME Element located by...

No No Type, index, or both

No Yes Name in the default namespace

* Yes Name

Yes No Namespace

Yes Yes Name and namespace

The IDENTITY clause takes a single path element in place of the TYPE,

NAMESPACE, and NAME clauses and follows all the rules described in the topic

for field references (see “ESQL field references” on page 1465).

When using MOVE with PREVIOUSSIBLING or NEXTSIBLING, you can specify

REPEAT, TYPE, and NAME keywords that move the target to the previous or next

field with the same type and name as the current field. The REPEAT keyword is

particularly useful when moving to a sibling of the same kind, because you do not

have to write expressions to define the type and name.

Example

MOVE cursor FIRSTCHILD TYPE XML.Name ’Field1’;

This example moves the reference variable cursor to the first child field of the field

to which the cursor is currently pointing, that has the type XML.Name and the

name Field1.

See “FIELDTYPE function” on page 1608 for a list of the types you can use.

The MOVE statement never creates new fields.

A common usage of the MOVE statement is to step from one instance of a

repeating structure to the next. The fields within the structure can then be accessed

by using a relative field reference. For example:

WHILE LASTMOVE(sourceCursor) DO

 SET targetCursor.ItemNumber = sourceCursor.item;

 SET targetCursor.Description = sourceCursor.name;

 SET targetCursor.Price = sourceCursor.prc;

 SET targetCursor.Tax = sourceCursor.prc * 0.175;

 SET targetCursor.quantity = 1;

 CREATE NEXTSIBLING OF targetCursor AS targetCursor REPEAT;

 MOVE sourceCursor NEXTSIBLING REPEAT TYPE NAME;

END WHILE;

For more information about reference variables, and an example of moving a

reference variable, see “Creating dynamic field references” on page 291.

PASSTHRU statement

The PASSTHRU statement evaluates an expression and runs the resulting character

string as a database statement.

ESQL reference 1547

|

|
|
|

|

�� PASSTHRU �

�

�

�

 Expression

TO

DatabaseReference

,

VALUES

(

Expression

)

(1)

(

Expression

)

,

,

Expression

 ��

WHERE:

 DatabaseReference = Database . DataSourceClause

Notes:

1 The lower half of the main syntax diagram (the second of the two ways of

coding the Expression to be passed to PASSTHRU) describes syntax

retained for backward compatability.

Usage

The main use of the PASSTHRU statement is to issue administrative commands to

databases (for example, to create a table).

Note: Do not use PASSTHRU to call stored procedures; instead, use the CALL

statement because PASSTHRU imposes limitations (you cannot use output

parameters, for example).

The first expression is evaluated and the resulting character string is passed to the

database pointed to by DatabaseReference (in the TO clause) for execution. If the TO

clause is not specified, the database pointed to by the node’s data source attribute

is used.

Use question marks (?) in the database string to denote parameters. The parameter

values are supplied by the VALUES clause.

If the VALUES clause is specified, its expressions are evaluated and passed to the

database as parameters; (that is, the expressions’ values are substituted for the

question marks in the database statement).

If only one VALUE expression exists, the result might or might not be a list. If it is

a list, the list’s scalar values are substituted sequentially for the question marks. If

it is not a list, the single scalar value is substituted for the (single) question mark

in the database statement. If more than one VALUE expression exists, none of the

expressions evaluate to a list; their scalar values are substituted sequentially for the

question marks instead.

Because the database statement is constructed by the user program, it is not

essential to use parameter markers (that is, the question marks) or the VALUES

clause, because the whole of the database statement could be supplied, as a literal

string, by the program. However, use parameter markers whenever possible

1548 Message Flows

because this reduces the number of different statements that need to be prepared

and stored in the database and the broker.

Database reference

A database reference is a special instance of the field references that is used to refer

to message trees. It consists of the word Database followed by the name of a data

source (that is, the name of a database instance).

You can specify the data source name directly or by an expression enclosed in

braces ({...}). A directly-specified data source name is subject to name substitution.

That is, if the name used has been declared to be a known name, the value of the

declared name is used rather than the name itself (see “DECLARE statement” on

page 1525).

If you have created a message flow that contains one of the following nodes, and

the ESQL that is associated with this node includes a PASSTHRU statement and a

database reference, you must specify a value for the Data source property of the

relevant node:

v Compute

v Database

v Filter

Handling errors

It is possible for errors to occur during PASSTHRU operations. For example, the

database might not be operational or the statement might be invalid. In these

cases, an exception is thrown (unless the node has its Throw exception on database

error property cleared). These exceptions set appropriate SQL code, state, native

error, and error text values and can be dealt with by error handlers (see the

DECLARE HANDLER statement).

For further information about handling database errors, see “Capturing database

state” on page 339.

Examples

The following example creates the table Customers in schema Shop in database

DSN1:

PASSTHRU ’CREATE TABLE Shop.Customers (

 CustomerNumber INTEGER,

 FirstName VARCHAR(256),

 LastName VARCHAR(256),

 Street VARCHAR(256),

 City VARCHAR(256),

 Country VARCHAR(256)

)’ TO Database.DSN1;

If, as in the last example, the ESQL statement is specified as a string literal, you

must put single quotes around it. If, however, it is specified as a variable, omit the

quotation marks. For example:

SET myVar = ’SELECT * FROM user1.stocktable’;

SET OutputRoot.XMLNS.Data[] = PASSTHRU(myVar);

The following example “drops” (that is, deletes) the table Customers from schema

Shop in database DSN1:

PASSTHRU ’DROP TABLE Shop.Customers’ TO Database.DSN1;

ESQL reference 1549

|
|
|
|
|
|
|

PROPAGATE statement

The PROPAGATE statement propagates a message to the downstream nodes.

Syntax

�� PROPAGATE

TO

TERMINAL

TerminalExpression

MessageSources

Controls

LABEL

LabelExpression

 ��

WHERE:

 MessageSources =

ENVIRONMENT

Expression

MESSAGE

Expression

EXCEPTION

Expression

 Controls =

FINALIZE

DEFAULT

DELETE

DEFAULT

NONE

NONE

You can use the PROPAGATE statement in Compute and Database nodes, but not

in Filter nodes. The additions to this statement assist in error handling - see

“Coding ESQL to handle errors” on page 334.

TO TERMINAL clause

If the TO TERMINAL clause is present, TerminalExpression is evaluated. If the

result is of type CHARACTER, a message is propagated to a terminal

according to the rule:

’nowhere’ : no propagation

’failure’ : Failure

 ’out’ : Out

 ’out1’ : Out1

 ’out2’ : Out2

 ’out3’ : Out3

 ’out4’ : Out4

Tip: Terminal names are case sensitive so, for example, Out1 does not match

any terminal.

If the result of TerminalExpression is of type INTEGER, a message is propagated

to a terminal according to the rule:

-2 : no propagation

-1 : Failure

 0 : Out

 1 : Out1

 2 : Out2

 3 : Out3

 4 : Out4

If the result of TerminalExpression is neither a CHARACTER nor an INTEGER,

the broker throws an exception.

If there is neither a TO TERMINAL nor a TO LABEL clause, the broker

propagates a message to the Out terminal.

1550 Message Flows

Tip: Using character values in terminal expressions leads to the most natural

and readable code. Integer values, however, are easier to manipulate in

loops and marginally faster.

TO LABEL clause

If the TO LABEL clause is present, LabelExpression is evaluated. If the result is

of type CHARACTER and there is a Label node with a Label property that

matches LabelExpression, in the same flow, the broker propagates a message to

that node.

Tip: Labels, like terminals, are case sensitive. Also, note that, as with route to

Label nodes, it is the Label Name property of the Label node that defines

the target, not the node’s label itself.

If the result of LabelExpression is NULL or not of type CHARACTER, or there is

no matching Label node in the flow, the broker throws an exception.

If there is neither a TO TERMINAL nor a TO LABEL clause, the broker

propagates a message to the out terminal.

MessageSources clauses

 The MessageSources clauses select the message trees to be propagated. This

clause is only applicable to the Compute node (it has no effect in the Database

node).

The values that you can specify in MessageSources clauses are:

ENVIRONMENT :

 InputLocalEnvironment

 OutputLocalEnvironment

Message :

 InputRoot

 OutputRoot

ExceptionList :

 InputExceptionList

 OutputExceptionList

If there is no MessageSources clause, the node’s Compute mode property is

used to determine which messages are propagated.

FINALIZE clause

Finalization is a process that fixes header chains and makes the Properties

folder match the headers. If present, the FINALIZE clause allows finalization to

be controlled.

 This clause is only applicable to the Compute node (it has no effect in a

Database node).

The Compute node allows its output message to be changed by other nodes

(by the other nodes changing their input message). However, a message

created by a Compute node cannot be changed by another node after:

v It has been finalized

v It has reached any output or other node which generates a bit-stream

If FINALIZE is set to DEFAULT, or the FINALIZE clause is absent, the output

message (but not the Environment, Local Environment or Exception List) is

finalized before propagation.

If FINALIZE is set to NONE, no finalization takes place. This option is

required if you want to preserve and allow updates of the entire output

ESQL reference 1551

message tree by the nodes downstream in the message flow and is used with

DELETE NONE as described in the next section.

DELETE clause

The DELETE clause allows the clearing of the output local environment,

message, and exception list to be controlled.

 The DELETE clause is only applicable to the Compute node (it has no effect in

a Database node).

If DELETE is set to DEFAULT, or the DELETE clause is absent, the output local

environment, message, and exception list are all cleared and their memory

recovered immediately after propagation.

If DELETE is set to NONE, nothing is cleared. Use DELETE NONE if you

want the downstream nodes to be able to see a single instance of output local

environment message, and exception list trees. Each propagate starts with the

content of these trees as created by the previous propagate rather than starting

with empty trees. If you also want these nodes to update the output tree,

DELETE NONE must be used with the FINALIZE NONE option described in

the previous section.

Note that the output trees that are finalized are cleared, regardless of which

ones are propagated.

Propagation is a synchronous process. That is, the next statement is not executed

until all the processing of the message in downstream nodes has completed. Be

aware that this processing might throw exceptions and that, if these exceptions are

not caught, they will prevent the statement following the PROPAGATE call being

reached. This may be what the logic of your flow requires but, if it is not, you can

use a handler to catch the exception and perform the necessary actions. Note that

exceptions thrown downstream of a propagate, if not caught, will also prevent the

final automatic actions of a Compute or Database node (for example, issuing a

COMMIT Transaction set to Commit) from taking place.

DECLARE i INTEGER 1;

DECLARE count INTEGER;

SET count = CARDINALITY(InputRoot.XMLNS.Invoice.Purchases."Item"[])

WHILE i <= count DO

 --use the default tooling-generated procedure for copying message headers

 CALL CopyMessageHeaders();

 SET OutputRoot.XMLNS.BookSold.Item = InputRoot.XMLNS.Invoice.Purchases.Item[i];

 PROPAGATE;

 SET i = i+1;

END WHILE;

RETURN FALSE;

The following messages are produced on the Out terminal by the PROPAGATE

statement:

<BookSold>

 <Item>

 <Title Category="Computer" Form="Paperback" Edition="2">The XML Companion </Title>

 <ISBN>0201674866</ISBN>

 <Author>Neil Bradley</Author>

 <Publisher>Addison-Wesley</Publisher>

 <PublishDate>October 1999</PublishDate>

 <UnitPrice>27.95</UnitPrice>

 <Quantity>2</Quantity>

 </Item>

</BookSold>

1552 Message Flows

<BookSold>

 <Item>

 <Title Category="Computer" Form="Paperback" Edition="2">A Complete Guide to

 DB2 Universal Database</Title>

 <ISBN>1558604820</ISBN>

 <Author>Don Chamberlin</Author>

 <Publisher>Morgan Kaufmann Publishers</Publisher>

 <PublishDate>April 1998</PublishDate>

 <UnitPrice>42.95</UnitPrice>

 <Quantity>1</Quantity>

 </Item>

</BookSold>

<BookSold>

 <Item>

 <Title Category="Computer" Form="Hardcover" Edition="0">JAVA 2 Developers

 Handbook</Title>

 <ISBN>0782121799</ISBN>

 <Author>Phillip Heller, Simon Roberts </Author>

 <Publisher>Sybex, Inc.</Publisher>

 <PublishDate>September 1998</PublishDate> <UnitPrice>59.99</UnitPrice>

 <Quantity>1</Quantity>

 </Item>

</BookSold>

REPEAT statement

The REPEAT statement processes a sequence of statements and then evaluates the

condition expression.

Syntax

�� RepeatUntil

Label

:

RepeatUntil

Label
 ��

RepeatUntil:

 REPEAT statements UNTIL condition END REPEAT

The REPEAT statement repeats the steps until condition is TRUE. Ensure that the

logic of the program is such that the loop terminates. If the condition evaluates to

UNKNOWN, the loop does not terminate.

If present, the Label gives the statement a name. This has no effect on the behavior

of the REPEAT statement, but allows statements to include ITERATE and LEAVE

statements or other labelled statements, which in turn include ITERATE and

LEAVE. The second Label can be present only if the first Label is present and, if it

is, the labels must be identical. Two or more labelled statements at the same level

can have the same label, but this partly negates the advantage of the second Label.

The advantage is that it unambiguously and accurately matches each END with its

REPEAT. However, a labelled statement within statements cannot have the same

label because this makes the behavior of the ITERATE and LEAVE statements

ambiguous.

ESQL reference 1553

Example

DECLARE i INTEGER;

SET i = 1;

X : REPEAT

 ...

 SET i = i + 1;

UNTIL

 i>= 3

END REPEAT X;

RESIGNAL statement

The RESIGNAL statement re-throws the current exception (if there is one).

Syntax

�� RESIGNAL ��

RESIGNAL re-throws the current exception (if there is one). You can use it only in

error handlers..

Typically, RESIGNAL is used when an error handler catches an exception that it

can’t handle. The handler uses RESIGNAL to re-throw the original exception so

that a handler in higher-level scope has the opportunity to handle it.

Because the handler throws the original exception, rather than a new (and

therefore different) one:

1. The higher-level handler is not affected by the presence of the lower-level

handler.

2. If there is no higher-level handler, you get a full error report in the event log.

Example

RESIGNAL;

RETURN statement

The RETURN statement ends processing. What happens next depends on the

programming context in which the RETURN statement is issued.

Syntax

�� RETURN

expression
 ��

Main Function

When used in the Main function, the RETURN statement stops processing of the

module and returns control to the next node in a message flow. In the Main

1554 Message Flows

function the return statement must contain an expression of BOOLEAN type. The

behavior of the RETURN statement in the Main function is dependant on the node.

In the Compute node for example, if expression is anything other than TRUE,

propagation of the message is stopped. In the Filter node, however, the message is

propagated to the terminal matching the value of expression: TRUE, FALSE and

UNKNOWN. The following table describes the differences between the RETURN

statement when used in the Main function of the Compute, Filter, and Database

nodes.

 Node RETURN TRUE; RETURN

FALSE;

RETURN

UNKNOWN (if

BOOLEAN

type) or

RETURN NULL;

RETURN;

Compute Propagate

message to Out

terminal.

Stop propagation Stop propagation Deploy failure

(BIP2912E: Type

mismatch on

RETURN)

Database Propagate

message to Out

terminal.

Stop propagation Stop propagation Deploy failure

(BIP2912E: Type

mismatch on

RETURN)

Filter Propagate

message to True

terminal

Propagate

message to False

terminal

Propagate

message to

Unknown

terminal

Deploy failure

(BIP2912E: Type

mismatch on

RETURN)

User defined functions and procedures

When used in a function or a procedure, the RETURN statement stops processing

of that function and returns control to the calling expression. The expression, which

must be present if the function or procedure has been declared with a RETURNS

clause, is evaluated and acts as the return value of the function. The data type of

the returned value must be the same as that in the function’s declaration. The

following table describes the differences between the RETURN statement when

used in user defined functions and procedures.

 RETURN

expression;

RETURN NULL;

(or return

expression that

evaluates to

NULL)

RETURN; No RETURN

statement

User defined

function or

procedure with

a RETURNS

clause

Returns control

to the calling

expression with

the value of

expression

Returns control

to the calling

expression with

NULL

Deploy failure

(BIP2912E: Type

mismatch on

RETURN)

Returns control

to the calling

expression with

NULL after all

the statements in

the function or

procedure have

been run

ESQL reference 1555

User defined

function or

procedure

without a

RETURNS

clause

Deploy failure

(BIP2401E:

Syntax error:

expected ; but

found expression)

Deploy failure

(BIP2401E:

Syntax error:

expected ; but

found NULL)

Returns control

to the calling

expression

Returns control

to the calling

expression after

all the

statements in the

function or

procedure have

been run

The RETURN statement must be used within the body of a function or procedure

that has the RETURNS statement in its declaration. This function can be invoked

using the CALL ... INTO statement. The RETURNS statement provides the

datatype that the function or procedure returns to the “CALL statement” on page

1487. The CALL ... INTO statement specifies the variable to which the return value

is assigned. The example in this topic shows an example of how a RETURNS and

CALL ... INTO statement are used together to assign the return statement. If you

use the CALL ... INTO statement to call a function or procedure that does not have

a RETURNS statement declared, a BIP2912E error message is generated.

Example

The following example, which is based on “Example message” on page 1671,

illustrates how the RETURN, RETURNS and CALL...INTO statements can be used:

CREATE FILTER MODULE ProcessOrder

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 DECLARE SpecialOrder BOOLEAN;

 SET OutputRoot.MQMD = InputRoot.MQMD;

 CALL IsBulkOrder(InputRoot.XMLNS.Invoice.Purchases) INTO SpecialOrder;

 --

 -- more processing could be inserted here

 -- before routing the order to the appropriate terminal

 --

 RETURN SpecialOrder;

 END;

 CREATE FUNCTION IsBulkOrder (P1 REFERENCE)

 RETURNS BOOLEAN

 BEGIN

 -- Declare and initialize variables--

 DECLARE a INT 1;

 DECLARE PriceTotal FLOAT 0.0;

 DECLARE NumItems INT 0;

 DECLARE iroot REFERENCE TO P1;

 -- Calculate value of order, however if this is a bulk purchase, the --

 -- order will need to be handled differently (discount given) so return TRUE --

 -- or FALSE depending on the size of the order --

 WHILE a <= CARDINALITY(iroot.Item[]) DO

 SET NumItems = NumItems + iroot.Item[a].Quantity;

 SET PriceTotal = PriceTotal + iroot.Item[a].UnitPrice;

 SET a = a + 1;

 END WHILE;

 RETURN (PriceTotal/NumItems> 42);

 END;

 END MODULE;

1556 Message Flows

In the example, if the average price of items is greater than 42, TRUE is returned;

otherwise FALSE is returned. Thus, a Filter node could route messages describing

expensive items down a different path from messages describing inexpensive

items. From the example, the CALL

IsBulkOrder(InputRoot.XMLNS.Invoice.Purchases) INTO SpecialOrder; statement

can also be written as SpecialOrder =

IsBulkOrder(InputRoot.XMLNS.Invoice.Purchases);

If you are using the PROPAGATE statement in your node it is important that you

use a RETURN FALSE; to prevent automatic propagation of the message to the next

node in the message flow. See “PROPAGATE statement” on page 1550 for an

example of preventing the implicit propagate at the end of processing in a

Compute node.

SET statement

The SET statement assigns a value to a variable.

Syntax

�� SET TargetFieldReference = SourceExpression

TYPE

NAMESPACE

NAME

VALUE

 ��

Introduction

TargetFieldReference identifies the target of the assignment. The target can be any of

the following:

v A declared scalar variable

v A declared row variable

v One of the predefined row variables (for example, InputRoot)

v A field within any kind of row variable (that is, a sub tree or conceptual row)

v A list of fields within any kind of row variable (that is, a conceptual list)

v A declared reference variable that points to any of the above

The target cannot be any kind of database entity.

SourceExpression is an expression which supplies the value to be assigned. It may

be any kind of expression and may return a scalar, row or list value.

Assignment to scalar variables

If the target is a declared scalar variable, SourceExpression is evaluated and assigned

to the variable. If need be, its value is converted to the data type of the variable. If

this conversion is not possible, there will be either an error at deploy time or an

exception at run time.

Null values are handled in exactly the same way as any other value. That is, if the

expression evaluates to null, the value “null” is assigned to the variable.

ESQL reference 1557

For scalar variables the TYPE, NAME, NAMESPACE, and VALUE clauses are

meaningless and are not allowed.

Assignment to rows, lists, and fields

If the target is a declared row variable, one of the predefined row variables, a field

within any kind of row variable, a list of fields within any kind of row variable, or

a declared reference variable that points to any of these things, the ultimate target

is a field. In these cases, the target field is navigated to (creating the fields if

necessary).

If array indices are used in TargetFieldReference, the navigation to the target field

can only create fields on the direct path from the root to the target field. For

example, the following SET statement requires that at least one instance of

Structure already exists in the message:

SET OutputRoot.XMLNS.Message.Structure[2].Field = ...

The target field’s value is set according to a set of rules, based on:

1. The presence or absence of the TYPE, NAME, NAMESPACE, or VALUE clauses

2. The data type returned by the source expression
1. If no TYPE, NAME, NAMESPACE, or VALUE clause is present (which is the

most common case) the outcome depends on whether SourceExpression

evaluates to a scalar, a row, or a list:

v If SourceExpression evaluates to a scalar, the value of the target field is set to

the value returned by SourceExpression, except that, if the result is null, the

target field is discarded. Note that the new value of the field may not be of

the same data type as its previous value.

v If SourceExpression evaluates to a row:

a. The target field is identified.

b. The target field’s value is set.

c. The target field’s child fields are replaced by a new set, dictated by the

structure and content of the list.
v If SourceExpression evaluates to a list:

a. The set of target fields in the target tree are identified.

b. If there are too few target fields, more are created; if there are too many,

the extra ones are removed.

c. The target fields’ values are set.

d. The target fields’ child fields are replaced by a new set, dictated by the

structure and content of the list.

For further information on working with elements of type list see “Working

with elements of type list” on page 300
2. If a TYPE clause is present, the type of the target field is set to the value

returned by SourceExpression. An exception is thrown if the returned value is

not scalar, is not of type INTEGER, or is NULL.

3. If a NAMESPACE clause is present, the namespace of the target field is set to

the value returned by SourceExpression. An exception is thrown if the returned

value is not scalar, is not of type CHARACTER, or is NULL.

4. If a NAME clause is present, the name of the target field is set to the value

returned by SourceExpression. An exception is thrown if the returned value is

not scalar, is not of type CHARACTER, or is NULL.

5. If a VALUE clause is present, the value of the target field is changed to that

returned by SourceExpression. An exception is thrown if the returned value is

not scalar.

1558 Message Flows

Notes

SET statements are particularly useful in Compute nodes that modify a message,

either changing a field or adding a new field to the original message. SET

statements are also useful in Filter and Database nodes, to set declared variables or

the fields in the Environment tree or Local Environment trees. You can use

statements such as the following in a Compute node that modifies a message:

SET OutputRoot = InputRoot;

SET OutputRoot.XMLNS.Order.Name = UPPER(InputRoot.XMLNS.Order.Name);

This example puts one field in the message into uppercase. The first statement

constructs an output message that is a complete copy of the input message. The

second statement sets the value of the Order.Name field to a new value, as defined

by the expression on the right.

If the Order.Name field does not exist in the original input message, it does not

exist in the output message generated by the first statement. The expression on the

right of the second statement returns NULL (because the field referenced inside the

UPPER function call does not exist). Assigning the NULL value to a field has the

effect of deleting it if it already exists, and so the effect is that the second statement

has no effect.

If you want to assign a NULL value to a field without deleting the field, use a

statement like this:

 SET OutputRoot.XMLNS.Order.Name VALUE = NULL;

THROW statement

Use the THROW statement to generate a user exception.

Syntax

�� THROW

USER
 EXCEPTION

SEVERITY

expression
 �

�
CATALOG

catalog name

MESSAGE

message number
 �

�

�

,

VALUES

(

expression

)

 ��

The USER keyword indicates the type of exception being thrown. (Currently, only

USER exceptions are supported, and if you omit the USER keyword the exception

defaults to a USER exception anyway.) Specify the USER keyword, even though it

currently has no effect, for the following reasons:

v If future broker releases support other types of exception, and the default type

changes, your code will not need to be changed.

v It makes it clear that this is a user exception.

ESQL reference 1559

SEVERITY is an optional clause that determines the severity associated with the

exception. The clause can contain any expression that returns a non-NULL, integer

value. If you omit the clause, it defaults to 1.

CATALOG is an optional clause; if you omit it, it defaults to the WebSphere

Message Broker current version catalog. To use the current version message catalog

explicitly, use BIPv610 on all operating systems.

MESSAGE is an optional clause; if you omit it, it defaults to the first message

number of the block of messages provided for using THROW statements in the

default catalog (2951). If you enter a message number in the THROW statement,

you can use message numbers 2951 to 2999 from the default catalog. Alternatively,

you can generate your own catalog by following the instructions in Creating

message catalogs.

Use the optional VALUES field to insert data into your message. You can insert

any number of pieces of information, but the messages supplied (2951 - 2999) cater

for eight inserts only.

Examples

Here are some examples of how you might use a THROW statement:

v

THROW USER EXCEPTION;

v

THROW USER EXCEPTION CATALOG ’BIPv610’ MESSAGE

2951 VALUES(1,2,3,4,5,6,7,8) ;

v

THROW USER EXCEPTION CATALOG ’BIPv610’ MESSAGE

2951 VALUES(’The SQL State: ’,

 SQLSTATE, ’The SQL Code: ’, SQLCODE, ’The SQLNATIVEERROR: ’, SQLNATIVEERROR,

 ’The SQL Error Text: ’, SQLERRORTEXT) ;

v

THROW USER EXCEPTION CATALOG ’BIPv610’ MESSAGE

2951 ;

v

THROW USER EXCEPTION CATALOG ’MyCatalog’ MESSAGE

2951 VALUES(’Hello World’) ;

v THROW USER EXCEPTION MESSAGE

2951 VALUES(’Insert text 1’, ’Insert text 2’) ;

For more information about how to throw an exception, and details of SQLSTATE,

SQLCODE, SQLNATIVEERROR, and SQLERRORTEXT, see “ESQL database state functions”

on page 1567.

UPDATE statement

The UPDATE statement changes the values of specified columns, in selected rows,

in a table in an external database.

1560 Message Flows

Syntax

�� UPDATE TableReference

AS

CorrelationName
 �

�

�

 ,

SET

Column = Expression

WHERE

Expression

��

WHERE:

 TableReference = Database �

�
.

SchemaClause

.

DataSourceClause

 . TableClause

 DataSourceClause = DataSourceName

{

DataSourceExpression

}

 SchemaClause = SchemaName

{

SchemaExpression

}

 TableClause = TableName

{

TableExpression

}

All rows for which the WHERE clause expression evaluates to TRUE are updated

in the table identified by TableReference. Each row is examined in turn and a

variable is set to point to the current row. Typically, the WHERE clause expression

uses this variable to access column values and thus cause rows to be updated, or

retained unchanged, according to their contents. The variable is referred to by

CorrelationName or, in the absence of an AS clause, by TableName. When a row has

been selected for updating, each column named in the SET clause is given a new

value as determined by the corresponding expression. These expressions can, if

you wish, refer to the current row variable.

Table reference

A table reference is a special case of the field references that are used to refer to

message trees. It always starts with the word “Database” and may contain any of

the following:

v A table name only

v A schema name and a table name

v A data source name (that is, the name of a database instance), a schema name,

and a table name

ESQL reference 1561

In each case, the name may be specified directly or by an expression enclosed in

braces ({...}). A directly-specified data source, schema, or table name is subject to

name substitution. That is, if the name used has been declared to be a known

name, the value of the declared name is used rather than the name itself (see

“DECLARE statement” on page 1525).

If a schema name is not specified, the default schema for the broker’s database

user is used.

If a data source name is not specified, the database pointed to by the node’s data

source attribute is used.

The WHERE clause

The WHERE clause expression can use any of the broker’s operators and functions

in any combination. It can refer to table columns, message fields, and any declared

variables or constants.

However, be aware that the broker treats the WHERE clause expression by

examining the expression and deciding whether the whole expression can be

evaluated by the database. If it can, it is given to the database. In order to be

evaluated by the database, it must use only those functions and operators

supported by the database.

The WHERE clause can, however, refer to message fields, correlation names

declared by containing SELECT functions, and to any other declared variables or

constants within scope.

If the whole expression cannot be evaluated by the database, the broker looks for

top-level AND operators and examines each sub-expression separately. It then

attempts to give the database those sub-expressions that it can evaluate, leaving

the broker to evaluate the rest. You need to be aware of this situation for two

reasons:

1. Apparently trivial changes to WHERE clause expressions can have large effects

on performance. You can determine how much of the expression was given to

the database by examining a user trace.

2. Some databases’ functions exhibit subtle differences of behavior from those of

the broker.

Handling errors

It is possible for errors to occur during update operations. For example, the

database may not be operational, or the table may have constraints defined that

the new values would violate. In these cases, an exception is thrown (unless the

node has its throw exception on database error property set to FALSE). These

exceptions set appropriate SQL code, state, native error, and error text values and

can be dealt with by error handlers (see the DECLARE HANDLER statement).

For further information about handling database errors, see “Capturing database

state” on page 339.

Examples

The following example assumes that the dataSource property of the Database node

has been configured, and that the database it identifies has a table called

1562 Message Flows

STOCKPRICES, with columns called COMPANY and PRICES. It updates the

PRICE column of the rows in the STOCKPRICES table whose COMPANY column

matches the value given in the Company field in the message.

UPDATE Database.StockPrices AS SP

 SET PRICE = InputBody.Message.StockPrice

 WHERE SP.COMPANY = InputBody.Message.Company

In the following example (which make similar assumptions), the SET clause

expression refers to the existing value of a column and thus decrements the value

by an amount in the message:

UPDATE Database.INVENTORY AS INV

 SET QUANTITY = INV.QUANTITY - InputBody.Message.QuantitySold

 WHERE INV.ITEMNUMBER = InputBody.Message.ItemNumber

The following example updates multiple columns:

UPDATE Database.table AS T

 SET column1 = T.column1+1,

 column2 = T.column2+2;

Note that the column names (on the left of the ″=″) are single identifiers. They

must not be qualified with a table name or correlation name. In contrast, the

references to database columns in the expressions (to the right of the ″=″) must be

qualified with the correlation name.

The next example shows the use of calculated data source, schema, and table

names:

-- Declare variables to hold the data source, schema and table names

-- and set their default values

DECLARE Source CHARACTER ’Production’;

DECLARE Schema CHARACTER ’db2admin’;

DECLARE Table CHARACTER ’DynamicTable1’;

-- Code which calculates their actual values comes here

-- Update rows in the table

UPDATE Database.{Source}.{Schema}.{Table} AS R SET Value = 0;

WHILE statement

The WHILE statement evaluates a condition expression, and if it is TRUE executes

a sequence of statements.

Syntax

�� While

Label

:

While

Label

 ��

While:

 WHILE condition DO statements END WHILE

ESQL reference 1563

The WHILE statement repeats the steps specified in DO as long as condition is

TRUE. It is your responsibility to ensure that the logic of the program is such that

the loop terminates. If condition evaluates to UNKNOWN, the loop terminates

immediately.

If present, Label gives the statement a name. This has no effect on the behavior of

the WHILE statement itself, but allows statements to include ITERATE and LEAVE

statements or other labelled statements, which in turn include them. The second

Label can be present only if the first Label is present and if it is, the labels must be

identical. It is not an error for two or more labelled statements at the same level to

have the same Label, but this partly negates the advantage of the second Label. The

advantage is that it unambiguously and accurately matches each END with its

WHILE. However, it is an error for a labelled statement within statements to have

the same label, because this makes the behavior of the ITERATE and LEAVE

statements ambiguous.

Example

For example:

DECLARE i INTEGER;

SET i = 1;

X : WHILE i <= 3 DO

 ...

 SET i = i + 1;

 END WHILE X;

ESQL functions: reference material, organized by function type

The following table summarizes the functions available in ESQL, and what they

do.

 CATEGORY FUNCTIONS RELATED KEYWORDS

Variable manipulation

Manipulation of all sources of variables

Basic manipulation of all

types of variable

v “CAST function” on page 1618 v ENCODING, CCSID, AS

Selective assignment to

any variable

v “CASE function” on page 1616

v “COALESCE function” on page 1658

v ELSE, WHEN, THEN, END

Creation of values v “UUIDASBLOB function” on page 1662

v “UUIDASCHAR function” on page 1662

-

Manipulation of message trees

Assignment to and

deletion from a message

tree

v “SELECT function” on page 1632 (used

with SET statement)

v “ROW constructor function” on page 1639

v “LIST constructor function” on page 1640

v FROM, AS, ITEM, THE, SUM,

COUNT, MAX, MIN

Information relating to

message trees or subtrees

v “ASBITSTREAM function” on page 1603

v “BITSTREAM function (deprecated)” on

page 1606

v “FIELDNAME function” on page 1607

v “FIELDNAMESPACE function” on page

1608

v “FIELDTYPE function” on page 1608

-

1564 Message Flows

Processing Lists v CARDINALITY, see “CARDINALITY

function” on page 1613 for details.

v EXISTS, see “EXISTS function” on page

1614 for details.

v SINGULAR, see “SINGULAR function” on

page 1615 for details.

v THE, see “THE function” on page 1615 for

details.

Processing repeating

fields

v FOR

v “SELECT function” on page 1632

v ALL, ANY, SOME

v FROM, AS, ITEM, THE, SUM,

COUNT, MAX, MIN

Processing based on data type

String processing

Numeric information

about strings

v “LENGTH function” on page 1593

v “POSITION function” on page 1596

IN

String conversion v “UPPER and UCASE functions” on page

1601

v “LOWER and LCASE functions” on page

1594

-

String manipulation v “LEFT function” on page 1593

v “LTRIM function” on page 1594

v “OVERLAY function” on page 1595

v “REPLACE function” on page 1597

v “REPLICATE function” on page 1597

v “RIGHT function” on page 1598

v “RTRIM function” on page 1598

v “SPACE function” on page 1599

v “SUBSTRING function” on page 1599

v “TRANSLATE function” on page 1600

v “TRIM function” on page 1600

v LEADING, TRAILING, BOTH, FROM

v PLACING, FROM, FOR

v FROM FOR

Numeric processing

Bitwise operations v “BITAND function” on page 1580

v “BITNOT function” on page 1580

v “BITOR function” on page 1581

v “BITXOR function” on page 1581

-

ESQL reference 1565

General v “ABS and ABSVAL functions” on page

1578

v “ACOS function” on page 1579

v “ASIN function” on page 1579

v “ATAN function” on page 1579

v “ATAN2 function” on page 1579

v “COS function” on page 1582

v “COSH function” on page 1583

v “COT function” on page 1583

v “DEGREES function” on page 1583

v “EXP function” on page 1583

v “FLOOR function” on page 1584

v “LN and LOG functions” on page 1584

v “LOG10 function” on page 1585

v “MOD function” on page 1585

v “POWER function” on page 1585

v “RADIANS function” on page 1586

v “RAND function” on page 1586

v “ROUND function” on page 1586

v “SIGN function” on page 1590

v “SIN function” on page 1590

v “SINH function” on page 1590

v “SQRT function” on page 1590

v “TAN function” on page 1591

v “TANH function” on page 1591

v “TRUNCATE function” on page 1592

-

Date time processing

 v “CURRENT_DATE function” on page 1575

v “CURRENT_GMTDATE function” on page

1576

v “CURRENT_GMTTIME function” on page

1576

v “CURRENT_TIME function” on page 1575

v “CURRENT_TIMESTAMP function” on

page 1575

v “CURRENT_GMTTIMESTAMP function”

on page 1576

v “LOCAL_TIMEZONE function” on page

1577

v “EXTRACT function” on page 1573

YEAR, MONTH, DAY, HOUR, MINUTE,

SECOND

Boolean evaluation for conditional statements

1566 Message Flows

Functions that return a

Boolean value

v BETWEEN, see “ESQL simple comparison

operators” on page 1472 for details.

v EXISTS, see “EXISTS function” on page

1614 for details.

v IN, see “ESQL simple comparison

operators” on page 1472 for details.

v LIKE, see “ESQL simple comparison

operators” on page 1472 for details.

v “NULLIF function” on page 1659

v “LASTMOVE function” on page 1612

v “SAMEFIELD function” on page 1613

v SINGULAR, see “SINGULAR function” on

page 1615 for details.

SYMMETRIC, ASYMMETRIC, AND

Broker database interaction

Actions on tables v “PASSTHRU function” on page 1659

v “SELECT function” on page 1632

v FROM, AS, ITEM, THE, SUM,

COUNT, MAX, MIN

Results of actions v “SQLCODE function” on page 1568

v “SQLERRORTEXT function” on page 1568

v “SQLNATIVEERROR function” on page

1569

v “SQLSTATE function” on page 1569

-

Calling ESQL functions

Most ESQL functions belong to a schema called SQL and this is particularly useful

if you have functions with the same name. For example, if you have created a

function called SQRT, you can code:

 /* call my SQRT function */

 SET Variable1=SQRT (4);

 /* call the SQL supplied function */

 SET Variable2=SQL.SQRT (144);

Most of the functions described in this section impose restrictions on the data

types of the arguments that can be passed to the function. If the values passed to

the functions do not match the required data types, errors are generated at node

configuration time whenever possible. Otherwise runtime errors are generated

when the function is evaluated.

ESQL database state functions

ESQL provides four functions to return database state. These are:

v “SQLCODE function” on page 1568

v “SQLERRORTEXT function” on page 1568

v “SQLNATIVEERROR function” on page 1569

v “SQLSTATE function” on page 1569

ESQL reference 1567

SQLCODE function

SQLCODE is a database state function that returns an INTEGER data type with a

default value of 0 (zero).

Syntax

�� SQLCODE ��

Within a message flow, you can access and update an external database resource

using the available ESQL database functions in the Filter, Database, and Compute

nodes. When making calls to an external database, you might get errors, such as a

table does not exist, a database is not available, or an insert for a key that already

exists.

When these errors occur, the default action of the broker is to generate an

exception. This behavior is determined by how you have set the property Throw

exception on database error. If this check box is selected, the broker stops processing

the node, propagates the message to the node’s failure terminal, and writes the

details of the error to the ExceptionList. If you want to override the default

behavior and handle a database error in the ESQL in the node, clear the Throw

exception on database error check box. The broker does not throw an exception and

you must include the THROW statement to throw an exception if a certain SQL

state code is not expected. See “THROW statement” on page 1559 for a description

of THROW.

If you choose to handle database errors in a node, you can use the database state

function SQLCODE to receive information about the status of the DBMS call made

in ESQL. You can include it in conditional statements in current node’s ESQL to

recognize and handle possible errors.

SQLERRORTEXT function

SQLERRORTEXT is a database state function that returns a CHARACTER data

type with a default value of ’’ (empty string).

Syntax

�� SQLERRORTEXT ��

Within a message flow, you can access and update an external database resource

using the available ESQL database functions in the Filter, Database, and Compute

nodes. When making calls to an external database, you might get errors, such as a

table does not exist, a database is not available, or an insert for a key that already

exists.

When these errors occur, the default action of the broker is to generate an

exception. This behavior is determined by how you have set the property Throw

exception on database error. If you have selected this check box, the broker stops

processing the node, propagates the message to the node’s failure terminal, and

1568 Message Flows

writes the details of the error to the ExceptionList. If you want to override the

default behavior and handle a database error in the ESQL in the node, clear the

Throw exception on database error check box. The broker does not throw an exception

and you must include the THROW statement to throw an exception if a certain

SQL state code is not expected. See “THROW statement” on page 1559 for a

description of THROW.

If you choose to handle database errors in a node, you can use the database state

function SQLERRORTEXT to receive information about the status of the DBMS call

made in ESQL. You can include it in conditional statements in current node’s ESQL

to recognize and handle possible errors.

SQLNATIVEERROR function

SQLNATIVEERROR is a database state function that returns an INTEGER data

type with a default value of 0 (zero).

Syntax

�� SQLNATIVEERROR ��

Within a message flow, you can access and update an external database resource

using the available ESQL database functions in the Filter, Database, and Compute

nodes. When making calls to an external database, you might get errors, such as a

table does not exist, a database is not available, or an insert for a key that already

exists.

When these errors occur, the default action of the broker is to generate an

exception. This behavior is determined by how you have set the property Throw

exception on database error. If you have selected this check box, the broker stops

processing the node, propagates the message to the node’s failure terminal, and

writes the details of the error to the ExceptionList. If you want to override the

default behavior and handle a database error in the ESQL in the node, clear the

Throw exception on database error check box. The broker does not throw an exception

and you must include the THROW statement to throw an exception if a certain

SQL state code is not expected. See “THROW statement” on page 1559 for a

description of THROW.

If you choose to handle database errors in a node, you can use the database state

function SQLNATIVEERROR to receive information about the status of the DBMS

call made in ESQL. You can include it in conditional statements in current node’s

ESQL to recognize and handle possible errors.

SQLSTATE function

SQLSTATE is a database state function that returns a 5 character data type of

CHARACTER with a default value of ’00000’ (five zeros as a string).

ESQL reference 1569

Syntax

�� SQLSTATE ��

Within a message flow, you can access and update an external database resource

using the available ESQL database functions in the Compute, Database, and Filter

nodes. When making calls to an external database, you might get errors, such as a

table does not exist, a database is not available, or an insert for a key that already

exists.

When these errors occur, the default action of the broker is to generate an

exception. This behavior is determined by how you have set the property Throw

exception on database error. If you select this property, the broker stops processing

the node, propagates the message to the node’s failure terminal, and writes the

details of the error to the ExceptionList. If you want to override the default

behavior and handle a database error in the ESQL in the node, clear Throw

exception on database error. The broker does not throw an exception and you must

include the THROW statement to throw an exception if a certain SQL state code is

not expected. See “THROW statement” on page 1559 for a description of THROW.

If you choose to handle database errors in a node, you can use the database state

function SQLSTATE to receive information about the status of the DBMS call made

in ESQL. You can include it in conditional statements in current node’s ESQL to

recognize and handle possible errors.

SQL states

In ESQL, SQL states are variable length character strings. By convention, they are

six characters long and contain only the characters 0-9, A-Z . The significance of

the six characters is:

Char 1

The origin of the exception

Chars 2 - 3

The class of the exception

Chars 4 - 6

The subclass of the exception

The SQL state of an exception is determined by a two stage process. In the first

stage, the exception information is examined and any wrapping exceptions (that is,

information that says what the broker was doing at the time the exception

occurred) is stepped over until the exception that describes the original error is

located.

The second stage is as follows:

1. If the selected exception is a database exception, the SQL state is that supplied

by the database, but prefixed by the letter “D” to avoid any confusion with

exceptions arising in the broker. The SQL code, native error, and error text are

those supplied by the database.

2. If the selected exception is a user exception (that is, it originated in a THROW

statement), the SQL code, state, native error, and error text are taken from the

first four inserts of the exception, in order. The resulting state value is taken as

is (not prefixed by a letter such as “U”). The letter “U” is not used by the

1570 Message Flows

broker as an origin indicator. If you want to define a unique SQL state rather

than to imitate an existing one, use SQL states starting with the letter “U”. If

you use SQL states that start with the letter “U”, you can write an error

handler to match all user-defined and thrown exceptions with a LIKE’U%’

operator.

3. If the selected exception originated in the message transport or in the ESQL

implementation itself, the SQL code, state, native error, and error text are as

described in the list below.

4. For all other exceptions, the SQL state is ’’, indicating no origin, no class, and

no subclass.

Some exceptions that currently give an empty SQL state might give individual

states in future releases. If you want to catch unclassified exceptions, use the “all”

wildcard (“%”) for the SQL state on the last handler of a scope. This wildcard will

continue to catch the same set of exceptions if previously unclassified exceptions

are given new unique SQL states.

The following SQL states are defined:

Dddddd

ddddd is the state returned by the database.

SqlState = ’S22003’

Arithmetic overflow. An operation whose result is a numeric type resulted in a

value beyond the range supported.

SqlState = ’S22004’

Null value not allowed. A null value was present in a place where null values

are not allowed.

SqlState = ’S22007’

Invalid date time format. A character string used in a cast from character to a

datetime type had either the wrong basic format (for example, ’01947-10-24’) or

had values outside the ranges allowed by the Gregorian calendar (for example,

’1947-21-24’).

SqlState = ’S22008’

Date time field overflow. An operation whose result is a datetime type resulted

in a value beyond the range supported.

SqlState = ’S22011’

SUBSTRING error. The FROM and FOR parameters, in conjunction with the

length of the first operand, violate the rules of the SUBSTRING function.

SqlState = ’S22012’

Divide by zero. A divide operation whose result data type has no concept of

infinity had a zero right operand.

SqlState = ’S22015’

Interval field overflow. An operation whose result is of type INTERVAL

resulted in a value beyond the range supported by the INTERVAL data type.

SqlState = ’S22018’

Invalid character value for cast.

SqlState = ’SPS001’

Invalid target terminal. A PROPAGATE to terminal statement attempted to use

an invalid terminal name.

ESQL reference 1571

SqlState = ’SPS002’

Invalid target label. A PROPAGATE to label statement attempted to use an

invalid label.

SqlState = ’MQW001’, SqlNativeError = 0

The bit stream does not meet the requirements for WebSphere MQ messages.

No attempt was made to put it to a queue. Retrying and queue administration

does not resolve this problem.

SqlState = ’MQW002’, SqlNativeError = 0

The target queue or queue manager names were not valid (that is, they could

not be converted from Unicode to the queue manager’s code page). Retrying

and queue emptying does not resolve this problem.

SqlState = ’MQW003’, SqlNativeError = 0

Request mode was specified but the “reply to” queue or queue manager names

were not valid (that is, could not be converted from Unicode to the message’s

code page). Retrying and queue emptying does not resolve this problem.

SqlState = ’MQW004’, SqlNativeError = 0

Reply mode was specified but the queue or queue manager names taken from

the message were not valid (that is, they could not be converted from the

given code page to Unicode). Retrying and queue emptying does not resolve

this problem.

SqlState = ’MQW005’, SqlNativeError = 0

Destination list mode was specified but the destination list supplied does not

meet the basic requirements for destination lists. No attempt was made to put

any message to a queue. Retrying and queue administration does not resolve

this problem.

SqlState = ’MQW101’, SqlNativeError = returned by WebSphere MQ

The target queue manager or queue could not be opened. Queue

administration might resolve this problem but retrying does not.

SqlState = ’MQW102’, SqlNativeError = returned by WebSphere MQ

The target queue manager or queue could not be written to. Retrying and

queue administration might resolve this problem.

SqlState = ’MQW201’, SqlNativeError = number of destinations with an error

More than one error occurred while processing a destination list. The message

might have been put to zero or more queues. Retrying and queue

administration might resolve this problem.

Anything that the user has used in a THROW statement

Use Uuuuuuu for user exceptions, unless imitating one of the exceptions defined

above.

Empty string

All other errors.

ESQL datetime functions

This topic lists the ESQL datetime functions.

In addition to the functions described here, you can use arithmetic operators to

perform various calculations on datetime values. For example, you can use the -

(minus) operator to calculate the difference between two dates as an interval, or

you can add an interval to a timestamp.

This section covers the following topics:

1572 Message Flows

“EXTRACT function”

“CURRENT_DATE function” on page 1575

“CURRENT_TIME function” on page 1575

“CURRENT_TIMESTAMP function” on page 1575

“CURRENT_GMTDATE function” on page 1576

“CURRENT_GMTTIME function” on page 1576

“CURRENT_GMTTIMESTAMP function” on page 1576

“LOCAL_TIMEZONE function” on page 1577

EXTRACT function

The EXTRACT function extracts fields (or calculates values) from datetime values

and intervals.

The result is INTEGER for YEAR, MONTH, DAY, HOUR, MINUTE, DAYS,

DAYOFYEAR, DAYOFWEEK, MONTHS, QUARTEROFYEAR, QUARTERS,

WEEKS, WEEKOFYEAR, and WEEKOFMONTH extracts, but FLOAT for SECOND

extracts, and BOOLEAN for ISLEAPYEAR extracts. If the SourceDate is NULL, the

result is NULL regardless of the type of extract.

Syntax

�� EXTRACT (YEAR FROM SourceDate)

MONTH

DAY

HOUR

MINUTE

SECOND

DAYS

DAYOFYEAR

DAYOFWEEK

MONTHS

QUARTEROFYEAR

QUARTERS

WEEKS

WEEKOFYEAR

WEEKOFMONTH

ISLEAPYEAR

 ��

EXTRACT extracts individual fields from datetime values and intervals. You can

extract a field only if it is present in the datetime value specified in the second

parameter. Either a parse-time or a runtime error is generated if the requested field

does not exist within the data type.

The following table describes the extracts that are supported:

ESQL reference 1573

Note: All new integer values start from 1.

 Table 273.

Extract Description

YEAR Year

MONTH Month

DAY Day

HOUR Hour

MINUTE Minute

SECOND Second

DAYS Days encountered between 1st January 0001

and the SourceDate.

DAYOFYEAR Day of year

DAYOFWEEK Day of the week: Sunday = 1, Monday = 2,

Tuesday = 3, Wednesday = 4, Thursday = 5,

Friday = 6, Saturday = 7.

MONTHS Months encountered between 1st January

0001 and the SourceDate.

QUARTEROFYEAR Quarter of year: January to March = 1, April

to June = 2, July to September = 3, October

to December = 4.

QUARTERS Quarters encountered between 1st January

0001 and the SourceDate.

WEEKS Weeks encountered between 1st January

0001 and the SourceDate.

WEEKOFYEAR Week of year

WEEKOFMONTH Week of month

ISLEAPYEAR Whether this is a leap year

Notes:

1. A week is defined as Sunday to Saturday, not any seven consecutive

days. You must convert to an alternative representation scheme if

required.

2. The source date time epoch is 1 January 0001. Dates before the epoch

are not valid for this function.

3. The Gregorian calendar is assumed for calculation.

Example

EXTRACT(YEAR FROM CURRENT_DATE)

and

EXTRACT(HOUR FROM LOCAL_TIMEZONE)

both work without error, but

EXTRACT(DAY FROM CURRENT_TIME)

fails.

EXTRACT (DAYS FROM DATE ’2000-02-29’)

1574 Message Flows

calculates the number of days encountered since year 1 to ’2000-02-29’ and

EXTRACT (DAYOFYEAR FROM CURRENT_DATE)

calculates the number of days encountered since the beginning of the current year

but

EXTRACT (DAYOFYEAR FROM CURRENT_TIME)

fails because CURRENT_TIME does not contain date information.

CURRENT_DATE function

The CURRENT_DATE datetime function returns the current date.

Syntax

�� CURRENT_DATE ��

CURRENT_DATE returns a DATE value representing the current date in local time.

As with all SQL functions that take no parameters, no parentheses are required or

accepted. All calls to CURRENT_DATE within the processing of one node are

guaranteed to return the same value.

CURRENT_TIME function

The CURRENT_TIME datetime function returns the current local time.

Syntax

�� CURRENT_TIME ��

CURRENT_TIME returns a TIME value representing the current local time. As

with all SQL functions that take no parameters, no parentheses are required or

accepted. All calls to CURRENT_TIME within the processing of one node are

guaranteed to return the same value.

CURRENT_TIMESTAMP function

The CURRENT_TIMESTAMP datetime function returns the current date and local

time.

Syntax

�� CURRENT_TIMESTAMP ��

ESQL reference 1575

CURRENT_TIMESTAMP returns a TIMESTAMP value representing the current

date and local time. As with all SQL functions that take no parameters, no

parentheses are required or accepted. All calls to CURRENT_TIMESTAMP within

the processing of one node are guaranteed to return the same value.

Example

To obtain the following XML output message:

<Body>

<Message>Hello World</Message>

<DateStamp>2006-02-01 13:13:56.444730</DateStamp>

</Body>

use the following ESQL:

SET OutputRoot.XMLNS.Body.Message = ’Hello World’;

SET OutputRoot.XMLNS.Body.DateStamp = CURRENT_TIMESTAMP;

CURRENT_GMTDATE function

The CURRENT_GMTDATE datetime function returns the current date in the GMT

time zone.

Syntax

�� CURRENT_GMTDATE ��

CURRENT_GMTDATE returns a DATE value representing the current date in the

GMT time zone. As with all SQL functions that take no parameters, no parentheses

are required or accepted. All calls to CURRENT_GMTDATE within the processing

of one node are guaranteed to return the same value.

CURRENT_GMTTIME function

The CURRENT_GMTTIME datetime function returns the current time in the GMT

time zone.

Syntax

�� CURRENT_GMTTIME ��

It returns a GMTTIME value representing the current time in the GMT time zone.

As with all SQL functions that take no parameters, no parentheses are required or

accepted. All calls to CURRENT_GMTTIME within the processing of one node are

guaranteed to return the same value.

CURRENT_GMTTIMESTAMP function

The CURRENT_GMTTIMESTAMP datetime function returns the current date and

time in the GMT time zone.

1576 Message Flows

Syntax

�� CURRENT_GMTTIMESTAMP ��

CURRENT_GMTTIMESTAMP returns a GMTTIMESTAMP value representing the

current date and time in the GMT time zone. As with all SQL functions that take

no parameters, no parentheses are required or accepted. All calls to

CURRENT_GMTTIMESTAMP within the processing of one node are guaranteed to

return the same value.

LOCAL_TIMEZONE function

The LOCAL_TIMEZONE datetime function returns the displacement of the local

time zone from GMT.

Syntax

�� LOCAL_TIMEZONE ��

LOCAL_TIMEZONE returns an interval value representing the local time zone

displacement from GMT. As with all SQL functions that take no parameters, no

parentheses are required or accepted. The value returned is an interval in hours

and minutes representing the displacement of the current time zone from

Greenwich Mean Time. The sign of the interval is such that a local time can be

converted to a time in GMT by subtracting the result of the LOCAL_TIMEZONE

function.

ESQL numeric functions

This topic lists the ESQL numeric functions and covers the following:

“ABS and ABSVAL functions” on page 1578

“ACOS function” on page 1579

“ASIN function” on page 1579

“ATAN function” on page 1579

“ATAN2 function” on page 1579

“BITAND function” on page 1580

“BITNOT function” on page 1580

“BITOR function” on page 1581

“BITXOR function” on page 1581

“CEIL and CEILING functions” on page 1582

“COS function” on page 1582

“COSH function” on page 1583

ESQL reference 1577

“COT function” on page 1583

“DEGREES function” on page 1583

“EXP function” on page 1583

“FLOOR function” on page 1584

“LN and LOG functions” on page 1584

“LOG10 function” on page 1585

“MOD function” on page 1585

“POWER function” on page 1585

“RADIANS function” on page 1586

“RAND function” on page 1586

“ROUND function” on page 1586

“SIGN function” on page 1590

“SIN function” on page 1590

“SINH function” on page 1590

“SQRT function” on page 1590

“TAN function” on page 1591

“TANH function” on page 1591

“TRUNCATE function” on page 1592

ABS and ABSVAL functions

The ABS and ABSVAL numeric functions return the absolute value of a supplied

number.

Syntax

�� ABS (source_number)

ABSVAL
 ��

The absolute value of the source number is a number with the same magnitude as

the source but without a sign. The parameter must be a numeric value. The result

is of the same type as the parameter unless it is NULL, in which case the result is

NULL.

For example:

ABS(-3.7)

returns 3.7

ABS(3.7)

returns 3.7

ABS(1024)

1578 Message Flows

returns 1024

ACOS function

The ACOS numeric function returns the angle of a given cosine.

Syntax

�� ACOS (NumericExpression) ��

The ACOS function returns the angle, in radians, whose cosine is the given

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

ASIN function

The ASIN numeric function returns the angle of the given sine.

Syntax

�� ASIN (NumericExpression) ��

The ASIN function returns the angle, in radians, whose sine is the given

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

ATAN function

The ATAN numeric function returns the angle of the given tangent.

Syntax

�� ATAN (NumericExpression) ��

The ATAN function returns the angle, in radians, whose tangent is the given

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

ATAN2 function

The ATAN2 numeric function returns the angle subtended in a right angled

triangle between an opposite and the base.

ESQL reference 1579

Syntax

�� ATAN2 (OppositeNumericExpression , BaseNumericExpression) ��

The ATAN2 function returns the angle, in radians, subtended (in a right angled

triangle) by an opposite given by OppositeNumericExpression and the base given by

BaseNumericExpression. The parameters can be any built-in numeric data type. The

result is FLOAT unless either parameter is NULL, in which case the result is NULL

BITAND function

The BITAND numeric function performs a bitwise AND on the binary

representation of two or more numbers.

Syntax

��

�

 ,

BITAND

(

source_integer

,

source_integer

)

��

BITAND takes two or more integer values and returns the result of performing the

bitwise AND on the binary representation of the numbers. The result is INTEGER

unless either parameter is NULL, in which case the result is NULL.

For example:

BITAND(12, 7)

returns 4 as shown by this worked example:

 Binary Decimal

 1100 12

AND 0111 7

 0100 4

BITNOT function

The BITNOT numeric function performs a bitwise complement on the binary

representation of a number.

Syntax

�� BITNOT (source_integer) ��

1580 Message Flows

BITNOT takes an integer value and returns the result of performing the bitwise

complement on the binary representation of the number. The result is INTEGER

unless either parameter is NULL, in which case the result is NULL.

For example:

BITNOT(7)

returns -8, as shown by this worked example:

 Binary Decimal

00...0111 7

NOT

11...1000 -8

BITOR function

The BITOR numeric function performs a bitwise OR on the binary representation

of two or more numbers.

Syntax

��

�

 ,

BITOR

(

source_integer

,

source_integer

)

��

BITOR takes two or more integer values and returns the result of performing the

bitwise OR on the binary representation of the numbers. The result is INTEGER

unless either parameter is NULL, in which case the result is NULL.

For example:

BITOR(12, 7)

returns 15, as shown by this worked example:

 Binary Decimal

 1100 12

OR 0111 7

 1111 15

BITXOR function

The BITXOR numeric function performs a bitwise XOR on the binary

representation of two or more numbers.

Syntax

��

�

 ,

BITXOR

(

source_integer

,

source_integer

)

��

ESQL reference 1581

BITXOR takes two or more integer values and returns the result of performing the

bitwise XOR on the binary representation of the numbers. The result is INTEGER

unless either parameter is NULL, in which case the result is NULL.

For example:

BITXOR(12, 7)

returns 11, as shown by this worked example:

 Binary Decimal

 1100 12

XOR 0111 7

 1011 11

CEIL and CEILING functions

The CEIL and CEILING numeric functions return the smallest integer equivalent of

a decimal number.

Syntax

�� CEIL (source_number)

CEILING
 ��

CEIL and CEILING return the smallest integer value greater than or equal to

source_number. The parameter can be any numeric data type. The result is of the

same type as the parameter unless it is NULL, in which case the result is NULL.

For example:

CEIL(1)

returns 1

CEIL(1.2)

returns 2.0

CEIL(-1.2)

returns -1.0

If possible, the scale is changed to zero. If the result cannot be represented at that

scale, it is made sufficiently large to represent the number.

COS function

The COS numeric function returns the cosine of a given angle.

Syntax

�� COS (NumericExpression) ��

1582 Message Flows

The COS function returns the cosine of the angle, in radians, given by

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

COSH function

The COSH numeric function returns the hyperbolic cosine of a given angle.

Syntax

�� COSH (NumericExpression) ��

The COSH function returns the hyperbolic cosine of the angle, in radians, given by

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

COT function

The COT numeric function returns the cotangent of a given angle.

Syntax

�� COT (NumericExpression) ��

The COT function returns the cotangent of the angle, in radians, given by

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

DEGREES function

The DEGREES numeric function returns the angle of the radians supplied.

Syntax

�� DEGREES (NumericExpression) ��

The DEGREES function returns the angle, in degrees, specified by

NumericExpression in radians. The parameter can be any built-in numeric data type.

The result is FLOAT unless the parameter is NULL, in which case the result is

NULL.

EXP function

The EXP numeric function returns the exponential value of a given number.

ESQL reference 1583

Syntax

�� EXP (NumericExpression) ��

The EXP function returns the exponential of the value specified by

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

FLOOR function

The FLOOR numeric function returns the largest integer equivalent to a given

decimal number.

Syntax

�� FLOOR (source_number) ��

FLOOR returns the largest integer value less than or equal to source_number. The

parameter can be any numeric data type. The result is of the same type as the

parameter unless it is NULL, in which case the result is NULL.

For example:

FLOOR(1)

returns 1

FLOOR(1.2)

returns 1.0

FLOOR(-1.2)

returns -2.0

If possible, the scale is changed to zero. If the result cannot be represented at that

scale, it is made sufficiently large to represent the number.

LN and LOG functions

The LN and LOG equivalent numeric functions return the natural logarithm of a

given value.

Syntax

�� LN (NumericExpression)

LOG
 ��

1584 Message Flows

The LN and LOG functions return the natural logarithm of the value specified by

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

LOG10 function

The LOG10 numeric function returns the logarithm to base 10 of a given value.

Syntax

�� LOG10 (NumericExpression) ��

The LOG10 function returns the logarithm to base 10 of the value specified by

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

MOD function

The MOD numeric function returns the remainder when dividing two numbers.

Syntax

�� MOD (dividend , divisor) ��

MOD returns the remainder when the first parameter is divided by the second

parameter. The result is negative only if the first parameter is negative. Parameters

must be integers. The function returns an integer. If any parameter is NULL, the

result is NULL.

For example:

MOD(7, 3)

returns 1

MOD(-7, 3)

returns -1

MOD(7, -3)

returns 1

MOD(6, 3)

returns 0

POWER function

The POWER numeric function raises a value to the power supplied.

ESQL reference 1585

Syntax

�� POWER (ValueNumericExpression , PowerNumericExpression) ��

POWER returns the given value raised to the given power. The parameters can be

any built-in numeric data type. The result is FLOAT unless any parameter is

NULL, in which case the result is NULL

An exception occurs, if the value is either:

v Zero and the power is negative, or

v Negative and the power is not an integer

RADIANS function

The RADIANS numeric function returns a given radians angle in degrees.

Syntax

�� RADIANS (NumericExpression) ��

The RADIANS function returns the angle, in radians, specified by

NumericExpression in degrees. The parameter can be any built-in numeric data type.

The result is FLOAT unless the parameter is NULL, in which case the result is

NULL.

RAND function

The RAND numeric function returns a pseudo random number.

Syntax

�� RAND ()

IntegerExpression
 ��

The RAND function returns a pseudo random number in the range 0.0 to 1.0. If

supplied, the parameter initializes the pseudo random sequence.

The parameter can be of any numeric data type, but any fractional part is ignored.

The result is FLOAT unless the parameter is NULL, in which case the result is

NULL.

ROUND function

The ROUND numeric function rounds a supplied value to a given number of

places.

1586 Message Flows

Syntax

�� ROUND (source_number , precision

(1)

MODE

RoundingMode

 �

�) ��

RoundingMode:

 ROUND_UP

ROUND_DOWN

ROUND_CEILING

ROUND_FLOOR

ROUND_HALF_UP

ROUND_HALF_EVEN

ROUND_HALF_DOWN

Notes:

1 If you do not specify MODE, a value of ROUND_HALF_EVEN is used.

If precision is a positive number, source_number is rounded to precision places right

of the decimal point. If precision is negative, the result is source_number rounded to

the absolute value of precision places to the left of the decimal point.

source_number can be any built-in numeric data type; precision must be an integer.

The result is of the same data type as the source_number parameter unless

source_number is NULL, in which case the result is NULL.

This means that the result of the function is:

v INTEGER if source_number is INTEGER

v FLOAT if source_number is FLOAT

v DECIMAL if source_number is DECIMAL

When rounding, the banker’s or half-even symmetric rounding rules are used by

default, unless a RoundingMode is specified.

RoundingMode

RoundingMode can take one of the following values:

ROUND_UP

Round away from zero. Always increments the digit prior to a nonzero

discarded fraction. This rounding mode never decreases the magnitude of

the calculated value.

ROUND_DOWN

Round towards zero. Never increments the digit prior to a discarded

fraction, that is, truncates. This rounding mode never increases the

magnitude of the calculated value.

ROUND_CEILING

Round towards positive infinity. If the decimal is positive, behaves as for

ESQL reference 1587

ROUND_UP; if negative, behaves as for ROUND_DOWN. This rounding

mode never decreases the calculated value.

ROUND_FLOOR

Round towards negative infinity. If the decimal is positive, behaves as for

ROUND_DOWN; if negative, behaves as for ROUND_UP. This rounding

mode never increases the calculated value.

ROUND_HALF_UP

Round towards ″nearest neighbor″ unless both neighbors are equidistant,

in which case round up. Behaves as for ROUND_UP if the discarded

fraction is greater than, or equal to, 0.5; otherwise, behaves as for

ROUND_DOWN. This is the rounding mode that is typically taught in

schools.

ROUND_HALF_DOWN

Round towards ″nearest neighbor″ unless both neighbors are equidistant,

in which case round down. Behaves as for ROUND_UP if the discarded

fraction is grater than 0.5; otherwise, behaves as for ROUND_DOWN.

ROUND_HALF_EVEN

Round towards the ″nearest neighbor″ unless both neighbors are

equidistant, in which case, round towards the even neighbor. Behaves as

for ROUND_HALF_UP if the digit to the left of the discarded fraction is

odd; behaves as for ROUND_HALF_DOWN if it is even. This is the

rounding mode that minimizes cumulative error when applied repeatedly

over a sequence of calculations, and is sometimes referred to as Banker’s

rounding.

The following table gives a summary of rounding operations, with a precision of

zero, under different rounding modes.

 Input

number

ROUND

UP

ROUND

DOWN

ROUND

CEILING

ROUND

FLOOR

ROUND

HALF UP

ROUND

HALF

DOWN

ROUND

HALF

EVEN

5.5 6 5 6 5 6 5 6

2.5 3 2 3 2 3 2 2

1.6 2 1 2 1 2 2 2

1.1 2 1 2 1 1 1 1

1.0 1 1 1 1 1 1 1

-1.0 -1 -1 -1 -1 -1 -1 -1

-1.1 -2 -1 -1 -2 -1 -1 -1

-1.6 -2 -1 -1 -2 -2 -2 -2

-2.5 -3 -2 -2 -3 -3 -2 -2

-5.5 -6 -5 -5 -6 -6 -5 -6

Examples using the default rounding mode (ROUND_HALF_EVEN):

ROUND(27.75, 2)

returns 27.75

ROUND(27.75, 1)

returns 27.8

ROUND(27.75, 0)

1588 Message Flows

returns 28

ROUND(27.75, -1)

returns 30

Examples using a rounding mode with a precision of zero:

ROUND(5.5, 0 MODE ROUND_UP);

returns 6

ROUND(5.5, 0 MODE ROUND_DOWN);

returns 5

ROUND(5.5, 0 MODE ROUND_CEILING);

returns 6

ROUND(5.5, 0 MODE ROUND_FLOOR);

returns 5

ROUND(5.5, 0 MODE ROUND_HALF_UP);

returns 6

ROUND(5.5, 0 MODE ROUND_HALF_DOWN);

returns 5

ROUND(5.5, 0 MODE ROUND_HALF_EVEN);

returns 6

ROUND(2.5, 0 MODE ROUND_UP);

returns 3

ROUND(2.5, 0 MODE ROUND_DOWN);

returns 2

ROUND(2.5, 0 MODE ROUND_CEILING);

returns 3

ROUND(2.5, 0 MODE ROUND_FLOOR);

returns 2

ROUND(2.5, 0 MODE ROUND_HALF_UP);

returns 3

ROUND(2.5, 0 MODE ROUND_HALF_DOWN);

returns 2

ROUND(2.5, 0 MODE ROUND_HALF_EVEN);

returns 3

If possible, the scale is changed to the given value. If the result cannot be

represented within the given scale, it is INFINITY.

ESQL reference 1589

SIGN function

The SIGN numeric function tells you whether a given number is positive, negative,

or zero.

Syntax

�� SIGN (NumericExpression) ��

The SIGN function returns -1, 0, or +1 when the NumericExpression value is

negative, zero, or positive respectively. The parameter can be any built-in numeric

data type and the result is of the same type as the parameter. If the parameter is

NULL, the result is NULL

SIN function

The SIN numeric function returns the sine of a given angle.

Syntax

�� SIN (NumericExpression) ��

The SIN function returns the sine of the angle, in radians, given by

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

SINH function

The SINH numeric function returns the hyperbolic sine of a given angle.

Syntax

�� SINH (NumericExpression) ��

The SINH function returns the hyperbolic sine of the angle, in radians, given by

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

SQRT function

The SQRT numeric function returns the square root of a given number.

1590 Message Flows

Syntax

�� SQRT (source_number) ��

SQRT returns the square root of source_number. The parameter can be any built-in

numeric data type. The result is a FLOAT. If the parameter is NULL, the result is

NULL.

For example:

SQRT(4)

returns 2E+1

SQRT(2)

returns 1.414213562373095E+0

SQRT(-1)

throws an exception.

TAN function

The TAN numeric function returns the tangent of a given angle.

Syntax

�� TAN (NumericExpression) ��

The TAN function returns the tangent of the angle, in radians, given by

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

TANH function

The TANH numeric function returns the hyperbolic tangent of an angle.

Syntax

�� TANH (NumericExpression) ��

The TANH function returns the hyperbolic tangent of the angle, in radians, given

by NumericExpression. The parameter can be any built-in numeric data type. The

result is FLOAT unless the parameter is NULL, in which case the result is NULL.

ESQL reference 1591

TRUNCATE function

The TRUNCATE numeric function truncates a supplied decimal number a

specified number of places.

Syntax

�� TRUNCATE (source_number , precision) ��

If precision is positive, the result of the TRUNCATE function is source_number

truncated to precision places right of the decimal point. If precision is negative, the

result is source_number truncated to the absolute value of precision places to the left

of the decimal point.

source_number can be any built-in numeric data type. precision must evaluate to an

INTEGER. The result is of the same data type as source_number. If any parameter is

NULL, the result is NULL.

For example:

TRUNCATE(27.75, 2)

returns 27.75

TRUNCATE(27.75, 1)

returns 27.7

TRUNCATE(27.75, 0)

returns 27.0

TRUNCATE(27.75, -1)

returns 20.0

If possible, the scale is changed to the given value. If the result cannot be

represented within the given scale, it is INF.

ESQL string manipulation functions

This topic lists the ESQL string manipulation functions.

Most of the following functions manipulate all string data types (BIT, BLOB, and

CHARACTER). Exceptions to this are UPPER, LOWER, LCASE, UCASE, and

SPACE, which operate only on character strings.

In these descriptions, the term singleton refers to a single part (BIT, BLOB, or

CHARACTER) within a string of that type.

In addition to the functions described here, you can use the logical OR operator to

perform various calculations on ESQL string manipulation values.

To concatenate two strings, use the “ESQL string operator” on page 1478.

1592 Message Flows

This section covers the following topics:

“LEFT function”

“LENGTH function”

“LOWER and LCASE functions” on page 1594

“LTRIM function” on page 1594

“OVERLAY function” on page 1595

“POSITION function” on page 1596

“REPLACE function” on page 1597

“REPLICATE function” on page 1597

“RIGHT function” on page 1598

“RTRIM function” on page 1598

“SPACE function” on page 1599

“SUBSTRING function” on page 1599

“TRANSLATE function” on page 1600

“TRIM function” on page 1600

“UPPER and UCASE functions” on page 1601

LEFT function

LEFT is a string manipulation function that returns a string consisting of the

source string truncated to the length given by the length expression.

Syntax

�� LEFT (source_string , LengthIntegerExpression) ��

The source string can be of the CHARACTER, BLOB or BIT data type and the

length must be of type INTEGER. The truncation discards the final characters of

the source_string

The result is of the same type as the source string. If the length is negative or zero,

a zero length string is returned. If either parameter is NULL, the result is NULL

LENGTH function

The LENGTH function is used for string manipulation on all string data types

(BIT, BLOB, and CHARACTER) and returns an integer value giving the number of

singletons in source_string.

ESQL reference 1593

Syntax

�� LENGTH (source_string) ��

It If the source_string is NULL, the result is the NULL value. The term singleton

refers to a single part (BIT, BYTE, or CHARACTER) within a string of that type.

For example:

LENGTH(’Hello World!’);

returns 12.

LENGTH(’’);

returns 0.

LOWER and LCASE functions

The LOWER and LCASE functions are equivalent, and manipulate CHARACTER

string data; they both return a new character string, which is identical to

source_string, except that all uppercase letters are replaced with the corresponding

lowercase letters.

Syntax

�� LOWER (source_string)

LCASE
 ��

For example:

LOWER(’Mr Smith’)

returns ’mr smith’.

LOWER(’22 Railway Cuttings’)

returns ’22 railway cuttings’.

LCASE(’ABCD’)

returns ’abcd’.

LTRIM function

LTRIM is a string manipulation function, used for manipulating all data types (BIT,

BLOB, and CHARACTER), that returns a character string value of the same data

type and content as source_string, but with any leading default singletons removed.

1594 Message Flows

Syntax

�� LTRIM (source_string) ��

The term singleton is used to refer to a single part (BIT, BLOB, or CHARACTER)

within a string of that type.

The LTRIM function is equivalent to TRIM(LEADING FROM source_string).

If the parameter is NULL, the result is NULL.

The default singleton depends on the data type of source_string:

 Table 274.

Character ’ ’ (space)

BLOB X’00’

Bit B’0’

OVERLAY function

OVERLAY is a string manipulation function that manipulates all string data types

(BIT, BLOB, and CHARACTER) and replaces part of a string with a substring.

Syntax

�� OVERLAY (source_string PLACING source_string2 �

� FROM start_position)

FOR

string_length
 ��

OVERLAY returns a new string of the same type as the source and is identical to

source_string, except that a given substring in the string, starting from the specified

numeric position and of the given length, has been replaced by source_string2.

When the length of the substring is zero, nothing is replaced.

For example:

OVERLAY (’ABCDEFGHIJ’ PLACING ’1234’ FROM 4 FOR 3)

returns the string ’ABC1234GHIJ’

If any parameter is NULL, the result is NULL. If string_length is not specified, it is

assumed to be equal to LENGTH(source_string2).

The result of the OVERLAY function is equivalent to:

SUBSTRING(source_string FROM 1 FOR start_position -1)

 || source_string2 ||

 SUBSTRING(source_string FROM start_position + string_length)

ESQL reference 1595

where || is the concatenation operator.

POSITION function

POSITION is a string manipulation function that manipulates all data types (BIT,

BLOB, and CHARACTER), and returns the position of one string within another.

Syntax

�� POSITION (SearchExpression IN SourceExpression

FROM

FromExpression
 �

�)

REPEAT

RepeatExpression
 ��

POSITION returns an integer giving the position of one string (SearchExpression) in

a second string (SourceExpression). A position of one corresponds to the first

character of the source string.

If present, the FROM clause gives a position within the search string at which the

search commences. In the absence of a FROM clause, the source string is searched

from the beginning.

If present, the REPEAT clause gives a repeat count, returning the position returned

to be that of the nth occurrence of the search string within the source string. If the

repeat count is negative, the source string is searched from the end.

In the absence of a REPEAT clause, a repeat count of +1 is assumed; that is, the

position of the first occurrence, searching from the beginning is returned. If the

search string has a length of zero, the result is one.

If the search string cannot be found, the result is zero: if the FROM clause is

present, this applies only to the section of the source string being searched; if the

REPEAT clause is present this applies only if there are insufficient occurrences of

the string.

If any parameter is NULL, the result is NULL.

The search and source strings can be of the CHARACTER, BLOB, or BIT data

types but they must be of the same type.

For example:

 POSITION(’Village’ IN ’Hursley Village’); returns 9

 POSITION(’Town’ IN ’Hursley Village’); returns 0

 POSITION (’B’ IN ’ABCABCABCABCABC’); -> returns 2

 POSITION (’D’ IN ’ABCABCABCABCABC’); -> returns 0

 POSITION (’A’ IN ’ABCABCABCABCABC’ FROM 4); -> returns 4

 POSITION (’C’ IN ’ABCABCABCABCABC’ FROM 2); -> returns 3

 POSITION (’B’ IN ’ABCABCABCABCABC’ REPEAT 2); -> returns 5

 POSITION (’C’ IN ’ABCABCABCABCABC’ REPEAT 4); -> returns 12

 POSITION (’A’ IN ’ABCABCABCABCABC’ FROM 4 REPEAT 2); -> returns 7

 POSITION (’AB’ IN ’ABCABCABCABCABC’ FROM 2 REPEAT 3); -> returns 10

1596 Message Flows

POSITION (’A’ IN ’ABCABCABCABCABC’ REPEAT -2); -> returns 10

 POSITION (’BC’ IN ’ABCABCABCABCABC’ FROM 2 REPEAT -3); -> returns 5

REPLACE function

REPLACE is a string manipulation function that manipulates all string data types

(BIT, BLOB, and CHARACTER), and replaces parts of a string with supplied

substrings.

Syntax

�� REPLACE (SourceStringExpression , SearchStringExpression)

ReplaceStringExpression
 ��

REPLACE returns a string consisting of the source string, with each occurrence of

the search string replaced by the replace string. The parameter strings can be of the

CHARACTER, BLOB, or BIT data types, but all three must be of the same type.

If any parameter is NULL, the result is NULL.

The search process is single pass from the left and disregards characters that have

already been matched.

If you do not specify the replace string expression, the replace string uses the

default value of an empty string, and the behavior of the function is to delete all

occurrences of the search string from the result.

The following examples give the results shown:

 REPLACE(’ABCDABCDABCDA’, ’A’, ’AA’)

 -- RESULT = AABCDAABCDAABCDAA

The above example shows that replacement is single pass. Each occurrence of A is

replaced by AA but these are not then expanded further.

 REPLACE(’AAAABCDEFGHAAAABCDEFGH’, ’AA’, ’A’)

 -- RESULT = AABCDEFGHAABCDEFGH

This example shows that after characters are matched, they are not considered

further. Each occurrence of AA is replaced by A. The resulting AA pairs are not

matched.

 REPLACE(’AAAAABCDEFGHAAAABCDEFGH’, ’AA’, ’XYZ’)

 -- RESULT = XYZXYZABCDEFGHXYZXYZBCDEFGH

This last example shows that matching is from the left. The first four As are

matched as two pairs and replaced. The fifth A is not matched.

REPLICATE function

REPLICATE is a string manipulation function that manipulates all data types (BIT,

BLOB, and CHARACTER) and returns a string made up of multiple copies of a

supplied string.

ESQL reference 1597

Syntax

�� REPLICATE (PatternStringExpression , CountNumericExpression) ��

REPLICATE returns a string consisting of the pattern string given by

PatternStringExpression repeated the number of times given by

CountNumericExpression.

The pattern string can be of the CHARACTER, BLOB, or BIT datatype and the

count must be of type INTEGER. The result is of the same data type as the pattern

string.

If the count is negative or zero, a zero length string is returned. If either parameter

is NULL, the result is NULL.

The count is limited to 32*1024*1024 to protect the broker from erroneous

programs. If this limit is exceeded, an exception condition is issued.

RIGHT function

RIGHT is a string manipulation function that manipulates all data types (BIT,

BLOB, and CHARACTER), and truncates a string.

Syntax

�� RIGHT (SourceStringExpression , LengthIntegerExpression) ��

RIGHT returns a string consisting of the source string truncated to the length given

by the length expression. The truncation discards the initial characters of the source

string.

The source string can be of the CHARACTER, BLOB, or BIT data type and the

length must be of type INTEGER.

If the length is negative or zero, a zero length string is returned. If either

parameter is NULL, the result is NULL

RTRIM function

RTRIM is a string manipulation function that manipulates all data types (BIT,

BLOB, and CHARACTER), and removes trailing singletons from a string.

Syntax

�� RTRIM (source_string) ��

1598 Message Flows

RTRIM returns a string value of the same data type and content as source_string

but with any trailing default singletons removed. The term singleton refers to a

single part (BIT, BLOB, or CHARACTER) within a string of that type.

The RTRIM function is equivalent to TRIM(TRAILING FROM source_string).

If the parameter is NULL, the result is NULL.

The default singleton depends on the data type of source_string:

 Character ’ ’ (space)

BLOB X’00’

Bit B’0’

SPACE function

SPACE is a string manipulation function that manipulates all data types (BIT,

BLOB, and CHARACTER), and creates a string consisting of a defined number of

blank spaces.

Syntax

�� SPACE (NumericExpression) ��

SPACE returns a character string consisting of the number of blank spaces given

by NumericExpression. The parameter must be of type INTEGER; the result is of

type CHARACTER.

If the parameter is negative or zero, a zero length character string is returned. If

the parameter is NULL, the result is NULL.

The string is limited to 32*1024*1024 to protect the broker from erroneous

programs. If this limit is exceeded, an exception condition is issued.

SUBSTRING function

SUBSTRING is a string manipulation function that manipulates all data types (BIT,

BLOB, and CHARACTER), and extracts characters from a string to create another

string.

Syntax

�� SUBSTRING (source_string FROM start_position �

�)

FOR

string_length
 ��

ESQL reference 1599

SUBSTRING returns a new string of the same type as source_string, containing one

contiguous run of characters extracted from source_string as specified by

start_position and string_length.

The start position can be negative. The start position and length define a range.

The result is the overlap between this range and the input string.

If any parameter is NULL, the result is NULL. This is not a zero length string.

For example:

SUBSTRING(’Hello World!’ FROM 7 FOR 4)

returns ’Worl’.

TRANSLATE function

TRANSLATE is a string manipulation function that manipulates all string data

types (BIT, BLOB, and CHARACTER), and replaces specified characters in a string.

Syntax

�� TRANSLATE (SourceStringExpression , SearchStringExpression)

ReplaceStringExpression
 ��

TRANSLATE returns a string consisting of the source string, with each occurrence

of any character that occurs in the search string being replaced by the

corresponding character from the replace string.

The parameter strings can be of the CHARACTER, BLOB, or BIT data type but all

three must be of the same type. If any parameter is NULL, the result is NULL.

If the replace string is shorter than the search string, there are characters in the

search string for which there is no corresponding character in the replace string.

This is treated as an instruction to delete these characters and any occurrences of

these characters in the source string are absent from the returned string

If the replace string expression is not specified, the replace string is assumed to be

an empty string, and the function deletes all occurrences of any characters in the

search string from the result.

TRIM function

TRIM is a string manipulation function that manipulates all string data types (BIT,

BLOB, and CHARACTER), and removes trailing and leading singletons from a

string.

1600 Message Flows

Syntax

�� TRIM (

trim_singleton

FROM

BOTH

LEADING

TRAILING

trim_singleton

 �

� source_string) ��

TRIM returns a new string of the same type as source_string, in which the leading,

trailing, or both leading and trailing singletons have been removed. The term

singleton refers to a single part (BIT, BYTE, or CHARACTER) within a string of that

type.

If trim_singleton is not specified, a default singleton is assumed. The default

singleton depends on the data type of source_string:

 Character ’ ’ (space)

BLOB X’00’

Bit B’0’

If any parameter is NULL, the result is NULL.

It is often unnecessary to strip trailing blanks from character strings before

comparison, because the rules of character string comparison mean that trailing

blanks are not significant.

The following examples illustrate the behavior of the TRIM function:

TRIM(TRAILING ’b’ FROM ’aaabBb’)

returns ’aaabB’.

TRIM(’ a ’)

returns ’a’.

TRIM(LEADING FROM ’ a ’)

returns ’a ’.

TRIM(’b’ FROM ’bbbaaabbb’)

returns ’aaa’.

UPPER and UCASE functions

UPPER and UCASE are equivalent string manipulation functions that manipulate

CHARACTER string data and convert lowercase characters in a string to

uppercase.

ESQL reference 1601

Syntax

�� UPPER (source_string)

UCASE
 ��

UPPER and UCASE both return a new character string, which is identical to

source_string, except that all lowercase letters are replaced with the corresponding

uppercase letters.

For example:

UPPER(’ABCD’)

returns ’ABCD’.

UCASE(’abc123’)

returns ’ABC123’.

Converting characters from different code pages to uppercase

If you are using certain code pages, characters with no uppercase equivalent in

your code page might be converted when you use the UPPER or UCASE function.

This conversion happens because the bitstream is converted to a Unicode message

tree by the message parser. Even though characters might have no uppercase

equivalent in the source code page, they can still have an uppercase equivalent in

the Unicode code page, and are converted by the UPPER or UCASE function.

When the bitstream is converted back to the original code page, these characters

cannot be converted back, and a substitution character is inserted into the output

message for each character. The substitution character inserted depends on the

original code page. For example, conversion to an EBCDIC code page inserts an

X’3F’ byte and conversion to a Japanese code page inserts an X’7F’ byte.

A solution to this problem is to use the TRANSLATE function to convert selected

characters to uppercase, instead of using the UPPER or UCASE function. Any

characters that have no uppercase equivalent in the code page are excluded from

the conversion.

In the following example, the input message is in code page 284, and the

InputRoot.XML.MSG.APPDATA element contains characters that do not have an upper

case equivalent in code page 284, but do have upper case equivalents in the

Unicode code page. The TRANSLATE function is used to convert only the

lowercase characters ’a’ to ’z’ to their equivalent uppercase characters. Any other

characters in InputRoot.XML.MSG.APPDATA are excluded from the conversion.

DECLARE char1 CHAR;

SET char1 = TRANSLATE(InputRoot.XML.MSG.APPDATA,’abcdefghijklmnopqrstuvwxyz’,’ABCDEFGHIJKLMNOPQRSTUVWXYZ’);

SET OutputRoot.MQMD.CodedCharSetId = 284;

SET OutputRoot.XML.TEST.translated = char1;

ESQL field functions

This topic lists the ESQL field functions and covers the following:

“ASBITSTREAM function” on page 1603

1602 Message Flows

“BITSTREAM function (deprecated)” on page 1606

“FIELDNAME function” on page 1607

“FIELDNAMESPACE function” on page 1608

“FIELDTYPE function” on page 1608

“FIELDVALUE function” on page 1610

“FOR function” on page 1611

“LASTMOVE function” on page 1612

“SAMEFIELD function” on page 1613

ASBITSTREAM function

The ASBITSTREAM field function generates a bit stream for the subtree of a given

field according to the rules of the parser that owns the field.

The ASBITSTREAM field function uses parameters supplied by the caller for:

v Encoding

v CCSID

v Message set

v Message type

v Message format

v Options

The ASBITSTREAM function removes the limitation of the existing BITSTREAM

function, which can be used only on a tree produced by a parser that belongs to an

input node.

The BITSTREAM function is retained only for compatibility with earlier versions.

Syntax

��

�

 ASBITSTREAM (FieldReference)

<<

OPTIONS

expression

ENCODING

expression

CCSID

expression

SET

expression

TYPE

expression

FORMAT

expression

 ��

Note that each clause can occur once only.

ASBITSTREAM returns a value of type BLOB that contains a bitstream

representation of the field that is pointed to by FieldReference and its children.

The algorithm for doing this varies from parser to parser, and according to the

options specified. All parsers support the following modes:

ESQL reference 1603

|
|

v RootBitStream, in which the algorithm that generates the bit stream is the same

as the algorithm that is used by an output node. In this mode, a meaningful

result is obtained only if the field pointed to is at the head of a subtree with an

appropriate structure.

v EmbeddedBitStream, in which not only is the algorithm that generates the bit

stream is the same as the algorithm that is used by an output node, but also the

– Encoding

– CCSID

– Message set

– Message type

– Message format

are determined, if not explicitly specified, in the same way as the output node.

That is, they are determined by searching the previous siblings of FieldReference

on the assumption that they represent headers.

In this way, the algorithm for determining these properties is essentially the

same as that used for the BITSTREAM function.

Some parsers also support another mode, FolderBitStream, which generates a

meaningful bit stream for any subtree, provided that the field that is pointed to

represents a folder.

In all cases, the bit stream obtained can be given to a CREATE statement with a

PARSE clause, using the same DOMAIN and OPTIONS to reproduce the original

subtree.

When the function is called, any clause expressions are evaluated. An exception is

thrown if any of the expressions do not result in a value of the appropriate type.

If any parameter is NULL the result is NULL.

 Clause Type Default value

OPTIONS Integer RootBitStream & ValidateNone

ENCODING Integer 0

CCSID Integer 0

SET Character Zero length string

TYPE Character Zero length string

FORMAT Character Zero length string

For details of the syntax of the TYPE clause, refer to Specifying namespaces in the

Message Type property.

Although the OPTIONS clause accepts any expression that returns a value of type

integer, it is only meaningful to generate option values from the list of supplied

constants, using the BITOR function if more than one option is required.

The generated value becomes an integer and can be saved in a variable, passed as

a parameter to a function, or used directly in an ASBITSTREAM call. The list of

globally-defined constants is:

 Validate master options...

 ValidateContentAndValue

 ValidateValue -- Can be used with ValidateContent

1604 Message Flows

ValidateContent -- Can be used with ValidateValue

 ValidateNone

 Validate failure action options...

 ValidateException

 ValidateExceptionList

 ValidateLocalError

 ValidateUserTrace

 Validate value constraints options...

 ValidateFullConstraints

 ValidateBasicConstraints

 Validate fix up options...

 ValidateFullFixUp

 ValidateNoFixUp

Notes:

1. The validateFullFixUp option is reserved for future use. Selecting

validateFullFixUp gives identical behaviour to validateNoFixUp.

2. The validateFullConstraints option is reserved for future use. Selecting

validateFullConstraints gives identical behaviour to

validateBasicConstraints.

3. For full details of the validation options, refer to “Validation properties”

on page 1359.

C and Java equivalent APIs

Note that equivalent options are not available on:

v The Java plugin node API MBElement methods

createElementAsLastChildFromBitstream() and toBitstream()

v The C plugin node API methods cniCreateElementAsLastChildFromBitstream()

and cniElementAsBitstream.

Only one option from each group can be specified, with the exception of

ValidateValue and ValidateContent, which can be used together to obtain the

content and value validation. If you do not specify an option within a group, the

option in bold is used.

The ENCODING clause accepts any expression that returns a value of type integer.

However, it is only meaningful to generate encoding values from the list of

supplied constants:

 0

 MQENC_INTEGER_NORMAL

 MQENC_INTEGER_REVERSED

 MQENC_DECIMAL_NORMAL

 MQENC_DECIMAL_REVERSED

 MQENC_FLOAT_IEEE_NORMAL

 MQENC_FLOAT_IEEE_REVERSED

 MQENC_FLOAT_S390

0 uses the queue manager’s encoding.

The values that are used for the CCSID clause follow the normal numbering

system. For example, 1200 = UCS-2, 1208 = UTF-8.

In addition the special values 0 and -1 are supported:

v 0 uses the queue manager’s CCSID

ESQL reference 1605

v -1 uses the CCSID’s as determined by the parser itself. This value is reserved.

For absent clauses, the given default values are used. Use the CCSID and encoding

default values, because they take their values from the queue manager’s encoding

and CCSID settings.

Similarly, use the default values for each of the message set, type, and format

options, because many parsers do not require message set, type, or format

information; any valid value is sufficient.

When any expressions have been evaluated, the appropriate bit stream is

generated.

Note: Because this function has a large number of clauses, an alternative syntax is

supported in which the parameters are supplied as a comma-separated list

rather than by named clauses. In this case, the expressions must be in the

following order:

ENCODING -> CCSID -> SET -> TYPE -> FORMAT -> OPTIONS

The list can be truncated at any point and you can use an empty expression

for any clauses for which you do not supply a value.

Examples

 DECLARE options INTEGER BITOR(FolderBitStream, ValidateContent,

 ValidateValue);

 SET result = ASBITSTREAM(cursor OPTIONS options CCSID 1208);

 SET Result = ASBITSTREAM(Environment.Variables.MQRFH2.Data,,1208

 ,,,,options);

BITSTREAM function (deprecated)

The BITSTREAM field function returns a value that represents the bit stream that

is described by the given field and its children. Its use is deprecated; use the newer

ASBITSTREAM function instead.

The BITSTREAM function can be used only on a tree produced by a parser

belonging to an input node. The ASBITSTREAM function does not suffer from this

limitation.

Syntax

�� BITSTREAM (field_reference) ��

The BITSTREAM function returns a value of type BLOB that represents the bit

stream that is described by the given field and its children. For incoming messages,

the appropriate portion of the incoming bit stream is used. For messages that are

constructed by Compute nodes, the following algorithm is used to establish the

ENCODING, CCSID, message set, message type, and message format:

v If the addressed field has a previous sibling, and this sibling is the root of a

subtree that belongs to a parser capable of providing an ENCODING and

1606 Message Flows

|
|
|

CCSID, these values are obtained and used to generate the requested bit stream.

Otherwise, the broker’s default ENCODING and CCSID (that is, those of its

queue manager) are used.

v Similarly, if the addressed field has a previous sibling, and this sibling is the root

of a subtree that belongs to a parser capable of providing a message set,

message type, and message format, these values are obtained and used to

generate the requested bit stream. Otherwise, zero length strings are used.

This function is typically used for message warehouse scenarios, where the bit

stream of a message needs to be stored in a database. The function returns the bit

stream of the physical portion of the incoming message, identified by the

parameter. In some cases, it does not return the bit stream that represents the

actual field identified. For example, the following two calls return the same value:

BITSTREAM(Root.MQMD);

BITSTREAM(Root.MQMD.UserIdentifier);

because they lie in the same portion of the message.

FIELDNAME function

The FIELDNAME field function returns the name of a given field.

Syntax

�� FIELDNAME (source_field_reference) ��

FIELDNAME returns the name of the field identified by source_field_reference as a

character value. If the parameter identifies a nonexistent field, NULL is returned.

For example:

v FIELDNAME(InputRoot.XMLNS) returns XMLNS.

v FIELDNAME(InputBody) returns the name of the last child of InputRoot, which

could be XMLNS.

v FIELDNAME(InputRoot.*[<]) returns the name of the last child of InputRoot,

which could be XMLNS.

This function does not show any namespace information; this must be obtained by

a separate call to the “FIELDNAMESPACE function” on page 1608.

Whereas the following ESQL sets X to ″F1″:

SET X=FIELDNAME(InputBody.*[<]);

The following ESQL sets Y to null:

SET Y=FIELDNAME(InputBody.F1.*[<]);

However, the following ESQL sets Z to the (expected) child of F1:

SET Z=FIELDNAME(InputBody.*[<].*[<]);

This is because F1 belongs to a namespace and needs to be explicitly referenced by,

for example:

ESQL reference 1607

DECLARE ns NAMESPACE ’urn:nid:xxxxxx’;

SET Y=FIELDNAME(InputBody.ns:F1.*[<]);

FIELDNAMESPACE function

The FIELDNAMESPACE field function returns the namespace of a given field.

Syntax

�� FIELDNAMESPACE (FieldReference) ��

FIELDNAMESPACE takes a field reference as a parameter and returns a value of

type CHARACTER containing the namespace of the addressed field. If the

parameter identifies a nonexistent field, NULL is returned.

FIELDTYPE function

The FIELDTYPE field function returns the type of a given field.

Syntax

�� FIELDTYPE (source_field_reference) ��

FIELDTYPE returns an integer representing the type of the field identified by

source_field_reference; this is the type of the field, not the data type of the field that

the parameter identifies. If the parameter identifies a nonexistent entity, NULL is

returned.

The mapping of integer values to field types is not published, and might change

from release to release. Compare the results of the FIELDTYPE function with

named field types.

For example:

IF FIELDTYPE(source_field_reference) = NameValue

 THEN ...

The named field types that you can use in this context are listed below.

Note the following:

v Name, Value, NameValue and MQRFH2.BitStream are domain independent.

v The XML.* types are applicable to the XML, XMLNS, JMSMap, and JMSStream

domains, except for XML.Namespace which is specific to the XMLNS domain.

v The XMLNSC.* types are applicable to the XMLNSC domain.

You must use these types with the capitalization shown:

v Name

v Value

1608 Message Flows

|

|

|
|

|

v NameValue

v MQRFH2.BitStream

v XML.AsisElementContent

v XML.Attribute

v XML.AttributeDef

v XML.AttributeDefDefaultType

v XML.AttributeDefType

v XML.AttributeDefValue

v XML.AttributeList

v XML.BitStream

v XML.CDataSection

v XML.Comment

v XML.Content

v XML.DocTypeComment

v XML.DocTypeDecl

v XML.DocTypePI

v XML.DocTypeWhiteSpace

v XML.Element

v XML.ElementDef

v XML.Encoding

v XML.EntityDecl

v XML.EntityDeclValue

v XML.EntityReferenceStart

v XML.EntityReferenceEnd

v XML.ExternalEntityDecl

v XML.ExternalParameterEntityDecl

v XML.ExtSubset

v XML.IntSubset

v XML.NamespaceDecl

v XML.NotationDecl

v XML.NotationReference

v XML.ParameterEntityDecl

v XML.ParserRoot

v XML.ProcessingInstruction

v XML.PublicId

v XML.RequestedDomain

v XML.Standalone

v XML.SystemId

v XML.UnparsedEntityDecl

v XML.Version

v XML.WhiteSpace

v XML.XmlDecl

v XMLNSC.Attribute

v XMLNSC.BitStream

v XMLNSC.CDataField

ESQL reference 1609

v XMLNSC.CDataValue

v XMLNSC.Comment

v XMLNSC.DocumentType

v XMLNSC.DoubleAttribute

v XMLNSC.DoubleEntityDefinition

v XMLNSC.EntityDefinition

v XMLNSC.EntityReference

v XMLNSC.Field

v XMLNSC.Folder

v XMLNSC.HybridField

v XMLNSC.HybridValue

v XMLNSC.PCDataField

v XMLNSC.PCDataValue

v XMLNSC.ProcessingInstruction

v XMLNSC.SingleAttribute

v XMLNSC.SingleEntityDefinition

v XMLNSC.Value

v XMLNSC.XmlDeclaration

You can also use this function to determine whether a field in a message exists. To

do this, use the form:

FIELDTYPE(SomeFieldReference) IS NULL

If the field exists, an integer value is returned to the function that indicates the

field type (for example, string). When this is compared to NULL, the result is

FALSE. If the field does not exist, NULL is returned and therefore the result is

TRUE. For example:

 IF FIELDTYPE(InputRoot.XMLNS.Message1.Name)

 IS NULL THEN

 // Name field does not exist, take error

 action....

 ... more ESQL ...

 ELSE

 // Name field does exist, continue....

 ... more ESQL ...

 END IF

FIELDVALUE function

The FIELDVALUE field function returns the scalar value of a given field.

Syntax

�� FIELDVALUE (source_field_reference) ��

FIELDVALUE returns the scalar value of the field identified by

source_field_reference. If it identifies a non-existent field, NULL is returned.

For example, consider the following XML input message:

1610 Message Flows

<Data>

 <Qty Unit="Gallons">1234</Qty>

</Data>

The ESQL statement

SET OutputRoot.XML.Data.Quantity =

 FIELDVALUE(InputRoot.XML.Data.Qty);

gives the result:

<Data><Quantity>1234</Quantity></Data>

whereas this ESQL statement (without the FIELDVALUE function):

SET OutputRoot.XML.Data.Quantity =

 InputRoot.XML.Data.Qty;

causes a tree copy, with the result:

<Data><Quantity Unit="Gallons">1234</Quantity></Data>

because the field Qty is not a leaf field.

FOR function

The FOR field function evaluates an expression and assigns a resulting value of

TRUE, FALSE, or UNKNOWN

Syntax

��

FOR

ALL

-ANY

-SOME

�

 ,

fieldreference

AS

Identifier

�

� (expression) ��

FOR enables you to write an expression that iterates over all instances of a

repeating field. For each instance it processes a boolean expression and collates the

results.

For example:

FOR ALL Body.Invoice.Purchases."Item"[] AS I (I.Quantity <= 50)

Note:

1. With the quantified predicate , the first thing to note is the [] on the end

of the field reference after the FOR ALL. The square brackets define

iteration over all instances of the Item field.

In some cases, this syntax appears unnecessary, because you can get that

information from the context, but it is done for consistency with other

pieces of syntax.

ESQL reference 1611

2.

The ASclause associates the name I in the field reference with the

current instance of the repeating field. This is similar to the concept of

iterator classes used in some object oriented languages such as C++. The

expression in parentheses is a predicate that is evaluated for each

instance of the Item field.

If you specify the ALL keyword, the function iterates over all instances of the field

Item inside Body.Invoice.Purchases and evaluates the predicate I.Quantity <= 50.

If the predicate evaluates to:

v TRUE (if the field is empty, or for all instances of Item) return TRUE.

v FALSE (for any instance of Item) return FALSE.

v Anything else, return UNKNOWN.

The ANY and SOME keywords are equivalent. If you use either, the function

iterates over all instances of the field Item inside Body.Invoice.Purchases and

evaluates the predicate I.Quantity <= 50. If the predicate evaluates to:

v FALSE (if the field is empty, or for all instances of Item) return FALSE.

v TRUE (for any instance of Item) return TRUE.

v Anything else, return UNKNOWN.

To further illustrate this, the following examples are based on the message

described in “Example message” on page 1671. In the following filter expression:

FOR ANY Body.Invoice.Purchases."Item"[] AS I (I.Title = ’The XML Companion’)

the sub-predicate evaluates to TRUE. However, this next expression returns FALSE:

FOR ANY Body.Invoice.Purchases."Item"[] AS I (I.Title = ’C Primer’)

because the C Primer is not included on this invoice. If in this instance some of the

items in the invoice do not include a book title field, the sub-predicate returns

UNKNOWN, and the quantified predicate returns the value UNKNOWN.

Take great care to deal with the possibility of null values appearing. Write this

filter with an explicit check on the existence of the field, as follows:

FOR ANY Body.Invoice.Purchases."Item"[] AS I (I.Book IS NOT NULL AND

I.Book.Title = ’C Primer’)

The IS NOT NULL predicate ensures that, if an Item field does not contain a Book,

a FALSE value is returned from the sub-predicate.

LASTMOVE function

The LASTMOVE field function tells you whether the last MOVE function

succeeded.

Syntax

�� LASTMOVE (source_dynamic_reference) ��

1612 Message Flows

LASTMOVE returns a Boolean value indicating whether the last MOVE function

applied to source_dynamic_reference was successful (TRUE) or not (FALSE).

See “MOVE statement” on page 1545 for an example of using the MOVE

statement, and the LASTMOVE function to check its success.

See “Creating dynamic field references” on page 291 for information about

dynamic references.

SAMEFIELD function

The SAMEFIELD field function tells you whether two field references point to the

same target.

Syntax

�� SAMEFIELD (source_field_reference1 , source_field_reference2) ��

SAMEFIELD returns a BOOLEAN value indicating whether two field references

point to the same target. If they do, SAMEFIELD returns TRUE; otherwise

SAMEFIELD returns FALSE.

For example:

DECLARE ref1 REFERENCE TO OutputRoot.XMLNS.Invoice.Purchases.Item[1];

MOVE ref1 NEXTSIBLING;

SET Result = SAMEFIELD(ref1,OutputRoot.XMLNS.Invoice.Purchases.Item[2]);

Result is TRUE.

See “Creating dynamic field references” on page 291 for information about

dynamic references.

ESQL list functions

This topic lists the ESQL list functions and covers the following:

“CARDINALITY function”

“EXISTS function” on page 1614

“SINGULAR function” on page 1615

“THE function” on page 1615

CARDINALITY function

The CARDINALITY function returns the number of elements in a list.

Syntax

�� CARDINALITY (ListExpression) ��

ESQL reference 1613

CARDINALITY returns an integer value giving the number of elements in the list

specified by ListExpression.

ListExpression is any expression that returns a list. All the following, for example,

return a list:

v A LIST constructor

v A field reference with the [] array indicator

v Some SELECT expressions (not all return a list)

A common use of this function is to determine the number of fields in a list before

iterating over them.

Examples

-- Determine the number of F1 fields in the message.

-- Note that the [] are required

DECLARE CountF1 INT CARDINALITY(OutputRoot.XMLNS.Data.Source.F1[]);

-- Determine the number of fields called F1 with the value ’F12’ in the message.

-- Again note that the [] are required

DECLARE CountF1F12 INT

 CARDINALITY(SELECT F.* FROM OutputRoot.XMLNS.Data.Source.F1[] AS F

 where F = ’F12’);

-- Use the value returned by CARDINALITY to refer to a specific element

-- in a list or array:

-- Array indices start at 1, so this example refers to the third-from-last

-- instance of the Item field

Body.Invoice.Item[CARDINALITY(Body.Invoice.Item[]) - 2].Quantity

EXISTS function

The EXISTS function returns a BOOLEAN value indicating whether a list contains

at least one element (that is, whether the list exists).

Syntax

�� EXISTS (ListExpression) ��

If the list specified by ListExpression contains one or more elements, EXISTS returns

TRUE. If the list contains no elements, EXISTS returns FALSE.

ListExpression is any expression that returns a list. All the following, for example,

return a list:

v A LIST constructor

v A field reference with the [] array indicator

v Some SELECT expressions (not all return a list)

If you only want to know whether a list contains any elements or none, EXISTS

executes more quickly than an expression involving the CARDINALITY function

(for example, CARDINALITY(ListExpression) <> 0).

A common use of this function is to determine whether a field exists.

1614 Message Flows

Examples

-- Determine whether the F1 array exists in the message. Note that the []

-- are required

DECLARE Field1Exists BOOLEAN EXISTS(OutputRoot.XMLNS.Data.Source.F1[]);

-- Determine whether the F1 array contains an element with the value ’F12’.

-- Again note that the [] are required

DECLARE Field1F12Exists BOOLEAN

 EXISTS(SELECT F.* FROM OutputRoot.XMLNS.Data.Source.F1[] AS F where F = ’F12’);

SINGULAR function

The SINGULAR function returns a BOOLEAN value indicating whether a list

contains exactly one element.

Syntax

�� SINGULAR (ListExpression) ��

If the list specified by ListExpression contains exactly one element, SINGULAR

returns TRUE. If the list contains more or fewer elements, SINGULAR returns

FALSE.

ListExpression is any expression that returns a list. All the following, for example,

return a list:

v A LIST constructor

v A field reference with the [] array indicator

v Some SELECT expressions (not all return a list)

If you only want to know whether a list contains just one element or some other

number, SINGULAR executes more quickly than an expression involving the

CARDINALITY function (for example, CARDINALITY(ListExpression) = 1).

A common use of this function is to determine whether a field is unique.

Examples

-- Determine whether there is just one F1 field in the message.

-- Note that the [] are required

DECLARE Field1Unique BOOLEAN SINGULAR(OutputRoot.XMLNS.Data.Source.F1[]);

-- Determine whether there is just one field called F1 with the value ’F12’

-- in the message. Again note that the [] are required

DECLARE Field1F12Unique BOOLEAN

 SINGULAR(SELECT F.* FROM OutputRoot.XMLNS.Data.Source.F1[] AS F where F = ’F12’);

THE function

The THE function returns the first element of a list.

Syntax

�� THE (ListExpression) ��

ESQL reference 1615

If ListExpression contains one or more elements; THE returns the first element of

the list. Otherwise it returns an empty list.

Restrictions

Currently, ListExpression must be a SELECT expression.

Complex ESQL functions

This topic lists the complex ESQL functions and covers the following:

“CASE function”

“CAST function” on page 1618

“SELECT function” on page 1632

“ROW constructor function” on page 1639

“LIST constructor function” on page 1640

“ROW and LIST combined” on page 1641

“ROW and LIST comparisons” on page 1642

“Supported casts” on page 1644

“Implicit casts” on page 1652

“Implicit CASTs for comparisons” on page 1652

“Implicit CASTs for arithmetic operations” on page 1654

“Implicit CASTs for assignment” on page 1656

“Data types of values from external sources” on page 1657

CASE function

CASE is a complex function which has two forms; the simple-when form and the

searched-when form. In either form CASE returns a value , the result of which

controls the path of subsequent processing.

1616 Message Flows

Syntax

��

CASE

simple-when-clause

searched-when-clause

 ELSE NULL

ELSE

result_expression

END

��

simple-when-clause:

source_value

�

WHEN

test_value

THEN

result_value

NULL

searched-when-clause:

�

WHEN

search_condition

THEN

result_value

NULL

Both forms of CASE return a value depending on a set of rules defined in WHEN

clauses.

In the simple-when form, source_value is compared with each test_value until a

match is found. The result of the CASE function is the value of the corresponding

result_value. The data type of source_value must therefore be comparable to the data

type of each test_value.

The CASE function must have at least one WHEN. The ELSE is optional. The

default ELSE expression is NULL. A CASE expression is delimited by END. The

test values do not have to be literal values.

The searched-when clause version is similar, but has the additional flexibility of

allowing a number of different values to be tested.

The following example shows a CASE function with a simple WHEN clause. In

this example, the CASE can be determined only by one variable that is specified

next to the CASE keyword.

 DECLARE CurrentMonth CHAR;

 DECLARE MonthText CHAR;

 SET CurrentMonth = SUBSTRING(InputBody.Invoice.InvoiceDate FROM 6 FOR 2);

 SET MonthText =

 CASE CurrentMonth

 WHEN ’01’ THEN ’January’

 WHEN ’02’ THEN ’February’

 WHEN ’03’ THEN ’March’

 WHEN ’04’ THEN ’April’

 WHEN ’05’ THEN ’May’

 WHEN ’06’ THEN ’June’

 ELSE ’Second half of year’

 END

ESQL reference 1617

The following example shows a CASE function with a searched-when-clause. This

example is still determined by one variable CurrentMonth:

 DECLARE CurrentMonth CHAR;

 DECLARE MonthText CHAR;

 SET CurrentMonth = SUBSTRING(InputBody.Invoice.InvoiceDate FROM 6 FOR 2);

 SET MonthText =

 CASE

 WHEN Month = ’01’ THEN ’January’

 WHEN Month = ’02’ THEN ’February’

 WHEN Month = ’03’ THEN ’March’

 WHEN Month = ’04’ THEN ’April’

 WHEN Month = ’05’ THEN ’May’

 WHEN Month = ’06’ THEN ’June’

 ELSE ’Second half of year’

 END

In a searched-when-clause, different variables can be used in the WHEN clauses to

determine the result. This is demonstrated in the following example of the

searched-when-clause:

 DECLARE CurrentMonth CHAR;

 DECLARE CurrentYear CHAR;

 DECLARE MonthText CHAR;

 SET CurrentMonth = SUBSTRING(InputBody.Invoice.InvoiceDate FROM 6 FOR 2);

 SET CurrentYear = SUBSTRING(InputBody.Invoice.InvoiceDate FROM 1 FOR 4);

 SET MonthText =

 CASE

 WHEN CurrentMonth = ’01’ THEN ’January’

 WHEN CurrentMonth = ’02’ THEN ’February’

 WHEN CurrentMonth = ’03’ THEN ’March’

 WHEN CurrentYear = ’2000’ THEN ’A month in the Year 2000’

 WHEN CurrentYear = ’2001’ THEN ’A month in the Year 2001’

 ELSE ’Not first three months of any year or a month in the Year 2000 or 2001’

 END;

CAST function

CAST is a complex function that transforms one or more values from one data

type into another.

Syntax

��

CAST

(

�

 << , <<

source_expression

AS

DataType

CCSID

expression

�

�
ENCODING

expression

FORMAT

expression

DEFAULT

expression
 �

�) ��

1618 Message Flows

In practice, you cannot specify all of the above parameters at the same time. For

example, CCSID and ENCODING parameters take effect only on string-to-string

conversions, while FORMAT applies only to string-numeric and string-datetime

conversions (in either direction).

The CAST function transforms one or more values from one data type into another

data type. For example, you can use CAST to process generic XML messages. All

fields in an XML message have character values, so to perform an arithmetic

calculation or a date/time comparison on a field, for example, use CAST to convert

the string value of the field into a value of the appropriate type.

Not all conversions are supported; see “Supported casts” on page 1644 for a list of

supported conversions.

Parameters:

Source expression

CAST returns its first parameter (source_expression), which can contain more than

one value, as the data type that is specified by its second parameter (DataType). In

all cases, if the source expression is NULL, the result is NULL. If the evaluated

source expression is not compatible with the target data type, or if the source

expression is of the wrong format, a runtime error is generated.

CCSID

The CCSID parameter is used only for conversions to or from one of the string

data types. Use the CCSID parameter to specify the code page of the source or

target string.

The CCSID parameter can be any expression that evaluates to a value of type INT.

The expression is interpreted according to normal WebSphere Message Broker rules

for CCSIDs. See “Supported code pages” on page 1329 for a list of valid values.

DataType

The DataType parameter is the data type into which the source value is

transformed. The possible values are:

v String types:

– BIT

– BLOB

– CHARACTER
v Numeric types:

– DECIMAL

– FLOAT

– INTEGER
v Date/Time types:

– DATE

– GMTTIME

– GMTTIMESTAMP

– INTERVAL

– TIME

– TIMESTAMP
v Boolean:

– BOOLEAN

ESQL reference 1619

Ensure that you specify a valid ESQL interval subtype after a Date/Time type of

INTERVAL. For valid ESQL interval subtypes, see “ESQL INTERVAL data type” on

page 1454. For example commands that show how to specify a valid ESQL interval

subtype, see examples 12, 13, and 14 below.

DEFAULT

The DEFAULT parameter provides a method of avoiding exceptions being thrown

from CAST statements by providing a last-resort value to return.

The DEFAULT parameter must be a valid ESQL expression that returns the same

data type as that specified on the DataType parameter, otherwise an exception is

thrown.

The CCSID, ENCODING, and FORMAT parameters are not applied to the result

of the DEFAULT parameter; the expression must, therefore, be of the correct

CCSID, ENCODING, and FORMAT.

ENCODING

Use the ENCODING parameter to specify the encoding for certain conversions.

The ENCODING value can be any expression that evaluates to a value of type

INT, and is interpreted according to normal WebSphere Message Broker rules for

encoding. Valid values are:

v MQENC_NATIVE (0x00000222L)

v MQENC_INTEGER_NORMAL (0x00000001L)

v MQENC_INTEGER_REVERSED (0x00000002L)

v MQENC_DECIMAL_NORMAL (0x00000010L)

v MQENC_DECIMAL_REVERSED (0x00000020L)

v MQENC_FLOAT_IEEE_NORMAL (0x00000100L)

v MQENC_FLOAT_IEEE_REVERSED (0x00000200L)

v MQENC_FLOAT_S390 (0x00000300L)

FORMAT

Use the FORMAT parameter for conversions between string data types and

numerical or date/time data types. For conversions from string types, FORMAT

defines how the source string should be parsed to fill the target data type. For

conversions to string types, it defines how the data in the source expression is

formatted in the target string.

FORMAT takes different types of expression for date/time and numerical

conversions. However, the same FORMAT expression can be used irrespective of

whether the conversion is to a string or from a string.

You can specify a FORMAT parameter when casting:

v From any of the string data types (BIT, BLOB, or CHARACTER) to:

– DECIMAL

– FLOAT

– INTEGER

– DATE

– GMTTIMESTAMP

– TIMESTAMP

– GMTTIME

1620 Message Flows

– TIME
v To any of the string data types (BIT, BLOB, or CHARACTER) from any of the

numerical and date/time data types in the previous list.

Specifying FORMAT for an unsupported combination of source and target data

types causes error message BIP3205 to be issued.

For more information about conversion to and from numerical data types, see

“Formatting and parsing numbers as strings” on page 1623. For more information

about conversion to and from date/time data types, see “Formatting and parsing

dateTimes as strings” on page 1626.

The FORMAT parameter is equivalent to those used in many other products, such

as ICU and Microsoft Excel.

Examples:

Example 1. Formatted CAST from DECIMAL to CHARACTER

DECLARE source DECIMAL 31415.92653589;

DECLARE target CHARACTER;

DECLARE pattern CHARACTER ’#,##0.00’;

SET target = CAST(source AS CHARACTER FORMAT pattern);

-- target is now ’31,415.93’

Example 2. Formatted CAST from DATE to CHARACTER

DECLARE now CHARACTER = CAST(CURRENT_TIMESTAMP AS CHARACTER

 FORMAT ’yyyyMMdd-HHmmss’);

-- target is now ’20041007-111656’ (in this instance at least)

Example 3. Formatted CAST from CHARACTER to DATE

DECLARE source CHARACTER ’01-02-03’;

DECLARE target DATE;

DECLARE pattern CHARACTER ’dd-MM-yy’;

SET target = CAST(source AS DATE FORMAT pattern);

-- target now contains Year=2003, Month=02, Day=01

Example 4. Formatted CAST from CHARACTER to TIMESTAMP

DECLARE source CHARACTER ’12 Jan 03, 3:45pm’;

DECLARE target TIMESTAMP;

DECLARE pattern CHARACTER ’dd MMM yy, h:mma’;

SET target = CAST(source AS TIMESTAMP FORMAT pattern);

-- target now contains Year=2003, Month=01, Day=03, Hour=15, Minute=45,

 Seconds=58

-- (seconds taken from CURRENT_TIME since not present in input)

Example 5. Formatted CAST from DECIMAL to CHARACTER, with negative

pattern

DECLARE source DECIMAL -54231.122;

DECLARE target CHARACTER;

DECLARE pattern CHARACTER ’#,##0.00;(#,##0.00)’;

SET target = CAST(source AS CHARACTER FORMAT pattern);

-- target is now ’£(54,231.12)’

Example 6. Formatted CAST from CHARACTER to TIME

DECLARE source CHARACTER ’16:18:30’;

DECLARE target TIME;

DECLARE pattern CHARACTER ’hh:mm:ss’;

SET target = CAST(source AS TIME FORMAT pattern);

-- target now contains Hour=16, Minute=18, Seconds=30

ESQL reference 1621

Example 7. CASTs from the numeric types to DATE

CAST(7, 6, 5 AS DATE);

CAST(7.4e0, 6.5e0, 5.6e0 AS DATE);

CAST(7.6, 6.51, 5.4 AS DATE);

Example 8. CASTs from the numeric types to TIME

CAST(9, 8, 7 AS TIME);

CAST(9.4e0, 8.6e0, 7.1234567e0 AS TIME);

CAST(9.6, 8.4, 7.7654321 AS TIME);

Example 9. CASTs from the numeric types to GMTTIME

CAST(DATE ’0001-02-03’, TIME ’04:05:06’ AS TIMESTAMP);

CAST(2, 3, 4, 5, 6, 7.8 AS TIMESTAMP);

Example 10. CASTs to TIMESTAMP

CAST(DATE ’0001-02-03’, TIME ’04:05:06’ AS TIMESTAMP);

CAST(2, 3, 4, 5, 6, 7.8 AS TIMESTAMP);

Example 11. CASTs to GMTTIMESTAMP

CAST(DATE ’0002-03-04’, GMTTIME ’05:06:07’ AS GMTTIMESTAMP);

CAST(3, 4, 5, 6, 7, 8 AS GMTTIMESTAMP);

CAST(3.1e0, 4.2e0, 5.3e0, 6.4e0, 7.5e0, 8.6789012e0 AS GMTTIMESTAMP);

CAST(3.2, 4.3, 5.4, 6.5, 7.6, 8.7890135 AS GMTTIMESTAMP);

Example 12. CASTs to INTERVAL from INTEGER

CAST(1234 AS INTERVAL YEAR);

CAST(32, 10 AS INTERVAL YEAR TO MONTH);

CAST(33, 11 AS INTERVAL DAY TO HOUR);

CAST(34, 12 AS INTERVAL HOUR TO MINUTE);

CAST(35, 13 AS INTERVAL MINUTE TO SECOND);

CAST(36, 14, 10 AS INTERVAL DAY TO MINUTE);

CAST(37, 15, 11 AS INTERVAL HOUR TO SECOND);

CAST(38, 16, 12, 10 AS INTERVAL DAY TO SECOND);

Example 13. CASTs to INTERVAL from FLOAT

CAST(2345.67e0 AS INTERVAL YEAR);

CAST(3456.78e1 AS INTERVAL MONTH);

CAST(4567.89e2 AS INTERVAL DAY);

CAST(5678.90e3 AS INTERVAL HOUR);

CAST(6789.01e4 AS INTERVAL MINUTE);

CAST(7890.12e5 AS INTERVAL SECOND);

CAST(7890.1234e0 AS INTERVAL SECOND);

Example 14. CASTs to INTERVAL from DECIMAL

CAST(2345.67 AS INTERVAL YEAR);

CAST(34567.8 AS INTERVAL MONTH);

CAST(456789 AS INTERVAL DAY);

CAST(5678900 AS INTERVAL HOUR);

CAST(67890100 AS INTERVAL MINUTE);

CAST(789012000 AS INTERVAL SECOND);

CAST(7890.1234 AS INTERVAL SECOND);

Example 15. CASTs to FLOAT from INTERVAL

CAST(INTERVAL ’1234’ YEAR AS FLOAT);

CAST(INTERVAL ’2345’ MONTH AS FLOAT);

CAST(INTERVAL ’3456’ DAY AS FLOAT);

CAST(INTERVAL ’4567’ HOUR AS FLOAT);

CAST(INTERVAL ’5678’ MINUTE AS FLOAT);

CAST(INTERVAL ’6789.01’ SECOND AS FLOAT);

1622 Message Flows

Example 16. CASTs DECIMAL from INTERVAL

CAST(INTERVAL ’1234’ YEAR AS DECIMAL);

CAST(INTERVAL ’2345’ MONTH AS DECIMAL);

CAST(INTERVAL ’3456’ DAY AS DECIMAL);

CAST(INTERVAL ’4567’ HOUR AS DECIMAL);

CAST(INTERVAL ’5678’ MINUTE AS DECIMAL);

CAST(INTERVAL ’6789.01’ SECOND AS DECIMAL);

Example 17. A ternary cast that fails and results in the substitution of a default

value

CAST(7, 6, 32 AS DATE DEFAULT DATE ’1947-10-24’);

Example 18. A sexternary cast that fails and results in the substitution of a

default value

CAST(2, 3, 4, 24, 6, 7.8 AS TIMESTAMP DEFAULT TIMESTAMP ’1947-10-24 07:08:09’);

Example 19. A ternary cast that fails and throws an exception

BEGIN

 DECLARE EXIT HANDLER FOR SQLSTATE LIKE ’%’ BEGIN

 SET OutputRoot.XMLNS.Data.Date.FromIntegersInvalidCast = ’Exception thrown’;

 END;

 DECLARE Dummy CHARACTER CAST(7, 6, 32 AS DATE);

 END;

Example 20. A sexternary cast that fails and throws an exception

BEGIN

 DECLARE EXIT HANDLER FOR SQLSTATE LIKE ’%’ BEGIN

 SET OutputRoot.XMLNS.Data.Timestamp.FromIntegersInvalidCast = ’Exception thrown’;

 END;

 DECLARE Dummy CHARACTER CAST(2, 3, 4, 24, 6, 7.8 AS TIMESTAMP);

 END;

Formatting and parsing numbers as strings:

For conversions between string data types and numeric data types, you can supply,

on the FORMAT parameter of the CAST function, an optional formatting

expression.

 For conversions from string types, the formatting expression defines how the source

string should be parsed to fill the target data type.

For conversions to string types, the formatting expression defines how the data in

the source expression is to be formatted in the target string.

You can specify a FORMAT expression for the following numeric conversions

(Specifying a FORMAT expression for date/time conversions is described in

“Formatting and parsing dateTimes as strings” on page 1626).

v From any of the string data types (BIT, BLOB, or CHARACTER) to:

– DECIMAL

– FLOAT

– INTEGER
v To any of the string data types (BIT, BLOB, or CHARACTER) from any of the

numeric data types that are in the previous list.

The formatting expression consists of three parts:

1. A subpattern that defines positive numbers.

ESQL reference 1623

2. An optional subpattern that defines negative numbers. (If only one subpattern

is defined, negative numbers use the positive pattern, prefixed with a minus

sign.)

3. The optional parameters groupsep and decsep.

Syntax

�� subpattern

;

subpattern

:groupsep=

chars
 �

�
:decsep=

chars
 ��

subpattern:

chars
 digits

.digits

e

digits

E

chars

Parameters:

chars

A sequence of zero or more characters. All characters can be used, except the

special characters that are listed under “subpattern” on page 1625.

decsep

One or more characters to be used as the separator between the whole and decimal

parts of a number (the decimal separator). The default decimal separator is a

period (.).

digits

A sequence of one or more of the numeric tokens (0 # - + , .) that are listed under

“subpattern” on page 1625.

groupsep

One or more characters to be used as the separator between clusters of integers, to

make large numbers more readable (the grouping separator). The default grouping

separator is nothing (that is, there is no grouping of digits or separation of groups).

Grouping is commonly done in thousands, but it can be redefined by either the

pattern or the locale. There are two grouping sizes:

The primary grouping size

Used for the least significant integer digits.

The secondary grouping size

Used for all other integer digits.

1624 Message Flows

In most cases, the primary and secondary grouping sizes are the same, but they

can be different. For example, if the pattern used is #,##,##0, the primary

grouping size is 3 and the secondary is 2. The number 123456789 would become

the string “12,34,56,789”.

If multiple grouping separators are used (as in the previous example), the

rightmost separator defines the primary size, and the penultimate rightmost

separator defines the secondary size.

subpattern

The subpattern consists of:

1. An optional prefix (chars)

2. A mandatory pattern representing a whole number

3. An optional pattern representing decimal places

4. An optional pattern representing an exponent (the power by which the

preceding number is raised)

5. An optional suffix (chars)

Parts 2, 3, and 4 of the subpattern are defined by the tokens in the following table.

 Token Represents

0 Any digit, including a leading zero.

Any digit, excluding a leading zero. (See the explanation of the

difference between 0 and # that follows this table.)

. Decimal separator.

+ Prefix of positive numbers.

- Prefix of negative numbers.

, Grouping separator.

E/e Separates the number from the exponent.

; Subpattern boundary.

’ Quotation mark, applied to special characters. If a quotation mark is

needed in output, it must be doubled (’’).

* Padding specifier. The character following the asterisk is used to pad

the number to fit the length of the format pattern.

The # and 0 characters are used for digit substitution, the difference between them

being that a # character is removed if there is no number to replace it with. For

example, 10 formatted by the pattern #,##0.00 gives “10.00”, but formatted by

0,000.00 gives “0,010.00”.

To specify padding characters, use an asterisk. When an asterisk is placed in either

of the two chars regions (the prefix and suffix), the character immediately following

it is used to pad the output. Padding can be specified only once. For example, a

pattern of *x#,###,##0.00 applied to 1234 gives “xxx1,234.00”. But applied to

1234567, it gives “1,234,567.00”.

Examples of formatting patterns:

The following table shows formatting patterns and the strings that are generated

from sample numeric input.

ESQL reference 1625

Pattern Input number Output string

+###,##0.00;-
###,###,##0.00:groupsep=’’:decsep=,

123456789.123 “+123’456’789,12”

##0.00 1000000 “1000000.00”

##0.00 3.14159265 “3.14”

Formatting and parsing dateTimes as strings:

This section gives information on how you can specify the dateTime format using

a string of pattern letters.

 When you convert a date or time into a string, a format pattern must be applied

that directs the conversion. Apply the format pattern to convert a date or time into

a string, or to parse a string into a date or time.

During the conversion (for example, of a dateTime into a string), a pattern or a set

of tokens is replaced with the equivalent source. The following diagram shows

how a pattern is used to format a dateTime source to produce a character string

output.

When a string is parsed (for example, when converting the string to a dateTime),

the pattern or set of tokens is used to determine which part of the target dateTime

is represented by which part of the string. The following diagram shows how this

is done.

source pattern

output

Year=2004, Month=10, Day=07,
Hour=10, Minute=24, Second=40

yyyy-MM-dd HH:mm:ss

2004-10-07 10:24:40

1626 Message Flows

Syntax

The expression pattern is defined by:

��

�

symbol

string

��

Where:

symbol

is a character in the set adDeEFGhHIkKmMsSTUwWyYzZ.

string is a sequence of characters enclosed in single quotation marks. If a single

quotation mark is required within the string, use two single quotation

marks (″).

Characters for formatting a dateTime as a string

The following table lists the characters that you can use in a pattern for formatting

or parsing strings in relation to a dateTime. The table is followed by some notes

that explain more about some of the examples in the table.

 Symbol Meaning Presentation Examples

a am or pm marker Text Input am, AM, pm, PM.

Output AM or PM

d day in month (1-31) Number 1, 20

dd day in month (01-31) Number 01, 31

D day in year (1-366) Number 3, 80, 100

DD day in year (01-366) Number 03, 80, 366

DDD day in year (001-366) Number 003

e day in week (1-7)1 Number 2

EEE day in week1 Text Tue

EEEE day in week1 Text Tuesday

source pattern

output

12 Jan 03, 3:45pm dd MMM yy, h:ma

Year=2003, Month=01, Day=12,
Hour=15, Minute=45

ESQL reference 1627

Symbol Meaning Presentation Examples

F day of week in month (1-5)2 Number 2

G Era Text BC or AD

h hour in am or pm (1-12) Number 6

hh hour in am or pm (01-12) Number 06

H hour of day in 24 hour

form (0-23)3

Number 7

HH hour of day in 24 hour

form (00-23)3

Number 07

I ISO8601 Date/Time (up to

yyyy-MM-dd’T’HH:mm:ss.

SSSZZZ)4

Text 2006-10-
07T12:06:56.568+01:00

IU ISO8601 Date/Time (similar

to I, but ZZZ with output

″Z″ if the time zone is

+00:00)4

Text 2006-10-
07T12:06:56.568+01:00,

2003-12 -15T15:42:12.000Z

k hour of day in 24 hour

form (1-24)3

Number 8

k hour of day in 24 hour

form (01-24)3

Number 08

K hour in am or pm (0-11) Number 9

KK hour in am or pm (00-11) Number 09

m minute Number 4

mm minute Number 04

M numeric month Number 5, 12

MM numeric month Number 05, 12

MMM named month Text Jan, Feb

MMMM named month Text January, February

s seconds Number 5

ss seconds Number 05

S decisecond5 Number 7

SS centisecond5 Number 70

SSS millisecond5 Number 700

SSSS 0.0001 second5 Number 7000

SSSSS 0.00001 second5 Number 70000

SSSSSS 0.000001 second5 Number 700000

T ISO8601 Time (up to

HH:mm:ss.SSSZZZ)4

Text 12:06:56.568+01:00

TU ISO8601 Time (similar to T,

but a time zone of +00:00 is

replaced with ’Z’)4

Text 12:06:56.568+01:00,

15:42:12.000Z

w week in year6 Number 7, 53

ww week in year6 Number 07, 53

W week in month7 Number 2

yy year8 Number 06

1628 Message Flows

Symbol Meaning Presentation Examples

yyyy year8 Number 2006

YY year: use with week in year

only6

Number 06

YYYY year: use with week in year

only6

Number 2006

zzz time zone (abbreviated

name)

Text GMT

zzzz time zone (full name) Text Greenwich Mean Time

Z time zone (+/-n) Text +3

ZZ time zone (+/-nn) Text +03

ZZZ time zone (+/-nn:nn) Text +03:00

ZZZU time zone (as ZZZ, ″+00:00″

is replaced by ″Z″)

Text +03:00, Z

ZZZZ time zone (GMT+/-nn:nn) Text GMT+03:00

ZZZZZ time zone (as ZZZ, but no

colon) (+/-nnnn)

Text +0300

’ escape for text ’User text’

″ (two single quotation

marks) single quotation

mark within escaped text

’o″clock’

The presentation of the dateTime object depends on what symbols you specify.

v Text. If you specify four or more of the symbols, the full form is presented. If

you specify less than four symbols, the short or abbreviated form, if it exists, is

presented. For example, EEEE produces Monday, EEE produces Mon.

v Number. The number of characters for a numeric dateTime component must be

within the bounds of the corresponding formatting symbols. Repeat the symbol

to specify the minimum number of digits that are required. The maximum

number of digits allowed is the upper bound for a particular symbol. For

example, day in month has an upper bound of 31; therefore, a format string of d

allows the values 2 or 21 to be parsed but disallows the values 32 and 210. On

output, numbers are padded with zeros to the specified length. A year is a

special case; see note 8 in the list below. Fractional seconds are also special case;

see note 5 below.

v Any characters in the pattern that are not in the ranges of [’a’..’z’] and [’A’..’Z’]

are treated as quoted text. For example, characters like colon (:), comma (,),

period (.), the number sign (hash or pound, #), the at sign (@), and space appear

in the resulting time text even if they are not enclosed within single quotes.

v You can create formatting strings that produce unpredictable results; therefore,

you must use these symbols with care. For example, if you specify dMyyyy, you

cannot distinguish between day, month, and year. dMyyyy tells the broker that a

minimum of one character represents the day, a minimum of one character

represents the month, and four characters represent the year. Therefore, 3111999

can be interpreted as either 3/11/1999 or 31/1/1999.

Notes: The following notes apply to the table above.

1. You can specify the following values in the day in week field:

v 1 - Sunday

ESQL reference 1629

v 2 - Monday

v 3 - Tuesday

v 4 - Wednesday

v 5 - Thursday

v 6 - Friday

v 7 - Saturday
2. 12th July 2006 is the second Wednesday in July and can be expressed as

2006 July Wednesday 2 using the format string yyyy MMMM EEEE F. Note

that this format does not represent the Wednesday in week 2 of July

2006, which is 5th July 2006; the format string for this is yyyy MMMM EEEE

W.

3. 24-hour fields might result in an ambiguous time, if specified with a

conflicting am/pm field.

4. See “ISO8601, I and T DateTime tokens.”

5. Fractional seconds are represented by uppercase S. The length must

implicitly match the number of format symbols on input. The format

string ss SSS or ss.SSS, for example, represents seconds and

milliseconds. However, the format string ss.sss represents a repeated

field (of seconds); the value after the period (.) is taken as a seconds

field, not as fractional seconds. The output is truncated to the specified

length.

6. In ESQL, the first day of the year is assumed to be in the first week;

therefore, January 1 is always in week 1. As a result, dates that are

specified relative to one year might actually be in a different year. For

example, ″Monday week 1 2005″ parsed using ″EEEE’ week ’w’ ’YYYY″

gives a date of 2004-12-27, because the Monday of the first week in 2005

is actually a date in 2004.

If you use the y symbol, the adjustment is not done and unpredictable

results might occur for dates around the end of the year. For example, if

the string ″2005 01 Monday″ is formatted:

v Monday of week 1 in 2005 using format string ″YYYY ww EEEE″ is

correctly interpreted as 27th December 2004

v Monday of week 1 in 2005 using format string ″yyyy ww EEEE″ is

incorrectly interpreted as 27th December 2005
7. The first and last week in a month might include days from

neighboring months. For example, Monday 31st July 2006 can be

expressed as Monday in week one of August 2006, which is 2006 08 1

Monday using format string yyyy MM W EEEE.

8. Year is handled as a special case.

v On output, if the count of y is 2, the year is truncated to 2 digits. For

example, if yyyy produces 1997, yy produces 97.

v On input, for 2 digit years the century window is fixed to 53. For

example, an input date of 52 results in a year value of 2052, whereas

an input date of 53 gives an output year of 1953, and 97 gives 1997.

ISO8601, I and T DateTime tokens

If your dateTime values comply with the ISO8601:2000 ’Representation of dates

and times’ standard, consider using the formatting symbols I and T, which match

the following subset of the ISO8601 standard.

1630 Message Flows

v The restricted profile as proposed by the W3C at http://www.w3.org/TR/
NOTE-datetime

v Truncated representations of calendar dates, as specified in section 5.2.1.3 of

ISO8601:2000

– Basic format (subsections c, e, and f)

– Extended format (subsections a, b, and d)

Use the formatting symbols I and T only on their own:

v The I formatting symbol matches any dateTime string that conforms to the

supported subset.

v The T formatting symbol matches any dateTime string that conforms to the

supported subset that consists of a time portion only.

The following table shows how the output form relates to the logical data type.

 Logical model data type ESQL data type Output form

xsd:dateTime TIMESTAMP or GMTTIMESTAMP yyyy-MM-dd’T’HH:mm:ss.SSSZZZ

xsd:date DATE yyyy-MM-dd

xsd:gYear INTERVAL yyyy

xsd:gYearMonth INTERVAL yyyy-MM

xsd:gMonth INTERVAL --MM

xsd:gmonthDay INTERVAL --MM-dd

xsd:gDay INTERVAL ---dd

xsd:time TIME / GMTTIME ’T’HH:mm:ss.SSSZZZ

Note:

v On input, both I and T accept both ’+00:00’ and ’Z’ to indicate a zero time

difference from Coordinated Universal Time (UTC), but on output they

always generate ’+00:00’. If you want ’Z’ to always be generated on

output, use the IU or TU formatting symbols instead.

v ZZZ always outputs ’+00:00’ to indicate a zero time difference from

Coordinated Universal Time (UTC). If you want ’Z’ to always be

generated on output, use ZZZU instead.

Using the input UTC format on output

An element or attribute of logical type xsd:dateTime or xsd:time that contains a

dateTime as a string can specify Coordinated Universal Time (UTC) by using either

the Z symbol or time zone +00:00. On input, the MRM parser remembers the UTC

format of such elements and attributes. On output, you can specify whether Z or

+00:00 is displayed by using the Default DateTime Format property of the element

or attribute. Alternatively, you can preserve the input UTC format by selecting the

message set property Use input UTC format on output. If this property is selected,

the UTC format is preserved in the output message and overrides the format that

is implied by the dateTime format property.

Understanding daylight saving time and the CAST function

When the broker is running in a time zone other than GMT, it calculates the

daylight saving time (DST) offset on times that are supplied to it by the CAST

function. For CAST to calculate the offset correctly, the time passed into CAST

ESQL reference 1631

http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime

must have a time zone associated with it, as a Z parameter. If no time zone is

associated with the value passed, the time is converted into GMT time; it is not

treated as a local time stamp.

Also, when you use CAST to cast a string to a time value, the DST offset is

calculated using the current system date. To cast a string to a time variable and

calculate DST for a specific date, you must also specify the date.

For example, if timeValue=’10:00:00’, the following code, run on a broker that is in

the Central Daylight Time zone, converts the time to GMT, because no time zone

identifier is specified:

DECLARE castTime TIME;

SET castTime = CAST (timeValue AS TIME FORMAT timePattern)

The time is not converted into GMT again if the castTime variable is used in any

subsequent code, for example

CAST(castDate, castTime AS GMTTIMESTAMP);

Examples

The following table shows a few examples of dateTime formats.

 Format pattern Result

″yyyy.MM.dd ’at’ HH:mm:ss ZZZ″ 2006.07.10 at 15:08:56 -05:00

″EEE, MMM d, ″yy″ Wed, July 10, ’06

″h:mm a″ 8:08 PM

″hh o″clock a, ZZZZ″ 09 o’clock AM, GMT+09:00

″K:mm a, ZZZ″ 9:34 AM, -05:00

″yyyy.MMMMM.dd hh:mm aaa″ 1996.July.10 12:08 PM

SELECT function

The SELECT function combines, filters, and transforms complex message and

database data.

1632 Message Flows

Syntax

��
 (1)

SELECT

SelectClause

FromClause

WhereClause

��

WHERE:

SelectClause =

�

 <<---- ,------ <<

Expression

AS

Path

INSERT

ITEM

Expression

(2)

COUNT

(

Expression

)

MAX

MIN

SUM

FromClause =

FROM

�

 <<---- ,------ <<

FieldReference

AS

CorrelationName

 WhereClause = WHERE Expression

Notes:

1 You no longer require the enclosing parentheses in SELECT expressions.

This does not prevent you using parentheses but, if they are present, they

are merely normal, expression-scoping, parentheses.

2 For the COUNT parameter only, you can specify the value of the following

Expression as a single star (*).

Usage

The SELECT function is the usual and most efficient way of transforming

messages. You can use SELECT to:

v Comprehensively reformat messages

v Access database tables

v Make an output array that is a subset of an input array

v Make an output array that contains only the values of an input array

v Count the number of entries in an array

v Select the minimum or maximum value from a number of entries in an array

v Sum the values in an array

ESQL reference 1633

Introduction to SELECT

The SELECT function considers a message tree (or sub-tree) to consist of a number

of rows and columns, rather like a database table. A FieldReference in a FROM

clause identifies a field in a message tree. The identified field is regarded in the

following ways:

v The identified field is regarded as a row in a table.

v The field’s siblings are regarded as other rows of the same table.

v The field’s children are regarded as the table’s columns.

Note: The FieldReference in a FROM clause can also be a table reference that refers

directly to a real database table.

The return value of the SELECT function is typically another message tree that

contains rows whose structure and content is determined by the SelectClause. The

number of rows in the result is the sum of all the rows pointed to by all the field

references and table references in the FROM clause, filtered by the WHERE clause;

only those fields for which the WHERE clause evaluates to TRUE are included.

The return value of the SELECT function can also be scalar (see “ITEM selections”

on page 1636).

You can specify the SelectClause in several ways; see:

v “Simple selections”

v “INSERT selections” on page 1636

v “ITEM selections” on page 1636

v “Column function selections” on page 1636

If you have created a message flow that contains one of the following nodes, and

the ESQL that is associated with this node includes a SELECT function and a

database reference, you must specify a value for the Data source property of the

relevant node:

v Compute

v Database

v Filter

Simple selections

To understand the SELECT function in more detail, first consider the following

simple case:

v The SelectClause consists of a number of expressions, each with an AS Path

clause.

v The FROM clause contains a single FieldReference and an AS CorrelationName

clause.

The SELECT function creates a local, reference, correlation variable, whose name is

given by the AS CorrelationName clause, and then steps, in turn, through each row

of the list of rows derived from the FROM clause. For each row:

1. The correlation variable is set to point to the current row.

2. The WHERE clause (if present) is evaluated. If it evaluates to FALSE or

unknown (null), nothing is added to the result tree and processing proceeds to

the next row of the input. Otherwise processing proceeds to the next step.

3. A new member is added to the result list.

1634 Message Flows

|
|
|
|
|
|
|

4. The SELECT clause expressions are evaluated and assigned to fields named as

dictated by the AS Path clause. These fields are child fields of the new member

of the result list.

Typically, both the SelectClause and the WHERE clause expressions use the

correlation variable to access column values (that is, fields in the input message

tree) and thus to build a new message tree containing data from the input

message. The correlation variable is referred to by the name specified in the AS

CorrelationName clause or, if an AS clause is not specified, by the final name in the

FROM FieldReference (that is, the name after the last dot).

Note that:

v Despite the analogy with a table, you are not restricted to accessing or creating

messages with a flat, table-like, structure; you can access and build trees with

arbitrarily deep folder structures.

v You are not restricted to a column being a single value; a column can be a

repeating list value or a structure.

These concepts are best understood by reference to the examples.

If the field reference is actually a TableReference, the operation is very similar. In this

case, the input is a real database table and is thus restricted to the flat structures

supported by databases. The result tree is still not so restricted, however.

If the FROM clause contains more than one field reference, the rightmost reference

steps through each of its rows for each row in the next-to-rightmost reference, and

so on. The total number of rows in the result is thus the product of the number of

rows in each table. Such selects are known as joins and commonly use a WHERE

clause that excludes most of these rows from the result. Joins are commonly used

to add database data to messages.

The AS Path clause is optional. If it is unspecified, the broker generates a default

name according to the following rules:

1. If the SelectClause expression is a reference to a field or a cast of a reference to a

field, the name of the field is used.

2. Otherwise the broker uses the default names Column1, Column2, and so on.

Examples

The following example performs a SELECT on the table Parts in the schema Shop

in the database DSN1. Because no WHERE clause exists, all rows are selected.

Because the select clause expressions (for example, P.PartNumber) contain no AS

clauses, the fields in the result adopt the same names:

SET PartsTable.Part[] = SELECT

 P.PartNumber,

 P.Description,

 P.Price

 FROM Database.DSN1.Shop.Parts AS P;

If the target of the SET statement (PartsTable) is a variable of type ROW, after the

statement is executed PartsTable will have, as children of its root element, a field

called Part for each row in the table. Each of the Part fields will have child fields

called PartNumber, Description, and Price. The child fields will have values

dictated by the contents of the table. (PartsTable could also be a reference into a

message tree).

ESQL reference 1635

The next example performs a similar SELECT. This case differs from the last in that

the SELECT is performed on the message tree produced by the first example

(rather than on a real database table). The result is assigned into a subfolder of

OutputRoot:

SET OutputRoot.XMLNS.Data.TableData.Part[] = SELECT

 P.PartNumber,

 P.Description,

 P.Price

 FROM PartsTable.Part[] AS P;

INSERT selections

The INSERT clause is an alternative to the AS clause. It assigns the result of the

SelectClause expression (which must be a row) to the current new row itself, rather

than to a child of it. The effect of this is to merge the row result of the expression

into the row being generated by the SELECT. This differs from the AS clause, in

that the AS clause always generates at least one child element before adding a

result, whereas INSERT generates none. INSERT is useful when inserting data from

other SELECT operations, because it allows the data to be merged without extra

folders.

ITEM selections

The SelectClause can consist of the keyword ITEM and a single expression. The

effect of this is to make the results nameless. That is, the result is a list of values of

the type returned by the expression, rather than a row. This option has several

uses:

v In conjunction with a scalar expression and the THE function, it can be used to

create a SELECT query that returns a single scalar value (for example, the price

of a particular item from a table).

v In conjunction with a CASE expression and ROW constructors, it can be used to

create a SELECT query that creates or handles messages in which the structure

of some rows (that is, repeats in the message) is different to others. This is useful

for handling messages that have a repeating structure but in which the repeats

do not all have the same structure.

v In conjunction with a ROW constructor, it can be used to create a SELECT query

that collapses levels of repetition in the input message.

Column function selections

The SelectClause can consist of one of the functions COUNT, MAX, MIN, and SUM

operating on an expression. These functions are known as column functions. They

return a single scalar value (not a list) giving the count, maximum, minimum, or

sum of the values that Expression evaluated to in stepping through the rows of the

FROM clause. If Expression evaluates to NULL for a particular row, the value is

ignored, so that the function returns the count, maximum, minimum, or sum of the

remaining rows.

For the COUNT function only, Expression can consist of a single star (*). This form

counts the rows regardless of null values.

To make the result a useful reflection of the input message, Expression typically

includes the correlation variable.

Typically, Expression evaluates to the same data type for each row. In these cases,

the result of the MAX, MIN, and SUM functions are of the same data type as the

1636 Message Flows

operands. The returned values are not required to be all of the same type however,

and if they are not, the normal rules of arithmetic apply. For example, if a field in

a repeated message structure contains integer values for some rows and float

values for others, the sum follows the normal rules for addition. The sum is of

type float because the operation is equivalent to adding a number of integer and

float values.

The result of the COUNT function is always an integer.

Differences between message and database selections

FROM expressions in which a correlation variable represents a row in a message

behave slightly differently from those in which the correlation variable represents a

row in a real database table.

In the message case, a path involving a star (*) has the normal meaning; it ignores

the field’s name and finds the first field that matches the other criteria (if any).

In the database case a star (*) has, for historical reasons, the special meaning of all

fields. This special meaning requires advance knowledge of the definition of the

database table and is supported only when querying the default database (that is,

the database pointed to by the node’s data source attribute). For example, the

following queries return column name and value pairs only when querying the

default database:

SELECT * FROM Database.Datasource.SchemaName.Table As A

SELECT A.* FROM Database.Datasource.SchemaName.Table As A

SELECT A FROM Database.Datasource.SchemaName.Table AS A

Specifying the SELECT expressions

SelectClause

SelectClause expressions can use any of the broker’s operators and functions in

any combination. They can refer to the tables’ columns, message fields,

correlation names declared by containing SELECTs, and to any other declared

variables or constants that are in scope.

AS Path

An AS Path expression is a relative path (that is, there is no correlation name)

but is otherwise unrestricted in any way. For example, it can contain:

v Indexes (for example, A.B.C[i])

v Field-type specifiers (for example, A.B.(XML.Attribute)C)

v Multipart paths (for example, A.B.C)

v Name expressions (for example, A.B.{var})

Any expressions in these paths can also use any of the broker’s operators and

functions in any combination. The expressions can refer to the tables’ columns,

message fields, correlation names declared by containing SELECTs, and any

declared variables or constants.

FROM clause

FROM clause expressions can contain multiple database references, multiple

message references, or a mixture of the two. You can join tables with tables,

messages with messages, or tables with messages.

 FROM clause FieldReferences can contain expressions of any kind (for example,

Database.{DataSource}.{Schema}.Table1).

You can calculate a field, data source, schema, or table name at run time.

ESQL reference 1637

WHERE clause

 The WHERE clause expression can use any of the broker’s operators and

functions in any combination. It can refer to table columns, message fields, and

any declared variables or constants.

However, be aware that the broker treats the WHERE clause expression by

examining the expression and deciding whether the whole expression can be

evaluated by the database. If it can, it is given to the database. In order to be

evaluated by the database, it must use only those functions and operators

supported by the database.

The WHERE clause can, however, refer to message fields, correlation names

declared by containing SELECT functions, and to any other declared variables

or constants within scope.

If the whole expression cannot be evaluated by the database, the broker looks

for top-level AND operators and examines each sub-expression separately. It

then attempts to give the database those sub-expressions that it can evaluate,

leaving the broker to evaluate the rest. You need to be aware of this situation

for two reasons:

1. Apparently trivial changes to WHERE clause expressions can have large

effects on performance. You can determine how much of the expression

was given to the database by examining a user trace.

2. Some databases’ functions exhibit subtle differences of behavior from those

of the broker.

Relation to the THE function

You can use the function THE (which returns the first element of a list) in

conjunction with SELECT to produce a non-list result. This is useful, for example,

when a SELECT query is required to return no more than one item. It is

particularly useful in conjunction with ITEM (see “ITEM selections” on page 1636).

Differences from the SQL standard

ESQL SELECT differs from database SQL SELECT in the following ways:

v ESQL can produce tree-structured result data

v ESQL can accept arrays in SELECT clauses

v ESQL has the THE function and the ITEM and INSERT parameters

v ESQL has no SELECT ALL function in this release

v ESQL has no ORDER BY function in this release

v ESQL has no SELECT DISTINCT function in this release

v ESQL has no GROUP BY or HAVING parameters in this release

v ESQL has no AVG column function in this release

Restrictions

The following restrictions apply to the current release:

v When a SELECT command operates on more than one database table, all the

tables must be in the same database instance. (That is, the TableReferences must

not specify different data source names.)

v If the FROM clause refers to both messages and tables, the tables must precede

the messages in the list.

1638 Message Flows

v Using dynamic DSN, SCHEMA and TABLE names with ’SELECT *’ statements is

not supported. If you use a schema, table or datasource name as a variable

(dynamic variables) in ’SELECT *’ queries, the variables are not resolved to the

correct set of schema or table names.

ROW constructor function

ROW constructor is a complex function used to explicitly generate rows of values

that can be assigned to fields in an output message.

Syntax

��

�

 << , <<

ROW

(

expression

)

AS

fieldreference

��

A ROW consists of a sequence of named values. When assigned to a field reference

it creates that sequence of named values as child fields of the referenced field. A

ROW cannot be assigned to an array field reference.

Examples:

Example 1

SET OutputRoot.XMLNS.Data = ROW(’granary’ AS bread,

 ’riesling’ AS wine,

 ’stilton’ AS cheese);

produces:

<Data>

 <bread>granary</bread>

 <wine>riesling</wine>

 <cheese>stilton</cheese>

</Data>

Example 2

Given the following XML input message body:

<Proof>

 <beer>5</beer>

 <wine>12</wine>

 <gin>40</gin>

</Proof>

the following ESQL:

SET OutputRoot.XMLNS.Data = ROW(InputBody.Proof.beer,

 InputBody.Proof.wine AS vin,

 (InputBody.Proof.gin * 2) AS special);

produces the following result:

ESQL reference 1639

<Data>

 <beer>5</beer>

 <vin>12</vin>

 <special>80</special>

</Data>

Because the values in this case are derived from field references that already have

names, it is not necessary to explicitly provide a name for each element of the row,

but you might choose to do so.

LIST constructor function

The LIST constructor complex function is used to explicitly generate lists of values

that can be assigned to fields in an output message.

Syntax

��

�

 << , <<

LIST

{

expression

}

��

A LIST consists of a sequence of unnamed values. When assigned to an array field

reference (indicated by [] suffixed to the last element of the reference), each value

is assigned in sequence to an element of the array. A LIST cannot be assigned to a

non-array field reference.

Examples:

Example 1

Given the following XML message input body:

<Car>

 <size>big</size>

 <color>red</color>

</Car>

The following ESQL:

SET OutputRoot.XMLNS.Data.Result[] = LIST{InputBody.Car.colour,

 ’green’,

 ’blue’};

produces the following results:

<Data>

 <Result>red</Result>

 <Result>green</Result>

 <Result>blue</Result>

</Data>

In the case of a LIST, there is no explicit name associated with each value. The

values are assigned in sequence to elements of the message field array specified as

the target of the assignment. Curly braces rather than parentheses are used to

surround the LIST items.

1640 Message Flows

Example 2

Given the following XML input message body:

<Data>

 <Field>Keats</Field>

 <Field>Shelley</Field>

 <Field>Wordsworth</Field>

 <Field>Tennyson</Field>

 <Field>Byron</Field>

</Data>

the following ESQL:

-- Copy the entire input message to the output message,

-- including the XML message field array as above

SET OutputRoot = InputRoot;

SET OutputRoot.XMLNS.Data.Field[] = LIST{’Henri’,’McGough’,’Patten’};

Produces the following output:

<Data>

 <Field>Henri</Field>

 <Field>McGough</Field>

 <Field>Patten</Field>

</Data>

The previous members of the Data.Field[] array have been discarded. Assigning a

new list of values to an already existing message field array removes all the

elements in the existing array before the new ones are assigned.

ROW and LIST combined

ROW and LIST combined form a complex function.

A ROW might validly be an element in a LIST. For example:

SET OutputRoot.XMLNS.Data.Country[] =

 LIST{ROW(’UK’ AS name,’pound’ AS currency),

 ROW(’US’ AS name, ’dollar’ AS currency),

 ’default’};

produces the following result:

<Data>

 <Country>

 <name>UK</name>

 <currency>pound</currency>

 </Country>

 <Country>

 <name>US</name>

 <currency>dollar</currency>

 </Country>

 <Country>default</Country>

</Data>

ROW and non-ROW values can be freely mixed within a LIST.

A LIST cannot be a member of a ROW. Only named scalar values can be members

of a ROW.

ESQL reference 1641

ROW and LIST comparisons

You can compare ROWs and LISTs against other ROWs and LISTs.

Examples:

Example 1

IF ROW(InputBody.Data.*[1],InputBody.Data.*[2]) =

 ROW(’Raf’ AS Name,’25’ AS Age) THEN ...

IF LIST{InputBody.Data.Name, InputBody.Data.Age} = LIST{’Raf’,’25’} THEN ...

With the following XML input message body both the IF expressions in both the

above statements evaluate to TRUE:

<Data>

 <Name>Raf</Name>

 <Age>25</Age>

</Data>

In the comparison between ROWs, both the name and the value of each element

are compared; in the comparison between LISTs only the value of each element is

compared. In both cases, the cardinality and sequential order of the LIST or ROW

operands being compared must be equal in order for the two operands to be equal.

In other words, all the following are false because either the sequential order or the

cardinality of the operands being compared do not match:

ROW(’alpha’ AS A, ’beta’ AS B) =

 ROW(’alpha’ AS A, ’beta’ AS B, ’delta’ AS D)

ROW(’alpha’ AS A, ’beta’ AS B) =

 ROW(’beta’ AS B,’alpha’ AS A)

LIST{1,2,3} = LIST{1,2,3,4}

LIST{3,2,1} = LIST{1,2,3}

Example 2

Consider the following ESQL:

IF InputBody.Places =

 ROW(’Ken’ AS first, ’Bob’ AS second, ’Kate’ AS third) THEN ...

With the following XML input message body, the above IF expression evaluates to

TRUE:

<Places>

 <first>Ken</first>

 <second>Bob</second>

 <third>Kate</third>

</Places>

The presence of an explicitly-constructed ROW as one of the operands to the

comparison operator results in the other operand also being treated as a ROW.

Contrast this with a comparison such as:

IF InputBody.Lottery.FirstDraw = InputBody.Lottery.SecondDraw THEN ...

which compares the value of the FirstDraw and SecondDraw fields, not the names

and values of each of FirstDraw and SecondDraw’s child fields constructed as a

ROW. Thus an XML input message body such as:

<Lottery>

 <FirstDraw>wednesday

 <ball1>32</ball1>

 <ball2>12</ball2>

 </FirstDraw>

1642 Message Flows

<SecondDraw>saturday

 <ball1>32</ball1>

 <ball2>12</ball2>

 </SecondDraw>

</Lottery>

would not result in the above IF expression being evaluated as TRUE, because the

values wednesday and saturday are being compared, not the names and values of

the ball fields.

Example 3

Consider the following ESQL:

IF InputBody.Cities.City[] = LIST{’Athens’,’Sparta’,’Thebes’} THEN ...

With the following XML input message body, the IF expression evaluates to TRUE:

<Cities>

 <City>Athens</City>

 <City>Sparta</City>

 <City>Thebes</City>

</Cities>

Two message field arrays can be compared together in this way, for example:

IF InputBody.Cities.Mediaeval.City[] =

 InputBody.Cities.Modern.City[] THEN ...

IF InputBody.Cities.Mediaeval.*[] = InputBody.Cities.Modern.*[] THEN ...

IF InputBody.Cities.Mediaeval.(XML.Element)[] =

 InputBody.Cities.Modern.(XML.Element)[] THEN ...

With the following XML input message body, the IF expression of the first and

third of the statements above evaluates to TRUE:

<Cities>

 <Mediaeval>1350

 <City>London</City>

 <City>Paris</City>

 </Mediaeval>

 <Modern>1990

 <City>London</City>

 <City>Paris</City>

 </Modern>

</Cities>

However the IF expression of the second statement evaluates to FALSE, because

the *[] indicates that all the children of Mediaeval and Modern are to be compared,

not just the (XML.Element)s. In this case the values 1350 and 1990, which form

nameless children of Mediaeval and Modern, are compared as well as the values of

the City tags.

The IF expression of the third statement above evaluates to TRUE with an XML

input message body such as:

<Cities>

 <Mediaeval>1350

 <Location>London</Location>

 <Location>Paris</Location>

 </Mediaeval>

 <Modern>1990

ESQL reference 1643

<City>London</City>

 <City>Paris</City>

 </Modern>

</Cities>

LISTs are composed of unnamed values. It is the values of the child fields of

Mediaeval and Modern that are compared, not their names.

Supported casts

This topic lists the CASTs that are supported between combinations of data-types.

A CAST is not supported between every combination of data-types. Those that are

supported are listed below, along with the effect of the CAST.

When casting, there can be a one-to-one or a many-to-one mapping between the

source data-type and the target data-type. An example of a one-to-one mapping is

where the source data-type is a single integer and the target data-type a single

float. An example of a many-to-one mapping is where the source data consists of

three integers that are converted to a single date. Table 275 lists the supported

one-to-one casts. Table 276 on page 1651 lists the supported many-to-one casts.

See “ESQL data types” on page 259 for information about precision, scale, and

interval qualifier.

 Table 275. Supported casts: one-to-one mappings of source to target data-type

Source data-type Target data-type Effect

BIT BIT The result is the same as the input.

BIT BLOB The bit array is converted to a byte array with a maximum of 263

elements. An error is reported if the source is not of a suitable length

to produce a BLOB (that is a multiple of 8).

BIT CHARACTER The result is a string conforming to the definition of a bit string literal

whose interpreted value is the same as the source value. The resulting

string has the form B’bbbbbb’ (where b is either 0 or 1).

If you specify either a CCSID or ENCODING clause, the bit array is

assumed to be characters in the specified CCSID and encoding, and is

code-page converted into the character return value.

If you specify only a CCSID, big endian encoding is assumed.

If you specify only an encoding, a CCSID of 1208 is assumed.

This function reports conversion errors if the code page or encoding

are unknown, the data supplied is not an integral number of characters

of the code page, or the data contains characters that are not valid in

the given code page.

BIT INTEGER The bit array has a maximum of 263 elements and is converted to an

integer. An error is reported if the source is not of the correct length to

match an integer.

BLOB BIT The given byte array is converted to a bit array with a maximum of 263

elements.

BLOB BLOB The result is the same as the input.

1644 Message Flows

Table 275. Supported casts: one-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

BLOB CHARACTER The result is a string conforming to the definition of a binary string

literal whose interpreted value is the same as the source value. The

resulting string has the form X’hhhh’ (where h is any hexadecimal

character).

If you specify either a CCSID or ENCODING clause, the byte array is

assumed to be characters in the specified CCSID and encoding, and is

code-page converted into the character return value.

If you specify only a CCSID, big endian encoding is assumed.

If you specify only an encoding, a CCSID of 1208 is assumed.

This function reports conversion errors if the code page or encoding

are unknown, the data supplied is not an integral number of characters

of the code page, or the data contains characters that are not valid in

the given code page.

BLOB INTEGER The byte array has a maximum of 263 elements and is converted to an

integer. An error is reported if the source is not of the correct length to

match an integer.

BOOLEAN BOOLEAN The result is the same as the input.

BOOLEAN CHARACTER If the source value is TRUE, the result is the character string TRUE. If

the source value is FALSE, the result is the character string FALSE.

Because the UNKNOWN Boolean value is the same as the NULL value

for Booleans, the result is NULL if the source value is UNKNOWN.

CHARACTER BIT The character string must conform to the rules for a bit string literal or

for the contents of the bit string literal. That is, the character string can

be of the form B’bbbbbbb’ or bbbbbb (where b’ can be either 0 or 1).

If you specify either a CCSID or ENCODING clause, the character

string is converted into the specified CCSID and encoding and placed

without further conversion into the bit array return value.

If you specify only a CCSID, big endian encoding is assumed.

If you specify only an encoding, a CCSID of 1208 is assumed.

This function reports conversion errors if the code page or encoding

are unknown or the data contains Unicode characters that cannot be

converted to the given code page.

ESQL reference 1645

Table 275. Supported casts: one-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

CHARACTER BLOB This cast can work in two ways:

1. If you specify either a CCSID or ENCODING clause, the whole

string is written out in the code page or encoding that you

requested. For example, the string ″Cat″ in CCSID 850 becomes the

three-byte array in hexadecimal, 43,61,74.

2. If you specify neither the CCSID nor ENCODING clause, the string

must itself contain two-character hexadecimal digits of the form

X’hhhhhh’ or hhhhhh (where h can be any hexadecimal characters).

In this case, the input string ″436174″ becomes the same three-byte

binary array (43,61,74).

Note that an error is generated if the input string is not of the

correct format.

If you specify only a CCSID, big endian encoding is assumed.

If you specify only an encoding, a CCSID of 1208 is assumed.

This function reports conversion errors if the code page or encoding

are unknown or the data contains Unicode characters that cannot be

converted to the given code page.

CHARACTER BOOLEAN The character string is interpreted in the same way as a Boolean literal.

That is, the character string must be one of the strings TRUE, FALSE,

or UNKNOWN (in any case combination).

CHARACTER CHARACTER The result is the same as the input.

CHARACTER DATE If a FORMAT clause is not specified, the character string must conform

to the rules for a date literal or the date string. That is, the character

string can be either DATE ’2002-10-05’ or 2002-10-05.

See also “Formatting and parsing dateTimes as strings” on page 1626.

CHARACTER DECIMAL The character string is interpreted in the same way as an exact numeric

literal to form a temporary decimal result with a scale and precision

defined by the format of the string. This is converted into a decimal of

the specified precision and scale, with a runtime error being

generated if the conversion results in loss of significant digits.

If you do not specify the precision and scale, the precision and

scale of the result are the minimum necessary to hold the given value.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing numbers as strings” on page 1623.

CHARACTER FLOAT The character string is interpreted in the same way as a floating point

literal.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing numbers as strings” on page 1623.

CHARACTER GMTTIME The character string must conform to the rules for a GMT time literal

or the time string. That is, the character string can be either GMTTIME

’09:24:15’ or 09:24:15.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing dateTimes as strings” on page 1626.

1646 Message Flows

Table 275. Supported casts: one-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

CHARACTER GMTTIMESTAMP The character string must conform to the rules for a GMT timestamp

literal or the timestamp string. That is, the character string can be

either GMTTIMESTAMP ’2002-10-05 09:24:15’ or 2002-10-05 09:24:15.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing dateTimes as strings” on page 1626.

CHARACTER INTEGER The character string is interpreted in the same way as an integer literal.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing numbers as strings” on page 1623.

CHARACTER INTERVAL The character string must conform to the rules for an interval literal

with the same interval qualifier as specified in the CAST function,

or it must conform to the rules for an interval string that apply for the

specified interval qualifier.

CHARACTER TIME The character string must conform to the rules for a time literal or for

the time string. That is, the character string can be either TIME

’09:24:15’ or 09:24:15.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing dateTimes as strings” on page 1626.

CHARACTER TIMESTAMP The character string must conform to the rules for a timestamp literal

or for the timestamp string. That is, the character string can be either

TIMESTAMP ’2002-10-05 09:24:15’ or 2002-10-05 09:24:15.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing dateTimes as strings” on page 1626.

DATE CHARACTER The result is a string conforming to the definition of a date literal,

whose interpreted value is the same as the source date value.

For example:

CAST(DATE ’2002-10-05’ AS CHARACTER)

returns

DATE ’2002-10-05’

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing dateTimes as strings” on page 1626.

DATE DATE The result is the same as the input.

DATE GMTTIMESTAMP The result is a value whose date fields are taken from the source date

value, and whose time fields are taken from the current GMT time.

DATE TIMESTAMP The result is a value whose date fields are taken from the source date

value, and whose time fields are taken from the current time.

DECIMAL CHARACTER The result is the shortest character string that conforms to the

definition of an exact numeric literal and whose interpreted value is

the value of the decimal.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing numbers as strings” on page 1623.

DECIMAL DECIMAL

The value is converted to the specified precision and scale, with a

runtime error being generated if the conversion results in loss of

significant digits. If you do not specify the precision and scale, the

value, precision and scale are preserved; it is a NOOP (no operation).

ESQL reference 1647

Table 275. Supported casts: one-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

DECIMAL FLOAT The number is converted, with rounding if necessary.

DECIMAL INTEGER The value is rounded and converted into an integer, with a runtime

error being generated if the conversion results in loss of significant

digits.

DECIMAL INTERVAL If the interval qualifier specified has only one field, the result is an

interval with that qualifier with the field equal to the value of the exact

numeric. Otherwise a runtime error is generated.

FLOAT CHARACTER The result is the shortest character string that conforms to the

definition of an approximate numeric literal and whose mantissa

consists of a single digit that is not 0, followed by a period and an

unsigned integer, and whose interpreted value is the value of the float.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing numbers as strings” on page 1623.

FLOAT FLOAT The result is the same as the input.

FLOAT DECIMAL The value is rounded and converted into a decimal of the specified

precision and scale, with a runtime error being generated if the

conversion results in loss of significant digits. If you do not specify the

precision and scale, the precision and scale of the result are the

minimum necessary to hold the given value.

FLOAT INTEGER The value is rounded and converted into an integer, with a runtime

error being generated if the conversion results in loss of significant

digits.

FLOAT INTERVAL If the specified interval qualifier has only one field, the result is an

interval with that qualifier with the field equal to the value of the

numeric. Otherwise a runtime error is generated.

GMTTIME CHARACTER The result is a string conforming to the definition of a GMTTIME

literal whose interpreted value is the same as the source value. The

resulting string has the form GMTTIME ’hh:mm:ss’.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing dateTimes as strings” on page 1626.

GMTTIME GMTTIME The result is the same as the input.

GMTTIME TIME The resulting value is the source value plus the local time zone

displacement (as returned by LOCAL_TIMEZONE). The hours field is

calculated modulo 24.

GMTTIME GMTTIMESTAMP The result is a value whose date fields are taken from the current date,

and whose time fields are taken from the source GMT time.

GMTTIME TIMESTAMP The result is a value whose date fields are taken from the current date,

and whose time fields are taken from the source GMT time, plus the

local time zone displacement (as returned by LOCAL_TIMEZONE).

GMTTIMESTAMP CHARACTER The result is a string conforming to the definition of a

GMTTIMESTAMP literal whose interpreted value is the same as the

source value. The resulting string has the form GMTTIMESTAMP

’yyyy-mm-dd hh:mm:ss’.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing dateTimes as strings” on page 1626.

GMTTIMESTAMP DATE The result is a value whose fields consist of the date fields of the

source GMTTIMESTAMP value.

1648 Message Flows

Table 275. Supported casts: one-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

GMTTIMESTAMP GMTTIME The result is a value whose fields consist of the time fields of the

source GMTTIMESTAMP value.

GMTTIMESTAMP TIME The result is a value whose time fields are taken from the source

GMTTIMESTAMP value, plus the local time zone displacement (as

returned by LOCAL_TIMEZONE). The hours field is calculated

modulo 24.

GMTTIMESTAMP GMTTIMESTAMP The result is the same as the input.

GMTTIMESTAMP TIMESTAMP The resulting value is source value plus the local time zone

displacement (as returned by LOCAL_TIMEZONE).

INTEGER BIT The given integer is converted to a bit array with a maximum of 263

elements.

INTEGER BLOB The given integer is converted to a byte array with a maximum of 263

elements.

INTEGER CHARACTER The result is the shortest character string that conforms to the

definition of an exact numeric literal and whose interpreted value is

the value of the integer.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing numbers as strings” on page 1623.

INTEGER FLOAT The number is converted, with rounding if necessary.

INTEGER INTEGER The result is the same as the input.

INTEGER DECIMAL The value is converted into a decimal of the specified precision and

scale, with a runtime error being generated if the conversion results in

loss of significant digits. If you do not specify the precision and scale,

the precision and scale of the result are the minimum necessary to

hold the given value.

INTEGER INTERVAL If the interval qualifier specified has only one field, the result is an

interval with that qualifier with the field equal to the value of the exact

numeric. Otherwise a runtime error is generated.

INTERVAL CHARACTER The result is a string conforming to the definition of an INTERVAL

literal, whose interpreted value is the same as the source interval value.

For example:

CAST(INTERVAL ’4’ YEARS AS CHARACTER)

returns

INTERVAL ’4’ YEARS

INTERVAL DECIMAL If the interval value has a qualifier that has only one field, the result is

a decimal of the specified precision and scale with that value, with a

runtime error being generated if the conversion results in loss of

significant digits. If the interval has a qualifier with more than one

field, such as YEAR TO MONTH, a runtime error is generated. If you

do not specify the precision and scale, the precision and scale of the

result are the minimum necessary to hold the given value.

INTERVAL FLOAT If the interval value has a qualifier that has only one field, the result is

a float with that value. If the interval has a qualifier with more than

one field, such as YEAR TO MONTH, a runtime error is generated.

INTERVAL INTEGER If the interval value has a qualifier that has only one field, the result is

an integer with that value. If the interval has a qualifier with more

than one field, such as YEAR TO MONTH, a runtime error is

generated.

ESQL reference 1649

Table 275. Supported casts: one-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

INTERVAL INTERVAL The result is the same as the input.

Year-month intervals can be converted only to year-month intervals,

and day-second intervals only to day-second intervals. The source

interval is converted into a scalar in units of the least significant field

of the target interval qualifier. This value is normalized into an

interval with the target interval qualifier. For example, to convert an

interval that has the qualifier MINUTE TO SECOND into an interval

with the qualifier DAY TO HOUR, the source value is converted into a

scalar in units of hours, and this value is normalized into an interval

with qualifier DAY TO HOUR.

TIME CHARACTER The result is a string conforming to the definition of a TIME literal,

whose interpreted value is the same as the source time value.

For example:

CAST(TIME ’09:24:15’ AS CHARACTER)

returns

TIME ’09:24:15’

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing dateTimes as strings” on page 1626.

TIME GMTTIME The result value is the source value minus the local time zone

displacement (as returned by LOCAL_TIMEZONE). The hours field is

calculated modulo 24.

TIME GMTTIMESTAMP The result is a value whose date fields are taken from the current date,

and whose time fields are taken from the source GMT time, minus the

local time zone displacement (as returned by LOCAL_TIMEZONE).

TIME TIME The result is the same as the input.

TIME TIMESTAMP The result is a value whose date fields are taken from the current date,

and whose time fields are taken from the source time value.

TIMESTAMP CHARACTER The result is a string conforming to the definition of a TIMESTAMP

literal, whose interpreted value is the same as the source timestamp

value.

For example:

CAST(TIMESTAMP ’2002-10-05 09:24:15’ AS CHARACTER)

returns

TIMESTAMP ’2002-10-05 09:24:15’

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing dateTimes as strings” on page 1626.

TIMESTAMP DATE The result is a value whose fields consist of the date fields of the

source timestamp value.

TIMESTAMP GMTTIME The result is a value whose time fields are taken from the source

TIMESTAMP value, minus the local time zone displacement (as

returned by LOCAL_TIMEZONE). The hours field is calculated

modulo 24.

TIMESTAMP GMTTIMESTAMP The resulting value is the source value minus the local time zone

displacement (as returned by LOCAL_TIMEZONE).

TIMESTAMP TIME The result is a value whose fields consist of the time fields of the

source timestamp value.

1650 Message Flows

Table 275. Supported casts: one-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

TIMESTAMP TIMESTAMP The result is the same as the input.

 Table 276. Supported casts: many-to-one mappings of source to target data-type

Source data-type Target data-type Effect

Numeric, Numeric,

Numeric

DATE Creates a DATE value from the numerics in the order year, month, and

day. Non-integer values are rounded.

Numeric, Numeric,

Numeric

TIME Creates a TIME value from the numerics in the order hours, minutes,

and seconds. Non-integer values for hours and minutes are rounded.

Numeric, Numeric,

Numeric

GMTIME Creates a GMTTIME value from the numerics in the order of hours,

minutes, and seconds. Non-integer values for hours and minutes are

rounded.

Numeric, Numeric,

Numeric, Numeric,

Numeric, Numeric

TIMESTAMP Creates a TIMESTAMP value from the numerics in the order years,

months, days, hours, minutes, and seconds. Non-integer values for

years, months, days, hours, and minutes are rounded.

Numeric, Numeric,

Numeric, Numeric,

Numeric, Numeric

GMTTIMESTAMP Creates a GMTIMESTAMP value from the numerics in the order years,

months, days, hours, minutes, and seconds. Non-integer values for

years, months, days, hours, and minutes are rounded.

DATE, TIME TIMESTAMP The result is a TIMESTAMP value with the given DATE and TIME.

DATE, GMTTIME GMTIMESTAMP The result is a GMTTIMESTAMP value with the given DATE and

GMTTIME.

Numeric, Numeric INTERVAL YEAR

TO MONTH

The result is an INTERVAL with the first source as years and the

second as months. Non-integer values are rounded.

Numeric, Numeric INTERVAL HOUR

TO MINUTE

The result is an INTERVAL with the first source as hours and the

second as minutes. Non-integer values are rounded.

Numeric, Numeric,

Numeric

INTERVAL HOUR

TO SECOND

The result is an INTERVAL with the sources as hours, minutes, and

seconds, respectively. Non-integer values for hours and minutes are

rounded.

Numeric, Numeric INTERVAL MINUTE

TO SECOND

The result is an INTERVAL with the sources as minutes and seconds,

respectively. Non-integer values for minutes are rounded.

Numeric, Numeric INTERVAL DAY TO

HOUR

The result is an INTERVAL with the sources as days and hours,

respectively. Non-integer values are rounded.

Numeric, Numeric,

Numeric

INTERVAL DAY TO

MINUTE

The result is an INTERVAL with the sources as days, hours, and

minutes, respectively. Non-integer values are rounded.

Numeric, Numeric,

Numeric, Numeric

INTERVAL DAY TO

SECOND

The result is an INTERVAL with the sources as days, hours, minutes,

and seconds, respectively. Non-integer values for days, hours, and

minutes are rounded.

Numeric INTERVAL YEAR The result is an INTERVAL with the source as years, rounded if

necessary.

Numeric INTERVAL MONTH The result is an INTERVAL with the source as months, rounded if

necessary.

Numeric INTERVAL DAY The result is an INTERVAL with the source as days, rounded if

necessary.

Numeric INTERVAL HOUR The result is an INTERVAL with the source as hours, rounded if

necessary.

Numeric INTERVAL MINUTE The result is an INTERVAL with the source as minutes, rounded if

necessary.

ESQL reference 1651

Table 276. Supported casts: many-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

Numeric INTERVAL

SECOND

The result is an INTERVAL with the source as seconds.

Implicit casts

This topic discusses implicit casts.

It is not always necessary to cast values between types. Some casts are done

implicitly. For example, numbers are implicitly cast between the three numeric

types for the purposes of comparison and arithmetic. Character strings are also

implicitly cast to other data types for the purposes of comparison.

There are three situations in which a data value of one type is cast to another type

implicitly. The behavior and restrictions of the implicit cast are the same as

described for the explicit cast function, except where noted in the topics listed

below.

Implicit CASTs for comparisons

The standard SQL comparison operators>, <,>=, <=, =, <> are supported for

comparing two values in ESQL.

When the data types of the two values are not the same, one of them can be

implicitly cast to the type of the other to allow the comparison to proceed. In the

table below, the vertical axis represents the left hand operand, the horizontal axis

represents the right hand operand.

L means that the right hand operand is cast to the type of the left hand operand

before comparison; R means the opposite; X means that no implicit casting takes

place; a blank means that comparison between the values of the two data types is

not supported.

 ukn bln int float dec char time gtm date ts gts ivl blob bit

ukn

bln X L

int X R R L

float L X L L

dec L R X L

chr R R R R X R R R R R R1 R R

tm L X L

gtm L R X

dt L X R2 R2

ts L L2 X L

gts L L2 R X

ivl L1

 X

blb L X

bit L X

1652 Message Flows

ukn bln int float dec char time gtm date ts gts ivl blob bit

Notes:

1. When casting from a character string to an interval, the character string must be of the format INTERVAL

’<values>’ <qualifier>. The format <values>, which is allowede for an explicit CAST, is not allowed here because

no qualifier external to the string is supplied.

2. When casting from a DATE to a TIMESTAMP or GMTTIMESTAMP, the time portion of the TIMESTAMP is set

to all zero values (00:00:00). This is different from the behavior of the explicit cast, which sets the time portion to

the current time.

Numeric types:

The comparison operators operate on all three numeric types.

Character strings:

You cannot define an alternative collation order that, for example, collates upper

and lowercase characters equally.

When comparing character strings, trailing blanks are not significant, so the

comparison ’hello’ = ’hello ’ returns true.

Datetime values:

Datetime values are compared in accordance with the natural rules of the

Gregorian calendar and clock.

You can compare the time zone you are working in with the GMT time zone. The

GMT time zone is converted into a local time zone based on the difference

between your local time zone and the GMT time specified. When you compare

your local time with the GMT time, the comparison is based on the difference at a

given time on a given date.

Conversion is always based on the value of LOCAL_TIMEZONE. This is because

GMT timestamps are converted to local timestamps only if it can be done

unambiguously. Converting a local timestamp to a GMT timestamp has difficulties

around the daylight saving cut-over time, and converting between times and GMT

times (without date information) has to be done based on the LOCAL_TIMEZONE

value, because you cannot specify which time zone difference to use otherwise.

Booleans:

Boolean values can be compared using all the normal comparison operators. The

TRUE value is defined to be greater than the FALSE value. Comparing either value

to the UNKNOWN Boolean value (which is equivalent to NULL) returns an

UNKNOWN result.

Intervals:

Intervals are compared by converting the two interval values into intermediate

representations, so that both intervals have the same interval qualifier. Year-month

intervals can be compared only with other year-month intervals, and day-second

intervals can be compared only with other day-second intervals.

For example, if an interval in minutes, such as INTERVAL ’120’ MINUTE is compared

with an interval in days to seconds, such as INTERVAL ’0 02:01:00’, the two

ESQL reference 1653

intervals are first converted into values that have consistent interval qualifiers,

which can be compared. So, in this example, the first value is converted into an

interval in days to seconds, which gives INTERVAL ’0 02:00:00’, which can be

compared with the second value.

Comparing character strings with other types:

If a character string is compared with a value of another type, WebSphere Message

Broker attempts to cast the character string into a value of the same data type as

the other value.

For example, you can write an expression:

’1234’> 4567

The character string on the left is converted into an integer before the comparison

takes place. This behavior reduces some of the need for explicit CAST operators

when comparing values derived from a generic XML message with literal values.

(For details of explicit casts that are supported, see “Supported casts” on page

1644.) It is this facility that allows you to write the following expression:

Body.Trade.Quantity> 5000

In this example, the field reference on the left evaluates to the character string

’1000’ and, because this is being compared to an integer, that character string is

converted into an integer before the comparison takes place.

You must still check whether the price field that you want interpreted as a decimal

is greater than a given threshold. Make sure that the literal you compare it to is a

decimal value and not an integer.

For example:

Body.Trade.Price> 100

does not have the desired effect, because the Price field is converted into an

integer, and that conversion fails because the character string contains a decimal

point. However, the following expression succeeds:

Body.Trade.Price> 100.00

Implicit CASTs for arithmetic operations

This topic lists the implicit CASTs available for arithmetic operations.

Normally the arithmetic operators (+, -, *, and /) operate on operands of the same

data type, and return a value of the same data type as the operands. Cases where

it is acceptable for the operands to be of different data types, or where the data

type of the resulting value is different from the type of the operands, are shown in

the following table.

The following table lists the implicit CASTs for arithmetic operation.

 Left operand data type Right operand data type Supported

operators

Result data type

INTEGER FLOAT +, -, *, / FLOAT1

INTEGER DECIMAL +, -, *, / DECIMAL1

INTEGER INTERVAL * INTERVAL4

1654 Message Flows

Left operand data type Right operand data type Supported

operators

Result data type

FLOAT INTEGER +, -, *, / FLOAT1

FLOAT DECIMAL +, -, *, / FLOAT1

FLOAT INTERVAL * INTERVAL4

DECIMAL INTEGER +, -, *, / DECIMAL1

DECIMAL FLOAT +, -, *, / FLOAT1

DECIMAL INTERVAL * INTERVAL4

TIME TIME - INTERVAL2

TIME GMTTIME - INTERVAL2

TIME INTERVAL +, - TIME3

GMTTIME TIME - INTERVAL2

GMTTIME GMTTIME - INTERVAL2

GMTTIME INTERVAL +, - GMTTIME3

DATE DATE - INTERVAL2

DATE INTERVAL +, - DATE3

TIMESTAMP TIMESTAMP - INTERVAL2

TIMESTAMP GMTTIMESTAMP - INTERVAL2

TIMESTAMP INTERVAL +, - TIMESTAMP3

GMTTIMESTAMP TIMESTAMP - INTERVAL2

GMTTIMESTAMP GMTTIMESTAMP - INTERVAL2

GMTTIMESTAMP INTERVAL +, - GMTTIMESTAMP3

INTERVAL INTEGER *, / INTERVAL4

INTERVAL FLOAT *, / INTERVAL4

INTERVAL DECIMAL *, / INTERVAL4

INTERVAL TIME + TIME3

INTERVAL GMTTIME + GMTTIME3

INTERVAL DATE + DATE3

INTERVAL TIMESTAMP + TIMESTAMP3

INTERVAL GMTTIMESTAMP + GMTTIMESTAMP3

ESQL reference 1655

Left operand data type Right operand data type Supported

operators

Result data type

Notes:

1. The operand that does not match the data type of the result is cast to the data type of the result before the

operation proceeds. For example, if the left operand to an addition operator is an INTEGER, and the right

operand is a FLOAT, the left operand is cast to a FLOAT before the addition operation is performed.

2. Subtracting a (GMT)TIME value from a (GMT)TIME value, a DATE value from a DATE value, or a

(GMT)TIMESTAMP value from a (GMT)TIMESTAMP value, results in an INTERVAL value representing the time

interval between the two operands.

3. Adding or subtracting an INTERVAL from a (GMT)TIME, DATE or (GMT)TIMESTAMP value results in a new

value of the data type of the non-INTERVAL operand, representing the point in time represented by the original

non-INTERVAL, plus or minus the length of time represented by the INTERVAL.

4. Multiplying or dividing an INTERVAL by an INTEGER, FLOAT, or DECIMAL value results in a new INTERVAL

representing the length of time represented by the original, multiplied or divided by the factor represented by

the non-INTERVAL operand. For example, an INTERVAL value of 2 hours 16 minutes multiplied by a FLOAT

value of 2.5 results in a new INTERVAL value of 5 hours 40 minutes. The intermediate calculations involved in

multiplying or dividing the original INTERVAL are carried out in the data type of the non-INTERVAL, but the

individual fields of the INTERVAL (such as HOUR, YEAR, and so on) are always integral, so some rounding

errors might occur.

Implicit CASTs for assignment

Values can be assigned to one of three entities.

A message field (or equivalent in an exception or destination list)

Support for implicit conversion between the WebSphere Message Broker

data types and the message (in its bitstream form) depends on the

appropriate parser. For example, the XML parser casts everything as

character strings before inserting them into the WebSphere MQ message.

A field in a database table

 WebSphere Message Broker converts each of its data types into a suitable

standard SQL C data type, as detailed in the following table. Conversion

between this standard SQL C data type, and the data types supported by

each DBMS, depends on the DBMS. Consult your DBMS documentation

for more details.

The following table lists the available conversions from WebSphere

Message Broker to SQL data types

 WebSphere Message Broker data type SQL data type

NULL, or unknown or invalid value SQL_NULL_DATA

BOOLEAN SQL_C_BIT

INTEGER SQL_C_LONG

FLOAT SQL_C_DOUBLE

DECIMAL SQL_C_CHAR1

CHARACTER SQL_C_CHAR

TIME SQL_C_TIME

GMTTIME SQL_C_TIME

DATE SQL_C_DATE

TIMESTAMP SQL_C_TIMESTAMP

GMTTIMESTAMP SQL_C_DATE

1656 Message Flows

WebSphere Message Broker data type SQL data type

INTERVAL Not supported2

BLOB SQL_C_BINARY

BIT Not supported2

Notes:

1. For convenience, DECIMAL values are passed to the DBMS in character form.

2. There is no suitable standard SQL C data type for INTERVAL or BIT. Cast these to

another data type, such as CHARACTER, if you need to assign them to a database

field.

A scalar variable

When assigning to a scalar variable, if the data type of the value being

assigned and that of the target variable data type are different, an implicit

cast is attempted with the same restrictions and behavior as specified for

the explicit CAST function. The only exception is when the data type of the

variable is INTERVAL or DECIMAL.

 In both these cases, the value being assigned is first cast to a CHARACTER

value, and an attempt is made to cast the CHARACTER value to an

INTERVAL or DECIMAL. This is because INTERVAL requires a qualifier

and DECIMAL requires a precision and scale. These must be specified in

the explicit cast, but must be obtained from the character string when

implicitly casting. Therefore, a further restriction is that when implicitly

casting to an INTERVAL variable, the character string must be of the form

INTERVAL ’<values>’ <qualifier>. The shortened <values> form that is

acceptable for the explicit cast is not acceptable here.

Data types of values from external sources

ESQL can extract data from two external sources: message fields and database

columns.

The ESQL data type of message fields depends on the type of the message (for

example, XML), and the parser that is used to parse it. The ESQL data type of the

value returned by a database column reference depends on the data type of the

column in the database.

The following table shows which ESQL data types the various built-in database

data types are cast to, when they are accessed by message flows that are running

in a broker.

The versions that are supported for the database products shown in this table are

listed in Supported databases.

 Data type DB2 SQL Server and Sybase Oracle Informix®

BOOLEAN BIT

INTEGER SMALLINT,

INTEGER, BIGINT

INT, SMALLINT,

TINYINT

INT, SMALLINT

FLOAT REAL, DOUBLE FLOAT, REAL NUMBER()1 FLOAT,

SMALLFLOAT,

DOUBLE

DECIMAL DECIMAL DECIMAL, NUMERIC,

MONEY, SMALLMONEY

NUMBER(P)1,

NUMBER(P,S)1

DECIMAL, MONEY

ESQL reference 1657

Data type DB2 SQL Server and Sybase Oracle Informix®

CHARACTER CHAR, VARCHAR,

CLOB

CHAR, VARCHAR, TEXT CHAR, VARCHAR2,

ROWID, UROWID,

LONG, CLOB

CHAR, VARCHAR,

CHAR VARYING

TIME TIME

GMTTIME

DATE DATE DATE

TIMESTAMP TIMESTAMP DATETIME,

SMALLDATETIME,

TIMESTAMP

DATE DATETIME

GMTTIMESTAMP

INTERVAL INTERVAL

BLOB BLOB BINARY, VARBINARY,

IMAGE,

UNIQUEIDENTIFIER

RAW LONG, RAW

BLOB

BIT

Note:

1. If an Oracle database column with NUMBER data type is defined with

an explicit precision (P) and scale (S), it is cast to an ESQL DECIMAL

value; otherwise it is cast to a FLOAT.

For example, an ESQL statement like this:

SET OutputRoot.xxx[]

 = (SELECT T.department FROM Database.personnel AS T);

where Database.personnel resolves to a TINYINT column in an SQL

Server database table, results in a list of ESQL INTEGER values being

assigned to OutputRoot.xxx.

By contrast, an identical query, where Database.personnel resolves to a

NUMBER() column in an Oracle database, results in a list of ESQL

FLOAT values being assigned to OutputRoot.xxx.

Miscellaneous ESQL functions

This topic lists the miscellaneous ESQL functions and covers the following:

“COALESCE function”

“NULLIF function” on page 1659

“PASSTHRU function” on page 1659

“UUIDASBLOB function” on page 1662

“UUIDASCHAR function” on page 1662

COALESCE function

COALESCE is a miscellaneous function that lets you provide default values for

fields.

1658 Message Flows

|
|
|

|
|
|

Syntax

��

�

 ,

COALESCE

(

source_value

,

source_value

)

��

The COALESCE function evaluates its parameters in order and returns the first

one that is not NULL. The result is NULL if, and only if, all the arguments are

NULL. The parameters can be of any scalar type, but they need not all be of the

same type.

Use the COALESCE function to provide a default value for a field, which might

not exist in a message. For example, the expression:

COALESCE(Body.Salary, 0)

returns the value of the Salary field in the message if it exists, or 0 (zero) if that

field does not exist.

NULLIF function

NULLIF is a miscellaneous function that returns a NULL value if the arguments

are equal.

Syntax

�� NULLIF (expression1 , expression2) ��

The NULLIF function returns a NULL value if the arguments are equal; otherwise,

it returns the value of the first argument. The arguments must be comparable. The

result of using NULLIF(e1,e2) is the same as using the expression:

CASE WHEN e1=e2 THEN NULL ELSE e1 END

When e1=e2 evaluates to unknown (because one or both of the arguments is

NULL), NULLIF returns the value of the first argument.

PASSTHRU function

The PASSTHRU function evaluates an expression and executes the resulting

character string as a database statement, returning a result set.

The PASSTHRU function is similar to the PASSTHRU statement, which is

described in “PASSTHRU statement” on page 1547.

ESQL reference 1659

��

�

�

 PASSTHRU (Expression)

TO

DatabaseReference

,

VALUES

(

Expression

)

,

(1)

,

Expression

 ��

WHERE:

 DatabaseReference = Database . DataSourceClause

 DataSourceClause = DataSourceName

{

DataSourceExpression

}

Notes:

1 The lower half of the main syntax diagram describes syntax retained for

backward compatability.

Usage

The main use of the PASSTHRU function is to issue complex SELECTs, not

currently supported by the broker, to databases. (Examples of complex SELECTs

not currently supported by the broker are those containing GROUP BY or

HAVING clauses.)

The first expression is evaluated and the resulting character string is passed to the

database pointed to by DatabaseReference (in the TO clause) for execution. If the TO

clause is not specified, the database pointed to by the node’s data source attribute

is used.

Use question marks (?) in the database string to denote parameters. The parameter

values are supplied by the VALUES clause.

If the VALUES clause is specified, its expressions are evaluated and passed to the

database as parameters; (that is, the expressions’ values are substituted for the

question marks in the database statement).

If only one VALUE expression exists, the result might or might not be a list. If it is

a list, the list’s scalar values are substituted sequentially for the question marks. If

it is not a list, the single scalar value is substituted for the (single) question mark

in the database statement. If more than one VALUE expression exists, none of the

expressions evaluate to a list; their scalar values are substituted sequentially for the

question marks instead.

Because the database statement is constructed by the user program, it is not

essential to use parameter markers (that is, the question marks) or the VALUES

clause, because the whole of the database statement could be supplied, as a literal

string, by the program. However, use parameter markers whenever possible

because this reduces the number of different statements that need to be prepared

and stored in the database and the broker.

1660 Message Flows

Database reference

A database reference is a special instance of the field references that is used to refer

to message trees. It consists of the word Database followed by the name of a data

source (that is, the name of a database instance).

You can specify the data source name directly or by an expression enclosed in

braces ({...}). A directly-specified data source name is subject to name substitution.

That is, if the name used has been declared to be a known name, the value of the

declared name is used rather than the name itself (see “DECLARE statement” on

page 1525).

If you have created a message flow that contains one of the following nodes, and

the ESQL that is associated with this node includes a PASSTHRU statement and a

database reference, you must specify a value for the Data source property of the

relevant node:

v Compute

v Database

v Filter

Handling errors

It is possible for errors to occur during PASSTHRU operations. For example, the

database might not be operational or the statement might be invalid. In these

cases, an exception is thrown (unless the node has its Throw exception on database

error property cleared). These exceptions set appropriate SQL code, state, native

error, and error text values and can be dealt with by error handlers (see the

DECLARE HANDLER statement).

For further information about handling database errors, see “Capturing database

state” on page 339.

Example

The following example performs a SELECT on table Table1 in schema Schema1 in

database DSN1, passing two parameters to the WHERE clause and asking for the

result set to be ordered in ascending name order. The result set is assigned to the

SelectResult folder:

SET OutputRoot.XML.Data.SelectResult.Row[] =

 PASSTHRU(’SELECT R.* FROM Schema1.Table1 AS R WHERE R.Name = ? OR R.Name =

 ? ORDER BY Name’

 TO Database.DSN1

 VALUES (’Name1’, ’Name4’));

The above example assigns the result set to the OutputRoot message body tree that

is owned by the Generic XML parser, which allows self-defining messages.

If assigning the result set into a message tree owned by one of the MRM parsers,

and the result set structure exactly matches the MRM message definition, then the

result set can be assigned directly into the OutputRoot message body tree.

If the result set structure does not exactly match the MRM message definition, then

you must first assign the result set into a ROW data type, or an Environment tree

that does not have any parsers associated with it. The required data can then be

assigned to OutputRoot to build a message tree that conforms to the message

definition.

ESQL reference 1661

|
|
|
|
|
|
|

UUIDASBLOB function

UUIDASBLOB is a miscellaneous function that returns universally unique

identifiers (UUIDs) as BLOBs.

Syntax

�� UUIDASBLOB

(

source_character_uuid

)
 ��

If (source_character_uuid) is not specified, UUIDASBLOB creates a new UUID and

returns it as a BLOB.

If (source_character_uuid) is specified, UUIDASBLOB converts an existing character

UUID in the form dddddddd_dddd_dddd_dddd_dddddddddddd to the BLOB form. An

exception is thrown if the parameter is not of the expected form.

The result is NULL if a NULL parameter is supplied.

UUIDASCHAR function

UUIDASCHAR is a miscellaneous function that returns universally unique

identifiers (UUIDs) as CHARACTER values.

Syntax

�� UUIDASCHAR

(

source_blob_uuid

)
 ��

If (source_character_uuid) is not specified, UUIDASCHAR creates a new UUID and

returns it as a CHARACTER value.

If (source_character_uuid) is specified, UUIDASCHAR converts an existing BLOB

UUID to the character form.

The result is NULL if a NULL parameter is supplied.

ESQL constants

Use these constants to make or parse a bitstream.

 ESQL constants in the Mapping node Corresponding ESQL constants

$esql:RootBitStream RootBitStream

$esql:FolderBitStream FolderBitStream

$esql:ValidateContentAndValue ValidateContentAndValue

$esql:ValidateValue ValidateValue

$esql:ValidateContent ValidateContent

1662 Message Flows

|

|

|||

||

||

||

||

||

ESQL constants in the Mapping node Corresponding ESQL constants

$esql:ValidateNone ValidateNone

$esql:ValidateException ValidateException

$esql:ValidateExceptionList ValidateExceptionList

$esql:ValidateLocalError ValidateLocalError

$esql:ValidateUserTrace ValidateUserTrace

$esql:ParseComplete ParseComplete

$esql:ParseImmediate ParseImmediate

$esql:ParseOnDemand ParseOnDemand

Broker properties that are accessible from ESQL and Java

You can access broker, message flow, and node properties from ESQL and Java.

The following table shows the properties that are available to ESQL and Java code.

The fourth column indicates whether the properties are also accessible from Java

nodes. If a property is listed as being accessible from Java nodes, it is accessible

from Java nodes only, not from Java routines that are called as ESQL functions or

procedures.

For a complete overview of broker properties, see “Broker properties” on page 109.

ESQL reference 1663

||

||

||

||

||

||

||

||

||
|

|

Property type Property name Return type

From

Java

nodes? What is it?

General broker

properties

1

BrokerDataSourceUserId Character Yes

2 The data source user ID used by

the broker.

BrokerDataSource Character No The ODBC Data Source Name

(DSN) of the database that

contains the broker’s tables.

BrokerName Character Yes3 The name of the broker.

BrokerUserId Character No The user ID that the broker uses

to access its database tables.

BrokerVersion Character No The 4-character version number

of the broker (see

“BrokerVersion” on page 1666).

ExecutionGroupLabel Character Yes4 The label of the Execution Group

(a human-readable name).

ExecutionGroupName Character No The name of the Execution Group

(often a UUID identifier).

Family Character No The generic name of the software

platform that the broker is

running on (’WINDOWS’, ’UNIX’, or

’ZOS’).

ProcessId Integer No The process identifier (PID) of the

DataFlowEngine.

QueueManagerName Character Yes5 The name of the WebSphere MQ

queue manager to which the

broker is connected.

WorkPath Character No (Optional) The directory in which

working files for this broker are

stored.

Flow properties

AdditionalInstances Integer No The number of additional threads

that the broker can use to service

the message flow.

CommitCount Integer No How many input messages are

processed by the message flow

before a syncpoint is taken.

CommitInterval Integer No The time interval at which a

commit is taken when the

CommitCount property is greater

than 1 (that is, where the message

flow is batching messages), but

the number of messages

processed has not reached the

value of the CommitCount

property.

CoordinatedTransaction Boolean Yes6 Whether or not the message flow

is processed as a global

transaction, coordinated by

WebSphere MQ.

MessageFlowLabel Character Yes7 The name of the flow.

1664 Message Flows

Property type Property name Return type

From

Java

nodes? What is it?

Node properties

DataSource Character No The ODBC Data Source Name

(DSN) of the database in which

the user tables are created.

DataSourceUserId Character No The user ID that the broker uses

to access the database user tables.

MessageOptions Integer (64-bit) No The bitstream and validation

options in force.

NodeLabel Character Yes8 The name of the node.

NodeType Character No The type of node (Compute,

Filter, or Database).

ThrowExceptionOnDatabaseError Boolean Yes9 Whether the broker generates an

exception when a database error

is detected.

TransactionType Character Yes10 The type of transaction

(Automatic or commit) used to

access a database from this node.

TreatWarningsAsErrors Boolean Yes11 Whether database warning

messages are treated as errors

and cause the output message to

be propagated to the failure

terminal.

Notes:

 1. The only broker-defined properties that can be used in a Trace node

are those in the “General broker properties” group. For example, you

could specify the Pattern setting of a Trace node as:

Start Trace Input Message

 Time: ${CURRENT_TIMESTAMP}

 Broker: ${BrokerName} Version: ${BrokerVersion} Platform: ${Family}

 ProcessID: ${ProcessId} BrokerUserId: ${BrokerUserId}

 ExecutionGroupLabel: ${ExecutionGroupLabel}

 Transaction: ${Transaction}

 Root Tree: ${Root}

End Trace Input Message

 2. Accessible through:

a. MbNode.getBroker()

b. MbBroker.getDataSourceUserId()
 3. Accessible through:

a. MbNode.getBroker()

b. MbBroker.getName()
 4. Accessible through:

a. MbNode.getExecutionGroup()

b. MbExecutionGroup.getName()
 5. Accessible through:

a. MbNode.getBroker()

b. MbBroker.getQueueManagerName()
 6. Accessible through:

a. MbNode.getMessageFlow()

b. MbMessageFlow.isCoordinatedTransaction()
 7. Accessible through:

a. MbNode.getMessageFlow()

ESQL reference 1665

b. MbMessageFlow.getName()
 8. Accessible through MbNode.getName()

 9. Accessible through MbSQL.getThrowExceptionOnDatabaseError()

10. Accessible through MbSQL.getTransactionType()

11. Accessible through MbSQL.getTreatWarningsAsErrors()

BrokerVersion

The BrokerVersion property contains a 4-character code that indicates the version

of the broker. The code is based on the IBM Version/Release/Modification/Fix

pack (VRMF) product-numbering system. The VRMF code works like this:

V The Version number. A Version is a separate IBM licensed program that

usually has significant new code or new function. Each version has its own

license, terms, and conditions.

R The Release number. A Release is a distribution of new function and

authorized program analysis report (APAR) fixes for an existing product.

M The Modification number. A Modification is new function added to an

existing product, and is delivered separately from an announced Version or

Release.

F The Fix pack number. Fix packs contain defect and APAR fixes. They do

not contain new function.

 A fix pack is cumulative: that is, it contains all the fixes shipped in

previous maintenance to the release, including previous fix packs. It can be

applied on top of any previously-shipped maintenance to bring the system

up to the current fix pack level.

Special characters, case sensitivity, and comments in ESQL

This topic describes the special characters used in ESQL, case sensitivity, and how

comments are handled in the following sections:

v “Special characters”

v “Case sensitivity of ESQL syntax” on page 1667

v “Comments” on page 1667

Special characters

 Symbol Name Usage

; semicolon End of ESQL statement

. period Field reference separator or

decimal point

= equals Comparison or assignment

> greater than Comparison

< less than Comparison

[] square brackets Array subscript

1666 Message Flows

Symbol Name Usage

’ single quotation mark Delimit string, date-time,

and decimal literals

Note, that to escape a single

quotation mark inside a

string literal, you must use

two single quotation marks.

|| double vertical bar Concatenation

() parentheses Expression delimiter

″ quotation mark Identifier delimiter

* asterisk Any name or multiply

+ plus Arithmetic add

- minus Arithmetic subtract, date

separator, or negation

/ forward slash Arithmetic divide

_ underscore LIKE single wild card

% percent LIKE multiple wild card

\ backslash LIKE escape character

: colon Name space and Time literal

separator

, comma List separator

<> less than greater than Not equals

-- double minus ESQL single line comment

/* */ slash asterisk asterisk slash ESQL multiline comment

? question mark Substitution variable in

PASSTHRU

<= less than or equal Comparison

>= greater than or equal Comparison

/*!{ }!*/ executable comment Bypass tools check

Case sensitivity of ESQL syntax

The case of ESQL statements is:

v Case sensitive in field reference literals

v Not case sensitive in ESQL language words

Comments

ESQL has two types of comment: single line and multiple line. A single line

comment starts with the characters -- and ends at the end of the line.

In arithmetic expressions you must take care not to initiate a line comment

accidentally. For example, consider the expression:

1 - -2

Removing all white space from the expression results in:

1--2

ESQL reference 1667

which is interpreted as the number 1, followed by a line comment.

A multiple line comment starts with /* anywhere in ESQL and ends with */.

ESQL reserved keywords

The following keywords are reserved in uppercase, lowercase, or mixed case. You

cannot use these keywords for variable names. However, you can use reserved

keywords as names in a field reference.

 ALL ASYMMETRIC BOTH

CASE DISTINCT FROM

ITEM LEADING NOT

SYMMETRIC TRAILING WHEN

ESQL non-reserved keywords

The following keywords are used in the ESQL language but are not reserved. Do

not use them for variable, function, or procedure names (in any combination of

upper and lower case) because your code can become difficult to understand.

v AND

v ANY

v AS

v ATOMIC

v ATTACH

v BEGIN

v BETWEEN

v BIT

v BLOB

v BOOLEAN

v BY

v CALL

v CATALOG

v CCSID

v CHAR

v CHARACTER

v COMPUTE

v CONDITION

v CONSTANT

v CONTINUE

v COORDINATED

v COUNT

v CREATE

v CURRENT_DATE

v CURRENT_GMTDATE

v CURRENT_GMTTIME

v CURRENT_GMTTIMESTAMP

v CURRENT_TIME

v CURRENT_TIMESTAMP

v DATA

v DATABASE

v DATE

v DAY

1668 Message Flows

v DAYOFWEEK

v DAYOFYEAR

v DAYS

v DECIMAL

v DECLARE

v DEFAULT

v DELETE

v DETACH

v DO

v DOMAIN

v DYNAMIC

v ELSE

v ELSEIF

v ENCODING

v END

v ENVIRONMENT

v ESCAPE

v ESQL

v EVAL

v EVENT

v EXCEPTION

v EXISTS

v EXIT

v EXTERNAL

v FALSE

v FIELD

v FILTER

v FINALIZE

v FIRSTCHILD

v FLOAT

v FOR

v FORMAT

v FOUND

v FULL

v FUNCTION

v GMTTIME

v GMTTIMESTAMP

v GROUP

v HANDLER

v HAVING

v HOUR

v IDENTITY

v IF

v IN

v INF

v INFINITY

v INOUT

v INSERT

v INT

v INTEGER

v INTERVAL

v INTO

v IS

v ISLEAPYEAR

v ITERATE

v JAVA

ESQL reference 1669

v LABEL

v LANGUAGE

v LAST

v LASTCHILD

v LEAVE

v LIKE

v LIST

v LOCALTIMEZONE

v LOG

v LOOP

v MAX

v MESSAGE

v MIN

v MINUTE

v MODIFIES

v MODULE

v MONTH

v MONTHS

v MOVE

v NAME

v NAMESPACE

v NAN

v NEXTSIBLING

v NONE

v NULL

v NUM

v NUMBER

v OF

v OPTIONS

v OR

v ORDER

v OUT

v PARSE

v PASSTHRU

v PATH

v PLACING

v PREVIOUSSIBLING

v PROCEDURE

v PROPAGATE

v QUARTEROFYEAR

v QUARTERS

v READS

v REFERENCE

v REPEAT

v RESIGNAL

v RESULT

v RETURN

v RETURNS

v ROW

v SAMEFIELD

v SCHEMA

v SECOND

v SELECT

v SET

v SETS

v SEVERITY

1670 Message Flows

v SHARED

v SHORT

v SOME

v SQL

v SQLCODE

v SQLERRORTEXT

v SQLEXCEPTION

v SQLNATIVEERROR

v SQLSTATE

v SQLWARNING

v SUM

v TERMINAL

v THE

v THEN

v THROW

v TIME

v TIMESTAMP

v TO

v TRACE

v TRUE

v TYPE

v UNCOORDINATED

v UNKNOWN

v UNTIL

v UPDATE

v USER

v UUIDASBLOB

v UUIDASCHAR

v VALUE

v VALUES

v WEEKOFMONTH

v WEEKOFYEAR

v WEEKS

v WHERE

v WHILE

v YEAR

Example message

This topic defines the example message that is used in many of the examples

throughout the information center.

The example message is:

<Invoice>

<InvoiceNo>300524</InvoiceNo>

<InvoiceDate>2000-12-07</InvoiceDate>

<InvoiceTime>12:40:00</InvoiceTime>

<TillNumber>3</TillNumber>

<Cashier StaffNo="089">Mary</Cashier>

<Customer>

 <FirstName>Andrew</FirstName>

 <LastName>Smith</LastName>

 <Title>Mr</Title>

 <DOB>20-01-70</DOB>

 <PhoneHome>01962818000</PhoneHome>

 <PhoneWork/>

 <Billing>

ESQL reference 1671

<Address>14 High Street</Address>

 <Address>Hursley Village</Address>

 <Address>Hampshire</Address>

 <PostCode>SO213JR</PostCode>

 </Billing>

</Customer>

<Payment>

 <CardType>Visa</CardType>

 <CardNo>4921682832258418</CardNo>

 <CardName>Mr Andrew J. Smith</CardName>

 <Valid>1200</Valid>

 <Expires>1101</Expires>

</Payment>

<Purchases>

 <Item>

 <Title Category="Computer" Form="Paperback" Edition="2">The XML Companion

</Title>

 <ISBN>0201674866</ISBN>

 <Author>Neil Bradley</Author>

 <Publisher>Addison-Wesley</Publisher>

 <PublishDate>October 1999</PublishDate>

 <UnitPrice>27.95</UnitPrice>

 <Quantity>2</Quantity>

 </Item>

 <Item>

 <Title Category="Computer" Form="Paperback" Edition="2">A Complete Guide

to DB2 Universal Database</Title>

 <ISBN>1558604820</ISBN>

 <Author>Don Chamberlin</Author>

 <Publisher>Morgan Kaufmann Publishers</Publisher>

 <PublishDate>April 1998</PublishDate>

 <UnitPrice>42.95</UnitPrice>

 <Quantity>1</Quantity>

 </Item>

 <Item>

 <Title Category="Computer" Form="Hardcover" Edition="0">JAVA 2 Developers

Handbook</Title>

 <ISBN>0782121799</ISBN>

 <Author>Philip Heller, Simon Roberts </Author>

 <Publisher>Sybex, Inc.</Publisher>

 <PublishDate>September 1998</PublishDate>

 <UnitPrice>59.99</UnitPrice>

 <Quantity>1</Quantity>

 </Item>

</Purchases>

<StoreRecords/>

<DirectMail/>

<Error/>

</Invoice>

For a diagrammatic representation of this message, and for examples of how this

message can be manipulated with ESQL statements and functions, refer to “Writing

ESQL” on page 280.

1672 Message Flows

Message mappings

This section contains topics that provide reference information about message

mapping:

v “Message Mapping editor”

– Source pane

– Target pane

– Edit pane

– Spreadsheet pane
v “Mapping node” on page 1683

– Syntax

– Functions

– Casts
v “Migrating message mappings from Version 5.0” on page 1691

– Migration restrictions

Message Mapping editor

You configure a message mapping using the Message Mapping editor, which you

use to set values for:

v the message destination

v message headers

v message content

Here is an example of the Message Mapping editor. There are separate panes for

working with sources, targets and expressions, as well as a spreadsheet view.

1 2

3

4

© Copyright IBM Corp. 2000, 2008 1673

1. Source pane: displays a source message or database table

2. Target pane: displays a target message

3. Edit pane: displays the expression to be used to derive the target element value

4. Spreadsheet pane: displays a summary of the mappings in spreadsheet

columns (each target field and its value)

Use the Message Mapping editor to perform various mapping tasks.

Wizards and dialog boxes are provided for tasks such as adding mappable

elements, working with ESQL, and working with submaps. Mappings that are

created with the Message Mapping editor are automatically validated and

compiled, ready for adding to a broker archive (bar) file, and subsequent

deployment to WebSphere Message Broker.

Message Mapping editor Source pane

The following example shows the “Message Mapping editor” on page 1673. The

pane that is labelled as 1 in the example is the Source pane:

 The following list describes the elements that are present in the Source pane:

v A source message is identified by $source.

v A source database is identified by $db:select.

v A mapped entry is indicated by a blue triangle alongside the element. In this

example, Customer_ID and Order_Date are mapped.

v Square brackets contain minimum and maximum occurrences of an element.

v An optional field is indicated by [0,1]. In this example, First_Class is optional.

v A repeating field is indicated by [minoccurs, maxoccurs].

v A choice field is indicated by a choice line; under the choice line are the possible

choices. In this example, First_Class, Second_Class, and Airmail are choices of

Delivery_Method.

1 2

3

4

1674 Message Flows

v The type of each element is indicated in round brackets after the element name.

v If the message schema uses namespaces, the namespace prefix is shown before

the element name, separated by a colon.

Use the Source pane to invoke a number of actions, a list of which is displayed

when you right-click within the Source pane. The following table describes the

available actions.

 Action Description Related tasks

Undo Undo previous action

Redo Redo previous action

Revert Discard

Open Declaration (message) Display the element

definition from the message

set.

For this action to be

available, select any source

message element except

LocalEnvironment or

Headers.

Open Declaration (database) Display the database,

schema, or table definition

from the database.

For this action to be

available, select any source

database object.

Show Derived Types Hide or display derived

types for an element in the

source or target pane.

For this action to be

available, select a target

element displayed as a

specialization folder in the

source pane.

Show Substituting elements Hide or display the

substituting elements of the

head element in the source

or target pane.

For this action to be

available, select a target

element displayed as a

substitutions folder in the

source pane.

Add Sources and Targets Add a message definition or

a database table to a source.

For this action to be

available, select any source

object.

“Adding messages or

message components to the

source or target” on page

492, “Adding a database as a

source or target” on page 492

Go To For this action to be

available, select any source

object.

Message mappings 1675

||
|
|
|

|
|
|
|
|

|

Action Description Related tasks

Delete (message) Remove a message and any

existing maps from the

source.

For this action to be

available, select the source

message root ($source).

Delete (database) Remove a database and any

existing maps from the

source.

For this action to be

available, select the source

database root ($db:select).

Map from Source Create a map between the

focus source element and the

focus target element.

For this action to be

available, select compatible

source and target elements.

“Mapping a target element

from source message

elements” on page 481,

“Mapping from source: by

selection” on page 480

Map by Name Create a map between the

focus source element and the

focus target element.

For this action to be

available, select compatible

source and target elements.

“Mapping a target element

from source message

elements” on page 481,

“Mapping from source: by

name” on page 480

Accumulate If the source and target fields

contain numeric data types,

this action maps all

occurrences of a repeating

source field to a

non-repeating target,

resulting in the sum of all

the source elements.

For this action to be

available, select the source

and target element.

“Configuring a repeating

source and a non-repeating

target” on page 488

Create New Submap For this action to be

available, select source and

target elements that are

either elements of complex

types or wildcard elements.

“Creating and calling

submaps and subroutines”

on page 502, “Creating a

new submap” on page 503,

“Creating a new submap for

a wildcard source” on page

504

Call Existing Submap Call an existing submap “Creating and calling

submaps and subroutines”

on page 502, “Calling a

submap” on page 506

Call ESQL Routine Call an ESQL routine “Creating and calling

submaps and subroutines”

on page 502, “Calling an

ESQL routine” on page 508

Save Save the .msgmap file

1676 Message Flows

Message Mapping editor Target pane

The following example shows the “Message Mapping editor” on page 1673. The

pane that is labelled as 2 in the example is the Target pane:

 The following list describes the elements that are present in the Target pane:

v A target message is identified by $target.

v A mapped entry is indicated by a yellow triangle alongside the element. In this

example, Customer_ID, Order_Number, and Order_Date are mapped.

v Square brackets contain minimum and maximum occurrences of an element.

v An optional field is indicated by [0,1]. In this example, First_Class is optional.

v A repeating field is indicated by [minoccurs, maxoccurs].

v A choice field is indicated by a choice line; under the choice line are the possible

choices. In this example, First_Class, Second_Class, and Airmail are choices of

Delivery_Method.

v The type of each element is indicated in round brackets after the element name.

v If the message schema uses namespaces, the namespace prefix is shown before

the element name, separated by a colon.

Use the Target pane to invoke a number of actions, a list of which is displayed

when you right-click within the Target pane. The following table describes the

available actions.

 Action Description Related tasks

Undo Undo previous action

Redo Redo previous action

Revert Discard

1 2

3

4

Message mappings 1677

Action Description Related tasks

Open Declaration (message) Display the element

definition from the message

set.

For this action to be

available, select any target

message element except

LocalEnvironment or

Headers.

Open Declaration (database) Display the database,

schema, or table definition

from the database.

For this action to be

available, select any target

database object.

Show Derived Types Hide or display derived

types for an element in the

source or target pane.

For this action to be

available, select a target

element displayed as a

specialization folder in the

target pane.

Show Substituting elements Hide or display the

substituting elements of the

head element in the source

or target pane.

For this action to be

available, select a target

element displayed as a

substitutions folder in the

target pane.

Add Sources and Targets Add a message definition or

a database table to a source.

For this action to be

available, select any target

object.

“Adding messages or

message components to the

source or target” on page

492, “Adding a database as a

source or target” on page 492

Go To For this action to be

available, select any target

object.

Delete (message) Remove a message and any

existing maps from the

source.

For this action to be

available, select the target

message root ($target).

1678 Message Flows

||
|
|

|
|
|
|
|

|

||
|
|
|

|
|
|
|
|

|

Action Description Related tasks

Map from Source Create a map between the

focus source element and the

focus target element.

For this action to be

available, select compatible

source and target elements.

“Mapping a target element

from source message

elements” on page 481,

“Mapping from source: by

selection” on page 480

Map by Name Create a map between the

focus source element and the

focus target element.

For this action to be

available, select compatible

source and target elements.

“Mapping a target element

from source message

elements” on page 481,

“Mapping from source: by

name” on page 480

Enter Expression For this action to be

available, select any target

object except $target

“Setting the value of a target

element to a constant” on

page 483, “Setting the value

of a target element using an

expression or function” on

page 485

Accumulate If the source and target fields

contain numeric data types,

this action maps all

occurrences of a repeating

source field to a

non-repeating target,

resulting in the sum of all

the source elements.

For this action to be

available, select the source

and target element.

“Configuring a repeating

source and a non-repeating

target” on page 488

Create New Submap For this action to be

available, select source and

target elements that are

either elements of complex

types or wildcard elements.

“Creating and calling

submaps and subroutines”

on page 502, “Creating a

new submap” on page 503,

“Creating a new submap for

a wildcard source” on page

504

Call Existing Submap Call an existing submap “Creating and calling

submaps and subroutines”

on page 502, “Calling a

submap” on page 506

Call ESQL Routine Call an existing ESQL routine “Creating and calling

submaps and subroutines”

on page 502, “Calling an

ESQL routine” on page 508

Save Save the .msgmap file

Message Mapping editor Edit pane

The following example shows the “Message Mapping editor” on page 1673. The

pane that is labelled as 3 in the example is the Edit pane:

Message mappings 1679

When you have selected a source or target element, use the Edit pane to enter an

expression. Right-click inside the Edit pane to invoke a list of available actions,

most of which are standard Windows functions, such as cut, copy, and paste. Click

Edit → Content Assist (or press Ctrl+Space) to access ESQL Content Assist, which

provides a drop-down list of functions that are available in a Mapping node.

To display the definition associated with a selected element or database object,

right-click in the Edit pane, and click Open Declaration. The appropriate editor

opens to display the definition associated with the element or database definition.

Message Mapping editor Spreadsheet pane

The following example shows the “Message Mapping editor” on page 1673. The

pane that is labelled as 4 in the example is the Spreadsheet pane:

1 2

3

4

1680 Message Flows

Use the Spreadsheet pane to invoke a number of actions, a list of which is

displayed when you right-click within the Spreadsheet pane. The following table

describes the available actions.

 Action Description Related tasks

Undo Undo previous action

Redo Redo previous action

Revert Discard

Open Declaration (message) Display the element

definition from the message

set.

For this action to be

available, select any message

element except

LocalEnvironment or

Headers.

Open Declaration (database) Display the database,

schema, or table definition

from the database.

For this action to be

available, select any database

object.

Add Sources and Targets Add a message definition to

a target.

“Adding messages or

message components to the

source or target” on page

492, “Adding a database as a

source or target” on page 492

Copy Copy the selected item to the

clipboard.

1 2

3

4

Message mappings 1681

Action Description Related tasks

Paste Paste the item from the

clipboard.

Delete Remove a row from the

Spreadsheet.

For Define a repeating condition. “Configuring a repeating

source and a non-repeating

target” on page 488,

“Configuring a repeating

source and a repeating

target” on page 489

If Placeholder for a new

Condition block, to contain

one or more Conditions.

“Configuring a repeating

source and a non-repeating

target” on page 488,

“Configuring conditional

mappings” on page 487

Condition Define what must evaluate to

’true’ to execute subsequent

mappings.

“Configuring a repeating

source and a non-repeating

target” on page 488,

“Configuring conditional

mappings” on page 487

Else Placeholder to execute

subsequent mappings if

previous Condition does not

evaluate to ’true’.

“Configuring conditional

mappings” on page 487

Select Data Source Define a database to be used

in the mapping.

Populate Expand a structure so that

each of its children have a

row in the spreadsheet.

Insert After Create a number of new

rows in the spreadsheet to

set the values of specific

instances of a repeating field.

Can also be used to insert

any non-repeating element,

attribute or database column

if valid at the selected

location.

“Configuring a non-repeating

source and a repeating

target” on page 489

Insert Before Create a number of new

rows in the spreadsheet to

set the values of specific

instances of a repeating field.

Can also be used to insert

any non-repeating element,

attribute or database column

if valid at the selected

location.

“Configuring a non-repeating

source and a repeating

target” on page 489

Replace Substitute an element,

attribute or database column

in the spreadsheet with a

similar item, retaining the

mapping expression and any

child mapping statements.

Save Save the .msgmap file.

1682 Message Flows

Mapping node

The Mapping node has one or more mappings that are stored in message map files

(with a .msgmap file extension). These files are configured using the “Message

Mapping editor” on page 1673.

A Mapping node must contain the following inputs and outputs:

v Zero or one source (input) messages

v Zero or more source (input) databases

v One or more target (output) messages

You must define, in message definition files in a message set, the source and target

messages that are to be mapped. You can specify the parser of the source message

at run time (for example, in an MQRFH2 header), but the target message is built

using the runtime parser that is specified by the Message Domain property of the

message set.

If a message mapping is between elements of different types, you might need to

include casts in your mapping definitions, depending on which runtime parser is

specified by the Message Domain property of your message set.

The Mapping node uses a language to manipulate messages that are based on

XPath.

To develop message mappings for a Mapping node, use the Message Mapping

editor, which provides separate panes for working with sources, targets and

expressions.

Mapping node syntax

In a Mapping node, the source message, if present, is identified in the “Message

Mapping editor” on page 1673 by $source.

The message tree is represented in XPath format. For example, if you have an

element called Body within a source message called Envelope, this is represented

in the Mapping node as:

 $source/soap11:Envelope/soap11:Body

Where soap11 is a namespace prefix.

The first target message is identified by $target; additional target messages are

identified by $target_1, $target_2, etc.

The first source database is identified by $db:select; additional source databases are

identified by $db:select_1, $db:select_2, etc.

The database element is represented in the following format:

 $db:select.DB.SCH.TAB.COL1

where:

 DB is the database name

 SCH is the database schema name

 TAB is the table name

Message mappings 1683

COL1 is the column name

You can also use the Mapping node to:

v make comparisons

v perform arithmetic

v create complex conditions

The comparison operators are:

 = equals

 != not equals

 > greater than

 >= greater than or equals

 < less than

 <= less than or equals

The arithmetic operators are:

 + plus

 - minus

 * multiply

 div divide

Conditional operators ‘or’ and ‘and’ are supported (these are case-sensitive).

The following objects can be mapped:

v Local Environment

– Destination

– WrittenDestination

– File

– SOAP

– TCPIP

– ServiceRegistry

– Adapter

– Wildcard

– Variables
v Message headers (optional)

– MQ Headers

– HTTP Headers

– JMSTransport

– Email Headers
v Message elements

v Database columns

Naming restrictions for database objects

The names of objects in Oracle databases can contain certain characters, such as the

dollar sign ($) and number sign (#), which the Mapping node cannot process

correctly. Database table names, table column names, stored procedure parameter

names, and column names in stored procedure result sets, must not contain any of

the following characters:

1684 Message Flows

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|

~ ! @ # $ % ^ & * () + = - ` { } | \] ["

: ’ ; ? > < , . /

Mapping node functions

You can configure your message mappings using a variety of predefined and

user-defined functions.

The following predefined functions are available to use in your message maps:

v ESQL - prefixed esql:

v XPath - prefixed fn:

v Mapping - prefixed msgmap:

v Schema casts - prefixed xs:

Not all ESQL functions can be used in a Mapping node. For information about

which functions are supported, and for a description of how to achieve equivalent

processing for ESQL functions that are not supported, see the ESQL topics. For

information about the predefined ESQL functions, see “Predefined ESQL mapping

functions.”

The fn:true() function (that always returns true) and the fn:false() function (that

always returns false) are examples of XPath functions. You can get more

information about the other XPath functions and XPath syntax from the online

W3C XML Path Language document. For information about the predefined XPath

functions, see “Predefined XPath mapping functions” on page 1688.

For information about the predefined mapping functions, see “Predefined mapping

functions” on page 1689. See “Mapping node casts” on page 1690 for a list of the

schema casts.

The mapping node can also:

v Set the value of a target to a WebSphere MQ constant. The expression to set the

value looks similar to a function with $mq: used as the prefix.

v Call a Java method directly. The expression to set the value looks similar to a

function with java: used as a prefix.

Predefined ESQL mapping functions

A table of predefined ESQL functions for use with message maps.

This table details the predefined ESQL mapping functions that are available to use

with message maps:

 Name ESQL equivalent Notes

Numeric functions: abs

absval acos asin atan atan2

bitand bitnot bitor bitxor ceil

ceiling cos cosh cot degrees

exp floor in log log10 mod

power radians rand sign sin

sinh sqrt tan tanh truncate

ESQL function of the name same name such as ABS and

ABSVAL.

The same parameters apply as for ESQL.

String functions: left length

lower lcase ltrim replace

replicate right rtrim space

translate upper ucase

ESQL function of the same name such as LEFT and

LENGTH.

The same parameters apply as for ESQL.

Field functions: bitstream

fieldname fieldnamespace

fieldtype fieldvalue lastmove

samefield

ESQL function of the same name such as BITSTREAM

and FIELDNAME.

The same parameters apply as for ESQL.

Message mappings 1685

|
|

|

http://www.w3.org/TR/xpath

Name ESQL equivalent Notes

asbitstream These signatures are supported:

 ASBITSTREAM(FieldRef)

ASBITSTREAM(FieldRef, typeExp, setExp, formatExp)

ASBITSTREAM(FieldRef, typeExp, setExp, formatExp,

 encodingExp, ccsidExp)

ASBITSTREAM(FieldRef, typeExp, setExp, formatExp,

 encodingExp, ccsidExp, options)

FieldRef is a source field reference such as

$source/po:PurchaseOrder

typeExp is a string literal of the name of the message

body, such as purchaseOrder, optionally qualified with a

namespace URI, such as {http://
www.ibm.com}:purchaseOrder

setExp is a string literal of the name of the message set,

such as PurchaseOrder

formatExp is a string literal of the wire format of the

message, such as XML1

encodingExp and ccsidExp evaluate to integers with values

corresponding to ESQL ENCODING and CCSID

constants.

options is an ESQL constant or bit-or of ESQL constant

that evaluates to an integer.

cardinality CARDINALITY The same parameters apply as for ESQL.

coalesce COALESCE The same parameters apply as for ESQL.

current-date CURRENT_DATE No parameters apply.

current-gmtdate CURRENT_GMTDATE No parameters apply.

current-gmttime CURRENT_GMTTIME No parameters apply.

current-gmttimestamp CURRENT_ GMTTIMESTAMP No parameters apply.

current-time CURRENT_TIME No parameters apply.

current-timestamp CURRENT_TIMESTAMP No parameters apply.

date DATE

for FOR (expression) Optional parameters are not supported.

gmttime GMTTIME

gmttimestamp GMTTIMESTAMP

interval-year INTERVAL YEAR The same parameters apply as for ESQL. Some examples:

 esql:interval-minute(’90’)

esql:interval-year-to-month(’1-06’)

interval-year-to-month INTERVAL YEAR TO MONTH

interval-month INTERVAL MONTH

interval-day INTERVAL DAY

interval-day-to-hour INTERVAL DAY TO HOUR

interval-day-to-minute INTERVAL DAY TO MINUTE

interval-day-to-second INTERVAL DAY TO SECOND

interval-hour INTERVAL HOUR

interval-hour-to-minute INTERVAL HOUR TO MINUTE

interval-hour-to-second INTERVAL HOUR TO SECOND

interval-minute INTERVAL MINUTE

interval-minute-to-second INTERVAL MINUTE TO SECOND

interval-second INTERVAL SECOND

is-null Operand IS NULL Some examples:

 esql:is-null($source/po:purchaseOrder/po:comment)

esql:is-null

($db:select.ACME.PARTS.INVENTORY.LAST_TRANSACTION)

like source LIKE pattern For example:

 esql:like

($source/po:purchaseOrder/shipTo/first_name,’Fred’)

source LIKE pattern ESCAPE EscapeChar For example:

 esql:like

($source/po:purchaseOrder/shipTo

/zip,’L6F$_1C7’,’$’)

local-timezone LOCAL_TIMEZONE

1686 Message Flows

||

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|

|
|
|

|
|

Name ESQL equivalent Notes

nullif NULLIF The same parameters apply as for ESQL.

overlay OVERLAY Str1 PLACING Str2 FROM Start For example:

 esql:overlay

($source/po:purchaseOrder/shipTo/city,’abc’,2)

OVERLAY Str1 PLACING Str2 FROM Start For Length For example:

 esql:overlay

($source/po:purchaseOrder/shipTo/city,’abcde’,2,3)

position POSITION searchExp IN SourceExp For example:

 esql:position

(’aet’,$source/po:purchaseOrder/shipTo/first_name)

POSITION searchExp IN SourceExp FROM FromExp For example:

 esql:position

(’do’,$source/po:purchaseOrder/shipTo/last_name,1)

POSITION searchExp IN SourceExp FROM FromExp

REPEAT RepeatExp

For example:

 esql:position

(’a’,$source/po:purchaseOrder/billTo

/first_name,1,2)

round ROUND Optional parameters are not supported.

sqlcode SQLCODE No parameters apply.

sqlerrortext SQLERRORTEXT

sqlnativeerror SQLNATIVEERROR

sqlstate SQLSTATE

time TIME

timestamp TIMESTAMP The same parameters apply as for ESQL. For example:

 esql:gmttimestamp

(’1999-12-31 23:59:59.999999’)

trim-leading TRIM LEADING FROM Source For example:

 esql:trim-leading

($source/po:purchaseOrder/shipTo/state)

TRIM LEADING Singleton FROM Source For example:

 esql:trim-leading

(’G’,$source/po:purchaseOrder/shipTo/zip)

trim-trailing TRIM TRAILING FROM Source For example:

 esql:trim-trailing

($source/po:purchaseOrder/billTo/last_name)

TRIM TRAILING Singleton FROM Source For example:

 esql:trim-trailing

(’e’,$source/po:purchaseOrder/billTo/street)

trim-both TRIM BOTH FROM Source For example:

 esql:trim-both

($source/po:purchaseOrder/shipTo/city)

TRIM BOTH Singleton FROM Source For example:

 esql:trim-both

(",$source/po:purchaseOrder/shipTo/city)

Message mappings 1687

Name ESQL equivalent Notes

trim TRIM Source For example:

 esql:trim

($source/po:purchaseOrder/shipTo/city)

TRIM Singleton FROM Source For example:

 esql:trim

(",$source/po:purchaseOrder/shipTo/city)

uuidasblob UUIDASBLOB Takes zero or more parameters as in ESQL.

uuidaschar UUIDASCHAR

Predefined XPath mapping functions

A table of predefined XPath functions for use with message maps.

This table details the predefined XPath functions that are available to use with

message maps. You can get more information about XPath functions and XPath

syntax from the online W3C XML Path Language document.

 Name Parameters Notes

true

false

sum Source field from the

message or database.

Source has to be a numeric type and repeats.

avg

max

min

count Source field from the

message or database.

concat Two, or more, strings. You cannot use fn:concat($source/myElem) to

concatenate instances of ’myElem’.

not 1- Expression resolved to a

Boolean value.

exists Source field from the

message or database. empty

substring 1- String

2- Zero-bases starting

 index

3- Length

For example:

 fn:substring

($source/po:purchaseOrder/billTo/street, 3, 5)

year-from-dateTime 1- xs:dateTime For example:

 fn:month-from-dateTime

(xs:dateTime($source/po:purchaseOrder

/shipTo/datetime))

where $source/po:purchaseOrder/shipTo/datetime is

xs:string.

month-from-dateTime

day-from-dateTime

hours-from-dateTime

minutes-from-dateTime

seconds-from-dateTime

1688 Message Flows

http://www.w3.org/TR/xpath

Name Parameters Notes

year-from-date 1-xs:date For example:

 fn:year-from-date(xs:date

($source/po:purchaseOrder/billTo/date))

where $source/po:purchaseOrder/billTo/date is

xs:string.

month-from-date

day-from-date

hours-from-time 1- xs:time Some examples:

 fn:hours-from-time(xs:time("13:20:10:5"))

fn:hours-from-time(xs:time

($source/po:purchaseOrder/shipTo/time))

minutes-from-time

seconds-from-time

years-from-duration 1- xdt:dayTimeDuration For example:

 fn:minutes-from-duration

(xdt:dayTimeDuration(PT47H30M))

months-from-duration

days-from-duration

hours-from-duration

minutes-from-duration

seconds-from-duration

Predefined mapping functions

A table of predefined mapping functions for use with message maps.

This table details the predefined mapping functions that are available to use with

message maps:

 Name Parameters Return Notes

cdata-
element

One string Nothing Create an XML element with CData content in the

following target message domains:

v XMLNSC

v SOAP

v XMLNS

v XML

v JMSMap

v JMSStream

For example:

 msgmap:cdata-element(’<date><month>05</month>

<day>11</day><year>2008</year></date>’)

occurrence Source field from the message or database Source field as selected

from a group of repeating

fields.

Often used in a condition statement when source

repeats to execute specific statements for a specific

occurrence. For example:

 msgmap:occurrence

($source/po:purchaseOrder

/items)=2

means the second field, po:purchaseOrder

exact-type 1- Source field from the

 message or database

2- Namespace prefix

3- Name of the type

True if the source is of the

specified type in the

specified namespace.

Often used in a condition to execute specific

statements for a specific source type. For example:

 msgmap:exact-type

($source/tn1:msg2,’tn1’,

’extendedMsgType’)

Message mappings 1689

|
|
|||
|
|
|
|
|
|
|

|

|
|

Name Parameters Return Notes

empty-
element()

None Nothing Creates an XML element with an empty tag. For

example, if an element is named MyElement and the

mapping expression for MyElement is set to

msgmap:empty-element(), the output message will

contain an element with no content:

<MyElement/>

Call this function only for an XML element.

element-
from-
bitstream

These signatures are supported:

 msgmap:element-from-bitstream(StreamRef)

msgmap:element-from-bitstream(StreamRef, typeExp,

 setExp, formatExp)

msgmap:element-from-bitstream(StreamRef, typeExp,

 setExp, formatExp, encodingExp, ccsidExp)

msgmap:element-from-bitstream(StreamRef, typeExp,

 setExp, formatExp, encodingExp, ccsidExp, options)

Nothing Used to parse a bitstream. This function can be called

only for a message element target. The parsed bit

stream is placed in the target message tree as the

target element.

StreamRef is a reference to a BLOB of stream, such as

’$source/BLOB’ or

’$db:select.dsn.schema.table.column’

typeExp is a string literal of the name of the message

body, such as ’purchaseOrder’, optionally qualified

with a namespace URI, such as ’{http://
www.ibm.com}:purchaseOrder’

setExp is a string literal of the name of the message

set, such as ’PurchaseOrder’

formatExp is a string literal of the wire format of the

message, such as ’XML1’

encodingExp and ccsidExp evaluate to integers with

values corresponding to ESQL ENCODING and

CCSID constants

options is an ESQL constant or bit-or of ESQL

constants that evaluate to an integer.

Mapping node casts

Source and target elements can be of different types in a Mapping node,

Depending on which runtime parsers are used, automatic casting cannot be done.

In these cases, use one of the following cast functions:

v xs:boolean

v xs:date

v xs:dateTime

v xs:dayTimeDuration

v xs:decimal

v xs:duration

v xs:double

v xs:hexBinary

v xs:int

v xs:integer

v xs:string

v xs:long

v xs:time

v xs:yearMonthDuration

1690 Message Flows

|
|
|||
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

||
|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|

|
|

Headers and Mapping node

This topic lists the headers that can be manipulated by the Mapping node.

You can map these headers:

v MQ Headers

 MQMD

 MQCFH header with root element MQPCF

 MQCIH

 MQDLH

 MQIIH

 MQMDE

 MQRFH

 MQRFH header with MQRFH2 or MQRFH2C parser

 MQRMH

 MQSAPH

 MQWIH

 SMQ_BMH
v Email Headers

 EmailOutputHeader
v HTTP Headers

 HTTPInputHeader

 HTTPReplyHeader

 HTTPRequestHeader

 HTTPResponseHeader
v JMSTransport

Migrating message mappings from Version 5.0

Use the mqsimigratemfmaps command to migrate message mappings to the

Version 6.1 format.

The mqsimigratemfmaps command creates Version 6.1 mapping files (.msgmap)

from your Version 5.0 mapping files (.mfmap).

When you migrate message mappings from Version 5.0, read the restrictions that

apply.

The following table lists the mapping functions that are supported in Version 5.0

but not supported in Version 6.1, and shows the error messages that you might

see. Mappings that contain these Version 5.0 functions cannot be migrated to

Version 6.1; you must re-create and redeploy these mappings using another node,

such as a JavaCompute node. Alternatively, migrate as much of the mapping as

possible using the migration command, view the error report to see details of the

functions that could not be migrated, and create a new node that can execute those

functions that were not migrated.

Message mappings 1691

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Supported in Version 5.0 Migration utility error message

Expressions that involve multiple instances

of a repeating source element, for example:

src_msg.e[1] + src_msg.e[2] ->

tgt_msg.e

Error:102: Unexpected index ’2’ encountered for target mappable

’e’. The expected index is ’1’. Migration currently provides no

support for expressions involving more than one instance of the

same repeating-element.

ESQL field references that contain the

asterisk wildcard character ″*″. For

example:

src_msg.e.* or src_msg.e.*[]

Error:130: ESQL field-reference ’src_msg.e.*’ cannot be migrated.

Migration currently provides no support for field-references

containing ’*’.

Dynamic ESQL field references. For

example:

src_msg.e.{’a’ || ’b’}

Error:131: ESQL field-reference ’src_msg.e.{’a’ || ’b’}’ cannot be

migrated. Migration currently provides no support for dynamic

field-references.

ESQL expressions that contain a reference

to the temporary index-variable ″#I″. For

example:

src_msg_e || "#I" -> tgt_msg.e

Error:128: ESQL expressions containing the variable ’#I’ anywhere

other than the index of a repeating-element cannot be handled by

the migration.

Expressions within an index of a repeating

element. For example:

src_msg.e[src_msg.a] or src_msg.e["#I"

+5] or src_msg.e[< 3]

Error:116: ESQL field-reference ’src_msg.e[< 3]’ cannot be

migrated. Migration currently provides no support for indexes

other than the variable ’#I’ and plain integer indexes.

Aggregation functions MIN, MAX, and

COUNT, used with the ESQL SELECT

expression. For example:

SELECT MAX("#T".FIRSTNAME) FROM

Database.CUSTOMER AS "#T" WHERE

"#T".CUSTOMERID = 7

Error:135: The ESQL expression ’SELECT MAX(″#T″.FIRSTNAME) FROM

Database.CUSTOMER AS ″#T″ WHERE ″#T″.CUSTOMERID = 7’ could not be

migrated. The expression contains syntax which has no direct

equivalent in the new map-script language.

ESQL IN operator. For example:

src_msg.e IN (1, 2, 3)

Error:135: The ESQL expression ’SELECT MAX(″#T″.FIRSTNAME) FROM

Database.CUSTOMER AS ″#T″ WHERE ″#T″.CUSTOMERID = 7’ could not be

migrated.

Restrictions on migrating message mappings

In certain scenarios, restrictions apply to the migration of .mfmap files from

Version 5.0.

This topic explains why migration is not automatic in these situations, and

provides instructions for how to complete a successful migration. This topic also

provides information about restrictions that apply when you migrate submaps.

The programming model for message maps is different between Version 5.0 (where

the file format is .mfmap) and Version 6.1 (where the format is .msgmap). Version

5.0 message maps have a procedural programming model, which is essentially an

alternative ESQL, where you describe all the steps that are required to perform a

transformation. Version 6.1 uses a declarative programming model, where you

describe the result of the transformation, and the tools determine how to achieve

that result.

Most migration failures result from message maps that contain too much

information about the steps that perform the transformation, and not enough

information about the desired result. For these message maps, migration is enabled

1692 Message Flows

by changing the .mfmap file so that specific ″how to″ sections are separated into an

ESQL function or procedure that can be called by the message map. The .mfmap

file calls the ESQL function instead of containing it as an expression. The

mqsimigratemfmaps command then migrates the .mfmap file, but calls the ESQL

function instead of logging a migration error.

A limitation is that ESQL (the run time for .mfmap and .msgmap files) cannot

define functions that return complex element (or REFERENCE) values. The

following procedure explains how to work around this complex element target

limitation; in many cases, you must rewrite the map as an ESQL function. For

more examples and information about calling ESQL from maps, refer to the

following sample:

v Message Map sample

You can view samples only when you use the information center that is integrated

with the Message Broker Toolkit.

1. Determine whether you can define an ESQL function for the .mfmap file.

a. When the target value is a complex element, or in ESQL terms a

REFERENCE, the individual mapping must be rewritten in the .msgmap

file. Delete the mapping from the .mfmap file, and proceed to Step 4.

b. Use a function for all other cases: CHAR string, numbers, date, and time.

Proceed to Step 2.
2. Determine the source parameters and returns type for your function.

a. For each source path in the mapping, there must be one parameter in the

function or procedure. For a function, all parameters are unchangeable. The

type of the parameter must match the source data type.

b. The function return type is the ESQL data type identified above.
3. Update the .mfmap file to enable migration. Change the .mfmap file to invoke

the function in the mapping, passing the source parameters to the function in

the order in which they were listed in step 2a.

4. Re-run the mqsimigratemfmaps command to migrate the modified .mfmap file.

5. Repeat Steps 1 to 4 until no errors are reported in the migration log.

6. Start the Version 6.1 Message Broker Toolkit and open the migrated .msgmap

file.

a. For ESQL that is migrated as functions, there should be no errors.

b. For complex element targets, rewrite the mapping using the Version 6.1

features.

The following examples illustrate migration of .mfmap files to .msgmap files.

v To migrate a multiple reference to a repeating source expression:

src_msg.e[1] + src_msg.e[2]

compute the result in an ESQL function like:

CREATE FUNCTION addOneAndTwo(IN src_msg)

BEGIN

 RETURN src_msg.e[1] + src_msg.e[2];

END;

In the .msgmap file, call the ESQL function addOneAndTwo using the parent

element src_msg as a parameter.

v An expression that does not use element names:

src_msg.*

Message mappings 1693

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.map.doc/doc/overview.htm

or

src_msg.*[]

can be processed using a function that takes the parent of the repeating field:

CREATE FUNCTION processAny(IN src_msg)

BEGIN

 DECLARE nodeRef REFERENCE TO src_msg.e.*;

 DECLARE result <dataType> <initialValue>;

 WHILE LASTMOVE nodeRef DO

 --expression goes here

 SET result = result;

 END WHILE;

 RETURN RESULT;

END;

In the .msgmap file, call the ESQL function processAny using the parent element

src_msg as a parameter.

v Expressions that dynamically compute element names:

src_msg.{’a’ || ’b’}

can be processed by ESQL functions that process the parent of the repeating

field:

CREATE FUNCTION processDynamicName(IN src_msg)

BEGIN

 RETURN src_msg.{’a’ || ’b’};

END;

In the .msgmap file, call the ESQL function processDynamicName using the

parent element src_msg as a parameter.

v Expressions that use the select MIN, MAX, and COUNT functions:

SELECT MAX("#T".FIRSTNAME)

 FROM Database.CUSTOMER AS "#T"

 WHERE "#T".CUSTOMERID = custId

can be processed by ESQL functions that process the parent of the repeating

field:

CREATE FUNCTION processMAX(IN custId)

BEGIN

 RETURN

 SELECT MAX("#T".FIRSTNAME)

 FROM Database.CUSTOMER AS "#T"

 WHERE "#T".CUSTOMERID = custId

END;

In the .msgmap file, call the ESQL function processMAX using the element

custId as a parameter.

v .mfmap files that use mfmap index variables in expressions:

e || "#I"

must be rewritten entirely in ESQL. By definition, there must be a complex

repeating parent element, and this is not supported by ESQL functions.

v Expressions that use source expressions to compute values:

src_msg.e[src_msg.a]

must be rewritten using if rows, msgmap:occurrence() functions, and ESQL

functions:

1694 Message Flows

for src_msg.e

 if

 condition msgmap:occurrence(src_msg/e) = src_msg/a

v For expressions that use index expressions to compute values:

src_msg.e["#I" +5]

src_msg.e[< 3]

the entire .msgmap file must be rewritten in ESQL, because the .msgmap files do

not support indexed access to repeating fields.

v .mfmap files that use ROW expressions to compute values:

src_msg.e IN (1, 2, 3)

must be rewritten in ESQL, because .msgmap files do not support ESQL ROW

expressions.

Restrictions on migrating maps that call ESQL

If there is a mismatch between the case that has been in the ESQL call in the

message map, and the name of the routine defined in the ESQL file, an error is

produced during migration of the message map. To prevent an error occurring

during migration, ensure that the ESQL call in the message map uses the same

case as the ESQL defined in the routines in the ESQL file. Alternatively you can

manually edit the message map after migration to call the ESQL routine with

matching case.

Restrictions on migrating submaps

In Version 5.0 message maps, any complex element type can be a root of a

submap. However, in Version 6.1, only a global element or a global attribute can be

the root of a submap. When a Version 5.0 message map with a call to a submap

with a non-global element as the map root is migrated, the submap is not migrated

as a standalone submap. Instead, the call to the submap in the main message map

is replaced by the migrated content of the submap. Alternatively, if the submap has

a global element as the map root, the submap is migrated to a standalone Version

6.1 submap instead.

For Version 6.1, you must define reusable schema structures as global elements and

types. If you have Version 5.0 submaps that use local elements, you must change

the schema to add definitions of global elements for the local elements, and then

use the new schema after migration. If the new global elements have the same

name and type as the local elements, the Version 5.0 submaps do not need to be

changed.

You must qualify a local element in a Version 5.0 submap with a namespace to

ensure its successful migration to Version 6.1, because the global element that

replaces it after migration must be qualified by the namespace. If your submap

contains local elements, you must re-create the submap and re-create the call to the

submap from the main message map.

The following table shows differences between the features that are supported in a

submap for Version 5.0 and Version 6.1.

Message mappings 1695

Version Supported feature

Version 5.0 global elements and global attributes as map

source

global elements and global attributes as map

target

local elements and local attributes as map

source

local elements and local attributes as map

target

Version 6.1 global elements, global attributes, and global

types as map source

global elements and global attributes as map

target

1696 Message Flows

Flow application debugger

The flow debugger is a visual interface that supports the debugging of message

flow applications in the workbench. The following topics provide reference

information to help you use the debugger effectively:

v “Flow debugger shortcuts”

v “Flow debugger icons and symbols” on page 1698

You can also use the “Java Debugger” on page 1700 provided by the Java

Development tools to debug Java code within the workbench.

Flow debugger shortcuts

You can use function keys and shortcut keys to complete actions in the flow

debugger views and windows.

Shortcut keys are shown as a pair that you press together, followed by a

subsequent key, for example Shift-F10, C means hold the Shift key down and

press F10, then release both and press key C.

The tables below describe the main shortcuts that are available in the debug

session:

v “Debug view”

v “Breakpoints view” on page 1698

v “Flow Breakpoint Properties dialog” on page 1698

v “Variables view” on page 1698

To see a complete list of all the shortcuts that are available, press Shift-F10 and

release; the contextual menu is displayed.

Debug view

 Key combination Function

Shift-F10, C Run to completion

Shift-F10, E Disconnect

F5 or Shift-F10, I Step into

F8 or Shift-F10, M Resume

Shift-F10, N Terminate All

F6 or Shift-F10, O Step over

Shift-F10, T Terminate

F7 or Shift-F10, U Step return

Shift-F10, V Terminate and Remove

© Copyright IBM Corp. 2000, 2008 1697

Breakpoints view

 Key combination Function

Shift-F10, A Select All

Shift-F10, B Add breakpoint

Shift-F10, D Disable the selected breakpoints

Shift-F10, E Enable the selected breakpoints

Shift-F10, L Remove all breakpoints

Shift-F10, O Remove the selected breakpoints

Flow Breakpoint Properties dialog

 Key combination Function

E Enable the breakpoint

Alt-R, <space> Restrict the breakpoint to the selected flow instances

Variables view

 Key combination Function

Shift-F10, A Select All

Shift-F10, C Change the value of the selected flow variable

Shift-F10, V Copy variables

Flow debugger icons and symbols

This topic describes the icons and symbols used in the Debug perspective and its

views:

v “Debug perspective”

v “Debug view” on page 1699

v “Message Flow editor” on page 1699

v “Breakpoints view” on page 1700

v “Variables view” on page 1700

Debug perspective

These icons and symbols are used in the Debug perspective outside any individual

view.

 Icon or

Symbol Description

Debug perspective (symbol)

Attach to Flow runtime (icon)

1698 Message Flows

Debug view

 Icon or

Symbol Description

Debug view (symbol)

Flow engine (symbol)

Flow (symbol)

Flow instance paused (symbol)

Flow instance running (symbol)

Flow instance terminated (symbol)

Stack frame (symbol)

Detach from the selected flow engine (icon)

Resume flow execution (icon)

Run the flow to completion (icon)

Step into subflow (icon)

Step over node (icon)

Step out of subflow (icon)

Step into source code (icon)

Message Flow editor

These icons and symbols in the message flow editor are specific to the flow

debugger.

 Icon or

Symbol Description

Enabled breakpoint (symbol)

Disabled breakpoint (symbol)

Paused at breakpoint (symbol)

Source code available (symbol)

Error or exception (symbol)

Flow application debugger 1699

Breakpoints view

 Icon or

Symbol Description

Breakpoints view (symbol)

Enabled breakpoint (symbol)

Disabled breakpoint (symbol)

Remove selected breakpoints (icon)

Remove all breakpoints (icon)

Variables view

These icons and symbols in the Variables view are specific to ESQL.

 Icon or

Symbol Description

Variable view (symbol)

Tree reference variable (symbol)

Message (symbol)

ESQL reference variable (symbol)

ESQL constant (symbol)

ESQL scalar variable (symbol)

ESQL schema variable (symbol)

ESQL module variable (symbol)

Java Debugger

The Java Development Tools include a debugger that enables you to detect and

diagnose errors in your programs running on local or remote systems. You can

control the execution of your program by setting breakpoints, suspending launched

programs, stepping through your code, and examining the contents of variables.

For further information about the Java debugger, refer to the Java Development

User Guide plug-in - Debugger.

1700 Message Flows

Part 7. Appendixes

© Copyright IBM Corp. 2000, 2008 1701

1702 Message Flows

Appendix. Notices for WebSphere Message Broker

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this information

in other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this information. The furnishing of this information does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032,

Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the information. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2000, 2008 1703

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM United Kingdom Laboratories,

Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England

SO21 2JN

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Programming License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information includes examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

1704 Message Flows

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks in the WebSphere Message Broker information center

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

 AIX CICS DB2

DB2 Connect DB2 Universal Database developerWorks

Domino Everyplace

FFST First Failure Support

Technology

IBM

IBMLink IMS IMS/ESA

Informix iSeries i5/OS

Language Environment Lotus MQSeries

MVS NetView OS/400

OS/390 Passport Advantage POWER

pSeries RACF Rational

Redbooks RETAIN RS/6000

SupportPac System i S/390

Tivoli VisualAge WebSphere

xSeries z/OS zSeries

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered

trademarks or trademarks of Adobe Systems Incorporated in the United States,

and/or other countries.

Intel and Pentium are trademarks or registered trademark of Intel Corporation or

its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix. Notices for WebSphere Message Broker 1705

1706 Message Flows

Index

A
accounting and statistics data 119

accounting origin 121

collecting 564

collection options 120

details 1381

example output 1394

output data formats 1382

output formats 122

parameters, modifying 569

parameters, viewing 568

resetting archive data 569

setting accounting origin 566

starting 564

stopping 567

accounting origin 121

setting 566

Adapter Connection wizard 256

Adapters (WebSphere)
connecting 256

developing applications 245

additional instances, file processing 720

AggregateControl node 824

AggregateReply node 826

AggregateRequest node 829

aggregation 124

database deadlocks, resolving 588

exceptions, handling 588

fan-in flows, creating 577

fan-out flows, creating 573

multiple AggregateControl

nodes 584

requests and responses,

correlating 585

timeouts, setting 583

WebSphere MQ to store state 590

alignment, nodes 244

application clients
MQGet node message processing 185

request-response, MQGet node 189

Web services
call existing 701

HTTP flows 697

implement existing interface 709

implement existing interface to

new 713

implement new 705

scenarios 700

SOAP applications 623

SOAP domain message flows 689

WSDL applications 629

XML domain message flows 696

archive data 120

resetting 569

B
bar files 751

creating 758

deploying 763

bar files (continued)
editing

manually 760

properties 761

message flows
adding 759

adding multiple instances 761

message sets, adding 759

redeploying 763

bend points 52

adding 242

removing 243

BLOB
parser 107

breakpoints 790

adding 790

disabling 792

enabling 792

removing 793

restricting 791

broker archive 751

configurable properties 752

deployment 749

broker archive files
creating 758

deploying 763

editing
manually 760

properties 761

message flows
adding 759

adding multiple instances 761

message sets, adding 759

redeploying 763

broker configuration deployment 753

broker configuration, deploying 767

broker properties, message flow 110, 263

broker schema 114

creating 217

brokers
cancel deployment 755

deployed flows, querying 803

business objects
PeopleSoft 47

C
cancel deployment 755

Check node 831

cluster queues 162

code dependencies, Java 452

code pages
conversion 128

converting with ESQL 315

collector node
collection expiry, setting 599

collection name, setting 599

control messages, using 602

event coordination, setting 600

event handler properties, setting 596

input terminals, adding 596

collector node (continued)
persistence mode, setting 601

Collector node 833

collector node, configuring 595

collector node, using 593

comment and path, message flows 50

complete broker archive

deployment 749

complete topics deployment 754

complete topology deployment 753

complex types
broker properties 110, 263

Compute node 838

conditional mappings, configuring 487

conditional mappings, creating 511

configurable properties, broker

archive 752

configurable properties, message

flow 1372

configurable services 50

connections 52

creating with the mouse 240

creating with the Terminal Selection

dialog box 241

listing 1358

removing 242

WebSphere MQ 1357

coordinated message flows,

configuring 173

coordination
database connections 1398

database support 1399

correlation names
logical message tree 71

XML constructs 1433

D
data conversion 128

configuring message flows 183

data source
z/OS

Compute node 1448

Database node 1448

data types
BLOB message 1403

DestinationData subtree 1401

elements 1400

fields 1400

Properties subtree 1400

support for 1657

WebSphere MQ header fields 1400

XMLNSC parser 92

database connections
listing 1358

quiescing 1358

database definitions, adding 494

Database node 846

DatabaseRetrieve node 850

DatabaseRoute node 859

© Copyright IBM Corp. 2000, 2008 1707

databases
adding 494

code page support 1359

data type support 1657

DBCS restrictions 1358

definitions, creating 494

Java 467

listing connections 1358

quiescing 1358

stored procedures in ESQL 332

DataDelete node 866

datagram message, sending 961

DataInsert node 869

DataUpdate node 872

DBCS, database restrictions 1358

debugging 781

data 799

ESQL 800

Java 801

mappings 802

messages 799

dequeuing 789

enqueuing 786

icons and symbols 1698

keyboard shortcuts 1697

message flows 783

starting 784

stepping through message flows 794

delta topics deployment 754

delta topology deployment 753

deployment 745

broker archive (bar) files 763

broker configuration 767

canceling 774

checking results 772

complete 745

delta 745

message flow application 757

message flows 745

message sets 745

overview 746

broker archive (bar) files 751

broker configuration 753

cancel 755

configurable properties 752

message flow applications 749

methods 746

topics 754

topology 753

types 748

publish/subscribe topics

hierarchy 770

publish/subscribe topology 768

Version 5 or Version 6 authored ESQL

to a Version 2.1 broker 271

dequeuing, using in debugging 789

Destination (LocalEnvironment),

populating 311

destination lists
creating 162

using 156

domains
cancel deployment 755

DTD support
XMLNS parser 96

XMLNSC parser 93

dynamic terminals, adding 237

E
editors

Message Mapping 1410, 1673

palette
customizing 229

layout, changing 228

settings, changing 229

EIS, connecting 256

EJB, calling 470

element definitions for message

parsers 1399

EmailOutput node 875

empty elements
XMLNSC parser 87

Empty elements
XMLNS parser 94

encoding 128

EndpointLookup node 881

enqueuing, using in debugging 786

Enterprise Information System,

connecting 256

Environment tree 63

accessing with ESQL 312

errors
connecting failure terminals 206

handling 203

input node 206

MQInput node 208

TimeoutNotification node 211

TryCatch node 212

errors, from saving 227

ESQL
accessible from Java 110, 263

accessing databases 172

adding keywords 322

BLOB messages 407

Broker attributes 110, 263

constants 1662

converting EBCDIC NL to ASCII

CRLF 318

data
casting 314

converting 315

transforming 314

data types 259

database columns
referencing 324

selecting data from 325

database content, changing 330

database state 339

database updates, committing 332

databases, interacting with 322

datetime representation 1456

debugging 800

deploying Version 5 or Version 6 to a

Version 2.1 broker 271

Destination, populating 311

developing 257

elements
accessing 284

setting or querying null 284

elements, multiple occurrences
accessing known 288

accessing unknown 289

Environment tree, accessing 312

errors 334

example message 1671

ESQL (continued)
ExceptionList tree, accessing 313

exceptions 338

explicit null handling 284

field references 264

anonymous 290

creating 291

syntax 1465

field types, referencing 283

fields
copying those that repeat 298

creating new 292

manipulating those that repeat in a

message tree 302

files
copying 275

creating 269

deleting 279

moving 277

opening 270

renaming 276

saving 274

functions 266

headers, accessing 303

IDoc messages 404

implicit null handling 284

JMS messages 404

keywords
non-reserved 1668

reserved 1668

like-parser-copy 320

list type elements, working with 300

LocalEnvironment tree, accessing 308

mapping between a list and a

repeating element 301

mapping functions 1422, 1685

message body data,

manipulating 283

message format, changing 320

message tree parts, manipulating 303

MIME messages 405

modules 267

MQCFH header, accessing 305

MQMD header, accessing 304

MQPCF header, accessing 305

MQRFH2 header, accessing 304

MRM domain messages
handling large 401

working with 398

MRM domain messages, accessing
attributes 390

elements 389

elements in groups 392

embedded messages 395

mixed content 393

multiple occurrences 389

namespace-enabled messages 396

MRM domain messages, null values
querying 396

setting 397

multiple database tables,

accessing 329

nested statements 265

node
creating 271

deleting 279

modifying 273

1708 Message Flows

ESQL (continued)
numeric operators with datetime 295

operators 264

complex comparison 1473

logical 1476

numeric 1477

rules for operator

precedence 1478

simple comparison 1472

string 1478

output messages, generating 294

overview of 1451

preferences, changing 277

procedures 266

Properties tree, accessing 307

returns to SELECT, checking 331

SELECT function 340

settings
editor 277

validation 278

special characters 1666

statements 265

stored procedures, invoking 332

subfield, selecting 297

syntax preference 1452

tailoring for different nodes 282

time interval, calculating 296

unlike-parser-copy 320

variables 259

XML domain, manipulating messages

in the 387

XML messages
complex message,

transforming 344

data, translating 350

message and table data,

joining 351

message data, joining 348

scalar value, returning 346

simple message, transforming 341

XMLNS domain, manipulating

messages in the 378

XMLNSC domain, manipulating

messages in the 364

ESQL data types
BOOLEAN 1452

database, ROW 1460

Datetime 1452

DATE 1453

GMTTIME 1453

GMTTIMESTAMP 1454

INTERVAL 1454

TIME 1453

TIMESTAMP 1453

ESQL to Java, mapping of 1462

ESQL to XPath, mapping of 1463

list of 1452

NULL 1457

numeric 1458

DECIMAL 1458

FLOAT 1459

INTEGER 1460

REFERENCE 1460

string 1461

BIT 1461

BLOB 1462

CHARACTER 1462

ESQL functions 1564

CAST
formatting and parsing dates as

strings 1626

formatting and parsing numbers as

strings 1623

formatting and parsing times as

strings 1626

complex 1616

CASE 1616

CAST 1618

data types from external

sources 1657

LIST constructor 1640

ROW and LIST combined 1641

ROW and LIST comparisons 1642

ROW constructor 1639

SELECT 1633

Supported casts 1644

database state 1567

SQLCODE 1568

SQLERRORTEXT 1568

SQLNATIVEERROR 1569

SQLSTATE 1570

datetime 1572

CURRENT_DATE 1575

CURRENT_GMTDATE 1576

CURRENT_GMTTIME 1576

CURRENT_GMTTIMESTAMP 1576

CURRENT_TIME 1575

CURRENT_TIMESTAMP 1575

EXTRACT 1573

LOCAL_TIMEZONE 1577

field 1602

ASBITSTREAM 1603

BITSTREAM 1606

FIELDNAME 1607

FIELDNAMESPACE 1608

FIELDTYPE 1608

FIELDVALUE 1610

FOR 1611

LASTMOVE 1612

SAMEFIELD 1613

implicit casts 1652

arithmetic operations 1654

assignment 1656

comparisons 1652

list 1613

CARDINALITY 1613

EXISTS 1614

SINGULAR 1615

THE 1615

miscellaneous 1658

COALESCE 1658

NULLIF 1659

PASSTHRU 1659

UUIDASBLOB 1662

UUIDASCHAR 1662

numeric 1577

ABS and ABSVAL 1578

ACOS 1579

ASIN 1579

ATAN 1579

ATAN2 1579

BITAND 1580

BITNOT 1580

BITOR 1581

ESQL functions (continued)
numeric (continued)

BITXOR 1581

CEIL and CEILING 1582

COS 1582

COSH 1583

COT 1583

DEGREES 1583

EXP 1583

FLOOR 1584

LN and LOG 1584

LOG10 1585

MOD 1585

POWER 1585

RADIANS 1586

RAND 1586

ROUND 1586

SIGN 1590

SIN 1590

SINH 1590

SQRT 1590

TAN 1591

TANH 1591

TRUNCATE 1592

string manipulation 1592

LEFT 1593

LENGTH 1593

LOWER and LCASE 1594

LTRIM 1594

OVERLAY 1595

POSITION 1596

REPLACE 1597

REPLICATE 1597

RIGHT 1598

RTRIM 1598

SPACE 1599

SUBSTRING 1599

TRANSLATE 1600

TRIM 1600

UPPER and UCASE 1601

ESQL statements 1478

ATTACH 1480

BEGIN ... END 1482

BROKER SCHEMA 1485

PATH clause 1485

CALL 1487

CASE 1490

CREATE 1493

CREATE FUNCTION 1500

CREATE MODULE 1509

CREATE PROCEDURE 1511

DECLARE 1525

DECLARE HANDLER 1530

DELETE 1534

DELETE FROM 1531

DETACH 1534

EVAL 1535

FOR 1536

IF 1537

INSERT 1538

ITERATE 1541

LEAVE 1542

list of available 1478

Local error handler 1530

LOG 1543

LOOP 1544

MOVE 1546

Index 1709

ESQL statements (continued)
PASSTHRU 1548

PROPAGATE 1550

REPEAT 1553

RESIGNAL 1554

RETURN 1554

SET 1557

THROW 1559

UPDATE 1560

WHILE 1563

event store
PeopleSoft adapter 45

exception handling, Java 471

ExceptionList tree 68

accessing with ESQL 313

exceptions, message tree content 58

execution groups
message flows, removing 776

Extract node 884

F
failure terminals, connecting 206

fan-in flows, creating 577

fan-out flows, creating 573

Favorites category (palette) 230

FileInput node 886

mqsiarchive subdirectory 726

parsing file records 719

reading a file 727

FileOutput node 899

mqsiarchive subdirectory 726

writing a file 735

files
file processing 717

additional instances 720

file name patterns 724

LocalEnvironment variables 721

mqsiarchive subdirectory 726

parsing file records 719

reading a file 727

shared access 720

writing a file 735

parsing file records 719

reading 727

writing 735

Filter node 910

flow debugger 781

ESQL nodes 782

icons and symbols 1698

Java nodes 782

keyboard shortcuts 1697

mapping nodes 782

flow engine
attaching to 784

detaching from 805

flow instances
managing 803

stepping through 794

resuming execution 794

running to completion 795

stepping into source code 797

stepping into subflows 796

stepping out of source code 798

stepping out of subflows 796

stepping over nodes 795

stepping over source code 798

flow instances (continued)
terminating 804

FlowOrder node 914

G
global environment, Java 465

H
headers 511

Java
accessing 463

copying 463

mapping 1427, 1691

HTTPHeader node 916

HTTPInput node 920

HTTPReply node 927

HTTPRequest node 929

I
IBM Tivoli License Manager

activating for WebSphere

Adapters 246

icons
flow debugger 1698

IDOC parser 107

incremental broker archive

deployment 749

Input node 942

J
Java

accessing attributes 465

accessing elements 455

accessing the global environment 465

calling an EJB 470

classloading 453

code dependencies 452

copying a message 457

copying headers 463

creating a filter 459

creating a new message 457

creating code 450

creating elements 458

debugging 801

deploying code 453

developing 449

exception handling 471

headers, accessing 463

interacting with databases 467

keywords 466

logging errors 471

managing files 449

manipulating messages 454

MQMD 463

MQRFH2 464

opening files 451

propagating a message 460

saving files 451

setting elements 458

transforming messages 457

updating the Local Environment 464

Java (continued)
user-defined properties 466

writing 454

XPath 460

Java, broker attributes accessible

from 110, 263

JavaCompute node 943

accessing databases 467

using mbSQLStatement 467

using SQLJ 467

using types 2 and 4 JDBC 467

calling an EJB 470

JDBC, types 2 and 4
used by JavaCompute node 467

JDT Java debugger 1700

JMSHeader node 946

JMSInput node 949

JMSMQTransform node 960

JMSOutput node 961

JMSReply node 972

K
keyboard shortcuts

flow debugger 1697

keywords 820

description properties 819

displaying 224

ESQL 322

Java 466

subflows 157

XSL style sheet 1225

L
Label node 976

list of available 1564

local environment, Java 464

LocalEnvironment tree 64

accessing with ESQL 308

file processing 721

LocalEnvironment.File structure 721

LocalEnvironment.Wildcard.WildcardMatch

structure 721

LocalEnvironment.WrittenDestination.File

structure 721

populating Destination 311

using as scratchpad 310

LocalEnvironment.File structure 721

LocalEnvironment.Wildcard.WildcardMatch

structure 721

LocalEnvironment.WrittenDestination.File

structure 721

logical message tree
contents after exception 58

correlation names 71

Environment tree 63

ExceptionList tree 68

LocalEnvironment tree 64

message body 61

Properties folder 61

structure 60

logical message tree, viewing 167

lost messages, avoiding 200

1710 Message Flows

M
map file, creating 476

map file, creating from DataDelete

node 497

map file, creating from DataInsert

node 495

map file, creating from DataUpdate

node 496

map file, creating from node 477

Mapping node 978

casts 1427, 1690

functions 1422, 1685

ESQL mapping functions 1422,

1685

predefined mapping

functions 1426, 1689

Xpath mapping functions 1425,

1688

syntax 1420, 1683

mappings 511

adding
headers and folders 491

conditional
configuring 487

creating 511

configuring 478

creating 476

database
adding 492

BLOB message to database 501

change operation 497

database to database 501

database to message 502

source 498

databases 494

debugging 802

deleting data 500

deleting source and target 486

derived types 475

hiding 479

showing 479

developing 472

ESQL routines, calling 508

examples 515

from database tables 498

from source
by name 480

by selection 480

from source messages 481

headers and folders 491

headers, configuring 490

Java methods, calling 509

list types 475

LocalEnvironment, configuring 490

map file, creating 476

map file, creating from DataDelete

node 497

map file, creating from DataInsert

node 495

map file, creating from DataUpdate

node 496

map file, creating from mapping

node 477

mappable headers 1427, 1691

Mapping node casts 1427, 1690

Mapping node functions 1422, 1685

mappings (continued)
ESQL mapping functions 1422,

1685

predefined mapping

functions 1426, 1689

XPath mapping functions 1425,

1688

Mapping node syntax 1420, 1683

Message Mapping editor 1410, 1673

Edit pane 1416, 1679

Source pane 1411, 1674

Spreadsheet pane 1417, 1680

Target pane 1414, 1677

message, adding 492

migrating 1428, 1691

restrictions 1429, 1692

overview 473

populate 489

removing
headers and folders 491

repeating elements, configuring 488

restrictions 512

scenarios 515

schema structure 475

SOAP 510

statements, order 511

submaps 502

calling 506

converting a message map 505

converting an inline mapping 506

creating 503

modify database 504

wildcard source 504

subroutines 502

calling from ESQL 507

user-defined, calling 508

substituting elements
hiding 479

showing 479

substitution groups 475

target, setting the value
to a constant 483

to a WebSphere MQ constant 483

to an ESQL constant 484

using a function 485

using an expression 485

union types 475

wildcards 475

mbSQLStatement
used by JavaCompute node 467

message
assembly 60

message body 61

ESQL, accessing with 283

message collection 126

collector node, configuring 595

collector node, using 593

message definitions
importing from WSDL

WSDL validation 630

message destination mode 961

message flow application, deploying 757

message flow nodes 822

AggregateControl 824

AggregateReply 826

AggregateRequest 829

Check 831

message flow nodes (continued)
Collector 833

Compute 838

Database 846

DatabaseRetrieve 850

DatabaseRoute 859

DataDelete 866

DataInsert 869

DataUpdate 872

dynamic terminals, adding 237

EmailOutput 875

EndpointLookup 881

Extract 884

FileInput 886

FileOutput 899

Filter 910

FlowOrder 914

HTTPHeader 916

HTTPInput 920

HTTPReply 927

HTTPRequest 929

Input 942

JavaCompute 943

JMSHeader 946

JMSInput 949

JMSMQTransform 960

JMSOutput 961

JMSReply 972

Label 976

Mapping 978

MQeInput 982

MQeOutput 990

MQGet 993

MQHeader 1004

MQInput 1007

MQJMSTransform 1020

MQOptimizedFlow 1021

MQOutput 1023

MQReply 1029

Output 1033

Passthrough 1034

PeopleSoftInput 1036

PeopleSoftRequest 1039

Publication 1042

Real-timeInput 1044

Real-timeOptimizedFlow 1046

RegistryLookup 1048

ResetContentDescriptor 1050

Route 1056

RouteToLabel 1059

SAPInput 1061

SAPRequest 1064

SCADAInput 1067

SCADAOutput 1074

SiebelInput 1076

SiebelRequest 1079

SOAPAsyncRequest 1082

SOAPAsyncResponse 1092

SOAPEnvelope 1096

SOAPExtract 1099

SOAPInput 1104

SOAPReply 1114

SOAPRequest 1116

TCPIPClientInput 1126

TCPIPClientOutput 1137

TCPIPClientReceive 1146

TCPIPServerInput 1158

Index 1711

message flow nodes (continued)
TCPIPServerOutput 1169

TCPIPServerReceive 1177

Throw 1189

TimeoutControl 1191

TimeoutNotification 1194

Trace 1198

TryCatch 1202

TwineballInput 1204

TwineballRequest 1207

Validate 1210

Warehouse 1213

WebSphere Adapters 7

PeopleSoftInput 1036

PeopleSoftRequest 1039

SAPInput 1061

SAPRequest 1064

SiebelInput 1076

SiebelRequest 1079

TwineballInput 1204

TwineballRequest 1207

XSLTransform 1216

message flows 4

accessing databases 170

from ESQL 172

accounting and statistics data 119

accounting origin 121

collecting 564

collection options 120

details 1381

example output 1394

output data formats 1382

output formats 122

parameters, modifying 569

parameters, viewing 568

resetting archive data 569

setting accounting origin 566

starting 564

stopping 567

aggregation 124

database deadlocks, resolving 588

exceptions, handling 588

fan-in flow, creating 577

fan-out and fan-in flows,

associating 581

fan-out flow, creating 573

multiple AggregateControl

nodes 584

requests and responses,

correlating 585

timeouts, setting 583

unknown and timeout message

exceptions 589

WebSphere MQ to store state 590

bend points 52

adding 242

removing 243

broker archive (bar) file, adding

to 759

broker properties 110, 263

broker schemas
creating 217

deleting 224

built-in nodes 822

Chinese code page GB18030 1357

cluster queues 162

code page support 1329

message flows (continued)
collector node

control messages, using 602

comment and path 50

configurable properties 1372

Additional Instances 1372

Commit Count 1372

Commit Interval 1372

Coordinated Transaction 1372

configuration for globally coordinated

transactions 173

connections 52

adding with the mouse 240

adding with the Terminal Selection

dialog 241

removing 242

conversion exception trace

output 1368

coordination 113

database connections 1398

database support 1399

copying 220

correcting save errors 227

creating 218

creating ESQL code 271

creating using a Quick Start

wizard 131

customizing nodes with ESQL 280

data conversion 183

data integrity 1359

data types 1400

BLOB message 1403

DestinationData subtree 1401

headers 1400

Properties subtree 1400

database
listing connections 1358

database exception trace output 1366

debugging 783

default version 819

defining content 228

deleting 223

deploying 745

description properties 819

keywords 819

designing 139

destination lists
creating 162

using to route messages 156

errors 203

catching in TryCatch 212

connecting failure terminals 206

input node 206

MQInput node 208

TimeoutNotification node 211

ESQL 258

events
configuring 562

exception list structure 1364

exceptions, catching in TryCatch 212

execution model 53

generating events 116

globally coordinated transaction 113

input nodes
configuring JMS nodes 176

defining characteristics 153

using more than one 152

message flows (continued)
JVM heap size 161

keywords
description properties 819

guidance 820

logical message tree, viewing 167

lost messages, avoiding 200

managing 803

managing ESQL files 268

message collection 126

collection expiry, setting 599

collection name, setting 599

collector node, configuring 595

collector node, using 593

event coordination, setting 600

event handler properties,

setting 596

input terminals, adding 596

persistence mode, setting 601

message content, testing 155

message parser element

definitions 1399

message structure, testing 154

MIME
message details 103

tree details 105

monitoring 116

basics 118

configuring 562

profile 1375

profile schema 1379

moving 222

nodes 5

adding with the GUI 231

adding with the keyboard 232

aligning 244

arranging 244

configuring 235

connecting with the mouse 240

connecting with the Terminal

Selection dialog 241

deciding which to use 141

decision making 154

dragging resources from the

Navigator 233

dynamic terminals, adding 237

removing 238

renaming 234

opening 219

order, imposing 155

palette 47

Favorites category 230

Parse Timing property 1363

parser exception trace output 1370

parsers 74

BLOB 107

DataObject 100

IDOC 107

JMS 101

MIME 101

MQCFH 1403

MQCIH 1403

MQDLH 1404

MQIIH 1405

MQMD 1405

MQMDE 1406

MQRFH 1407

1712 Message Flows

message flows (continued)
parsers (continued)

MQRFH2 1407

MQRFH2C 1407

MQRMH 1408

MQSAPH 1408

MQWIH 1409

MRM 98

SMQ_BMH 1409

SOAP 78

XML 98

XMLNS 94

XMLNSC 85

porting considerations 1374

preferences 819

projects 5

creating 215

creating using a Quick Start

wizard 131

deleting 216

managing 214

promoted properties 110

converging 559

promoting 554

removing 558

renaming 557

properties 109

redeploying 804

relationship with ESQL and

mappings 49, 474

removing from an execution

group 776

renaming 221

response time, optimizing 158

restrictions for code page

GB18030 1357

save errors, correcting 227

saving 225

saving as 226

shared queues 164

stack size, determining 160

style sheet keywords 1225

subflows 5

adding 234

configuring 235

keywords 157

removing 238

renaming 234

using 156

supported code sets 1329

system considerations 160

terminals 52

dynamic terminals, adding 237

threading 53

timeout control
automatic messages 608

multiple messages 606

performance considerations 609

sending a message 605

sending messages at a specified

time 606

transaction support 113

TryCatch
catching exceptions 212

user database
DBCS restrictions 1358

quiescing 1358

message flows (continued)
user exception trace output 1370

user exits 129

deploying 571

developing 570

exploiting 198

user-defined nodes 1225

user-defined properties 111

validating messages 164

validation properties 1359

version and keywords 50

version and keywords,

displaying 224

WebSphere Adapters 245

WebSphere MQ connections 1357

WebSphere MQ message groups
receiving messages 610

sending messages 611

WebSphere MQ message segments
sending segments 612

which XML parser 77

XML parsers 81

z/OS data sources
Compute node 1448

Database node 1448

message groups
receiving 610

sending 611

Message Mapping editor 1410, 1673

Edit pane 1416, 1679

Source pane 1411, 1674

Spreadsheet pane 1417, 1680

Target pane 1414, 1677

message segments
sending 612

message set files
creating using a Quick Start

wizard 131

message set projects
creating using a Quick Start

wizard 131

message sets
broker archive (bar) file, adding

to 759

creating using a Quick Start

wizard 131

deploying 745

using existing message set in a Quick

Start wizard 134

message tree options
XMLNSC parser 91

messages
debugging 799

Java, manipulating 454

parsing on demand 1363

partial parsing 1363

self-defining and predefined 72

test message, getting 789

test message, putting 786

validating
Fix property 1359

in message flows 164

Include All Value Constraints

property 1359

Validate property 1359

migration
mappings 1428, 1691

migration (continued)
restrictions 1429, 1692

MIME
message details 103

tree details 105

monitoring 116

basics 118

configuring 562

profile 1375

profile schema 1379

MQCFH header
accessing with ESQL 305

MQeInput node 982

MQeOutput node 990

MQGet node 993

request-response scenario 189

example message trees 194

MQHeader node 1004

MQInput node 1007

MQJMSTransform node 1020

MQMD (message descriptor)
accessing with ESQL 304

MQOptimizedFlow node 1021

MQOutput node 1023

using in debugging 789

MQPCF header
accessing with ESQL 305

MQReply node 1029

MQRFH2 header
accessing with ESQL 304

mqsiarchive subdirectory 726

N
namespace support

XML parsers 97

nodes, stepping over using the flow

debugger 795

null values
XMLNSC parser 87

NULL values
XMLNS parser 94

numeric order in data conversion 128

O
object keyword 752

object version 752

opaque parsing
XMLNSC parser 88

Opaque parsing
XMLNS parser 95

Oracle
naming restrictions for database

objects 1420, 1683

order
imposing within a message flow 155

Output node 1033

P
palette 47

customizing 229

Favorites category 230

layout, changing 228

settings, changing 229

Index 1713

parsers 74

BLOB 107

choosing 76

DataObject 100

IDOC 107

JMS 101

MIME 101

MQCFH 1403

MQCIH 1403

MQDLH 1404

MQIIH 1405

MQMD 1405

MQMDE 1406

MQRFH 1407

MQRFH2 1407

MQRFH2C 1407

MQRMH 1408

MQSAPH 1408

MQWIH 1409

MRM 98

null handling 108

partial parsing 1363

SMQ_BMH 1409

SOAP 78

message details 79

tree details 80

XML 98

XMLNS 94

XMLNSC 85

parsing messages 74

Passthrough node 1034

PeopleCode 1311

PeopleSoft
dependencies 253

PeopleSoftInput node 1036

PeopleSoftRequest node 1039

PeopleTools custom event project 255

performance
message flow response time 158

policy sets
associating with message flows and

nodes 657

implementing web services

security 655

overview 648

populate 489

predefined messages 72

preferences
flow debugger 784

projects
message flows 5

promoted properties 110

converging 559

promoting 554

removing 558

renaming 557

properties
complex 110, 263

message flow 109

PeopleSoft adapter 1309

SAP adapter 1226

Siebel adapter 1287

WebSphere Adapters nodes 1226

Properties folder 61

Properties tree, accessing with ESQL 307

Publication node 1042

Q
queues

cluster 162

shared 164

Quick Start wizards
Create New Web Service Usage

wizard 135

introduction 130

overview 131

Start from adapter connection 135

Start from existing message set

wizard 134

Start from scratch wizard 131

Start from WSDL and/or XSD files

wizard 132

quiescing databases 1358

R
Real-timeInput node 1044

Real-timeOptimizedFlow node 1046

redeploying bar files 763

RegistryLookup node 1048

renaming deployed objects 776

repeating elements, configuring

mappings 488

reply message, sending 961

request message, sending 961

ResetContentDescriptor node 1050

Route node 1056

RouteToLabel node 1059

S
SAP

dependencies 247

server, configuring 248

SAPInput node 1061

SAPRequest node 1064

SCADAInput node 1067

SCADAOutput node 1074

schemas, broker 114

self-defining messages 72

server project, creating 757

setting accounting origin 566

shared access, file processing 720

shared queues 164

Siebel
application, configuring 251

dependencies 250

SiebelInput node 1076

SiebelRequest node 1079

snapshot data 120

SncMode property 1246, 1260

SOAP parser
example usage of 624

main message flow 624

testing
using HTTP 629

using integrated client 628

SOAPAsyncRequest node 1082

SOAPAsyncResponse node 1092

SOAPEnvelope node 1096

SOAPExtract node 1099

SOAPInput node 1104

SOAPReply node 1114

SOAPRequest node 1116

source code
stepping into 797

stepping out of 798

stepping over 798

specifying opaque elements
XMLNSC parser 89

SQLJ
used by JavaCompute node 467

stack size
size, determining 160

stack storage
increasing stack size 160

statistics and accounting data 119

accounting origin 121

collecting 564

collection options 120

output formats 122

parameters, modifying 569

parameters, viewing 568

resetting archive data 569

setting accounting origin 566

starting 564

stopping 567

subflows 5

adding 234

configuring 235

keywords 157

removing 238

renaming 234

stepping into 796

stepping out of 796

using 156

symbols for flow debugger 1698

T
TCP/IP 422

connection management 428

nodes 425

overview 422

Scenarios
Message Broker using

TCP/IP 433

TCP/IP only 430

Working with 434

TCPIPClientInput node 1126

TCPIPClientOutput node 1137

TCPIPClientReceive node 1146

TCPIPServerInput node 1158

TCPIPServerOutput node 1169

TCPIPServerReceive node 1177

terminals
dynamic 52

dynamic terminals, adding 237

message flows 52

test messages
getting 789

putting 786

Throw node 1189

timeout control
automatic messages 608

multiple messages 606

performance considerations 609

sending a message 605

sending messages at a specified

time 606

1714 Message Flows

timeout request messages, example

XML 605

timeout request messages, predefined

schema definition 604

timeout request messages, sending 603

TimeoutControl node 1191

TimeoutNotification node 1194

error handling 211

timeouts
aggregation 583

topics
deployment 754

topics hierarchy, deploying 770

topology
deploying 768

deployment 753

Trace node 1198

trademarks 1705

TryCatch node 1202

catching exceptions 212

TwineballInput node 1204

TwineballRequest node 1207

U
user databases

accessing 170

from ESQL 172

user exits 129

deploying 571

developing 570

exploiting 198

user-defined nodes 1225

user-defined properties
message flow 111

V
Validate node 1210

validation
XMLNSC parser 89

validation, message 164

version
default value 819

displaying 224

version and keywords, message

flows 50

W
Warehouse node 1213

Web services 615

using MTOM 634

web services addressing
example usage

building the logger message

flow 693

building the main message

flow 691

deploying the message flows 694

testing the message flows 695

example use 644

how to use 637

information in

LocalEnvironment 642

overview 635

web services addressing (continued)
SOAPAsync nodes, using with 640

SOAPInput node, using with 638

SOAPReply node, using with 639

SOAPRequest node, using with 639

WebSphere Adapters nodes 7

EIS, connecting 256

Enterprise Information System,

connecting 256

IBM Tivoli License Manager,

activating 246

message flows, developing 245

monitoring 805

PeopleCode 1311

PeopleSoft
dependencies 253

PeopleSoftInput 1036

PeopleSoftRequest 1039

PeopleTools custom event project 255

properties 1226

PeopleSoft 1309

SAP 1226

Siebel 1287

SAP
dependencies 247

server, configuring 248

SAPInput 1061

SAPRequest 1064

Siebel
application, configuring 251

dependencies 250

SiebelInput 1076

SiebelRequest 1079

TwineballInput 1204

TwineballRequest 1207

WebSphere MQ
connections 1357

message groups
receiving messages 610

sending messages 611

message segments
sending segments 612

WebSphere Service Registry and

Repository 666

Cache 672

configuring loading options 673

loading strategy 673

setting up Cache Notification 675

LocalEnvironment 677

defining search criteria 677

EndpointLookup node output 678

RegistryLookup node output 680

nodes
changing configuration

parameters 669

configuration parameters 667

displaying configuration

parameters 668

secure 670

wildcards
in file name patterns 724

writing messages 74

WS-Security
capabilities 659

implementing 655

mechanisms 647

security 645

WSDL
applications 629

configuring message flows 632

use in a Quick Start wizard 132

validation 630

X
XML parsers

namespace support 97

XML self-defining message
AttributeDef 1443

AttributeList 1443

DocTypeComment 1444

DocTypeDecl 1440

DocTypePI 1444

DocTypeWhiteSpace 1445

document type declaration 1440

DTD 1440

example 1445

ElementDef 1443

example message 1433

external DTD 1440

inline DTD 1440

message body 1435

AsIsElementContent 1436

Attribute 1436

BitStream 1437

CDataSection 1437

Comment 1437

Content 1438

Element 1438

EntityReferenceEnd 1438

EntityReferenceStart 1438

example 1439

ProcessingInstruction 1439

NotationDecl 1441

WhiteSpace 1445

XML declaration 1434

example 1435

XML entities 1441

XMLNS parser
DTD support 96

Empty elements 94

NULL values 94

XMLNS parsers
Opaque parsing 95

XMLNSC parser
data types 92

DTD support 93

empty elements 87

message tree options 91

null values 87

opaque parsing 88

specifying opaque elements 89

validation 89

XPath 460

mapping functions 1425, 1688

XPath property editors 1464

XSD
use in a Quick Start wizard 132

XSL style sheet, keywords 1225

XSLTransform node 1216

Index 1715

Z
z/OS

data sources
Compute node 1448

Database node 1448

1716 Message Flows

����

Printed in USA

	Contents
	About this topic collection
	Part 1. Developing message flows
	Developing message flows
	Message flows overview
	Message flow projects
	Message flow nodes
	Configurable services
	Message flow version and keywords
	Message flow connections
	Threading
	Execution model
	The message tree
	Parsers
	Properties
	Message flow transactions
	Broker schemas
	Generating events for monitoring
	Message flow accounting and statistics data
	Message flow aggregation
	Message collection
	Converting data with message flows
	User exits

	Getting started with Quick Start wizards
	Quick Start wizards overview
	Creating an application from scratch
	Creating an application based on WSDL or XSD files
	Creating an application based on an existing message set
	Creating an application using WebSphere Adapters
	Creating an application using the Configure New Web Service Usage wizard

	Designing a message flow
	Deciding which nodes to use
	Using more than one input node
	Defining input message characteristics
	Using nodes for decision making
	Using subflows
	Optimizing message flow response times
	System considerations for message flow development
	Creating destination lists
	Using WebSphere MQ cluster queues for input and output
	Using WebSphere MQ shared queues for input and output (z/OS)
	Validating messages
	Viewing the logical message tree in trace output
	Accessing databases from message flows
	Accessing databases from ESQL
	Configuring globally coordinated message flows
	Configuring JMSInput and JMSOutput nodes to support global transactions
	Configuring the broker to enable a JMS provider's proprietary API
	Configuring message flows for data conversion
	Using MQGet nodes
	Exploiting user exits
	Ensuring that messages are not lost
	Providing user-defined properties to control behavior
	Handling errors in message flows

	Managing message flows
	Creating a message flow project
	Deleting a message flow project
	Creating a broker schema
	Creating a message flow
	Opening an existing message flow
	Copying a message flow using copy
	Renaming a message flow
	Moving a message flow
	Deleting a message flow
	Deleting a broker schema
	Version and keyword information for deployable objects
	Saving a message flow

	Defining message flow content
	Using the node palette
	Adding a message flow node
	Adding a subflow
	Renaming a message flow node
	Configuring a message flow node
	Using dynamic terminals
	Removing a message flow node
	Connecting message flow nodes
	Removing a node connection
	Adding a bend point
	Removing a bend point
	Aligning and arranging nodes

	Developing message flow applications using WebSphere Adapters
	Preparing your system to use WebSphere Adapters nodes
	Activating IBM Tivoli License Manager for WebSphere Adapters
	Adding external software dependencies for SAP
	Configuring the SAP server to work with the adapter
	Adding external software dependencies for Siebel
	Configuring the Siebel application to work with the adapter
	Adding external software dependencies for PeopleSoft
	Creating a custom event project in PeopleTools
	Connecting to an EIS using the Adapter Connection wizard

	Developing ESQL
	ESQL overview
	Managing ESQL files
	Writing ESQL

	Using XPath
	XPath overview
	Multi-language node property fields
	Namespace support
	XPath Expression Builder
	Creating XPath expressions
	Selecting the grammar mode

	Using TCP/IP in message flows
	TCP/IP overview
	TCP/IP nodes
	Connection management
	Scenarios for Message Broker and TCP/IP
	Working with TCP/IP

	Developing Java
	Managing Java Files
	Writing Java

	Developing message mappings
	Message mappings overview
	Creating message mappings
	Message mapping scenarios

	Defining a promoted property
	Promoting a property
	Renaming a promoted property
	Removing a promoted property
	Converging multiple properties

	Configure monitoring events for message flows
	Collecting message flow accounting and statistics data
	Starting to collect message flow accounting and statistics data
	Stopping message flow accounting and statistics data collection
	Viewing message flow accounting and statistics data collection parameters
	Modifying message flow accounting and statistics data collection parameters
	Resetting message flow accounting and statistics archive data

	Developing a user exit
	Deploying a user exit

	Configuring aggregation flows
	Creating the aggregation fan-out flow
	Creating the aggregation fan-in flow
	Associating fan-out and fan-in aggregation flows
	Setting timeouts for aggregation
	Using multiple AggregateControl nodes
	Correlating input request and output response aggregation messages
	Using control messages in aggregation flows
	Handling exceptions in aggregation flows
	Using WebSphere MQ to store state in aggregation nodes

	Configuring flows for message collection
	Creating a flow for message collection
	Configuring the Collector node
	Using control messages with the Collector node

	Configuring timeout flows
	Sending timeout request messages
	Sending a message after a timed interval
	Sending a message multiple times after a specified start time
	Automatically generating messages to drive a flow
	Performance considerations for timeout flows

	Configuring flows to handle WebSphere MQ message groups
	Receiving messages in a WebSphere MQ message group
	Sending messages in a WebSphere MQ message group
	Sending message segments in a WebSphere MQ message

	Part 2. Working with Web services
	Working with Web services
	WebSphere Message Broker and Web services
	What is a Web service?

	What is SOAP?
	The structure of a SOAP message
	SOAP nodes
	WebSphere Message Broker SOAP nodes
	SOAP applications
	Using the SOAP parser

	What is WSDL?
	WSDL validation
	Using WSDL to configure message flows

	What is SOAP MTOM?
	Using SOAP MTOM with the SOAPReply, SOAPRequest, and SOAPAsyncRequest nodes

	WS-Addressing
	How to use WS-Addressing
	WS-Addressing with the SOAPInput node
	WS-Addressing with the SOAPReply node
	WS-Addressing with the SOAPRequest node
	WS-Addressing with the SOAPAsyncRequest and SOAPAsyncResponse nodes
	WS-Addressing information in the LocalEnvironment

	WS-Security
	WS-Security mechanisms
	Policy sets
	Message flow security and security profiles
	WS-Security capabilities

	WebSphere Service Registry and Repository
	Configuration parameters for the WebSphere Service Registry and Repository nodes
	Displaying the configuration parameters for the WebSphere Service Registry and Repository nodes
	Changing the configuration parameters for the WebSphere Service Registry and Repository nodes
	Accessing a secure WebSphere Service Registry and Repository
	Caching artefacts from the WebSphere Service Registry and Repository
	The LocalEnvironment

	External standards
	SOAP 1.1 and 1.2
	SOAP with Attachments
	SOAP MTOM
	WSDL Version 1.1
	WS-I Simple SOAP Binding Profile Version 1.0
	WS-I Basic Profile Version 1.1
	WSDL 1.1 Binding Extension for SOAP 1.2
	XML-Binary Optimised Packaging (XOP)
	SOAP Binding for MTOM 1.0
	Web Services Security: SOAP Message Security
	XML Encryption Syntax and Processing
	XML-Signature Syntax and Processing
	WebSphere Message Broker compliance with Web services standards

	Message flows for Web services
	SOAP domain message flows
	XML domain message flows
	Web services scenarios

	Part 3. Working with files
	Working with files
	How the broker processes files
	Recognizing file records as messages to be parsed

	How the file nodes and additional instances share access to files
	Using LocalEnvironment variables with file nodes
	File name patterns
	mqsiarchive subdirectory
	Reading a file
	Reading a file on your local file system
	Reading a file on a remote FTP directory
	Reading a file, effects of different values in the FileInput node's Record detection property

	Writing a file
	Writing a file to your local file system
	Writing a file to a remote FTP server
	Writing a file, effects of different values in the FileOutput node's Record definition property

	Part 4. Deploying
	Deploying
	Deployment overview
	Deployment methods
	Types of deployment
	Message flow application deployment
	Broker configuration deployment
	Publish/subscribe topology deployment
	Publish/subscribe topics hierarchy deployment
	Cancel deployment

	Deploying a message flow application
	Creating a server project
	Creating a broker archive
	Adding files to a broker archive
	Refreshing the contents of a broker archive
	Deploying a broker archive file
	Deploying a message flow application that usesWebSphere Adapters

	Deploying a broker configuration
	Using the Message Broker Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy

	Deploying a publish/subscribe topology
	Using the Message Broker Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy

	Deploying a publish/subscribe topics hierarchy
	Using the Message Broker Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy API

	Checking the results of deployment
	Using the Message Broker Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy API

	Canceling a deployment that is in progress
	Using the Message Broker Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy API

	Renaming objects that are deployed to execution groups
	Removing a deployed object from an execution group
	Using the Message Broker Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy API

	Part 5. Debugging
	Testing and debugging message flow applications
	Flow debugger overview
	ESQL nodes and debugging
	Java nodes and debugging
	Mapping nodes and debugging

	Debugging a message flow
	Starting the debugger
	Working with breakpoints in the debugger
	Stepping through flow instances in the debugger
	Debugging data
	Managing flows and flow instances during debugging
	Debugging message flows that contain WebSphere Adapters nodes

	Testing message flows using the Test Client
	Test Client overview
	Testing a message flow
	Using the Test Client in trace and debug mode

	Part 6. Reference
	Message flows
	Message flow preferences
	Description properties for a message flow
	Guidance for defining keywords

	Built-in nodes
	AggregateControl node
	AggregateReply node
	AggregateRequest node
	Check node
	Collector node
	Compute node
	Database node
	DatabaseRetrieve node
	DatabaseRoute node
	DataDelete node
	DataInsert node
	DataUpdate node
	EmailOutput node
	EndpointLookup node
	Extract node
	FileInput node
	FileOutput node
	Filter node
	FlowOrder node
	HTTPHeader node
	HTTPInput node
	HTTPReply node
	HTTPRequest node
	Input node
	JavaCompute node
	JMSHeader node
	JMSInput node
	JMSMQTransform node
	JMSOutput node
	JMSReply node
	Label node
	Mapping node
	MQeInput node
	MQeOutput node
	MQGet node
	MQHeader node
	MQInput node
	MQJMSTransform node
	MQOptimizedFlow node
	MQOutput node
	MQReply node
	Output node
	Passthrough node
	PeopleSoftInput node
	PeopleSoftRequest node
	Publication node
	Real-timeInput node
	Real-timeOptimizedFlow node
	RegistryLookup node
	ResetContentDescriptor node
	Route node
	RouteToLabel node
	SAPInput node
	SAPRequest node
	SCADAInput node
	SCADAOutput node
	SiebelInput node
	SiebelRequest node
	SOAPAsyncRequest node
	SOAPAsyncResponse node
	SOAPEnvelope node
	SOAPExtract node
	SOAPInput node
	SOAPReply node
	SOAPRequest node
	TCPIPClientInput node
	TCPIPClientOutput node
	TCPIPClientReceive node
	TCPIPServerInput node
	TCPIPServerOutput node
	TCPIPServerReceive node
	Throw node
	TimeoutControl node
	TimeoutNotification node
	Trace node
	TryCatch node
	TwineballInput node
	TwineballRequest node
	Validate node
	Warehouse node
	XSLTransform node

	User-defined nodes
	WebSphere Adapters properties
	WebSphere Adapter for SAP properties
	WebSphere Adapter for Siebel properties
	WebSphere Adapter for PeopleSoft properties

	Supported code pages
	Chinese code page GB18030

	WebSphere MQ connections
	Listing database connections that the broker holds
	Quiescing a database
	Support for UNICODE and DBCS data in databases
	Data integrity within message flows
	Validation properties
	Validation tab properties
	Parser Options tab properties

	Parsing on demand
	Exception list structure
	Database exception trace output
	Conversion exception trace output
	Parser exception trace output
	User exception trace output

	Configurable message flow properties
	Message flow porting considerations
	Monitoring profile
	Monitoring profile schema

	Message flow accounting and statistics data
	Message flow accounting and statistics details
	Message flow accounting and statistics output formats
	Example message flow accounting and statistics data

	Coordinated message flows
	Database connections for coordinated message flows
	Database support for coordinated message flows

	Element definitions for message parsers
	Data types of fields and elements
	The MQCFH parser
	The MQCIH parser
	The MQDLH parser
	The MQIIH parser
	The MQMD parser
	The MQMDE parser
	The MQRFH parser
	The MQRFH2 and MQRFH2C parsers
	The MQRMH parser
	The MQSAPH parser
	The MQWIH parser
	The SMQ_BMH parser

	Message mappings
	Message Mapping editor
	Mapping node
	Migrating message mappings from Version 5.0
	Restrictions on migrating message mappings

	XML constructs
	Example XML message
	The XML declaration
	The XML message body
	XML document type declaration

	Data sources on z/OS

	ESQL reference
	Syntax diagrams: available types
	ESQL data types in message flows
	ESQL BOOLEAN data type
	ESQL datetime data types
	ESQL NULL data type
	ESQL numeric data types
	ESQL REFERENCE data type
	ESQL ROW data type
	ESQL string data types
	ESQL-to-Java data-type mapping table
	ESQL-to-XPath mapping table
	XPath property editors

	ESQL variables
	ESQL field references
	Namespace
	Index
	Type
	Field references summary
	Target field references
	The effect of setting a field to NULL

	ESQL operators
	ESQL simple comparison operators
	ESQL complex comparison operators
	ESQL logical operators
	ESQL numeric operators
	ESQL string operator
	Rules for ESQL operator precedence

	ESQL statements
	ATTACH statement
	BEGIN ... END statement
	BROKER SCHEMA statement
	CALL statement
	CASE statement
	CREATE statement
	CREATE FUNCTION statement
	CREATE MODULE statement
	CREATE PROCEDURE statement
	DECLARE statement
	DECLARE HANDLER statement
	DELETE FROM statement
	DELETE statement
	DETACH statement
	EVAL statement
	FOR statement
	IF statement
	INSERT statement
	ITERATE statement
	LEAVE statement
	LOG statement
	LOOP statement
	MOVE statement
	PASSTHRU statement
	PROPAGATE statement
	REPEAT statement
	RESIGNAL statement
	RETURN statement
	SET statement
	THROW statement
	UPDATE statement
	WHILE statement

	ESQL functions: reference material, organized by function type
	Calling ESQL functions
	ESQL database state functions
	ESQL datetime functions
	ESQL numeric functions
	ESQL string manipulation functions
	ESQL field functions
	ESQL list functions
	Complex ESQL functions
	Miscellaneous ESQL functions

	ESQL constants
	Broker properties that are accessible from ESQL and Java
	Special characters, case sensitivity, and comments in ESQL
	ESQL reserved keywords
	ESQL non-reserved keywords
	Example message

	Message mappings
	Message Mapping editor
	Message Mapping editor Source pane
	Message Mapping editor Target pane
	Message Mapping editor Edit pane
	Message Mapping editor Spreadsheet pane

	Mapping node
	Mapping node syntax
	Mapping node functions
	Mapping node casts
	Headers and Mapping node

	Migrating message mappings from Version 5.0
	Restrictions on migrating message mappings

	Flow application debugger
	Flow debugger shortcuts
	Debug view
	Breakpoints view
	Flow Breakpoint Properties dialog
	Variables view

	Flow debugger icons and symbols
	Debug perspective
	Debug view
	Message Flow editor
	Breakpoints view
	Variables view

	Java Debugger

	Part 7. Appendixes
	Appendix. Notices for WebSphere Message Broker
	Trademarks in the WebSphere Message Broker information center

	Index

